WO2005073364A2 - Microorganisme evolue pour la production de 1,2-propanediol - Google Patents

Microorganisme evolue pour la production de 1,2-propanediol Download PDF

Info

Publication number
WO2005073364A2
WO2005073364A2 PCT/FR2005/000070 FR2005000070W WO2005073364A2 WO 2005073364 A2 WO2005073364 A2 WO 2005073364A2 FR 2005000070 W FR2005000070 W FR 2005000070W WO 2005073364 A2 WO2005073364 A2 WO 2005073364A2
Authority
WO
WIPO (PCT)
Prior art keywords
strain
propanediol
gene
genes
evolved
Prior art date
Application number
PCT/FR2005/000070
Other languages
English (en)
Other versions
WO2005073364A3 (fr
Inventor
Isabelle Meynial-Salles
Benjamin Gonzalez
Philippe Soucaille
Original Assignee
Metabolic Explorer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metabolic Explorer filed Critical Metabolic Explorer
Priority to DE602005016073T priority Critical patent/DE602005016073D1/de
Priority to SI200530761T priority patent/SI1704230T1/sl
Priority to KR1020067014050A priority patent/KR101229525B1/ko
Priority to JP2006548349A priority patent/JP4613177B2/ja
Priority to EP05717405A priority patent/EP1704230B1/fr
Priority to DK05717405T priority patent/DK1704230T3/da
Priority to BRPI0506790-1A priority patent/BRPI0506790B1/pt
Priority to CN2005800023110A priority patent/CN1910278B/zh
Priority to CA2547695A priority patent/CA2547695C/fr
Priority to AT05717405T priority patent/ATE440135T1/de
Priority to PL05717405T priority patent/PL1704230T3/pl
Priority to US10/585,040 priority patent/US8252579B2/en
Publication of WO2005073364A2 publication Critical patent/WO2005073364A2/fr
Publication of WO2005073364A3 publication Critical patent/WO2005073364A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/01Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0051Oxidoreductases (1.) acting on a sulfur group of donors (1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • C12P7/26Ketones
    • C12P7/28Acetone-containing products

