WO2005071777A1 - 燃料電池用カソード及びこれを備えた固体高分子型燃料電池 - Google Patents

燃料電池用カソード及びこれを備えた固体高分子型燃料電池 Download PDF

Info

Publication number
WO2005071777A1
WO2005071777A1 PCT/JP2005/001155 JP2005001155W WO2005071777A1 WO 2005071777 A1 WO2005071777 A1 WO 2005071777A1 JP 2005001155 W JP2005001155 W JP 2005001155W WO 2005071777 A1 WO2005071777 A1 WO 2005071777A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
fuel cell
oxygen
power source
polymer electrolyte
Prior art date
Application number
PCT/JP2005/001155
Other languages
English (en)
French (fr)
Inventor
Tetsuo Kawamura
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP05704208A priority Critical patent/EP1708299A1/en
Priority to US10/582,342 priority patent/US20080280165A1/en
Priority to JP2005517326A priority patent/JP4349368B2/ja
Publication of WO2005071777A1 publication Critical patent/WO2005071777A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell power source and a polymer electrolyte fuel cell provided with the power source.
  • Polymer electrolyte fuel cells with polymer electrolyte membranes are easy to reduce in size and weight.
  • the electrode reaction in each of the catalyst layers of the anode and the cathode of the polymer electrolyte fuel cell is performed at a three-phase interface (hereinafter, referred to as a reaction site) in which each reaction gas, a catalyst, and a fluorinated ion exchange resin (electrolyte) are simultaneously present. ). Therefore, in polymer electrolyte fuel cells, a catalyst such as a metal catalyst or a metal-supported catalyst (for example, a metal-supported carbon in which a metal catalyst such as platinum is supported on a car pump rack carrier having a large specific surface area) has conventionally been used. It is coated with a fluorine-containing ion exchange resin of the same or different type as the polymer electrolyte membrane, and is used as a constituent material of the catalyst layer. Are increasing.
  • a sulfonic acid group having high ionic conductivity as represented by "Naphion” manufactured by DuPont and chemically stable under oxidizing and reducing atmospheres is used.
  • Purf with A fluorocarbon polymer hereinafter referred to as a sulfonic acid type perf / leo-mouth carbon polymer) is used.
  • the fluorinated ion exchange resin contained in the catalyst layer of the conventional force source has excellent ionic conductivity and chemical stability, it has insufficient oxygen gas permeability in the resin. Oxygen permeation in the catalyst layer was insufficient, and the overvoltage of the oxygen reduction reaction at the cathode became large, making it difficult to obtain high electrode characteristics.
  • Japanese Patent Application Laid-Open No. H11-35441-29 discloses that a fluorine-containing ether / resin compound is mixed with a fluorine-containing ion-exchange resin for coating a catalyst and oxygen permeability in a catalyst layer of a cathode is mixed. Therefore, a polymer electrolyte fuel cell has been proposed that aims to reduce the cathode overvoltage.
  • the oxygen permeability in the catalyst layer of the cathode is insufficient, and the overvoltage of the power source is reduced.
  • the durability of the catalyst layer of the force source is insufficient, and the battery life is short.
  • the preferred fluorinated ether compound is an oily low molecular weight compound, which gradually dissolves in the reaction product water during power generation or is released from the fluorinated ion exchange resin along with it. This is probably because the water is discharged from the catalyst layer together with the generated water.
  • Japanese Patent Application Laid-Open No. 2002-252001 discloses that an electrode catalyst layer of a fuel cell contains a polymer compound having high oxygen permeability and having substantially no ion exchange group. By doing so, it is disclosed that the electrode characteristics particularly at the cathode are improved.
  • Japanese Patent Application Laid-Open No. 8-173775 discloses a solution of an oxygen transporting carrier containing a metal complex that specifically and reversibly binds to oxygen, simulating hemoglobin contained in blood. Is dispersed in a medium that is hydrophobic and has a low carbon dioxide dissolution rate.
  • the membrane is formed into a membrane to form an oxygen selective permeable membrane, and the battery is provided with an air intake hole that communicates with the outside air.
  • a gas diffusion electrode using oxygen as the active material is provided along
  • a battery in which the above-mentioned oxygen selective permeable membrane is interposed between a gas intake hole and the air intake hole.
  • Japanese Patent Application Laid-Open No. 10-55807 discloses an attempt to improve cell performance by increasing the air utilization rate by adding cerium oxide or the like as a co-catalyst to an electrode catalyst.
  • Japanese Unexamined Patent Publication No. 2003-100038 discloses an attempt to increase the rate of oxygen reduction reaction by supporting cerium oxide on a platinum-supported carrier, thereby promoting a force-sword reaction.
  • J ournalof Power S ources 1 1 5 (2 0 3) 4 0—4 3 has a high air utilization rate by mixing CeZrOx with the Pt / C catalyst layer to improve the battery performance. Attempts to improve are disclosed. Disclosure of the invention
  • 2002-250201 discloses that the efficiency of reaction is increased by physically mixing a polymer having a high oxygen permeability coefficient, an electrolyte, and a catalyst.
  • Oxygen requires a three-phase interface, and mere physical mixing does not allow a high oxygen-permeable polymer to be concentrated near the three-phase interface. Therefore, even if a high oxygen permeable material is used, its ability cannot be fully exerted. Consequently, the approach to the idea that electrode reactions take place at three-phase interfaces is not sufficient.
  • the present invention has been made in view of the above-mentioned problems of the related art, and has a force sword having excellent electrode characteristics with respect to an oxygen reduction reaction, and a solid polymer fuel having the same and capable of obtaining a high battery output.
  • the purpose is to provide batteries.
  • the present inventor has found that the above-mentioned problem is solved by securing a path through which oxygen molecules can be diffused on carbon using a specific material, and reached the present invention.
  • the present invention relates to a fuel cell power source having a catalyst layer comprising a catalyst-supporting conductive carrier and a polymer electrolyte, wherein the catalyst-supporting conductive carrier is brought into contact with an oxygen storage / release member.
  • a fuel cell power source characterized in that a catalyst is further supported or mixed.
  • the catalyst is supported on the conductive carrier, and at the same time, the oxygen absorbing / releasing body in contact with the catalyst is further supported or mixed, the diffusion path of oxygen molecules to the catalyst surface is improved.
  • the concentration of the reaction gas in the vicinity of the reaction site in the catalyst layer can be made higher than before. As a result, the exchange current density in the electrode reaction can be increased, and the oxygen overvoltage can be reduced. That is, high electrode characteristics can be obtained.
  • the overvoltage of the oxygen reduction reaction of the power source can be effectively reduced, and the electrode characteristics of the cathode can be improved. Insufficiency of oxygen gas occurs especially during operation of the fuel cell, but the present invention can maintain high electrode characteristics even during long-time operation.
  • the presence of nitrogen may cause a suppression of the electrode reaction.
  • the oxygen absorbing / desorbing body in contact with the catalyst, diffusion of nitrogen gas is suppressed, a high oxygen concentration near the electrode is realized, and higher power generation performance can be obtained.
  • the oxygen absorbing / releasing body used in the present invention is a material having a function of reversibly absorbing and releasing oxygen, and various materials are known. In the present invention, these Can be used.
  • the oxygen absorbing / releasing body used in the present invention is a metal or a metal oxide that can repeatedly absorb and release oxygen depending on the fluctuation of the nearby oxygen concentration. That is, it is an oxide that can absorb oxygen in an oxidizing atmosphere having a relatively high o 2 concentration and release oxygen in a reducing atmosphere having a relatively low o 2 concentration. Specifically, it is an oxide number-variable metal oxide that absorbs and releases this oxygen by changing the oxidation number. For example, Ti, V, Cr, Mn, Fe, Co, Ni, C u, Nb, Mo, Ta, W, Ce, Pr, and Nd metals, or oxides thereof. Of these, oxides of Mn, Fe, Co, and Ni are more preferred.
  • a basic oxide that absorbs and releases this oxygen by adsorbing oxygen can also be used.
  • an oxide of Zr, Y, an alkali metal, or an alkaline earth metal may be used.
  • One or more compounds are preferably exemplified.
  • the oxygen absorbing / releasing body is not limited to these.
  • the amount of the oxygen absorber / desorber in the catalyst layer is preferably 5 to 16 wt% based on the total amount of the catalyst layer. Further, the total amount of the catalyst supported in the catalyst layer is preferably 30 wt% or less. As described above, by selecting a range having a high catalytic activity, the amount of noble metal used such as platinum can be reduced. As will be described later, in the present invention, a cell voltage equivalent to that of a conventional product can be generated even when the amount of platinum used is 1 to 2.
  • the oxygen absorber preferably has an average particle diameter of 2 nm to 40 nm, and 2 ⁇ ! Most preferably, it is 55 nm.
  • the oxygen absorbing / releasing substance having an average particle diameter on the low current density side is smaller than when using an oxygen absorbing / releasing substance having an average particle diameter on the order of microns. Battery performance (power generation efficiency) has improved.
  • the oxygen absorbing Detai C e O 2, C e 0 2 - Z r 0 2, C E_ ⁇ 2 - Z r O 2 - Y 2 0 3, C e 0 2 - Z r O 2—
  • one or more selected CeO 2 —parts are reduced to Ce 2 O 3 and used.
  • the reduction treatment include treatment with a reducing gas such as hydrogen and treatment with a reducing liquid such as hydrazine.
  • the polymer electrolyte mass in the catalyst layer / the amount of the carrier !: the dangling ratio (NZC) is preferably 0.8 or less, and the force S is most preferably 0.8 to 0.7.
  • the battery performance power generation efficiency
  • the desired battery performance power generation efficiency
  • the high current density side because the oxygen absorber / desorber is flattened due to hydrophilicity.
  • a new problem has arisen in that it cannot be obtained.
  • the polymer electrolyte mass / carrier amount ratio (NZC) By setting the polymer electrolyte mass / carrier amount ratio (NZC) to 0.8 or less, flooding can be suppressed, and battery performance (power generation efficiency) can be improved in the entire current density region.
  • water-repellent carbon As a carrier, flooding can be suppressed and battery performance (power generation efficiency) can be improved in all current density regions.
  • the catalyst layer it is preferable to use, as the catalyst layer, one in which the pore volume is increased by performing a pore increasing treatment in the state of the catalyst ink.
  • the pore addition treatment include, for example, a stirring treatment using an ultrasonic homogenizer.
  • the pore volume (cc / g) of the catalyst layer determined by the nitrogen pore distribution method increases to 1.4 to 1.8 times the pore volume of the conventional catalyst layer. Treated is preferred.
  • Battery performance power generation efficiency
  • the catalyst layer may contain more oxygen absorbing / releasing substances on the electrolyte membrane side than on the diffusion layer side, and may or may not contain less oxygen absorbing / releasing substances on the diffusion layer side than on the electrolyte membrane side.
  • tilt the oxygen absorber The layer may be arranged obliquely or may have a two-layer structure of a layer containing an oxygen absorber and a layer not containing an oxygen absorber. In this way, by changing the arrangement of the oxygen absorber, the oxygen absorber on the electrolyte membrane traps excess oxygen supplied from the outside and releases it when the consumption of oxygen by the catalyst increases.
  • the oxygen utilization efficiency of the catalyst is improved. As a result, fluttering on the high current density side can be suppressed, and battery performance (power generation efficiency) can be improved in the entire current density region.
  • the oxygen absorbing / releasing element of the present invention is substantially insoluble in aqueous solvents such as water and alcohol, it causes problems such as detachment from the conductor surface during long-term operation and discharge from the catalyst layer. It can be sufficiently prevented. As a result, the gas diffusion electrode of the present invention can obtain high electrode characteristics stably over a long period of time.
  • a carbon powder or a fibrous carbon material is preferably used as the conductive carrier on which the catalyst and the oxygen absorber / desorber are supported or mixed.
  • the present invention relates to a polymer electrolyte fuel cell having an anode, a force sword, and a polymer electrolyte membrane disposed between the anode and the force sword.
  • This is a solid polymer fuel cell characterized by having a power source.
  • the power source of the present invention having excellent electrode characteristics for the above-described oxygen reduction reaction, it becomes possible to configure a solid polymer fuel cell having a high battery output. Further, as described above, the power source of the present invention can sufficiently prevent the occurrence of flooding and has excellent durability. Batteries can obtain high battery output stably over a long period of time.
  • the present invention relates to an invention of a method for operating a polymer electrolyte fuel cell having an anode, a power source, and a polymer electrolyte membrane disposed between the anode and the power source.
  • the fuel cell power source described above is used as the cathode.
  • C E_ ⁇ 2 is oxygen absorbing Detai, C e O 2 - Z R_ ⁇ 2, C e O 2 - Z r O 2 - Y 2 O 3, C e 0 2 - Z r O 2 - and granted the previous operation of one or more that will be selected from the rare earth oxides and / or operating in regular hydrogen gas Panoresu manner, C e 0 2 - the process of reducing the parts to C e 2 0 3 It is something to give.
