CN105402083B - 一种阶梯马格努斯型风力叶片及风力机 - Google Patents

一种阶梯马格努斯型风力叶片及风力机 Download PDF

Info

Publication number
CN105402083B
CN105402083B CN201510980093.3A CN201510980093A CN105402083B CN 105402083 B CN105402083 B CN 105402083B CN 201510980093 A CN201510980093 A CN 201510980093A CN 105402083 B CN105402083 B CN 105402083B
Authority
CN
China
Prior art keywords
blade
gear
energy conversion
wind
conversion system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510980093.3A
Other languages
English (en)
Other versions
CN105402083A (zh
Inventor
鲁录义
王坤
刘雪晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201510980093.3A priority Critical patent/CN105402083B/zh
Publication of CN105402083A publication Critical patent/CN105402083A/zh
Application granted granted Critical
Publication of CN105402083B publication Critical patent/CN105402083B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0601Rotors using the Magnus effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • F03D1/0641Rotors characterised by their aerodynamic shape of the blades of the section profile of the blades, i.e. aerofoil profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0658Arrangements for fixing wind-engaging parts to a hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0691Rotors characterised by their construction elements of the hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • F03D3/007Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical using the Magnus effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/064Fixing wind engaging parts to rest of rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/066Rotors characterised by their construction elements the wind engaging parts being movable relative to the rotor
    • F03D3/067Cyclic movements
    • F03D3/068Cyclic movements mechanically controlled by the rotor structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/06Controlling wind motors  the wind motors having rotation axis substantially perpendicular to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/201Rotors using the Magnus-effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/221Rotors for wind turbines with horizontal axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

本发明公开了一种阶梯马格努斯型风力叶片及风力机,叶片为阶梯圆柱形,分为若干圆柱段,各段圆柱直径,从叶片根部到叶片末端逐段变小;圆柱段包括圆柱形内齿轮,其内腔均设有行星齿轮装置。利用该叶片,本发明提出一种风力机,包括发电装置、轮毂、行星轮系统、塔架等相关设施。轮毂安装驱动电机,通过斜齿轮传动使圆柱形叶片实现一定速度的自转。不同的圆柱形叶片段通过行星轮系统实现差速转动,通过调节行星轮改变圆柱形叶片自转角速度,保证风力机组最大功率输出。本发明结构简单,加工成本低,可靠性强,高效率利用风能发电。