Definitions

  • the present invention relates to a new process for preparing an evolved microorganism for the production of 1,2-propanediol, the evolved microorganism thus obtained and its use for the preparation of 1,2-propanediol.
  • 1,2-propanediol or propylene glycol, C3-dihydric alcohol is a chemical used in many fields. It is a constituent of unsaturated polyester resins; liquid detergents; coolants, anti-freeze and aircraft deicing fluid.
  • propylene glycol has emerged since the years 1993-1994 to replace ethylenic derivatives which are recognized as more toxic than propylenic derivatives.
  • 1,2-Propanediol is presently produced chemically by a propylene oxide hydration process using a large amount of water.
  • the production of propylene oxide can be carried out according to two processes, one using epichlorohydrin and the other hydroperoxide. Both routes use highly toxic products.
  • the hydroperoxide route generates co-products such as tert-butanol or phenyl ethanol that must be upgraded to make the production of propylene oxide profitable.
  • the chemical route generally produces racemic 1,2-propanediol while there are two forms of stereoisomers: (R) 1.2 propaendiol and (S) 1,2-propanediol, the interest of which is not negligible for others. applications.
  • 1,2-propanediol must be produced from methyl glyoxal, a compound that is highly toxic to the cell even at low concentrations.
  • E. c ⁇ // genetically modified so that they produce 1,2-propanediol have been described in particular in US 6,303,352, US 6,087,140 and WO 98/37204. These methods notably use the overexpression of one or more enzymes involved in the 1,2-propanediol production pathway by cloning their genes in plasmids and thus imposing a selection pressure using antibiotics.
  • the present invention thus relates to a process for preparing a strain of advanced microorganisms for the production of 1,2-propanediol by metabolism of a single carbon source, said method comprising selection pressure culture in a suitable culture medium.
  • a suitable culture medium comprising a simple carbon source, an initial bacterial strain comprising a deletion of the tpiA gene and a deletion of at least one gene involved in the conversion of methyl glyoxal (propanal) to lactate, in order to evolve in said initial strain a or more genes involved in the DHAP methylglyoxal and then 1,2-propanediol biosynthesis pathway to advanced genes with improved "1,2-propanediol synthase" activity, then select and isolates the strain or strains of advanced microorganisms having improved 1,2-propanediol synthase activity.
  • the tpiA gene codes for triose phosphate isomerase which catalyzes the conversion of DHAP to glyceraldehyde 3 phosphate.
  • the deletion of this gene is intended to ensure the synthesis of a sufficient amount of methyl glyoxal.
  • the deletion of the tpiA gene must make it possible to ensure that 50% of the carbon of glucose metabolized by the cells is assigned to the preparation of methylglyoxal from dihydroxyacetonephosphate.
  • the deletion of at least one gene involved in the conversion of methyl glyoxal (propanal) to lactate is intended to inhibit the conversion of methyl glyoxal to lactate, so that most of the methyl glyoxal present and produced by the initial strain , as by the evolved strain obtained, is used by the cellular machinery of said strains for the preparation of 1,2-propanediol.
  • the genes involved in the conversion of methyl glyoxal to lactate are chosen from the gloA gene coding for glyoxylase I (catalyzing the synthesis of lactoyl glutathione from methylglyoxal) and the aldA and aldB genes coding for a lactaldehyde dehydrogenase (catalyzing the synthesis of (S) lactate from (S) lactaldehyde).
  • the initial strain comprises the deletion of the three genes gloA, aldA and aldB.
  • a further modification of the initial strain of suppressing the natural glucose fermentation pathways which consume reducing equivalents in the form of NADH is carried out in order to eliminate those metabolic pathways which compete with the production of NADH.
  • 1,2-propanediol in particular mention will be made of the deletion of the IdhA gene coding for lactate dehydrogenase catalyzing the synthesis of lactate from pyruvate, and that of the adhE gene coding for alcohol-aldehyde dehydrogenase catalyzing the synthesis of ethanol from acetyl-CoA. .
  • the microorganism can be forced to use the pyruvate dehydrogenase complex to produce, anaerobically, acetyl-CoA and NADH from pyruvate. This can be achieved by deleting the pflA and pflB genes encoding pyruvate formate lyase.
  • the initial strain therefore also comprises a deletion of at least one gene chosen from IdhA, pf / A, pflB and adhE, preferably the deletion of the four genes IdhA, pflA, pflB and even more advantageously, the initial strain according to the invention will also comprise at least one gene coding for an anaerobic acid promoting enzyme, the metabolism of pyruvate to acetate.
  • the enzyme promotes, anaerobically, the metabolism of pyruvate to the production of acetyl-CoA and NADH. More preferably, this enzyme is a pyruvate dehydrogenase complex.
  • said gene coding for an enzyme that anaerobically promotes the metabolism of pyruvate to acetate is insensitive to inhibition by NADH.
  • This gene may be an endogenous gene coding for an endogenous protein, or an exogenous or heterologous gene coding for an endogenous or exogenous enzyme.
  • the evolution method according to the invention will make it possible to select the strains with enhanced "1,2-propanediol synthase" activity of which said gene coding for an enzyme promoting anaerobically the metabolism of pyruvate to acetate code for an advanced enzyme made insensitive to inhibition by NADH.
  • 6-Phospho-gluconate dehydratase the first enzyme involved in the Entner Doudoroff pathway, to prevent the direct metabolism of glucose to glyceraldehyde-3-phosphate and pyruvate and thus to force conversion of glucose to 1,2 propanediol and acetate
  • one introduced into the previously isolated evolved strain, obtained by the evolution method according to the invention one or more heterologous genes encoding one or more enzymes involved in the conversion of acetyl-CoA and Acetone acetate, to obtain a modified advanced strain.
  • This new modification makes it possible to produce with 1,2-propanediol acetone, a valuable co-product.
  • This modification also has the advantage of improving the production performance in 1, 2-propanediol.
  • acetate is a compound inhibiting bacterial growth at low concentration (15 g / l) and rapidly blocks the evolution of the performance of the strain cultured in chemostat under anaerobic conditions.
  • the introduction into the advanced strain of the genes coding for the enzymes catalyzing the conversion of acetate to acetone results in a decrease in the residual concentration of acetate during the chemostat culture.
  • Acetone is produced, composed largely less growth inhibitor than acetate, strain growth and 1, 2-propanediol production are favored.
  • the heterologous gene (s) coding for one or more enzymes involved in the conversion of acetyl-CoA and acetate come from C. acetobutylicum.
  • Genes encoding one or more enzymes involved in the conversion of acetyl-CoA and acetone to acetone can be expressed chromosomally or extrachromosomally. Chromosomally, one or more copies can be introduced into the genome using recombination methods known to those skilled in the art. Extrachromosomally, genes can be carried by different types of plasmids that differ in their origin of replication, copy number and stability in the cell. They can be present from 1 to 5 copies, such as at 20 or up to 500 copies corresponding to low copy number plasmids with a strict type of replication origin (pSC101, RK2), to low copy number plasmids.
  • pSC101, RK2 strict type of replication origin
  • the genes can be expressed using promoters of different strengths, inducible or non-inducible.
  • the expression of the target genes can be increased or decreased by stabilizing or destabilizing messenger RNA elements (Carrier and Keasling (1998) Biotechnol Prog., 15, 58-64) or proteins (eg GSTtags, Amersham Biosciences) .
  • the modified evolved strain obtained previously is cultured under selection pressure in a suitable culture medium comprising a single carbon source in order to evolve in said modified evolved strain one or more genes involved in conversion of acetyl-CoA and acetate to acetone to improved acetone synthase activity, and second-generation, advanced microorganism strains with improved 1,2-propanediol synthase activity are selected and isolated and improved acetone synthase activity.
  • the present invention also relates to an initial strain according to the invention as defined above, hereinafter and in the examples.
  • the invention also relates to an evolved strain having improved "1,2-propanediol synthase" activity obtainable by the method according to the invention, as defined above, hereinafter and in the examples, this definition encompassing the advanced second-generation strains that also have improved acetone synthase activity.
  • the invention finally relates to a process for the preparation of 1,2-propanediol in which an evolved strain according to the invention is cultivated in a suitable culture medium comprising a single source of carbon, and then recovering the 1,2-propanediol produced and optionally acetone, which are optionally purified.
  • strains of modified, initial and evolved microorganisms according to the invention may be prokaryotic or eukaryotic, capable of being transformed and cultured to allow the production of 1,2-propanediol and, where appropriate, acetone.
  • the skilled person will be able to select said microorganisms in view of his general knowledge in the field of biology and, where appropriate, identify the genes of these microorganisms corresponding to the aforementioned E. coli genes.
  • strain of microorganisms is meant according to the invention a set of microorganisms of the same species comprising at least one microorganism of said species.
  • the characteristics described for the strain apply to each of the microorganisms of said strain.
  • the microorganisms modified according to the invention are chosen from bacteria, yeasts and fungi, and in particular those of the following species: Aspergillus sp., Bacillus sp., Brevibacterium sp., Clostridium sp., Corynebacterium sp., Escherichia sp. Gluconobacter sp., Pseudomonas sp., Rhodococcus sp., Saccharomyces sp., Streptomyces sp., Xanthomonas sp., Candida sp.
  • the bacterial strain is a strain
  • the bacterial strain is a strain of Corynebacterium, in particular C. glutamicum.
  • the yeast strain is a strain of Saccharomyces, in particular S. cerevisiae.
  • the invention is described above, hereinafter and in the examples with respect to E. coli.
  • the genes capable of being deleted or overexpressed for the evolved strains according to the invention are defined mainly by the use of the name of the E. coli gene. However, this use has a more general meaning according to the invention and encompasses the corresponding genes of other microorganisms. Indeed, by using the GenBank references of the E.
  • coli genes one skilled in the art is capable of determining the equivalent genes in other bacterial strains than E. coli.
  • the means for identifying the homologous sequences and their homology percentages are well known to those skilled in the art, including in particular the BLAST programs that can be used from the site http: //www.ncbi.nlm.nih. gov / BLAST / with default settings on This site.
  • sequences obtained can then be exploited (eg aligned) using for example the programs CLUSTALW (http://www.ebi.ac.uk/clustalw/) or MULTALIN (http://prodes.toulouse.inra.fr/multalin /cgi-bin/multalin.pl), with the parameters indicated by default on these sites.
  • CLUSTALW http://www.ebi.ac.uk/clustalw/
  • MULTALIN http://prodes.toulouse.inra.fr/multalin /cgi-bin/multalin.pl
  • deletion is meant according to the invention a suppression of the activity of the "deleted” gene.
  • This deletion can be an inactivation of the expression product of the gene concerned by an appropriate means, or the inhibition of the expression of the gene concerned, or the deletion of at least part of the gene concerned so that its expression does not take place (for example deletion of part or all of the promoter region necessary for its expression) or that the expression product has lost its function (for example deletion in the coding part of the gene concerned ).
  • the deletion of a gene comprises the deletion of the essential of said gene, and optionally its replacement by a selection marker gene making it possible to facilitate the identification, isolation and purification of advanced strains according to the invention. 'invention.
  • the inactivation of a gene is preferably done by homologous recombination.
  • a linear DNA fragment is introduced into the cell, which fragment is obtained in vitro, comprising the two regions flanking the gene, and at least one selection gene between these two regions (generally an antibiotic resistance gene) , said linear fragment thus having an inactivated gene.
  • the cells having undergone a recombination event and having integrated the introduced fragment are selected by spreading on a selective medium.
  • the cells which have undergone a double recombination event, in which the native gene has been replaced by the inactivated gene, are then selected.
  • This protocol can be improved by using positive and negative selection systems, in order to accelerate the detection of double recombination events.
  • the technique preferentially used for the introduction of these genes into the strain is electroporation, a technique well known to those skilled in the art.
  • the protocol is briefly recalled: the heterologous genes of interest are cloned into an expression vector between a promoter and a terminator. This vector further has an antibiotic resistance gene to select the cells containing it and an origin of functional replication in the host strain so that it can maintain itself.
  • the protocol requires the preparation of electrocompetent host cells which are then transformed by electroporation with the vector.
  • the genes introduced by electroporation are preferably the adc genes, ctfA and B, thl coding respectively for acetoacetate carboxylase, coenzyme A transferase and thiolase of the natural pathway for acetone production of Clostridium acetobutylicum, microorganism recognized as extremely efficient for the production of acetone biologically.
  • the evolution process according to the invention is a process for the preparation of advanced microorganisms allowing a modification of the metabolic pathways, which preferably comprises the following steps: a) Modification of a microorganism to obtain an initial microorganism so as to inhibit production or consumption of a metabolite otherwise consumed or produced when the cells of the original microorganism is cultured on a defined medium, b) Culture of the modified initial microorganisms obtained on said defined medium to make it evolve, the defined medium may also comprise a co-substrate necessary for this evolution, c) Selection of modified microorganism cells capable of developing on the defined medium, optionally with a co-substrate.
  • the advanced metabolic pathway is the 1,2-propanediol biosynthetic pathway, and optionally the acetone biosynthetic pathway.
  • defined medium is meant according to the invention a medium of known molecular composition, adapted to the growth of the microorganism. The defined medium is substantially free of metabolites whose production or consumption is suppressed by performing the modification.
  • co-substrate is meant according to the invention a carbon molecule or not, different from the substrate, which is involved in a reaction and giving one or more atoms to the substrate to form the product.
  • the co-substrate has no mutagenic property recognized.
  • selection is meant according to the invention a culture method, possibly continuously, conducted by applying increasing dilution levels so as to keep in the culture medium that the microorganisms having an equal or greater growth rate at the imposed dilution rate. In doing so, one keeps the microorganisms having evolved so that the modification carried out no longer affects the growth.
  • the term "evolved gene” is intended to mean a succession of nucleic acids delimited by a start codon and a stop codon in phase and having, at the end of the selection, at least one nucleic acid different from the initial sequence.
  • amino acids protein sequence
  • Genes and proteins can be identified by their primary sequences, but also by homologies of sequences or alignments that define groups of proteins.
  • the PFAMs Protein families database of alignments and Hidden Markov Models, http://www.sanger.ac.uk/Software/Pfam/) represent a large collection of protein sequence alignments. Each PFAM allows to visualize multiple alignments, to see protein domains, to evaluate the distribution between organisms, to have access to other databases, to visualize known structures of proteins.
  • COGs Clusters of Orthologous Groups of Proteins, http://www.ncbi.nlm.nih.gov/COG/) are obtained by comparing protein sequences from 43 fully sequenced genomes representing 30 major phylogenetic lineages. Each COG is defined from at least three lineages, which makes it possible to identify old conserved domains.
  • the terms "culture” and “fermentation” are used interchangeably to designate the growth of the bacterium on a suitable culture medium comprising a single carbon source.
  • simple carbon source carbon sources that can be used by those skilled in the art for the normal growth of a microorganism, a particular bacterium which may be arabinose, fructose, galactose, lactose, maltose, sucrose and xylose.
  • a particularly preferred single source of carbon is glucose.
  • the definition of the culture conditions of the microorganisms according to the invention (fermentation) is within the abilities of those skilled in the art.
  • the bacteria are fermented at a temperature between 20 ° C.
  • Fermentation is generally carried out in fermentors with a mineral culture medium of known composition defined and adapted according to the bacteria used, containing at least a single source of carbon and optionally a cofactor necessary for the production of the metabolite.
  • the mineral culture medium for E for E.
  • coli can thus be of identical or similar composition to an M9 medium (Anderson, 1946, Proc Natl Acad Soi USA 32: 120-128), a M63 medium (Miller, 1992; A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York) or a medium as defined by Schaefer et al. (1999, Anal Biochem 270: 88-96), more particularly the minimum culture medium described below:
  • the pH of the medium is adjusted to 7.4 with sodium hydroxide.
  • trace element solution citric acid at 4 g / l, Mn S04 at 3 g / l, NaCl at 1 g / l, CoCl 2 at 0.1 g / l, Zn SO 4 at 0.10 g / l, Cu S0 4 at 10mg / L, H3 B03 at 10mg / L, Na Mo O4 at 10mg / L.
  • the mineral culture medium for C. glutamicum may thus be of identical or similar composition to BMCG medium (Liebl et al. al., 1989, Appl. Microbiol. Biotechnol.
  • the fermentation is preferably carried out in anaerobiosis and chemostat, ie fed continuously at a fixed dilution ratio, with said minimum culture medium containing a fixed carbon source concentration and being degassed with nitrogen.
  • the carbon source concentration of the fermentation feed medium is only increased when a steady state limited by the residual carbon source concentration is reached and stable for several days.
  • the mode of culture in chemostat is the preferential mode of cultivation because it is the one that promotes the improvement of growth performance and 1,2-propanediol production of the modified strain and leads to isolate the evolved microorganisms.
  • the term "enhanced 1,2-propanediol synthase” activity is intended to mean all the improved enzyme activities involved in the conversion of DHAP into 1,2-propanediol.
  • the improved enzymatic activity in the evolved microorganism consists of an increase in the amount of 1,2-propanediol by the evolved microorganism relative to the amounts produced by the corresponding initial microorganism, under identical culture conditions.
  • the term “enhanced acetone synthase” activity is understood to mean, according to the invention, all of the improved enzymatic activities involved in the conversion pathway from acetate and acetyl-coA to acetone.
  • the evolved enzymatic activity in the second generation evolved microorganism consists of an increase in the amount of acetone produced by the second generation evolved microorganism relative to the corresponding transformed transformed microorganism under identical culture conditions.
  • the invention also relates to the isolation and characterization of the evolved genes in the evolved strains obtained by the process according to the invention, and to the evolved proteins coded by said evolved genes. These advanced genes can then be introduced into a host organism under control regulatory elements suitable for its expression in said organism to allow the production of the corresponding evolved protein.
  • coli modified for the production of 1, 2-propanediol, to produce NADH by decarboxylation of pyruvate is the deletion of the pf / A and pflB genes encoding the pyruvate formate lyase activity. modified is to metabolize pyruvate to acetyl-CoA by the pyruvate dehydrogenase complex by producing NADH.
  • the pyruvate dehydrogenase complex of the evolved modified strain has been characterized and is less sensitive to NADH than comple pyruvate dehydrogenase of the wild strain.
  • the present invention leads to the selection of an anaerobically functional pyruvate dehydrogenase complex which makes it possible to produce two NADH by oxidation of glyceraldehyde-3-phosphate in acetate, NADH, which can be reoxidized only by the dihydroxyacetone-phosphate reduction route. 1,2-propanediol.
  • the selection of an enzyme complex that is not very sensitive to NADH promotes the production rate of 1,2-propanediol.
  • the present invention advantageously leads to the selection of mutations of the Ipd gene (whose wild-type sequence is known as hppt: //genolist.pasteur.fr/Colibri) coding for the lipoamide dehydrogenase of the pyruvate dehydrogenase complex.
  • hppt //genolist.pasteur.fr/Colibri
  • This enzyme is known to be responsible for the inhibition of the pyruvate dehydrogenase complex by NADH.
  • This modified enzyme is also part of the present invention.
  • the present invention makes it possible to improve the performance of modified microorganisms, in particular the E c ⁇ // MG1655 A tpiA strain,
  • the evolved strain does not comprise the evolution of the gldA gene.
  • the evolution strain comprises a deletion of the gldA gene.
  • FIG. 1 Diagram of the metabolism of the modified E coli strain for the production of 1,2-propanediol and of acetone according to the invention Key: LDH: lactate dehydrogenase ADH: aldehyde alcohol dehydrogenase PFL: pyruvate formate lyase PDHc pyruvate dehydrogenase complex
  • Figure 2 Evolution of the strain E ra? // MG1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgIoA, AaldA, AaldB in culture chemostat on glucose: glucose concentration ( Figure 2A and other products ( Figure 2B).
  • Example 1 Construction of a modified E. coli strain MG 655AtpiA, ApflAB, AadhE, IdhA r.kana, AgIoA, AaldA, AaldB capable of producing only 1,2-propanediol and acetate by fermentation of glucose: a) Construction of a modified strain E. coli 1655.4 tpiA :: cm: The inactivation of the tpiA gene is carried out by inserting a chloramphenicol antibiotic resistance cassette while deleting the major part of the gene concerned. The technique used is described by Datsenko, KA; Wanner, BL