  • the battery on the full current density side is lower than when the oxygen absorber is not reduced before and during operation or periodically during operation. Performance (power generation efficiency) is improved.
  • a system that pulsates hydrogen through a power source mixed with an oxygen absorbing / desorbing body can suppress generated water retention, reduce flooding, and exhibit high performance in the entire current density region.
  • pulse-like specifically means that hydrogen gas, which is a reducing gas, is applied once every few minutes for several seconds before and during operation of the fuel cell.
  • FIG. 1 shows a conceptual diagram of the catalytic electrode reaction in the conventional (1) force sword.
  • FIG. 1A is at the beginning of the reaction or when the output is low, and
  • FIG. 1B is when the output is high.
  • Fig. 2 shows a conceptual diagram of the catalytic electrode reaction with the conventional (2) force source.
  • FIG. 3 shows a conceptual diagram of the catalytic electrode reaction using the force source of the present invention.
  • FIG. 4 shows voltage-current density curves of Example 11 and Comparative Example 1-1.
  • FIG. 5 shows the cell voltages of Example 2-1 and Comparative Examples 2-1 and 2-2 when the film thickness was changed.
  • FIG. 6 shows the Senor voltages of Example 2-2 and Comparative Examples 2-1 and 2-2 when the platinum catalyst loading density was changed.
  • FIG. 7 is a conceptual diagram of a system for periodically circulating H 2 before or during operation. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a conceptual diagram of the catalytic electrode reaction using the force source of the conventional technology (1).
  • FIG. 1A shows the beginning of the reaction or when the output is low and requires little oxygen, so the oxygen supply is maintained near the catalyst by normal diffusion.
  • oxygen molecules that have diffused near the catalyst react with protons and electrons according to the following formula to produce water molecules.
  • FIG. 1B shows when the output has increased, consuming a large amount of oxygen1 ⁇ . Therefore, the oxygen partial pressure near the catalyst is extremely reduced. The only way to carry out the reaction is to wait for the oxygen of ⁇ to diffuse, which leads to a decrease in power generation characteristics.
  • Fig. 2 shows the concept (2) of the catalytic electrode reaction using the force source of the prior art (2). In the vicinity of the catalyst supported conductive carbon, C e 0 2 In example embodiment as an oxygen storage Detai has been carried on also on the conductive carbon. When the fuel cell is operated in the low power range, the amount of oxygen consumed by the catalyst is small, and the oxygen concentration near the oxygen storage / release body is high, so that excess oxygen is stored in the oxygen storage / release body.
  • FIG. 3 shows a conceptual diagram of the catalytic electrode reaction using the force source of the present invention.
  • Catalyst A is a power source reaction
  • Catalyst B promotes the oxygen storage and release of the oxygen storage and release body.
  • the amount of oxygen consumed by the catalyst is small, and the oxygen concentration near the oxygen absorber / desorber is high, so that the excess Oxygen is stored efficiently.
  • the fuel cell is operated at high output, the amount of oxygen consumed by the catalyst is large, and the oxygen concentration near the oxygen absorber / desorber is reduced, so that oxygen is efficiently released from the oxygen absorber / desorber. .
  • the fuel cell performance is further improved. As described above, since oxygen is released from the vicinity of the Pt electrode catalyst, oxygen is supplied to the Pt catalyst without being affected by gas diffusion in the catalyst layer, so that the output of the fuel cell is improved.
  • the electrode reaction proceeds at a site called a three-phase interface where the reaction gas, catalyst, and electrolyte associate.
  • Supplying oxygen to the three-phase interface is one important topic.
  • the output of the battery is increased, a large amount of oxygen is required for the reaction, and if there is no oxygen near the catalyst, the power generation characteristics are rapidly reduced.
  • high-concentration oxygen is supplied.
  • the actual reaction takes place at the three-phase interface (.near the catalyst), so oxygen is supplied here. If you don't have it, you can't fully demonstrate its capabilities.
  • oxygen consumption on the catalyst surface increases, but the diffusion rate of oxygen from the outside to the catalyst surface hardly changes.
  • the power source of the polymer electrolyte fuel cell according to the present invention includes a catalyst layer, and preferably includes a catalyst layer and a gas diffusion layer disposed adjacent to the catalyst layer.
  • a constituent material of the gas diffusion layer for example, a porous body having electron conductivity (for example, carbon paper or carbon paper) is used.
  • An oxygen absorber is present in the catalyst layer of the power source, and the electrode reaction speed of the power source is improved by reducing the overvoltage for the oxygen reduction reaction in the power source.
  • the content of the oxygen absorber / desorber contained in the catalyst layer is determined by It is preferably from 0.1 to 50% by mass, more preferably from 1 to 40% by mass, based on the total amount of the body and the polymer electrolyte.
  • the content of the oxygen absorber / desorber exceeds 50% by mass, the content of the fluorine-containing ion-exchange resin contained in the catalyst layer is relatively reduced, and as a result, the effective content of the catalyst layer is reduced. It is difficult to obtain high electrode characteristics because the number of reaction sites functioning at the same time is reduced.
  • the catalyst contained in the catalyst-carrying conductor of the power source of the present invention is not particularly limited, but platinum or a platinum alloy is preferable. Further, the catalyst contained in the catalyst-carrying conductor is preferably carried on an electrically conductive carrier.
  • the support is not particularly limited, but is preferably a carbon material having a specific surface area of 200 m 2 / g or less. For example, carbon black and activated carbon are preferably used.
  • the polymer electrolyte contained in the catalyst layer of the present invention is preferably a fluorinated ion exchange resin, particularly preferably a sulfonic acid type perfluorocarbon polymer.
  • the sulfonic acid type perfluoro-mouthed carbon polymer enables chemically stable and rapid proton conduction for a long time in the cathode.
  • the thickness of the catalyst layer of the power source of the present invention may be the same as that of a normal gas diffusion electrode, and is preferably 1 to: ⁇ , and more preferably 3 to 50 ⁇ . Is more preferable.
  • the overvoltage of the oxygen reduction reaction of the power source is usually much larger than the overvoltage of the hydrogen oxidation reaction at the anode, so the vicinity of the reaction site in the catalyst layer of the cathode as described above It is effective to improve the electrode characteristics of the cathode by increasing the oxygen concentration of the electrolyte to effectively use the reaction site and improve the output characteristics of the battery.
  • the configuration of the anode is not particularly limited, and may have, for example, the configuration of a known gas diffusion electrode.
  • the polymer electrolyte membrane used in the polymer electrolyte fuel cell of the present invention is not particularly limited as long as it is an ion-exchange membrane exhibiting good ion conductivity in a wet state.
  • the solid polymer material constituting the polymer electrolyte membrane include a perfluorocarbon polymer having a sulfonic acid group, a polysulfone resin, and a perfluorocarbon polymer having a phosphonic acid group or a carboxylic acid group. Can be used.
  • the polymer electrolyte membrane may be made of the same resin as the fluorinated ion exchange resin contained in the catalyst layer, or may be made of a different resin.
  • the catalyst layer of the force source of the present invention is prepared in advance using a conductive support having a catalyst and an oxygen absorbing / desorbing substance supported thereon, and a coating solution in which a polymer electrolyte is dissolved or dispersed in a solvent or a dispersion medium. can do.
  • it can be prepared by using a coating solution in which a catalyst-supporting conductive carrier, a polymer electrolyte, and an oxygen absorber / desorber are dissolved or dispersed in a solvent or a dispersion medium.
  • a solvent or dispersion medium used here for example, alcohol, fluorinated alcohol, fluorinated ether and the like can be used.
  • a catalyst layer is formed by applying the coating liquid to a carbon cloth or the like that becomes an ion exchange membrane or a gas diffusion layer.
  • the catalyst layer can also be formed on the ion exchange membrane by coating the above-mentioned coating solution on a separately prepared base material to form a coating layer and transferring the coating layer onto the ion exchange membrane.
  • the catalyst layer when the catalyst layer is formed on the gas diffusion layer, it is preferable to bond the catalyst layer and the ion exchange membrane by an adhesion method, a hot press method, or the like.
  • the cathode When the catalyst layer is formed on the ion-exchange membrane, the cathode may be constituted only by the catalyst layer, but a gas diffusion layer may be further arranged adjacent to the catalyst layer to form a force source. .
  • a separator in which a gas flow path is normally formed is placed outside the force sword.
  • a gas containing hydrogen is supplied to the anode in the flow path, and a gas containing oxygen is supplied to the force sword.
  • a molecular fuel cell is constructed.
  • Z r O 2 composite oxide - C e 0 2 as an oxygen-absorbing polishes.
  • Printex XE 2 B is used as carbon, and platinum is supported on carbon by impregnation of chloroplatinic acid.
  • platinum-carrying carbon ? 1; 5 ⁇ 1:% responsible lifting the C e ⁇ 2 - Z r O 2 composite oxide by mixing 2 0 wt%, to prepare a catalyst.
  • the following power generation evaluation test was performed using a single cell having an electrode area of 12.96 cm 2 .
  • Figure 4 shows the evaluation results. From the results shown in FIG. 4, it can be seen that the fuel cell using the electrode carrying the oxygen absorber / desorber in contact with the catalyst of the present invention has a lower current than the comparative example using the electrode not carrying the oxygen absorber / desorber. On the density side, it can be seen that the power generation performance is superior to the comparative example in which no oxygen absorbing / desorbing substance is added.
  • An electrode having a film thickness of 6 mi 1 was prepared using a PtFe (60 wt%)-supported carbon catalyst.
  • a commercially available PtFe (60 wt%)-supported carbon catalyst is suspended, and a reducing agent (such as an aqueous solution of sodium hydroxide) is added dropwise to the suspension to remove cerium, zirconium, and nitrite. Palladium hydroxide was supported on carbon.
  • a reducing agent such as an aqueous solution of sodium hydroxide
  • the catalyst ink was cast on a Teflon resin film (thickness: 3 mi 1), dried, and cut into 13 (cm 2 ).
  • MEA was prepared by hot pressing on the electrolyte membrane.
  • the MEA was assembled to the cell and evaluated in the same manner as in Example 1.
  • the above (2) to (4) are operations for converting the catalyst particle diameter to nano-order.
  • TEM confirmed that the average particle size of the catalyst was 10 nm.
  • An electrode was prepared by physically mixing 20 wt% of Pt (60 wt%) supported carbon with 5 wt% of Pt supported Ce—Zr_O x powder.
  • a PtFe (60 t%) supported carbon catalyst was used.
  • Table 1 below shows the composition of each catalyst, and Table 2 shows the activity evaluation results.
  • the average particle size is 2 n n!
  • the catalyst ink is cast on a Teflon resin film (thickness: 6 mi 1), dried, and cut into 13 (cm 2 ).
  • MEA was prepared by hot pressing on the electrolyte membrane.
  • An electrode was prepared by mixing 20 wt% of Pt Fe (60 wt%) supported carbon with Pt 5 wt% supported Ce—Zr-Ox powder. This is the same as Example 4 except that (3) hydrogen reduction treatment is not performed.
  • a PtFe (60 wt%) supported carbon catalyst was used.
  • Table 3 shows the composition of each catalyst, and Table 4 shows the activity evaluation results.
  • MEA was prepared by hot pressing on the electrolyte membrane.
  • An electrode of NZC 0.5 was prepared by mixing Pt 5 wt% supported Ce—Zr—O powder with 20 wt% of PtFe (60 wt%) supported carbon catalyst. (Comparative Example 5-3)
  • a hydrophilic functional group is introduced into carbon to add an acid washing step.
  • Table 7 below shows the composition of each catalyst, and Table 8 shows the activity evaluation results.
  • the catalyst ink was cast on a Teflon resin film (thickness: 6 mi 1), dried, and cut into 13 (cm 2 ).
  • MEA was prepared by hot pressing on the electrolyte membrane.
  • the pore volume of the catalyst layer measured by the nitrogen pore distribution method was 0.080 cc ng.
  • the catalyst layer (with a Teflon resin film) after casting and drying was treated with 30 (cm 2 ) They were cut out and cut into 0.5 cm X 0.5 cm.
  • a PtFe (60 wt%) supported carbon catalyst was used.
  • Pt 5 wt% supported Ce—Zr—Ox powder was not added.
  • the pore volume was 0.0052 cc Zg.
  • Table 9 shows the composition of each catalyst, and Table 10 shows the activity evaluation results.
  • Example 8 According to the following procedure, a Pt Fe (60 wt%)-supported carbon catalyst supported a Pt 5 wt% -supported Ce—Zr-OX powder (20 wt% based on the catalyst). %) On the electrolyte membrane side.
  • the catalyst ink was cast (thickness: 3 mi 1) on a teflon resin film and dried.
  • An electrode having a film thickness of 6 mi 1 was prepared using a carbon catalyst supported by PtFe (60 wt%). This is Comparative Example 8-1, which does not contain Pt 5 wt% supported Ce—Zr—Y—Ox powder.
  • Table 11 shows the composition of each catalyst, and Table 12 shows the activity evaluation results.
  • Cathode electrode prepared by mixing PtFe (60 wt%) supported carbon with Pt 5 wt% supported Ce—Zr—Ox powder to catalyst 20 wt% by the following procedure As shown in Fig. 7, a system for periodically circulating H2 before or during operation was constructed.
  • the catalyst ink was cast (thickness: 6 mi 1) on a PTFE resin film, dried, and cut into 13 (cm 2 ).
  • MEA was prepared by hot pressing on the electrolyte membrane.
  • Table 13 below shows the composition of each catalyst, and Table 14 shows the activity evaluation results. Table 13

