WO2005070744A1 - 車両ステアリング用伸縮軸 - Google Patents

車両ステアリング用伸縮軸 Download PDF

Info

Publication number
WO2005070744A1
WO2005070744A1 PCT/JP2005/001162 JP2005001162W WO2005070744A1 WO 2005070744 A1 WO2005070744 A1 WO 2005070744A1 JP 2005001162 W JP2005001162 W JP 2005001162W WO 2005070744 A1 WO2005070744 A1 WO 2005070744A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
torque
vehicle steering
female
preload
Prior art date
Application number
PCT/JP2005/001162
Other languages
English (en)
French (fr)
Inventor
Takatsugu Yamada
Yasuhisa Yamada
Original Assignee
Nsk Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nsk Ltd. filed Critical Nsk Ltd.
Priority to US10/587,402 priority Critical patent/US20070157754A1/en
Priority to JP2005517328A priority patent/JP4696916B2/ja
Publication of WO2005070744A1 publication Critical patent/WO2005070744A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/18Steering columns yieldable or adjustable, e.g. tiltable
    • B62D1/185Steering columns yieldable or adjustable, e.g. tiltable adjustable by axial displacement, e.g. telescopically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/18Steering columns yieldable or adjustable, e.g. tiltable
    • B62D1/19Steering columns yieldable or adjustable, e.g. tiltable incorporating energy-absorbing arrangements, e.g. by being yieldable or collapsible
    • B62D1/192Yieldable or collapsible columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/007Hybrid linear bearings, i.e. including more than one bearing type, e.g. sliding contact bearings as well as rolling contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/12Arrangements for adjusting play
    • F16C29/123Arrangements for adjusting play using elastic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/03Shafts; Axles telescopic
    • F16C3/035Shafts; Axles telescopic with built-in bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/02Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions
    • F16D3/06Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted to allow axial displacement
    • F16D3/065Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted to allow axial displacement by means of rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/20Land vehicles
    • F16C2326/24Steering systems, e.g. steering rods or columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/22Vibration damping

