WO2005073662A1 - Wärmetauscher, insbesondere flachrohr-verdampfer für eine kraftfahrzeug-klimaanlage - Google Patents

Wärmetauscher, insbesondere flachrohr-verdampfer für eine kraftfahrzeug-klimaanlage Download PDF

Info

Publication number
WO2005073662A1
WO2005073662A1 PCT/EP2005/000859 EP2005000859W WO2005073662A1 WO 2005073662 A1 WO2005073662 A1 WO 2005073662A1 EP 2005000859 W EP2005000859 W EP 2005000859W WO 2005073662 A1 WO2005073662 A1 WO 2005073662A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
collecting box
exchanger according
flat
cover
Prior art date
Application number
PCT/EP2005/000859
Other languages
English (en)
French (fr)
Inventor
Gottfried DÜRR
Klaus FÖRSTER
Michael Kohl
Emil Neumann
Franz Ott
Wolfgang Seewald
Original Assignee
Behr Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr Gmbh & Co. Kg filed Critical Behr Gmbh & Co. Kg
Priority to BRPI0507143-7A priority Critical patent/BRPI0507143B1/pt
Priority to EP05707067.4A priority patent/EP1711772B1/de
Priority to US10/586,926 priority patent/US20080029256A1/en
Publication of WO2005073662A1 publication Critical patent/WO2005073662A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2220/00Closure means, e.g. end caps on header boxes or plugs on conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/32Safety or protection arrangements; Arrangements for preventing malfunction for limiting movements, e.g. stops, locking means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines

Definitions

  • Heat exchanger in particular flat tube evaporator for an automotive air conditioning system
  • the invention relates to a heat exchanger, in particular a flat tube evaporator for a motor vehicle air conditioning system, according to the preamble of claim 1.
  • a heat exchanger in particular an evaporator, is known from DE 198 26 881 A1, in which a collecting box made of sheet metal is provided, which is formed from a prepared circuit board.
  • the board consists of an aluminum alloy, from which the flat tubes, the corrugated fins and the side parts as well as the other elements of the heat exchanger are made. It is first punched out of a plate, which is then shaped in such a way that a flat bottom (essentially flat collecting box part) is formed, with bent parts (tunnel-shaped collecting box parts) adjoining its longitudinal edges.
  • the bent parts are bent in a radius to form a cylindrical surface, from which the longitudinal edges are bent in such a way that they abut one another parallel to one another and run essentially perpendicular to the floor.
  • the Longitudinal edges are provided with a plurality of tabs which are distributed over their length and which are inserted through recesses in the base and are caulked on the outside facing the flat tubes. In this way, a collecting box with the two chambers is formed, which has a relatively high strength before soldering takes place.
  • the board is solder plated or provided with a solder coating.
  • Passages are provided in the floor, in which the flat tubes are received.
  • the passages are pulled up to the longitudinal edges lying against one another. This results in a depth for the heat exchanger that is only slightly greater than the sum of the depths of the flat tubes.
  • the longitudinal edges of the parts are provided with recesses which are aligned with one another and which are located in the section facing away from the supply and discharge side between the transverse wall and the end of the collecting chamber.
  • the transverse walls are inserted into the chambers from the outside. For this purpose, slots are provided in the parts or in the floor.
  • a flat circuit board is first produced, in particular by punching out, in which the required tabs and the openings and cutouts later receiving these tabs are punched. Then the longitudinal edges of the parts are first bent. Then the passages are incorporated. If the dividing walls are to be inserted into the chambers from the bottom, the passage-like slots for the dividing walls are also provided when the passages are manufactured in the same operation. If the partitions are to be inserted into the chambers from the side, the slots required for this are already machined into the flat board. After the pull-throughs have been made, the collecting box is bent. The tabs are then caulked.
  • the covers are produced as a pressed sheet metal part, which has an embossed edge that runs all around the contour of the ends of the collecting box.
  • One of the covers has openings for connecting the refrigerant supply and discharge.
  • the edge is provided with a transverse embossing in the area of the longitudinal edges, which is adapted to the sum of the wall thicknesses of the longitudinal edges. Due to the embossed edge, a step is created, which attaches itself to the inner walls of the collecting boxes when the lids are attached and forms a frictional joint connection. This frictional joint connection is supported by several tabs that connect to the embossed edge and are angled by 90 °. These tabs grip the collection boxes on the outside.
  • known evaporators with the standard rib densities have almost parallel ribs or a small opening angle between the individual ribs, which tend to have an unfavorable water storage behavior due to capillary forces, i.e. store a lot of water locally due to the given geometry.
  • the evaporators may tend to spray - especially if there is a large amount of air and small end faces - which in turn limits the permissible fin density (number of fin sections per unit length in the longitudinal direction of the pipes).
  • the risk of splashing increases, the more condensate accumulates in the individual fin coils or the smaller the area through which the air can flow freely.
  • An unfavorable water storage and drainage behavior due to the given rib geometry have, for example, evaporators with almost parallel ribs or small opening angles between the individual rib sections. In particular, the flow rate or amount of air up to which spraying can still be avoided is limited.
  • One task is in particular an improved water separation and / or a reduction in the water storage capacity
  • a heat exchanger is provided with at least one collecting box made of sheet metal, which is arranged in the longitudinal direction in at least two. Chambers is divided and in the bottom of which the ends of tubes, in particular flat tubes, are inserted, and the collecting box has a tunnel-shaped collecting box part, an essentially flat collecting box part which forms the bottom, and each has a cover on the end face, at least one of which Lid is flat at least in its outer edge area and positively positioned in the collecting box.
  • the flat design of the cover enables it to be • easily manufactured by punching from a sheet metal, and to be easily fitted.
  • the lids take up less space compared to the conventional, deep-drawn lids, so that the heat exchanger is smaller.
  • a plate can be used for the closed end faces of the heat exchanger, which at least essentially corresponds to the partition plates.
  • the form-fit positioning in the collecting box ensures optimal soldering.
  • the cover is preferably inserted from the front side, with it abutting on the collecting box side at a plurality of stops which are formed on the tunnel-shaped collecting box part and / or on the flat collecting box part.
  • the cover is preferably secured on the outside by means of a plurality of bent-over tabs, the tabs being spaced apart from the stops in such a way that the lid is accommodated between them with as little play as possible.
  • the tabs can be bent about an axis running parallel to the longitudinal axis of the collecting tank. Alternatively, they can be bent from the outside in.
  • the cover has a thickness, at least in the area in contact with the collecting box, of approximately 1 to 2 mm, preferably 1.5 mm.
  • the positive positioning before soldering results in improved lid tightness.
  • process reliability can be increased so that fewer faulty heat exchangers are produced.
  • the tabs are preferably part of the tunnel-shaped collecting box part and / or the flat collecting box part, wherein they are formed in one piece with the same by punched slots in the circuit board forming the corresponding collecting box part.
  • the cover preferably has an opening, the edge of which is bent outwards.
  • the opening is preferably circular, in particular as a passage, a different design, in particular an oval design, of the opening is also possible, so that the surface of the cover can be optimally used, with maximum flow area.
  • the opening is preferably conical, in particular with an angle of the edge to the longitudinal axis of the passage of at most 5 °, in particular preferably from 2 ° to 3 °, so that self-locking is ensured.
  • a suction pipe is preferably provided, which is attached to the cover with an opening and which has an inner diameter which corresponds approximately to the outer diameter of the edge delimiting the opening, the suction pipe being pushed over the passage. This enables the flow cross-section to remain constant and widen slightly in the direction of flow, so that it is designed as large as possible and the pressure drop on the refrigerant side can be kept as low as possible. This allows the evaporator output to be increased.
  • An injection pipe which is attached to the cover with an opening, preferably has an outer diameter which corresponds approximately to the smallest inner diameter of the edge delimiting the opening.
  • the edge of the collecting box sheet for the covers preferably has an insertion bevel, which can also be rounded as a chamfer.
  • the two tunnel-shaped collecting box parts preferably have an essentially semicircular shape, which has a positive effect on the strength properties of the collecting box, so that the material thickness - compared to conventional collecting boxes - can preferably be reduced, in particular to wall thicknesses of approximately 0. 8 mm when attaching the injection and suction pipe from one of the front sides (through two lids), or when attaching the same lengthways via a connection core in the area of the header box of approx. 1 mm.
  • the flat tubes used preferably have a width of 2 to 3 mm, which makes them narrower than conventional flat tubes.
  • the heat exchanger can flow through 4 or more passages, in particular 6 passages.
  • a heat exchanger has flat tubes and corrugated fins, the corrugated fins having a fin height which corresponds to the distance between two flat tubes, and wherein two fin sections connected via a fin arch are inclined to one another at an opening angle ⁇ .
  • a rib height of 3 to 6 mm, preferably of 4 to 5 mm, and a rib density of 50 to 90 ribs, preferably of 60 to 80 ribs, particularly preferably 70 ribs, each 100 mm
  • an enlarged angle results according to the present invention between the individual ribs (with the same rib density and the same radius of curvature).
  • the opening angle of at least two rib sections is preferably 22 ° +/- 7 ° or 30 ° +/- 10 °.
  • a further increase in the opening angle can be achieved under certain circumstances if one or more rib arches have a radius of curvature of less than 0.4 mm, preferably less than or equal to 0.35 mm, particularly preferably less than or equal to 0.3 mm, at least in some areas.