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

 触媒担持導電性担体と、高分子電解質とからなる触媒層を有する燃料電池用カソードであって、前記触媒担持導電性担体には酸素吸放出体と接触した触媒がさらに担持又は混合されていることを特徴とする燃料電池用カソード。これにより、酸素還元反応に対する優れた電極特性を有するカソード及びこれを備えた高い電池出力を得ることのできる固体高分子型燃料電池を提供することが出来る。

Description

燃料電池用力ソー ド及びこれを備えた固体高分子型燃料電池 技術分野
本発明は、 燃料電池用力ソード及びこれを備えた固体高分子型燃料電 池に関する。 背景技術 明
高分子電解質膜を有する固体高分子型燃料電池は、 小型軽量化が容易 田
であることから、 電気自動車等の移動車両や、 小型コジェネレーショ ン システムの電源等と しての実用化が期待されている。 しかし、 固体高分 子型燃料電池は作動温度が比較的低くその排熱が補機動力などに有効利 用しにくいため、 その実用化のためにはアノード反応ガス (純水素等) の利用率及び力ソー ド反応ガス (空気等) の利用率の高い作動条件下に おいて、 高い発電効率及び高い出力密度を得ることのできる性能が要求 されている。
固体高分子型燃料電池のァノー ド及びカソードの各触媒層内における 電極反応は、 各反応ガスと、 触媒と、 含フッ素イオン交換樹脂 (電解質) とが同時に存在する三相界面 (以下、 反応サイ トという) において進行 する。 そのため、 固体高分子型燃料電池においては、 従来より、 金属触 媒又は金属担持触媒 (例えば、 比表面積の大きなカーポンプラック担体 に白金等の金属触媒を担持した金属担持カーボン等) 等の触媒を高分子 電解質膜と同種或いは異種の含フッ素イオン交換樹脂で被覆して触媒層 の構成材料と して使用し、 いわゆる触媒層内の反応サイ トの 3次元化を 行なう ことによ り当該反応サイ トの増大化が図られている。
上記の触媒を被覆する含フッ素ィオン交換樹脂と しては、 デュポン社 製 「ナフイオン」 等に代表されるようなイオン導電性が高くかつ、 酸化 及び還元雰囲気下において化学的に安定なスルホン酸基を有するパーフ ルォロカ一ボン重合体 (以下、 スルホン酸型パーフ /レオ口カーボン重合 体という) が使用されている。
しかし、 従来の力ソー ドの触媒層に含まれている含フッ素ィオン交換 樹脂はイオン伝導性と化学的安定性に優れている反面、 樹脂内の酸素ガ ス透過性が不十分であるため、 触媒層内の酸素透過 t生が不十分となり、 カソードにおける酸素還元反応の過電圧が大きくなり 、 高い電極特性を 得ることが困難となっていた。
これに対して、 特開平 1 1— 3 5 4 1 2 9号公報においては、 触媒を 被覆する含フッ素イオン交換樹脂に含フッ素エーテ /レ化合物を混合して カソードの触媒層内の酸素透過性を増加させること〖こよ りカソードの過 電圧の低減を図った固体高分子形燃料電池が提案されている。
しかしながら、 特開平 1 1 一 3 5 4 1 2 9号公報に記載の固体高分子 形燃料電池であっても、 カソードの触媒層内の酸素透過性が不十分であ り、 力ソー ドの過電圧を十分に低減できておらず、 また、 力ソードの触 媒層の耐久性が不十分であり、 電池寿命が短いという問題がある。 これ は、 好ましいとされる含フッ素エーテル化合物が油状の低分子化合物で あるため、 発電中においてこれが反応生成水に徐々に溶解するか、 それ に同伴して含フッ素イオン交換樹脂から脱離し、 更に、 生成水とともに 触媒層から排出されてしまうからであると考えられる。
そこで、 特開 2 0 0 2— 2 5 2 0 0 1号公報には、 高い酸素透過性を 有しかつ実質的にイオン交換基を有しない高分子化合物を燃料電池の電 極触媒層に含有させることにより、 特にカソードにおける電極特性を向 上させることが開示されている。
一方、 特開平 8— 1 7 3 7 7 5号公報には、 血液中に含まれるへモグ ロ ビンを模した、 酸素と特異的かつ可逆的な結合をする金属錯体を含む 酸素輸送担体の溶液を、 疎水性でかつ二酸化炭素の溶解速度の遅い媒質 中に分散させた分散液を、 膜化して酸素選択透過膜と し、 外気に通じる 空気取り入れ孔を有する電池容器内に、 空気取り入れ孔に沿って、 酸素 を活物質とするガス拡散電極を設けるとともに、 このガス拡散電極と空 気取り入れ孔との間に、 上記の酸素選択透過膜を介在させた電池が開示 されている。
そこで、 特開平 1 0— 5 5 8 0 7号公報には、 電極触媒に助触媒と し て酸化セリ ゥム等を添加し空気利用率を高めて電池性能を向上させる試 みが、 又特開 2 0 0 3— 1 0 0 3 0 8号公報には、 白金を担持した担体 上に酸化セリ ウムを担持して酸素の還元反応速度を向上させ力ソード反 応を促進させる試みが、 更に J o u r n a l o f P o w e r S o u r c e s 1 1 5 ( 2 0 0 3 ) 4 0— 4 3 には、 C e Z r O xを P t /C触媒層に物理混合して空気利用率を高めて電池性能を向上させる試 みが開示されている。 発明の開示
特開 2 0 0 2— 2 5 2 0 0 1号公報のよ う に、 触媒作成時に酸素透過 樹脂を触媒担持カーボンと電解質と混合して形成すると、 酸素透過樹脂 が電極中に分散するため、 生成水が増えると酸素を触媒表面近傍に導く ことが行われにく くなる。 つまり、 生成水の排水経路と酸素の拡散経路 が同じ場所にあることが問題である。 電極内部に於いて、 電極反応は三 相界面と呼ばれる反応ガス、 触媒、 電解質が会合するサイ トにて進行す る。 三相界面への酸素の供給が一つの重要な トピック としてある。 特開 2 0 0 2 - 2 5 2 0 0 1号公報では、 酸素透過係数の高いポリマーと電 解質と触媒とを物理的に混合することによ り 、 反応の効率を上げている 力 実際に酸素が必要とするのは三相界面であり、 単なる物理的混合で は三相界面近傍に集中的に高い酸素透過性ポリマーを存在させることは できない。 その為、 高い酸素透過材料を用いてもその能力を十二分に発 揮させることができない。 結局、 電極反応は三相界面において行われる という考えに対するアプローチが十分でないといえる。
また、 特開平 8 - 1 7 3 7 7 5号公報のよ うに、 単にガス拡散電極と 空気取り入れ孔との間に、 酸素選択透過膜を介在させた電池では、 直接 触媒に酸素を拡散させるものではなく、 その触媒活性を十分に高めるこ とができなかった。
本発明は、 上記従来技術の有する課題に鑑みてなされたものであり、 酸素還元反応に対する優れた電極特性を有する力ソード及びこれを備え た高い電池出力を得るこ とのできる固体高分子型燃料電池を提供するこ とを目的とする。
本発明者は、 特定の材料を用いて、 カーボン上に酸素分子が拡散でき る経路を確保することにより、 上記課題が解決することを見出し本発明 に至った。
即ち、 第 1に、 本発明は、 触媒担持導電性担体と、 高分子電解質とか らなる触媒層を有する燃料電池用力ソードであって、 前記触媒担持導電 性担体には酸素吸放出体と接触した触媒がさらに担持又は混合されてい ることを特徴とする燃料電池用力ソー ドである。
本発明の力ソ一ドは、 導電性担体に触媒が担持されている と同時に、 触媒が接触している酸素吸放出体がさらに担持又は混合されているので、 触媒表面へ酸素分子の拡散経路が、 触媒が接触している酸素吸放出体に よって確保されるため、 触媒層内の反応サイ ト近傍の反応ガスの濃度を 従来よ り も高くすることが可能である。 その結果、 電極反応における交 換電流密度を増大させることができ、 酸素過電圧を低減できる。 すなわ ち、 高い電極特性を得ることができる。 特に、 固体高分子型燃料電池の 力ソードとして使用すれば、 力ソー ドの酸素還元反応の過電圧を効果的 に低減させることができるので、 カソー ドの電極特性を向上させること ができる。 酸素ガスの不足は、 特に、 燃料電池が運転中に生じるが、 本 発明により、 長時間の運転中も高い電極特性を維持することが出来る。
また、 空気を酸化剤に用いる燃料電池では窒素の存在が電極の反応抑 制の原因となり得る。 本発明では触媒と接触した酸素吸放出体を更に担 持することにより、 窒素ガスの拡散を抑制し、 電極近傍に於ける高い酸 素濃度を実現し、 より高い発電性能を得ることができる。
本発明で用いる酸素吸放出体とは、 酸素を可逆的に吸 · 放出する機能 を有する材料であり、 種々の材料が知られている。 本発明では、 これら を使用することができる。
本発明で用いられる酸素吸放出体は、 近傍の酸素濃度の変動によつて 酸素の吸収と放出を繰り返すことができる金属や金属酸化物である。 即 ち、 比較的 o 2濃度が高い酸化性雰囲気下で酸素を吸収し、 比較的 o2濃 度が低い還元性雰囲気下で酸素を放出するこができる酸化物である。 具体的には、 酸化数の変化によってこの酸素の吸収と放出を行う酸化 数変動性金属酸化物であり、 例えば、 T i 、 V、 C r 、 Mn、 F e、 C o、 N i 、 C u、 N b、 M o、 T a、 W、 C e、 P r 、 及び N d金属、 あるいは、 これらの酸化物が挙げられる。 これらの中で、 Mn、 F e、 C o、 N i の酸化物がより好ましい。 また、 酸素の吸着によってこの酸 素の吸収と放出を行う塩基性酸化物も使用可能である。 例えば、 Z r、 Y、 アルカ リ金属、 又はアルカリ土類金属の酸化物が挙げられる。 具体 的には、 C e O 2、 C e O 2— Z r O 2、 C e 02— Z r 02— Y 2O 3、 C e O 2 - Z r O 2—希土類酸化物から選択される 1種以上の化合物が 好ましく例示される。 なお、 酸素吸放出体は、 これらに限定されるもの ではない
本発明において、 触媒層中の前記酸素吸放出体量は触媒層全量に対し て 5〜 1 6 w t %であることが好ましい。 又、 触媒層中に担持されてい る触媒の全量が 3 0 w t %以下であることが好ましい。 このよ うに、 触 媒活性の高い範囲を選択することによって、 白金等の貴金属使用量を低 減することができる。 後述するように、 本発明では白金使用量を 1ノ 2 としても従来品と同等のセル電圧を生じさせることができる。