Definitions

  • the present invention relates to a telescopic shaft for a vehicle steering.
  • the telescopic shaft in which the male and female shafts are spline-fitted, is used as part of the steering mechanism in order to absorb the vibration and prevent the displacement and vibration from being transmitted to the steering wheel.
  • the telescopic shaft is required to reduce the noise of the spline, reduce the noise on the steering wheel, and reduce the sliding resistance when sliding in the axial direction. For this reason, a nylon film is coated on the spline portion of the male shaft of the telescopic shaft, and grease is applied to the sliding portion to absorb or reduce metal noise and metal tapping sound. The dynamic resistance and the play in the rotational direction have been reduced.
  • the process of forming the nylon film involves the following steps: shaft cleaning ⁇ primer application ⁇ heating ⁇ powder coating ⁇ rough cutting ⁇ finishing cutting ⁇ selective fitting with the female shaft.
  • dies are selected and machined according to the precision of the already machined female shaft.
  • the grooves provided on the outer peripheral portion of the inner shaft and the inner peripheral portion of the outer shaft are provided with grooves on the inner side.
  • a ball is placed between the groove of the shaft and the pole via an elastic body, and the ball is rolled during axial movement to reduce the sliding load between the male and female shafts.
  • a telescopic shaft for a vehicle steering that transmits a torque by restraining a pole during rotation is disclosed.
  • the above publication allows torque transmission even when the pole is broken. It is disclosed that male and female grooves having a combined cross section with a certain play are provided on the inner shaft and the M-law shaft.
  • a telescopic shaft for vehicle steering disclosed in Japanese Patent Application Laid-Open No. 2001-520293 (in normal use, a plurality of balls perform a telescopic operation by rolling and torque transmission). For this reason, it is necessary to provide a sufficient number of poles to withstand the input torque due to its structure, making it difficult to reduce the size of the telescopic shaft for vehicle steering, and to obtain a sufficient collapse stroke in the event of a vehicle collision. There is also a structural disadvantage that it is difficult.
  • the present invention has been made in view of the above-described circumstances, and realizes a stable sliding load, reliably prevents backlash in the rotating direction, and can transmit torque in a highly rigid state.
  • An object of the present invention is to provide a telescopic shaft for vehicle steering.
  • the present invention relates to a telescopic shaft for vehicle steering in which a male shaft and a female shaft are fitted non-rotatably and slidably into a steering shaft of a vehicle.
  • a torque transmission unit provided on an outer peripheral portion of the male shaft and an inner peripheral portion of the female shaft, respectively, for transmitting torque by contacting each other when rotating;
  • a roller that is provided between an outer peripheral portion of the male shaft and an inner peripheral portion of the female shaft at a position different from the trickle transmitting portion, and that rolls when the male shaft and the female shaft move relative to each other in the axial direction;
  • a telescopic shaft for vehicle steering wherein a rotation angle A ⁇ a rotation angle B is set when non-torque is transmitted.
  • the rotation angle A at the torque transmitting portion is 0.01. ⁇ 0.25. Is preferably set to.
  • the torque transmitting portion may have a substantially arc-shaped axially convex ridge formed on an outer peripheral surface of the male shaft and a cross-section formed on an inner peripheral surface of the female shaft. It is preferable that the shape is constituted by a substantially arc-shaped axial groove. In the telescopic shaft for vehicle steering according to the present invention, it is preferable that the torque transmitting portions do not continuously contact each other in the axial direction when torque is not transmitted.
  • the telescopic shaft for vehicle steering according to the present invention is preferably configured such that in the torque transmitting portion, a spline fitting portion or a serration fitting portion is formed on an outer peripheral surface of the male shaft and an inner peripheral surface of the female shaft.
  • the preload portion includes: a first axial groove provided on an outer peripheral surface of the male shaft; and an inner peripheral surface of the female shaft facing the first axial groove.
  • a second axial groove provided on the surface
  • the rolling element and the elastic body are arranged between the first and second axial grooves.
  • the preload portion includes the male shaft and the male shaft. It is arranged between the female shaft and
  • a plurality of the torque transmitting portions are arranged between the adjacent preload portions.
  • the preload portions are arranged at intervals of 180 degrees in a circumferential direction, and the torque transmission portions are respectively arranged between the preload portions.
  • the preload portions are arranged at regular intervals of 120 degrees in the circumferential direction, and the torque transmission portions are disposed between the preload portions. Is preferred.
  • the torque transmitting portion is provided between the preload portion and the center in the circumferential direction. It is preferable that they are arranged respectively.
  • the rolling element may include at least one spherical body.
  • the elastic body is made of a panel.
  • a solid lubricating film is formed on an outer peripheral portion of the male shaft or an inner peripheral portion of the female shaft.
  • FIG. 1 is a side view of a steering mechanism sound 15 of a vehicle to which a telescopic shaft for vehicle steering according to an embodiment of the present invention is applied.
  • FIG. 2 is a longitudinal sectional view of the telescopic shaft for vehicle steering according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 2, and is a partial schematic cross-sectional view thereof.
  • FIG. 4 is a graph showing the relationship between the torque and the rotation angle of the telescopic shaft for vehicle steering according to the first embodiment.
  • FIG. 5A is a transverse cross-sectional view of a vehicle steering extension shaft according to a first modification of the first embodiment of the present invention
  • FIG. 5B is a second modification of the first embodiment of the present invention. It is a cross-sectional view of a telescopic shaft for vehicle steering according to an example.
  • FIG. 6A is a cross-sectional view of an extension shaft for vehicle steering according to a third modification of the first embodiment of the present invention.
  • FIG. 6B is a fourth modification of the first embodiment of the present invention. It is a cross-sectional view of a telescopic shaft for vehicle steering according to an example.
  • FIG. 7A is a cross-sectional view of an extension shaft for vehicle steering according to a fifth modification of the first embodiment of the present invention.
  • FIG. 7B is a sixth modification of the first embodiment of the present invention. It is a cross-sectional view of a telescopic shaft for vehicle steering according to an example.
  • FIG. 8 is a cross-sectional view of a telescopic shaft for vehicle steering according to a seventh modification of the first embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a telescopic shaft for vehicle steering according to a second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of an extension shaft for vehicle steering according to a first modification of the second embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of an extension shaft for vehicle steering according to a second modification of the second embodiment of the present invention.
  • FIG. 12A shows a vehicle steering device according to a third modification of the second embodiment of the present invention.
  • FIG. 12B is a longitudinal sectional view of the telescopic shaft, and
  • FIG. 12B is a transverse sectional view taken along the line bb of FIG. 12A.
  • FIG. 1 is a side view of a steering mechanism of a vehicle to which a telescopic shaft for vehicle steering according to an embodiment of the present invention is applied.
  • an upper steering shaft portion 120 (e.g., a steering column 10) is attached to the strength member 100 on the vehicle body side via an upper bracket 101 and a mouth bracket 102. 3 and a steering shaft 104 rotatably held on the steering column 103), a steering wheel 105 mounted on the upper end of the steering shaft 104, and a steering wheel '' (10)
  • the lower end of the steering shaft section 107 which is connected to the lower end via a universal joint 106, and the lower steering shaft section 107, via the steering shaft coupling 108.
  • a steering mechanism is formed by a connected pinion shaft 109 and a steering rack 1 112 connected to the pinion shaft 109 and fixed to another frame 110 of the vehicle body via an elastic body 111. It is configured.
  • the upper steering shaft portion 120 and the mouth steering shaft portion 107 use the telescopic shaft for vehicle steering (hereinafter referred to as the telescopic shaft) according to the embodiment of the present invention.
  • the lower steering shaft 107 has a male shaft and a female shaft fitted to each other.
  • a mouth steering shaft 107 has the axial displacement generated when a vehicle travels. It is necessary to have a performance that absorbs and does not transmit the displacement and vibration on the steering wheel 105. This type of performance is achieved when the body has a sub-frame structure, and the member 100 that fixes the upper part of the steering mechanism and the frame 110 to which the steering rack 112 is fixed are separate bodies. Required in the case of a structure that is fastened and fixed via three simple bodies such as rubber.
  • the operator when the steering shaft coupling 108 is fastened to the pinion shaft 109, the operator must first contract the telescopic shaft and then fit it to the pinion shaft 109 for fastening. May be required.
  • the upper steering shaft portion 120 at the upper part of the steering mechanism is also one in which a male shaft and a female shaft are fitted, but such an upper steering shaft portion 120 includes a driver. To move the steering wheel 105 in the axial direction to obtain the optimal position for driving the car, a function to adjust the position is required. Required.
  • the telescopic shaft reduces the rattling noise of the fitting part, reduces the rattling on the steering wheel 105, and reduces the sliding resistance when sliding in the axial direction. Reduction is required.
  • FIG. 2 is a longitudinal sectional view of the telescopic shaft for vehicle steering according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 2, and is a partial schematic cross-sectional view thereof.
  • FIG. 4 is a graph showing the relationship between the torque and the rotation angle of the telescopic shaft for vehicle steering according to the first embodiment.
  • the telescopic shaft for vehicle steering (hereinafter referred to as the telescopic shaft) is a male shaft concentrically arranged around a center O which is non-rotatably and slidably fitted to each other. 1 and female shaft 2.
  • axial ridges 4 are formed on the outer peripheral surface of the male shaft 1 so as to extend. These axial ridges 4 are male parts for spline fitting, but they may be male parts for selection fitting or simply for convex and concave fitting.
  • axial A groove 6 On the circumferential surface of the female shaft 2, a plurality of axial A groove 6 extending in the direction is formed.
  • these axial grooves 6 are female parts for spline fitting, they may be female parts for serration fitting or simply for uneven fitting.
  • a plurality of axially extending grooves 3 are formed.
  • a plurality of axially extending grooves 5 are also formed on the inner peripheral surface of the female shaft 2. It is desirable that the axial grooves 3 and the axial grooves 5 are equally arranged in the circumferential direction.
  • the axial groove 5 of the female shaft 2 is substantially arc-shaped or Gothic arch-shaped in cross section.
  • It comprises an axial groove 3 of the male shaft 1, a pair of inclined flat side surfaces 3a, 3a, and a bottom surface 3b formed flat between the pair of flat side surfaces 3a, 3a. is there. Between the axial groove 3 of the male shaft 1 and the rolling element 7, an elastic body 8 for contacting and preloading the rolling element 7 is interposed.
  • the elastic body 8 is spaced apart from the rolling element-side contact portions 8a and 8a, which contact the rolling element 7 at two points, with a predetermined circumferential distance from the rolling element-side contact sections 8a and 8a. And the groove side contact portions 8b, 8b that contact the planar side surfaces 3a, 3a of the axial groove 3 of the male shaft 1 and the rolling member side contact portions 8a, 8a and the groove side contact Parts 8b, 8b for urging the parts 8b and 8b away from each other resiliently, and a bottom part 8d facing the bottom surface 3b of the axial groove 3. I have.
  • Each of the urging portions 8c has a substantially U-shape and is bent in a substantially circular arc shape.
  • the bent urging portions 8c make contact with the rolling element side contact portions 8a and the groove surface side.
  • Portions 8b can be elastically biased away from each other. In this way, the elastic body 8 elastically supports the rolling element 7 substantially evenly from both left and right sides by the two urging portions 8c and 8c.
  • the telescopic shaft for vehicle steering is configured.
  • the axial ridge 4 and the axial groove 6 come into contact with each other to form a torque transmitting portion, while the non-torque transmitting At times, the axial ridges 4 and the axial grooves 6 are configured so as not to contact each other, as described in detail later.
  • the male shaft 1 and the female shaft 2 are always in slidable contact with each other in the respective torque transmitting portions due to the presence of the preload portion.
  • the shaft 1 and the female shaft 2 move relative to each other in the axial direction, they slide with each other, and the rolling elements 7 can roll.
  • the axial ridge 4 formed on the male shaft 1 is formed on the female shaft 2 side and the axial groove 6 formed on the female shaft 2 is formed on the male shaft 1 j Function and effect are obtained.
  • the curvature of the axial groove 5 and the curvature of the rolling element 7 may be different, and both may be formed so as to make point contact.
  • the elastic body 8 may be a leaf spring. Further, a lower sliding load can be obtained by applying grease to the sliding surface and the rolling surface.
  • the telescopic shaft of the present embodiment configured as described above is superior to the conventional technology in the following points.
  • the preloading part is not moved by the rolling element 7 during relative movement in the axial direction. Since the rolling mechanism is used, the preload can be increased without significantly increasing the sliding load. As a result, it is possible to prevent looseness and to improve rigidity, which could not be achieved conventionally, without increasing the sliding load.
  • the axial ridges 4 of the torque transmitting portion play a role of torque transmission by contacting the axial grooves 6, and in the preload portion, the elastic body 8 is elastically deformed and the rolling element 7 becomes male.
  • the shaft is constrained in the circumferential direction between shaft 1 and female shaft 2 to prevent rattling and transmit low torque.
  • the axial ridges 4 of the torque transmitting portion and the side surfaces of the axial grooves 6 come into strong contact, and the axial ridges 4 receive more reaction force than the rolling elements 7, and
  • the torque transmitting portion composed of the ridge 4 and the axial groove 6 mainly transmits the torque. Therefore, in the present embodiment, the play in the rotational direction of the male shaft 1 and the female shaft 2 can be reliably prevented, and the torque can be transmitted in a highly rigid state.
  • the rotation angle A in the torque transmitting section is in the range of 0.01 ° to 0.1 °.
  • the axial ridges 4 and the axial grooves 6 that constitute the torque transmitting portion that transmits high torque prevent the gear from acting and transmit low torque.