  • oligonucleotides are used to perform the replacement of the tpiA: 100-base DtpiAr gene (SEQ ID NO: 1): atgcgacatcctttagtgatgggtaactggaaactgaacggcagccgccacatggttcacgagctggtttctaacct gcgtaCATATGAATATCCTCCTTAG with: a region (lowercase characters) homologous to the sequence (4109007- 4109087) of the tpiA gene (sequence 4108320 to 4109087 ), a reference sequence on the site http://genolist.pasteur.fr/Colibri/) a region (uppercase characters) for the amplification of the chloramphenicol resistance
  • the PCR product obtained is then introduced by electroporation into strain MG1655 (pKD46) in which the expressed ⁇ Red ( ⁇ , ⁇ , exo) system greatly favors homologous recombination.
  • Antibiotic resistant transformants are then selected and the insertion of the resistance cassette is verified by PCR analysis with cdh and YIIQ oligonucleotides.
  • cdh (SEQ ID NO: 3): ggtgatgatagttatcgccg (homologous to the sequence of 41 07536 to 4107555)
  • YIIQ (SEQ ID NO: 4): cgtgccatcgacagcagtcc (homologous to the sequence of 4109599 to 4109580)
  • the chloramphenicol resistance cassette is then removed.
  • the plasmid pCP20 carrying the FLP recombinase acting at the FRT sites of the chloramphenicol resistance cassette, is then introduced into the recombinant strains by electroporation (Cheperanov PP and Wackernagel W.
  • Two oligonucleotides are used to carry out the replacement of the pflA and pf / B: DpIfB r genes of 100 bases (SEQ ID NO 5): ccggacatcctgcgttgccgtaaatctggtgttctgaccggtctgccagatgcatatggccgtggccgtatcatcggt gaCATATGAATATCCTCCTTAG with: a region (lowercase characters) homologous to the sequence (952235-952315) of the plfB gene (sequence 950495 to 952777), reference sequence on the site http://genolist.pasteur.fr/Colibri/) a region (uppercase characters) for amplification of the chloramphenicol resistance cassette of plasmid pKD3 (Datsenko, KA, Wanner, BL (2000) One-step inactivation of chromosomal genes in Escherichia coli A2 using PCR
  • DpIfAf SEQ ID NO: 6
  • gatgcactataagatgtgttaaaacgctgtagcagaatgaagcgcggaataaaaaagcggcaactcaataaa gttgccgCTGGAGCTGCTTCG with: a region (lowercase characters) homologous to the sequence (949470-
  • oligonucleotides pflABI and pflAB2 are used to amplify the resistance cassette to chloramphenicol from plasmid pKD3.
  • the PCR product obtained is then introduced by electroporation into strain MG1655 (pKD46) in which the expressed red recombinase enzyme allows homologous recombination.
  • pflAB 1 SEQ ID NO: 7: agacattaaaaatatacgtgcagctacccg (homologous to the sequence of 948462 to 948491)
  • pflAB 2 SEQ ID NO: 8: gtgaaagctgacaacccttttgatctttta (homologue to the sequence of 953660 to 983689)
  • coli strain MG 1655 AtpiA, ApIfAB The deletion of the pflA and pflb genes by replacement of the genes by a chloramphenicol resistance cassette in the MG1655 AtpiA strain was carried out by the phage transduction technique P1.
  • the protocol consists of two steps, on the one hand the preparation of the phage lysate on the strain MG1655 ApIfAB :: cm and on the other hand, the transduction of the strain MG1655 AtpiA by this phage lysate.
  • the plasmid pCP20 carrying the FLP recombinase acting at the FRT sites of the chloramphenicol resistance cassette is then introduced into the recombinant strains by electroporation. After a series of cultures at 42 ° C., the loss of the antibiotic resistance cassette is verified by PCR analysis with the same oligonucleotides as those used previously. The strain obtained is called MG 16555 ⁇ tpiA, ⁇ pflAB. d) Construction of a modified E. coli strain MG 1655 AadhE :: cm: As previously inactivation of the adhE gene is carried out by inserting a chloramphenicol antibiotic resistance cassette while deleting most of the gene concerned by the technique.
  • DadhE r 100 bases (SEQ ID No. 9): atggctgttactaatgtcgctgaacttaacgcactcgtagagcgtgtaaaaaagcccagcgtgaatatgccagtttcactCATATGAATATCCTCCTTAG with: a region (lowercase characters) homologous to the sequence (1297263-1297343) of the adhE gene (sequence 1294669 to 1297344), reference sequence on the site http://genolist.pasteur.fr/Colibri/) a region (capital characters) for the amplification of the chloramphenicol resistance cassette of the plasmid pKD3 (Datsenko, KA and Wanner, BL (2000) 100 bases DadhEf (SEQ ID NO: 10): ca
  • Antibiotic resistant transformants are then selected and the insertion of the resistance cassette is verified by PCR analysis with oligonucleotides ychGf and adhECr.
  • chGf SEQ ID NO: 11
  • adhECr SEQ ID NO: 12
  • gaaaagacgcgctgacaatacgcc homologous to the sequence of 1297772 to 1297749
  • e construction of a strain MG1655 AtpiA, ApflAB, AadhE: The deletion of the adhE gene in the strain MG1655 AtpiA, ApIfAB is carried out as previously using the transduction technique using P1 phage (see protocol c).
  • P1 phage lysate is carried out on the stump MG1655 AadhE :: cm, and the transduction of strain MG1655 AtpiAApflAB is carried out using this lysate.
  • the chloramphenicol-resistant transductants are monitored using the oligonucleotides ychCf and adhECr to verify the mutation of the adhE gene and also using the oligonucleotides pflABI and pflAB2 on the one hand, and cdh and YIIQ on the other hand, in order to also check the deletion of the pflA and B genes, and tpiA in the AadhE :: cm strain.
  • the chloramphenicol resistance cassette is then removed.
  • the plasmid pCP20 carrying the FLP recombinase acting at the FRT sites of the chloramphenicol resistance cassette is then introduced into the recombinant strains by electroporation. After a series of cultures at 42 ° C., the loss of the antibiotic resistance cassette is verified by PCR analysis with the same oligonucleotides as those used previously.
  • the strain obtained is called MG 16555 A tpiA, ApflAB, AadhE. f) Construction of a modified strain E.
  • the phage lysate is made with E. coli strain K12 NZN11 Aplf :: cam, IdhA by Clark DP (Bunch PK, Matt-Jan F.
  • the transduction of MG1655 strain AtpiA, ApflAB, AadhE ' is carried out using the phage lysate of E. coli strain K12 NZN11 Aplf :: cam, IdhA r.kana.
  • the transductants are selected on kanamycin and the insertion of the kanamycin cassette into the IdhA gene is verified using oligonucleotides hslJC and ldhAC2.
  • hsIJC (SEQ ID NO: 13): gccatcagcaggcttagccg (homologous to the sequence 1439345 to 1439767)
  • ldhAC2 (SEQ ID NO: 14): gggtattgtggcatgtttaaccg (homologous to the sequence 1441007 to 1441029)
  • the strain obtained is called MG1655 AtpiA, ApflAB, AadhE, IdhA :: kana g) construction of a modified strain E. coli MG 1655
  • a gloAr.cm The inactivation of the gloA gene is carried out as previously by inserting a resistance cassette to the antibiotic chloramphenicol while deleting most of the genes involved in the technique described by Datsenko,
  • GLOAD f 100 bases (SEQ ID NO: 15) atgcgtcttcttcataccatgctgcgcgttggcgatttgcaacgctccatcgatttttataccaaagtgctgggcatgaa GTGTAGGCTGGAGCTGCTTCG with: a region (lowercase characters) homologous to the sequence (1725861-1725941) of the gloA gene (sequence 1725861 to 1726268), reference sequence on the site http://genolist.pasteur.fr/Colibri/) a region (uppercase characters) for the amplification of the chloramphenicol resistance cassette of the plasmid pKD3 (Datsenko, KA and Wanner, BL (2000) GLOA DR (SEQ ID NO: 16) ttagttgcccagacc
  • Nem AC d and Rnt C r oligonucleotides Nem AC d and Rnt C r.
  • NemAQd SEQ ID NO: 17: gaagtggtcgatgccgggattgaagaatggg (homolog of 1725331 to 1725361)
  • Rnt Cr SEQ ID NO: 18: gggttacgtttcagtgaggcgcgttctgcgg (homolog to the sequence of 1726765 to 1726795) h) construction of a modified strain E. coli MG1655 AtpiA, ApflAB, AadhE, IdhA :: kana, Agio A: Inactivation of the gloA gene in strain MG1655 AtpiA, ApflAB,
  • AadhE dhA :: kana was carried out as previously using the phage P1 technique (see protocol in c)).
  • the phage lysate P1 is carried out on the strain MG1655 AgIoA :: cm, and the transduction of the strain MG1655 AtpiA, ApflAB, AadhE, IdhA :: kana is carried out using this lysate.
  • the chloramphenicol-resistant transductants are monitored using the oligonucleotides NemAQd and Rnt Cr to verify the mutation of the gloA gene and also using the oligonucleotides, pflABI and pflAB2, cdh and YIIQ, ychCf and adhECr, hslJC and ldhAC2, in order to to also check respectively the deletion of the genes pflA and B, tpiA, adhE, and IdhA in the strain AgIoA :: cm.
  • the chloramphenicol resistance cassette is then removed.
  • the plasmid pCP20 carrying the FLP recombinase acting at the FRT sites of the chloramphenicol resistance cassette is then introduced into the recombinant strains by electroporation. After a series of cultures at 42 ° C., the loss of the antibiotic resistance cassette is verified by PCR analysis with the same oligonucleotides as those used previously.
  • the strain obtained is called MG16555 AtpiA, ApflAB, AadhE, IdhA :: kana, AgIoA.
  • AldA D f of 100 bases (SEQ ID NO: 19) atgtcagtacccgttcaacatcctatgtatatcagatggacagtttgttacctggcgtggagacgcatggattg atgtggtaGTGTAGGCTGGAGCTGCTTCG with: a region (minuscule characters) homologous to the sequence (1486256 - 1486336) of the aldA gene (sequence 1486256 to 1487695) , reference sequence on the site http://genolist.pasteur.fr/Colibri/) a region (capital characters) for the amplification of the chloramphenicol resistance cassette of the plasmid pKD3 (Datsenko, KA and Wanner, BL (2000) ) aldAD r of 100 bases (SEQ ID NO: 20): ttaagactgtaaataaaccacctggg
  • the PCR product obtained is then introduced by electroporation into strain MG1655 (pKD46) in which the expressed red recombinase enzyme allows homologous recombination.
  • Antibiotic resistant transformants are then selected and the insertion of the resistance cassette is verified by PCR analysis with Ydc FC and gapCCr oligonucleotides.
  • Ydc FC (SEQ ID NO: 21): tgcagcggcgcacgatggcgacgttccgccg (homologue of 1485722 to 1485752) gapCCr (SEQ ID N022): cacgatgacgaccattcatgcctatactggc (homologous to the sequence of 1488195 to 1488225) h) construction of a modified strain E.
  • coli MG1655 AtpiA, ApflAB, AadhE, IdhA :: kana, Agio A, AaldA Inactivation of the aldA gene in MG1655 strain AtpiA, ApflAB, AadhE, IdhA :: kana, AgIoA was carried out as previously using the phage P1 technique (see protocol in c)).
  • the phage lysate P1 is carried out on the MG1655 AaldA :: cm strain, and the transduction of the strain MG1655 AtpiA, ApflAB, AadhE, IdhA :: kana, AgIoA is carried out using this lysate.
  • the chloramphenicol-resistant transductants are monitored using Ydc FC and gapCCr oligonucleotides to verify the mutation of the aldA gene and also using the oligonucleotides, NemAQd and Rnt Cr, pflABI and pflAB2, cdh and YIIQ, ychCf and adhECr , hslJC and ldhAC2, in order to check respectively the deletion of the genes gloA, pflA and B, tpiA, adhE in the strain AaldA :: cm.
  • the chloramphenicol resistance cassette is then removed.
  • the plasmid pCP20 carrying the FLP recombinase acting at the FRT sites of the chloramphenicol resistance cassette is then introduced into the recombinant strains by electroporation. After a series of cultures at 42 ° C., the loss of the antibiotic resistance cassette is verified by PCR analysis with the same oligonucleotides as those used previously.
  • the strain obtained is called MG 16555 A tpiA, ApflAB, AadhE, IdhA :: kana, AgIoA, AaldA. g) construction of a modified strain E.
  • Antibiotic resistant transformants are then selected and the insertion of the resistance cassette is verified by PCR analysis with the oligonucleotides aldB C f and YiaYCr.
  • aldB C (SEQ ID NO: 25): catatttccctcaaagaatataaaaagaacaattaacgc (homologous to the sequence of 3752057 to 3752095)
  • YiaYCr (SEQ ID NO: 26): tatgttcatgcgatggcgcaccagctgggcg (homologous to the sequence of 3754644 to 3754674) h) construction of a modified strain E.
  • the phage lysate P1 is carried out on the MG1655 AaldB :: cm strain, and the transduction of the strain MG1655 AtpiA, ApflAB, AadhE, IdhA :: kana, AgIoA, AaldA is carried out using this lysate.
  • Chloramphenicol-resistant transductants are monitored using the oligonucleotides aldB C f and YiaYCr to verify the mutation of the aldB gene and also using the oligonucleotides, NemAQd and Rnt Cr, pflABI and pflAB2, cdh and YIIQ, ychCf and adhECr , hslJC and ldhAC2, Ydc FC f and gapCCr, in order to verify respectively the deletion of the genes gloA, pflA and B, tpiA, adhE, aldA in the strain AaldB :: cm.
  • the chloramphenicol resistance cassette is then removed.
  • the plasmid pCP20 carrying the FLP recombinase acting at the FRT sites of the chloramphenicol resistance cassette is then introduced into the recombinant strains by electroporation. After a series of cultures at 42 ° C., the loss of the antibiotic resistance cassette is verified by PCR analysis with the same oligonucleotides as those used previously.
  • the strain obtained is called MG1655 AtpiA, ApflAB, AadhE, IdhA :: kana, AgIoA, AaldA, AaldB.
  • Example 2 Culture and Evolution of the Modified Strain E ⁇ / MG1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgIoA, AaldA, AaldB in chemostat:
  • a culture of the strain in chemostat in a minimum culture medium, supplemented with sodium nitrate and yeast extract for several weeks, is performed under anaerobic conditions.
  • the initial concentration of glucose in the feed can of the culture is 20 g / l, the dilution ratio is 0.04h- 1 and a Continuous nitrogen flow is maintained to achieve the conditions of anerobiosis. Cell concentration and 1,2-propanediol and acetate productions are low. After several weeks of culture, growth and product concentrations increase, steady state is achieved characterized by a residual glucose concentration and constant product concentrations ( Figure 2).
  • MG1655, 4 tpiA, ApflAB, AadhE, IdhA :: kana, AgIoA, AaldA, AaldB is carried out according to the protocol described by Schwartz and Reed (Schwartz E.R. and Reed L.J. (1970) Regulation of the activity of the pyruvate dehydrogenase complex of
  • Escherichia coli, Biochemistry, 6, 1434-1439 A volume of 100 ml of cell culture is removed from the chemostat in vials previously degassed and returned under an anaerobic hood. The cells are centrifuged for 10 minutes at 6000 rpm. The pellet is suspended in about 100 ml of 50 mM potassium phosphate buffer, pH7.9, 0.5 mM thiamine pyrophosphate, and then centrifuged again for 10 minutes at 6000 rpm. The washing is carried out a second time under the same conditions. The cell pellet is suspended in 800 .mu.l of buffer.
  • the cell suspension is disintegrated by means of an ultrasonic apparatus in 4 cycles of treatment (30 seconds at 30%), interspersed with 2 minutes of rest in ice.
  • the cell debris is removed by centrifugation for 5 minutes at 13400 rpm, the supernatant is the crude acellular extract.
  • the salts present in the acellular extract which may interfere in the enzyme assay, are removed by passing the extract through a PD10 column equilibrated with potassium phosphate buffer pH 7.9, 0.5 mM thiamine pyrophosphate.
  • the extract is eluted with 3.5ml of the same buffer as before.
  • the recovered eluate is the crude acellular extract.
  • the enzymatic activity of the crude acellular extract is measured initially in the absence of NADH, then in a second time in the presence of increasing concentrations of NADH from 0.14 mM to 2.7 mM.
  • the results obtained are compared with those presented in the literature for the strain of E. wild coli figure 3 (Snoep JL, De Graef MR, Westphal AH, Kok A.
  • the gene # ⁇ / (sequence 127912 to 129336) coding for the lipoamide dehydrogenase (E3) of the pyruvate dehydrogenase complex is amplified by PCR using the following two oligonucleotides: AceEf (SEQ ID NO: 27) cgcgtgatcgacggtgctgatggtgcccg (homolog to the sequence 127504 to 127532) YacH r (SEQ ID NO: 28) aagttcaggagagccgccc (homolog to the sequence 127513 to 129531) A PCR product of 2000 base pairs corresponding to the Ipd st gene obtained and sequence. The results obtained show the presence of a point mutation leading
  • cgcgGTGTAGGCTGGAGCTGCTTCG with: a region (lowercase characters) homologous to the sequence (4135512 to 4135592) of the gldA gene (sequence 4135512 to 4136615), reference sequence on the site http://genolist.pasteur.fr/Colibri/) a region (capital characters) for the amplification of the chloramphenicol resistance cassette of the plasmid pKD3 (Datsenko, KA and Wanner, BL (2000) gldA D r of 100 bases (SEQ ID No. 30): atggaccgcattattcaatcaccgggtaaatacatccagggcgctgatgtgattaatcgtctgggcgaatacctgaa
  • gldA gene 4135512 to 4136615
  • a region (uppercase characters) for the amplification of the chloramphenicol resistance cassette carried by the plasmid pKD3
  • the oligonucleotides gldA D r and gldA D f are used to amplify the cassette of resistance to chloramphenicol from plasmid pKD3.
  • the PCR product obtained is then introduced by electroporation into strain MG1655 (pKD46) in which the expressed red recombinase enzyme allows homologous recombination.
  • Antibiotic resistant transformants are then selected and the insertion of the resistance cassette is verified by PCR analysis with oligonucleotides YijF D and TalCr.
  • YijF D (SEQ ID NO. 31): gcctggatttgtaccacggttggtggaacggcggg (homologous to the sequence of 4135140 to
  • TalCr (SEQ ID NO 32): cacgcatattccccattgccgggg (homologous to the sequence of 4137216 to 4137239)
  • a PCR product of 2100 bp is obtained for the wild-type gene as for the deleted gene and replaced by the chloramphenicol resistance gene. Also, the PCR products obtained are then digested with the restriction enzyme SalI. Two fragments of about 1000 bp are obtained for the wild-type PCR product while the PCR product containing the chloramphenicol resistance gene is not digested.
  • the phage lysate P1 is carried out on the strain MG1655 AgldA :: cm, and the transduction of the strain MG1655 AtpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA is carried out using this lysate. Chloramphenicol-resistant transductants are monitored using oligonucleotides YijF D and TalCr to verify the mutation of the gldA gene. c) Culture of the Modified Strains E.
  • E coli * MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB AgldA :: evolved cm and E coli * MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA , AaldA, AaldB evolved are grown at unregulated pH in a minimum culture medium supplemented with sodium nitrate and yeast extract with an initial glucose concentration of 20g / l under anaerobic conditions for 10 days.
  • the profile of fermentation products obtained shows that the deletion of the gldA gene does not lead to a decrease in the production of 1.2 propanediol (Table 1).
  • Table 1 Comparison of the concentrations of substrate and fermentation products after 10 days of culture of the modified strains E coll * MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB AgldA :: evolved cm and E co / G 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB evolved:
  • oligonucleotides are used to carry out the deletion: edd D f of 100 bases (SEQ ID NO: 33) ttaaaaagtgatacaggttgcgccctgttcggcaccggacagttttttcacgcaaggcgctgaataattcacgtcctgt
  • tcGTGTAGGCTGGAGCTGCTTCG with: a region (small characters) homologous to the sequence (1930817a 4) of the edd gene (sequence 1930817 to 1932628), reference sequence on the site http://genolist.pasteur.fr/Colibri/) a region (capital characters) for amplification of the chloramphenicol resistance cassette of the plasmid pKD3 (Datsenko, KA and Wanner, BL (2000) edd D r 100 bases (SEQ ID No.
  • AtCATATGAATATCCTCCTTAG a region (lowercase characters) homologous to the sequence (1932548-
  • the antibiotic-resistant transformants are then selected and the insertion of the resistance cassette is verified by a PCR analysis with the oligonucleotides eda d and zwf r: Eda d (SEQ ID NO 35): CCCCGGAATCAGAGGAATAGTCCC (homologous to the sequence of 1930439 to 1930462) Zwf r (SEQ ID NO: 36): GGGTAGACTCCATTACTGAGGCGTGGGCG (homologous to the sequence from 1932968 to 1932996) b) construction of a modified strain MG1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB Aedd :: evolved cm The inactivation of the edd gene in the strain MG1655 AtpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AldA, Aald
  • the phage lysate P1 is carried out on the MG1655 Aedd :: cm strain, and the transduction of the strain MG1655 AtpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB is carried out using this lysate. Chloramphenicol resistant transductants are monitored using the eda d and zwf r oligonucleotides to verify the edd gene mutation.
  • E. coli * MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB, Aedd :: evolved cm and E. coli * MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana AgloA, AaldA, AaldB evolved are grown at unregulated pH in a minimum culture medium supplemented with sodium nitrate and yeast extract with an initial glucose concentration of 20g / l under anaerobic conditions for 10 days.
  • the profile of fermentation products obtained shows that the deletion of the edd gene results in an increase in the conversion efficiency of glucose to 1,2-propanediol from 0.13 g / g to 0.35 g / g (Table 2).
  • the deletion of the edd gene in the E coli strain * MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB evolved thus makes it possible to improve the performance of the strain.
  • Table 2 Comparison of the concentrations of substrate and fermentation products after 10 days of culture of modified E. coli * MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB Aedd :: evolved cm and E co / r G 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB evolved:
  • Example 6 Construction of a Modified Strain E C ⁇ // MG1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB, Aedd :: cm (pSOS95T) capable of producing 1,2-propanediol and Acetone:
  • the plasmid called pSOS95T is an expression shuttle vector for E. coli / C.
  • acetobutylicum carrying the acetone operon of Clostridum acetobutyiicum consisting of four adc genes, ctfAB, thl coding respectively for acetoacetate carboxylase, coenzyme A transferase and thiolase under the thiolase promoter. These three enzymes catalyze the conversion of acetyl-CoA and acetate to acetone and carbon dioxide.
  • the plasmid pSOS95T was obtained by insertion into the plasmid pSOS95 (Gene bank accession number AY187686) of the thiolase-thiol-encoding gene of C.
  • Plasmid pSOS95T is introduced into E. coli strain MG1655A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB, Aedd :: cm evolved by electroporation. Electrocompetent cells of E. coli strain MG1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB, Aedd :: cm were prepared from a night culture of the LB strain.
  • a 10 ml culture in LB Erlenmeyer flask is seeded 100th by the overnight culture and incubated at 37 ° C.
  • 1 ml of culture is centrifuged.
  • the cells are washed with water and then with a 10% glycerol solution, and resuspended in 0.05 ml of a 10% glycerol solution.
  • the cells are immediately electroporated (25 ⁇ F, 200 ⁇ , 2.5 KV) (Biserad gene) with 5 ⁇ l of the plasmid preparation pSOS95T (Qiagen, Hilden germany).
  • Example 7 Culture of the modified strain E co // * MG1655A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB, Aedd :: cm (pSOS95T) evolved capable of producing 1,2-propanediol and Acetone:
  • the modified E coli strain * MG1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB Aedd :: cm (pSOS95T) evolved is cultivated at an unregulated pH in a minimal culture medium supplemented sodium nitrate and yeast extract with an initial glucose concentration of 20g / l under anaerobic conditions (Table 3).
  • the assay of the fermentation products shows that the advanced E. coli * MG1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB Aedd :: cm (pSOS95T) strain produces a mixture of 1,2-propanediol, d acetate and acetone.
  • Table 3 Comparison of the concentrations of substrate and fermentation products after 10 days of culture of the modified strains E c ⁇ // * MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB, Aedd :: evolved cm and E coli * MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB, Aedd :: evolved cm:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