Description

一种阶梯马格努斯型风力叶片及风力机
技术领域
本发明属于风力发电技术领域,更具体地,涉及一种马格努斯型风力叶片及风力机。
背景技术
可再生能源是解决能源危机的最佳途径,而风力发电又是可再生能源行业中发展最迅速、技术最成熟、前景最广阔的行业。随着科学技术的不断进步,风力发电的经济性不断改善,加之我国已把可再生能源作为我国能源战略的重要组成部分,风力发电拥有巨大的潜在市场。
风力机叶片是风力机组的核心部件,直接关系到风力利用的效率。现代风力机的叶片多为传统翼型叶片,基于来流风速均匀稳定的条件下设计的,并未考虑大气边界层的风力梯度对效率的影响。而实际工作的风力机大都工作在200米以内的大气边层内,由于地面粘度和地形粗糙度的作用,使得靠近地面的大气边界层处存在较大的风力梯度,该梯度作用于叶片上将产生叶片的转矩变化和俯仰力矩,从而导致输出功率的减少。因而迫切需要一种能够保证在大气边界层内输出功率不发生损失甚至提升的风力机。
马格努斯型风力机的叶片是基于马格努斯效应的风能叶片,可视为自转的圆筒叶片。当旋转圆筒受到横向流动的风作用时会受到垂直于流动方向的升力,即所谓的马格努斯力。马格努斯型风力机的叶片与传统叶片相比,在相同的叶片表面积下,马格努斯叶片的升力是传统翼型叶片升力的十倍以上,因此在发电效率上具有明显的优势。现有的马格努斯型风力机叶片为等径设计的直圆筒型,在大气边界层剪切风作用下效率降低,而且其材料强度要求高,不适应风力机大型化发展。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种新型风力叶片及风力机,其目的在于提高叶片工作效率和风力机的输出功率,由此解决发电效率低的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种阶梯马格努斯型风力叶片,其特征在于,所述叶片为阶梯圆柱形,分为若干圆柱段,各段圆柱直径,从叶片根部到叶片末端逐段变小;
所述圆柱段包括圆形内齿轮,其内腔均设有行星齿轮系统(4),所述行星齿轮系统(4)内腔居中设有太阳齿轮,各段太阳齿轮共轴;各太阳齿轮与齿圈通过三个及以上行星齿轮啮合,用于将齿圈转动传给太阳齿轮,并实现各圆柱段的差速转动。
基于上述叶片,本发明提出一种马格努斯型风力机,包括塔架(5)、发电装置(1)和三个及以上所述的叶片,其特征在于:
所述叶片通过根部圆柱段与轮毂固定连接,相对于轮毂中心呈圆对称分布;所述轮毂内部设有电动机,用于驱动叶片根部圆柱段的圆形内齿轮自转,用于驱动其它圆柱段的转动;
工作中,在风力的带动下,各叶片旋转,带动轮毂旋转,将风能转化为机械能,送入发电装置。
进一步的,所述的马格努斯型风力机中,在电动机(7)与根部圆柱段之间,设有斜齿轮(8),用于实现电动机与圆柱段圆形内齿轮之间的动力传送。
进一步的,所述的马格努斯型风力机中,包括五个等圆角度分布的叶片。
进一步的,所述的马格努斯型风力机中,各圆柱段内行星齿轮系统中,齿圈和太阳轮、行星轮的齿数比根据实际工况设计。
本发明是基于马格努斯效应而设计,本发明提出的叶片,带有一定速度自转。考虑到大气边界层存在风力梯度和结构强度的影响,将每个叶片设计成若干段需要的圆柱形叶片段,通过行星轮系统使不同的叶片段间以不同的速度自转,调节不同圆柱形叶片段的转速可以使整个叶片在旋转过程中都能以最优速度自转,有效地降低叶片损失效率,提高机组的输出功率。
马格努斯型风力机的工作原理:空气以一定的风速流经阶梯状的自转圆柱形叶片,产生马格努斯升力,推动叶片转动,在气流作用下产生力矩驱动风轮转动,通过一系列的传动装置将机械能送入发电装置,供于发电。
马格努斯型风力机的工作特点:马格努斯型风力机可以在任意风速工况下进行启动,结构简单,维修方便,发电效率高。而且此风力机易于制造加工,重心较低,安全性好,运行成本低,维护容易,无噪音污染等明显特点。马格努斯型风力机可以应用于水平轴和垂直轴上,可以在风力发电机、高吸程水泵、空气压缩机等设备进行储能使用。
本发明的积极进步效果在于:本发明的马格努斯型风力机,通过将叶片设计为阶梯状的分段旋转圆筒,通过控制各段圆筒的直径保证叶片所受的弯曲应力延展向分布均匀,满足材料的强度要求;通过控制各段圆筒的转速保证每一段圆筒均以最优的工况运行,实现风力机在大气边界层输出功率不但不受损,反而有较大幅度提升的效果。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,由于轮毂摈弃了变桨距系统,安装驱动电机通过斜齿轮传动来调节叶片的自转速度,来达到控制风力机输出功率的控制。行星轮系统作为阶梯状的自转圆柱形叶片间的传动装置,根据风速梯度变化调节圆柱形叶片段的自转速度,实现差速转动,简化了机组的结构和提高了机组效率。
附图说明
图1是马格努斯型风力机结构示意图;