  • the contact between the rolling element 7 and the elastic body 8 constituting the preloading section can be made more reliable than before, thereby preventing an excessive load from being applied to the rolling element 7 and the elastic body 8 as the preloading section. be able to.
  • the axial ridges 4 and the axial grooves 6, which are the torque transmission portions of the spline fitting basically do not contact each other when torque is not transmitted.
  • the rotation angle A in the torque transmitting section will be described with reference to FIG.
  • the rotation angle A is preferably set to 0.01 ° to 0.25 °.
  • the reason for this lower limit is that a gap is required between the axial ridge 4 and the axial groove 6 that constitute the spline-fitted torque transmitting portion so that it can move without resistance. It is sufficient if there is a gap of 2 m or more. Converting this to a rotation angle gives 0.01 °.
  • the reason for the upper limit is that if the gap between the axial ridge 4 and the axial groove 6 constituting the torque transmission part of the spline fitting is too large, the rotation angle C in Fig. 4 will increase. .
  • the upper limit of the rotation angle A was set to 0.25 ° on one side of the ridge 4.
  • the inflection point of the elastic body 8 from the preload rigidity region (low torque region) to the high rigidity region (high torque region) is preferably not less than + 2N'm and not more than -2N ⁇ m. This is the result of a sensory evaluation test using an actual vehicle.
  • each component of the telescopic shaft according to the present embodiment is preferably configured as shown in Tables 1 and 2 below in addition to the above description.
  • the axial ridges 4 and the axial grooves 6 are in continuous contact in the axial direction during torque transmission and receive the load, so that the contact pressure must be lower than that of the rolling element 7 that receives a load by point contact.
  • the following items are superior to the conventional example in which all rows are pole-rolled.
  • the axial ridges 4 can lower the contact pressure, so that the axial length of the torque transmitting part can be shortened and the space can be used effectively.
  • the axial ridges 4 can reduce the contact pressure lower, so an additional process for hardening the axial groove surface of the female shaft by heat treatment, etc. Is unnecessary.
  • the preload can be increased, preventing long-term rattling and achieving high rigidity at the same time.
  • FIG. 5A is a transverse cross-sectional view of a vehicle steering extension shaft according to a first modification of the first embodiment of the present invention
  • FIG. 5B is a second modification of the first embodiment of the present invention. It is a cross-sectional view of a telescopic shaft for vehicle steering according to an example.
  • FIG. 6A is a cross-sectional view of an extension shaft for vehicle steering according to a third modification of the first embodiment of the present invention.
  • FIG. 6B is a fourth modification of the first embodiment of the present invention. It is a cross-sectional view of a telescopic shaft for vehicle steering according to an example.
  • FIG. 7A is a cross-sectional view of an extension shaft for vehicle steering according to a fifth modification of the first embodiment of the present invention.
  • FIG. 7B is a sixth modification of the first embodiment of the present invention. It is a cross-sectional view of a telescopic shaft for vehicle steering according to an example.
  • FIG. 8 is a cross-sectional view of a telescopic shaft for vehicle steering according to a seventh modification of the first embodiment of the present invention.
  • a vehicle consisting of a male shaft 1 and a female shaft 2 fitted with splines
  • preload portions equivalent to those in the first embodiment are arranged at intervals of 180 degrees in the circumferential direction between the male shaft 1 and the female shaft 2.
  • a plurality of spline-fitted torque transmitting portions (axial ridges 4 and axial grooves 6) equivalent to those of the first embodiment are provided between the preload portions.
  • Other configurations, operations, and effects are the same as those of the first embodiment, and description thereof will be omitted.
  • the same as in the first embodiment is provided between the male shaft 1 and the female shaft 2.
  • the preload sections are provided at equal intervals of 120 degrees in the circumferential direction.
  • a plurality of spline-fitted torque transmitting portions (axial ridges 4 and axial grooves 6) equivalent to those of the first embodiment are provided between the preload portions.
  • the eccentricity of the shaft can be improved as compared with the first modification, so that the torsional rigidity under high torque load is improved. And the difference in total sliding load when the same torque is applied to the left and right.
  • Other configurations, operations, and effects are the same as those of the first embodiment, and a description thereof will not be repeated.
  • the third modified example of FIG. 6A and the fourth modified example of FIG. 6B are different from the first and second modified examples of FIG. 5A and FIG.
  • the characteristic is that the lubricating film 11 is formed.
  • the total sliding load (referred to as the sliding load generated during normal use in the structure of the present invention in which both rolling and slipping are acting) is the case of the first embodiment, the first and second modifications. It can be lower than.
  • molybdenum disulfide powder is dispersed and mixed in a resin, then sprayed or immersed and then baked to form a film, or PTFE (tylene tetrafluoride) is dispersed and mixed in the resin. It is used by spraying or dipping it and baking it to form a film. Further, a resin may be coated instead of the solid lubricating film.
  • the fifth modified example of FIG. 7A and the sixth modified example of FIG. 7B correspond to the fifth modified example of FIGS. 5A and 5B described above.
  • the first and second modifications are characterized in that a solid lubricating film 11 is formed on the inner peripheral surface of the female shaft 2.
  • a solid lubricating film 11 is formed on the inner peripheral surface of the female shaft 2.
  • molybdenum disulfide powder is dispersed and mixed in a resin, and then sprayed or immersed and baked to form a film, or PTFE (tetrafluoroethylene) is dispersed and mixed in the resin It is used by spraying or dipping it and baking to form a film.
  • PTFE tetrafluoroethylene
  • the shape of the elastic body of the preload section is different from that of the first embodiment. More specifically, the shape of the elastic body of the preload section is different from that of the first modification of FIG. 5B.
  • the elastic body 8 preloads the rolling element 7 against the female shaft 2 so that there is no looseness when the torque is not transmitted, while elastically deforms the rolling element 7 so that the rolling element 7 is male and female when the torque is transmitted. It acts to restrain in the circumferential direction.
  • the elastic body 8 is engaged with the stepped portions 3c on both sides of the axial groove 3 of the male shaft 1 by the concave portions 8e at both ends thereof.
  • a lower sliding load can be obtained by applying grease to the sliding surface and the rolling surface.
  • the axial ridges 4 formed on the male shaft are formed on the female shaft side and the axial grooves 6 formed on the female shaft are formed on the male shaft side, the same as in the embodiment of the present application. Action and effect are obtained.
  • the curvature of the axial groove 5 and the curvature of the rolling element 7 may be different, and both may be formed so as to be in point contact.
  • FIG. 9 is a cross-sectional view of a telescopic shaft for vehicle steering according to a second embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • three axially extending ridges 4 each having a substantially arc-shaped cross-sectional shape and equally distributed in the circumferential direction at 120 ° intervals are formed.
  • three axial grooves 6 having a substantially arc-shaped cross-section extend on the inner peripheral surface of the female shaft 2 at positions opposed to the three axial ridges 4 of the male shaft 1. It is formed as follows.
  • the axial ridge 4 and the axial groove 6 are in principle not in contact with each other, but in the case of high torque transmission, they are in contact with each other to form a torque transmitting portion.
  • the axial ridge 4 and the axial groove 6 have a substantially arc-shaped cross section or a gothic arch shape, but may have other shapes.
  • the gap between the axial ridge 4 and the axial groove 6 in the torque transmitting portion is converted to the rotation angle A, while the elastic body 8 of the preload portion can be bent. If the amount is converted to rotation angle B, rotation angle A ⁇ rotation angle B is set when torque is not transmitted. More preferably, the rotation angle A in the torque transmitting section is from 0.01 ° to 0.25. Is set to
  • the torque transmitting part (axial ridge 4 and axial groove 6) that transmits high torque during torque transmission prevents gearing and transmits low torque.
  • the preloading part (the rolling element 7 and the elastic body 8) that works can surely make contact first, thereby preventing an excessive load from being applied to the preloading part (the rolling element 7 and the elastic body 8). That;
  • the torque transmitting portions (the axial ridges 4 and the axial grooves 6) of the spline fitting basically do not contact each other when torque is not transmitted.
  • FIG. 10 is a cross-sectional view of an extension shaft for vehicle steering according to a first modification of the second embodiment of the present invention.
  • FIG. 11 shows a vehicle steering extension according to a second modification of the second embodiment of the present invention. It is a cross-sectional view of a contraction axis.
  • FIG. 12A is a longitudinal sectional view of a telescopic shaft for vehicle steering according to a third modification of the second embodiment of the present invention
  • FIG. 12B is a sectional view taken along line bb of FIG. 12A.
  • the first modified example of FIG. 10 is different from the second embodiment in that a solid lubricating film 11 is formed on the outer peripheral surface of the male shaft 1.
  • a solid lubricating film 11 is formed on the outer peripheral surface of the male shaft 1.
  • molybdenum disulfide powder is dispersed and mixed in resin, and then sprayed or immersed and then baked to form a film, or PTFE (ethylene tetrafluoride) is dispersed and mixed in resin. It is used by spraying or dipping it and baking it to form a film. Further, a resin may be coated instead of the solid wet film.
  • the solid lubricating film 11 is formed over the entire outer peripheral surface of the male shaft 1, but may be provided only on the outer peripheral surfaces of the three axial ridges 4 formed on the male shaft 1.
  • the second modified example of FIG. 11 differs from the second embodiment in that a solid lubricating film 11 is formed on the inner peripheral surface of the female shaft 2.
  • a solid lubricating film 11 is formed on the inner peripheral surface of the female shaft 2.
  • molybdenum disulfide powder is dispersed and mixed in the resin and sprayed or immersed and then baked to form a film, or PTFE (tetrafluoroethylene) is dispersed and mixed in the resin. A sprayed or immersed and then baked film is used.
  • the solid lubricating film 11 is formed over the entire inner peripheral surface of the female shaft 2, the solid lubricating film 11 may be provided only on the inner peripheral surfaces of the three axial grooves 6 formed on the female shaft 2. This is because the main factor of the sliding load at the time of high torque load is due to the contact between the axial ridge 4 and the axial groove 6, and by reducing the contact resistance of this contact portion, the axial load is reduced. This is because the sliding resistance can be reduced.
  • the shape of the elastic body of the preload section is different from that of the second embodiment.
  • the elastic body 8 preloads the rolling element 7 against the female shaft 2 so that there is no backlash, while elastically deforms the rolling element 7 to transmit the torque to the male shaft 1 and the female shaft during torque transmission. It acts to restrain in the circumferential direction between the two.
  • the elastic body 8 is engaged with the stepped portions 3c on both sides of the axial groove 3 of the male shaft 1 by the concave portions 8e at both ends thereof, so that the entire elastic body 8 is transmitted when torque is transmitted. It cannot move in the circumferential direction.
  • a retainer 20 that rotatably holds the rolling element 7 between the male shaft 1 and the female shaft 2 without interfering with the axial ridge 4 is provided. It is arranged.
  • the retainer 20 has a cylindrical shape, has a long hole 21 for rotatably holding the rolling element 7, and a position corresponding to the axial ridge 4, A long hole 22 for avoiding interference is formed to avoid interference with the air.
  • the interference avoiding slot 22 is formed to be significantly longer in the axial direction than the slot 21.
  • the rolling element 7 and the axial ridge 4 are both present on the same axial cross section, the rolling element 7 can be held, thereby improving the sliding function (sliding function). Load stabilization). As a result, a comfortable steering feeling can be obtained.
  • the sliding surface and A lower insertion load can be obtained by applying dully to the rolling surface.
  • the curvature of the axial ridges 4 and the curvature of the axial grooves 6 are different, and the axial ridges 4 and the axial grooves 6 are formed so as to be continuously contacted in the axial direction at the time of contact. May be.
  • the same operation and effect as those of the embodiment of the present application can be achieved. The effect is obtained.
  • the curvature of the axial groove 5 and the curvature of the rolling element 7 may be different, and the two may be formed to be in point contact.
  • the solid male shaft may be replaced with a hollow shaft.
  • the following can be said in all the embodiments of the present invention.
  • the rolling element 7 is exemplified as a spherical body (pole). However, the rolling element 7 may be a hole, and a heat-treated and polished one may be used.
  • the elastic body may be a panel panel. .
  • the outer surface of the male shaft 1 may be treated with a resin film containing PTFE (tetrafluoroethylene) or molybdenum disulfide.
  • the male shaft 1 may be a solid or hollow steel material manufactured by cold drawing. Male material manufactured by cold extrusion of the male shaft 1 may be used.
  • the male shaft 1 may be made of a solid steel material manufactured by cold forging, or an aluminum material.
  • a hollow steel material in which the female shaft 2 is manufactured by cold drawing may be used.
  • the female shaft may be made of a hollow steel material, subjected to metal lithography (bonding treatment), then drawn or expanded to the required diameter, and the groove may be press-formed.
  • the female shaft 2 may be nitrided.
  • the inner peripheral surface of the female shaft 2 may be treated with a resin film containing PTF E (tetrafluoroethylene) or molybdenum disulfide.
  • the contact pressure of the rolling elements is 150 OMPa or less without applying torque.
  • the contact pressure of the rolling elements is 200 OMPa or less.
  • the contact pressure of the axial ridge is less than 200 OMPa.
  • This publication discloses a structure in which a plurality of rolling elements are interposed in axial grooves formed in a male shaft and a female shaft and preloaded by an elastic body.
  • the present invention is remarkably superior to “when all rows have a ball rolling structure” or “when a conventional spline fit is used”.
  • the structure is such that rattling is prevented with a twenty-one dollar roller, its retainer, and a regilleur to prevent rattling. But pure? Preload cannot be increased because of bone sliding. Therefore, it is very difficult to prevent dusting and obtain high rigidity over a long period of time.
  • the rolling structure is partially adopted, and the means for preventing gasket is also different.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Ocean & Marine Engineering (AREA)
  • Steering Controls (AREA)
  • Bearings For Parts Moving Linearly (AREA)