La présente invention concerne un nouveau procédé de préparation d'une souche de microorganismes évolués pour la production de 1,2-propanediol par métabolisme d'une source de carbone simple, ledit procédé comprenant la culture sous pression de sélection dans un milieu de culture approprié comprenant une source de carbone simple, d'une souche bactérienne initiale comprenant une délétion du gène tpiA et une délétion d'au moins un gène impliqué dans la conversion du méthyl glyoxal (propanal) en lactate, afin de faire évoluer dans ladite souche initiale un ou plusieurs gènes impliqués dans la voie de biosynthèse du DHAP en méthylglyoxal puis en 1,2-propanediol vers des gènes évolués ayant une activité « 1,2-propanediol synthase » améliorée, puis on sélectionne et on isole la ou les souches de microorganismes évolués ayant une activité « 1,2­propanediol synthase » améliorée. L'invention concerne également les microorganismes initiaux et les microorganismes évolués ainsi obtenus et un procédé de préparation de 1,2-propanediol et éventuellement d'acétone par culture des microorganismes évolués.

Description

Microorganisme évolué pour la production de 1 ,2-propanediol
La présente invention concerne un nouveau procédé de préparation d'un microorganisme évolué pour la production de 1 ,2-propanediol, le microorganisme évolué ainsi obtenu et son utilisation pour la préparation de 1 ,2-propanediol. Le 1 ,2-propanediol ou propylène glycol, dialcool en C3, est un produit chimique utilisé dans de nombreux domaines. C'est un constituant des résines de polyesters insaturés ; des détergents liquides ; des agents de refroidissement, anti-gel et de fluide de dégivrage des avions. L'utilisation du propylène glycol est en émergence depuis les années 1993-1994 en remplacement des dérivés éthyléniques qui sont reconnus comme plus toxiques que les dérivés propyléniques. Le 1 ,2-propanediol est actuellement produit par voie chimique par un procédé d'hydratation d'oxyde de propylène utilisant de large quantité d'eau. La production d'oxyde de propylène peut être effectuée selon deux procédés l'un utilisant de l'épichlorydrine, l'autre de l'hydroperoxide. Ces deux voies utilisent des produits fortement toxiques. De plus, la voie de l'hydroperoxide génère des coproduits tels que le ter-butanol ou le 1 phenyl éthanol qu'il est nécessaire de valoriser pour rentabiliser la production d'oxyde de propylène. La voie chimique produit généralement du 1 ,2-propanediol racemique alors qu'il existe deux formes de stéréoisoméres le (R) 1.2 propaendiol et le (S) 1 ,2-propanediol dont l'intérêt n'est pas négligeable pour d'autres applications. Ces inconvénients liés à la production chimique du 1 ,2-propanediol font de la voie de production biologique une alternative prometteuse. Plusieurs microorganismes sont capables de produire naturellement du ( S ) ou ( R ) 1 ,2- propanediol à partir de sucre, tels que le glucose ou le xylose qui sont métabolisés par la voie de la glycolyse, ou encore, à partir de déoxyhexoses qui conduisent alors à la formation de ( S ) 1 ,2-propanediol {Cameron D. C . et coll. (1998) Biotechnol. Prog.). Parmi les microorganismes les plus performants sont à citer Clostridium sphénoïdes (Tran Din K. et coll. 1986) et Thermoanaerobium thermosaccharolyticum (A/taras N. E and Cameron D. C. 2001). Ce dernier est capable de fermenter plusieurs types de sucres en (R) 1,2-propanediol avec un rendement qui varie de 0.13 à 0.28 g de 1 ,2-propanediol produit/ g de glucose consommé. Chez ces deux microroganismes, les enzymes responsables de la synthèse de 1 ,2-propanediol n'ont pas été identifiées, et l'amélioration de leurs performances est limitée par le manque d'outils, génétiques disponibles. Par ailleurs, E. coli possède tous les gènes nécessaires à la production de 1,2- propanediol même si E. coli ne produit pas naturellement du 1 ,2-propanediol. En effet, le 1 ,2-propanediol doit être produit à partir de méthyl glyoxal, un composé fortement toxique pour la cellule même à faible concentration. Aussi, des procédés utilisant des souches d'E. cσ//génétiquement modifiées afin qu'elles produisent du 1,2-propanediol ont été décrits notamment dans US 6 303 352, US 6 087 140 et WO 98/37204. Ces procédés utilisent notamment la surexpression d'une ou plusieurs enzymes impliquées dans la voie métabolique de production du 1,2- propanediol par clonage de leurs gènes dans des plasmides et donc imposent une pression de sélection à l'aide d'antibiotiques. Pour améliorer les performances des souches certains gènes endogènes sont également délétés (voir par exemple Altaras N. E. and Cameron D. C. (2000) Biotechnoi Prog. 16, 940-946 : A/taras N. E and Cameron D. (1999) Appi. Env. Microb., 65, 1180-1185). Un procédé utilisant un microorganisme évolué coproduisant du 1 ,2- propanediol et de l'acétone, deux coproduits valorisâmes, n'a jusqu'alors jamais été décrit.
La présente invention concerne donc un procédé de préparation d'une souche de microorganismes évolués pour la production de 1,2-propanediol par métabolisme d'une source de carbone simple, ledit procédé comprenant la culture sous pression de sélection dans un milieu de culture approprié comprenant une source de carbone simple, d'une souche bactérienne initiale comprenant une délétion du gène tpiA et une délétion d'au moins un gène impliqué dans la conversion du méthyl glyoxal (propanai) en lactate, afin de faire évoluer dans ladite souche initiale un ou plusieurs gènes impliqués dans la voie de biosynthèse du DHAP en methylglyoxal puis en 1 ,2-propanediol vers des gènes évolués ayant une activité « 1 ,2-propanediol synthase » améliorée, puis on sélectionne et on isole la ou les souches de microorganismes évolués ayant une activité « 1,2- propanediol synthase » améliorée. Le gène tpiA code pour la triose phosphate isomérase qui catalyse la conversion du DHAP en glycéraldéhyde 3 phosphate. La délétion de ce gène a pour objet d'assurer la synthèse d'une quantité suffisante de méthyl glyoxal. Théoriquement, la délétion du gène tpiA doit permettre d'assurer que 50% du carbone du glucose métabolisé par les cellules soit affecté à la préparation du méthyl glyoxal à partir du dihydroxy acétonephosphate. La délétion d'au moins un gène impliqué dans la conversion du méthyl glyoxal (propanai) en lactate a pour objet d'inhiber la conversion du méthyl glyoxal en lactate, de manière que l'essentiel du méthyl glyoxal présent et produit par la souche initiale, comme par la souche évoluée obtenue, soit employé par la machinerie cellulaire desdites souches pour la préparation de 1,2-propanediol. Les gènes impliqués dans la conversion du méthyl glyoxal en lactate sont choisis parmi le gène gloA codant pour la glyoxylase I (catalysant la synthèse de lactoyl glutathione à partir de methylglyoxal) et les gènes aldA et aldB codant pour une lactaldéhyde deshydrogenase (catalysant la synthèse de (S) lactate à partir de (S) lactaldéhyde). De préférence, la souche initiale comprend la délétion des trois gènes gloA, aldA et aldB. De manière avantageuse, on effectue une modification supplémentaire de la souche initiale qui consiste à supprimer les voies naturelles de fermentation du glucose qui sont consommatrices d'équivalents réducteurs sous forme de NADH afin d'éliminer ces voies métaboliques qui sont en compétition avec la production de 1,2-propanediol. On citera en particulier la délétion du gène IdhA codant pour la lactate deshydrogenase catalysant la synthèse de lactate à partir de pyruvate, et celle du gène adhE codant pour l'alcool-aldéhyde deshydrogenase catalysant la synthèse d'éthanol à partir d'acétyl-CoA. De même, on peut obliger le microorganisme à utiliser le complexe pyruvate deshydrogenase pour produire, en anaérobiose, de l'acétyl-CoA et du NADH à partir du pyruvate. Ceci peut être obtenu en délétant les gènes pflA et, pflB codant pour la pyruvate formate lyase. Selon un mode particulier de réalisation de l'invention, la souche initiale comprend donc également une délétion d'au moins un gène choisi parmi IdhA, pf/A, pflB et adhE, de préférence la délétion des quatre gènes IdhA, pflA, pflB et adhE De manière encore plus avantageuse, la souche initiale selon l'invention comprendra également au moins un gène codant pour une enzyme favorisant en anaérobiose, le métabolisme du pyruvate en acétate. De préférence, l'enzyme favorise, en anaérobiose, le métabolisme du pyruvate vers la production d'acétyl-CoA et de NADH. Plus préférentiellement cette enzyme est un complexe pyruvate deshydrogenase. De manière avantageuse, ledit gène codant pour une enzyme favorisant, en anaérobiose, le métabolisme du pyruvate en acétate est peu sensible à l'inhibition par le NADH. Ce gène peut être un gène endogène, codant pour une protéine endogène, ou encore un gène exogène ou hétérologue, codant pour une enzyme endogène ou exogène. Dans le cas d'un gène endogène codant pour une protéine endogène sensible à l'inhibition par le NADH, le procédé d'évolution selon l'invention permettra de sélectionner les souches à activité « 1 ,2-propanediol synthase » améliorée dont ledit gène codant pour une enzyme favorisant, en anaérobiose, le métabolisme du pyruvate en acétate code pour une enzyme évoluée rendue peu sensible à l'inhibition par le NADH. Selon un autre mode de réalisation de l'invention, on peut introduire dans la souche initiale un gène hétérologue qui code pour une enzyme peu sensible à l'inhibition par le NADH, ou codant pour une enzyme sensible, mais rendue peu sensible par la mise en œuvre du procédé d'évolution selon l'invention. En outre, il est avantageux de déléter également le gène edd codant pour la
6-phospho-gluconate deshydratase, première enzyme impliquée dans la voie d'Entner Doudoroff, pour éviter la métabolisation directe du glucose en glycéraldéhyde-3-phosphate et pyruvate et ainsi forcer la conversion du glucose en 1,2 propanediol et acétate De manière avantageuse, on introduit dans la souche évoluée préalablement isolée, obtenue par le procédé d'évolution selon l'invention, un ou plusieurs gènes hétérologues codant pour une ou plusieurs enzymes impliquées dans la conversion de l'acétyl-CoA et de l'acétate en acétone, pour obtenir une souche évoluée modifiée. Cette nouvelle modification permet de produire avec le 1 ,2-propanediol de l'acétone, coproduit valorisable. Cette modification a en outre l'avantage d'améliorer les performances de production en 1 ,2-propanediol. En effet, l'acétate est un composé inhibiteur de la croissance bactérienne à faible concentration (15 g/l) et bloque rapidement l'évolution des performances de la souche cultivée en chemostat en conditions anaérobies. L'introduction dans la souche évoluée des gènes codant pour les enzymes catalysant la transformation de l'acétate en acétone entraîne une diminution de la concentration résiduelle en acétate lors de la culture en chemostat. De l'acétone est produit, composé largement moins inhibiteur de la croissance que l'acétate, la croissance de la souche et la production de 1 ,2-propanediol sont favorisées. De manière avantageuse, le ou les gènes hétérologues codant pour une ou plusieurs enzymes impliquées dans la conversion de l'acétyl-CoA et de l'acétate proviennent de C. acétobutylicum. Les gènes codant pour une ou plusieurs enzymes impliquées dans la conversion de l'acétyl-CoA et de l'acétate en acétone peuvent être exprimés chromosomiquement ou extrachromosomiquement. Chromosomiquement, une ou plusieurs copies peuvent être introduites dans le génome à l'aide des méthodes de recombinaison connues de l'homme de l'art. Extrachromosomiquement, les gènes peuvent être portés par différents types de plasmides qui diffèrent par leur origine de réplication, leur nombre de copies et leur stabilité dans la cellule. Ils peuvent être présents de 1 à 5 copies, comme à 20 ou jusqu'à plus de 500 copies correspondant aux plasmides à bas nombre de copies avec une origine de réplication de type strict (pSC101, RK2), aux plasmides à bas nombre de copie (pACYC, pRSF1010) ou à grand nombre de copies (pSK bluescript II). Les gènes peuvent être exprimés en utilisant des promoteurs de différentes forces, inductibles ou non inductibles. On peut citer par exemple les promoteurs Ptrc, Ptac, Plac, ou d'autres promoteurs connus de l'homme de l'art. L'expression des gènes cibles peut être augmentée ou diminuée par des éléments stabilisant ou déstabilisant l'ARN messager (Carrier and Keasling (1998) Biotechnol. Prog., 15, 58-64) ou les protéines (par exemple GSTtags, Amersham Biosciences). Selon un mode préférentiel de réalisation de l'invention, on cultive la souche évoluée modifiée obtenue précédemment sous pression de sélection dans un milieu de culture approprié comprenant une source de carbone simple afin de faire évoluer dans ladite souche évoluée modifiée un ou plusieurs gènes impliqués dans la conversion de l'acétyl-CoA et de l'acétate en acétone vers une activité « acétone synthase » améliorée, puis on sélectionne et on isole les souches de microorganismes évolués de deuxième génération ayant une activité « 1 ,2- propanediol synthase » améliorée et une activité « acétone synthase » améliorée. La présente invention concerne aussi une souche initiale selon l'invention telle que définie ci-dessus, ci-après et dans les exemples. Elle concerne également une souche évoluée ayant une activité « 1 ,2- propanediol synthase » améliorée susceptible d'être obtenue par le procédé selon l'invention, telle que définie ci-dessus, ci-après et dans les exemples, cette définition englobant les souches évoluées de deuxième génération qui ont au surplus une activité « acétone synthase » améliorée. L'invention concerne enfin un procédé de préparation de 1,2-propanediol dans lequel on cultive une souche évoluée selon l'invention dans un milieu de culture approprié comprenant une source simple de carbone, puis on récupère le 1 ,2-propanediol produit et le cas échéant de l'acétone, qui sont éventuellement purifiés.
Les souches de microorganismes modifiés, initiaux et évolués, selon l'invention peuvent être procaryotiques ou eucaryotiques, susceptibles d'être transformés et cultivés pour permettre la production de 1 ,2-propanediol et le cas échéant d'acétone. L'homme du métier sera à même de sélectionner lesdits microorganismes au regard de ses connaissances générales dans le domaine de la biologie cellulaire et moléculaire, et, le cas échéant, d'identifier les gènes de ces microorganismes correspondant aux gènes de E. coli mention nés précédemment. Par souche de microorganismes, on entend selon l'invention un ensemble de microorganismes d'une même espèce comprenant au moins un microorganisme de ladite espèce. Ainsi, les caractéristiques décrites pour la souche s'appliquent à chacun des microorganismes de ladite souche. De même, les caractéristiques décrites pour l'un des microorganismes de la souche s'appliqueront à l'ensemble desdits microorganismes la composant. Les microorganismes modifiés selon l'invention sont choisis parmi les bactéries, les levures et les champignons, et notamment ceux des espèces suivantes : Aspergillus sp., Bacillus sp., Brevibacterium sp., Clostridium sp., Corynebacterium sp., Escherichia sp., Gluconobacter sp., Pseudomonas sp., Rhodococcus sp., Saccharomyces sp., Streptomyces sp., Xanthomonas sp., Candida sp. Dans un mode de réalisation préféré, la souche bactérienne est une souche
8 Escherichia, en particulier d'E coli. Dans un autre mode de réalisation, la souche bactérienne est une souche de Corynebacterium, en particulier C. glutamicum. Dans un autre mode de réalisation, la souche de levure est une souche de Saccharomyces, en particulier S. cerevisiae L'invention est décrite ci-dessus, ci-après et dans les exemples par rapport à E. coli. Ainsi, les gènes susceptibles d'être délétés ou surexprimés pour les souches évoluées selon l'invention sont définis principalement par l'emploi de la dénomination du gène de E. coli. Cependant, cet emploi a une signification plus générale selon l'invention et englobe les gènes correspondants d'autres microorganismes. En effet en utilisant les références GenBank des gènes d'E coli, l'homme du métier est capable de déterminer les gènes équivalents dans d'autres souches bactériennes qu'E coli. Les moyens d'identification des séquences homologues et de leurs pourcentages d'homologie sont bien connus de l'homme du métier, comprenant notamment les programmes BLAST qui peuvent être utilisés à partir du site http://www.ncbi.nlm.nih.gov/BLAST/ avec les paramètres indiqués par défaut sur ce site. Les séquences obtenues peuvent alors être exploitées (e.g. alignées) en utilisant par exemple les programmes CLUSTALW (http://www.ebi.ac.uk/clustalw/) ou MULTALIN (http://prodes.toulouse.inra.fr/multalin/cgi-bin/multalin.pl), avec les paramètres indiqués par défaut sur ces sites. En utilisant les références données sur GenBank pour les gènes qui sont connus, l'homme du métier est capable de déterminer les gènes équivalents dans d'autres organismes, souches bactériennes, levures, champignons, mammifères, plantes, etc. Ce travail de routine est avantageusement effectué en utilisant les séquences consensus pouvant être déterminées en réalisant des alignements de séquences avec des gènes issus d'autres microorganismes, et en dessinant des sondes dégénérées permettant de cloner le gène correspondant dans un autre organisme. Ces techniques de routine de biologie moléculaire sont bien connues dans l'art et sont décrites par exemple dans Sambrook et al. (1989 Molecular cloning: a laboratory manual. 2nd Ed. Cold Spring Harbor Lab., Cold Spring Harbor, New York.).
Par « délétion », on entend selon l'invention une suppression de l'activité du gène « délété ». Cette suppression peut être une inactivation du produit d'expression du gène concerné par un moyen approprié, ou bien l'inhibition de l'expression du gène concerné, ou encore la délétion d'au moins une partie du gène concerné de manière soit que son expression n'ait pas lieu (par exemple délétion d'une partie ou de l'ensemble de la région promotrice nécessaire à son expression) soit que le produit d'expression ait perdu sa fonction (par exemple délétion dans la partie codante du gène concerné). De manière préférentielle, la délétion d'un gène comprend la suppression de l'essentiel dudit gène, et le cas échéant son remplacement par un gène marqueur de sélection permettant de faciliter l'identification, l'isolement et la purification des souches évoluées selon l'invention. L'inactivation d'un gène se fait préférentiellement par recombinaison homologue. (Datsenko, K.A.; Wanner, B.L. (2000) One-step inactivation of chromosomal gènes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97 : 6640-6645). Le principe d'un protocole en est rappelé brièvement : un fragment d'ADN linéaire est introduit dans la cellule, lequel fragment est obtenu in vitro, comprenant les deux régions flanquant le gène, et au moins un gène de sélection entre ces deux régions (généralement un gène de résistance à un antibiotique), ledit fragment linéaire présentant donc un gène inactivé. Les cellules ayant subi un événement de recombinaison et ayant intégré le fragment introduit sont sélectionnées par étalement sur milieu sélectif. On sélectionne ensuite les cellules ayant subi un événement de double recombinaison, dans lesquelles le gène natif a été remplacé par le gène inactivé. Ce protocole peut être amélioré en utilisant des systèmes de sélections positive et négative, afin d'accélérer la détection des événements de double recombinaisons. La technique préférentiellement utilisée pour l'introduction de ces gènes dans la souche est l'électroporation, technique bien connue de l'homme du métier.
Le protocole en est rappelé brièvement : les gènes hétérologues d'intérêt sont clones dans un vecteur d'expression entre un promoteur et un terminateur. Ce vecteur possède en outre un gène de résistance à un antibiotique afin de sélectionner les cellules le contenant et une origine de réplication fonctionnelle chez la souche hôte afin qu'il puisse se maintenir. Le protocole nécessite la préparation de cellules hôtes électrocompétentes qui sont ensuite transformées par électroporation par le vecteur. Selon l'invention, les gènes introduits par électroporation sont préférentiellement les gènes adc, ctfA et B, thl codant respectivement pour l'acétoacétate carboxylase, la coenzyme A transférase et la thiolase de la voie naturelle de production d'acétone de Clostridium acetobutylicum, microorganisme reconnu comme extrêmement performant pour la production d'acétone par voie biologique.
Le procédé d'évolution selon l'invention est un procédé de préparation de microorganismes évolués permettant une modification des voies métaboliques, qui comprend de préférence les étapes suivantes : a) Modification d'un microorganisme pour obtenir un microorganisme initial de manière à inhiber la production ou la consommation d'un métabolite autrement consommé ou produit lorsque les cellules du microorganisme initial est cultivé sur un milieu défini, b) Culture des microorganismes initiaux modifiés précédemment obtenus sur ledit milieu défini pour le faire évoluer, le milieu défini pouvant également comprendre un co-substrat nécessaire à cette évolution, c) Sélection des cellules de microorganismes modifiés capables de se développer sur le milieu défini, éventuellement avec un co-substrat. Un tel procédé d'évolution est décrit notamment dans la demande de brevet WO 04/076659, dont le contenu est incorporé ici par référence. En l'espèce, la voie métabolique évoluée est la voie de biosynthèse du 1 ,2- propanediol, et le cas échéant la voie de biosynthèse de l'acétone. Par « milieu défini », on entend selon l'invention un milieu de composition moléculaire connue, adapté à la croissance du microorganisme. Le milieu défini est substantiellement exempt de métabolite dont on supprime la production ou la consommation en réalisant la modification. Par « co-substrat », on entend selon l'invention une molécule carbonée ou non, différent du substrat, qui est impliqué dans une réaction et donnant un ou plusieurs atomes au substrat afin de former le produit. Le co-substrat n'a pas de propriété mutagène reconnue. Par « sélection », on entend selon l'invention un procédé de culture, éventuellement en continu, conduit en appliquant des taux de dilution croissants de telle sorte de ne conserver dans le milieu de culture que les microorganismes ayant un taux de croissance égal ou supérieur au taux de dilution imposé. Ce faisant, on conserve les microorganismes ayant évolués de telle sorte que la modification réalisée n'affecte plus la croissance. Par « gène évolué », on entend selon l'invention une succession d'acide nucléique délimité par un codon start et un codon stop en phase et ayant, à l'issue de la sélection, au moins un acide nucléique différent par rapport à la séquence initiale. Par « protéine évoluée », on entend selon l'invention une succession d'acides aminés (séquence protéique) ayant, à l'issue de la sélection, au moins un acide aminé différent par rapport à la séquence protéique initiale. Les gènes et protéines peuvent être identifiées par leurs séquences primaires, mais également par homologies de séquences ou alignements qui définissent des groupes de protéines. Les PFAM (Protein families database of alignments and Hidden Markov Models ; http://www.sanger.ac.uk/Software/Pfam/) représentent une large collection d'alignements de séquences proteiques. Chaque PFAM permet de visualiser des alignements multiples, de voir des domaines proteiques, d'évaluer la répartition entre les organismes, d'avoir accès à d'autres bases de données, de visualiser des structures connues de protéines. Les COGs (Clusters of Orthologous Groups of proteins ; http://www.ncbi.nlm.nih.gov/COG/) sont obtenus en comparant les séquences proteiques issus de 43 génomes complètement séquences représentant 30 lignées phylogénétiques majeurs. Chaque COG est défini à partir d'au moins trois lignées ce qui permet ainsi d'identifier des domaines conservés anciens.
Selon l'invention, les termes « culture » et « fermentation » sont employés indifféremment pour désigner la croissance de la bactérie sur un milieu de culture approprié comprenant une source de carbone simple. Par source de carbone simple, selon la présente invention, on entend des sources de carbone utilisables par l'homme du métier pour la croissance normale d'un microorganisme, d'une bactérie en particulier qui peuvent être l'arabinose, le fructose, le galactose, le lactose, le maltose, le sucrose et le xylose. Une source de carbone simple tout particulièrement préférée est le glucose. La définition des conditions de culture des microorganismes selon l'invention (fermentation) est à la portée de l'homme du métier. On fermente notamment les bactéries à une température comprise entre 20°C et 55°C, de préférence entre 25°C et 40°C, plus particulièrement d'environ 30°C pour C. glutamicum et S. cerevisiae et d'environ 34°C pour E coli. La fermentation est généralement conduite en fermenteurs avec un milieu minéral de culture de composition connu défini et adapté en fonction des bactéries utilisées, contenant au moins une source de carbone simple et le cas échéant un cofacteur nécessaire à la production du métabolite. En particulier, le milieu minéral de culture pour E coli pourra ainsi être de composition identique ou similaire à un milieu M9 (Anderson, 1946, Proc. Natl. Acad. Soi. USA 32:120-128), un milieu M63 (Miller, 1992 ; A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York) ou un milieu tel que défini par Schaefer et al. (1999, Anal. Biochem. 270 : 88-96), plus particulièrement le milieu de culture minimum décrit ci-dessous :