图2是阶梯状的自转圆柱形叶片内部传动机构;
图3是轮毂内驱动机构;
图4是大气边界层风速分布;
图5是大气边界层内风力机功率损耗;
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:1—发电装置、2—轮毂、3—叶片、4—行星轮系统、5—塔架、6—基础,7—驱动电机,8—斜齿轮、9—后盖。10—圆柱形内齿轮,11—太阳轮),12—水平旋转轴。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例:
如图1所示,带有阶梯状自转的圆柱形叶片的马格努斯型风力机,包括发电装置(1)、轮毂(2)、叶片(3)、塔架(5)、基础(6)等相关设施。风轮由叶片(3)和轮毂(2)组成。叶片(3)具有空气动力外形,在气流作用下产生力矩驱动风轮转动,通过轮毂(2)将转矩输入到发电装置(1)中。发电装置(1)将机械能转化成动能,并输送给电网。为了配筋方便,基础(6)形状为方形。塔架(5)与基础(6)相连接,支撑位于空中的风力发电系统,承受风力发电系统运行引起的各种载荷,同时传递这些载荷到基础,使整个风力机组能稳定可靠地运行。
结合图1、图2及图3可知,叶片(3)各段形状均为圆柱形、直径大小从叶根部到叶尖部呈阶梯状。由电动机(7)驱动叶片自转,自转的叶片(3)在水平气流的作用下产生马格努斯升力。基于风力机组稳定性,叶片数目为5。基于大气边界层存在较大的风力梯度,叶片(3)等距分割成15个圆柱形叶片段,呈阶梯状即半径逐次递减的叶片段。调节行星轮的转速来实现各个圆柱形叶片段的差速转动。图4为传动装置斜齿轮结构,电机驱动斜齿轮运转从而带动叶片以一定速度转动。风轮转动的机械能经水平旋转轴(12)进入发电装置(1),用于发电。
为了验证本发明中的阶梯马格努斯型叶型在边界层内的实施效果,本实施例中将设计了一组阶梯马格努斯型叶型与传统翼形叶片NACA4418进行对比,阶梯马格努斯型叶型参考NACA4418进行设计。将阶梯马格努斯型叶型和NACA4418分为15级,各段马格努斯型叶片在均匀来流风速下的升力设计与NACA4418的升力相同,所得马格努斯型叶片主要参数如表1所示。
表1阶梯马格努斯叶片相关参数
依据微元动量理论BEM进行相关计算,计算结果表明:在大气边界层剪切风速(如图4所示)中的传统翼形叶片NACA4418效率损失大概为10%,而阶梯马格努斯形叶片相对于传统翼形叶片的效率增益达到近70%,两者功率损耗如图5中阴影部分所示。本实施例中,采用计算流体力学数值模拟进行分析也得到相近的结果。因此,相比传统叶片而言,阶梯马格努斯形叶片在大气边界层内具有提高输出功率的优势。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种马格努斯型风力机叶片,其特征在于,所述叶片为阶梯圆柱形,分为若干圆柱段,各段圆柱直径,从叶片根部到叶片末端逐段变小;
所述圆柱段包括圆形内齿轮,其内腔均设有行星齿轮系统(4),所述行星齿轮系统(4)内腔居中设有太阳齿轮,各圆柱段太阳齿轮共轴;各太阳齿轮与齿圈通过三个以上行星齿轮啮合,用于将齿圈转动传给太阳齿轮,并实现各圆柱段的差速转动。
2.一种由权利要求1所述叶片构成的马格努斯型风力机,包括塔架(5)和发电装置(1),其特征在于:包括三个以上所述叶片,各叶片通过根部圆柱段与轮毂固定连接,相对于轮毂中心呈圆对称分布;所述轮毂内部设有电动机(7),用于驱动叶片根部圆柱段的圆形内齿轮自转,带动其它圆柱段的转动;
各叶片工作时,在风力的带动下旋转,将风能转化为机械能,送入发电装置。
3.根据权利要求2所述的马格努斯型风力机,其特征在于:在电动机(7)与根部圆柱段之间,设有斜齿轮(8),用于实现电动机与圆柱段圆形内齿轮之间的动力传送。
4.根据权利要求2或3所述的马格努斯型风力机,其特征在于:其包括五个等圆角度分布的叶片。
5.根据权利要求2或3所述的马格努斯型风力机,其特征在于:各圆柱段内行星齿轮系统中,齿圈和太阳齿轮、行星齿轮的齿数比根据实际工况设计。
CN201510980093.3A 2015-12-23 2015-12-23 一种阶梯马格努斯型风力叶片及风力机 Expired - Fee Related CN105402083B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510980093.3A CN105402083B (zh) 2015-12-23 2015-12-23 一种阶梯马格努斯型风力叶片及风力机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510980093.3A CN105402083B (zh) 2015-12-23 2015-12-23 一种阶梯马格努斯型风力叶片及风力机