Abstract

 車両のステアリングシャフトに組込み、雄軸と雌軸を回転不能に且つ摺動自在に嵌合した車両ステアリング用伸縮軸は、雄軸の外周部と雌軸の内周部にそれぞれ設けられ、回転の際には互いに接触してトルクを伝達するトルク伝達部と、トルク伝達部とは異なる位置の雄軸の外周部と雌軸の内周部の間に設けられ、雄軸と雌軸との軸方向相対移動の際には転動する転動体と、転動体に径方向に隣接して配置され、転動体を介して雄軸と雌軸とに予圧を与える弾性体とからなる予圧部と、を具備し、トルク伝達部に於ける隙間を変換して回転角Aとする一方、予圧部の弾性体の撓み可能量を変換して回転角Bとすると、非トルク伝達時、回転角A<回転角Bに設定してある。

Description

車両ステアリング用伸縮軸 技術分野
本発明は、 車両ステアリング用伸縮軸に関する。 ヨン
背景技術
従来、 自動車の操舵機構部では、 自動車が走行する際に発生する軸方向の変位 書
を吸収し、 ステアリングホイール上にその変位や振動を伝えないために雄軸と雌 軸とをスプライン嵌合した伸縮軸を操舵機構部の一部に使用している。 伸縮軸に はスプライン部のガ夕音を低減することと、 ステァリングホイール上のガ夕感を 低減することと、 軸方向摺動時における摺動抵抗を低減することが要求される。 このようなことから、 伸縮軸の雄軸のスプライン部に対して、 ナイロン膜をコ 一ティングし、 さらに摺動部にグリースを塗布し、 金属騒音、 金属打音等を吸収 または緩和すると共に搢動抵抗の低減と回転方向ガタの低減を行ってきた。 この 場合、 ナイロン膜を形成する工程としてはシャフトの洗浄→プライマー塗布→加 熱→ナイ口ン粉末コート→粗切削→仕上げ切削→雌軸との選択嵌合が行われて いる。 最終の切削加工は、 既に加工済みの雌軸の精度に合わせてダイスを選択し て加工を行っている。
また、 特開 2 0 0 1 - 5 0 2 9 3号公報 ( 7及び 1 3頁、 図 1 2 ) では、 内側 シャフトの外周部と外側シャフトの内周部とに設けられた溝部に、 内側シャフト の溝部とポールとの間に弾性体を介してボールを配置して、 軸方向の移動の際に はボールを転動させることによつて雄軸と雌軸の摺動荷重を減少させると共に、 回転の際にはポールを拘束してトルクを伝達する車両ステアリング用伸縮軸が 開示されている。 さらに、 上記公報にはポールの破損時でもトルクの伝達を可能 とするために、 ある遊びを持った組合せ断面を有する雄溝および雌溝が内側シャ フトおよび M則シャフトに設けられていることが開示されている。
しかしな力 sら、 前者では、 伸縮軸の搢動荷重を最小に抑えつつガタをも最小に 抑えることが必要である為、 最終の切削加工ではオーバーピン径サイズが数ミク ロンづっ異なるダイスを雌軸にあわせて選び出し加工することを余儀なくされ、 加工コストの高騰を招来してしまう。 また、 使用経過によりナイロン膜の摩耗が 進展して回坛方向ガ夕が大きくなる。
また、 エンジンルーム内の高温にさらされる条件下では、 ナイロン膜は体積変 化し、 摺動抵抗が著しく高くなつたり、 磨耗が著しく促進されたりするため、 回 転方向ガタカ s大きくなる。 したがって、 自動車用操舵軸に使用される伸縮軸にお いて、 回転方向ガ夕による異音の発生と操舵感の悪化を長期にわたって抑制でき る構造を簡単且つ安価に提供したいといった要望がある。
また、 後者の特開 2 0 0 1 - 5 0 2 9 3号公報に開示された車両ステアリング 用伸縮軸で (ま、 通常使用時は、 複数のボールが転がりによる伸縮動作とトルク伝 達を行っている。 このため、 構造上入力トルクに耐えるだけのポール数を設けな ければならず、 車両ステアリング用伸縮軸としての小型化が困難であると共に、 車両衝突時に十分なコラプスストロークをとることが難しいという構造上の欠 点もある。 発明の開示
本発明は、 上述したような事情に鑑みてなされたものであって、 安定した摺動 荷重を実現すると共に、 回転方向ガタ付きを確実に防止して、 高剛性の状態でト ルクを伝達できる車両ステアリング用伸縮軸を提供することを目的とする。
上記の目白勺を達成するため、本発明は、車両のステアリングシャフトに組込み、 雄軸と雌軸を回転不能に且つ摺動自在に嵌合した車両ステアリング用伸縮軸に おいて、 前記雄軸の外周部と前記雌軸の内周部にそれぞれ設けられ、 回転の際には互い に接触してトルクを伝達するトルク伝達部と、
前記トリレク伝達部とは異なる位置の前記雄軸の外周部と前記雌軸の内周部の 間に設けられ、 前記雄軸と前記雌軸との軸方向相対移動の際には転動する転動体 と、 該転動体に径方向に隣接して配置され、 該転動体を介して前記雄軸と前記雌 軸とに予圧を与える弾性体とからなる予圧部と、 を具備し、
前記トルク伝達部に於ける隙間を変換して回転角 Aとする一方、 前記予圧部の 弾性体の撓み可能量を変換して回転角 Bとすると、
非トルク伝達時、 回転角 A<回転角 Bに設定したことを特徴とする車両ステア リング用伸縮軸を提供する。
本発明の車両ステアリング用伸縮軸において、 前記トルク伝達部に於ける回転 角 Aは、 0 . 0 1。〜0 . 2 5。に設定してあることが好ましい。
本発明の車両ステアリング用伸縮軸において、 前記トルク伝達部は、 前記雄軸 の外周面に形成された断面形状が略円弧状の軸方向凸条と前記雌軸の内周面に 形成された断面形状が略円弧状の軸方向溝から構成されていることが好ましい。 本発明の車両ステアリング用伸縮軸において、 前記トルク伝達部は、 非トルク 伝達時、 互いに軸方向に連続して接触していないことが好ましい。
本発明の車両ステアリング用伸縮軸は、 前記トルク伝達部において、 前記雄軸 の外周面と前記雌軸の内周面に形成されたスプライン嵌合部またはセレーショ ン嵌合部からなることが好ましい。
本発明の車両ステアリング用伸縮軸において、 前記予圧部は、 前記雄軸の外周 面に設けられた第 1の軸方向溝と、 該第 1の軸方向溝に対向して前記雌軸の内周 面に設けられた第 2の軸方向溝とを有し、
前記転動体と前記弾性体は、 該第 1および第 2の軸方向溝間に配置されている ことが好ましい。
本発明の車両ステアリング用伸縮軸において、 前記予圧部は、 前記雄軸と前記 雌軸との間に複数配置され、
前記トルク伝達部ま、 隣り合う前記予圧部の間に複数配置されていることが好 ましい。
本発明の車両ステアリング用伸縮軸において、 前記予圧部は、 周方向に 1 8 0 度間隔で配置され、 前記予圧部の間に、 それぞれ前記トルク伝達部を配置してい ることが好ましい。
本発明の車両ステアリング用伸縮軸において、 前記予圧部は、 周方向に 1 2 0 度間隔で等配して配置され、 前記予圧部の間に、 それぞれ前記トルク伝達部を配 置していることが好ましい。
本発明の車両ステアリング用伸縮軸において、 前記トルク伝達部は、 前記予圧 部の間に周方向中央咅! ^こそれぞれ配置されていることが好ましい。
本発明の車両ステアリング用伸縮軸は、 前記転動体は、 少なくとも 1つの球状 体を含んで良い。
本発明の車両ステアリング用伸縮軸において、 前記弾性体は、 板パネからなる ことが好ましい。
本発明の車両ステアりング用伸縮軸において、 前記雄軸の外周部または前記雌 軸の内周部に固体潤滑皮膜が形成されていることが好ましい。
以上説明したよう こ、 本発明によれば、 トルク伝達部に於ける隙間を変換して 回転角 Αとする一方、 予圧部の弾性体の撓み可能量を変換して回転角 Bとすると、 非トルク伝達時、 回 ¾角 A<回転角 Bに設定してあることから、 高トルク伝達時 には、 主たるトルクを伝達するトルク伝達部は、 ガ夕を防止し、 低トルクを伝達 する働きをする予圧咅 15より、 確実に先に接触することができ、 これにより、 予圧 部に過大な負荷がかかることを防止できるため、 長期間にわたり回転方向のガ夕 付きを防止して、 高岡 (J性の状態でトルクを伝達できる。 図面の簡単な説明 図 1は、 本発明の実施の形態に係る車両ステアリング用伸縮軸を適用した自動 車の操舵機構音 15の側面図である。
図 2は、 本発明の第 1実施の形態に係る車両ステアリング用伸縮軸の縦断面図 である。
図 3は、 図 2の I I I 一 I I I線に沿った断面図であって、 その部分的な模式 的断面図である。
図 4は、 第 1実施の形態に係る車両ステアリング用伸縮軸のトルクと回転角度 との関係を示すグラフである。
図 5 Aは、 本発明の第 1実施の形態の第 1変形例に係る車両ステアリング用伸 縮軸の横断面図であり、 図 5 Bは、 本発明の第 1実施の形態の第 2変形例に係る 車両ステアリング用伸縮軸の横断面図である。
図 6 Aは、 本発明の第 1実施の形態の第 3変形例に係る車両ステアリング用伸 縮軸の横断面図であり、 図 6 Bは、 本発明の第 1実施の形態の第 4変形例に係る 車両ステアリング用伸縮軸の横断面図である。
図 7 Aは、 本発明の第 1実施の形態の第 5変形例に係る車両ステアリング用伸 縮軸の横断面図であり、 図 7 Bは、 本発明の第 1実施の形態の第 6変形例に係る 車両ステアリング用伸縮軸の横断面図である。
図 8は、 本発明の第 1実施の形態の第 7変形例に係る車両ステアリング用伸縮 軸の横断面図である。
図 9は、 本発明の第 2実施の形態に係る車両ステアリング用伸縮軸の横断面図 である。
図 1 0は、 本発明の第 2実施の形態の第 1変形例に係る車両ステアリング用伸 縮軸の横断面図である。
図 1 1は、 本発明の第 2実施の形態の第 2変形例に係る車両ステアリング用伸 縮軸の横断面図である。
図 1 2 Aは、 本発明の第 2実施の形態の第 3変形例に係る車両ステアリング用 伸縮軸の縦断面図であり、 図 1 2 Bは、 図 1 2 Aの b— b線に沿った横断面図で ある。 発明を実施するための最良の形態
以下、 本発明の実施の形態に係る車両ステアリング用伸縮軸を図面を参照しつ つ説明する。
図 1は、 本発明の実施の形態に係る車両ステアリング用伸縮軸を適用した自動 車の操舵機構部の側面図である。
図 1において、 車体側の強度メンバ 1 0 0にアツパブラケット 1 0 1と口アブ ラケット 1 0 2とを介して耳又り付けられたアツパステァリングシャフト部 1 2 0 (ステアリングコラム 1 0 3と、 ステアリングコラム 1 0 3に回転自在に保持 されたスァリングシャフト 1 0 4を含む) と、 ステアリングシャフト 1 0 4の上 端に装着されたステアリングホイ一ル 1 0 5と、 ステア'」ングシャフト 1 0 4 (7) 下端にユニバーサルジョイント 1 0 6を介して連結された口アステアリングシ ャフト部 1 0 7と、 ロアステアリングシャフト部 1 0 7に操舵軸継手 1 0 8を介 して連結されたピニオンシャフト 1 0 9と、 ピニオンシャフト 1 0 9に連結され て車体の別のフレーム 1 1 0に弾性体 1 1 1を介して固定されたステアリング ラック 1 1 2とから操舵機構部が構成されている。
ここで、 アツパステアリングシャフト部 1 2 0と口アステアリングシャフト部 1 0 7が本発明の実施の形態に係る車両ステアリング用伸縮軸 (以後、 伸縮軸と 記す) を用いている。 ロアステアリングシャフト部 1 0 7は、 雄軸と雌軸とを嵌 合したものであるが、 このような口アステアリングシャフト部 1 0 7には自動車 が走行する際に発生する軸方向の変位を吸収し、 ステアリングホイール 1 0 5上 にその変位や振動を伝えない性能が要求される。 このような性能は、 車体がサブ フレーム構造となっていて、 操舵機構上部を固定するメンバ 1 0 0とステアリン グラック 1 1 2が固定されているフレーム 1 1 0が別体となっておりその間が ゴムなどの 3単性体 1 1 1を介して締結固定されている構造の場合に要求される。 また、 その のケースとして操舵軸継手 1 0 8をピニオンシャフト 1 0 9に締結 する際に作業者が、 伸縮軸をいつたん縮めてからピニオンシャフト 1 0 9に嵌合 させ締結させるため伸縮機能が必要とされる場合がある。 さらに、 操舵機構の上 部にあるアツパステアリングシャフト部 1 2 0も、 雄軸と雌軸とを嵌合したもの であるが、 このようなアツパステアリングシャフト部 1 2 0には、 運転者が自動 車を運転するのに最適なポジションを得るためにステアリングホイ一ル 1 0 5 の位置を軸方向に移動し、 その位置を調整する機能が要求されるため、 軸方向に 伸縮する機能が要求される。 前述のすべての場合において、 伸縮軸には嵌合部の ガ夕音を低減することと、 ステアリングホイール 1 0 5上のガタ感を低減するこ とと、 軸方向摺動時における摺動抵抗を低減することが要求される。
(第 1実施の形態)
図 2は、 本発明の第 1実施の形態に係る車両ステアリング用伸縮軸の縦断面図 である。
図 3は、 図 2の I I I一 I I I線に沿った断面図であって、 その部分的な模式 的断面図である。
図 4は、 第 1実施の形態に係る車両ステアリング用伸縮軸のトルクと回転角度 との関係を示すグラフである。
