WO2004062981A1 - 車両ステアリング用伸縮軸 - Google Patents

車両ステアリング用伸縮軸 Download PDF

Info

Publication number
WO2004062981A1
WO2004062981A1 PCT/JP2004/000056 JP2004000056W WO2004062981A1 WO 2004062981 A1 WO2004062981 A1 WO 2004062981A1 JP 2004000056 W JP2004000056 W JP 2004000056W WO 2004062981 A1 WO2004062981 A1 WO 2004062981A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
contact portion
elastic body
vehicle steering
side contact
Prior art date
Application number
PCT/JP2004/000056
Other languages
English (en)
French (fr)
Inventor
Kinji Yukawa
Yasuhisa Yamada
Original Assignee
Nsk Ltd.
Nsk Steering Systems Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nsk Ltd., Nsk Steering Systems Co., Ltd. filed Critical Nsk Ltd.
Priority to EP04700759A priority Critical patent/EP1588921A4/en
Priority to US10/541,870 priority patent/US20060156855A1/en
Priority to JP2005507968A priority patent/JPWO2004062981A1/ja
Publication of WO2004062981A1 publication Critical patent/WO2004062981A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/002Elastic or yielding linear bearings or bearing supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/18Steering columns yieldable or adjustable, e.g. tiltable
    • B62D1/185Steering columns yieldable or adjustable, e.g. tiltable adjustable by axial displacement, e.g. telescopically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/20Connecting steering column to steering gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/007Hybrid linear bearings, i.e. including more than one bearing type, e.g. sliding contact bearings as well as rolling contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/12Arrangements for adjusting play
    • F16C29/123Arrangements for adjusting play using elastic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/03Shafts; Axles telescopic
    • F16C3/035Shafts; Axles telescopic with built-in bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/02Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions
    • F16D3/06Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted to allow axial displacement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/02Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions
    • F16D3/06Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted to allow axial displacement
    • F16D3/065Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted to allow axial displacement by means of rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/20Land vehicles
    • F16C2326/24Steering systems, e.g. steering rods or columns

Definitions

  • the present invention relates to a telescopic shaft for a vehicle steering which is assembled into a steering shaft of a vehicle, and a male shaft and a female shaft are fitted to each other so as to be non-rotatable and slidable.
  • the telescopic shaft of the steering mechanism of an automobile must be capable of absorbing the axial displacement that occurs when the automobile runs and not transmitting the displacement and vibration to the steering wheel.
  • the driver must be able to move the steering wheel in the axial direction and adjust its position in order to obtain the optimal position for driving the car.
  • the telescopic shaft reduces rattling noise, reduces rattling on the steering wheel, and reduces sliding resistance during axial sliding operation. Is required.
  • the wear of the coating film progresses due to the progress of use, and the rotational force may become larger. Also, under the conditions exposed to high temperatures in the engine room, the nylon membrane changes its volume, causing the sliding resistance to become extremely large and the wear to be greatly accelerated. There is.
  • German Patent Application DE 37 30 39 3 C2 discloses that between a plurality of pairs of axial grooves formed on the outer peripheral surface of the male shaft and the inner peripheral surface of the female shaft, respectively.
  • Both shafts A torque transmitting member (spherical body) that rolls when moving in the relative direction is fitted.
  • German Patent Application DE 37 30 393 C2 torque transmission is performed between radially inward or outward of a spherical body as a torque transmitting member and each pair of axial grooves.
  • a plate panel which is an elastic body for preloading, is provided for applying a preload to the male shaft and the female shaft via a spherical body as a member.
  • the spherical body which is the torque transmitting member, is pre-pressed by the plate panel to the female shaft so that there is no residual vibration, so that there is no residual vibration between the male shaft and the female shaft.
  • the male shaft and the female shaft can slide in the axial direction with a stable sliding load without looseness.
  • the plate panel when transmitting torque, the plate panel allows the spherical body, which is the torque transmitting member, to be constrained in the circumferential direction, so that the male and female shafts are prevented from rattling in the rotation direction, Torque can be transmitted in a rigid state.
  • FIGS. 1 to 5 of the German Patent Application DE 37 30 393 C2 discloses a plate panel for preloading a set of torque transmitting members (spherical bodies),
  • the other panel panel that preloads another set of torque transmitting members (spherical bodies) that are adjacent in the circumferential direction is connected in the circumferential direction by a web that is an arc-shaped connecting portion that extends in the circumferential direction.
  • This connecting portion (web) applies a tensile force or a compressive force to the two panel panels to generate a preload on the two panel panels.
  • the male shaft, the panel panel, the spherical body, and the female shaft narrow each other and transmit torque, so that the contact point between the spherical body and the panel panel is Very high surface pressure.
  • high stress is generated in the panel panel, causing permanent set of the panel panel to cause settling, making it difficult to maintain long-term preload performance and hindering the life of the steering shaft.
  • the panel panel slides in the circumferential direction from the axial groove, causing a decrease in the transmission torque, and the degree of hysteresis cannot be controlled, resulting in excessive hysteresis. Then, there is a fear that it may happen.
  • the contact point between the male shaft, spherical body, plate panel, and female shaft is not on the same line.
  • the steering shaft may not be able to obtain the necessary linear torsional characteristics, but may not be able to obtain proper hysteresis. Disclosure of the invention
  • the present invention has been made in view of the circumstances described above, and has as its object to provide a telescopic shaft for a vehicle steering that can reliably prevent torque in the rotational direction and transmit torque in a highly rigid state. Aim.
  • a telescopic shaft for vehicle steering is incorporated in a steering shaft of a vehicle, and is used for a vehicle steering in which a male shaft and a female shaft are non-rotatably and slidably fitted.
  • a male shaft and a female shaft are non-rotatably and slidably fitted.
  • a first torque transmitting member interposed between at least one row of axial grooves formed on the outer peripheral surface of the male shaft and the inner peripheral surface of the female shaft, respectively, via an elastic body;
  • a second torque transmitting member is interposed between the axial grooves of
  • the elastic body is
  • a groove surface-side contact portion that is spaced apart from the transmission member-side contact portion by a predetermined distance in a substantially circumferential direction and that contacts the groove surface of the axial groove of the male shaft or the female shaft;
  • a biasing portion that resiliently biases the transmission member side contact portion and the groove surface side contact portion in a direction away from each other.