本発明において、 酸素吸放出体の平均粒子径が 2 n m〜 4 0 n mであ ることが好ましく、 2 η π!〜 5 n mであることが最も好ましい。 平均粒 子径が 2 n m〜 4 0 n mの酸素吸放出体を担体に高分散に担持すること で、平均粒子径がミクロンオーダーの酸素吸放出体を用いる場合よ り も、 低電流密度側の電池性能 (発電効率) が向上した。
本発明において、酸素吸放出体と して、 C e O2、 C e 02— Z r 02、 C e〇 2— Z r O 2— Y203、 C e 02— Z r O 2—希土類酸化物から選 択される 1種以上の C e O 2—部を C e 2 O 3に還元処理したちのを用い ることが好ましい。 還元処理としては、 水素などの還元性ガスによる処 理ゃヒ ドラジンなどの還元性液体による処理が好ましく例示される。 C e O 2—部を還元前処理して得られる C e 2 O 3を電極に混合することで、 単に酸素吸放出体を混合した電極よ り も、 低電流密度側の電池性能 (発 電効率) が向上した。
本発明において、 触媒層中の高分子電解質量/前記担体量!:匕率 (N Z C ) を 0 . 8以下とすることが好ましく、 0 . 8〜 0 . 7 とすること力 S 最も好ましい。 本発明では、 低電流側で電池性能 (発電効率) が向上す るものの、 高電流密度側では、 酸素吸放出体が親水性のためにフラッテ イングするために、 所望の電池性能 (発電効率) が得られなレヽという新 たな問題が生じていた。 高分子電解質量/前記担体量比率 (N Z C ) を 0 . 8以下とすることにより、 フラッティングを抑制し、 全電流密度領 域で電池性能 (発電効率) を向上させることができる。
本発明において、 担体として撥水性処理されたカーボンを用いること が好ましい。担体として撥水性処理されたカーボンを用いるこ とによ り、 フラッティングを抑制し、 全電流密度領域で電池性能 (発電効率) を向 上させることができる。
本発明において、 触媒層として、 触媒インク状態の時に、 空孔増加処 理を施して細孔容量を増加させたものを用いることが好ましレ、。 空孔增 加処理と しては、 例えば、 超音波ホモジナイザーによる攪拌処理を施す ことが好ましく例示される。 具体的には、 窒素細孔分布法で浪 ij定した触 媒層の細孔容量 ( c c / g ) が従来の触媒層の細孔容量の 1 . 4〜 1 . 8倍程度に空孔増加処理したものが好ましい。 触媒層に空孔増加処理を 施して細孔容量を増加させたことによって、 全電流密度領域で電池性能 (発電効率) を向上させることができる。
本発明において、 触媒層中の、 電解質膜側に酸素吸放出体を拡散層側 より も多く含ませ、 拡散層側に酸素吸放出体を電解質膜側より も少なく 含ませ又は含ませないことが好ましい。 具体的には、 酸素吸放出体を傾 斜配置したり、 酸素吸放出体含有層と酸素吸放出体非含有層の 2層構造 と しても良い。このよ うに、酸素吸放出体の配置に変化を付けることで、 外部から供給された余剰な酸素を電解質膜側の酸素吸放出体が トラップ して、触媒での酸素消費が増加した際に放出し、触媒に供給することで、 触媒の酸素利用効率が改善される。 この結果、 高電流密度側でのフラッ ティ ングを抑制し、 全電流密度領域で電池性能 (発電効率) を向上させ ることができる。
本発明における酸素吸放出体は、 水、 アルコール等の水性溶媒に対し て実質的に不溶であるので、長期作動中において導電体表面から脱離し、 触媒層から排出されてしまう といった不具合の発生を十分に防止するこ とができる。 その結果、 本発明のガス拡散電極は高い電極特 f生を長期に わたり安定して得ることが可能となる。
本発明においては、 表面に触媒と酸素吸放出体が担持又は混合される 導電性担体として、 カーボン粉末または繊維状炭素材料であることが好 ましい。
第 2に、 本発明は、 アノー ドと、 力ソードと、 アノー ドと力ソードと の間に配置された高分子電解質膜とを有する固体高分子型燃料電池であ つて、 力ソードとして前述の力ソー ドを備えることを特徴とする固体高 分子型燃料電池である。
このよ うに、 先に述べた酸素還元反応に対する優れた電極特性を有す る本発明の力ソードを備えることにより、 高い電池出力を有する固体高 分子型燃料電池を構成することが可能となる。また、先に述べたように、 本発明の力ソー ドはフラッデイングの発生を十分に防止することができ ると ともに耐久性に優れているので、 これを備える本発明の固体高分子 型燃料電池は高い電池出力を長期にわたり安定して得ることが可能とな る。
第 3に、 本発明は、 アノー ドと、 力ソードと、 前記ァノー ドと前記力 ソー ドとの間に配置された高分子電解質膜とを有する固体高分子型燃料 電池の運転方法の発明であり、 該カソードとして上記の燃料電池用力ソ ードを備え、 酸素吸放出体である C e〇 2、 C e O 2— Z r〇 2、 C e O 2— Z r O 2— Y2 O 3、 C e 02— Z r O 2—希土類酸化物から選択され る 1種以上を運転前及び/又は運転中定期的に水素ガスをパノレス的に付 与して、 C e 02—部を C e 203に還元する処理を施すものである。 C e O 2—部を C e 2 O 3に還元する処理することで、 運転前及び Z又は運 転中定期的に酸素吸放出体を還元処理しない場合よ り も、 全電流密度側 の電池性能 (発電効率) が向上する。
酸素吸放出体を混合させた力ソードに水素をパルス的に流通させるシ ステムにより、 生成水滞留を抑制し、 フラッティングを低減でき、 全電 流密度領域で高性能を発現できる。
ここで、 パルス的とは、 具体的には、 燃科電池の運転前及び Z又は運 転中に、 数分間に一度数秒間、 還元性ガスである水素ガスを付与する。
なお、 力ソードに水素をパルス的に流通させる際には、 水素量を爆発 限界である 4. 2 %以下とする必要がある。 図面の簡単な説明
第 1図は、 従来 ( 1 ) の力ソードでの触媒電極反応の概念図を示す。 第 1 A図は、 反応開始時または出力が低い時であり、 第 1 B図は、 出力 が大きくなつた時である。 第 2図は、 従来 ( 2 ) の力ソー ドでの触媒電 極反応の概念図を示す。 第 3図は、 本発明の力ソー ドでの触媒電極反応 の概念図を示す。 第 4図は、 実施例 1一 1 と比較例 1— 1の電圧—電流 密度曲線を示す。 第 5図は、 膜厚を変化させた時の、 実施例 2 - 1 と比 較例 2— 1、 2— 2のセル電圧を示す。 第 6図は、 白金触媒担持密度を 変化させた時の、 実施例 2— 2と比較例 2— 1、 2— 2のセノレ電圧を示 す。 第 7図は、 運転前または運転中に定期的に H 2を流通させるシステ ムの概念図を示す。 発明を実施するための最良の形態
以下、 本発明の力ソード及びこれを備えた固体高分子型燃料電池の好 適な実施形態について詳細に説明する。 .
第 1図に、 従来技術 ( 1 ) の力ソー ドでの触媒電極反応の概念図を示 す。 第 1 A図は、 反応開始時または出力が低い時であり、 酸素をあまり 必要と しないので触媒近傍には酸素の供給が通常の拡散によって保たれ ている。 つま り、 触媒近くに拡散して来た酸素分子は、 プロ トンと 電子 と下記化学式の反応を行って水分子を生成する。
O 2 + 4 H + + 4 e > 2 H 2 O
第 1 B図は、 出力が大きくなつた時であり、 大量の酸素を消費 1~る。 その為触媒近傍での酸素分圧は極端に低下する。 反応を行うには^ の酸 素が拡散してく るのを待つしかなく、 発電特性の低下を招いている 。 第 2図に、 従来技術 ( 2 ) の力ソー ドでの触媒電極反応の概念囫を示 す。 触媒が担持された導電性カーボンの近傍に、 酸素吸放出体と して例 えば C e 0 2が、 同じく導電性カーボン上に担持されている。 燃 電池 が低出力領域で運転されている際には、 触媒での酸素消費量が少なく、 酸素吸放出体近傍の酸素濃度が濃いため酸素吸放出体に余剰の酸素が吸 蔵される。 一方、 燃料電池が高出力で運転されている場合には、 角 ¾媒で の酸素消費量が多く酸素吸放出体近傍の酸素濃度が薄くなるため、 酸素 吸放出体から酸素が放出される。 ·この放出された酸素が触媒上で靈元さ れることによ り、 燃料電池性能が更に向上する。 このように、 P t 電極 触媒近傍から酸素が放出されるため触媒層のガス拡散の影響を受 るこ となく P t触媒へ酸素が供給されるため燃料電池の出力が向上する。 第 3図に、 本発明の力ソー ドでの触媒電極反応の概念図を示す。 触媒 Aが担持された導電性カーボンの近傍に、 酸素吸放出体として例えば C e O 2が、 同じく導電性カーボン上に担持されており、 該酸素吸 出体 には触媒 Bが接触している。 触媒 Aは力ソー ド反応
O 2 + 4 H + + 4 e > 2 H 2 O
を起こす。触媒 Bは酸素吸放出体の酸素吸放出を促進する。これによ り、 燃料電池が低出力領域で運転されている際には、 触媒での酸素消費量が 少なく、 酸素吸放出体近傍の酸素濃度が濃いため酸素吸放出体に余剰の 酸素が効率良く吸蔵される。 一方、 燃料電池が高出力で運転されている 場合には、 触媒での酸素消費量が多く酸素吸放出体近傍の酸素濃度が薄 くなるため、 酸素吸放出体から酸素が効率良く放出される。 この放出さ れた酸素が触媒上で還元されることによ り、 燃料電池性能が更に向上す る。 このよ う に、 P t電極触媒近傍から酸素が放出されるため触媒層の ガス拡散の影響を受けることなく P t触媒へ酸素が供給されるため燃料 電池の出力が向上する。