図 2、 図 3に示すように、 車両ステアリング用伸縮軸 (以後、 伸縮軸と記す) は、 相互に回転不能に且つ摺動自在に嵌合した中心 Oの周りに同心に配置された 雄軸 1と雌軸 2とからなる。
本実施の形態では、図 3に一部のみが図示されているが、雄軸 1の外周面には、 複数個の軸方向凸条 4が延在して形成してある。 これら軸方向凸条 4は、 スプラ イン嵌合の雄部であるが、 セレ一シヨン嵌合の雄部であっても、 又は単に凸凹嵌 合用であってもよい。
雌軸 2の內周面には、 雄軸 1の軸方向凸条 4に対向する位置に、 複数個の軸方 向に延びる溝 6が形成してある。 これら軸方向溝 6は、 スプライン嵌合の雌部で あるが、 セレーシヨン嵌合の雌部であっても、 又は単に凸凹嵌合用であってもよ い。
雄軸 1の外周面には、 図 3に一部のみを図示したが、 複数個の軸方向に延びる 溝 3が形成してある。 これに対応して、 雌軸 2の内周面にも、 複数個の軸方向に 延びる溝 5が形成してある。 軸方向溝 3と軸方向溝 5は、 周方向に等配に配置す ることが望ましい。
雄軸 1の軸方向溝 3と、 雌軸 2の軸方向溝 5との間に、 両軸 1 , 2の軸方向相 対移動の際に転動する複数の剛体の転動体 7が転動自在に介装してある。 雌軸 2 の軸方向溝 5は、 断面略円弧状若しくはゴシックアーチ状である。
雄軸 1の軸方向溝 3 ま、 傾斜した一対の平面状側面 3 a、 3 aと、 これら一対 の平面状側面 3 a、 3 aの間に平坦に形成した底面 3 bとから構成してある。 雄軸 1の軸方向溝 3と、 転動体 7との間には、 転動体 7に接触して予圧するた めの弾性体 8が介装してある。
弾性体 8は、 転動体 7に 2点で接触する転動体側接触部 8 a、 8 aと、 転動体 側接触部 8 a、 8 aに対して略周方向に所定間隔をおいて離間してあると共に雄 軸 1の軸方向溝 3の平面状側面 3 a、 3 aに接触する溝面側接触部 8 b、 8 bと、 転動体側接触部 8 a、 8 aと溝面側接触部 8 b、 8 bをそれぞれ相互に離間する 方向に弾性的に付勢する付勢部 8 c、 8 cと、 軸方向溝 3の底面 3 bに対向した 底部 8 dと、 を有している。
各付勢部 8 cは、 略 U字形状で略円弧状に折曲した折曲形状であり、 この折曲 形状の付勢部 8 cによって、 転動体側接触部 8 aと溝面側接触部 8 bを相互に離 間するように弾性的に付勢することができる。 こうして、 弾性体 8は 2つの付勢 部 8 c、 8 cをもって転動体 7を左右両側から実質的に均等に弹性的に支持して いる。
雄軸 1が雌軸 2に揷入される側の端部には、 弾性体 8を係止して軸方向に固定 するストッパープレート 9が加締め部 1 0により雄軸 1に加締められている。 こ のストッパープレート 9は転動体 7が雄軸 1の軸方向溝 3から外れないように する働きもしている。 このようにして本実施の形態の車両ステアリング用伸縮軸 が構成されている。
上記のような伸縮軸に於いて、 軸回転時、 すなわち高トルク伝達時には、 軸方 向凸条 4と、 軸方向溝 6とは、 互いに接触してトルク伝達部を構成する一方、 非 トルク伝達時には、 後に詳述するように、 軸方向凸条 4と、 軸方向溝 6とは、 互 いに接触しないように構成してある。
本実施の形態の伸縮軸は、 このような構造であるので、 予圧部の存在によりそ れぞれのトルク伝達部において雄軸 1と雌軸 2は常時摺動可能に接触しており、 雄軸 1と雌軸 2との軸方向の相対移動の際には互いに摺動し、 且つ転動体 7は転 動することが出来る。
雄軸 1に形成されている軸方向凸条 4が雌軸 2側に、 雌軸 2に形成されている 軸方向溝 6が雄軸 1御 jに形成されていても本実施の形態と同様の作用、 効果が得 られる。 また、 軸方向溝 5の曲率と転動体 7の曲率が異なっていて、 両者は点接 触するように形成されていても良い。さらに、弾性体 8は板バネであっても良い。 また、 摺動面および転動面にグリースを塗布することによりさらに低い摺動荷重 を得ることが出来る。
このように構成された本実施の形態の伸縮軸は、 以下の点が従来技術に比べ優 れている。
従来技術のように ί"習動面が純粋な滑りによるものであれば、 ガタつき防止のた めの予圧荷重をある程度の荷重で留めておくことしかできなかった。 それは、 摺 動荷重は、 摩擦係数^:予圧荷重を乗じたものであり、 ガ夕つき防止や伸縮軸の剛 性を向上させたいと願って予圧荷重を上げてしまうと摺動荷重が増大してしま うという悪循環に陥ってしまうためである。
その点、 本実施の开態では、 予圧部は軸方向の相対移動の際には、 転動体 7の 転動機構を採用しているため、 著しい摺動荷重の増大を招くことなく予圧荷重を 上げることができる。 これにより、 従来なし得なかったガ夕つきの防止と剛性の 向上を摺動荷重の増大を招くことなく達成することができる。
高卜ルク伝達時には、 トルク伝達部の軸方向凸条 4が軸方向溝 6に接触するこ とによってトルク伝達の役割を果たし、 予圧部では弾性体 8が弾性変形して転動 体 7を雄軸 1と雌軸 2の間で周方向に拘束してガ夕つきを防止すると共に、 低ト ルクを伝達する。
例えば、 雄軸 1からトルクが入力された場合、 初期の段階では、 弾性体 8の予 圧が ¾Πわっているため、 ガタ付を防止する。
さらにトルクが増大していくと、 トルク伝達部の軸方向凸条 4と軸方向溝 6の 側面が強く接触し、 軸方向凸条 4の方が転動体 7より反力を強く受け、 軸方向凸 条 4と軸方向溝 6とから成るトルク伝達部が主にトルクを伝達する。 そのため、 本実施の形態では、 雄軸 1と雌軸 2の回転方向ガタを確実に防止すると共に、 高 剛性の状態でトルクを伝達することができる。
本実施の形態では、 上記のような構成の伸縮軸に於いて、 図 3に示すように、 トルク伝達部に於ける軸方向凸条の一側面と 4とそれに対向する軸方向溝の側 面 6との間の隙間を変換して回転角 Αとする一方、 予圧部における弾性体 8の撓 み可能量を変換して回転角 Bとすると、 非トルク伝達時、 回転角 A<回転角 Bに 設定してある。
さらに、 より好適には、 トルク伝達部に於ける回転角 Aは、 0 . 0 1 ° 〜0 .
2 5 ° に設定してある。
このように構成してあることから、 トルク伝達時には、 高トルクを伝達するト ルク伝達部を構成する軸方向凸条 4と軸方向溝 6は、 ガ夕を防止し、 低トルクを 伝達する働きをする予圧部を構成する転動体 7と弾性体 8より、 確実に先に接触 することができ、 これにより、 予圧部である転動体 7と弾性体 8に過大な負荷が かかることを防止することができる。 スプライン嵌合のトルク伝達部である軸方向凸条 4と軸方向溝 6とは、 非トル ク伝達時、 基本的に接触しないことが好ましい。
次に、 図 4を参照しつつ、 トルク伝達部に於ける回転角 Aについて説明する。 上記のように、好適には、回転角 Aは、 0. 01° 〜0. 25° に設定してある。 この下限の理由としては、 スプライン嵌合のトルク伝達部を構成する軸方向凸 条 4と軸方向溝 6との間は、 抵抗なく搢動できるだけの隙間を必要とする。 2 m以上の隙間があれば良い。 これを回転角に換算すると、 0. 01° となる。 また、 上限の理由としては、 スプライン嵌合のトルク伝達部を構成する軸方向 凸条 4と軸方向溝 6との間の隙間は、 大きく取りすぎると、 図 4の回転角 Cが大 きくなる。 結果として、 弾性体 8の予圧剛性域が広くなり、 高剛性感のある良い 操舵フィ一リングが得られない。 このようなことから、 種々の試作品を評価した 結果、 回転角 Aの上限を凸条 4の片側で 0. 25° と定めた。
なお、 弾性体 8による予圧剛性域 (低トルク域) から高剛性域 (高トルク域) への変曲点は、 + 2N ' m以上、 — 2 N · m以下であることが好ましい。 なお、 これは、 実車を使用した官能評価試験の結果である。
なお、 本実施の形態に係る伸縮軸の各構成部品は、 上記の説明に加えて、 以下 の表 1及び表 2のように構成してあることが好ましい。
【表 1】
Figure imgf000014_0001
【表 2】 翻品 1 棚 内容 材質 SUJ2、セラミック等
HV300以上
早 £勁1 ;
数 3〜 1 0個 Z列
構造,形状 ; 樹脂
材質
保持器 1 スチール
m
構造'开多状 I 一体化
ストッパー AP ~J ? / 1 プO Cレス
"ノ"" 1レ―■■■■■に ;;
(9) ! 構造 '形状 カシメ卜
i ε
固体潤滑材入リ
グリース i 材質 (M0S2, PTFE、他)
! 軸方向凸条 4と軸方向溝 6とは、 トルク伝達時には、 軸方向に連続して接触し てその荷重を受けるため、 点接触で荷重を受ける転動体 7よりも接触圧を低く抑 えることができるなど、 さまざまな効果がある。 したがって、 全列をポール転が り構造とした従来例に比べ下記の項目が優れている。
-摺動部での減衰肯 効果が、 ポール転がり構造に比べて大きい。 よって振動吸収 性能が高い。
-同じトルクを伝達するならば、 軸方向凸条 4の方が接触圧を低く抑えることが できるため、 トルク伝達部の軸方向の長さを短くできスペースを有効に使うこと ができる。
•同じトルクを伝達するならば、 軸方向凸条 4の方が接触圧を低く抑えることが できるため、 熱処理等によって雌軸の軸方向溝表面を硬化させるための追加工程 が不要である。
■部品点数を少なくすることができる。
•組立性をよくすることができる。
•組立コストを抑えることができる。
· トルクの伝達を主にトルク伝達部で担っているため、 転動体 7の数を少なくす ることが出来、 コラブスストロークを大きくとることが出来る。
また、 転動体 7を部分的に採用したという点では、 全列がスプライン嵌合で且 つ、 全列が摺動する構造の従来例と比較して、 下記の項目が優れている。
•摩擦抵抗が低いため、 摺動荷重を低く抑えられる。
*予圧荷重を高くすることができ、 長期にわたるガ夕つきの防止と高剛性が同時 に得られる。
(第 1実施の形態の変形例群)
図 5 Aは、 本発明の第 1実施の形態の第 1変形例に係る車両ステアリング用伸 縮軸の横断面図であり、 図 5 Bは、 本発明の第 1実施の形態の第 2変形例に係る 車両ステアリング用伸縮軸の横断面図である。
図 6 Aは、 本発明の第 1実施の形態の第 3変形例に係る車両ステアリング用伸 縮軸の横断面図であり、 図 6 Bは、 本発明の第 1実施の形態の第 4変形例に係る 車両ステアリング用伸縮軸の横断面図である。
図 7 Aは、 本発明の第 1実施の形態の第 5変形例に係る車両ステアリング用伸 縮軸の横断面図であり、 図 7 Bは、 本発明の第 1実施の形態の第 6変形例に係る 車両ステアリング用伸縮軸の横断面図である。
図 8は、 本発明の第 1実施の形態の第 7変形例に係る車両ステアリング用伸縮 軸の横断面図である。
なお、 以下の全ての変形例では、 第 1実施の形態と同様の構成には、 同じ符号 を付して、 その説明を省略する。
図 5 Aの第 1変形例では、 スプライン嵌合された雄軸 1と雌軸 2からなる車両 ステアリング伸縮軸において、 第 1実施の形態と同等の予圧部を雄軸 1と雌軸 2 との間に周方向に 1 8 0度間隔で配置している。 予圧部の間それぞれに、 第 1実 施の形態と同等のスプライン嵌合のトルク伝達部 (軸方向凸条 4と軸方向溝 6 ) を複数箇所設けている。 その他の構成、 作用、 効果は第 1実施の形態と同様であ り、 その説明を省略する。
図 5 Bの第 2変形例では、 スプライン嵌合された雄軸 1と雌軸 2からなる車両 ステアリング伸縮軸において、 雄軸 1と雌軸 2との間に、 第 1実施の形態と同様 の予圧部を周方向に 1 2 0度で等配して設けている。 予圧部の間それぞれに、 第 1実施の形態と同等のスプライン嵌合のトルク伝達部 (軸方向凸条 4と軸方向溝 6 ) を複数箇所設けている。 また、 予圧部を周方向に 1 2 0度で等配しているこ とによって、 第 1変形例に比べて、 軸の偏心を改善することが出来るので、 高ト ルク負荷した時のねじり剛性の左右差や、 同トルクを左右に負荷した場合の各々 の総摺動荷重の差を低減することができる。 その他の構成、 作用、 効果は第 1の 形態と同様であり、 その説明を省略する。
図 6 Aの第 3変形例と、 図 6 Bの第 4変形例とは、 上記の図 5 A、 図 5 Bの第 1及び第 2変形例に対して、 雄軸 1の外周面に固体潤滑膜 1 1を形成したことに、 その特徴がある。 このように、 雄軸 1の外周面に固体潤滑膜 1 1を形成すること によって、 卜ルク伝達部の軸方向凸条 4と軸方向溝 6との接触抵抗を低くするこ とが出来るため、 総摺動荷重 (転がりと滑りが両方作用している本発明の構造に おいて、 通常使用時に発生する摺動荷重を言う) を、 第 1実施の形態、 第 1及び 第 2変形例の場合に比べて低くすることが出来る。 固体潤滑皮膜としては、 ニ硫 化モリブデンの紛体を樹脂中に分散混合し、 それを吹き付けまたは浸漬後に焼き 付けて皮膜を形成したものや、 P T F E (四フッ化工チレン) を樹脂中に分散混 合し、 それを吹き付けまたは浸漬後に焼き付けて皮膜を形成したもの等が用いら れる。 また、 固体潤滑皮膜のかわりに樹脂をコ一ティングしてもよい。