  • the telescopic shaft for vehicle steering which can transmit a torque in a highly rigid state by reliably preventing the backlash in the rotational direction can be provided.
  • the telescopic shaft realizes a stable sliding load.
  • ADVANTAGE OF THE INVENTION According to this invention, a transmission member side contact part can fully bend via an urging
  • the second torque transmitting member is provided in addition to the first torque transmitting member, during the torque transmission, the second torque transmitting member is provided in the axial grooves of the male shaft and the female shaft prior to the elastic body. At the same time, the second torque transmitting member can mainly transmit the torque, and no excessive load (stress) is applied to the first torque transmitting member and the elastic body.
  • the elastic body can secure a sufficient amount of bending as described above, the first torque transmitting member and the elastic body do not receive an excessive load (stress).
  • the stress generated at the contact portion between the first torque transmitting member and the elastic body during torque transmission can be reduced, so that high stress does not occur and “set” due to permanent deformation is prevented. Prevention and maintain the preload performance for a long time.
  • the elastic member since the elastic member has its transmission member side contact portion in contact with the first torque transmission member and its groove surface side contact portion in contact with the groove surface of the axial groove, the elastic member has: It is in a state of fitting into the axial groove. Therefore, when transmitting torque, This makes it difficult for the entire body to slide sideways from the axial groove in the circumferential direction, does not cause a decrease in force and transmission torque, and prevents an excessive hysteresis.
  • the contact point between the male shaft, spherical body, elastic body, and female shaft remains on the same line, so that the contact angle does not change.
  • the required linear torsional characteristics of the shaft can be obtained, and a linear, highly rigid steering characteristic can be obtained.
  • the first torque transmitting member is a rolling element that rolls when the two shafts relatively move in the axial direction
  • the second torque transmitting member is a sliding body that slides and slides when the two shafts move relative to each other in the axial direction.
  • the first torque transmitting member includes a rolling element that rolls when the two shafts move relative to each other in the axial direction
  • the second torque transmitting member includes the two shafts. It is preferable to comprise a sliding body that slides and slides in the case of relative movement in the axial direction.
  • the second torque transmitting member of the sliding body comes into contact with the axial grooves of the male shaft and the female shaft before the elastic body, and the second torque transmitting member of the sliding body is mainly used. Torque can be transmitted, and no excessive load (stress) is applied to the first torque transmitting member and the elastic body of the rolling element. Therefore, at the time of setting and torque transmission, the stress generated at the contact between the rolling element and the elastic body can be reduced, preventing "sag" due to permanent deformation and maintaining the preload performance for a long time be able to.
  • the biasing portion of the elastic body has a bent shape bent between the transmission member side contact portion and the groove surface side contact portion.
  • the biasing portion of the elastic body has a bent shape bent between the transmission member side contact portion and the groove surface side contact portion.
  • the transmission member side and the groove side contact part Can be sexually biased.
  • the male shaft or the female shaft has an axial groove that has a flat side surface in contact with a groove surface side contact portion of the elastic body, and a bottom surface connected to the flat side surface.
  • the elastic body has a bottom portion facing the bottom surface of the axial groove
  • the bottom of the elastic body may be brought into contact with the bottom of the axial groove, or the gap between the bottom of the axial groove and the bottom of the elastic body may be set to a predetermined distance.
  • the elastic body has a bottom facing the bottom of the axial groove, and the bottom of the elastic body is brought into contact with the bottom of the axial groove, or the bottom of the axial groove;
  • the interval between the elastic body and the bottom is set to a predetermined interval. Therefore, by bringing the bottom of the elastic body into contact with the bottom of the axial groove as necessary, the hysteresis can be controlled, and a desired hysteresis can be obtained.
  • the hysteresis needs to be variously changed by matching with the steering performance of each vehicle. Specifically, if the bottom of the elastic body is set in contact with the bottom of the axial groove, friction occurs when the axial groove and the elastic body move relatively, and the hysteresis is reduced. It can be set relatively large. On the other hand, when the distance between the bottom of the axial groove and the bottom of the elastic body is set to a predetermined distance, friction does not occur when the axial groove and the elastic body move relatively, Hysteresis can be set relatively small.
  • the urging portion of the elastic body is configured such that the transmission member side contact portion and the groove surface side contact portion are separate members and are formed of different materials. You may do it. According to this configuration, the stress generated in the urging portion during the torque transmission can be made relatively small.
  • the elastic body is formed of a separate and different material other than the transmitting portion material side contact portion, the groove surface side contact portion, and the urging portion. It can be configured to have a certain second urging portion. With this configuration In this case, the elastic body can obtain a desired steering characteristic having a feeling of high rigidity.
  • the elastic body may be formed of a panel.
  • the elastic body can obtain a desired steering characteristic with a sense of high rigidity while suppressing the manufacturing cost.
  • the urging portion formed as a separate and different material, and the second urging portion formed as a separate and different material. can be formed from rubber or synthetic resin. According to this configuration, the stress generated in the urging portion at the time of transmitting the torque can be made relatively small, and a desired steering characteristic with high rigidity can be obtained.
  • a lubricant is applied between the axial groove of the male shaft, the axial groove of the female shaft, the elastic body, and the first torque transmitting member.
  • the lubricant is applied between the axial groove of the male shaft, the axial groove of the female shaft, the elastic body, and the first torque transmitting member.
  • the male and female shafts can slide in the axial direction with a stable sliding load with no looseness.
  • a predetermined gap is provided between the male shaft, the second torque transmitting member, and the female shaft, and the male shaft, the elastic body,
  • the rotatable angle in the circumferential direction of the male shaft between the torque transmitting member and the female shaft is represented by A, the gap between the male shaft, the second torque transmitting member, and the female shaft in the circumferential direction of the male shaft.
  • the rotation angle is B, it is preferable that A> B.
  • the rotation angle B of the male shaft for the predetermined gap is set in a range of 0.01 to 0.25 °.
  • FIG. 1 is a side view of a steering mechanism of a vehicle to which a telescopic shaft for vehicle steering according to an embodiment of the present invention is applied.