Figure imgf000013_0001
Le pH du milieu est ajusté à 7,4 avec de la soude. ''solution d'oligoélément: Acide citrique à 4g/L, Mn S04 à 3g/L, Na Cl à 1g/L, Co CI2 à 0,1 g/L, Zn S04 à 0,10g/L, Cu S04 à 10mg/L, H3 B03 à 10mg/L, Na Mo O4 à 10mg/L . De manière analogue, le milieu minéral de culture pour C. glutamicum pourra ainsi être de composition identique ou similaire au milieu BMCG (Liebl et al., 1989, Appl. Microbiol. Biotechnol. 32: 205-210) à un milieu tel que défini par Riedel étal. (2001, J. Mol. Microbiol. Biotechnol. 3: 573-583). La fermentation est préférentiellement réalisée en anaérobiose et en chemostat, c'est à dire, alimentée en continu, à un taux de dilution fixe, avec ledit milieu de culture minimum contenant une concentration en source de carbone fixe et étant dégazé à l'azote. La concentration en source de carbone du milieu d'alimentation de la fermentation n'est augmentée que lorsque un régime permanent limité par la concentration en source de carbone résiduelle est atteint et stable pendant plusieurs jours. Le mode de culture en chemostat est le mode de culture préférentiel car c'est celui qui favorise l'amélioration des performances de croissance et de production en 1,2-propanediol de la souche modifiée et conduit à isoler les microorganismes évolués. Par activité « 1 ,2-propanediol synthase » améliorée, on entend selon l'invention l'ensemble des activités enzymatiques améliorées impliquées dans la voie de conversion du DHAP en 1,2-propanediol. L'activité enzymatique améliorée dans le microorganisme évolué consiste en une augmentation de la quantité de 1 ,2-propanediol par le microorganisme évolué par rapport aux quantités produites par le microorganisme initial correspondant, dans des conditions de culture identiques. Par activité activité « acétone synthase » améliorée, on entend selon l'invention, l'ensemble des activités enzymatiques améliorées impliquées dans la voie de conversion de l'acétate et de l'acétyl-coA en acétone. L'activité enzymatique évoluée dans le microorganisme évolué de deuxième génération consiste en une augmentation de la quantité d'acétone produite par le microorganisme évolué de deuxième génération par rapport au microorganisme évolué transformé correspondant, dans des conditions de culture identiques. L'invention concerne aussi l'isolement et la caractérisation des gènes évolués dans les souches évoluées obtenues par le procédé selon l'invention, et des protéines évoluées codées par lesdits gènes évolués. Ces gènes évolués peuvent être ensuite introduits dans un organisme hôte sous le contrôle d'éléments de régulation appropriés pour son expression dans ledit organisme afin de permettre la production de la protéine évoluée correspondante. L'amélioration de performances des microorganismes modifiés, en particulier de la souche E. coli MG 16555 A tpiA, ApflAB, ΔadhE, IdhA :: kana, AgloA, AaldA, AaldB au cours de la culture en chemostat suggère que ces conditions de culture permettent de sélectionner un complexe pyruvate deshydrogenase endogène fonctionnel en conditions d'anaérobioses, conditions de fortes productions de NADH. II est en effet connu que le complexe pyruvate deshydrogenase catalysant la transformation du pyruvate en acétyl-CoA en libérant du NADH n'est fonctionnel qu'en aérobie, alors que lorsqu'on est en condition d'anaérobiose c'est la pyruvate formate lyase qui est fonctionnelle et catalyse la transformation du pyruvate en acétyl-CoA et formate (Snoep J. L., De Graef M. R., Westphal A. H., De Kok A. Teixeira de Mattos M. J. and Neijssel O. M. (1993). Or une des modifications effectuées, sur la souche modifiée d'E coli construite pour la production de 1 ,2-propanediol, pour produire du NADH par décarboxylation du pyruvate, est la délétion des gènes pf/A et pflB codant pour l'activité pyruvate formate lyase. La seule possibilité pour la cellule modifiée est de métaboliser le pyruvate en acétyl-CoA par le complexe pyruvate deshydrogenase en produisant un NADH. Le complexe pyruvate deshydrogenase de la souche modifiée évoluée a été caractérisé et est moins sensible au NADH que le complexe pyruvate deshydrogenase de la souche sauvage. La présente invention conduit à la sélection d'un complexe pyruvate deshydrogenase fonctionnel en anaérobiose qui permet de produire deux NADH par oxydation du glycéraldéhyde-3-Phosphate en acétate, NADH qui ne peuvent être réoxydés que par la voie de réduction du dihydroxyacétone-phosphate en 1 ,2- propanediol. La sélection d'un complexe enzymatique peu sensible au NADH favorise la vitesse de production du 1 ,2-propanediol. La présente invention conduit avantageusement à la sélection de mutations du gène Ipd (dont la séquence sauvage est connue hppt://genolist.pasteur.fr/Colibri) codant pour la lipoamide deshydrogenase du complexe pyruvate deshydrogenase. En particulier, la présence d'une mutation ponctuelle entraînant le remplacement de Palanine 55 par une valine a été identifié. Cette enzyme est connue pour être responsable de l'inhibition du complexe pyruvate deshydrogenase par le NADH. Cette enzyme modifiée est également partie de la présente invention. La présente invention permet l'amélioration des performances des microorganismes modifiés, en particulier de la souche E cσ// MG1655 A tpiA,
ApflAB, AadhE, IdhA :: kana, AgIoA, AaldA, AaldB également, par évolution, au cours de la culture anaérobie en chemostat, des enzymes endogènes impliquées dans la voie de conversion du DHAP en 1 ,2-propanediol. L'évolution de ces enzymes a pour conséquence une augmentation du taux de croissance et de la concentration finale en 1 ,2-propanediol. De manière préférentielle selon l'invention la souche évoluée ne comprend pas l'évolution du gène gldA. Selon un mode particulier la souche d'évolution comprend une délétion du gène gldA.
Description des figures Figure 1 : schéma du métabolisme de la souche modifiée E coli pour la production de 1 ,2-propanediol et d'acétone selon l'invention Légende : LDH : lactate deshydrogenase ADH : aldéhyde-alcool deshydrogenase PFL : pyruvate formate lyase PDHc : complexe pyruvate deshydrogenase Figure 2 : Evolution dé la souche E ra?// MG1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgIoA, AaldA, AaldB en culture chemostat sur glucose : concentration de glucose (figure 2A et autres produits (figure 2B).
Figure 3 : comparaison de l'activité enzymatique du complexe pyruvate deshydrogenase de la souche sauvage et de la souche évoluée selon l'invention en fonction de concentrations croissantes en NADH.
Les exemples de réalisation ci-dessous permettrent d'illustrer l'invention, sans chercher à en limiter la portée. Exemple 1 : construction d'une souche modifée d'E coli MG 655AtpiA, ApflAB, AadhE, IdhA r.kana, AgIoA, AaldA, AaldB capable de produire uniquement du 1 ,2- propanediol et de l'acétate par fermentation du glucose : a) construction d'une souche modifiée E coiiMG 1655.4 tpiA :: cm : L'inactivation du gène tpiA est réalisée en insérant une cassette de résistance à l'antibiotique chloramphenicol tout en délétant la majeure partie du gène concerné. La technique utilisée est décrite par Datsenko, K.A. ; Wanner, B.L.
(2000) One-step inactivation of chromosomal gènes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci USA 97 : 6640-6645. Deux oligonucléotides sont utilisés pour réaliser le remplacement du gène tpiA: DtpiAr de 100 bases (SEQ ID NO 1): atgcgacatcctttagtgatgggtaactggaaactgaacggcagccgccacatggttcacgagctggtttctaacct gcgtaCATATGAATATCCTCCTTAG avec : une région (caractères minuscules) homologue à la séquence (4109007- 4109087) du gène tpiA (séquence 4108320 à 4109087), séquence de référence sur le site http://genolist.pasteur.fr/Colibri/) une région (caractères majuscules) pour l'amplification de la cassette de résistance au chloramphenicol du plasmide pKD3 (Datsenko, K.A. ; Wanner, B.L. (2000) One-step inactivation of chromosomal gènes in Escherichia coli -M using PCR products. Proc. Natl. Acad. Sci. USA 97 : 6640-6645) DtpiAf de 100 bases (SEQ ID NO 2): cttaagcctgtttagccgcttctgcagctttaacgattactgcgaaggcgtcagctttcagagaagcaccaccaacc agcTGTAGGCTGGAGCTGCTTCG avec : une région (caractères minuscules) homologue à la séquence (4108320- 4108400) du gène tpiA une région (caractères majuscules) pour l'amplification de la cassette de résistance au chloramphenicol portée par le plasmide pKD3 Les oligonucléotides DtpiAr et DtpiAf sont utilisés pour amplifier la cassette de résistance au chloramphenicol à partir du plasmide pKD3. Le produit PCR obtenu est alors introduit par électroporation dans la souche MG1655 (pKD46) dans laquelle le système λ Red (γ, β, exo) exprimé favorise grandement la recombinaison homologue. Les transformants résistants à l'antibiotique sont alors sélectionnés et l'insertion de la cassette de résistance est vérifiée par une analyse PCR avec les oligonucléotides cdh et YIIQ. cdh (SEQ ID NO 3) : ggtgatgatagttatcgccg (homologue à la séquence de 41 07536 à 4107555) YIIQ (SEQ ID NO 4) : cgtgccatcgacagcagtcc (homologue à la séquence de 4109599 à 4109580) La cassette de résistance au chloramphenicol est ensuite éliminée. Le plasmide pCP20 porteur de la recombinase FLP agissant au niveau des sites FRT de la cassette de résistance au chloramphenicol, est alors introduit dans les souches recombinantes par électroporation (Cheperanov P. P. and Wackernagel W. (1995) Gène disruption in Escherichia coli: TcR and KmR cassettes with option of Flp-catalyzed excision of the antibiotic-resistance déterminant, gène, 158, 9-14 ). Après une série de culture à 42°C, la perte de la cassette de résistance à l'antibiotique est vérifiée par une analyse PCR avec les mêmes oligonucléotides que ceux utilisés précédemment. b) construction d'une souche modifiée E coli MG 1655 pi ΨAB :: cm : L'inactivation des gènes plfA et pf/B est réalisée en insérant une cassette de résistance à l'antibiotique chloramphenicol tout en délétant la majeure partie des gènes concernés. La technique utilisée est décrite par Datsenko, K.A. et Wanner, B.L. (2000). Deux oligonucléotides sont utilisés pour réaliser le remplacement des gènes pflA et pf/B : DpIfB r de 100 bases (SEQ ID NO 5): ccggacatcctgcgttgccgtaaatctggtgttctgaccggtctgccagatgcatatggccgtggccgtatcatcggt gaCATATGAATATCCTCCTTAG avec : une région (caractères minuscules) homologue à la séquence (952235- 952315) du gène plfB (séquence 950495 à 952777), séquence de référence sur le site http://genolist.pasteur.fr/Colibri/) une région (caractères majuscules) pour l'amplification de la cassette de résistance au chloramphenicol du plasmide pKD3 (Datsenko, K.A. ; Wanner, B.L. (2000) One-step inactivation of chromosomal gènes in Escherichia coli A2 using PCR products. Proc. Natl. Acad. Sci. USA 97 : 6640-6645) DpIfAf de 100 bases (SEQ ID NO 6): gatgcactataagatgtgttaaaaacgctgtagcagaatgaagcgcggaataaaaaagcggcaactcaataaa gttgccgCTGGAGCTGCTTCG avec : une région (caractères minuscules) homologue à la séquence (949470-
949550) située en amont du gène pflA (séquence de 949563 à 950303) une région (caractères majuscules) pour l'amplification de la cassette de résistance au chloramphenicol portée par le plasmide pKD3 Les oligonucléotides pflABI et pflAB2 sont utilisés pour amplifier la cassette de résistance au chloramphenicol à partir du plasmide pKD3. Le produit PCR obtenu est alors introduit par électroporation dans la souche MG1655 (pKD46) dans laquelle l'enzyme Red recombinase exprimée permet la recombinaison homologue. Les transformants résistants à l'antibiotique sont alors sélectionnés et l'insertion de la cassette de résistance est vérifiée par une analyse PCR avec les oligonucléotides pflABI et pflAB2 . pflAB 1 (SEQ ID NO 7) : agacattaaaaatatacgtgcagctacccg (homologue à la séquence de 948462 à 948491) pflAB 2 (SEQ ID NO 8) : gtgaaagctgacaacccttttgatctttta (homologue à la séquence de 953660 à 983689) c) construction d'une souche modifiée E coli MG 1655 AtpiA, ApIfAB : La délétion des gènes pflA et pflb par remplacement des gènes par une cassette de résistance au chloramphenicol dans la souche MG1655 AtpiA a été réalisée par la technique de transduction avec le phage P1. Le protocole est constitué de deux étapes, d'une part la préparation du lysat de phage sur la souche MG1655 ApIfAB ::cm et d'autre part, la transduction de la souche MG1655 AtpiA par ce lysat de phage. Préparation du lysat de phage : Ensemencement par 100μl d'une culture de nuit de la souche MG1655 {ΔplfAB.:cm) de 10 ml de LB + Cm 30μg/ml + glucose 0,2% + CaCb 5 mM Incubation 30 min à 37°C sous agitation addition de 100 μl de lysat de phage P1 préparé sur la souche sauvage MG1655 (environ 1.10e phage/ml) Agitation à 37°C pendant 3 heures jusqu'à la lyse totale des cellules Ajout de 200 μl de chloroforme et vortex Centrifugation 10 min à 4500g pour éliminer les débris cellulaires Transfert du surnageant dans un tube stérile et ajout de 200 μl de chloroforme Conservation du lysat à 4°C Transduction Centrifugation 10 min à 1500g de 5 ml d'une culture de nuit de la souche MG1655 (AtpiA) en milieu LB - Suspension du culot cellulaire dans 2,5 ml de MgSÛ4 10 mM, CaC 5 mM - Tubes témoins : 100 μl cellules 100 μl phages P1 de la souche MG1655
Figure imgf000020_0001
Tube test : 100 μl de cellules + 100 μl de phages P1 de la souche
Figure imgf000020_0002
- Incubation 30 min à 30°C sans agitation Ajout de 100 μl de citrate de sodium 1 M dans chaque tube puis vortex Ajout de 1 ml de LB Incubation 1 heure à 37°C sous agitation Etalement sur des boîtes LB + Cm 30 μg/ml après centrifugation 3 min à 7000 rpm des tubes. - Incubation à 37°C jusqu'au lendemain Vérification de la souche Les transformants résistants à l'antibiotique sont alors sélectionnés et l'insertion de la région contenant (pflAB.:c ) est vérifiée par une analyse PCR avec les oligonucléotides pflABI et pflAB2 d'une part, et cdh et YIIQ d'autre part, afin de vérifier également la délétion du gène tpiA dans la souche ApflAB ::cm. La souche retenue est dénommée MG1655 A(pffAB::cm, AtpiA). Comme précédemment, la cassette de résistance au chloramphenicol est ensuite éliminée. Le plasmide pCP20 porteur de la recombinase FLP agissant au niveau des sites FRT de la cassette de résistance au chloramphenicol, est alors introduit dans les souches recombinantes par électroporation. Après une série de culture à 42°C, la perte de la cassette de résistance à l'antibiotique est vérifiée par une analyse PCR avec les mêmes oligonucléotides que ceux utilisés précédemment. La souche obtenue est appelée MG 16555 Δ tpiA, ΔpflAB. d) construction d'une souche modifiée E coli MG 1655 AadhE :: cm : Comme précédemment l'inactivation du gène adhE est réalisée en insérant une cassette de résistance à l'antibiotique chloramphenicol tout en délétant la majeure partie du gène concerné par la technique décrite par Datsenko, K.A. and Wanner, B.L. (2000). Deux oligonucléotides sont utilisés pour réaliser la délétion : DadhE r de 100 bases (SEQ ID N° 9 ) : atggctgttactaatgtcgctgaacttaacgcactcgtagagcgtgtaaaaaaagcccagcgtgaatatgccagttt cactCATATGAATATCCTCCTTAG avec : une région (caractères minuscules) homologue à la séquence (1297263- 1297343) du gène adhE (séquence 1294669 à 1297344), séquence de référence sur le site http://genolist.pasteur.fr/Colibri/) une région (caractères majuscules) pour l'amplification de la cassette de résistance au chloramphenicol du plasmide pKD3 (Datsenko, K.A. and Wanner, B.L. (2000) DadhEf de 100 bases (SEQ ID NO 10): caataacgaatgatagcaattttaagtagttaggaggtgaaaaatgctgtcaaaaggcgtattgtcagcgcgtctttt caTGTAGGCTGGAGCTGCTTCG avec : une région (caractères minuscules) homologue à la séquence (1294694- 1294774) du gène adhE une région (caractères majuscules) pour l'amplification de la cassette de résistance au chloramphenicol portée par le plasmide pKD3 Les oligonucléotides DadhEr et DadhEf sont utilisés pour amplifier la cassette de résistance au chloramphenicol à partir du plasmide pKD3. Le produit PCR obtenu est alors introduit par électroporation dans la souche MG1655 (pKD46) dans laquelle l'enzyme Red recombinase exprimée permet la recombinaison homologue. Les transformants résistants à l'antibiotique sont alors sélectionnés et l'insertion de la cassette de résistance est vérifiée par une analyse PCR avec les oligonucléotides ychGf et adhECr. ychGf (SEQ ID N° 11) : ggctcattgcaccaccatccag (homologue à la séquence de 1294357 à 1294378) adhECr (SEQ ID N° 12) : gaaaagacgcgctgacaatacgcc (homologue à la séquence de 1297772 à 1297749) e) construction d'une souche MG1655 AtpiA, ApflAB, AadhE: La délétion du gène adhE dans la souche MG1655 AtpiA, ApIfAB est effectuée comme précédemment à l'aide de la technique de transduction à l'aide de phage P1 (voir protocole au c). Le lysat de phage P1 est effectué sur la souche MG1655 AadhE ::cm, et la transduction de la souche MG1655 AtpiAApflAB est réalisée à l'aide de ce lysat. Les transductants résistants au chloramphenicol sont contrôlés à l'aide des oligonucléotides ychCf et adhECr pour vérifier la mutation du gène adhE et aussi à l'aide des oligonucléotides pflABI et pflAB2 d'une part, et cdh et YIIQ d'autre part, afin de vérifier également la délétion des gènes pflA et B, et tpiA dans la souche AadhE ::cm. Comme précédemment, la cassette de résistance au chloramphenicol est ensuite éliminée. Le plasmide pCP20 porteur de la recombinase FLP agissant au niveau des sites FRT de la cassette de résistance au chloramphenicol, est alors introduit dans les souches recombinantes par électroporation. Après une série de culture à 42°C, la perte de la cassette de résistance à l'antibiotique est vérifiée par une analyse PCR avec les mêmes oligonucléotides que ceux utilisés précédemment. La souche obtenue est appelée MG 16555 A tpiA, ApflAB, AadhE. f ) construction d'une souche modifiée E coli MG1655 AtpiA, ApflAB, AadhE , IdhA :: kana : L'inactivation du gène IdhA (coordonnées 1439878 à 1440867) dans la souche MG1655 AtpiA, ApflAB, AadhE 'a été réalisée comme précédemment à l'aide de la technique du phage P1 (voir protocole en c)). Le lysat de phage est réalisé avec la souche E coli K12 NZN11 Aplf :: cam, IdhA
Figure imgf000023_0001
par Clark D.P. (Bunch P. K., Mat-Jan F. and Clark D. P. (1997) The IdhA gène encoding the fermentative lactate dehydrogenase of Escherichia coli: microbiology, 143, 187- 195.). La transduction de la souche MG1655 AtpiA, ApflAB, AadhE 'est réalisée à l'aide du lysat de phage de la souche E coli K12 NZN11 Aplf :: cam, IdhA r.kana. Les transductants sont sélectionnés sur kanamycine et l'insertion de la cassette kanamycine dans le gène IdhA est vérifiée à l'aide des oligonucléotides hslJC et ldhAC2 . hslJC (SEQ ID N° 13) : gccatcagcaggcttagccg (homologue à la séquence 1439345 à 1439767) ldhAC2 : (SEQ ID N°14) : gggtattgtggcatgtttaaccg (homologue à la séquence 1441007 à 1441029) La souche obtenue est appelée MG1655 AtpiA, ApflAB, AadhE, IdhA :: kana g) construction d'une souche modifiée E coli MG 1655 A gloAr.cm : L'inactivation du gène gloA est réalisée comme précédemment en insérant une cassette de résistance à l'antibiotique chloramphenicol tout en délétant la majeure partie des gènes concernés par la technique décrite par Datsenko,
K.A. and Wanner, B.L. (2000). Deux oligonucléotides sont utilisés pour réaliser la délétion : GLOAD f de 100 bases (SEQ ID N°15) atgcgtcttcttcataccatgctgcgcgttggcgatttgcaacgctccatcgatttttataccaaagtgctgggcatgaa GTGTAGGCTGGAGCTGCTTCG avec : une région (caractères minuscules) homologue à la séquence (1725861- 1725941) du gène gloA (séquence 1725861 à 1726268), séquence de référence sur le site http://genolist.pasteur.fr/Colibri/) une région (caractères majuscules) pour l'amplification de la cassette de résistance au chloramphenicol du plasmide pKD3 (Datsenko, K.A. and Wanner, B.L. (2000) GLOA D R (SEQ ID N°16) ttagttgcccagaccgcgaccggcgtctttctcttcgattaactcaattttgtaaccgtccggatcttccacaaacgcg aCATATGAATATCCTCCTTAG une région (caractères minuscules) homologue à la séquence (1726188 - 1726268) du gène gloA (1725861 - 1726268) une région (caractères majuscules) pour l'amplification de la cassette de résistance au chloramphenicol portée par le plasmide pKD3 Les oligonucléotides GLOADr et GLOADf sont utilisés pour amplifier la cassette de résistance au chloramphenicol à partir du plasmide pKD3. Le produit
PCR obtenu est alors introduit par électroporation dans la souche MG1655
(pKD46) dans laquelle l'enzyme Red recombinase exprimée permet la recombinaison homologue. Les transformants résistants à l'antibiotique sont alors sélectionnés et l'insertion de la cassette de résistance est vérifiée par une analyse PCR avec les oligonucléotides Nem A C d et Rnt C r . NemAQd (SEQ ID NO 17) : gaagtggtcgatgccgggattgaagaatggg (homologue de 1725331 à 1725361) Rnt Cr (SEQ ID N018) : gggttacgtttcagtgaggcgcgttctgcgg (homologue à la séquence de 1726765 à 1726795) h) construction d'une souche modifiée E coli MG1655 AtpiA, ApflAB, AadhE , IdhA :: kana, Agio A : L'inactivation du gène gloA dans la souche MG1655 AtpiA, ApflAB,
AadhE dhA :: kana a été réalisée comme précédemment à l'aide de la technique du phage P1 (voir protocole en c)). Le lysat de phage P1 est effectué sur la souche MG1655 AgIoA ::cm, et la transduction de la souche MG1655 AtpiA, ApflAB, AadhE, IdhA :: kana est réalisée à l'aide de ce lysat. Les transductants résistants au chloramphenicol sont contrôlés à l'aide des oligonucléotides NemAQd et Rnt Cr pour vérifier la mutation du gène gloA et aussi à l'aide des oligonucléotides, pflABI et pflAB2, cdh et YIIQ, ychCf et adhECr, hslJC et ldhAC2, afin de vérifier également respectivement la délétion des gènes pflA et B, tpiA , adhE , et IdhA dans la souche AgIoA ::cm. Comme précédemment, la cassette de résistance au chloramphenicol est ensuite éliminée. Le plasmide pCP20 porteur de la recombinase FLP agissant au niveau des sites FRT de la cassette de résistance au chloramphenicol, est alors introduit dans les souches recombinantes par électroporation. Après une série de culture à 42°C, la perte de la cassette de résistance à l'antibiotique est vérifiée par une analyse PCR avec les mêmes oligonucléotides que ceux utilisés précédemment. La souche obtenue est appelée MG16555 AtpiA, ApflAB, AadhE, IdhA :: kana, AgIoA. i) construction d'une souche modifiée E α?//"MG1655 A aldA :: cm L'inactivation du gène aldA est réalisée comme précédemment en insérant une cassette de résistance à l'antibiotique chloramphenicol tout en délétant la majeure partie des gènes concernés par la technique décrite par Datsenko, K.A. and Wanner, B.L. (2000).