図 7 Aの第 5変形例と、 図 7 Bの第 6変形例とは、 上記の図 5 A、 図 5 Bの第 1及び第 2変形例に対して、 雌軸 2の内周面に固体潤滑膜 1 1を形成したことに、 その特徴がある。 このように、 雌軸 2の内周面に固体潤滑膜 1 1を形成すること によって、 トルク伝達部の軸方向凸条 4と軸方向溝 6との接触抵抗を低くするこ とが出来るため、 総摺動荷重 (転がりと滑りが両方作用している本発明の構造に おいて、 通常使用時に発生する摺動荷重を言う) を、 第 1実施の形態等の場合に 比べて低くすることが出来る。 固体潤滑皮膜としては、 二硫化モリブデンの紛体 を樹脂中に分散混合し、それを吹き付けまたは浸漬後に焼き付けて皮膜を形成し たものや、 P T F E (四フッ化工チレン) を樹脂中に分散混合し、 それを吹き付 けまたは浸漬後に焼き付ナて皮膜を形成したもの等が用いられる。
図 8の第 7変形例では、 上記の第 1実施の形態に対して、 予圧部の弾性体の形 状が異なっている。 より詳細には、 上記の図 5 Bの第 1変形例に対して、 予圧部 の弾性体の形状が異なっている。 その他の構成 ·作用等は、 上記の第 1実施の形 態等と同様である。 弾性体8は、 トルク非伝達時には、 転動体 7を雌軸 2に対し てガ夕付きのない程度に予圧する一方、 トルク伝達時には、 弾性変形して転動体 7を雄軸 1と雌軸 2の間で周方向に拘束する働きをする。 この弾性体 8は、 その 両端部の凹部 8 eで雄軸 1の軸方向溝 3の両側の段部 3 cに係止してあり、 これ により、 トルク伝達時、弹'性体 8全体が周方向に移動できないようになっている。 上述した第 1乃至第 7变形例に於いても、 摺動面および転動面にグリースを塗 布することによりさらに低い摺動荷重を得ることが出来る。 また、 雄軸に形成さ れている軸方向凸条 4が雌軸側に、 雌軸に形成されている軸方向溝 6が雄軸側に 形成されていても本願実旌の形態と同様の作用、 効果が得られる。 また、 軸方向 溝 5の曲率と転動体 7の曲率が異なっていて、 両者は点接触するように形成され ていても良い。
(第 2実施の形態)
図 9は、 本発明の第 2実施の形態に係る車両ステアリング用伸縮軸の横断面図 である。 本実施の形態では、 第 1実施の形態と同様の構成には、 同じ符号を付して、 そ の説明を省略する。
本第 2実施の形態では、 雄軸 1の外周面において周方向に 1 2 0度間隔で等配 した 3個のそれぞれ略円弧状の断面形状を有する軸方向凸条 4が延在して形成 され、 これに対応して雌軸 2の内周面に雄軸 1の 3個の軸方向凸条 4に対向する 位置に 3個の略円弧状の断面形状を有する軸方向溝 6が延在して形成されてい る。
非トルク伝達時には、 軸方向凸条 4と軸方向溝 6とは、 原則として互いに非接 触であるが、 高トルク伝達時には、 互いに接触して、 トルク伝達部を構成する。 軸方向凸条 4及び軸方向溝 6は、 断面略円弧状、 若しくはゴシックアーチ状で あるが、 その他の形状であってもよい。
本実施の形態に於いても、 トルク伝達部に於ける軸方向凸条 4と軸方向溝 6と の間の隙間を変換して回転角 Aとする一方、 予圧部の弾性体 8の撓み可能量を変 換して回転角 Bとすると、非トルク伝達時、回転角 A<回転角 Bに設定してある。 さらに、 より好適には、 トルク伝達部に於ける回転角 Aは、 0 . 0 1 °〜0 . 2 5。 に設定してある。
このように構成してあることから、 トルク伝達時には、 高トルクを伝達するト ルク伝達部 (軸方向凸条 4と軸方向溝 6 ) は、 ガ夕を防止し、 又、 低トルクを伝 達する働きをする予圧部 (転動体 7と弾性体 8 ) より、 確実に先に接触すること ができ、 これにより、 予圧部 (転動体 7と弾性体 8 ) に過大な負荷がかかること を防止すること;^できる。 また、 スプライン嵌合のトルク伝達部 (軸方向凸条 4 と軸方向溝 6 ) は、 非トルク伝達時、 基本的に接触しないことが好ましい。
(第 2実施の形態の変形例群)
図 1 0は、 本発明の第 2実施の形態の第 1変形例に係る車両ステアリング用伸 縮軸の横断面図である。
図 1 1は、 本発明の第 2実施の形態の第 2変形例に係る車両ステアリング用伸 縮軸の横断面図である。
図 1 2 Aは、 本発明の第 2実施の形態の第 3変形例に係る車両ステアリング用 伸縮軸の縦断面図であり、 図 1 2 Bは、 図 1 2 Aの b— b線に沿った横断面図で ある。
なお、 以下の全ての変形 ί列では、 第 1又は第 2実施の形態と同様の構成には、 同じ符号を付して、 その説明を省略する。
図 1 0の第 1変形例は、 第 2実施の形態に対して、 雄軸 1の外周面に固体潤滑 皮膜 1 1を形成していることが異なっている。 このように、 雄軸 1の外周面に固 体潤滑膜 1 1を形成することによって、 トルク伝達部の軸方向凸条 4と軸方向溝 6との接触抵抗を低くすることが出来るため、 総搢動荷重 (転がりと滑りが両方 作用している本発明の構造において、 通常使用時に発生する摺動荷重を言う) を 第 1実施の形態の場合に比べて低くすることが出来る。 固体潤滑皮膜 1 1として は、 二硫化モリブデンの紛体を樹脂中に分散混合し、 それを吹き付けまたは浸漬 後に焼き付けて皮膜を形成したものや、 P T F E (四フッ化工チレン) を樹脂中 に分散混合し、 それを吹き付けまたは浸漬後に焼き付けて皮膜を形成したもの等 が用いられる。 また、 固体潤膜皮膜のかわりに樹脂をコーティングしてもよい。 なお、 固体潤滑皮膜 1 1は雄軸 1の外周面の全体にわたって形成されているが、 雄軸 1に形成されている 3箇所の軸方向凸条 4の外周面のみに設けても良い。 こ れは、 高トルク負荷時の摺動荷重の主たる要因が、 軸方向凸条 4と軸方向溝 6と の接触よるものであり、 この接触部の接触抵抗を低減することで軸方向の摺動抵 抗を下げることが出来るからである。
図 1 1の第 2変形例は、 第 2実施の形態に対して、 雌軸 2の内周面に固体潤滑 皮膜 1 1を形成していることが異なっている。 このように、 雌軸 2の内周面に固 体潤滑膜 1 1を形成することによって、 トルク伝達部の軸方向凸条 4と軸方向溝 6との接触抵抗を低くすることが出来るため、 総摺動荷重 (転がりと滑りが両方 作用している本発明の構造において、 通常使用時に発生する摺動荷重を言う) を 第 1実施の形態の場合に比べて低くすることが出来る。 固体潤滑皮膜 1 1として は、 二硫化モリブデンの紛体を樹脂中に分散混合し、 それを吹き付け又は浸漬後 に焼き付けて皮膜を形成したものや、 P T F E (四フッ化工チレン) を樹脂中に 分散混合し、 それを吹き付け又は浸漬後に焼き付けて皮膜を形成したもの等が用 いられる。 なお、 固体潤滑皮膜 1 1は雌軸 2の内周面の全体にわたって形成され ているが、 雌軸 2に形成されている 3箇所の軸方向溝 6の内周面のみに設けても 良い。 これは、 高ト レク負荷時の摺動荷重の主たる要因が、 軸方向凸条 4と軸方 向溝 6との接触よるものであり、 この接触部の接触抵抗を低減することで軸方向 の摺動抵抗を下げることが出来るからである。
図 1 2の第 3変形 ί列では、 上記の第 2実施の形態に対して、 予圧部の弾性体の 形状が異なっている。 弾性体 8は、 トルク非伝達時には、 転動体 7を雌軸 2に対 してガタ付きのない程度に予圧する一方、 トルク伝達時には、 弾性変形して転動 体 7を雄軸 1と雌軸 2の間で周方向に拘束する働きをする。 この弾性体 8は、 そ の両端部の凹部 8 eで雄軸 1の軸方向溝 3の両側の段部 3 cに係止してあり、 こ れにより、 トルク伝達時、 弾性体 8全体が周方向に移動できないようになってい る。 また、 図 1 2の第 3変形例では、 雄軸 1と、 雌軸 2との間に、 軸方向凸条 4 に干渉することなく転動体 7を転動自在に保持する保持器 2 0が配置してある。 その他の構成 ·作用等は、上記の第 2実施の形態等と同様である。保持器 2 0は、 円筒形状であり、 転動体 7を転動自在に保持するための長孔 2 1を有しており、 軸方向凸条 4に対応する位置には、 軸方向凸条 4との干渉を回避するための干渉 回避用長孔 2 2が形成してある。 この干渉回避用長孔 2 2は、 長孔 2 1より軸方 向に著しく長く形成してある。 以上から、 本変形例では、 転動体 7と軸方向凸条 4の両者が同一軸断面上に存在するにも関わらず、 転動体 7を保持でき、 それに より、 摺動機能の向上 (摺動荷重の安定化) を図ることができる。 結果として、 快適な操舵フィーリングを得ることができる。
なお、 上述した第 2実施の形態、 第 1乃至第 3変形例に於いても、 摺動面及び 転動面にダリースを塗布することによりさらに低い插動荷重を得ることが出来 る。 また、 軸方向凸条 4の曲率と軸方向溝 6の曲率は異なっており、 軸方向凸条 4と軸方向溝 6は接触の際に軸方向に連続して接触するようにそれぞれ形成さ れていても良い。 また、 雄軸に形成されている軸方向凸条 4が雌軸側に、 雌軸に 形成されている軸方向溝 6が雄軸側に形成されていても本願実施の形態と同様 の作用、 効果が得られる。 また、 軸方向溝 5の曲率と転動体 7の曲率が異なって いて、 両者は点接触するように形成されていても良い。
(その他関連事項)
本発明の全ての実施の形態において、 中実の雄軸を中空に置き換えても良い。 また、 本発明の全ての実施の形態において、 下記の事が言える。 雌軸の先端を内 仴 IJに加締めることで、 雄軸の引抜を防止し、 分解できない構造にしても良い。 転 動体 7は、 球状体 (ポール) について例示したが、 コ口であっても良く、 かつ熱 処理され、且つ研磨されたものを使用してもよレ^弾性体は板パネであって良い。 雄軸 1の外周面に、 P T F E (四フッ化工チレン) または、 二硫化モリブデンを 含む樹脂皮膜処理を施したものを使用してもよい。 雄軸 1を冷間引き抜き成型で 製造した中実または中空の鋼材を使用してもよい。 雄軸 1を冷間押し出し成形で 製造したアルミニウム材を使用してもよい。 雄軸 1を冷間鍛造で製造した中実の 鋼材または、 ァフレミ二ゥム材を使用してもよい。 雌軸 2を冷間引き抜き成型で製 造した中空の鋼材を使用してもよい。 雄軸を冷間鍛造成形する際には、 素材に金 属石鹼処理 (ボンデ処理) を施すことが望ましい。 雌軸は中空の鋼材を素材とし て用い、金属石験処理(ボンデ処理) した後に、求める径に絞り又は拡管加工し、 溝部をプレス成形しても良い。 雌軸 2は窒化処理されていてもよい。 雌軸 2の内 周面に P T F E (四フッ化工チレン) または、 二硫化モリブデンを含む樹脂皮膜 処理を施したものを使用してもよい。
また、 本発明の全ての実施の形態において、 下記の数値範囲が用いられること が望ましい。 • トルクを負荷しない状態で、 転動体の接触圧が 1 5 0 O M P a以下。
• トルクを 1 0 O Nm負荷した状態で、転動体の接触圧が 2 0 0 O M P a以下。 · トルクを 1 0 0 Nm負荷した状態で、 軸方向凸条の接触圧が 2 0 0 O M P a以下。 本発明では、 以上を総合すると従来の製品と比較して下記のことが言える。 ·低コストである。
-安定した低スライド荷重を得ることができる。
•ガタがない。
•耐摩耗性に優れてレ ^る。
•耐熱性に優れている。
·軽量化が可能である。
•機構が小さい。
•設計思想を変えずにあらゆる使用条件に対応することができる。
なお、 特開 2 0 0 1— 5 0 2 9 3号公報、 及びドィッ特許公開 D E 3 7 3 0
3 9 3 A 1号公報こは、 雄軸と雌軸に形成した軸方向溝に複数の転動体を介装 して弾性体により予圧した構造が開示してある。 これに対して、 本発明は、 上述 したように、 「全列をボール転がり構造とした場合」 又は 「従来のスプライン嵌 合とした場合」 より著しく優れている。
また、 欧州特許公開 E P 1 0 7 8 8 4 3 A 1号公報では、 二一ドルローラ、 そ の保持器、 ガ夕つき防止のためのレギユレ一夕一でガタ付きを防止するという構 造であるが、 純粋な?骨り摺動であるため、 予圧荷重を大きくできない。 よって、 長期にわたってガ夕つきを防止することや、 高剛性を得ることが非常に困難であ る。
それに対し、 本発明では、 前述したとおり、 転がり構造を部分的に採用してお り、 且つ、 ガ夕付きを防止するための手段も違うため、
·摩擦抵抗が低いため、 摺動荷重を低く抑えられる。
-予圧荷重を高くすることができ、 長期にわたるガ夕つきの防止と高剛性が同時 に得られる。 といったことが極めて優れている。
なお、 本発明は、 上述した実施の形態に限定されず、 種々変形可能である。