  • FIG. 2A is a vertical cross-sectional view of a telescopic shaft for vehicle steering according to a first embodiment of the present invention
  • FIG. 2B is a perspective view of a plate panel that is an elastic body.
  • FIG. 3 is a cross-sectional view taken along line XX of FIG. 2A.
  • FIG. 4 is an enlarged partial cross-sectional view of the telescopic shaft for vehicle steering according to the first embodiment of the present invention, showing a state where torque is not transmitted.
  • FIG. 5 is an enlarged partial cross-sectional view of the telescopic shaft for vehicle steering according to the first embodiment of the present invention, showing a state during torque transmission.
  • FIG. 6 is a characteristic diagram showing a relationship between a steering wheel steering angle (rotation angle) and a steering wheel steering torque (torque).
  • FIGS. 7A, 7B, and 7C are schematic diagrams each showing a bent state of a plate spring used in each embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a telescopic shaft for vehicle steering according to a second embodiment of the present invention (corresponding to a cross-sectional view taken along line XX in FIG. 2A).
  • FIG. 9 is a cross-sectional view of a telescopic shaft for vehicle steering according to a third embodiment of the present invention (corresponding to a cross-sectional view along line XX in FIG. 2A).
  • FIG. 10 is a cross-sectional view of a telescopic shaft for vehicle steering according to a fourth embodiment of the present invention (corresponding to a cross-sectional view taken along line XX of FIG. 2A).
  • FIG. 11 is a cross-sectional view of a telescopic shaft for vehicle steering according to a fifth embodiment of the present invention (corresponding to a cross-sectional view along line XX in FIG. 2A).
  • FIG. 12 is a cross-sectional view of a telescopic shaft for vehicle steering according to a sixth embodiment of the present invention (corresponding to a cross-sectional view taken along line XX in FIG. 2A).
  • FIG. 13 is a cross-sectional view of a telescopic shaft for vehicle steering according to a seventh embodiment of the present invention (corresponding to a cross-sectional view taken along line XX of FIG. 2A).
  • FIG. 14 is a cross-sectional view of a telescopic shaft for vehicle steering according to an eighth embodiment of the present invention (corresponding to a cross-sectional view taken along line XX in FIG. 2A).
  • FIG. 15 is a cross-sectional view of a telescopic shaft for vehicle steering according to a ninth embodiment of the present invention. It is a figure (corresponding to the cross-sectional view along the X-X line in FIG. 2A).
  • FIG. 16 is a cross-sectional view of a telescopic shaft for vehicle steering according to a tenth embodiment of the present invention (corresponding to a cross-sectional view taken along line XX of FIG. 2A).
  • FIG. 17 is a cross-sectional view of a telescopic shaft for vehicle steering according to an eleventh embodiment of the present invention (corresponding to a cross-sectional view taken along line XX of FIG. 2A).
  • FIG. 18 is a cross-sectional view of a telescopic shaft for vehicle steering according to a twelfth embodiment of the present invention (corresponding to a cross-sectional view taken along line XX of FIG. 2A).
  • FIG. 19 is a cross-sectional view of a telescopic shaft for vehicle steering according to a thirteenth embodiment of the present invention (corresponding to a cross-sectional view taken along line XX of FIG. 2A).
  • FIG. 20 is a cross-sectional view of a telescopic shaft for vehicle steering according to a fourteenth embodiment of the present invention (corresponding to a cross-sectional view taken along line XX of FIG. 2A).
  • FIG. 21 is a cross-sectional view of a telescopic shaft for vehicle steering according to a fifteenth embodiment of the present invention (corresponding to a cross-sectional view taken along line XX of FIG. 2A).
  • FIG. 22 is an enlarged partial cross-sectional view of a vehicle steering telescopic shaft according to German Patent Document DE 3730393 C2, when torque is not transmitted.
  • FIG. 23 is an enlarged partial cross-sectional view of a telescopic shaft for steering of a vehicle according to German Patent Document DE 3730393C2, showing a state during torque transmission.
  • FIG. 24A and FIG. 24B are each a schematic diagram showing a flexed state of a plate panel used in German Patent Application DE 3730393C2. Embodiment of the Invention
  • FIG. 1 is a side view of a steering mechanism of a vehicle to which a telescopic shaft for vehicle steering according to an embodiment of the present invention is applied.
  • an upper steering shaft portion 120 (a steering column 10 3, a steering wheel) attached to a vehicle body-side member 100 via an upper bracket 101 and a lower bracket 102.
  • the steering wheel 105 mounted on the upper end of the steering shaft 104, and the lower end of the steering shaft 104.
  • a pinion shaft 109 connected to the mouth steering shaft section 107 via a universal joint 106 via a steering shaft coupling 108.
  • the steering rack shaft 112 connected to the pinion shaft 109 and the steering rack shaft 112 supported by the steering rack shaft 112 and fixed to another frame 110 of the vehicle body via an elastic body 111
  • the ring rack support member 113 constitutes a steering mechanism.
  • the telescopic shaft portion 107 uses a telescopic shaft for vehicle steering (hereinafter referred to as a telescopic shaft) according to the embodiment of the present invention.
  • the lower steering shaft portion 107 is a combination of a male shaft and a female shaft, but such a lower steering shaft portion 107 absorbs the axial displacement generated when a vehicle travels.
  • a performance that does not transmit the displacement or vibration on the steering wheel 105 is required. This performance is due to the fact that the body has a sub-frame structure, and the member 100 that fixes the upper part of the steering mechanism and the frame 110 to which the steering rack support member 113 is fixed are separate bodies.
  • the steering rack support member 113 is fastened and fixed to the frame 110 via the elastic body 111 such as rubber.
  • the operator contracts the extension shaft once and then fits it to the pinion shaft 109 for expansion and contraction. May be required.
  • the upper steering shaft section 120 at the upper part of the steering mechanism is also one in which a male shaft and a female shaft are fitted, and such an upper steering shaft section 120 is provided with a driver.
  • FIG. 2A is a vertical cross-sectional view of a telescopic shaft for vehicle steering according to a first embodiment of the present invention
  • FIG. 2B is a perspective view of a plate panel that is an elastic body.
  • FIG. 3 is a cross-sectional view taken along line X—X of FIG. 2A.