Deux oligonucléotides sont utilisés pour réaliser la délétion : AldA D f de 100 bases (SEQ ID N°19) atgtcagtacccgttcaacatcctatgtatatcgatggacagtttgttacctggcgtggagacgcatggattg atgtggtaGTGTAGGCTGGAGCTGCTTCG avec : une région (caractères minuscules) homologue à la séquence (1486256 - 1486336) du gène aldA (séquence 1486256 à 1487695), séquence de référence sur le site http://genolist.pasteur.fr/Colibri/) une région (caractères majuscules) pour l'amplification de la cassette de résistance au chloramphenicol du plasmide pKD3 (Datsenko, K.A. and Wanner, B.L. (2000) aldAD r de 100 bases (SEQ ID N°20): ttaagactgtaaataaaccacctgggtctgcagatattcatgcaagccatgtttaccatctgcgccgccaataccgg atttCATATGAATATCCTCCTTAG une région (caractères minuscules) homologue à la séquence (1487615 - 1487695) du gène aldA (1486256 à 1487695) une région (caractères majuscules) pour l'amplification de la cassette de résistance au chloramphenicol portée par le plasmide pKD3 Les oligonucléotides AldA D r et aldAD f sont utilisés pour amplifier la cassette de résistance au chloramphenicol à partir du plasmide pKD3. Le produit PCR obtenu est alors introduit par électroporation dans la souche MG1655 (pKD46) dans laquelle l'enzyme Red recombinase exprimée permet la recombinaison homologue. Les transformants résistants à l'antibiotique sont alors sélectionnés et l'insertion de la cassette de résistance est vérifiée par une analyse PCR avec les oligonucléotides Ydc F C f et gapCCr . Ydc F C f (SEQ ID NO 21) : tgcagcggcgcacgatggcgacgttccgccg (homologue de 1485722 à 1485752) gapCCr (SEQ ID N022) : cacgatgacgaccattcatgcctatactggc (homologue à la séquence de 1488195 à 1488225) h) construction d'une souche modifiée E coli MG1655 AtpiA, ApflAB, AadhE , IdhA :: kana, Agio A , AaldA L'inactivation du gène aldA dans la souche MG1655 AtpiA, ApflAB, AadhE, IdhA :: kana, AgIoA a été réalisée comme précédemment à l'aide de la technique du phage P1 (voir protocole en c)). Le lysat de phage P1 est effectué sur la souche MG1655 AaldA ::cm, et la transduction de la souche MG1655 AtpiA, ApflAB, AadhE, IdhA :: kana, AgIoA est réalisée à l'aide de ce lysat. Les transductants résistants au chloramphenicol sont contrôlés à l'aide des oligonucléotides Ydc F C f et gapCCr pour vérifier la mutation du gène aldA et aussi à l'aide des oligonucléotides, NemAQd et Rnt Cr, pflABI et pflAB2, cdh et YIIQ, ychCf et adhECr, hslJC et ldhAC2, afin de vérifier également respectivement la délétion des gènes gloA , pflA et B, tpiA , adhE dans la souche AaldA ::cm. Comme précédemment, la cassette de résistance au chloramphenicol est ensuite éliminée. Le plasmide pCP20 porteur de la recombinase FLP agissant au niveau des sites FRT de la cassette de résistance au chloramphenicol, est alors introduit dans les souches recombinantes par électroporation. Après une série de culture à 42°C, la perte de la cassette de résistance à l'antibiotique est vérifiée par une analyse PCR avec les mêmes oligonucléotides que ceux utilisés précédemment. La souche obtenue est appelée MG 16555 A tpiA, ApflAB, AadhE, IdhA :: kana, AgIoA, AaldA. g) construction d'une souche modifiée E coli MG 1655 AaldB ::cm : L'inactivation du gène aldB est réalisée comme précédemment en insérant une cassette de résistance à l'antibiotique chloramphenicol tout en délétant la majeure partie des gènes concernés par la technique décrite par Datsenko, K.A. ; Wanner, B.L. (2000). Deux oligonucléotides sont utilisés pour réaliser la délétion : AldB D f de 100 bases (SEQ ID N°23) tcagaacagccccaacggtttatccgagtagctcaccagcaggcacttggtttgctggtaatgctccagcatcatctt gtGTGTAGGCTGGAGCTGCTTCG avec : une région (caractères minuscules) homologue à la séquence (3752603- 3752683) du gène aldB (séquence 3752603 à 3754141), séquence de référence sur le site http://genolist.pasteur.fr/Colibri/) une région (caractères majuscules) pour l'amplification de la cassette de résistance au chloramphenicol du plasmide pKD3 (Datsenko, K.A. and Wanner, B.L. (2000) aldBD r de 100 bases (SEQ ID N°24): atgaccaataatcccccttcagcacagattaagcccggcgagtatggtttccccctcaagttaaaagcccgctatg acaaCATATGAATATCCTCCTTAG une région (caractères minuscules) homologue à la séquence (3754061- 3754141) du gène aldB (3752603 à 3754141) une région (caractères majuscules) pour l'amplification de la cassette de résistance au chloramphenicol portée par le plasmide pKD3. Les oligonucléotides AldB D r et aldB D f sont utilisés pour amplifier la cassette de résistance au chloramphenicol à partir du plasmide pKD3. Le produit PCR obtenu est alors introduit par électroporation dans la souche MG1655 (pKD46) dans laquelle l'enzyme Red recombinase exprimée permet la recombinaison homologue. Les transformants résistants à l'antibiotique sont alors sélectionnés et l'insertion de la cassette de résistance est vérifiée par une analyse PCR avec les oligonucléotides aldB C f et YiaYCr . aldB C f (SEQ ID NO 25) : catatttccctcaaagaatataaaaaagaacaattaacgc (homologue à la séquence de 3752057 à 3752095) YiaYCr (SEQ ID N026) : tatgttcatgcgatggcgcaccagctgggcg (homologue à la séquence de 3754644 à 3754674) h) construction d'une souche modifiée E coli MG1655 AtpiA, ApflAB, AadhE , IdhA :: kana, Agio A , AaldA, AaldB L'inactivation du gène aldB dans la souche MG1655 AtpiA, ApflAB, AadhE, IdhA :: kana, AgIoA, aldA a été réalisée comme précédemment à l'aide de la technique du phage P1 (voir protocole en c)). Le lysat de phage P1 est effectué sur la souche MG1655 AaldB ::cm, et la transduction de la souche MG1655 AtpiA, ApflAB, AadhE , IdhA :: kana, AgIoA, AaldA est réalisée à l'aide de ce lysat. Les transductants résistants au chloramphenicol sont contrôlés à l'aide des oligonucléotides aldB C f et YiaYCr pour vérifier la mutation du gène aldB et aussi à l'aide des oligonucléotides, NemAQd et Rnt Cr, pflABI et pflAB2, cdh et YIIQ, ychCf et adhECr, hslJC et ldhAC2, Ydc F C f et gapCCr, afin de vérifier également respectivement la délétion des gènes gloA , pflA et B, tpiA , adhE, aldA dans la souche AaldB ::cm. Comme précédemment, la cassette de résistance au chloramphenicol est ensuite éliminée. Le plasmide pCP20 porteur de la recombinase FLP agissant au niveau des sites FRT de la cassette de résistance au chloramphenicol, est alors introduit dans les souches recombinantes par électroporation. Après une série de culture à 42°C, la perte de la cassette de résistance à l'antibiotique est vérifiée par une analyse PCR avec les mêmes oligonucléotides que ceux utilisés précédemment. La souche obtenue est appelée MG1655 AtpiA, ApflAB, AadhE, IdhA :: kana, AgIoA, AaldA, AaldB.
Exemple 2 : Culture et évolution de la souche modifiée E α?// MG1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgIoA, AaldA, AaldB en chemostat : Pour optimiser la production de 1 ,2-propanediol à partir de glucose par la souche E coli G 16555 A tpiA, ApflAB, AadhE, IdhA :: kana, AgIoA, AaldA, AaldB, une culture de la souche en chemostat, dans un milieu de culture minimum, supplémenté en nitrate de sodium et en extrait de levure, pendant plusieurs semaines, est réalisée en condition d'anaérobiose. Au début de la culture, la concentration initiale en glucose dans le bidon d'alimentation de la culture est de 20 g/l, le taux de dilution est de 0,04h-1 et un flux d'azote continu est maintenu pour réaliser les conditions d'anérobiose. La concentration cellulaire et les productions en 1 ,2-propanediol et acétate sont faibles. Après plusieurs semaines de culture, la croissance et les concentrations en produits augmentent, un régime permanent est atteint caractérisé par une concentration en glucose résiduel et des concentrations en produits constantes (figure 2).
Exemple 3 : Caractérisation d'un complexe pyruvate deshydrogenase évolué peu sensible au NADH : L'évolution du complexe pyruvate deshydrogenase (PDHc) vers un PDHc peu sensible au NADH est mis en évidence à la fois par un dosage de l'activité de l'enzyme évoluée in vitro, et, par comparaison de la séquence d'un des gènes (Ipd) codant pour la lipoamide deshydrogenase du PDHc évolué avec celle du gène du PDHc natif. a) dosage de l'activité enzymatique du complexe pyruvate deshydrogenase : Le dosage de l'activité enzymatique du PDHc in vitro de la souche E coli*
MG1655 ,4 tpiA, ApflAB, AadhE, IdhA :: kana, AgIoA, AaldA, AaldB est effectué selon le protocole décrit par Schwartz et Reed (Schwartz E. R. and Reed L. J. (1970) Régulation of the activity of the pyruvate dehydrogenase complex of
Escherichia coli, Biochemistry, 6,1434-1439). Un volume de 100 ml de culture cellulaire est prélevé du chemostat dans des fioles préalablement dégazées et rentrées sous une hotte anaérobie. Les cellules sont centrifugées 10 minutes à 6000 rpm. Le culot est mis en suspension dans environ 100 ml de tampon phosphate de potassium 50 mM, pH7.9, 0.5 mM thiamine pyrophosphate, puis centrifugées de nouveau 10 minutes à 6000 rpm. Le lavage est effectué une deuxième fois dans les mêmes conditions. Le culot cellulaire est mis en suspension dans 800μl de tampon. La suspension cellulaire est désintégrée au moyen d'un appareil à ultrasons en 4 cycles de traitement (30 secondes à 30%), entrecoupés de 2 minutes de repos dans de la glace. Les débris cellulaires sont éliminés par centrifugation 5 minutes à 13400 rpm, le surnageant est l'extrait acellulaire brut. Les sels présents dans l'extrait acellulaire, susceptibles d'interférer dans le dosage enzymatique, sont éliminés par passage de l'extrait à travers une colonne PD10 équilibrée avec du tampon phosphate de potassium pH 7,9, 0,5mM de thiamine pyrophosphate. L'extrait est élue avec 3,5ml du même tampon que précédemment. L'éluat récupéré est l'extrait acellulaire brut. L'activité enzymatique de l'extrait acellulaire brut est mesurée dans un premier temps en absence de NADH, puis dans un deuxième temps en présence de concentrations croissantes de NADH de 0.14 mM à 2.7 mM. Les résultats obtenus sont comparés avec ceux présentés dans la littérature pour la souche d'E. coli sauvage figure n° 3 (Snoep J. L., De Graef M. R., Westphal A. H., De Kok A. Teixeira de Mattos M. J. and Neijssel O. M. (1993) Différences in sensitivity to NADH of purified pyruvate dehydrogenase complexes of Enterococcus faecalis, Lactococcus lactis, Azotobacter vinelandii and Escherichia coli: implications for their activity in vivo, FEMS microbiology letters, 114,279-284)). Les résultats obtenus indiquent que le PDHc de la souche modifiée E coli
MG1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgIoA, AaldA, AaldB évoluée est moins sensible au NADH que la souche sauvage d'E. coli. Pour un rapport
[NAD+]/[NADH] = 33, une inhibition totale de l'activité du PDHc de la souche sauvage est observée, alors que 80% de l'activité du PDHc évolué est mesurée. b) Détermination de la séquence du gène ipd codant pour la lipoamide deshydrogenase du complexe pyruvate deshydrogenase de la souche MG1655 AtpiA, ApflAB, AadhE, IdhA :: kana, AgIoA, AaldA, AaldB évoluée : L'ADN chromosomique de la souche E C//1VIG1655 A tpiA, ApflAB, AadhE, IdhA :: kana , AgIoA, AaldA, AaldB est extrait à partir de 1 ml d'une culture de nuit en LB. Après centrifugation, les cellules sont lavées avec de l'eau stérile puis éclatées par choc thermique 5 minutes à 94°C. L'ADN chromosomique est récupéré dans le surnageant après centrifugation. Le gène #κ/ (séquence 127912 à 129336) codant pour la lipoamide deshydrogenase (E3) du complexe pyruvate deshydrogenase est amplifié par PCR à l'aide des deux oligonucléotides suivants : AceEf (SEQ ID N°27) cgcgtgatcgacggtgctgatggtgcccg (homologue à la séquence 127504 à 127532) YacH r (SEQ IDN°28) aagttcaggagagccgccc (homologue à la séquence 127513 à 129531) Un produit PCR de 2000 paires de bases correspondant au gène Ipd st obtenu et séquence. Les résultats obtenus montrent la présence d'une mutation ponctuelle entraînant le remplacement de l'alanine 55 par une valine.
Exemple 4 : La voie de conversion du méthyl glyoxal en 1 ,2-propanediol de la souche modifiée E coli MG1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB évoluée n'implique pas la glycérol deshydrogenase :
Afin de montrer que l'amélioration des performances de la souche modifiée E coli MG1655 A tpiA, ApflAB, AadhE, IdhA :: kana , AgloA, AaldA, AaldB évoluée n'est pas liée à une évolution de la glycérol deshydrogenase codée par le gène gldA, une souche E coli MG1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB évoluée chez laquelle le gène gldA est délété a été construite. a) construction d'une souche modifiée MG1655 AgldA ::cm : L'inactivation du gène gldA est réalisée comme indiqué dans l'exemple 1 en insérant une cassette de résistance à l'antibiotique chloramphenicol tout en délétant la majeure partie des gènes concernés par la technique décrite par Datsenko, K.A. ; Wanner, B.L. (2000). Deux oligonucléotides sont utilisés pour réaliser la délétion : gldA D f de 100 bases (SEQ ID N°29) gttattcccactcttgcaggaaacgctgaccgtactggtcggctaccagcagagcggcgtaaacctgatctggcgt
cgcgGTGTAGGCTGGAGCTGCTTCG avec : une région (caractères minuscules) homologue à la séquence (4135512 à 4135592) du gène gldA (séquence 4135512 à 4136615), séquence de référence sur le site http://genolist.pasteur.fr/Colibri/) une région (caractères majuscules) pour l'amplification de la cassette de résistance au chloramphenicol du plasmide pKD3 (Datsenko, K.A. and Wanner, B.L. (2000) gldA D r de 100 bases (SEQ ID N°30): atggaccgcattattcaatcaccgggtaaatacatccagggcgctgatgtgattaatcgtctgggcgaatacctgaa
gccCATATGAATATCCTCCTTAG une région (caractères minuscules) homologue à la séquence (4136535-
4136615) du gène gldA (4135512 à 4136615) une région (caractères majuscules) pour l'amplification de la cassette de résistance au chloramphenicol portée par le plasmide pKD3 Les oligonucléotides gldA D r et gldA D f sont utilisés pour amplifier la cassette de résistance au chloramphenicol à partir du plasmide pKD3. Le produit PCR obtenu est alors introduit par électroporation dans la souche MG1655 (pKD46) dans laquelle l'enzyme Red recombinase exprimée permet la recombinaison homologue. Les transformants résistants à l'antibiotique sont alors sélectionnés et l'insertion de la cassette de résistance est vérifiée par une analyse PCR avec les oligonucléotides YijF D et TalCr . YijF D (SEQ ID NO 31) : gcctggatttgtaccacggttggtggaacggcggg (homologue à la séquence de 4135140 à
4135174)
TalCr (SEQ ID NO 32) : cacgcatattccccattgccgggg (homologue à la séquence de 4137216 à 4137239)
Un produit PCR de 2100 pb est obtenu pour le gène sauvage comme pour le gène délété et remplacé par le gène de résistance au chloramphenicol. Aussi, les produits PCR obtenus sont ensuite digérés par l'enzyme de restriction Sali. Deux fragments d'environ 1000 pb sont obtenus pour le produit PCR sauvage alors que le produit PCR contenant le gène de résistance au chloramphenicol n'est pas digéré. b) construction d'une souche modifiée MG1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB AgldA ::cm évoluée L'inactivation du gène gldA dans la souche MG1655 AtpiA, ApflAB, AadhE, IdhA :: kana, , AgloA, A aldA AaldB évoluée a été réalisée comme dans l'exemple 1 à l'aide de la technique du phage P1 (voir protocole en c)). Le lysat de phage P1 est effectué sur la souche MG1655 AgldA ::cm, et la transduction de la souche MG1655 AtpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA est réalisée à l'aide de ce lysat. Les transductants résistants au chloramphenicol sont contrôlés à l'aide des oligonucléotides YijF D et TalCr pour vérifier la mutation du gène gldA. c) Culture des souches modifiées E co/i *MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB AgldA ::cm évoluée et E coli *MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB évoluée :
Les deux souches modifiées E coli*MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB AgldA ::cm évoluée et E coli *MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana , AgloA, AaldA, AaldB évoluée sont cultivées à pH non régulé dans un milieu de culture minimum supplémenté en nitrate de sodium et en extrait de levure avec une concentration initiale en glucose de 20g/l en condition d'anaérobiose pendant 10 jours. Le profil de produits de fermentation obtenu montre que la délétion du gène gldA n'entraine pas une diminution de la production de 1.2 propanediol (tableau 1).
Tableau 1: Comparaison des concentrations en substrat et produits de fermentation après 10 jours de culture des souches modifiées E coll*MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB AgldA ::cm évoluée et E co/ G 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB évoluée :
Figure imgf000035_0001
Exemple 5 : Amélioration du rendement de conversion du glucose en 1.2 propanediol par délétion du gène edd codant pour la 6-phospho-gluconate déshydratase dans la souche E coli *MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB évoluée : a) construction d'une souche modifiée MG1655 Aeddr.cm : L'inactivation du gène edd est réalisée comme indiqué dans l'exemple 1 en insérant une cassette de résistance à l'antibiotique chloramphenicol tout en délétant la majeure partie des gènes concernés par la technique décrite par Datsenko, K.A. ; Wanner, B.L. (2000). Deux oligonucléotides sont utilisés pour réaliser la délétion : edd D f de 100 bases (SEQ ID N°33) ttaaaaagtgatacaggttgcgccctgttcggcaccggacagtttttcacgcaaggcgctgaataattcacgtcctgt
tcGTGTAGGCTGGAGCTGCTTCG avec : une région (caractères minuscules) homologue à la séquence (1930817a 4) du gène edd (séquence 1930817 à 1932628), séquence de référence sur le site http://genolist.pasteur.fr/Colibri/) une région (caractères majuscules) pour l'amplification de la cassette de résistance au chloramphenicol du plasmide pKD3 (Datsenko, K.A. and Wanner, B.L. (2000) edd D r de 100 bases (SEQ ID N°34): atgaatccacaattgttacgcgtaacaaatcgaatcattgaacgttcgcgcgagactcgctctgcttatctcgcccgg
atCATATGAATATCCTCCTTAG une région (caractères minuscules) homologue à la séquence (1932548-
1932628) du gène edd (séquence 1930817 à 1932628) une région (caractères majuscules) pour l'amplification de la cassette de résistance au chloramphenicol portée par le plasmide pKD3 Les oligonucléotides edd D r et edd D f sont utilisés pour amplifier la cassette de résistance au chloramphenicol à partir du plasmide pKD3. Le produit PCR obtenu est alors introduit par électroporation dans la souche MG1655 (pKD46) dans laquelle l'enzyme Red recombinase exprimée permet la recombinaison homologue. Les transformants résistants à l'antibiotique sont alors sélectionnés et l'insertion de la cassette de résistance est vérifiée par une analyse PCR avec les oligonucléotides eda d et zwf r : Eda d (SEQ ID NO 35) : CCCCGGAATCAGAGGAATAGTCCC (homologue à la séquence de 1930439 à 1930462) Zwf r (SEQ ID NO 36) : GGGTAGACTCCATTACTGAGGCGTGGGCG (homologue à la séquence de 1932968 à 1932996) b) construction d'une souche modifiée MG1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB Aedd ::cm évoluée L'inactivation du gène edd dans la souche MG1655 AtpiA, ApflAB, AadhE, IdhA :: kana, , AgloA, A aldA, AaldB évoluée a été réalisée comme dans l'exemple 1 à l'aide de la technique du phage P1 (voir protocole en c)). Le lysat de phage P1 est effectué sur la souche MG1655 Aedd ::cm, et la transduction de la souche MG1655 AtpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB est réalisée à l'aide de ce lysat. Les transductants résistants au chloramphenicol sont contrôlés à l'aide des oligonucléotides eda d et zwf r pour vérifier la mutation du gène edd. c) Culture des souches modifiées E coli *MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana , AgloA, AaldA, AaldB, Aedd ::cm évoluée et E coli *MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB évoluée :
Les deux souches modifiées E coli *MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB, Aedd ::cm évoluée et E. coli *MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB évoluée sont cultivées à pH non régulé dans un milieu de culture minimum supplémenté en nitrate de sodium et en extrait de levure avec une concentration initiale en glucose de 20g/l en condition d'anaérobiose pendant 10 jours. Le profil de produits de fermentation obtenu montre que la délétion du gène edd entraine une augmentation du rendement de conversion du glucose en 1 ,2-propanediol de 0,13 g/g à 0,35 g/g (tableau 2). La délétion du gène edd dans la souche E coli *MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB évoluée permet donc d'améliorer les performances de la souche.
Tableau 2 : Comparaison des concentrations en substrat et produits de fermentation après 10 jours de culture des souches modifiées E coli*MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB Aedd ::cm évoluée et E co/r G 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB évoluée :
Figure imgf000038_0001
Exemple 6 : Construction d'une souche modifiée E Cσ// MG1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB, Aedd ::cm (pSOS95T) capable de produire du 1 ,2-propanediol et de l'acétone : Le plasmide appelé pSOS95T est un vecteur navette d'expression pour E coli/C. acetobutylicum portant l'operon acétone de Clostridum acetobutyiicum constitué de quatre gènes adc, ctfAB, thl codant respectivement pour l'acétoacétate carboxylase, la coenzyme A transférase et la thiolase sous la dépendance du promoteur thiolase. Ces trois enzymes catalysent la transformation de l'acétyl-CoA et de l'acétate en acétone et dioxyde de carbone. Le plasmide pSOS95T a été obtenu par insertion dans le plasmide pSOS95 (Gène bank numéro d'accession AY187686) du gène thl de C. acetobutylicum codant pour la thiolase, au site BamH1 situé entre le promoteur thiolase et le gène ctfA. Le plasmide pSOS95T est introduit dans la souche E coli* MG1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB, Aedd:: cm évoluée par électroporation. Des cellules électrocompétentes de la souche E coli* MG1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB, Aedd:: cm sont préparées à partir d'une culture de nuit de la souche en LB. Une culture de 10 ml LB en erlenmeyer est ensemencée au 100ième par la culture de nuit et incubée à 37°C. Lorsque la densité optique à 550 nm de la culture atteint une valeur comprise entre 0.4 et 0.6, 1 ml de culture est centrifugée. Les cellules sont lavées avec de l'eau, puis avec une solution de glycérol à 10%, avec d'être resuspendues dans 0.05 ml de d'une solution de glycérol à 10 %. Les cellules sont électroporées immédiatement (25 μF, 200 Ω, 2.5KV) (Gène puiser, Biorad) avec 5 μl de la préparation plasmidique pSOS95T (Qiagen, Hilden germany). Après 1 heure d'expression phénotypique en milieu SOC (Sambrook J., Fristch E. F. and Maniatis T. (1989) Molecular cloning : a laboratory manual, 2 nd ed Cold Spring Harbor Laboratory, cold Spring Harbor, N.Y.) à 37°C, les transformants sont sélectionnés sur milieu gélose avec de la carbenicilline 100 μg/ml à 37°C. Les transformants sont remis en culture liquide en présence de carbenicilline pendant une nuit pour réaliser une extraction d'ADN plasmidique (Qiagen, Hilden Germany) afin de contrôler la présence du plasmide pSOS95T et de vérifier par digestion enzymatique qu'il est correct.
Exemple 7 : Culture de la souche modifiée E co//*MG1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB, Aedd:: cm (pSOS95T) évoluée capable de produire du 1 ,2-propanediol et de l'acétone : La souche modifiée E coli* MG1655 A tpiA, ApflAB, AadhE, IdhA :: kana , AgloA, AaldA, AaldB Aedd :: cm (pSOS95T) évoluée est cultivée à pH non régulé dans un milieu de culture minimum supplémenté en nitrate de sodium et en extrait de levure avec une concentration initiale en glucose de 20g/l en condition d'anaérobiose (tableau 3). Le dosage des produits de fermentation montre que la souche E Coli* MG1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB Aedd:: cm (pSOS95T) évoluée produit un mélange de 1,2-propanediol, d'acétate et d'acétone. Tableau 3 : Comparaison des concentrations en substrat et produits de fermentation après 10 jours de culture des souches modifiées E cσ//*MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana , AgloA, AaldA, AaldB, Aedd ::cm évoluée et E coli *MG 1655 A tpiA, ApflAB, AadhE, IdhA :: kana, AgloA, AaldA, AaldB, Aedd:: cm évoluée :
Figure imgf000040_0001
REFERENCES Altaras N. E. and Cameron D. (1999) Metabolic engineering of a 1,2- propanediol pathway in Escherichia coli : Appl. Env. Microb., 65, 1180- 1185.
V Altaras N. E. and Cameron D. C. (2000)Enhanced production of ( R ) 1 ,2- propanediol by metabolically engineered Escherichia coli : Biotechnol. Prog. 16, 940-946
Altaras NE, Etzel MR and Cameron DC. (2001) Conversion of sugars to 1 ,2-propanediol by Thermoanaerobacterium thermosaccharolyticum HG-8 : Biotechnol. Prog. 17, 52-56
* Bunch P. K., Mat-Jan F. and Clark D. P. (1997) The IdhA gène encoding the fermentative lactate dehydrogenase of Escherichia coli: microbiology, 143, 187-195. * Cameron D. C, Altaras N. E., Hoffman M. L. and Shaw A. J. (1998) Metabolic engineering of propanediol pathways : Biotechnol. Prog., 14, 116- 125.
S Cameron D. C, Shaw A. J. and Altaras N. E. (1998) Microbial production of 1 ,2-propanediol from sugar WO 98/37204 Cameron D. C, Shaw A. J. and Altaras N. E. (2000) Microbial production of 1 ,2-propanediol from sugar US 6 087 140 Cameron D. C, Shaw A. J. and Altaras N. E. (2001) Microbial production of 1 ,2-propanediol from sugar US 6303352 Carrier T A and Keasiing J. D. (1999) Library of synthetic 5' secondary structures to manipulate mRNA stability in Escherichia coli, Biotechnol. prog., 15, 58-64 Cheperanov P. P. and Wackemagel W. (1995) Gène disruption in Escherichia coli: TcR and KmR cassettes with option of Flp-catalyzed excision of the antibiotic-resistance déterminant, gène, 158, 9-14 V Datsenko, K.A. and Wanner, B.L. (2000) One-step inactivation of chromosomal gènes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97 : 6640-6645 S Sambrook J., Fristch E. F. and Maniatis T. (1989) Molecular cloning : a laboratory manual, 2 nd ed Cold Spring Harbor Laboratory, cold Spring Harbor, N.Y. Schwartz E. R. and Reed L. J. (1970) Régulation of the activity of the pyruvate dehydrogenase complex of Escherichia coli, Biochemistry, 6,1434- 1439
S Snoep J. L., De Graef M. R., Westphal A. H., De Kok A. Teixeira de Mattos M. J. and Neijssel O. M. (1993) Différences in sensitivity to NADH of purified pyruvate dehydrogenase complexes of Enterococcus faecalis, Lactococcus lactis, Azotobacter vinelandii and Escherichia coli: implications for their activity in vivo, FEMS microbiology letters, 114, 279- 284)).
* Tran Din K. and Gottschalk G. (1985) Formation of D(-)-1 ,2-propanediol and D(-)-lactate from glucose by Clostridium sphenoides under phosphate limitation : r 7. cw/v /. 142, 87-92.