Claims

1 . 車両のステアリングシャフトに組込み、 雄軸と雌軸を回転不能に且つ搢動 自在に嵌合した車両ステァリング用伸縮軸において、
前記雄軸の外周部と前記雌軸の内周部にそれぞれ設けられ、 回転の際には互い に接触してトルクを伝達するトルク伝達部と、
前記トルク伝達部とは異なる位置の前記雄軸の外周部と前記雌軸の内周部の 間に設けられ、 前記雄軸と前記雌軸との軸方向相対移動の際には転動する転動体 の
と、 該転動体に径方向に隣接して配置され、 該転動体を介して前記雄軸と前記雌 軸とに予圧を与える弾性体とからなる予圧部と、 を具備し、
前記トルク伝達部に於ける隙間を変換して回転角 Aとする一方、 前記予圧部の 弾性体の擦み可能量を変換して回転角 Bとすると、
非トルク伝達時、 回転角 A<回転角 Bに設定したことを特徴とする車両ステア リング用伸縮軸。
2 . 前記トルク伝達部に於ける回転角 Aは、 0 . 0 1 °~ 0 . 2 5。に設定して あることを特徴とする請求項 1に記載の車両ステアリング用伸縮軸。
3 . 前記トルク伝達部は、 前記雄軸の外周面に形成された断面形状が略円弧状 の軸方向凸条と前記雌軸の内周面に形成された断面形状が略円弧状の軸方向溝 から構成されていることを特徴とする請求項 1に記載の車両ステアリング用伸 縮軸。
4 . 前記トルク伝達部は、 非トルク伝達時、 互いに軸方向に連続して接触して いないことを特徴とする請求項 1に記載の車両ステアリング用伸縮軸。
5 . 前記トルク伝達部は、 前記雄軸の外周面と前記雌軸の内周面に形成された スプライン嵌合部またはセレーシヨン嵌合部からなることを特徴とする請求項 1に記載の車両ステアリング用伸縮軸。
6 . 前記予圧部は、 前記雄軸の外周面に設けられた第 1の軸方向溝と、 該第 1 の軸方向溝に対向して前記雌軸の内周面に設けられた第 2の軸方向溝とを有し、 前記転動体と前記弾性体は、 該第 1および第 2の軸方向溝間に配置されている ことを特徴とする請求項 1に記載の車両ステアリング用伸縮軸。
7 . 前記予圧部は、 前記雄軸と前記雌軸との間に複数配置され、
前記トルク伝達部は、 隣り合う前記予圧部の間に複数配置されていることを特 徵とする請求項 1に記載の車両ステアリング用伸縮軸。
8 . 前記予圧部は、 周方向に 1 8 0度間隔で配置され、 前記予圧部の間に、 そ れぞれ前記トルク伝達部を配置していることを特徴とする請求項 7に記載の車 両ステアリング用伸縮軸。
9 . 前記予圧部は、 周方向に 1 2 0度間隔で等配して配置され、 前記予圧部の 間に、 それぞれ前記トルク伝達部を配置していることを特徴とする請求項 7に記 載の車両ステアリング用伸縮軸。
1 0 . 前記トルク伝達部は、 前記予圧部の間に周方向中央部にそれぞれ配置さ れていることを特徴とする請求項 9に記載の車両ステアリング用伸縮軸。
1 1 . 前記転動体は、 少なくとも 1つの球状体からなることを特徴とする請求 項 1に記載の車両ステアリング用伸縮軸。
12. 前記弾性体は、 板パネからなることを特徴とする請求項 1に記載の車両 ステアリング用伸縮軸。
13. 前記雄軸の外周部または前記雌軸の内周部に固体潤滑皮膜が形成されて いることを特徴とする請求項 1に記載の車両ステアリング用伸縮軸。
PCT/JP2005/001162 2004-01-27 2005-01-21 車両ステアリング用伸縮軸 WO2005070744A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/587,402 US20070157754A1 (en) 2004-01-27 2005-01-21 Telescopic shaft for vehicle steering
JP2005517328A JP4696916B2 (ja) 2004-01-27 2005-01-21 車両ステアリング用伸縮軸

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004019004 2004-01-27
JP2004-019004 2004-01-27

Publications (1)

Publication Number Publication Date
WO2005070744A1 true WO2005070744A1 (ja) 2005-08-04

Family

ID=34805586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001162 WO2005070744A1 (ja) 2004-01-27 2005-01-21 車両ステアリング用伸縮軸

Country Status (3)

Country Link
US (1) US20070157754A1 (ja)
JP (1) JP4696916B2 (ja)
WO (1) WO2005070744A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007838A1 (ja) * 2005-07-13 2007-01-18 Jtekt Corporation 伸縮可能シャフトおよび車両用操舵装置
EP1790868A1 (en) * 2004-09-16 2007-05-30 JTEKT Corporation Extendable shaft
JP2016003730A (ja) * 2014-06-18 2016-01-12 株式会社リコー 駆動伝達機構、画像形成装置および回転体検査装置
WO2017018401A1 (ja) * 2015-07-27 2017-02-02 日本精工株式会社 伸縮式回転伝達軸及びその製造方法
US10086865B2 (en) * 2015-01-14 2018-10-02 Nsk Ltd Steering device
US10415646B2 (en) * 2016-09-16 2019-09-17 Steering Solutions Ip Holding Corporation Telescoping roller I-shaft and method of assembly

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100390000C (zh) 2001-10-01 2008-05-28 日本精工株式会社 车辆转向用伸缩轴
EP1512607B1 (en) * 2002-06-11 2008-08-13 NSK Ltd. Telescopic shaft for steering vehicle and telescopic shaft for steering vehicle with cardan shaft coupling
JP4196630B2 (ja) * 2002-10-02 2008-12-17 日本精工株式会社 車両ステアリング用伸縮軸
JP4419841B2 (ja) * 2002-11-29 2010-02-24 日本精工株式会社 車両ステアリング用伸縮軸
JP4190905B2 (ja) * 2003-02-06 2008-12-03 日本精工株式会社 車両用ステアリング装置
WO2005002947A1 (ja) * 2003-07-02 2005-01-13 Nsk Ltd. 車両ステアリング用伸縮軸
JP4921762B2 (ja) * 2005-09-30 2012-04-25 株式会社ジェイテクト 伸縮自在シャフトおよび車両操舵用伸縮自在シャフト
JP2011038560A (ja) * 2009-08-07 2011-02-24 Jtekt Corp スプライン伸縮軸及びその製造方法並びに車両用操舵装置
US20110088502A1 (en) * 2009-10-19 2011-04-21 Schaeffler Technologies Gmbh & Co. Kg Steering column with integrated shaft bearing and tube-mounted slidable yoke
DE102010049106A1 (de) * 2010-10-21 2011-06-09 Daimler Ag Schiebehülsenrohling und Kraftfahrzeug-Lenkspindelanordnung mit aus dem Rohling gefertigter Schiebehülse
DE102014105822B4 (de) * 2014-04-25 2016-03-03 Thyssenkrupp Presta Ag Lenkwelle für ein Kraftfahrzeug
DE102016218830A1 (de) * 2016-09-29 2018-03-29 Aktiebolaget Skf Baueinheit
CN107808767B (zh) * 2017-10-10 2019-05-24 西安交通大学 一种基于液态浸泡法增强单层二硫化钼薄膜铁磁性的方法
DE102018120628A1 (de) * 2018-08-23 2020-02-27 Trw Automotive Gmbh Lagervorrichtung für Kraftfahrzeugwellen sowie Kraftfahrzeugwellenbaugruppe für ein Kraftfahrzeug

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3730393A1 (de) * 1987-09-10 1989-03-23 Lemfoerder Metallwaren Ag Drehmomentuebertragende verbindung fuer axial ineinander verschiebliche wellenteile, insbesondere der lenkwelle von kraftfahrzeugen
JPH0362230U (ja) * 1989-10-23 1991-06-18
JPH04123775U (ja) * 1991-04-22 1992-11-10 富士機工株式会社 伸縮自在シヤフト
JP2000038142A (ja) * 1998-05-30 2000-02-08 Daimlerchrysler Ag 自動車用の伸縮可能なかじ取り軸
JP2001050293A (ja) * 1999-06-30 2001-02-23 Nacam France Sa 2つの滑動シャフトのボール結合装置
EP1078843A1 (en) * 1999-03-16 2001-02-28 Melchor Daumal Castellon Telescopic shaft for steering columns in automobiles with a sliding load control system
JP2001239944A (ja) * 2000-03-01 2001-09-04 Nsk Ltd 伸縮自在シャフトの結合構造
JP2002286034A (ja) * 2001-01-31 2002-10-03 Torrington Co:The インターロック形リニアローラベアリング
JP2003054421A (ja) * 2001-08-08 2003-02-26 Nsk Ltd 車両ステアリング用伸縮軸