  • a telescopic shaft for vehicle steering (hereinafter referred to as a telescopic shaft) is composed of a male shaft 1 and a female shaft 2 which are non-rotatably and slidably fitted to each other.
  • three axially extending grooves 3 which are equally arranged at intervals of 120 degrees in the circumferential direction extend.
  • three axially extending grooves (hereinafter also referred to as axial grooves) 5 equally distributed at 120 ° intervals in the circumferential direction also extend on the inner peripheral surface of the female shaft 2. It is formed.
  • the axial groove 5 of the female shaft 2 has a substantially arc-shaped or Gothic arch cross section.
  • the groove 3 extending in the axial direction of the male shaft 1 (hereinafter also referred to as the axial groove) 3 is formed between a pair of planar side surfaces 3 a inclined radially outward and flared, and between the pair of planar side surfaces 3 a. And a flat bottom surface 3b.
  • a leaf spring 9 for contacting and preloading the spherical body 7 is interposed.
  • the plate panel 9 has a plate-shaped spherical body-side contact portion 9a that contacts the spherical body 7 at two points, and is spaced apart from the spherical body-side contact portion 9a by a predetermined interval in a substantially circumferential direction.
  • a flat groove surface side contact portion 9 b contacting the flat side surface 3 a of the axial groove 3 of the shaft 1,
  • the spherical body-side contact portion 9a and the groove surface-side contact portion 9b are separated from each other, and a biasing portion 9c that elastically biases in a direction in which the contact portion 9a and the groove surface-side contact portion 9b are separated from each other.
  • a bottom part 9d continuous with the body-side contact parts 9a, 9a.
  • the urging portion 9c has a substantially U-shape and is bent in a substantially arc shape, and the spherical-shaped contact portion 9a and the groove-side contact portion are formed by the bent urging portion 9c. 9b can be elastically urged away from each other.
  • three axially extending grooves (hereinafter also referred to as axial grooves) 4 equally distributed at 120 ° intervals in the circumferential direction extend. It is formed.
  • three axially extending grooves (hereinafter also referred to as axial grooves) 6 equally distributed circumferentially at 120 ° intervals also extend on the inner peripheral surface of the female shaft 2. It is formed.
  • a plurality of rigid cylinders 8 (slidably sliding when the shafts 1 and 2 are moved relative to each other in the axial direction 8 ( Needle opening) is interposed with a small gap.
  • the axial grooves 4 and 6 have a substantially circular arc shape or gothic shape in cross section.
  • an annular stopper plate 10 with an elastic body is provided at the end of the male shaft 1, and the spherical body 7 and the cylindrical body are formed by the stopper plate 10 with the elastic body. 8.
  • the panel panel 9 is prevented from falling off.
  • Lubricant (grease) is applied between the axial groove 3 of the male shaft 1, the axial groove 5 of the female shaft 2, the leaf spring 9, and the spherical body 7.
  • the shaft and the female shaft can slide in the axial direction with a stable sliding load without any looseness.
  • the material of the male shaft 1 is a steel material containing at least 0.3% of carbon C and at least 0.3% of manganese Mn, the hardness is at least HV120, and the working method is cold forming and Broaching.
  • a solid lubricating film such as MgSO 2 or PTFE may be applied to the surface.
  • the axial grooves 5, 6 shall be 3 to 6 rows.
  • a solid lubricating film such as MgSO 2 or PTFE may be applied to the surface.
  • the material of leaf spring 9 is SK material (S500C ⁇ 60C), SUS304 material, etc., hardness is HV300 ⁇ 400, surface treatment is quenching and tempering, processing The methods are pressing and secondary processing.
  • the material of the spherical body 7 is SUJ2, ceramic or the like, the hardness is HV300 or more, 3 to 7 pieces are arranged in a row, and the spherical diameter is 3 to 7 mm.
  • the stopper plate with elastic body 10 is processed by pressing and fixed by caulking. Use a Darius with solid lubricant such as M ⁇ S2 or PTFE.
  • the spherical body 7 is interposed between the male shaft 1 and the female shaft 2, and the leaf spring 9 moves the spherical body 7 so that the spherical body 7 does not stick to the female shaft 2. Because the preload is applied, when torque is not transmitted, rattling between the male shaft 1 and the female shaft 2 can be reliably prevented, and when the male shaft 1 and the female shaft 2 move relative to each other in the axial direction. Can slide with a stable sliding load without any backlash.
  • the panel panel 9 deforms naturally and restrains the spherical body 7 in the circumferential direction, and the three rows of cylindrical bodies 8 interposed between the male shaft 1 and the female shaft 2 play the main role of torque transmission. To fulfill.
  • the leaf spring 9 when torque is input from the male shaft 1, in the initial stage, the leaf spring 9 is preloaded, so there is no backlash, and the leaf spring 9 generates a reaction force against the torque to generate torque. introduce. At this time, the overall torque is transmitted in a state where the transmission torque and input torque between the male shaft 1, the panel panel 9, the spherical body 7, and the female shaft 2 are balanced. When the torque further increases, the clearance in the rotational direction of the male shaft 1 and the female shaft 2 via the cylindrical body 8 disappears, and the subsequent increase in torque is transferred to the cylindrical body via the male shaft 1 and the female shaft 2. 8 communicate. Therefore, it is possible to reliably prevent the backlash in the rotation direction of the male shaft 1 and the female shaft 2 and transmit the torque in a highly rigid state.
  • the cylindrical body 8 is provided in addition to the spherical body 7, the large load can be supported by the cylindrical body 8 when a large torque is input. Accordingly, the contact pressure between the axial groove 5 of the female shaft 2 and the spherical body 7 can be reduced to improve durability, and at the time of a large torque load, torque can be transmitted in a highly rigid state. Can be.
  • a stable sliding load can be realized, torque in the rotating direction can be reliably prevented, and torque can be transmitted in a highly rigid state.
  • the spherical body 7 is preferably a rigid ball. Further, the rigid cylindrical body 8 is preferably a twenty-dollar roller.
  • the cylindrical body (hereinafter referred to as a needle roller) 8 receives the load by line contact, it has various effects such as a lower contact pressure than a pole that receives a load by point contact. Therefore, the following items are superior to the case where all rows are pole-rolled.