Claims

REVENDICATIONS 1. Procédé de préparation d'une souche de microorganismes évolués pour la production de 1 ,2-propanediol par métabolisme d'une source de carbone simple, ledit procédé comprenant la culture sous pression de sélection dans un milieu de culture approprié comprenant une source de carbone simple, d'une souche bactérienne initiale comprenant une délétion du gène tpiA et une délétion d'au moins un gène impliqué dans la conversion du méthyl glyoxal (propanai) en lactate, afin de faire évoluer dans ladite souche initiale un ou plusieurs gènes impliqués dans la voie de biosynthèse du DHAP en methylglyoxal puis en 1,2-propanediol vers des gènes évolués ayant une activité « 1 ,2-propanediol synthase » améliorée, puis on sélectionne et on isole la ou les souches de microorganismes évolués ayant une activité « 1 ,2-propanediol synthase » améliorée.
2. Procédé selon la revendication 1, caractérisé en ce que le gène impliqué dans la conversion du méthyl glyoxal en lactate est choisi parmi gloA, aldA et aldB.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la souche initiale comprend la délétion des gènes gloA, aldA, aldB et tpiA.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la souche initiale comprend également une délétion des gènes IdhA, pflA, pflB,adhEe\ edd.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la souche initiale comprend également au moins un gène codant pour une enzyme favorisant le métabolisme du pyruvate en acétate.
6. Procédé selon la revendication 5, caractérisé en ce que l'enzyme favorisant le métabolisme du pyruvate en acétate est peu sensible à l'inhibition par le NADH.
7. Procédé selon l'une des revendications 5 ou 6, caractérisé en ce que ladite enzyme favorise le métabolisme du pyruvate vers la production d'acétyl- CoA et de NADH.
8. Procédé selon la revendication 7, caractérisé en ce que l'enzyme est un complexe pyruvate deshydrogenase.
9. Procédé selon l'une des revendications 6 à 8, caractérisé en ce que l'enzyme favorisant le métabolisme du pyruvate en acétate est une enzyme endogène.
10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que l'on introduit dans la souche évoluée un ou plusieurs gènes hétérologues codant pour une ou plusieurs enzymes impliquées dans la conversion de l'acétyl-CoA et de l'acétate en acétone.
11. Procédé selon la revendication 10, caractérisé en ce que le ou les gènes hétérologues codant pour une ou plusieurs enzymes impliquées dans la conversion de l'acétyl-CoA et de l'acétate proviennent de C. acetobutylicum.
12. Procédé selon l'une des revendications 10 ou 11, caractérisé en ce l'on cultive sous pression de sélection dans un milieu de culture approprié comprenant une source de carbone simple une souche évoluée modifiée obtenue selon l'une des revendications 10 ou 11 afin de faire évoluer dans ladite souche évoluée modifiée un ou plusieurs gènes impliqués dans la conversion de l'acétyl-CoA et de l'acétate en acétone vers une activité « acétone synthase » améliorée, puis on sélectionne et on isole les microorganismes évolués de deuxième génération ayant une activité « 1 ,2- propanediol synthase » améliorée et une activité « acétone synthase » améliorée.
13. Procédé selon l'une des revendications précédentes, caractérisé en ce que la souche est choisie parmi les bactéries, les levures et les champignons.
14. Procédé selon la revendication 13, caractérisé en ce que la souche est choisie parmi une souche ' Escherichia, en particulier E coli, et de Corynebacterium, en particulier C. glutamicum.
15. Souche initiale telle que définie selon l'une des revendications 1 à 9.
16. Souche évoluée susceptible d'être obtenue par le procédé selon l'une des revendications 1 à 14.
17. Souche selon la revendication 16, dans laquelle le gène Ipd porte une mutation ponctuelle entraînant une modification de l'alanine 55 en valine.
18. Procédé de préparation de 1 ,2-propanediol dans lequel on cultive une souche évoluée selon l'une des revendications 16 ou 17 dans un milieu de culture approprié comprenant une source simple de carbone, puis on récupère le 1 ,2-propanediol produit.
19. Procédé selon la revendication 18, caractérisé en ce que l'on récupère du 1 ,2-propanediol et de l'acétone.
20. Procédé selon l'une des revendications 18 ou 19, caractérisé en ce que le 1 ,2-propanediol et/ou l'acétone sont purifiés.
PCT/FR2005/000070 2004-01-12 2005-01-12 Microorganisme evolue pour la production de 1,2-propanediol WO2005073364A2 (fr)

Priority Applications (12)

Application Number Priority Date Filing Date Title
DE602005016073T DE602005016073D1 (de) 2004-01-12 2005-01-12 Fortgeschrittener mikroorganismus zur produktion von 1,2-propandiol
SI200530761T SI1704230T1 (sl) 2004-01-12 2005-01-12 Razviti mikroorganizem za pridobivanje 1,2-propandiola
KR1020067014050A KR101229525B1 (ko) 2004-01-12 2005-01-12 1,2-프로판디올을 생산하기 위한 개량형 미생물
JP2006548349A JP4613177B2 (ja) 2004-01-12 2005-01-12 1,2−プロパンジオールの産生のための発展型微生物
EP05717405A EP1704230B1 (fr) 2004-01-12 2005-01-12 Microorganisme evolue pour la production de 1,2-propanediol
DK05717405T DK1704230T3 (da) 2004-01-12 2005-01-12 Avanceret mikroorganisme til produktion af 1,2-propandiol
BRPI0506790-1A BRPI0506790B1 (pt) 2004-01-12 2005-01-12 processo de preparação de uma cepa de escherichia coli evoluída para a produção de 1,2-propanodiol por metabolismo de uma fonte de carbono simples e processo de preparação de 1,2-propanodiol
CN2005800023110A CN1910278B (zh) 2004-01-12 2005-01-12 生产1,2-丙二醇的进化微生物
CA2547695A CA2547695C (fr) 2004-01-12 2005-01-12 Microorganisme evolue pour la production de 1,2-propanediol
AT05717405T ATE440135T1 (de) 2004-01-12 2005-01-12 Fortgeschrittener mikroorganismus zur produktion von 1,2-propandiol
PL05717405T PL1704230T3 (pl) 2004-01-12 2005-01-12 Drobnoustrój przekształcony do wytwarzania 1,2-propanodiolu
US10/585,040 US8252579B2 (en) 2004-01-12 2005-01-12 Evolved micro-organisms for the production of 1,2-propanediol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0400214 2004-01-12
FR0400214A FR2864967B1 (fr) 2004-01-12 2004-01-12 Microorganisme evolue pour la production de 1,2-propanediol

Publications (2)

Publication Number Publication Date
WO2005073364A2 true WO2005073364A2 (fr) 2005-08-11
WO2005073364A3 WO2005073364A3 (fr) 2005-09-29

Family

ID=34684930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/000070 WO2005073364A2 (fr) 2004-01-12 2005-01-12 Microorganisme evolue pour la production de 1,2-propanediol

Country Status (18)

Country Link
US (1) US8252579B2 (fr)
EP (2) EP1704230B1 (fr)
JP (1) JP4613177B2 (fr)
KR (1) KR101229525B1 (fr)
CN (1) CN1910278B (fr)
AT (1) ATE440135T1 (fr)
BR (1) BRPI0506790B1 (fr)
CA (1) CA2547695C (fr)
DE (1) DE602005016073D1 (fr)
DK (1) DK1704230T3 (fr)
ES (1) ES2329914T3 (fr)
FR (1) FR2864967B1 (fr)
PL (1) PL1704230T3 (fr)
PT (1) PT1704230E (fr)
RU (1) RU2407793C2 (fr)
SI (1) SI1704230T1 (fr)
WO (1) WO2005073364A2 (fr)
ZA (1) ZA200605440B (fr)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008052595A1 (fr) * 2006-10-31 2008-05-08 Metabolic Explorer Procédé de production biologique du 1,3-propanediol à partir du glycérol avec un rendement élevé
WO2008116853A1 (fr) * 2007-03-23 2008-10-02 Metabolic Explorer Micro-organismes et procédés de production de 1,2-propanediol et acétol
WO2008116849A1 (fr) * 2007-03-23 2008-10-02 Metabolic Explorer Nouveaux micro-organismes servant à produire acétol au moyen d'une combinaison évolutive et rationnelle
WO2008116851A1 (fr) * 2007-03-23 2008-10-02 Metabolic Explorer Micro-organisme obtenu par génie métabolique utile pour produire acétol
WO2008116852A1 (fr) 2007-03-23 2008-10-02 Metabolic Explorer Nouveaux micro-organismes pour la production de 1,2-propanediol obtenus au moyen d'un procédé combiné évolutif et rationnel
WO2008116848A1 (fr) * 2007-03-23 2008-10-02 Metabolic Explorer Micro-organisme obtenu par génie métabolique utile pour produire 1,2-propanediol
EP2041293A2 (fr) * 2006-05-01 2009-04-01 University Of Florida Research Foundation, Inc. Production d'ethanol dans des hotes non recombinants
EP2094844A1 (fr) * 2006-12-15 2009-09-02 Biofuelchem Co., Ltd. Micro-organismes à capacité renforcée de production de butanol et procédé pour préparer du butanol au moyen desdits organismes
WO2009115114A1 (fr) * 2008-03-18 2009-09-24 Metabolic Explorer Polypeptide à activité de glyoxalase iii, polynucléotide codant pour ce polypeptide et utilisations
EP2121949A2 (fr) * 2006-12-21 2009-11-25 GEVO, Inc. Production de butanol par une levure métaboliquement modifiée
JP2010517562A (ja) * 2007-02-08 2010-05-27 バイオフューエルケム カンパニー, リミテッド ブチリル−CoAを中間体として酵母を用いてブタノールを製造する方法
WO2010076324A1 (fr) 2008-12-31 2010-07-08 Metabolic Explorer Méthode de synthèse de diols
EP2267126A1 (fr) 2009-06-26 2010-12-29 Metabolic Explorer Processus d'interruption de gène stable chez clostridia
WO2011012697A2 (fr) 2009-07-30 2011-02-03 Metabolic Explorer Enzyme yqhd mutante pour la production d'un produit biochimique par fermentation
WO2011012693A1 (fr) 2009-07-30 2011-02-03 Metabolic Explorer Méthylglyoxal synthétase (mgs) mutante pour la production d'un agent biochimique par fermentation
WO2011012702A1 (fr) 2009-07-30 2011-02-03 Metabolic Explorer Glycérol déshydrogénase (glydh) mutante pour la production d'un agent biochimique par fermentation
US20110124069A1 (en) * 2008-07-28 2011-05-26 Jorg Mampel Production method
WO2012001003A1 (fr) 2010-07-02 2012-01-05 Metabolic Explorer Procédé de préparation d'hydroxyacides
WO2012004247A1 (fr) 2010-07-05 2012-01-12 Metabolic Explorer Méthode de synthèse de 1,3-propanediol à partir de saccharose
WO2012115084A1 (fr) 2011-02-22 2012-08-30 東レ株式会社 Composition de diol et polyester
EP2532751A1 (fr) 2011-06-10 2012-12-12 Metabolic Explorer Utilisation de promoteurs inductibles dans la production fermentative de 1,2-propanediol
WO2012172050A1 (fr) 2011-06-15 2012-12-20 B.R.A.I.N. Biotechnology Research And Information Network Ag Nouveaux moyens et procédés de production de propanediol
EP2540834A1 (fr) 2011-06-29 2013-01-02 Metabolic Explorer Procédé de préparation de 1,3-propanediol
US8399717B2 (en) 2008-10-03 2013-03-19 Metabolic Explorer Method for purifying an alcohol from a fermentation broth using a falling film, a wiped film, a thin film or a short path evaporator
WO2013053824A1 (fr) 2011-10-11 2013-04-18 Metabolic Explorer Nouvelle voie de biosynthèse de prénol dans un microorganisme recombinant
EP2647718A2 (fr) 2012-04-06 2013-10-09 Metabolic Explorer Procédé de production de 5-aminopentanoate en utilisant un micro-organisme recombinant
WO2014049382A2 (fr) 2012-09-26 2014-04-03 Metabolic Explorer Production de fermentation d'éthylènediamine par un micro-organisme recombinant
US8691539B2 (en) 2007-03-20 2014-04-08 University Of Florida Research Foundation, Inc. Materials and methods for efficient succinate and malate production
EP3050970A1 (fr) 2015-01-28 2016-08-03 Metabolic Explorer Micro-organisme modifié pour optimiser la production de 1,4-butanediol
WO2016162442A1 (fr) 2015-04-07 2016-10-13 Metabolic Explorer Micro-organisme modifié pour la production optimisée de 2,4-dihydroxyburyrate avec un écoulement de 2,4-dihydroxybutyrate amélioré
WO2016162712A1 (fr) 2015-04-07 2016-10-13 Metabolic Explorer Micro-organisme modifié pour la production optimisée de 2,4-dihydroxyburyrate
WO2017025766A1 (fr) 2015-08-07 2017-02-16 Metabolic Explorer Production par fermentation de l-méthionine dépendante d'une protéine thiocarboxylée
WO2017042602A1 (fr) 2015-09-10 2017-03-16 Metabolic Explorer Nouvelles lactaldéhydes réductases pour la production de 1,2-propanédiol
US9617567B2 (en) 2008-11-07 2017-04-11 Metabolic Explorer Use of sucrose as substrate for fermentative production of 1,2-propanediol
WO2017068385A1 (fr) 2015-10-23 2017-04-27 Metabolic Explorer Micro-organisme modifié pour l'assimilation d'acide lévulinique
EP3342873A1 (fr) 2016-12-29 2018-07-04 Metabolic Explorer Conversion de méthylglyoxale en hydroxyacétone utilisant des enzymes et applications associées
EP3470512A1 (fr) 2017-10-10 2019-04-17 Metabolic Explorer Phosphosérine aminotransférase mutante pour la conversion de homosérine en 4-hydroxy-2-cétobutyrate
US10287611B2 (en) 2007-03-20 2019-05-14 University Of Florida Research Foundation, Incorporated Engineering the pathway for succinate production
WO2019092495A1 (fr) * 2017-11-09 2019-05-16 Braskem S.A. Procédé de récupération de cétones et de glycols de la fermentation
US10689671B2 (en) 2014-05-12 2020-06-23 Metabolic Explorer Microorganism and method for the production of 1.2-propanediol based on NADPH dependent acetol reductase and improved NADPH supply
US10760100B2 (en) 2015-07-27 2020-09-01 Institut National Des Sciences Appliquees Polypeptide having ferredoxin-NADP+ reductase activity, polynucleotide encoding the same and uses thereof
US11008593B2 (en) 2007-12-17 2021-05-18 Photanol, B.V. Process for producing 1,3-propanediol compound