  • a width of the flat tubes of approximately 1.5 to 3 mm is advantageous.
  • a smaller fin height or a larger fin opening angle reduces a capillary action in the fin windings, so that less condensate remains in the fin windings. Are connected with it a smaller amount of water that can be stored and, under certain circumstances, a better water drainage and possibly a lower risk of splashing.
  • a smaller fin height leads to a distribution of the condensate over more fins and pipes (more heat exchange surface), so that overall less condensate is generated per fin turn. This in turn results in a lower risk of splashing and possibly a more favorable drainage behavior along the tubes and / or the fins.
  • Indirect advantages may be a higher permissible rib density and thus an increased performance potential, a lower risk of bacterial growth and thus a reduced odor formation, and possibly a cost saving through simpler surface treatment, which may even be completely eliminated under certain circumstances.
  • a so-called flash fog risk den fogging of windshields due to moisture from the evaporator
  • Such a heat exchanger is used in particular as a flat tube evaporator for a motor vehicle air conditioning system.
  • FIG. 1 shows a perspective illustration of a collecting box
  • FIG. 2 shows a detailed view of the collecting box from FIG. 1,
  • FIG. 3 shows the collecting box from FIG. 1 before the installation of the front-mounted cover
  • 4 is a detailed view of FIG. 3
  • FIG. 5 shows a detailed view of the collecting box from FIG. 1, the right one of the two lids not being shown,
  • FIG. 6 a detailed view corresponding to FIG. 5 from a different perspective
  • Fig. 8 is a section along line A-A in Fig. 7,
  • FIG. 9 is a sectional view corresponding to FIG. 8 without cover
  • FIG. 11 shows a section in the longitudinal direction of the collecting tank to illustrate a partition
  • Fig. 12a, 12b views of two Wellrippbleche, wherein 'in Fig. 12a is a known form, and in Fig. 12b is a form is shown for a larger flat tube density,
  • 13a, 13b each a section of a corrugated fin of an evaporator in different geometries
  • a flat tube evaporator 1 (only partially shown) of a motor vehicle air conditioning system has, as already described above with reference to DE 198 26 881 A1, two header boxes 2, flat tubes (not shown) which run between the two header boxes 2, and corrugated fins 3 on, which are arranged between the flat tubes.
  • each collecting box 2 is formed from a circuit board which is punched out of sheet metal and is then shaped such that a flat collecting box part 4 and then two tunnel-shaped collecting box parts 5 are formed on its longitudinal edges (see in particular FIGS. 4 and 6) ).
  • the longitudinal edges are provided with a plurality of tabs arranged distributed over their length, which are inserted through recesses in the flat collecting box part 4 and are caulked on the outside facing the flat tubes.
  • the front ends are closed by means of covers 6 described in more detail later.
  • the two tunnel-shaped collecting box parts 5 have an essentially semicircular shape due to a relatively small structural depth, as can be seen, for example, from the illustration in FIG. 7.
  • One or more partition walls 8 are provided in the interior of the header tank 2, through which the flow path for a fluid such as the refrigerant through the heat exchanger, in particular its flat tubes, can be predetermined.
  • the partitions 8 can preferably be inserted through slots 9 in a flat collecting box part 4, the partitions 8 each being arranged between two openings or passages 7 for the pipes, such as flat pipes, and the spacing of the passages 7 through the partitions 8 preferably not changing is.
  • a partition wall slot is punched out or otherwise introduced in the collecting box 2 in one area, so that under certain circumstances no passage is formed, and / or in another area a guide element, such as a guide groove, for example with a depth of 0.2 up to 0.3 mm, to guide the partition 8 (see FIG. 11).
  • the cover 6, which is made of sheet metal, is attached to the collecting box 2 from the end, whereby it is inserted as far as stops 10 formed by stop pins, which are formed on the board by means of stamping, and punched out during the manufacture of the board and after the positioning of the Cover 6 bent tabs 11 are locked.
  • insertion bevels are provided on the board (see chamfer in FIG. 9, which goes over about half the board thickness). Both the tabs 11 and the stops 10 in the tunnel-shaped collecting box part 5 are each at the same height, as seen in the longitudinal direction of the collecting box 2.
  • each cover 6 in the flat collecting box part 4 has only one stop 10 and offset two tabs 11, but according to a variant not shown in the drawing, there is also one the design corresponding to the tunnel-shaped collecting box part 5 is possible.
  • the tabs 11 are spaced apart from one another by the stops 10 in the longitudinal direction of the collecting tank 2 by the thickness of the sheet forming the cover 6, so that an exact positioning as a result of a positive connection is possible before the soldering.
  • the tabs 11 are bent around an axis which runs parallel to the longitudinal axis of the collecting box. According to a variant not shown in the drawing, it is also possible to bend the tabs towards the lid, so that only two slots in the plate running in the longitudinal direction of the collecting box have to be provided for each tab. Furthermore, according to a further variant, not shown in the drawing, the limitation of the insertion of the covers can be limited to the first passage for the flat tubes, so that stops only have to be provided in the tunnel-shaped collecting box part and the total length of the collecting box can be optimally used can.
  • the refrigerant supply and discharge takes place, as can be seen in FIG. 10, via an injection pipe 13 or a suction pipe 14 attached to a cover 6 provided with an opening 12.
  • the openings 9 of the cover 6 are in the corresponding stamped-out sheet metal part formed as passages, the covers 6 being installed in the collecting box 2 in such a way that the edges of the passages each project outwards.
  • the starting plate thickness of the cover 6, ie the thickness of the unprocessed plate is approximately 1.5 mm in order to ensure a secure solder connection on the narrow sides and a sufficient material thickness for the pull-throughs, so that there is also a sufficiently large connection area and thus a secure connection between the pipes for the refrigerant supply and discharge and the passages can be guaranteed.
  • the cover 6 is also flat without a passage, at least in its outer edge regions lying against the circuit board of the collecting box 2.
  • the passage for the injection pipe 13 is designed such that the injection pipe 13 is pushed into the opening 12 up to the height of the stops 10.
  • the passage of the cover 6 has a slightly conical inner diameter which tapers outwards over the length of the passage.
  • the passage for the suction pipe 14 has an outwardly tapering outer diameter, the suction pipe 14 being slightly widened at its end being pushed on from the outside.
  • the slope at both openings 12 is preferably 2-3 °, but maximum
  • Five-chamber flat tubes in particular with a width of approximately 2.5 mm, are preferably used, the web spacing remaining unchanged, so that the air-side pressure drop does not increase, or increases only insignificantly, compared to known evaporators with a normal overall depth.
  • the flow through the evaporator can be 6-flow, for example, or, especially in the case of small block widths, 4-flow.
  • FIG. 13 shows a costal arch 102 with a smaller radius of curvature (compared to FIG. 13a).
  • a radius of curvature can be different at each point of the costal arch 102 and that, in addition to an arcuate cross section, other symmetrical or asymmetrical shapes of the costal arch 102 are also possible.
  • the fin height 1 being greater than the fin height 2 and the fin height 2 being greater than the fin height 3.
  • a positive influence of the smaller rib height on the storage capacity is also noticeable here.
  • the values were determined by means of a simple screening test, in which the evaporators are first immersed in a water bath and, after removal after a certain draining time, the amount of residual water still in the evaporator is determined by weighing.
  • the opening angle ⁇ is approximately 14 ° (with 60 fins per 100 mm), or lower.
  • angles of approx. 28 ° can be achieved (again with 60 ribs per 100 mm) (see Fig. 13).
  • the resulting angle for a 6 mm high rib is between 15 ° and 22 ° (evaporators with a 6 mm high rib already show a significantly better drainage and storage behavior than evaporators with an 8 mm high rib, but here is also the number of drain surfaces or flat tubes already higher).
  • the water separation is further favored by a larger available drainage surface along the flat tube or by the larger number of drainage surfaces / flat tubes with a comparable amount of condensate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die Erfindung betrifft einen Wärmetauscher, insbesondere Flachrohr-Verdampfer (1) für eine Kraftfahrzeug-Klimaanlage, mit wenigstens einem (Sammelkasten2) aus Blech, der in Längsrichtung wenigstens in zwei Kammern unterteilt ist und in dessen Boden die Enden von Rohren, insbesondere von Flachrohren, eingeführt sind, und der Sammelkasten (2) einen tunnelförmigen Sammelkasten-Teil (5), einen im Wesentlichen ebenen Sammelkasten-Teil (4), der den Boden bildet, und stirnseitig jeweils Deckel (6) aufweist, wobei mindestens ein Deckel (6) zumindest in seinem äusseren Randbereich eben ausgebildet und formschlüssig im Sammelkasten positioniert ist.