  • the needle roller is in small contact with the male and female shafts, the fluctuation range of the sliding load can be kept low, and the vibration due to the fluctuations is not transmitted to the steering.
  • the contact pressure of the needle port can be reduced, so the axial length can be shortened and space can be used effectively.
  • the contact pressure can be kept lower by the needle roller, so that an additional process for hardening the axial groove surface of the female shaft by heat treatment or the like is unnecessary.
  • the needle roller serves as a key for transmitting torque between the male shaft 1 and the female shaft 2. And makes sliding contact with the inner peripheral surface of the female shaft 2.
  • the needle roller is polished after heat treatment, so it has high surface hardness and excellent wear resistance.
  • the length and arrangement of the needle roller can be changed according to the operating conditions, so it can be used for various applications without changing the design concept.
  • the coefficient of friction during sliding may need to be further reduced.At this time, if only the needle roller is surface-treated, its sliding characteristics can be changed, without changing the design concept. It can respond to various applications.
  • needle rollers with different outer diameters can be manufactured at low cost in units of several microns, the clearance between the male shaft and the needle shaft can be minimized by selecting the diameter of the roller. . Therefore, it is easy to improve the rigidity of the shaft in the torsional direction.
  • FIG. 4 is an enlarged partial cross-sectional view of the telescopic shaft for vehicle steering according to the first embodiment of the present invention, showing a state where torque is not transmitted.
  • FIG. 5 is an enlarged partial cross-sectional view of the telescopic shaft for vehicle steering according to the first embodiment of the present invention, showing a state during torque transmission.
  • FIG. 6 is a characteristic diagram showing a relationship between a steering wheel steering angle (rotation angle) and a steering wheel steering torque (torque).
  • FIG. 22 is an enlarged partial cross-sectional view of a vehicle steering telescopic shaft according to DE 37 03 393 C2 of the German patent, showing a state in which torque is not transmitted.
  • FIG. 23 is an enlarged partial cross-sectional view of a telescopic shaft for vehicle steering according to German Patent Application DE 37 30 393 C2, showing torque transmission.
  • the plate panel 9 is such that the spherical body side contact portion 9a can be sufficiently bent via the urging portion 9c, A sufficient amount can be secured.
  • a cylindrical body 8 is provided so that during torque transmission, the cylindrical body 8 contacts the axial grooves 4 and 6 of the male shaft 1 and the female shaft 2 before the panel panel 9. At the same time, the cylinder 8 can mainly transmit torque, and no excessive load (stress) is applied to the spherical body 7 and the plate panel 9.
  • a predetermined minute gap is set between the cylindrical body 8 and the axial groove 6 of the female shaft 2.
  • Male shaft 1 Female shaft 2 A is the angle at which the leaf spring 9 can rotate, that is, the angle corresponding to the amount of deflection of the leaf spring 9, and A is the amount of the gap existing between the cylindrical body 8 and the axial groove 6 of the female shaft 2.
  • the rotation angle of the shaft 1 in the circumferential direction is B
  • the rotation angle A and the rotation angle B have a relationship of (A> B).
  • the male shaft 1 rotates by the rotation angle B with respect to the female shaft 2 so that the cylindrical body 8 has the male shaft 1 and the female shaft 2 before the plate panel 9. Strong contact with the axial grooves 4 and 6 of, and the rotation angle B becomes zero.
  • the leaf spring 9 bends, and the actual rotation angle of the male shaft 1 with respect to the female shaft 2 at this portion becomes B, and the remaining rotatable angle at this portion becomes (A-B). If the rotation angle of the male shaft 1 is further increased during high torque transmission, as will be understood from the graph shown in FIG. 6, a state of high rigidity is entered.
  • the rotation angle of the male shaft 1 with respect to the female shaft 2 is suppressed to be larger than B. That is, as the rotatable angle of the male shaft 1 in the leaf spring 9 becomes smaller than (A-B), Since rotation of the male shaft 1 and bending of the panel panel 9 are suppressed as much as possible, permanent deformation of the panel panel 9 is prevented.
  • the rotation angle B is set in the range of 0.01 to 0.25 °.
  • the reason for this can be given by the relationship with the circumferential gap existing between the male shaft 1 and the cylindrical body 8 ′ and the female shaft 2.
  • the cylindrical body 8 needs to have as much clearance as is necessary for sliding with respect to the male shaft 1 and the female shaft 2 without resistance.
  • this circumferential clearance is too large, the torque transmission area between the male shaft.1, the panel panel 9, the spherical body 7, and the female shaft 2 must be increased, and a good steering feeling with a high rigidity It becomes difficult to get a ring.
  • the upper limit of the circumferential gap (rotation angle B of female shaft 2) between male shaft 1, cylindrical body 8 and female shaft 2 should be set to 0.25 ° as a result of evaluation of various prototypes. It is preferable that the lower limit is set to 2 m since there is only a gap required for insertion, and it is preferable to convert this to an angle and set it to 0.0 °.
  • the above rotation angle B is a rotation angle in one direction when the male shaft 1 is rotated clockwise or counterclockwise. It is in the range of 2 to 0.5 °.
  • the minimum clearance required to slide the female shaft 2 was defined as 2 zm.
  • the male shaft 1 and female shaft 2 are bent or the inner and outer diameters vary in the axial direction, it is necessary to maintain a minimum clearance of 2 m so as not to increase the sliding resistance. There is.
  • the minimum value of the rotation angle B is calculated from the outer diameter suitable for the male shaft (steering shaft) 1.
  • the state changes from the torque non-transmission state to the torque transmission state, the radius of the portion where the cylindrical body 8 contacts the groove of the female shaft 2 becomes R2, and the leaf spring 9 bends during torque transmission.
  • the outer diameter of the male shaft 1 is set so that the radius of the portion where the leaf spring 9 contacts the spherical body 7 is R 1 when the opposing portions of the leaf spring 9 are closest to each other.
  • the torque value at the point where the plate spring 9 shifts to the preload rigidity region is preferably +2 Nm or more and 12 Nm or less.