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008091627A2 (fr) * 2007-01-22 2008-07-31 Genomatica, Inc. Procédés et organismes pour la production couplée à la croissance de l'acide 3-hydroxypropionique
GB0701253D0 (en) 2007-01-23 2007-02-28 Diagnostics For The Real World Nucleic acid amplification and testing
BRPI0807235A2 (pt) 2007-02-09 2015-05-26 Univ California Microorganismo recombinante, e, métodos para produzir um microorganismo recombinante, e para produzir um álcool
EP2137315B1 (fr) * 2007-03-16 2014-09-03 Genomatica, Inc. Compositions et procédés pour la biosynthèse de 1,4-butanediol et de ses précurseurs
US20090111154A1 (en) * 2007-04-04 2009-04-30 The Regents Of The University Of California Butanol production by recombinant microorganisms
US7947483B2 (en) 2007-08-10 2011-05-24 Genomatica, Inc. Methods and organisms for the growth-coupled production of 1,4-butanediol
WO2009045637A2 (fr) * 2007-08-10 2009-04-09 Genomatica, Inc. Procédés de synthèse d'oléfines et de dérivés
WO2009049274A2 (fr) * 2007-10-12 2009-04-16 The Regents Of The University Of California Micro-organisme modifié pour produire de l'isopropanol
CA2712779C (fr) 2008-01-22 2021-03-16 Genomatica, Inc. Methodes et organismes destines a l'utilisation de gaz de synthese ou d'autres sources gazeuses de carbone et de methanol
CN102015379A (zh) * 2008-02-21 2011-04-13 高田-彼得里公开股份有限公司 用于机动车辆的气囊模块
BRPI0909690A2 (pt) * 2008-03-05 2019-02-26 Genomatica Inc organismos produtores de alcoóis primários
WO2009151728A2 (fr) * 2008-03-27 2009-12-17 Genomatica, Inc. Microorganismes pour la production d'acide adipique et autres composés
BRPI0911759A2 (pt) * 2008-05-01 2019-09-24 Genomatica Inc microorganismo para a produção de ácido metacrílico
BRPI0913901A2 (pt) * 2008-06-17 2016-12-13 Genomatica Inc micro-organismos e métodos para a biossíntese de fumarato, malato e acrilato
US20100021978A1 (en) * 2008-07-23 2010-01-28 Genomatica, Inc. Methods and organisms for production of 3-hydroxypropionic acid
WO2010022763A1 (fr) * 2008-08-25 2010-03-04 Metabolic Explorer Procédé de préparation de 2-hydroxy-isobutyrate
AU2009291825B2 (en) 2008-09-10 2016-05-05 Genomatica, Inc. Microorganisms for the production of 1,4-butanediol
US8647642B2 (en) 2008-09-18 2014-02-11 Aviex Technologies, Llc Live bacterial vaccines resistant to carbon dioxide (CO2), acidic PH and/or osmolarity for viral infection prophylaxis or treatment
WO2010057022A1 (fr) * 2008-11-14 2010-05-20 Genomatica, Inc. Micro-organismes pour la production de méthyléthylcétone et de 2-butanol
WO2010064744A1 (fr) * 2008-12-03 2010-06-10 Korea Research Institute Of Bioscience And Biotechnology Mutant bloqué dans la voie d'oxydation du glycérol pour produire le 1,3-propanediol
KR20110097951A (ko) * 2008-12-16 2011-08-31 게노마티카 인코포레이티드 합성가스와 다른 탄소원을 유용 제품으로 전환시키기 위한 미생물 및 방법
CN102388141A (zh) * 2009-03-12 2012-03-21 韩国生命工学研究院 使用丙三醇氧化途径被阻断的重组菌株生产1,3-丙二醇的方法
KR102454204B1 (ko) * 2009-04-30 2022-10-12 게노마티카 인코포레이티드 1,3-부탄다이올 생산 유기체
JP2012525156A (ja) 2009-04-30 2012-10-22 ゲノマチカ, インク. イソプロパノール、n−ブタノール、及びイソブタノールの産生のための微生物
US8377680B2 (en) 2009-05-07 2013-02-19 Genomatica, Inc. Microorganisms and methods for the biosynthesis of adipate, hexamethylenediamine and 6-aminocaproic acid
BRPI1012877A2 (pt) * 2009-05-15 2016-04-05 Genomatica Inc organismo para produção de ciclohexanona
KR20120038433A (ko) * 2009-06-04 2012-04-23 게노마티카 인코포레이티드 발효액 성분들의 분리 방법
JP5964747B2 (ja) 2009-06-04 2016-08-03 ゲノマチカ, インク. 1,4−ブタンジオールの生成のための微生物体及び関連する方法
WO2010144746A2 (fr) * 2009-06-10 2010-12-16 Genomatica, Inc. Microorganismes et procédés pour la biosynthèse à bon bilan carbone de mek et de 2-butanol
EP2462221B1 (fr) 2009-08-05 2017-02-22 Genomatica, Inc. Acide téréphtalique semi-synthétique obtenu par l'intermédiaire de micro-organismes qui produisent de l'acide muconique
NZ598374A (en) * 2009-08-21 2014-10-31 Mascoma Corp Production of propanols, alcohols, and polyols in consolidated bioprocessing organisms
EP2933338A3 (fr) 2009-09-09 2016-01-06 Genomatica, Inc. Micro-organismes et procédés pour la coproduction d'isopropanol avec des alcools primaires, des diols et des acides
KR20120083908A (ko) * 2009-10-13 2012-07-26 게노마티카 인코포레이티드 1,4-부탄다이올, 4-하이드록시부탄알, 4-하이드록시부티릴-coa, 푸트레신 및 관련 화합물의 제조를 위한 미생물 및 관련 방법
BR112012009332A2 (pt) * 2009-10-23 2015-09-15 Genomatica Inc micro-organismo para a produção de anilina
US8530210B2 (en) 2009-11-25 2013-09-10 Genomatica, Inc. Microorganisms and methods for the coproduction 1,4-butanediol and gamma-butyrolactone
CN109136161A (zh) 2009-12-10 2019-01-04 基因组股份公司 合成气或其他气态碳源和甲醇转化为1,3-丁二醇的方法和有机体
CA2787314A1 (fr) * 2010-01-29 2011-08-04 Genomatica, Inc. Micro-organismes et procedes pour la biosynthese de p-toluate et terephtalate
US8048661B2 (en) * 2010-02-23 2011-11-01 Genomatica, Inc. Microbial organisms comprising exogenous nucleic acids encoding reductive TCA pathway enzymes
US8637286B2 (en) * 2010-02-23 2014-01-28 Genomatica, Inc. Methods for increasing product yields
US9023636B2 (en) 2010-04-30 2015-05-05 Genomatica, Inc. Microorganisms and methods for the biosynthesis of propylene
US8580543B2 (en) 2010-05-05 2013-11-12 Genomatica, Inc. Microorganisms and methods for the biosynthesis of butadiene
CN103025877A (zh) 2010-07-26 2013-04-03 基因组股份公司 用于生物合成芳族化合物、2,4-戊二烯酸和1,3-丁二烯的微生物和方法
EP3831951A3 (fr) 2012-06-04 2021-09-15 Genomatica, Inc. Microorganismes et procédés de production du 4-hydroxybutyrate, 1,4-butanediol et composés associés
EP2708598A1 (fr) * 2012-09-14 2014-03-19 Basf Se Production de sérinol pour souches de escherichia coli ayant une déficience en catabolisme du glycérol
CN103589756B (zh) * 2013-11-15 2015-12-02 中国科学院微生物研究所 利用l-乳酸生物合成s-1,2-丙二醇的方法
JP6026494B2 (ja) * 2014-12-05 2016-11-16 メタボリック エクスプローラー 1,2−プロパンジオールの発酵製造のための基質としてのスクロースの使用
EP3380627B1 (fr) 2015-11-27 2019-08-14 Evonik Degussa GmbH Procédé de fabrication de l- méthionine
WO2017211883A1 (fr) * 2016-06-07 2017-12-14 Danmarks Tekniske Universitet Cellules bactériennes à tolérance améliorée aux polyols
KR20190026851A (ko) * 2016-07-08 2019-03-13 에보니크 데구사 게엠베하 당 포스포트랜스퍼라제 시스템 (pts)을 코딩하는 유전자를 포함하는 미생물에 의한 메티오닌 또는 그의 히드록시 유사체 형태의 발효적 생산을 위한 방법
US11180535B1 (en) 2016-12-07 2021-11-23 David Gordon Bermudes Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
CN115261292B (zh) * 2021-04-29 2023-06-09 中国科学院上海高等研究院 改造的克雷伯氏菌属细菌及其生产1,2-丙二醇的应用和方法
CN115125263B (zh) * 2022-05-31 2024-01-23 中国科学院天津工业生物技术研究所 解除pts依赖碳源对相关启动子阻遏的方法及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6087140A (en) * 1997-02-19 2000-07-11 Wisconsin Alumni Research Foundation Microbial production of 1,2-propanediol from sugar
CN101024843A (zh) * 1999-08-18 2007-08-29 纳幕尔杜邦公司 用于生产高效价1,3-丙二醇的生物学方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CARRIER; KEASLING, BIOTECHNOL. PROG., vol. 15, 1998, pages 58 - 64

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2041293A4 (fr) * 2006-05-01 2011-06-22 Univ Florida Production d'ethanol dans des hotes non recombinants
US8465953B2 (en) 2006-05-01 2013-06-18 University Of Florida Research Foundation, Inc. Ethanol production in non-recombinant hosts
EP2041293A2 (fr) * 2006-05-01 2009-04-01 University Of Florida Research Foundation, Inc. Production d'ethanol dans des hotes non recombinants
WO2008052595A1 (fr) * 2006-10-31 2008-05-08 Metabolic Explorer Procédé de production biologique du 1,3-propanediol à partir du glycérol avec un rendement élevé
US8236994B2 (en) 2006-10-31 2012-08-07 Metabolic Explorer Process for the biological production of 1,3-propanediol from glycerol with high yield
EP2094844A1 (fr) * 2006-12-15 2009-09-02 Biofuelchem Co., Ltd. Micro-organismes à capacité renforcée de production de butanol et procédé pour préparer du butanol au moyen desdits organismes
EP2094844A4 (fr) * 2006-12-15 2010-01-06 Biofuelchem Co Ltd Micro-organismes à capacité renforcée de production de butanol et procédé pour préparer du butanol au moyen desdits organismes
EP2121949A2 (fr) * 2006-12-21 2009-11-25 GEVO, Inc. Production de butanol par une levure métaboliquement modifiée
EP2121949A4 (fr) * 2006-12-21 2010-06-02 Gevo Inc Production de butanol par une levure métaboliquement modifiée
JP2010517562A (ja) * 2007-02-08 2010-05-27 バイオフューエルケム カンパニー, リミテッド ブチリル−CoAを中間体として酵母を用いてブタノールを製造する方法
US8691539B2 (en) 2007-03-20 2014-04-08 University Of Florida Research Foundation, Inc. Materials and methods for efficient succinate and malate production
US10287611B2 (en) 2007-03-20 2019-05-14 University Of Florida Research Foundation, Incorporated Engineering the pathway for succinate production
KR101528943B1 (ko) * 2007-03-23 2015-06-15 메타볼릭 익스플로러 진화 및 합리적 설계의 조합에 의해 수득된 1,2―프로판디올의 생산을 위한 신규한 미생물
WO2008116852A1 (fr) 2007-03-23 2008-10-02 Metabolic Explorer Nouveaux micro-organismes pour la production de 1,2-propanediol obtenus au moyen d'un procédé combiné évolutif et rationnel
JP2010521958A (ja) * 2007-03-23 2010-07-01 メタボリック エクスプローラー 進化と合理的設計の組合せによって得られた、1,2−プロパンジオールの製造のための新規微生物
JP2010521959A (ja) * 2007-03-23 2010-07-01 メタボリック エクスプローラー 1,2−プロパンジオールおよびアセトールの製造のための微生物および方法
WO2008116848A1 (fr) * 2007-03-23 2008-10-02 Metabolic Explorer Micro-organisme obtenu par génie métabolique utile pour produire 1,2-propanediol
WO2008116851A1 (fr) * 2007-03-23 2008-10-02 Metabolic Explorer Micro-organisme obtenu par génie métabolique utile pour produire acétol
WO2008116849A1 (fr) * 2007-03-23 2008-10-02 Metabolic Explorer Nouveaux micro-organismes servant à produire acétol au moyen d'une combinaison évolutive et rationnelle
WO2008116853A1 (fr) * 2007-03-23 2008-10-02 Metabolic Explorer Micro-organismes et procédés de production de 1,2-propanediol et acétol
US11008593B2 (en) 2007-12-17 2021-05-18 Photanol, B.V. Process for producing 1,3-propanediol compound
WO2009115497A1 (fr) * 2008-03-18 2009-09-24 Metabolic Explorer Polypeptide ayant une activité de glyoxalase iii, polynucléotide codant pour ce polypeptide et utilisations
WO2009115114A1 (fr) * 2008-03-18 2009-09-24 Metabolic Explorer Polypeptide à activité de glyoxalase iii, polynucléotide codant pour ce polypeptide et utilisations
US20110124069A1 (en) * 2008-07-28 2011-05-26 Jorg Mampel Production method
US8399717B2 (en) 2008-10-03 2013-03-19 Metabolic Explorer Method for purifying an alcohol from a fermentation broth using a falling film, a wiped film, a thin film or a short path evaporator
US9617567B2 (en) 2008-11-07 2017-04-11 Metabolic Explorer Use of sucrose as substrate for fermentative production of 1,2-propanediol
US9121041B2 (en) 2008-12-31 2015-09-01 Metabolic Explorer Method for the preparation of diols
WO2010076324A1 (fr) 2008-12-31 2010-07-08 Metabolic Explorer Méthode de synthèse de diols
EP2267126A1 (fr) 2009-06-26 2010-12-29 Metabolic Explorer Processus d'interruption de gène stable chez clostridia
WO2011012697A2 (fr) 2009-07-30 2011-02-03 Metabolic Explorer Enzyme yqhd mutante pour la production d'un produit biochimique par fermentation
WO2011012702A1 (fr) 2009-07-30 2011-02-03 Metabolic Explorer Glycérol déshydrogénase (glydh) mutante pour la production d'un agent biochimique par fermentation
WO2011012693A1 (fr) 2009-07-30 2011-02-03 Metabolic Explorer Méthylglyoxal synthétase (mgs) mutante pour la production d'un agent biochimique par fermentation
WO2012001003A1 (fr) 2010-07-02 2012-01-05 Metabolic Explorer Procédé de préparation d'hydroxyacides
US8911978B2 (en) 2010-07-02 2014-12-16 Metabolic Explorer Method for the preparation of hydroxy acids
WO2012004247A1 (fr) 2010-07-05 2012-01-12 Metabolic Explorer Méthode de synthèse de 1,3-propanediol à partir de saccharose
US8900838B2 (en) 2010-07-05 2014-12-02 Metabolic Exployer Method for the preparation of 1,3-propanediol from sucrose
US10696785B2 (en) 2011-02-22 2020-06-30 Toray Industries, Inc. Diol composition and polyester
WO2012115084A1 (fr) 2011-02-22 2012-08-30 東レ株式会社 Composition de diol et polyester
EP2532751A1 (fr) 2011-06-10 2012-12-12 Metabolic Explorer Utilisation de promoteurs inductibles dans la production fermentative de 1,2-propanediol
WO2012172050A1 (fr) 2011-06-15 2012-12-20 B.R.A.I.N. Biotechnology Research And Information Network Ag Nouveaux moyens et procédés de production de propanediol
EP2540834A1 (fr) 2011-06-29 2013-01-02 Metabolic Explorer Procédé de préparation de 1,3-propanediol
WO2013053824A1 (fr) 2011-10-11 2013-04-18 Metabolic Explorer Nouvelle voie de biosynthèse de prénol dans un microorganisme recombinant
US9410164B2 (en) 2011-10-11 2016-08-09 Metabolic Explorer Biosynthesis pathway for prenol in a recombinant microorganism
EP2647718A2 (fr) 2012-04-06 2013-10-09 Metabolic Explorer Procédé de production de 5-aminopentanoate en utilisant un micro-organisme recombinant
WO2014049382A2 (fr) 2012-09-26 2014-04-03 Metabolic Explorer Production de fermentation d'éthylènediamine par un micro-organisme recombinant
US10689671B2 (en) 2014-05-12 2020-06-23 Metabolic Explorer Microorganism and method for the production of 1.2-propanediol based on NADPH dependent acetol reductase and improved NADPH supply
EP3050970A1 (fr) 2015-01-28 2016-08-03 Metabolic Explorer Micro-organisme modifié pour optimiser la production de 1,4-butanediol
WO2016162442A1 (fr) 2015-04-07 2016-10-13 Metabolic Explorer Micro-organisme modifié pour la production optimisée de 2,4-dihydroxyburyrate avec un écoulement de 2,4-dihydroxybutyrate amélioré
WO2016162712A1 (fr) 2015-04-07 2016-10-13 Metabolic Explorer Micro-organisme modifié pour la production optimisée de 2,4-dihydroxyburyrate
US10760100B2 (en) 2015-07-27 2020-09-01 Institut National Des Sciences Appliquees Polypeptide having ferredoxin-NADP+ reductase activity, polynucleotide encoding the same and uses thereof
WO2017025766A1 (fr) 2015-08-07 2017-02-16 Metabolic Explorer Production par fermentation de l-méthionine dépendante d'une protéine thiocarboxylée
WO2017042602A1 (fr) 2015-09-10 2017-03-16 Metabolic Explorer Nouvelles lactaldéhydes réductases pour la production de 1,2-propanédiol
US10801050B2 (en) 2015-10-23 2020-10-13 Metabolic Explorer Microorganism modified for the assimilation of levulinic acid
WO2017068385A1 (fr) 2015-10-23 2017-04-27 Metabolic Explorer Micro-organisme modifié pour l'assimilation d'acide lévulinique
WO2018122388A1 (fr) 2016-12-29 2018-07-05 Metabolic Explorer Conversion du méthylglyoxal en hydroxyacétone à l'aide de nouvelles enzymes et applications associées
US10889840B2 (en) 2016-12-29 2021-01-12 Metabolic Explorer Conversion of methylglyoxal into hydroxyacetone using novel enzymes and applications thereof
EP3342873A1 (fr) 2016-12-29 2018-07-04 Metabolic Explorer Conversion de méthylglyoxale en hydroxyacétone utilisant des enzymes et applications associées
WO2019072883A1 (fr) 2017-10-10 2019-04-18 Metabolic Explorer Phosphosérine aminotransférase mutante destinée à la conversion d'homosérine en 4-hydroxy-2-cétobutyrate
EP3470512A1 (fr) 2017-10-10 2019-04-17 Metabolic Explorer Phosphosérine aminotransférase mutante pour la conversion de homosérine en 4-hydroxy-2-cétobutyrate
US10710950B2 (en) 2017-11-09 2020-07-14 Braskem S.A. Process for the recovery of ketones and glycols from fermentation
WO2019092495A1 (fr) * 2017-11-09 2019-05-16 Braskem S.A. Procédé de récupération de cétones et de glycols de la fermentation

Also Published As

Publication number Publication date
FR2864967B1 (fr) 2006-05-19
RU2006129295A (ru) 2008-02-20
BRPI0506790B1 (pt) 2020-12-22
SI1704230T1 (sl) 2009-12-31
CA2547695A1 (fr) 2005-08-11
US8252579B2 (en) 2012-08-28
PL1704230T3 (pl) 2010-01-29
KR20060123490A (ko) 2006-12-01
PT1704230E (pt) 2009-10-14
WO2005073364A3 (fr) 2005-09-29
DE602005016073D1 (de) 2009-10-01
EP1704230B1 (fr) 2009-08-19
KR101229525B1 (ko) 2013-02-04
JP2007517517A (ja) 2007-07-05
EP1704230A2 (fr) 2006-09-27
JP4613177B2 (ja) 2011-01-12
FR2864967A1 (fr) 2005-07-15
CN1910278B (zh) 2010-05-26
RU2407793C2 (ru) 2010-12-27
EP2192180A1 (fr) 2010-06-02
CN1910278A (zh) 2007-02-07
ATE440135T1 (de) 2009-09-15
CA2547695C (fr) 2015-03-10
DK1704230T3 (da) 2009-11-02
ES2329914T3 (es) 2009-12-02
US20070072279A1 (en) 2007-03-29
ZA200605440B (en) 2007-04-25
BRPI0506790A (pt) 2007-05-22

Similar Documents

Publication Publication Date Title
EP1704230B1 (fr) Microorganisme evolue pour la production de 1,2-propanediol
EP1680504B1 (fr) Souches de microorganismes optimisees pour des voies de biosynthese consommatrices de nadph
EP1597364B1 (fr) Procede de preparation de microorganismes evolues permettant la creation ou la modification de voies metaboliques
CA2679989C (fr) Nouveaux micro-organismes pour la production de 1,2-propanediol obtenus au moyen d'un procede combine evolutif et rationnel
RU2521502C2 (ru) Микробиологический способ получения 1,2-пропандиола
KR20100015809A (ko) 1,2―프로판디올의 생산에 유용한 대사적으로 조작된 미생물
KR20110117131A (ko) 디올의 제조 방법
TW201005094A (en) Polypeptide having glyoxalase III activity, polynucleotide encoding the same and uses thereof
JP2024026211A (ja) ペントース糖およびヘキソース糖のための分解経路
FR3052170A1 (fr) Production de frambinone par un microorganisme fongique recombinant
JP2005304362A (ja) 1,3−プロパンジオール及び/又は3−ヒドロキシプロピオン酸を製造する方法
WO2008116849A1 (fr) Nouveaux micro-organismes servant à produire acétol au moyen d'une combinaison évolutive et rationnelle
JP2005278414A (ja) 1,3−プロパンジオール及び3−ヒドロキシプロピオン酸を製造する方法
JP2006246701A (ja) 中央代謝系の酵素活性が増強された酢酸菌、及び該酢酸菌を用いた食酢の製造方法
KR101844452B1 (ko) 개량된 나르 프로모터 및 이를 이용한 바이오케미컬 생산방법
MXPA06007929A (en) Advanced microorganism for producing 1,2-propanediol
FR2862067A1 (fr) Procede de preparation de microorganismes evolues permettant la creation ou la modification de voies metaboliques

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005717405

Country of ref document: EP

Ref document number: 2547695

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 3673/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006/05440

Country of ref document: ZA

Ref document number: 200605440

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/007929

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2006548349

Country of ref document: JP

Ref document number: 200580002311.0

Country of ref document: CN

Ref document number: 1020067014050

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2007072279

Country of ref document: US

Ref document number: 10585040

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1200601326

Country of ref document: VN

WWE Wipo information: entry into national phase

Ref document number: 2006129295

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005717405

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067014050

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10585040

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0506790

Country of ref document: BR