Publications (2)

Publication Number Publication Date
CN105402083A CN105402083A (zh) 2016-03-16
CN105402083B true CN105402083B (zh) 2018-01-02

Family

ID=55467785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510980093.3A Expired - Fee Related CN105402083B (zh) 2015-12-23 2015-12-23 一种阶梯马格努斯型风力叶片及风力机

Country Status (1)

Country Link
CN (1) CN105402083B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109236716A (zh) * 2018-11-14 2019-01-18 成都工业学院 一种风机叶片电动调节机构及风机
CN114688620A (zh) * 2020-12-30 2022-07-01 广东美的白色家电技术创新中心有限公司 风机组件和空调器
CN115773199B (zh) * 2022-12-20 2023-11-21 江苏宝诚重工科技有限公司 一种风力发电转子叶片

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1846056B (zh) * 2004-02-09 2010-04-07 美卡露秋田株式会社 马格纳斯型风力发电装置
JP2009008041A (ja) * 2007-06-29 2009-01-15 Mecaro:Kk マグナス型風力発電装置
US7781905B2 (en) * 2007-11-13 2010-08-24 Edwin Newman Turbulence reduction around magnus rotors
US9273666B2 (en) * 2013-09-01 2016-03-01 Hamid Reza Kheirandish Magnus type wind power generator
CN205277683U (zh) * 2015-12-23 2016-06-01 华中科技大学 一种阶梯马格努斯型风力叶片及风力机

Also Published As

Publication number Publication date
CN105402083A (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
Singh et al. Investigation of self-starting and high rotor solidity on the performance of a three S1210 blade H-type Darrieus rotor
CN103277246B (zh) 一种共轴异向旋转的双风轮垂直轴风力发电机
CN110094302B (zh) 一种可变桨顶缘自转型垂直轴风力发电机
WO2016062139A1 (zh) 一种风力发电机单框架式叶轮
CN206707918U (zh) 波浪形尾缘叶片及h型立轴风力发电机
Kiwata et al. Performance of a vertical axis wind turbine with variable-pitch straight blades utilizing a linkage mechanism
CN104847579B (zh) 可调叶片攻角双层式风轮垂直轴风力发电机
CN105402083B (zh) 一种阶梯马格努斯型风力叶片及风力机
CN205277683U (zh) 一种阶梯马格努斯型风力叶片及风力机
CN102953928B (zh) 调桨长的万向风车
CN202132178U (zh) 垂直式多层级风轮的风力发电机
CN1719023B (zh) 阻力和升力复合风动力装置
CN202228267U (zh) 一种钻孔轮毂
CN103216381B (zh) 一种风力发电机组叶片
CN104533706A (zh) 一种皮带传动的折叠叶片型垂直轴风机叶轮
Nishizawa An experimental study of the shapes of rotor for horizontal-axis small wind turbines
KR102394699B1 (ko) 저풍속 풍력발전기용 블레이드 장치
CN104343626B (zh) 一种带有增速叶片的自保护风力提水系统
KR20090102282A (ko) 풍차 날개 자전형 수직축 풍력 발전기
CN202417814U (zh) 混合型垂直轴风力发电机风轮
CN105736242A (zh) 随风变速双风轮风力发电机
WO2013044421A1 (zh) 一种风力发电系统
CN108331709A (zh) 一种垂直轴风力发电装置
CN103629045A (zh) 一种h型垂直轴风力机叶轮的多系统组合结构
CN109322785A (zh) 嵌套式共轴双转子垂直轴风力机的风轮装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180102

Termination date: 20181223

CF01 Termination of patent right due to non-payment of annual fee