  • the reason is the difference between the low rigidity region and the high rigidity region. It is not preferable for the driver to feel the rattling noise of the steering system or to feel a delay in the response of the vehicle to the operation of the steering wheel. In the case of the conventional simple spline structure, if there is a gap between the male and female shafts of the spline, the driver will feel that the spline is out of place. In order not to cause this phenomenon, it is necessary to eliminate the area of the gap by the preload by the leaf spring 9.
  • the torque value at the point where the plate spring 9 shifts from the preload rigidity region to the high rigidity region be equal to or more than +2 Nm and equal to or less than 12 Nm.
  • the leaf spring 9 can secure a sufficient amount of bending, and does not apply an excessive load (stress) to the spherical body 7 and the leaf spring 9.
  • the stress generated at the contact portion between the spherical body 7 and the leaf spring 9 can be reduced. Therefore, since high stress is not generated in the leaf spring 9 portion, "set" due to permanent deformation is prevented, and good preload performance can be maintained for a long period of time.
  • the cross-sectional shape of the axial groove of the male shaft on which the panel panel is arranged has a curvature. It has an arc shape, and the panel panel also has an arc shape with a curvature. By changing each curvature, the panel panel has panel characteristics. Therefore, the point of contact between the panel panel and the male shaft is at the corner of the male shaft as shown in Fig.22. Therefore, as shown in FIG. 23, when a torque is applied, the entire panel panel slides sideways, resulting in a decrease in transmission torque or an excessive occurrence of hysteresis.
  • the axial groove 3 of the male shaft 1 is formed by a plane.
  • the center of the axial groove 3 coincides with the center of the male shaft 1 and has a wedge shape symmetrical to the center of the axial groove 3.
  • the manufacturing errors of the male shaft, the female shaft, and the elastic body can be absorbed by the elastic deformation of the elastic body, so that the tolerance can be increased and the cost can be reduced.
  • FIGS. 7A, 7B, and 7C are schematic diagrams each showing a bent state of the panel panel used in each embodiment of the present invention.
  • FIGS. 24A and 24B are schematic diagrams showing a flexed state of a leaf spring used in German Patent Application DE 3730393C2.
  • Fig. 24 is a simplified model of the panel panel shown in DE 3730393C2 of the German patent invention.In Fig. 24 ⁇ , it was hoped that an appropriate preload would be applied without applying torque. In this state, the distance (C 2) between the panel panel and the axial groove is a stroke enough to generate a preload as a panel. In Figure 24 24, When the load (F1) is applied at two points, the panel panel bends and eventually comes into contact with the side surface of the axial groove. This means that all torque must be received at the point of contact with the pole. Therefore, it is inferred that it is difficult for the panel panel to have a large amount of deflection (AS2) and to have a necessary life as a steering shaft. Note that C2 ⁇ AS2.
  • the distance between the spherical body side contact portion 9a and the groove surface side contact portion 9b of the plate panel 9 is set to (C 1).
  • the elastic body can sufficiently bend, and the sufficient amount of bending can be obtained.
  • ASl can be secured. Therefore, "set” due to permanent deformation can be prevented, and preload performance can be maintained for a long time. Note that C1> AS1.
  • the distance between the spherical body side contact portion 9a and the groove surface side contact portion 9b of the plate panel 9 is (C 1) If the load (F1) is applied at two points (equivalent to the spherical body side contact part 9a) in this state, the elastic body can bend sufficiently and the amount of deflection is sufficient (ASl) can be secured. Therefore, "set” due to permanent deformation can be prevented, and the preload performance can be maintained for a long time. Note that C1> AS1.
  • the distance between the spherical body side contact portion 9a and the groove surface side contact portion 9b of the plate panel 9 is expressed by (C 1).
  • the urging portion 9c is made of rubber, synthetic resin, or the like, which is a different material from the contact portions 9a and 9b.
  • the entire panel 9 is configured not to cause side slip, but the bottom 9 d of the spring 9 is formed at the bottom of the axial groove 3. Three It can be slightly shifted laterally with respect to b.
  • the leaf spring 9 has its bottom 9 d in contact with the bottom 3 b of the axial groove 3 as in the first embodiment, or, as in the second embodiment described later,
  • the distance between the axial groove 3 and the bottom surface 3b is set to a predetermined distance.
  • the hysteresis can be controlled, and a desired hysteresis can be obtained.
  • the hysteresis needs to be variously changed by matching with the steering performance of each vehicle. Specifically, if the bottom 9 d of the panel 9 is set in contact with the bottom 3 b of the axial groove 3, when the axial groove 3 and the panel 9 move relatively, Friction occurs and the hysteresis can be set relatively large.
  • the axial groove 3 and the panel 9 move when the relative movement occurs.
  • Hysteresis can be set to a relatively small value without causing any friction.
  • FIG. 8 is a cross-sectional view of a telescopic shaft for vehicle steering according to a second embodiment of the present invention (corresponding to a cross-sectional view along line XX in FIG. 2A).
  • the second embodiment is substantially the same as the first embodiment described above, and the distance between the bottom surface 3b of the axial groove 3 and the bottom 9d of the leaf spring 9 is set at a predetermined distance. I have. Accordingly, in this case, as described above, the hysteresis can be controlled, and no friction occurs when the axial groove 3 and the plate panel 9 move relatively, so that the hysteresis is relatively reduced. Can be set smaller.
  • FIG. 9 is a cross-sectional view of a telescopic shaft for vehicle steering according to a third embodiment of the present invention (corresponding to a cross-sectional view along line XX in FIG. 2A).
  • the third embodiment is substantially the same as the above-described second embodiment.
  • the spherical body-side contact portion 9a is formed at the folded end of the plate panel 9, and the groove surface-side contact portion 9b is formed at the middle of the folded plate spring 9.
  • the distance between the bottom surface 3 b of the axial groove 3 and the bottom 9 d of the leaf spring 9 is set to be a predetermined distance.
  • FIG. 10 is a cross-sectional view of a telescopic shaft for vehicle steering according to a fourth embodiment of the present invention (corresponding to a cross-sectional view taken along line XX of FIG. 2A).
  • the fourth embodiment is substantially the same as the first embodiment described above.
  • the spherical body-side contact portion 9a has a protrusion protruding toward the groove surface-side contact portion 9b.
  • the part 9 e is formed.