Description

Wärmetauscher, insbesondere Flachrohr-Verdampfer für eine Kraftfahrzeug-Kiimaaniage
Die Erfindung betrifft einen Wärmetauscher, insbesondere einen Flachrohr- Verdampfer für eine Kraftfahrzeug-Klimaanlage, gemäß dem Oberbegriff des Anspruchs 1.
Aus der DE 198 26 881 A1 ist ein Wärmeübertrager, insbesondere ein Ver- dampfer, bekannt, bei dem ein Sammelkasten aus Blech vorgesehen ist, der aus einer vorbereiteten Platine geformt ist.
Die Platine besteht aus einer Aluminium-Legierung, aus welcher auch die Flachrohre, die Wellrippen und die Seitenteile sowie die übrigen Elemente des Wärmeübertragers bestehen. Sie wird zunächst aus einer Platte ausgestanzt, die dann so geformt wird, dass ein ebener Boden (im Wesentlichen ebener Sammelkasten-Teil) gebildet wird, an dessen Längskanten abgebogene Teile (tunnelförmige Sammelkasten-Teile) anschließen. Die abgebogenen Teile sind in einem Radius zu einer Zylinderfläche gebogen, von der die Längsränder derart abgekantet sind, dass sie parallel zueinander aneinander anliegen und im Wesentlichen senkrecht zu dem Boden verlaufen. Die Längsränder sind mit mehreren, über ihre Länge verteilt angeordneten Laschen versehen, die durch Aussparungen des Bodens hindurchgesteckt sind und auf der den Flachrohren zugewandten Außenseite verstemmt sind. Auf diese Weise wird ein Sammelkasten mit den beiden Kammern gebildet, der eine relativ hohe Festigkeit aufweist, bevor ein Verlöten erfolgt. Die Platine ist lotplattiert oder mit einer Lotbeschichtung versehen.
In dem Boden sind jeweils Durchzüge vorgesehen, in denen die Flachrohre aufgenommen werden. Jeweils im Bereich der Längskanten des Bodens, von welchem die Teile abgebogen sind, sind die Durchzüge bis dicht an die aneinander anliegenden Längsränder herangezogen. Dadurch ergibt sich eine Tiefe für den Wärmeübertrager, die hur geringfügig größer als die Summe der Tiefen der Flachrohre ist. Die Längsränder der Teile sind mit miteinander fluchtenden Aussparungen versehen, die sich in dem der Zu- führ- und Abführseite abgewandten Abschnitt zwischen der Querwand und dem Ende der Sammelkammer befinden. Die Querwände werden von außen in die Kammern eingeschoben. Hierfür sind Schlitze in den Teilen oder im Boden vorgesehen.
Bei der Herstellung des Sammelkastens wird zunächst eine ebene Platine gefertigt, insbesondere durch Ausstanzen, in der die benötigten Laschen sowie die später diese Laschen aufnehmenden Öffnungen sowie Aussparungen eingestanzt werden. Danach werden zunächst die Längsränder der Teile abgebogen. Anschließend werden die Durchzüge eingearbeitet. Wenn die Trennwände von dem Boden her in die Kammern eingefügt werden sollen, so werden bei dem Fertigen der Durchzüge im gleichen Arbeitsgang auch die durchzugartigen Schlitze für die Trennwände vorgesehen. Wenn die Trennwände von der Seite her in die Kammern eingeschoben werden sollen, so werden die dafür benötigten Schlitze bereits in die ebene Platine eingearbeitet. Nach dem Fertigen der Durchzüge wird der Sammelkasten fertig gebogen. Anschließend werden die Laschen verstemmt. Vor dem Verlöten des mit den Flachrohren und den Wellrippen und den Seitenteilen versehenen Wärmeübertragers werden die Stirnenden der Sammelkästen mittels eingefügter Deckel verschlossen. Die Deckel sind als Blechpressteil hergestellt, das einen entsprechend der Kontur der Stirnenden der Sammelkasten umlaufenden, geprägten Rand aufweist. Einer der Deckel weist hierbei Öffnungen zum Anschließen der Kältemittel-Zuführung und -Abführung auf. Der Rand ist im Bereich der Längsränder mit einer Querprägung versehen, die der Summe der Wandstärken der Längsränder angepasst ist. Auf Grund des geprägten Randes entsteht eine Stufe, die sich beim Anbringen der Deckel an die Innenwandungen der Sammelkästen anlegt und eine reibschlüssige Fügeverbindung bildet. Diese reibschlüssige Fügeverbindung wird mittels mehrerer Laschen unterstützt, die an dem geprägten Rand anschließen und um 90° abgewinkelt sind. Diese Laschen umgreifen die Sammelkästen auf der Außenseite.
Darüberhinaus weisen bekannte Verdampfer bei den standardmäßig üblichen Rippendichten (auch bei kleinen Rippenhöhen) nahezu parallel stehende Rippen bzw. einen kleinen Öffnungswinkel zwischen den einzelnen Rippen auf, die aufgrund von Kapillarkräften zu einem ungünstigen Wasser- speicherungsverhalten tendieren, d.h. viel Wasser aufgrund der gegebenen Geometrie örtlich speichern.
Bei schlechtem Wasserablauf neigen die Verdampfer unter Umständen zum Spritzen - vor allem bei großer Luftmenge und kleinen Stirnflächen - was wiederum die zulässige Rippendichte (Anzahl von Rippenabschnitten pro Längeneinheit in Längsrichtung der Rohre) begrenzt. Die Gefahr des Sprit- zens wird umso größer, je mehr Kondensat sich in den einzelnen Rippenwindungen ansammelt bzw. je geringer die von der Luft frei durchströmbare Fläche ist. Ein ungünstiges Wasserspeicherungs- und Ablaufverhalten aufgrund der gegebenen Rippengeometrie weisen beispielsweise Verdampfer mit nahezu parallelen Rippen bzw. kleinen Öffnungswinkeln zwischen den einzelnen Rippenabschnitten auf. Insbesondere dann ist die Strömungsgeschwindigkeit bzw. Luftmenge begrenzt, bis zu der ein Spritzen noch vermeidbar ist.
Es ist Aufgabe der Erfindung, einen verbesserten Wärmetauscher zur Verfügung zu stellen. Eine Aufgabe ist insbesondere eine verbesserte Wasserab- scheidung und/oder eine Verringerung des Wasserspeichervermögens
Diese Aufgabe wird gelöst durch einen Wärmetauscher mit den Merkmalen des Anspruchs 1 oder des Anspruchs 13. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.
Erfindungsgemäß ist ein Wärmetauscher vorgesehen, mit wenigstens einem Sammelkasten aus Blech, der in Längsrichtung wenigstens in zwei. Kammern unterteilt ist und in dessen Boden die Enden von Rohren, insbesondere von Flachrohren, eingeführt sind, und der Sammelkasten einen tunnelförmigen Sammelkasten-Teil, einen im Wesentlichen ebenen Sammelkasten-Teil, der den Boden bildet, und stirnseitig jeweils Deckel aufweist, wobei mindestens ein Deckel zumindest in seinem äußeren Randbereich eben ausgebildet und formschiüssig im Sammelkasten positioniert ist. Durch die ebene Ausbildung des Deckels ermöglicht sich eine • einfache Herstellung desselben mittels Stanzens aus einem Blech, sowie eine einfache Einpassung. Die Deckel nehmen weniger Raum ein, verglichen mit den herkömmlichen, tiefgezogenen Deckeln, so dass der Wärmetauscher kleiner baut. Vielmehr kann für die geschlossenen Stirnseiten des Wärmetauschers ein Blech verwendet werden, das zumindest im Wesentlichen den Trennwand-Blechen entspricht. Die formschlüssige Positionierbarkeit im Sammelkasten stellt eine optimale Ver- lötung sicher. Der Deckel ist bevorzugt von der Stirnseite her eingeführt, wobei er sammel- kastenseitig an mehreren Anschlägen anliegt, die am tunnelförmigen Sammelkasten-Teil und/oder am ebenen Sammelkasten-Teil ausgebildet sind. Auf der Außenseite ist der Deckel bevorzugt mitteis mehrerer umgebogener Laschen gesichert, wobei die Laschen von den Anschlägen derart beabstandet sind, dass der Deckel möglichst spielfrei dazwischen aufgenommen ist. Die Laschen können um eine parallel zur Längsachse des Sammelkastens verlaufende Achse gebogen sein. Alternativ können sie von außen nach innen umgebogen sein. Um eine sichere Verlötung zu gewährleisten, weist der Deckel eine Dicke, zumindest im sich in Anlage an den Sammelkasten befindlichen Bereich, von ca. 1 bis 2 mm, bevorzugt 1 ,5 mm auf. Durch die formschlüssige Positionierung vor dem Verlöten ergibt sich eine verbesserte Deckel-Dichtheit. Zudem lässt sich die Prozesssicherheit erhöhen, so dass weniger fehlerhafte Wärmetauscher produziert werden.
Die Laschen sind bevorzugt Teil des tunnelförmigen Sammelkasten-Teils und/oder des ebenen Sammelkasten-Teils, wobei sie durch ausgestanzte Schlitze in der den entsprechenden Sammelkasten-Teil bildenden Platine einstückig mit derselben ausgebildet sind.
Der Deckel weist bevorzugt im Falle einer stirnseitigen Kältemittel-Zu- und/oder -Abführung eine Öffnung auf, deren Rand nach außen gebogen ist. Die Öffnung ist bevorzugt kreisförmig ausgebildet, insbesondere als Durchzug, wobei auch eine andersartige Ausbildung, insbesondere eine ovale Ausbildung, der Öffnung möglich ist, so dass die Fläche des Deckels optimal ausgenutzt werden kann, bei maximaler Strömungsfiäche.