電極反応は三相界面と呼ばれる反応ガス、 触媒、 電解質が会合するサ ィ トにて進行する。 三相界面への酸素の供給が一つの重要な トピック と してある。電池の出力を高く した場合、反応に大量の酸素が必要となり、 触媒近傍に酸素がなければ発電特性は急激に低下する。 従来の技術では 高濃度の酸素を供給するという形式であるが、 第 1図に示すように、 実 際の反応は三相界面 (.触媒近傍) で行われるので、 ここに酸素が供給さ れていなければその能力を十二分に発揮させることができな 、。 特に、 出力を上げた場合、 触媒表面での酸素消費量は上昇するが、 外部から触 媒表面に至る酸素の拡散速度は殆ど変化することがない。 その為、 ある 一定以上の触媒表面での酸素の消費速度が、 触媒表面への酸素の供給速 度を上回った場合、 触媒近傍付近の酸素欠により発電特性は低下する。 これに対して、 第 2図に示すように、 本発明では、 触媒表面への酸素の 供給速度を高めることによって、 触媒近傍付近の酸素欠による発電特性 の低下を防止している。
本発明の固体高分子型燃料電池の力ソードは、 触媒層を備えるが、 触 媒層と、 該触媒層に隣接して配置されるガス拡散層とからなることが好 ましい。 ガス拡散層の構成材料と しては、 例えば、 電子伝導性を有する 多孔質体(例えば、カーボンク口スゃカーボンペーパー)が使用される。 力ソードの触媒層には、 酸素吸放出体が存在しており、 力 ソードにお ける酸素還元反応に対する過電圧を低減させることによる力ソー ドの電 極反応速度の向上が図られている。
また、 触媒層に含まれている、 酸素吸放出体の含有率は触媒担持導電 体と高分子電解質との合量に対して 0 . 1〜 5 0質量%であることが好 ましく、 1 〜 4 0質量%であることがよ り好ましい。 ここで、 酸素吸放 出体の含有率が 0 . 1質量%未満であると、 酸素還元反応に対する酸素 過電圧を十分に低減することが困難となる傾向が大きくなる。 一方、 酸 素吸放出体の含有率が 5 0質量%を超えると触媒層中に含有される含フ ッ素イオン交換樹脂の含有率が相対的に低下し、 その結果、 触媒層中で 有効に機能する反応サイ トが減少するため高い電極特性を得ることが因 難となる。
本発明の力ソー ドの触媒担持導電体に含まれる触媒は特に限定される ものではないが、 白金又は白金合金が好ましい。 更に、 触媒担持導電体 中に含有される触媒は、 電気伝導性の担体に担持されていることが好ま しい。 この担体は特に限定されないが、 比表面積が 2 0 0 m 2 / g以 Jb のカーボン材料が好ましい。 例えば、 カーボンブラックや活性炭など ^ 好ましく使用される。
また、 本発明の触媒層に含有される高分子電解質と しては、 含フッ素 イオン交換樹脂が好ましく, 特に、 スルホン酸型パーフルォロカーボン 重合体であることが好ましい。 スルホン酸型パーフルォ口カーボン重合 体は、 カソード内において長期間化学的に安定でかつ速やかなプロ ト ン 伝導を可能にする。
また、 本発明の力ソードの触媒層の層厚は、 通常のガス拡散電極と同 等であればよく、 1〜: ί θ θ μ πιであることが好ましく、 3〜 5 0 μ ΐη であることがより好ましい。
固体高分子型燃料電池においては、 通常、 アノードの水素酸化反応の 過電圧に比較して力ソードの酸素還元反応の過電圧が非常に大きいので、 上記のようにカソードの触媒層内の反応サイ ト近傍の酸素濃度を増加さ せて当該反応サイ トを有効に利用し、 カソー ドの電極特性を向上させる ことは、 電池の出力特性を向上させる上で効果的である。
一方、 アノー ドの構成は特に限定されず、 例えば、 公知のガス拡散電 極の構成を有していてよい。 また、 本発明の固体高分子型燃料電池に使用する高分子電解質膜は、 湿潤状態下で良好なイオン伝導性を示すィオン交換膜であれば特に限定 されない。高分子電解質膜を構成する固体高分子材料としては、例えば、 スルホン酸基を有するパーフルォロカーボン重合体、ポリサルホン樹脂、 ホスホン酸基又はカルボン酸基を有するパーフルォロカーボン重合体等 を用いることができる。 中でも、 スルホン酸型パーフルォロカーボン重 合体が好ましい。 そして、 この高分子電解質膜は、 触媒層に含まれる含 フッ素イオン交換樹脂と同じ榭脂からなっていてもよく、 異なる樹月旨か らなっていてもよい。
本発明の力ソー ドの触媒層は、 予め、 導電性担体に触媒と酸素吸放出 体を担持させたものと高分子電解質を溶媒又は分散媒に溶解又は分散し た塗工液を用いて作製することができる。 または、 触媒担持導電性担体 と、 高分子電解質と、 酸素吸放出体とが、 溶媒又は分散媒に溶解又は分. 散した塗工液を用いて作製することができる。 ここで用いる溶媒又は分 散媒と しては、 例えばアルコール、 含フッ素アルコール、 含フッ素ユー テル等が使用できる。 そして、 塗工液をイオン交換膜又はガス拡散層と なるカーボンクロス等に塗工することによ り触媒層が形成される。また、 別途用意した基材に上記塗工液を塗工して塗工層を形成し、 これをィォ ン交換膜上に転写することによってもイオン交換膜上に触媒層が形成で ぎる。
ここで、 触媒層をガス拡散層上に形成した場合には、 触媒層とイオン 交換膜どを接着法ゃホッ トプレス法等によ り接合することが好まし V、。 また、 イオン交換膜上に触媒層を形成した場合には、 触媒層のみでカソ 一ドを構成してもよいが、 更に触媒層に隣接してガス拡散層を配置し、 力ソードとしてもよい。
力ソードの外側には、 通常ガスの流路が形成されたセパレータが酉己置 され、 当該流路にアノードには水素を含むガス、 力ソードには酸素を含 むガスが供給されて固体高分子型燃料電池が構成される。
以下、 実施例及び比較例を挙げて本発明の力ソード及び固体高分子型 燃料電池について詳しく説明する。
[実施例 1 ]
(実施例 1 )
酸素吸放出剤として C e 02— Z r O 2複合酸化物を用いた。 カーボン として P r i n t e x X E 2 Bを用い、白金は塩化白金酸を含浸法によ りカーボン上に担持する。 この白金担持カーボンに、 ? 1; を 5 ^ 1: %担 持した C e 〇 2— Z r O 2複合酸化物を 2 0 w t %混合して、触媒を調製 した。
(比較例 1 )
C e O 2— Z r O 2複合酸化物を添加しなかった他は実施例 1 と同様 にして、 触媒を調製した。
[触媒活性評価]
電極面積 1 2. 9 6 c m 2の単セルにて下記の発電評価試験を行つた。
「ガス流量」 ァノード : H2 5 0 0 c c / m i n
カソー ド : 空気 3 0 0 c c / m i n
「加湿温度」 ァノー ドパブリ ング : 7 5 °C
カソード、パ、ブリ ング : 6 0 °C
「カソ一ド膜厚」 6 m 1 1
「圧力」 ァノー K : 0 . 2 MP a
カソー K : 0 . 2 MP a
「セル温度」 : 8 0 °C
第 4図に評価結果を示す。 第 4図の結果より、 本発明の触媒と接触し た酸素吸放出体が担持された電極を用いた燃料電池は、 酸素吸放出体が 担持されない電極を用いた比較例と比べて、 低電流密度側で、 酸素吸放 出体を添加しない比較例より発電性能において優れていることが分る。
[実施例 2 ]
(実施例 2— 1 )
下記の手順によ り、 P t F e ( 6 0 w t %) 担持カーボン触媒に P t 5 w t %担持 C e — Z r — O x粉末を 2 0 w t %混合した膜厚 3 m i 1 の電極を作成した。
( 1 ) C e — Z r — O x複合酸化物粉末をジニ ト ロジァミ ン P t錯体水 溶液に浸漬攪拌して 1 2 0°Cで蒸発乾固 (粉末に対して P t 5 w t %含 む)。
( 2) 乳鉢で粉砕した後、 大気焼成炉で 5 0 0 °C X 2時間焼成。 再び乳 鉢で粉碎する。
( 3 )市販の P t F e ( 6 0 w t % )担持カーボン触媒にィォン交換水、 P t 5 w t %担持 C e— Z r — O x粉末 (触媒に対して 2 0 w t %;)、 電 解質溶液 (N a f i 0 n)、 エタノール、 プロ ピレンダリ コールを所定量 混合して、 触媒イ ンクを作成。
( 4 ) 触媒ィンクを超音波ホモジナイザ一で攪拌 ( 3 0 m i n) 後、 マ グネティ ックスタ一ラーで攪拌 ( 1 5 m i n) を ( 3回繰り返す)。
( 5 ) 触媒ィンクをテフ口ン榭脂膜にキャス ト (膜厚 3 m i 1 ) して、 乾燥、 1 3 ( c m2) に切り出す。
( 6 ) 電解質膜にホッ トプレスして ME Aを作成.
( 7 ) ME Aをセルに組み付け、 実施例 1 と同様に評価した。
(実施例 2 - 2 )
P t F e ( 3 0 w t % ) 担持カーポン触媒に P t 5 w t %担持 C e— Z r — O x粉末を 2 0 w t %混合した膜厚 6 m i 1 の電極を作成した。 これは、 実施例 2— 1の ( 3 ) で P t F e ( 3 0 w t % ) 担持カーボン 触媒に変更、 ( 5 ) で膜厚 6 m i 1 に変更したものである。
(比較例 2— 1 )
P t F e ( 6 0 w t % ) 担持カーボン触媒を用いた膜厚 6 m i 1 の電 極を作成した。
(比較例 2— 2 )
P t F e ( 6 0 w t % ) 担持カーボン触媒に P t 5 w t。/。担持 C e一 Z r — O x粉末を 1 0 w t %混合した膜厚 4 m i 1 の電極を作成した。 (比較例 2— 3 )
P t F e ( 6 0 w t % ) 担持カーボン触媒に P t 5 w t %担持 C e - Z r — O x粉末を 3 0 w t %混合した膜厚 4 m i 1 の電極を作成した。 結果を、 第 5図及び第 6図に示す。 第 5図及び第 6図より、 ( 1 ) 本実 施例の電極は比較例の電極と比べて発電活性が高く、 ( 2 )白金使用量を 1 Z 2 と しても従来品と同等のセル電圧を生じさせることができる、 こ とが分る。 これにより、 白金等の貴金属の使用量を低減させることがで き、 燃料電池のコス ト削減に寄与する。
[実施例 3 ]
(実施例 3 )
下記の手順により、 P t F e ( 6 0 w t %) 担持カーボン触媒に C e — Z r 一 O x粉末を 2 0 w t %で高分散に担持した触媒を含む電極を作 成した。