  • the spherical body-side contact portion 9a can contact the spherical body 7 at four points, the load at the contact point between the panel panel 9 and the spherical body 7 can be reduced, and the stress can be reduced. Can be.
  • the bottom 9 d of the panel panel 9 is set in contact with the bottom 3 b of the axial groove 3.
  • the hysteresis can be controlled, and friction is generated when the axial groove 3 and the leaf spring 9 move relatively, so that the hysteresis can be set to a relatively large value. it can.
  • FIG. 11 is a cross-sectional view of a telescopic shaft for vehicle steering according to a fifth embodiment of the present invention (corresponding to a cross-sectional view along line X_X in FIG. 2A).
  • the fifth embodiment is substantially the same as the above-described fourth embodiment.
  • the distance between the bottom 3b of the axial groove 3 and the bottom 9d of the panel panel 9 is set at a predetermined distance. I have. Therefore, in this case, as described above, the hysteresis can be controlled, and no friction occurs when the axial groove 3 and the plate panel 9 move relatively, and the hysteresis is reduced. It can be set relatively small.
  • FIG. 12 is a cross-sectional view of a telescopic shaft for vehicle steering according to a sixth embodiment of the present invention (corresponding to a cross-sectional view taken along line XX in FIG. 2A).
  • the sixth embodiment is substantially the same as the first embodiment described above.
  • the groove-side contact portion 9b has its tip portion turned inward to form a spherical body-side contact portion. 9 a.
  • the rigidity of the panel 9 can be increased, and the torsional rigidity can be improved.
  • FIG. 13 is a cross-sectional view of a telescopic shaft for vehicle steering according to a seventh embodiment of the present invention (corresponding to a cross-sectional view along line XX in FIG. 2A).
  • the seventh embodiment is substantially the same as the above-described sixth embodiment, except that the space between the bottom surface 3b of the axial groove 3 and the bottom 9d of the plate panel 9 is set at a predetermined distance. I have. Therefore, in this case, as described above, the hysteresis can be controlled, and no friction occurs when the axial groove 3 and the plate panel 9 move relative to each other. Can be set relatively small.
  • FIG. 14 is a cross-sectional view of a telescopic shaft for vehicle steering according to an eighth embodiment of the present invention (corresponding to a cross-sectional view taken along line XX of FIG. 2A).
  • the eighth embodiment is substantially the same as the third embodiment described above.
  • the spherical body side contact portion 9a is formed on the folded end side of the plate panel 9.
  • the groove surface side contact portion 9b is formed in the middle of the turn of the panel panel 9. In this case, the same operation and effect as those of the third embodiment can be exhibited.
  • the spherical-body-side contact portion 9a has its tip end folded back outward to contact the groove-surface-side contact portion 9b.
  • the rigidity of the leaf spring 9 can be increased, and the torsional rigidity can be improved.
  • FIG. 15 is a cross-sectional view of a telescopic shaft for vehicle steering according to a ninth embodiment of the present invention (corresponding to a cross-sectional view taken along line XX of FIG. 2A).
  • the ninth embodiment is substantially the same as the first embodiment described above.
  • the bent urging portion 9c is eliminated, and the pair of spherical body side contact portions 9a is
  • the inner plate 9f is bent into a substantially U shape
  • the pair of groove-side contact portions 9b is formed from an outer plate 9g bent into a substantially U shape.
  • An urging portion 9h made of a different elastic material such as rubber or synthetic resin is interposed between the flat portion of the inner plate 9f and the flat portion of the outer plate 9g.
  • the hysteresis can be controlled, friction occurs when the inner plate 9f and the outer plate 9g move relatively, and the hysteresis can be set relatively large.
  • FIG. 16 is a cross-sectional view of a telescopic shaft for vehicle steering according to a tenth embodiment of the present invention (corresponding to a cross-sectional view taken along line XX of FIG. 2A).
  • the tenth embodiment is substantially the same as the ninth embodiment described above, and there is a slight clearance between the bottom flat portion of the inner plate 9f and the bottom flat portion of the outer plate 9g. It is set to non-contact state. In this case, the hysteresis can be controlled, and no friction occurs when the inner plate 9f and the outer plate 9g move relatively, so that the hysteresis can be set relatively small.
  • FIG. 17 is a cross-sectional view of the telescopic shaft for vehicle steering according to the eleventh embodiment of the present invention (corresponding to a cross-sectional view taken along line XX of FIG. 2A).
  • the eleventh embodiment is substantially the same as the first embodiment described above, except that a rubber or rubber is provided between the spherical body side contact portion 9a and the groove surface side contact portion 9b in the plate panel 9.
  • a second biasing portion 9j made of a different elastic material such as a synthetic resin is interposed.
  • FIG. 18 is a cross-sectional view of a telescopic shaft for vehicle steering according to a 12th embodiment of the present invention (corresponding to a cross-sectional view taken along line XX of FIG. 2A).
  • the twelfth embodiment is substantially the same as the second embodiment described above.
  • a rubber is provided between the spherical body side contact portion 9a and the groove surface side contact portion 9b.
  • a second biasing portion 9j made of a different elastic material such as a synthetic resin is interposed.
  • FIG. 19 is a cross-sectional view of a vehicle steering telescopic shaft according to a thirteenth embodiment of the present invention (corresponding to a cross-sectional view taken along line XX of FIG. 2A).
  • the thirteenth embodiment is substantially the same as the above-described third embodiment.
  • a rubber member is provided between the spherical body side contact portion 9a and the groove surface side contact portion 9b.
  • a second biasing portion 9j made of a different elastic material such as a synthetic resin is interposed.
  • FIG. 20 is a cross-sectional view of a telescopic shaft for vehicle steering according to a fourteenth embodiment of the present invention (corresponding to a cross-sectional view taken along line XX of FIG. 2A).
  • the fourteenth embodiment is substantially the same as the ninth or tenth embodiment described above.
  • the pair of spherical body-side contact portions 9a has two inner plates.
  • the pair of groove-surface-side contact portions 9b is composed of an outer plate 9g bent in a substantially U-shape.
  • a biasing portion 9 h made of a different elastic material such as rubber or synthetic resin is interposed between them. This makes it possible to take advantage of the inherent properties of the material itself, and especially when low torsional rigidity is required.