Die Öffnung ist bevorzugt konisch ausgebildet, insbesondere mit einem Winkel des Randes zur Längsachse des Durchzugs von maximal 5°, insbeson- dere bevorzugt von 2° bis 3°, so dass die Selbsthemmung gewährleistet ist. Bevorzugt ist ein Saugrohr vorgesehen, das an dem Deckel mit einer Öffnung angebracht ist, das einen Innendurchmesser aufweist, der etwa dem Außendurchmesser des die Öffnung eingrenzenden Randes entspricht, wobei das Saugrohr über den Durchzug geschoben ist. Dies ermöglicht einen gleichbleibenden und sich in Strömungsrichtung leicht erweiternden Strömungsquerschnitt, so dass dieser größtmöglich ausgebildet und der käl- temittelseitige Druckabfall möglichst gering gehalten werden kann. Dadurch kann die Verdampferleistung erhöht werden.
Ein Einspritzrohr, das an dem Deckel mit einer Öffnung angebracht ist, weist vorzugsweise einen Außendurchmesser auf, der etwa dem kleinsten Innendurchmesser des die Öffnung eingrenzenden Randes entspricht.
Zur Erleichterung des Einführens der Deckel weist der Rand des Sammelka- sten-Blechs für die Deckel vorzugsweise eine Einführschräge auf, wobei diese als Fase aber auch abgerundet ausgebildet sein kann.
Die beiden tunnelförmigen Sammelkasten-Teile weisen bevorzugt eine im Wesentlichen halbkreisförmige Gestalt auf, welche sich positiv auf die Fe- stigkeitseigenschaften des Sammelkastens auswirken, so dass die Materialstärke - verglichen mit herkömmlichen Sammelkästen - vorzugsweise verringert werden kann, insbesondere auf Wandstärken von ca. 0,8 mm bei einer Anbringung von Einspritz- und Saugrohr von einer der Stirnseiten her (durch zwei Deckel), oder bei längsseitiger Anbringung derselben über einen Anschlusserker im Bereich des Sammelkastens von ca. 1 mm. Durch die Verringerung der Blechstärke ergibt sich eine Material- und Gewichtsersparnis, so dass die Herstellungskosten und die späteren Betriebskosten gesenkt werden können.
Die verwendeten Flachrohre weisen bevorzugt eine Breite von 2 bis 3 mm auf, womit sie schmäler als herkömmliche Flachrohre ausgebildet sind. Der Wärmetauscher ist abhängig von der Blockbreite 4- oder mehrflutig, insbesondere 6-flutig durchströmbar.
Gemäß eines weiteren Aspekts der vorliegenden Erfindung weist ein Wärmetauscher Flachrohre und Wellrippen auf, wobei die Wellrippen eine Rippenhöhe aufweisen, die dem Abstand jeweils zweier Flachrohre entspricht, und wobei jeweils zwei über einen Rippenbogen verbundene Rippenabschnitte unter einem Öffnungswinkel α zueinander geneigt sind. Bei einer Rippenhöhe von 3 bis 6 mm, bevorzugt von 4 bis 5 mm, und einer Rippendichte von 50 bis 90 Rippen, bevorzugt von 60 bis 80 Rippen, besonders bevorzugt 70 Rippen, je 100 mm, ergibt sich gemäß der vorliegenden Erfindung ein vergrößerter Winkel zwischen den einzelnen Rippen (bei gleicher Rippendichte und gleichem Krümmungsradius). Aufgrund dieses größeren Öffnungswinkels der Rippen wird eine kleinere Kapillarwirkung in den Rippenwindungen erzielt, was zu einem besseren Kondenswasser- Ablaufverhalten bzw. einer geringeren gespeicherten Wassermenge lokal in den Rippenwindungen und somit auch im Verdampfer insgesamt führt sowie gegebenenfalls die Spritzgefahr des Verdampfers reduziert. Der Öffnungs- Winkel zumindest zweier Rippenabschnitte, bevorzugt vieler oder aller Rippenabschnitte, beträgt dabei bevorzugt 22° +/- 7° oder 30° +/- 10°.
Eine weitere Vergrößerung des Öffnungswinkels ist unter Umständen erreichbar, wenn ein oder mehrere Rippenbogen zumindest bereichsweise einen Krümmungsradius von kleiner als 0,4 mm, bevorzugt kleiner oder gleich 0,35 mm, besonders bevorzugt kleiner oder gleich 0,3 mm, aufweisen. Vorteilhaft ist dabei eine Breite der Flachrohre von ca. 1 ,5 bis 3 mm.
Durch eine kleinere Rippenhöhe bzw. einen größeren Rippenöffnungswinkel ist zum eine Kapillarwirkung in den Rippenwindungen verringert, so dass sich weniger Kondensat in den Rippenwindungen hält. Damit verbunden sind eine geringere speicherbare Wassermenge sowie unter Umständen ein besserer Wasserablauf und gegebenenfalls eine geringere Gefahr des Sprit- zens. Zum anderen führt eine kleinere Rippenhöhe zu einer Verteilung des Kondensats auf mehr Rippen und Rohre (mehr Wärmeaustauschfläche), so dass insgesamt weniger Kondensat je Rippenwindung anfällt. Hieraus ergibt sich wiederum eine geringere Gefahr des Spritzens und unter Umständen ein günstigeres Ablaufverhalten entlang der Rohre und/oder der Rippen.
Mittelbare Vorteile sind möglicherweise eine höhere zulässige Rippendichte und somit ein erhöhtes Leistungspotential, eine geringere Gefahr von Bakterienwachstum und damit eine verringerte Geruchsbildung sowie gegebenenfalls eine Kostenersparnis durch einfachere Oberflächenbehandlung, die unter Umständen sogar ganz entfallen kann. Außerdem ist eine Reduzierung einer sogenannten Flash-Fog-Gefahr (plötzliches Beschlagen von Wind- schutzscheiben aufgrund von Feuchtigkeit aus dem Verdampfer) durch schnelleres Abtrocknen der Verdampferoberfläche möglich.
Ein derartiger Wärmetauscher wird insbesondere als Flachrohr-Verdampfer für eine Kraftfahrzeug-Kiimaaniage verwendet.
Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnung im Einzelnen erläutert. In der Zeichnung zeigen: Fig. 1 eine perspektivische Darstellung eines Sammelkastens,
Fig. 2 eine Detailansicht des Sammelkastens von Fig. 1 ,
Fig. 3 den Sammelkasten von Fig. 1 vor dem Einbau der stirnseitig angebrachten Deckel, Fig. 4 eine Detailansicht von Fig. 3,
Fig. 5 eine Detailansicht des Sammelkastens von Fig. 1 , wobei der rechte der beiden Deckel nicht dargestellt ist,
Fig. 6 eine Fig. 5 entsprechende Detailansicht aus einer anderen Perspektive,
Fig. 7 eine Seitenansicht auf die Deckel,
Fig. 8 einen Schnitt entlang Linie A-A in Fig. 7,
Fig. 9 eine Fig. 8 entsprechende Schnittdarstellung ohne Deckel,
Fig. 10 einen Schnitt durch beide Deckel mit montiertem Saug- und Einspritzrohr,
Fig. 11 einen Schnitt in Längsrichtung des Sammelkastens zur Darstellung einer Trennwand,
Fig. 12a,12b Ansichten zweier Wellrippbleche, wobei' in Fig. 12a eine bekannt Form und in Fig. 12b eine Form für eine größere Flachrohrdichte dargestellt ist,
Fig. 13a, 13b jeweils einen Ausschnitt einer- Wellrippe eines Verdampfers in verschiedenen Geometrien,
Fig. 14 die gespeicherte Wassermenge als Funktion der Wärmeaustauschfläche, Fig. 15 die gespeicherte Wassermenge in Abhängigkeit der Rippenhöhe (im Betrieb bei einem festgelegten Betriebspunkt und bei gleichen Wärmeaustauschflächen), und
Fig. 16 die kritische Luftmenge bezüglich eine's Spritzens eines Verdampfers in Abhängigkeit der Rippenhöhe
Ein Flachrohr-Verdampfer 1 (nur teilweise dargestellt) einer Kraftfahrzeug- Klimaanlage weist, wie bereits zuvor unter Bezugnahme auf die DE 198 26 881 A1 beschrieben, zwei Sammelkästen 2, Flachrohre (nichtdargestellt), die zwischen den beiden Sammelkästen 2 verlaufen, und Wellrippen 3 auf, die zwischen den Flachrohren angeordnet sind. Jeder Sammelkasten 2 ist gemäß dem Ausführungsbeispiel aus einer Platine gebildet, die aus einem Blech ausgestanzt und dann so geformt ist, dass ein ebenes Sammelkasten- Teil 4 und an dessen Längskanten anschließend zwei tunnelförmige Sammelkasten-Teile 5 ausgebildet sind (siehe insbesondere Figuren 4 und 6). Die Längsränder sind mit mehreren, über deren Länge verteilt angeordneten Laschen versehen, die durch Aussparungen des ebenen Sammelkasten- Teils 4 hindurchgesteckt sind und auf der den Fiachrohren zugewandten Außenseite verstemmt sind. Die Stirnenden sind mittels an späterer Stelle näher beschrieben Deckeln 6 verschlossen.
Im ebenen Sammelkasten-Teil 4 sind'eine Mehrzahl von Durchzügen 7 aus- gebildet, in welche die Flachrohre geführt sind, wobei die Öffnung der Durchzüge 7 im Wesentlichen der Außenform der Flachrohre entspricht.
Die beiden tunnelförmigen Sammelkasten-Teile 5 weisen auf Grund einer relativ geringen Bautiefe eine im Wesentlichen halbkreisförmige Gestalt auf, wie beispielsweise der Darstellung von Fig. 7. entnommen werden kann. Auf
Grund der verbesserten Festigkeitseigenschaften in Folge der halbkreisför- migen Gestalt der Sammelkasten-Teile 5 und/oder der kleineren Bautiefe sind Wandstärken von 0,8 bis 1 mm im Gegensatz zu den üblichen Wandstärken von 1 ,2 bis 1 ,5 mm möglich.