( 1 ) イオン交換水中に硝酸セリ ウム、 硝酸ジルコニウムの試薬を所定 量溶解させた (P t F e ( 6 0 w t % ) 担持カーボンに対して、 C e — Z r 一 O x粉末が 2 0 w t %程度になる量を溶解させる)。
( 2 ) 市販の P t F e ( 6 0 w t % ) 担持カーボン触媒を懸濁させ、 還 元剤 (水酸化ナト リ ウム水溶液等) を滴下して、 セリ ウム、 ジルコニゥ ム、 イ ツ ト リ ゥムの水酸化物をカーボン上に担持させた。
( 3 ) 水洗ろ過して得た粉末を真空乾燥炉 1 2 0 °Cで乾燥させた後、 大 気中で 2 4 h放置した。
( 4 ) 不活性ガス中で 5 0 0 °C X 2 h処理した。
( 5 ) ( 4) で得た粉末に、イオン交換水、 電解質溶液(N a f i o n )、 エタノール、 プロ ピレングリ コールを所定量混合して、 触媒ィンクを作 成した。 (N a f i o n量は、 N/C = 1 (重量比) になるよ う調整)
( 6 ) 触媒ィンクを超音波ホモジナイザ一で攪拌 ( 3 0 m i n ) 後、 マ グネティ ックスターラーで攪拌 ( 1 5 m i n ) を 3回繰り返えした。
( 7 ) 触媒イ ンクをテフロン樹脂膜にキャス ト (膜厚 3 m i 1 ) して、 乾燥、 1 3 ( c m2) に切り出した。
( 8 ) 電解質膜にホッ トプレスして ME Aを作成した。
( 9 ) MEAをセルに組み付け、 実施例 1 と同様に評価した。 ここで、 上記 ( 2 ) 〜 (4 ) は触媒粒子径をナノオーダー化する操作 である。 T EMで触媒の平均粒径が 1 0 n mであることを確認した。
(比較例 3 _ 1 )
P t ( 6 0 w t % ) 担持カーボンに P t 5 w t %担持 C e— Z r _ O x粉末を 2 0 w t %物理混合した電極を作製した。
( 1 ) C e - Z r - O x複合酸化物粉末をジニ トロジァミ ン P t錯体水 溶液に浸漬攪拌して 1 2 0 °Cで蒸発乾固した。 (粉末に対して P t 5 w t %含む)
( 2 ) 乳鉢で粉砕した後、 大気焼成炉で 5 0 0 °C X 2時間焼成。 再び乳 鉢で粉砕した。
( 3 )市販の P t F e ( 6 0 w t % )担持カーボン触媒にィォン交換水、 P t 5 w t %担持 C e— Z r — O x粉末 (触媒に対して 2 0 w t % )、 電 解質溶液 (N a f i 0 n )、 ェタノール、 プロピレンダリ コールを所定量 混合して、 触媒インクを作成した。
( 4 ) 実施例 3の ( 6 ) 以降同様に調製した。
(比較例 3— 2 )
P t F e ( 6 0 t % ) 担持カーボン触媒を用いた。
比較例 3— 1の ( 1 ) ( 2 ) なし。 ( 3 ) 以降同様に行った (但し、 ( 3 ) で C e — Z r 一 O X粉末粉末を添加しない)。
比較例 3— 1、 及び 3— 2の触媒の平均粒径が 2〜 5 μ ιηであること を Τ Ε Μで確認した。
下記第 1表に、 各触媒の組成を示し、 第 2表に活性評価結果を示す。
ί— 1
ox Ο
Figure imgf000019_0001
Figure imgf000020_0001
第 2表の結果から、 平均粒子径が 2 n n!〜 4 0 n mの酸素吸放出体を 担体に高分散に担持するこ とで、 平均粒子径がミ ク ロ ンオーダーの酸素 吸放出体を用いる場合よりも、 低電流密度側の電池性能 (発電効率) が 向上することが分る。
[実施例 4 ] (実施例 4)
下記の手順により、 P t F e ( 6 0 w t %) 担持カーボンに水素還元 P t 5 w t 。/。担持 C e— Z r — O x粉末を 2 0 w t %混合した電極を作 成した。
( 1 ) C e— Z r — O X複合酸化物粉末をジニ ト ロジァミ ン P t錯体水 溶液に浸漬攪拌して 1 2 0 °Cで蒸発乾固した。 (粉末に対して P t 5 w t %含む)
( 2 ) 乳鉢で粉砕した後、 大気焼成炉で 5 0 0 °C X 2時間焼成。 再び乳 鉢で粉砕した。
( 3 ) 水素雰囲気中で 3 5 0 °C X 2時間処理した。
(4)市販の P t F e ( 6 0 w t % )担持カーボン触媒にィオン交換水、 水素還元 P t 5 w t %担持 C e— Z r - O X粉末 (触媒に対して 2 0 w t %)、 電解質溶液 (N a f i o n), ェタノール、 プロ ピレングリ コー ルを所定量混合して、 触媒インクを作成した。
( 5 ) 触媒インクを超音波ホモジナイザ一で攪拌 ( 3 0 m i n ) 後、 マ グネティ ックスターラーで攪拌 ( 1 5 m i n) を 3回繰り返した。
( 6 ) 触媒イ ンクをテフロン樹脂膜にキャス ト (膜厚 6 m i 1 ) して、 乾燥、 1 3 ( c m2) に切り出す。
( 7 ) 電解質膜にホッ トプレスして ME Aを作成した。
( 8 ) ME Aをセルに組み付け、 実施例 1 と同様に評価した。
(比較例 4— 1 )
P t F e ( 6 0 w t % ) 担持カーボンに P t 5 w t %担持 C e— Z r 一 O x粉末を 2 0 w t %混合した電極を作製した。 これは、 実施例 4に おいて、 ( 3 ) 水素還元処理を行わないものである。
(比較例 4— 2 )
P t F e ( 6 0 w t % ) 担持カーボン触媒を用いた。
下記第 3表に、 各触媒の組成を示し、 第 4表に活性評価結果を示す。 第 3表
Figure imgf000022_0001
第 4表
Figure imgf000023_0001
第 4表の結果から、 C e O 2—部を還元前処理して得られる C e 2 O 3 を電極に混合することで、単に酸素酸素吸放出体を混合した電極よ りも、 低電流密度側の電池性能 (発電効率) が向上することが分る。
[実施例 5 ] (実施例 5 )
下記の手順によ り、 P t F e ( 6 0 w t % ) 担持カーボン触媒に P t 5 w t %担持 C e — Z r — O x粉末を 2 0 w t %混合した電極を作製し た。
( 1 ) C e— Z r —O X複合酸化物粉末をジニ トロジァミ ン P t錯体水 溶液に浸漬撹押して 1 2 0 °Cで蒸発乾固した。 (粉末に対して P t 5 w t %含む)
( 2) 乳鉢で粉砕した後、 大気焼成炉で 5 0 0 °C X 2時間焼成。 再び乳 鉢で粉砕した。
( 3 )市販の P t F e ( 6 0 w t % )担持カーボン触媒にィオン交換水、 P t 5 w t %担持 C e— Z r— O X粉末 (触媒に対して 2 0 w t %)、 電 解質溶液 (N a f i o n)、 ェタノール、 プロ ピレングリ コールを所定量 混合して、 触媒ィンクを作成した。 (N a f i o n量は、 N/C = 0. 7 5 (w t %) になるよ う調整)
( 4 ) 触媒ィンクを超音波ホモジナイザ一で攪拌 ( 3 0 m i n ) 後、 マ グネティ ックスターラーで攪拌 ( 1 5 m i n) を 3回繰り返えした。
( 5 ) 触媒インクをテフロン樹脂膜にキャス ト (膜厚 3 m i 1 ) して、 乾燥、 1 3 ( c m2) に切り出す。
( 6 ) 電解質膜にホッ トプレスして ME Aを作成した。
( 7 ) ME Aをセルに組み付け、 実施例 1 と同様に評価した。
(比較例 5— 1 )
P t F e ( 6 0 w t % ) 担持カーボン触媒に P t 5 w t %担持 C e— Z r 一 O x粉末を 2 0 w t %混合した N/C= lの電極を作製した。 (比較例 5— 2 )
P t F e ( 6 0 w t %) 担持カーボン触媒に P t 5 w t %担持 C e— Z r - O 粉末を 2 0 w t %混合した NZC = 0.5の電極を作製した。 (比較例 5— 3 )
P t F e ( 6 0 w t % ) 担持カーボン触媒 (NZ C = 1 ) を用いた。 (比較例 5— 4 ) P t ( 6 0 w t % ) 担持カーボン触媒 ( N / C = 1 ) を用いた。 下記第 5表に、 各触媒の組成を示し、 第 6表に活性評価結果を示す。 第 5表
Figure imgf000025_0001
Figure imgf000026_0001
峯 9绻
SST100/S00idf/X3d LLLILO/SOOZ OAV 第 6表の結果から、高分子電解質量 Z前記担体量比率(N/C)を 0. 8以下とすることにより、 フラッティングを抑制し、 全電流密度領域で 電池性能 (発電効率) を向上させることができることが分る。
[実施例 6 ]
(実施例 6 )
下記の手順によ り、 P t F e ( 6 0 w t % ) 担持カーボン触媒 (カー ポンが撥水性) に P t 5 w t %担持 C e— Z r — O x粉末を 2 0 w t % 混合した電極を作製した。
実施例 5の ( 3 ) で P t ( 6 0 w t % ) 担持カーボン触媒のカーボン を撥水性カーボンに変更。 NZC = 1. 0 とする。 ここで、 P t F e触 媒は、 酸洗浄工程を加えるため親水性官能基がカーボンに導入される。
(比較例 6— 1 )
P F e ( 6 0 w t % ) 担持カーボン触媒に P t 5 w t %担持 C e— Z r - O 粉末を 2 0 w t %混合した NZ C = 1の電極を作製した。 (比較例 6— 2 )
P t F e ( 6 0 t % ) 担持カーボン触媒に P t 5 w t %担持 C e— Z r — O x粉末を 2 0 w t %混合した N/ C = 0.5の電極を作製した。 (比較例 6— 3 )
P t F e ( 6 0 t % ) 担持カーボン触媒 (NZ C = 1 ) を用いた。 (比較例 6— 4)
P t ( 6 0 t % ) 担持カーボン触媒 (N/C = 1 ) を用いた。
下記第 7表に、 各触媒の組成を示し、 第 8表に活性評価結果を示す。
9Z
Figure imgf000028_0001