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2607257A (en) * 1950-08-30 1952-08-19 Minshall Estey Organ Inc Organ key loading device
US3169407A (en) * 1962-02-28 1965-02-16 Westinghouse Air Brake Co Motion converting device
US3279218A (en) * 1964-05-11 1966-10-18 Rockwell Standard Co Extensible drive connections
US3356424A (en) * 1965-04-30 1967-12-05 Gen Motors Corp Ball spline assembly
US3392599A (en) * 1966-12-30 1968-07-16 Gen Motors Corp Energy absorbing device
US3444753A (en) * 1967-12-14 1969-05-20 Bendix Corp No-lash axially movable steering column
US3604285A (en) * 1970-04-06 1971-09-14 Saab Scania Ab Energy-absorbing device and method of making the same
CH553350A (fr) * 1972-06-20 1974-08-30 Betrix Claude Dispositif de guidage du deplacement axial d'un organe cylindrique.
DE2461289B1 (de) * 1974-12-23 1975-11-13 Loehr & Bromkamp Gmbh Gleichlaufdrehgelenk
US3962931A (en) * 1975-03-21 1976-06-15 International Harvester Company Telescopic steering column
DE2532661C3 (de) * 1975-07-22 1978-03-09 Jean Walterscheid Gmbh, 5204 Lohmar Teleskopwelle, insbesondere für Landmaschinen
DE2804778C3 (de) * 1978-02-04 1982-04-08 Uni-Cardan Ag, 5200 Siegburg Teleskopantriebswelle
US4384861A (en) * 1979-10-10 1983-05-24 Firma LWM Lemforder Gelenkwellen GmbH Universal joint shaft, particularly for a steering column of motor vehicles
US4357137A (en) * 1980-08-18 1982-11-02 Arinc Research Corporation Shaft coupling
US4500141A (en) * 1982-09-13 1985-02-19 Daugherty Estes M Drill steel idler guide
US4509386A (en) * 1982-11-15 1985-04-09 General Motors Corporation Lash-free telescopic steering shaft assembly and method of making the assembly
SE450153B (sv) * 1985-01-22 1987-06-09 Ffv Affersverket Teleskopstyrning, speciellt for overforing av vridmoment
AT384405B (de) * 1985-07-22 1987-11-10 Supervis Ets Laengenveraenderbare lenkspindel fuer lenkvorrichtungen bei kraftfahrzeugen
US4886295A (en) * 1988-12-05 1989-12-12 General Motors Corporation Vehicle occupant protection system
US5184978A (en) * 1990-04-16 1993-02-09 Gkn Automotive, Inc. Telescopic triplan universal joint
FR2669693A1 (fr) * 1990-11-23 1992-05-29 Nacam Accouplement extensible perfectionne pour solidariser en rotation deux arbres avec systeme de securite integre et son application notamment aux directions d'automobiles.
US5235734A (en) * 1991-11-04 1993-08-17 Itt Corporation Collapsible steering shaft apparatus and method of making same
FR2694056B1 (fr) * 1992-07-24 1994-12-16 Glaenzer Spicer Sa Joint de transmission articulé du type coulissant.
US5460574A (en) * 1993-08-31 1995-10-24 Trw Inc. Variable length shaft assembly with a lash bushing
US5542343A (en) * 1995-09-26 1996-08-06 Trw Inc. Power steering assembly with damping ring
DE19538303A1 (de) * 1995-10-14 1997-04-17 Zahnradfabrik Friedrichshafen Lenksäule eines Kraftfahrzeuges
JP3671571B2 (ja) * 1996-02-29 2005-07-13 株式会社デンソー 動力伝達装置
US5709605A (en) * 1996-12-23 1998-01-20 General Motors Corporation Shaft coupling
FR2759436B1 (fr) * 1997-02-11 1999-04-30 Pierre Guimbretiere Joint homocinetique coulissant a tripode
DE19801166C2 (de) * 1998-01-15 2001-06-28 Micro Compact Car Smart Gmbh Kraftfahrzeug-Lenkwelle mit zwei Wellenabschnitten
JPH11311256A (ja) * 1998-04-24 1999-11-09 Nippon Seiko Kk 衝撃吸収式ステアリングシャフト
US6200225B1 (en) * 1998-09-04 2001-03-13 Trw Inc. Variable length shaft assembly having a bearing system
US6241616B1 (en) * 1999-05-20 2001-06-05 Neapco Inc. Variable length double telescoping drive shaft assembly
ES2162713T3 (es) * 1999-12-10 2002-01-01 Skf Linearsysteme Gmbh Cojinete de rodamientos para movimientos longitudinales.
US6279953B1 (en) * 1999-12-22 2001-08-28 Trw Inc. Flexible mount for an intermediate steering column
US6364778B1 (en) * 2000-05-25 2002-04-02 Spicer Driveshaft, Inc. Axially adjustable steering shaft assembly with ball spline
JP3694637B2 (ja) * 2000-06-27 2005-09-14 光洋精工株式会社 ボールスプライン継手及びステアリング装置の中間軸
US6582313B2 (en) * 2000-12-22 2003-06-24 Delphi Technologies, Inc. Constant velocity stroking joint having recirculating spline balls
US6533459B2 (en) * 2001-01-31 2003-03-18 The Torrington Company Adjustable, self-aligning, linear roller bearing
DE10106982A1 (de) * 2001-02-15 2002-08-29 Ina Schaeffler Kg Linearführung
DE10123413B4 (de) * 2001-05-14 2006-03-16 Gkn Driveline Deutschland Gmbh Antriebswelle
JP4571341B2 (ja) * 2001-06-18 2010-10-27 水島プレス工業株式会社 ステアリング装置のダンパ機構
CN100390000C (zh) * 2001-10-01 2008-05-28 日本精工株式会社 车辆转向用伸缩轴
FR2830912B1 (fr) * 2001-10-15 2003-12-19 Nacam Dispositif d'accouplement en rotation de deux arbres telescopiques
US6620050B2 (en) * 2001-10-30 2003-09-16 Mando Corporation Universal joint
JP3770540B2 (ja) * 2001-11-20 2006-04-26 マンド コーポレーション ユニバーサルジョイント
US7226360B2 (en) * 2001-12-14 2007-06-05 Gkn Driveline North America, Inc. Grease cap for a constant velocity joint
US6761503B2 (en) * 2002-04-24 2004-07-13 Torque-Traction Technologies, Inc. Splined member for use in a slip joint and method of manufacturing the same
US6729648B2 (en) * 2002-06-07 2004-05-04 Sealy Technology Llc Non-linear energy absorbing column assembly
EP1512607B1 (en) * 2002-06-11 2008-08-13 NSK Ltd. Telescopic shaft for steering vehicle and telescopic shaft for steering vehicle with cardan shaft coupling
US6893353B2 (en) * 2002-06-18 2005-05-17 Torque-Traction Technologies, Inc. Rolling ball spline slip joint formed from two tubular members
EP1375295B1 (de) * 2002-06-18 2006-03-08 DURA Automotive Systems Reiche GmbH & Co. KG Lenkwelle für Kraftfahrzeuge
DE10233758B4 (de) * 2002-07-25 2004-07-29 Gkn Driveline Deutschland Gmbh Längsverschiebeeinheit mit Bremsrollen
JP3797304B2 (ja) * 2002-09-13 2006-07-19 日本精工株式会社 車両ステアリング用伸縮軸
JP4196630B2 (ja) * 2002-10-02 2008-12-17 日本精工株式会社 車両ステアリング用伸縮軸
JP4254194B2 (ja) * 2002-10-10 2009-04-15 日本精工株式会社 車両ステアリング用伸縮軸
JP4196642B2 (ja) * 2002-10-24 2008-12-17 日本精工株式会社 車両ステアリング用伸縮軸
JP4419841B2 (ja) * 2002-11-29 2010-02-24 日本精工株式会社 車両ステアリング用伸縮軸
JP2004196261A (ja) * 2002-12-20 2004-07-15 Nsk Ltd 車両ステアリング用伸縮軸
WO2004062981A1 (ja) * 2003-01-10 2004-07-29 Nsk Ltd. 車両ステアリング用伸縮軸
JP4190905B2 (ja) * 2003-02-06 2008-12-03 日本精工株式会社 車両用ステアリング装置
WO2005002947A1 (ja) * 2003-07-02 2005-01-13 Nsk Ltd. 車両ステアリング用伸縮軸
US20050070365A1 (en) * 2003-09-30 2005-03-31 Riefe Richard K. Bushing for telescoping steering column assembly
FR2875279B1 (fr) * 2004-09-14 2006-11-24 Nacam France Sas Dispositif d'accouplement a billes a maintien articule de deux arbres coulissants
JP4770193B2 (ja) * 2005-02-16 2011-09-14 日本精工株式会社 車両ステアリング用伸縮軸

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3730393A1 (de) * 1987-09-10 1989-03-23 Lemfoerder Metallwaren Ag Drehmomentuebertragende verbindung fuer axial ineinander verschiebliche wellenteile, insbesondere der lenkwelle von kraftfahrzeugen
JPH0362230U (ja) * 1989-10-23 1991-06-18
JPH04123775U (ja) * 1991-04-22 1992-11-10 富士機工株式会社 伸縮自在シヤフト
JP2000038142A (ja) * 1998-05-30 2000-02-08 Daimlerchrysler Ag 自動車用の伸縮可能なかじ取り軸
EP1078843A1 (en) * 1999-03-16 2001-02-28 Melchor Daumal Castellon Telescopic shaft for steering columns in automobiles with a sliding load control system
JP2001050293A (ja) * 1999-06-30 2001-02-23 Nacam France Sa 2つの滑動シャフトのボール結合装置
JP2001239944A (ja) * 2000-03-01 2001-09-04 Nsk Ltd 伸縮自在シャフトの結合構造
JP2002286034A (ja) * 2001-01-31 2002-10-03 Torrington Co:The インターロック形リニアローラベアリング
JP2003054421A (ja) * 2001-08-08 2003-02-26 Nsk Ltd 車両ステアリング用伸縮軸

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1790868A1 (en) * 2004-09-16 2007-05-30 JTEKT Corporation Extendable shaft
EP1790868A4 (en) * 2004-09-16 2008-11-12 Jtekt Corp EXTENDABLE TREE
US7753800B2 (en) 2004-09-16 2010-07-13 Jtekt Corporation Expandable shaft
WO2007007838A1 (ja) * 2005-07-13 2007-01-18 Jtekt Corporation 伸縮可能シャフトおよび車両用操舵装置
JP2007046769A (ja) * 2005-07-13 2007-02-22 Jtekt Corp 伸縮自在シャフトおよび車両操舵用伸縮自在シャフト
US8342056B2 (en) 2005-07-13 2013-01-01 Jtekt Corporation Telescopic shaft and vehicle steering apparatus
JP2016003730A (ja) * 2014-06-18 2016-01-12 株式会社リコー 駆動伝達機構、画像形成装置および回転体検査装置
US10086865B2 (en) * 2015-01-14 2018-10-02 Nsk Ltd Steering device
WO2017018401A1 (ja) * 2015-07-27 2017-02-02 日本精工株式会社 伸縮式回転伝達軸及びその製造方法
JPWO2017018401A1 (ja) * 2015-07-27 2018-04-26 日本精工株式会社 伸縮式回転伝達軸及びその製造方法
US10717459B2 (en) 2015-07-27 2020-07-21 Nsk Ltd. Telescopic rotation transmission shaft and method for producing same
US10415646B2 (en) * 2016-09-16 2019-09-17 Steering Solutions Ip Holding Corporation Telescoping roller I-shaft and method of assembly

Also Published As

Publication number Publication date
JPWO2005070744A1 (ja) 2007-09-06
US20070157754A1 (en) 2007-07-12
JP4696916B2 (ja) 2011-06-08

Similar Documents

Publication Publication Date Title
WO2005070744A1 (ja) 車両ステアリング用伸縮軸
JP3797304B2 (ja) 車両ステアリング用伸縮軸
JP4419841B2 (ja) 車両ステアリング用伸縮軸
JP4273968B2 (ja) 車両ステアリング用伸縮軸
JP4770193B2 (ja) 車両ステアリング用伸縮軸
EP1568569B1 (en) Extendable shaft for vehicle steering
EP1588921A1 (en) Telescopic shaft for motor vehicle steering
JP2004262266A (ja) 車両用ステアリング装置
WO2004056638A1 (ja) 車両ステアリング用伸縮軸
JP2005231625A (ja) 車両ステアリング用伸縮軸
JP4428117B2 (ja) 車両ステアリング用伸縮軸
JP2005306216A (ja) 車両用ステアリングシステム
JP2005349964A (ja) 車両ステアリング用伸縮軸
JP2005299779A (ja) 車両ステアリング用伸縮軸
JP2005324599A (ja) 車両ステアリング用伸縮軸
JP2003118594A (ja) 車両ステアリング用伸縮軸
WO2005102820A1 (ja) 車両ステアリング用伸縮軸
JP2004168229A (ja) 車両ステアリング用伸縮軸
JP2006205833A (ja) 車両ステアリング用伸縮軸及び軸端部固定方法
JP2005313693A (ja) 車両ステアリング用伸縮軸
JP2003063414A (ja) 車両ステアリング用伸縮軸
JP2005225444A (ja) 車両ステアリング用伸縮軸
JP2003118592A (ja) 車両ステアリング用伸縮軸
JP2003118593A (ja) 車両ステアリング用伸縮軸

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517328

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007157754

Country of ref document: US

Ref document number: 10587402

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10587402

Country of ref document: US