Im Inneren des Sammelkastens 2 sind eine oder mehrere Trennwände 8 vorgesehen, durch welche der Strömungsweg für ein Fluid wie beispielsweise das Kältemittel durch den Wärmetauscher, insbesondere dessen Flachrohre vorgebbar ist. Die Trennwände 8 sind durch Schlitze 9 vorzugsweise in einem ebenen Sammelkasten-Teil 4 einführbar, wobei die Trennwände 8 jeweils zwischen zwei Öffnungen oder Durchzügen 7 für die Rohre, wie Flachrohre, angeordnet sind und der Abstand der Durchzüge 7 durch die Trennwände 8 vorzugsweise nicht verändert ist. Hierfür ist beispielsweise im Sammelkasten 2 in einem Bereich ein Trennwand-Schlitz ausgestanzt oder anderweitig eingebracht, so dass unter Umständen kein Durchzug gebildet ist, und/oder in einem anderen Bereich ein Führungselement, wie eine Führungsnut, bspw. mit einer Tiefe von 0,2 bis 0,3 mm, zu einer Führung der Trennwand 8 vorgesehen (siehe Fig. 11 ).
Die aus einem Blech bestehenden Deckel 6 sind von der Stirnseite her am Sammelkasten 2 angebracht, wobei sie bis zu durch Anschlagzapfen gebildeten Anschlägen 10, die an der Platine mittels Prägen ausgebildet sind, eingeführt und mittels bei der Herstellung der Platine ausgestanzter und nach dem Positionieren des Deckels 6 umgebogener Laschen 11 verriegelt sind. Zum leichteren Einführen der Deckel 6 sind Einführschrägen an der Platine vorgesehen (siehe etwa über die Hälfte der Platinen-Dicke gehende Fase in Fig. 9). Sowohl die Laschen 11 als auch die Anschläge 10 im tunnelförmigen Sammelkasten-Teil 5 befinden sich in Längsrichtung des Sammelkastens 2 gesehen jeweils auf der gleichen Höhe. Gemäß dem vorliegenden Ausführungsbeispiel sind je Deckel 6 im ebenen Sammelkasten-Teil 4 nur ein Anschlag 10 und versetzt hierzu zwei Laschen 11 vorgesehen, jedoch ist gemäß einer nicht in der Zeichnung dargestellten Variante auch eine dem tunnelförmigen Sammelkasten-Teil 5 entsprechende Ausgestaltung möglich. Die Laschen 11 sind von den Anschlägen 10 in Längsrichtung des Sammelkastens 2 gesehen um die Dicke des den Deckel 6 bildenden Blechs voneinander beabstandet, so dass eine exakte Positionierung in Folge einer formschlüssigen Verbindung vor dem Verlöten möglich ist.
Gemäß dem vorliegenden Ausführungsbeispiel werden die Laschen 11 um eine Achse gebogen, die parallel zur Sammelkasten-Längsachse verläuft. Gemäß einer nicht in der Zeichnung dargestellten Variante ist auch ein Um- biegen der Laschen zum Deckel hin möglich, so dass lediglich je Lasche zwei in Längsrichtung des Sammelkastens verlaufende Schlitze in der Platine vorgesehen sein müssen. Ferner kann gemäß einer weiteren nicht in der Zeichnung dargestellten Variante die Begrenzung des Einschiebens der Deckel auf durch den jeweils ersten Durchzug für die Flachrohre begrenzt sein, so dass nur noch im tunnelförmigen Sammelkasten-Teil Anschläge vorgesehen sein müssen und die Gesamtlänge des Sammelkastens optimal ausgenutzt werden kann.
Die Kältemittel-Zuführung und -Ableitung erfolgt, wie Fig. 10 entnommen werden kann, über ein an je einem mit einer Öffnung 12 versehenen Deckel 6 angebrachtes Einspritzrohr 13 bzw. ein Saugrohr 14. Die Öffnungen 9 der Deckel 6 sind im entsprechenden, ausgestanzten Blechteil als Durchzüge ausgebildet, wobei die Deckel 6 in den Sammelkasten 2 derart eingebaut sind, dass die Ränder des Durchzugs jeweils nach außen ragen. Die Aus- gangs-Blechstärke des Deckels 6, d.h. die Dicke des unbearbeiteten Blechs, beträgt ca. 1 ,5 mm, um eine sichere Lötverbindung an den Schmalseiten und eine ausreichende Materiaistärke für die Durchzüge zu gewährleisten, so dass auch eine ausreichend, große Verbindungsfläche und somit eine sichere Verbindung zwischen den Rohren für die Kältemittel-Zuführung und - Ableitung und den Durchzügen gewährleistet werden kann. Hierbei sind auch die Deckel 6 ohne Durchzug zumindest in ihren äußeren, an der Platine des Sammelkastens 2 anliegenden Randbereichen eben ausgebildet.
Der Durchzug für das Einspritzrohr 13 ist derart ausgebildet, dass das Ein- spritzrohr 13 in die Öffnung 12 bis auf die Höhe der Anschläge 10 eingeschoben ist. Hierfür weist der Durchzug des Deckels 6 einen leicht konischen, sich über die Länge des Durchzugs nach außen verjüngenden Innendurchmesser auf. Der Durchzug für das Saugrohr 14 weist einen sich nach außen verjüngenden Außendurchmesser auf, wobei das an seinem Ende etwas aufgeweitete Saugrohr 14 von außen aufgeschoben ist. Die Schräge beträgt bei beiden Öffnungen 12 bevorzugt 2-3°, maximal jedoch
Vorzugsweise werden fünf-kammrige Flachrohre insbesondere mit einer Breite von ca. 2,5 mm verwendet, wobei der Stegabstand unverändert bleibt, so dass der luftseitige Druckabfall sich nicht oder nur unwesentlich erhöht, verglichen mit bekannten Verdampfern mit normaler Bautiefe. Die Durchströmung des Verdampfers kann beispielsweise 6- oder, insbesondere bei kleinen Blockbreiten, 4-flutig erfolgen.
in Fig. 13 ist die Rippengeometrie (Öffnungswinkel α zwischen benachbarten Rippenabschnitten 101 , die über einen Rippenbogen 102 miteinander verbunden sind) bei 8 mm (Fig. 13a) und 4,5 mm Rippenhöhe (Fig. 13b), und zwar jeweils bei 60 Rippen pro 100 mm, im Vergleich dargestellt. In Fig. 13b ist ein Rippenbogen 102 mit einem kleineren Krümmungsradius (im Vergleich zu Fig. 13a) gezeigt. In diesem Zusammenhang sei darauf hingewiesen, dass ein Krümmungsradius in jedem Punkt des Rippenbogens 102 unterschiedlich sein kann und dass somit außer einem kreisbogenförmigen Querschnitt auch andere symmetrische oder asymetrische Formen des Rip- penbogens 102 möglich sind. Beispielsweise bei einer Bautiefe von T = 40 mm kommen zum einen Rippen mit einer Rippenhöhe h = 4,5 mm zum Einsatz, wodurch mehr Rippen und Flachrohre bzw. ein höherer Rippenwirkungsgrad und mehr Wärmeübertragungsfläche - bei gleicher Verdampfergröße - ermöglicht werden. Auf diese Weise wird eine höhere Leistungsdichte erzielt.
Fig. 14 zeigt die gespeicherten Wassermengen als Funktion der Wärmeaustauschfläche von erprobten Wärmetauschern, wobei die Rippenhöhe 1 größer als die Rippenhöhe 2 ist und die Rippenhöhe 2 größer als die Rip- penhöhe 3 ist. Hier wird ebenfalls ein positiver Einfluß der kleineren Rippenhöhe auf das Speichervermögen bemerkbar. Die Werte wurden mittels eines einfachen Screening-Tests ermittelt, bei dem zunächst die Verdampfer in ein Wasserbad getaucht werden und nach Herausnehmen nach einer bestimmten Abtropfzeit die noch im Verdampfer befindliche Restwassermenge mittels Wiegen bestimmt wird.
In Fig. 15 sind die auf die Wärmeaustauschfläche bezogenen gespeicherten Wassermengen in Abhängigkeit der Rippenhöhe dargestellt, wobei die Rippenhöhe nach rechts abnimmt. Die Werte wurden im Betrieb bei einem vor- gegebenen Betriebspunkt ermittelt.
In Fig. 16 sind die kritischen Luftmengen über der Rippenhöhe aufgetragen, ab denen ein Spritzen des jeweiligen Verdampfers beginnt (ebenfalls im Betrieb ermittelte Werte). Die Rippenhöhe nimmt hier nach rechts zu.
Bei Verdampfern gemäß dem Stand der Technik liegt der Öffnungswinkel α bei etwa 14° (bei 60 Rippen pro 100 mm), oder niedriger. Bei der neuen Rippengeometrie (H = 4.5 mm, T = 40 mm) sind Winkel von ca. 28° zu erzielen (wiederum bei 60 Rippen pro 100 mm) (vergleiche Fig. 13). Bei noch kleine- rer Ausführung der Krümmungsradien der Rippenbogen 102 lässt sich der
Öffnungswinkel weiter steigern. Aufgrund des verbesserten Verhaltens gegen Spritzen sind ferner höhere Rippendichten zulässig, die sich wiederum positiv auf die Leistung auswirken, wenngleich sich dadurch der Öffnungswinkel wieder etwas reduziert. Bei einem bevorzugten Ausführungsbeispiel kommt eine 4,5 mm hohe Rippe mit einer Rippendichte von >= 70 Rippen pro 100 mm zum Einsatz, wobei der Öffnungswinkel dann etwa 22° beträgt.
Der sich ergebende Winkel bei einer 6 mm hohen Rippe liegt zwischen 15° und 22° (Verdampfer mit 6 mm hoher Rippe zeigen auch bereits ein deutlich besseres Ablauf- und Speicherverhalten als Verdampfer mti 8 mm hoher Rippe, hier ist allerdings auch die Anzahl an Ablaufflächen bzw. Flachrohren bereits höher). Die Wasserabscheidung wird darüberhinaus noch begünstigt durch eine grö-ßere zur Verfügung stehende Ablauffläche entlang der Flach- röhre bzw. durch die größere Anzahl an Ablaufflächen/ Flachrohren bei vergleichbarem Kondensatanfall.