SSll00/S00Zdf/X3d LLLILO/SOOZ OAV
Figure imgf000029_0001
第 8表の結果から、 担体として撥水性処理されたカーボンを用いるこ とによ り、 フラッティングを抑制し、 全電流密度領域で電池性能 (発電 効率) を向上させることができることが分る。
[実施例 7 ]
(実施例 7 )
下記の手順により、 P t F e ( 6 0 w t % ) 担持カーボンに P t 5 w t %担持 C e— Z r — O x粉末を 2 0 w t %混合した電極を作製した。
( 1 ) C e — Z r — O x複合酸化物粉末をジニ トロジァミ ン P t錯体水 溶液に浸漬 ·攪拌して 1 2 0 °Cで蒸発 '乾固した。 (粉末に対して P t 5 w t %含む)
( 2 ) 乳鉢で粉砕した後、 大気焼成炉で 5 0 0 °C X 2時間焼成。 再び乳 鉢で粉砕した。
( 3 )市販の P t F e ( 6 0 w t %)担持カーボン触媒にィォン交換水、 水素還元 P t 5 w t %担持 C e— Z r — O x粉末粉末 (触媒に対して 2 0 w t %)、 電解質溶液 (N a f i 0 n)、 エタノール、 プロピレンダリ コールを所定量混合して、 触媒インクを作成した。
( 4) 触媒ィンクを超音波ホモジナイザーで攪拌 ( 3 0 m i n) 後、 マ グネティ ックスターラーで攪拌 ( 1 5 m i n) を 3回繰り返えした。 ( 5 ) 触媒インクに A rガスをパブリ ング ( 1 0 0 c cノ m i n ) しな がら、 マグネティ ックスターラーで激しく ( 6 0 0 r p m) 攪拌 ( 3 0 分間) した。
( 6 ) 触媒イ ンクをテフロ ン樹脂膜にキャス ト (膜厚 6 m i 1 ) して、 乾燥、 1 3 ( c m2) に切り出した。
( 7 ) 電解質膜にホッ トプレスして ME Aを作成した。
( 8 ) ME Aをセルに組み付け、 実施例 1 と同様に評価した。
( 9 ) 裁断片を窒素細孔分布装置にセッ ト して細孔容量を測定した。
( 5 ) のパプリ ング操作により、 窒素細孔分布法で測定した触媒層の 細孔容量は 0. 0 0 8 0 c cノ g となった。 ここで、細孔容量評価法は、 キャス ト、 乾燥後の触媒層 (テフロン樹脂膜付き) を 3 0 ( c m2) ほ ど切り出し、 0. 5 c m X 0. 5 c mに裁断して行った。
(比較例 7— 1 )
P t F e ( 6 0 w t % ) 担持カーボンに P t 5 w t 0/。担持 C e— Z r 一 O x粉末を 2 0 w t。/。混合した電極を用いた。 これは、 実施例 7にお いて、 ( 5 ) 工程を行わないものである。 細孔容量は 0. 0 0 6 7 c c Z gであった。
(比較例 7— 2 )
P t F e ( 6 0 w t % ) 担持カーボン触媒を用いた。 比較例 7— 2に おいて、 P t 5 w t %担持 C e — Z r— O x粉末を添加しないも のであ る。 細孔容量は 0. 0 0 5 2 c c Z gであった。
下記第 9表に、各触媒の組成を示し、第 1 0表に活性評価結果を示す。 第 9表
Figure imgf000031_0001
第 1 0表
Figure imgf000032_0001
第 1 0表の結果から、 触媒層に空孔増加処理を施して細孔容量を増加 させたこ と によって、 全電流密度領域で電池性能 (発電効率) を向上さ せる こ とができる こ とが分る。
[実施例 8 ]
(実施例 8 ) 下記の手順によ り、 P t F e ( 6 0 w t %) 担持カーボン触媒で構成 されるカソード電極において、 P t 5 w t %担持 C e— Z r - O X粉末 (触媒に対して 2 0 w t %分) を電解質膜側に傾斜配置した電極を作製 した。
( 1 ) C e— Z r — O X複合酸化物粉末をジニトロジァミ ン P t錯体水 溶液に浸漬 '攪拌して 1 2 0 °Cで蒸発 '乾固した。 (粉末に対して P t 5 t %含む)
( 2) 乳鉢で粉砕した後、 大気焼成炉で 5 0 0 °C X 2時間焼成。 再び乳 鉢で粉砕した。
( 3 )市販の P t F e ( 6 0 w t % )担持カーボン触媒にィオン交換水、 P t 5 w t。/。担持 C e— Z r — Ο χ粉末粉末、 電解質溶液 (N a f i o n )、 エタノール、 プロ ピレンダリ コールを所定量混合して、 触媒ィ ンク を作成した。
( 4) 触媒インクを超音波ホモジナイザ一で攪拌 ( 3 0 m i n ) 後、 マ グネティ ックスターラーで攪拌 ( 1 5 m i n ) を 3回繰り返えした。
( 5 ) 触媒ィンクをテフ口ン樹脂膜にキャス ト (膜厚 3 m i 1 ) して、 乾燥した。
( 6) ( 3 ) ( 4) で: P t 5 w t %担持 C e— Z r _ O X粉末を含まない 触媒インクを同様に調製し、 ( 5 ) の上に膜厚 3 m i 1 でキャス ト、 乾燥 した。 (全膜厚 6 m i 1 中で P t 5 w t %担持 C e — Z r — Y— O x粉 末を P t F e / C触媒に対して 2· 0 w t %にする)
( 7 ) 乾燥後の ( 6 ) を 1 3 ( c m2) に切り出す。 電解質膜にホッ ト プレスして ME Aを作成した。
( 8) ME Aをセルに組み付け、 実施例 1 と同様に評価した。
(比較例 8— 1 )
P t F e ( 6 0 w t % ) 担持カーボン触媒で構成される力ソード電極 において、 P t 5 w t %担持 C e— Z r - O X粉末 (触媒に対して 2 0 w t。/。分) を触媒層中に均一に配置した電極を作製した。 これは、 実施 例 8の ( 5 ) で膜厚 6 m i 1 でキャス ト し、 ( 6 ) 工程を行わないもので ある。
(比較例 8— 2 )
P t F e ( 6 0 w t % ) 担持カーボン触媒を用いた膜厚 6 m i 1 の電 極を作製した。 これは、 比較例 8 — 1で、 P t 5 w t %担持 C e— Z r — Y— O X粉末粉末を含まないものである。
下記第 1 1表に、 各触媒の組成を示し、 第 1 2表に活性評価結果を示 す。
^ 1 1 ^i:
Figure imgf000034_0001
第 1 2表
Figure imgf000035_0001
第 1 2表の結果から、 酸素吸放出体の配置に変化を付けることで、 外 部から供給された余剰な酸素を電解質膜側の酸素吸放出体が トラップし て、 触媒での酸素消費が増加した際に放出し、 触媒に供給することで、 触媒の酸素利用効率が改善される。 これにより、 高電流密度側でのフラ ッティングを抑制し、 全電流密度領域で電池性能 (発電効率) を向上さ せることができることが分る。 [実施例 9 ]
(実施例 9 )
下記の手順によ り、 P t F e ( 6 0 w t % ) 担持カーボンに P t 5 w t %担持 C e— Z r — O x粉末を触媒に対して 2 0 w t %混合したカソ ード電極において、 第 7図に示されるような運転前または運転中に定期 的に H 2を流通させるシステムを構築した。
( 1 ) C e— Z r — O x複合酸化物粉末をジニトロジァミ ン P t錯体水 溶液に浸漬 · 攪拌して 1 2 0°Cで蒸発 · 乾固した (粉末に対して P t 5 w t %含む)。
( 2) 乳鉢で粉砗した後、 大気焼成炉で 5 0 0 °C X 2時間焼成。 再び乳 鉢で粉碎した。
( 3 )市販の P t F e ( 6 0 w t % )担持カーボン触媒にィオン交換水、 P t 5 w t %担持 C e— Z r — O X粉末 (触媒に対して 2 0 w t %)、 電 解質溶液 (N a f i o n)、 ェタノール、 プロ ピレングリ コールを所定量 混合して、 触媒イ ンクを作成した。
(4) 触媒ィンクを超音波ホモジナイザーで攪拌 ( 3 0 m i n) 後、 マ グネティ ックスタ一ラーで攪拌 ( 1 5 m i n ) を 3回繰り返えした。
( 5 ) 触媒インクをテフ口ン樹脂膜にキャス ト (腠厚 6 m i 1 ) して、 乾燥、 1 3 ( c m2) に切り出した。
( 6 ) 電解質膜にホッ トプレスして ME Aを作成した。
( 7 ) ME Aをセルに組み付けた。
( 8 )上記実施例 1の触媒活性評価で行った基本運転条件にて通電させ、 5分間に一度、 5秒間力ソード電極に H20. 1 %を混合流通させる制 御を加えた。
(比較例 9一 1 )
P t F e ( 6 0 w t % ) 担持力一ボンに P t 5 w t %担持 C e— Z r 一 O X粉末'を 2 0 w t %混合した力ソード電極を用い通常の運転を行つ た。 これは、 実施例 9において、 ( 8 ) の H2流通制御を加えないもので ある。 (比較例 9一 2 )
P t F e ( 6 0 w t %)担持カーボン触媒を用い通常の運転を行った。 これは、 比較例 9— 1において、 ,P t 5 w t %担持 C e— Z r —〇 x粉 末を添加しないものである。
下記第 1 3表に、 各触媒の組成を示し、 第 1 4表に活性評価結果を示 す。 第 1 3表
Figure imgf000037_0001
第 1 4表
Figure imgf000038_0001
第 1 4表の結果から、 C e〇 2—部を C e 2 O 3に還元する処理するこ とで、 運転前及び/又は運転中定期的に酸素吸放出体を還元処理 しない 場合よ り も、 全電流密度側の電池性能 (発電効率) が向上させる ことが できることが分る。 産業上の利用可能性 本発明によれば、 燃料電池用力ソードの触媒層に触媒と接触した酸素 吸放出体が存在していることにより、 触媒層のガス拡散の影響を受ける ことなく電極近傍に於ける高い酸素濃度を実現し、 よ り高い発電性能を 得ることができた。 特に、 低電流密度側で、 酸素吸放出剤を用いないも のよ り発電性能を向上させることができた。