Claims

P a t e n t a n s p r ü c h e
1. Wärmetauscher, insbesondere Flachrohr-Verdampfer (1) für eine Kraftfahrzeug-Klimaanlage, mit wenigstens einem Sammelkasten (2) aus Blech, der in Längsrichtung wenigstens in zwei Kammern unterteilt ist und in dessen Boden die Enden von Rohren, insbesondere von Flachrohren, eingeführt sind, und der Sammelkasten (2) einen tunnelförmigen Sammelkasten-Teil (5), einen im Wesentlichen ebenen Sam- melkasten-Teil (4), der den Boden bildet, und stirnseitig jeweils Deckel (6) aufweist, dadurch gekennzeichnet, dass mindestens ein Deckel (6) zumindest in seinem äußeren Randbereich eben ausgebildet und formschlüssig im Sammelkasten positioniert ist.
2. Wärmetauscher nach Anspruch 1 , dadurch gekennzeichnet, dass der Deckel (6) von der Stirnseite her eingeführt ist und sammelkastenseitig an mehreren Anschlägen (10) anliegt, die am tunnelförmigen Sammelkasten-Teil (5) und/oder am ebenen Sammelkasten-Teil (4) ausgebildet sind.
3. Wärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Deckel (6) mittels umgebogener Laschen (11) verriegelt ist.
4. Wärmetauscher nach Anspruch 3, dadurch gekennzeichnet, dass die Laschen ( 1 ) Teil des tunnelförmigen Sammelkasten-Teils (5) und/oder des ebenen Sammelkasten-Teils (4) sind.
5. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Deckel (6) eine Öffnung (12) für die Käl- temittel-Zuführung oder -Abführung aufweist, deren Rand insbesondere nach außen gebogen ist.
6. Wärmetauscher nach Anspruch 5, dadurch gekennzeichnet, dass die Öffnung (12) als Durchzug ausgebildet ist.
7. Wärmetauscher nach Anspruch 5 oder 6., dadurch gekennzeichnet, dass die Öffnung (12) konisch ausgebildet ist mit einem Winkel von maximal 5°, insbesondere 2° bis 3°.
8. Wärmetauscher nach einem der Ansprüche 5 bis 7, dadurch gekenn- zeichnet, dass ein Saugrohr (14), das an dem Deckel (6) mit einer Öffnung (12) angebracht ist, einen Innendurchmesser aufweist, der etwa dem Außendurchmesser des die Öffnung (12) eingrenzenden Randes entspricht.
9. Wärmetauscher nach einem der' Ansprüche 5 bis 8, dadurch gekennzeichnet, dass ein Einspritzrohr (13), das an dem Deckel (6) mit einer Öffnung (12) angebracht ist, einen Außendurchmesser aufweist, der etwa dem kleinsten Innendurchmesser des die Öffnung eingrenzenden Randes entspricht.
10. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Rand . des Sammelkasten-Blechs für die Deckel (6) eine Einführschräge aufweist.
11. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die beiden tunnelförmigen Sammelkasten-Teile (5) eine im Wesentlichen halbkreisförmige Gestalt aufweisten.
12. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Trennwände (8) im Wärmetauscher derart ange- ordnet sind, dass der Wärmetauscher 4- oder mehrflutig durchströmt wird.
13. Wärmetauscher, insbesondere nach einem der vorhergehenden An- sprüche, mit Flachrohren und Wellrippen, mit wenigstens einem Sammelkasten, in dessen Boden die Enden der Flachrohre eingeführt sind, wobei die Wellrippen eine Rippenhöhe aufweisen, die dem Abstand jeweils zweier Flachrohre entspricht, und wobei jeweils zwei über einen Rippenbogen verbundene Rippenabschnitte unter einem Öffnungswin- kel α zueinander geneigt sind, dadurch gekennzeichnet, dass die-Well- rippe (3) eine Höhe von 3 bis 6 mm, bevorzugt von 4 bis 5 mm, und eine Rippendichte von 50 bis 90 Rippen, bevorzugt von 60 bis 80 Rippen, besonders bevorzugt 70 Rippen, je 100 mm aufweist.
14. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Öffnungswinkel zumindest zweier Rippenabschnitte, bevorzugt vieler oder aller Rippenabschnitte, 22° +/- 7° oder 30° +/- 10° beträgt.
15. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein oder mehrere Rippenbogen zumindest bereichsweise einen Krümmungsradius von kleiner als 0,4 mm, bevorzugt kleiner oder gleich 0,35 mm, besonders bevorzugt kleiner oder gleich 0,3 mm, aufweisen.
16. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Flachrohre eine Breite von ca. ,5 bis 3 mm aufweisen.
17. Kraftfahrzeug-Klimaanlage gekennzeichnet durch einen Verdampfer nach einem der vorhergehenden Ansprüche.
PCT/EP2005/000859 2004-01-28 2005-01-28 Wärmetauscher, insbesondere flachrohr-verdampfer für eine kraftfahrzeug-klimaanlage WO2005073662A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BRPI0507143-7A BRPI0507143B1 (pt) 2004-01-28 2005-01-28 Trocador de calor, em particular, condensador de tubo chato para um sistema de ar condicionado de veículo automotor
EP05707067.4A EP1711772B1 (de) 2004-01-28 2005-01-28 Wärmetauscher, insbesondere flachrohr-verdampfer für eine kraftfahrzeug-klimaanlage
US10/586,926 US20080029256A1 (en) 2004-01-28 2005-01-28 Heat Exchanger, in Particular a Flat Pipe Evaporator for a Motor Vehicle Air Conditioning System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004004494.5 2004-01-28
DE102004004494 2004-01-28

Publications (1)

Publication Number Publication Date
WO2005073662A1 true WO2005073662A1 (de) 2005-08-11

Family

ID=34745195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/000859 WO2005073662A1 (de) 2004-01-28 2005-01-28 Wärmetauscher, insbesondere flachrohr-verdampfer für eine kraftfahrzeug-klimaanlage

Country Status (6)

Country Link
US (1) US20080029256A1 (de)
EP (1) EP1711772B1 (de)
CN (1) CN100565079C (de)
BR (1) BRPI0507143B1 (de)
DE (1) DE102005004284A1 (de)
WO (1) WO2005073662A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008035358A1 (de) * 2008-07-29 2010-02-04 Modine Manufacturing Co., Racine Wärmetauscher mit Sammelrohr und Sammelrohr sowie Herstellungsverfahren dafür
DE102009018929A1 (de) 2009-04-28 2010-11-04 Behr Gmbh & Co. Kg Wärmeübertrager
DE202009006156U1 (de) 2009-04-28 2009-07-02 Behr Gmbh & Co. Kg Wärmeübertrager
DE202009006155U1 (de) 2009-04-28 2009-07-02 Behr Gmbh & Co. Kg Wärmeübertrager
DE202009006157U1 (de) 2009-04-28 2009-07-02 Behr Gmbh & Co. Kg Wärmeübertrager
FR2962206B1 (fr) * 2010-06-30 2014-12-19 Valeo Systemes Thermiques Collecteur pour echangeur de chaleur et echangeur de chaleur equipe d'un tel collecteur
CN102062549B (zh) * 2011-02-15 2012-08-29 金龙精密铜管集团股份有限公司 扁管热交换器
CZ2012317A3 (cs) * 2012-05-14 2013-11-27 Halla Visteon Climate Control Corporation Sberná hlavová nádrz
DE102012217340A1 (de) 2012-09-25 2014-03-27 Behr Gmbh & Co. Kg Wärmeübertrager
WO2014116351A1 (en) * 2013-01-28 2014-07-31 Carrier Corporation Multiple tube bank heat exchange unit with manifold assembly
ES2877092T3 (es) 2013-11-25 2021-11-16 Carrier Corp Intercambiador de calor de microcanal de doble trabajo
EP2960609B1 (de) * 2014-06-26 2022-10-05 Valeo Autosystemy SP. Z.O.O. Verteiler, insbesondere zur verwendung in einem kühler eines kühlsystems
CN106855164A (zh) * 2015-12-09 2017-06-16 王翔 一种空调连接管
US10648742B2 (en) * 2016-03-16 2020-05-12 Mitsubishi Electric Corporation Finless heat exchanger, outdoor unit of an air-conditioning apparatus including the finless heat exchanger, and indoor unit of an air-conditioning apparatus including the finless heat exchanger
FR3081984A1 (fr) 2018-05-31 2019-12-06 Valeo Systemes Thermiques Boite collectrice et echangeur thermique correspondant
EP3587990B1 (de) * 2018-06-22 2021-01-27 Valeo Vyminiky Tepla, s.r.o. Sammelkasten für wärmetauscher mit thermischer entkopplung
US11885569B2 (en) * 2018-12-26 2024-01-30 Hanon Systems Heat exchanger
DE102019207905A1 (de) * 2019-05-29 2020-12-03 Hanon Systems Profil für einen Rohrboden eines Kühlers, Rohrboden mit einem derartigen Profil und Kühler mit einem Rohrboden
EP4317898A1 (de) * 2022-08-04 2024-02-07 Valeo Systemes Thermiques Verteiler

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0671597A1 (de) * 1994-03-09 1995-09-13 IRSAP - IRSOL S.r.l. Verbesserter Radiator
DE19719251A1 (de) * 1997-05-07 1998-11-12 Valeo Klimatech Gmbh & Co Kg Verteil-/Sammel-Kasten eines mindestens zweiflutigen Verdampfers einer Kraftfahrzeugklimaanlage
DE19826881A1 (de) * 1998-06-17 1999-12-23 Behr Gmbh & Co Wärmeübertrager, insbesondere Verdampfer
DE10132485A1 (de) * 2001-07-05 2003-01-23 Behr Gmbh & Co Sammelkasten für einen Wärmetauscher und Verfahren zu dessen Herstellung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2949963B2 (ja) * 1991-10-18 1999-09-20 株式会社デンソー コルゲートルーバフィン型熱交換器
JP3459271B2 (ja) * 1992-01-17 2003-10-20 株式会社デンソー 自動車用空調装置のヒータコア
JPH0755386A (ja) * 1993-08-18 1995-03-03 Sanden Corp 熱交換器
JPH07174479A (ja) * 1993-12-17 1995-07-14 Nippondenso Co Ltd パイプの取付構造及びそれを用いた熱交換器
US5586600A (en) * 1994-10-26 1996-12-24 Valeo Engine Cooling, Inc. Heat exchanger
DE19722100A1 (de) * 1997-03-11 1998-09-17 Behr Gmbh & Co Wärmeübertrager, insbesondere Ladeluftkühler, für ein Kraftfahrzeug
US5934366A (en) * 1997-04-23 1999-08-10 Thermal Components Manifold for heat exchanger incorporating baffles, end caps, and brackets
JPH10318695A (ja) * 1997-05-19 1998-12-04 Zexel Corp 熱交換器
JP2000304486A (ja) * 1999-04-23 2000-11-02 Sanden Corp 熱交換器およびその製造方法
JP2002257493A (ja) * 2001-02-28 2002-09-11 Toyo Radiator Co Ltd アルミニューム製熱交換器の製造方法
US6766817B2 (en) * 2001-07-25 2004-07-27 Tubarc Technologies, Llc Fluid conduction utilizing a reversible unsaturated siphon with tubarc porosity action
DE20303139U1 (de) * 2003-02-27 2003-06-18 Behr Gmbh & Co Kg Vorrichtung zur Wärmeübertragung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0671597A1 (de) * 1994-03-09 1995-09-13 IRSAP - IRSOL S.r.l. Verbesserter Radiator
DE19719251A1 (de) * 1997-05-07 1998-11-12 Valeo Klimatech Gmbh & Co Kg Verteil-/Sammel-Kasten eines mindestens zweiflutigen Verdampfers einer Kraftfahrzeugklimaanlage
DE19826881A1 (de) * 1998-06-17 1999-12-23 Behr Gmbh & Co Wärmeübertrager, insbesondere Verdampfer
DE10132485A1 (de) * 2001-07-05 2003-01-23 Behr Gmbh & Co Sammelkasten für einen Wärmetauscher und Verfahren zu dessen Herstellung

Also Published As

Publication number Publication date
CN100565079C (zh) 2009-12-02
EP1711772B1 (de) 2016-12-28
DE102005004284A1 (de) 2005-08-11
CN1914473A (zh) 2007-02-14
EP1711772A1 (de) 2006-10-18
US20080029256A1 (en) 2008-02-07
BRPI0507143A (pt) 2007-06-19
BRPI0507143B1 (pt) 2018-08-07

Similar Documents

Publication Publication Date Title
EP1711772B1 (de) Wärmetauscher, insbesondere flachrohr-verdampfer für eine kraftfahrzeug-klimaanlage
EP1530701B1 (de) Wärmeübertrager, insbesondere verdampfer für eine fahrzeugklimaanlage
DE19826881B4 (de) Wärmeübertrager, insbesondere Verdampfer
DE60011616T2 (de) Wärmetauscher mit mehrkanalrohren
DE60021509T2 (de) Verdampfer mit verbessertem Kondensatablauf
EP1613916B1 (de) Wärmeübertrager
DE4020592C2 (de) Wärmetauscher des Gleichstrom-Typs für Fahrzeuge
EP0798529B1 (de) Wärmeaustauscherrohr
EP0845647B1 (de) Flachrohr-Wärmeübertrager mit tordiertem Flachrohrendabschnitt
EP0374896A2 (de) Flachrohrverflüssiger, Herstellungsverfahren und Anwendungen
EP2151655B1 (de) Wärmetauscher, Verwendung und Herstellungsverfahren eines Wärmetauschers
DE102005010493A1 (de) Wärmeübertrager mit flachen Rohren und flaches Wärmeübertragerrohr
DE102011108892B4 (de) Kondensator
DE102007014409A1 (de) Wärmeaustauscher
EP1601915B1 (de) Vorrichtung zum wärmeübertragung
DE4129573C2 (de) Wärmetauscher
DE102004002252B4 (de) Wärmeübertrager für Fahrzeuge
EP1771697B1 (de) Wärmeübertrager, kasten zur aufnahme eines fluids für einen wärmeübertrager sowie verfahren zur herstellung eines derartigen kastens
EP2196750B1 (de) Sammler eines Wärmeübertragers, insbesondere für eine Klimaanlage eines Kraftfahrzeuges sowie Wärmeübertrager, insbesondere Verdampfer für eine Kraftfahrzeugklimaanlage
DE10255487A1 (de) Wärmeübertrager
DE10132485B4 (de) Sammelkasten für einen Wärmetauscher
DE102005031475A1 (de) Wärmeübertrager, Kasten zur Aufnahme eines Fluids für einen Wärmeübertrager sowie Verfahren zur Herstellung eines derartigen Kastens
DE102006057032A1 (de) Kasten zur Aufnahme eines Fluids für einen Wärmeübertrager sowie Verfahren zur Herstellung eines derartigen Kastens, Wärmeübertrager
EP2138798B1 (de) Sammelkasten, insbesondere eines Wärmeübertragers eines Kraftfahrzeuges, und Wärmeübertrager, insbesondere Kondensator, eines Kraftfahrzeuges
DE10241634A1 (de) Wärmeübertrager und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2005707067

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005707067

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2772/CHENP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200580003278.3

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005707067

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10586926

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0507143

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 10586926

Country of ref document: US