Claims

1. 触媒担持導電性担体と、 高分子電解質とからなる触媒層を有する 燃料電池用力ソードであって、 前記触媒担持導電性担体には酸素吸放出 体と接触した触媒がさらに担持又は混合されていることを特徴とする燃 料電池用力ソード。
2. 前記酸素吸放出体が、 酸化数の変化によってこの酸素の吸収と放
出を行う酸化数変動性金属青、 金属酸化物、 これらの複合物から選択され る 1種以上であることを特徴とする請求の範囲第 1項に記載の燃料電池 用力ソード。 の
3. 前記酸素吸放出体が、 酸素の吸着によってこの酸素の吸収と放出 を行う Z r、 Y、 アルカリ金属、 又はアルカ リ土類金属の酸化物、 これ 囲
らの複合物から選択される 1種以上であることを特徴とする請求の範囲 第 1項に記載の燃料電池用力ソード。
4. 前記酸素吸放出体が、 C e〇 2、 C e O 2— Z r 〇 2、 C e O 2 - Z r 02— Y203、 C e O 2— Z r O 2 _希土類酸化物から選択される 1 種以上であることを特徴とする請求の範囲第 3項に記載の燃料電池用力 ソー ド。
5. 前記触媒層中の前記酸素吸放出体量が全量に対して 5〜 1 6 w t %であることを特徴とする請求の範囲第 1乃至 4項の何れかに記載の 燃料電池用力ソード。
6. 前記触媒層中に担持される触媒の全量が 3 O w t %以下であるこ とを特徴とする請求の範囲第 1乃至 5項の何れ に記載の燃料電池用力 ソー ド。
7. 前記酸素吸放出体の平均粒子径が 2 n n!〜 4 0 n mであることを 特徴とする請求の範囲第 1乃至 6項の何れかに記載の燃料電池用力ソー ド、。
8. 前記酸素吸放出体として、 C e 02、 C e 〇 2— Z r 02、 C e O 2— Z r O 2— Y203、 C e 02— Z r O 2—希土類酸化物から選択され る 1種以上の C e 02—部を C e 203に還元処理したものを用いること を特徴とする請求の範囲第 4乃至 7項の何れかに記載の燃料電池用力ソ 一ド。
9. 前記触媒層中の前記高分子電解質量/前記担体量比率を 0. 8以 下とすることを特徴とする請求の範囲第 1 乃至 8項の何れかに記載の燃 料電池用力ソード。
1 0. 前記担体として撥水性処理されたカーボンを用いることを特徴 とする請求の範囲第 1乃至 9項の何れかに記載の燃料電池用力ソード。
1 1. 前記触媒層として、 触媒インク状態の時に空孔増加処理を施し て細孔容量を増加させたものを用いること を特徴とする請求の範囲第 1 乃至 1 0項の何れかに記載の燃料電池用力 ソード。
1 2. 前記触媒層中の、 電解質膜側に前記酸素吸放出体を拡散層側よ りも多く含ませ、 拡散層側に前記酸素吸放出体を電解質膜側よ り も少な く含ませ又は含ませないことを特徴とする請求の範囲第 1乃至 1 1項の 何れかに記載の燃料電池用力ソード。
1 3. アノー ドと、 力ソードと、 前記アノー ドと前記力ソー ドとの間 に配置された高分子電解質膜とを有する面体高分子型燃料電池であって、 前記力ソードとして請求の範囲第 1乃至 1 2項の何れかに記載の燃料電 池用力ソードを備えることを特徴とする固体高分子型燃料電池。
1 4. アノー ドと、 力ソードと、 前記アノードと前記力ソードとの間 に配置された高分子電解質膜とを有する固体高分子型燃料電池の運転方 法であって、 前記力ソードとして請求の範囲第 4乃至 1 2項の何れかに 記載の燃料電池用力ソー ドを備え、 酸素吸放出体である C e 02、 C e O2— Z r 02、 C e 02— Z r 02— Y203、 C e〇 2— Z r 〇 2—希土 類酸化物から選択される 1種以上を運転前及び Z又は運転中定期的に水 素ガスをパルス的に付与して、 C e O2—き |3を C e 03に還元する処理を 施すことを特徴とする固体高分子型燃料電池の運転方法。
PCT/JP2005/001155 2004-01-22 2005-01-21 燃料電池用カソード及びこれを備えた固体高分子型燃料電池 WO2005071777A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05704208A EP1708299A1 (en) 2004-01-22 2005-01-21 Cathode for fuel cell and solid polymer fuel cell having same
US10/582,342 US20080280165A1 (en) 2004-01-22 2005-01-21 Fuel Cell Cathode and a Polymer Electrolyte Fuel Cell Having the Same
JP2005517326A JP4349368B2 (ja) 2004-01-22 2005-01-21 燃料電池用カソード及びこれを備えた固体高分子型燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-014131 2004-01-22
JP2004014131 2004-01-22

Publications (1)

Publication Number Publication Date
WO2005071777A1 true WO2005071777A1 (ja) 2005-08-04

Family

ID=34805409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001155 WO2005071777A1 (ja) 2004-01-22 2005-01-21 燃料電池用カソード及びこれを備えた固体高分子型燃料電池

Country Status (5)

Country Link
US (1) US20080280165A1 (ja)
EP (1) EP1708299A1 (ja)
JP (1) JP4349368B2 (ja)
CN (1) CN1906783A (ja)
WO (1) WO2005071777A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101397020B1 (ko) * 2007-11-20 2014-05-21 삼성에스디아이 주식회사 연료전지용 전극촉매, 그 제조방법, 상기 전극촉매를포함하는 전극을 구비한 연료전지
KR20170009911A (ko) 2014-05-26 2017-01-25 쇼와 덴코 가부시키가이샤 산소 환원 촉매

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100069492A (ko) * 2008-12-16 2010-06-24 삼성전자주식회사 연료전지용 전극 촉매, 상기 전극 촉매를 포함하는 전극을 구비한 연료전지
TWI398034B (zh) * 2009-05-06 2013-06-01 Univ Tatung 一種觸媒組成物、其製備方法、以及含其之燃料電池
US8697297B2 (en) * 2010-03-16 2014-04-15 Honda Motor Co., Ltd. Metal-air battery
KR20130037741A (ko) 2011-10-07 2013-04-17 현대자동차주식회사 연료전지용 전극 및 이를 이용한 막-전극 어셈블리 제조 방법
US20140106260A1 (en) * 2012-10-11 2014-04-17 The Trustees Of The University Of Pennsylvania Core-shell nanoparticulate compositions and methods
US10115973B2 (en) * 2015-10-28 2018-10-30 Lg Fuel Cell Systems Inc. Composition of a nickelate composite cathode for a fuel cell
CN109802145A (zh) * 2017-11-15 2019-05-24 中国科学院大连化学物理研究所 一种高稳定性低铂电极的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1055807A (ja) * 1996-08-08 1998-02-24 Aisin Seiki Co Ltd 燃料電池用空気電極及びその製造方法
JPH1085586A (ja) * 1996-09-13 1998-04-07 Toshiba Corp 機能材料、酸化触媒、燃焼触媒、メタノール改質触媒および電極触媒
JP2003080077A (ja) * 2001-06-29 2003-03-18 Denso Corp 触媒粒子およびその製造方法
JP2003100308A (ja) * 2001-09-21 2003-04-04 Mitsubishi Heavy Ind Ltd 燃料電池用カソード電極触媒およびその製造方法
JP2003168442A (ja) * 2001-12-03 2003-06-13 Honda Motor Co Ltd 固体高分子型燃料電池用燃料極及び固体高分子型燃料電池並びに固体高分子型燃料電池の制御方法
JP2005100780A (ja) * 2003-09-24 2005-04-14 Toyota Motor Corp 燃料電池用カソード及びこれを備えた固体高分子型燃料電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751161A (en) * 1986-05-29 1988-06-14 The United States Of America As Represented By The Secretary Of The Navy Non-aqueous primary cell
US5234777A (en) * 1991-02-19 1993-08-10 The Regents Of The University Of California Membrane catalyst layer for fuel cells
US6780533B2 (en) * 1999-12-17 2004-08-24 Utc Fuel Cells, Llc Fuel cell having interdigitated flow channels and water transport plates
CN1459133A (zh) * 2001-03-08 2003-11-26 松下电器产业株式会社 高分子电解质型燃料电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1055807A (ja) * 1996-08-08 1998-02-24 Aisin Seiki Co Ltd 燃料電池用空気電極及びその製造方法
JPH1085586A (ja) * 1996-09-13 1998-04-07 Toshiba Corp 機能材料、酸化触媒、燃焼触媒、メタノール改質触媒および電極触媒
JP2003080077A (ja) * 2001-06-29 2003-03-18 Denso Corp 触媒粒子およびその製造方法
JP2003100308A (ja) * 2001-09-21 2003-04-04 Mitsubishi Heavy Ind Ltd 燃料電池用カソード電極触媒およびその製造方法
JP2003168442A (ja) * 2001-12-03 2003-06-13 Honda Motor Co Ltd 固体高分子型燃料電池用燃料極及び固体高分子型燃料電池並びに固体高分子型燃料電池の制御方法
JP2005100780A (ja) * 2003-09-24 2005-04-14 Toyota Motor Corp 燃料電池用カソード及びこれを備えた固体高分子型燃料電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101397020B1 (ko) * 2007-11-20 2014-05-21 삼성에스디아이 주식회사 연료전지용 전극촉매, 그 제조방법, 상기 전극촉매를포함하는 전극을 구비한 연료전지
KR20170009911A (ko) 2014-05-26 2017-01-25 쇼와 덴코 가부시키가이샤 산소 환원 촉매

Also Published As

Publication number Publication date
JPWO2005071777A1 (ja) 2007-09-06
JP4349368B2 (ja) 2009-10-21
EP1708299A1 (en) 2006-10-04
US20080280165A1 (en) 2008-11-13
CN1906783A (zh) 2007-01-31

Similar Documents

Publication Publication Date Title
JP4349368B2 (ja) 燃料電池用カソード及びこれを備えた固体高分子型燃料電池
CN104716333B (zh) 一种有序化气体扩散电极及其制备方法和应用
JP2007250274A (ja) 貴金属利用効率を向上させた燃料電池用電極触媒、その製造方法、及びこれを備えた固体高分子型燃料電池
JP2000173626A (ja) 燃料電池用電極およびその製造方法
WO2007119640A1 (ja) 燃料電池用電極触媒及びその製造方法
JP4487468B2 (ja) 燃料電池用アノード及び燃料電池
JPWO2008117485A1 (ja) 燃料電池
JP5813627B2 (ja) 燃料電池
JP2009026501A (ja) 電解質膜−電極接合体
JP4826057B2 (ja) 燃料電池
JPH09167622A (ja) 電極触媒およびそれを用いた固体高分子型燃料電池
JP2007501496A (ja) 界面抵抗を減少させたハイブリッド膜・電極接合体及びその作製方法
JP4311070B2 (ja) 燃料電池用カソード及びこれを備えた固体高分子型燃料電池
JP2001118582A (ja) 燃料電池用電極およびその製造方法
JP2002015745A (ja) 固体高分子型燃料電池
JP2007035325A (ja) 燃料電池及び燃料電池の製造方法
Kim et al. Performance of PtPd electrocatalysts in direct methanol fuel cell
JP3844022B2 (ja) 固体高分子電解質を備えた直接型メタノ−ル燃料電池
JP2007059278A (ja) 燃料電池システムおよび燃料電池停止方法
JP2003142111A (ja) 固体高分子型燃料電池用電極およびその製造方法
JP2008091264A (ja) 燃料電池用カソード及びこれを備えた固体高分子型燃料電池
JP2006339125A (ja) 固体高分子型燃料電池
JP2006331845A (ja) 固体高分子形燃料電池用触媒粉末およびその製造方法ならびにその触媒粉末を含む固体高分子形燃料電池用電極。
JP2006066255A (ja) 燃料電池用カソード及びこれを備えた固体高分子型燃料電池
JP4333195B2 (ja) 燃料電池用カソード及びこれを備えた固体高分子型燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001634.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517326

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005704208

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10582342

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005704208

Country of ref document: EP