  • FIG. 21 is a cross-sectional view of a telescopic shaft for vehicle steering according to a fourteenth embodiment of the present invention (corresponding to a cross-sectional view taken along line XX of FIG. 2A).
  • a plate panel 9 is provided on the female shaft 2 side in the first embodiment described above.
  • the axial groove 5 of the female shaft 2 includes a pair of inclined flat side surfaces 5a, and a bottom surface 5b formed flat between the pair of flat side surfaces 5a.
  • a leaf spring 9 for contacting and preloading the spherical body 7 is interposed.
  • the plate panel 9 has a spherical body-side contact portion 9a that contacts the spherical body 7 at two points, and a predetermined circumferential distance from the spherical body-side contact portion 9a.
  • a groove-side contact portion 9b that contacts the planar side surface 5a of the axial groove 5, and a ball-side contact portion 9a and a groove-side contact portion 9b that are urged sexually in a direction away from each other.
  • a bottom portion 9 d facing the bottom surface 5 b of the axial groove 5.
  • the urging portion 9c has a substantially U-shape and is bent in a substantially arc shape, and the spherical-shaped contact portion 9a and the groove-side contact portion are formed by the bent urging portion 9c. 9b can be sexually biased to be spaced apart from each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Ocean & Marine Engineering (AREA)
  • Steering Controls (AREA)

Abstract

 車両のステアリングシャフトに組込み、雄軸と雌軸を回転不能に且つ摺動自在に嵌合した車両ステアリング用伸縮軸において、雄軸(1)の外周面と雌軸(2)の内周面とに夫々形成した少なくとも一列の軸方向溝(3、5)の間に、弾性体(9)を介して、球状体(7)を介装し、雄軸(1)の外周面と雌軸(2)の内周面とに夫々形成した他の少なくとも一列の軸方向溝(4、6)の間に、円柱体(8)を介装している。弾性体(9)は、球状体に接触する球状体側接触部(9a)と、球状体側接触部(9a)に対して、略周方向に所定間隔をおいて離間してあると共に、雄軸又は雌軸の軸方向溝の溝面に接触する溝面側接触部(9b)と、伝達部材側接触部と溝面側接触部を相互に離間する方向に弾性的に付勢する付勢部(9c)と、を有する。

Description

明 細 書 車両ステアリング用伸縮軸 技術分野
本発明は、 車両のステアリングシャフトに組込み、 雄軸と雌軸を相互に回転不 能に且つ摺動自在に嵌合した車両ステアリング用伸縮軸に関する。 背景技術
自動車の操舵機構部の伸縮軸には、 自動車が走行する際に発生する軸方向の変 位を吸収し、 ステアリングホイール上にその変位や振動を伝えない性能が要求さ れる。 さらに、 運転者が自動車を運転するのに最適なポジションを得るためにス テアリングホイールの位置を軸方向に移動し、 その位置を調整する機能が要求さ れる。
これら何れの場合にも、 伸縮軸は、 ガ夕音を低減することと、 ステアリングホ ィール上のガタ感を低減することと、 軸方向の摺動動作時における摺動抵抗を低 減することとが要求される。
このようなことから、 従来、 伸縮軸の雄軸に、 ナイロン膜をコ一ティングし、 摺動部にグリースを塗布し、 金属騒音、 金属打音等を吸収または緩和するととも に、 摺動抵抗の低減と回転方向ガ夕の低減を行ってきた。
しかし、 使用経過によりナイ口ン膜の摩耗が進展して回転方向ガ夕が大きくな るといったことがある。また、エンジンルーム内の高温にさらされる条件下では、 ナイロン膜は、 体積変化し、 摺動抵抗が著しく大きくなつたり、 摩耗が著しく促 進されたりするため、 回転方向ガ夕が大きくなるといったことがある。
このようなことから、 独国特許発明 D E 3 7 3 0 3 9 3 C 2号公報では、 雄軸 の外周面と雌軸の内周面とに夫々形成した複数対の軸方向溝の間に、 両軸の軸方 向相対移動の際に転動するトルク伝達部材 (球状体) が嵌合してある。
さらに、 独国特許発明 D E 3 7 3 0 3 9 3 C 2号公報では、 トルク伝達部材で ある球状体の径方向内方又は外方と、 各対の軸方向溝との間に、 トルク伝達部材 である球状体を介して雄軸と雌軸に予圧を付与するための予圧用の弾性体であ る板パネが設けてある。
これにより、 トルク非伝達時には、 板パネにより、 トルク伝達部材である球状 体を雌軸に対してガ夕付きのない程度に予圧しているため、 雄軸と雌軸の間のガ 夕付きを防止することができ、 雄軸と雌軸は、 ガ夕付きのない安定した摺動荷重 で軸方向に摺動することができる。
また、 トルク伝達時には、 板パネにより、 トルク伝達部材である球状体を周方 向に拘束できるようになつているため、 雄軸と雌軸は、 その回転方向のガタ付き を防止して、 高剛性の状態でトルクを伝達することができる。
しかも、 独国特許発明 D E 3 7 3 0 3 9 3 C 2号公報の図 1乃至図 5に開示し た構造では、 一組のトルク伝達部材 (球状体) を予圧する一つの板パネと、 周方 向に隣接する他の一組のトルク伝達部材 (球状体) を予圧する他の板パネとは、 周方向に延びる円弧状の連結部であるウェブによって、 周方向に連結してある。 この連結部 (ウェブ) は、 上記の二つの板パネに互いに引張力又は圧縮力を与 えて、 二つの板パネに予圧を発生させるためである。
なお、 独国特許発明 D E 3 7 3 0 3 9 3 C 2号公報の図 6及び図 7に開示した 構造では、 二つの板バネを連結部 (ウェブ) により連結することなく、 板パネと 軸方向溝との間に、 別途の弾性体が介装してあり、 これにより、 径方向に予圧を 発生させている。
しかしながら、 上記独国特許発明 D E 3 7 3 0 3 9 3 C 2号公報に開示した構 造では、第 1には、雄軸'球状体'雌軸の間に予圧を発生させるため、板パネは、 その曲率と軸方向溝の曲率とを変えて介装している。 そのため、 板バネは、 その 撓み量を大きくとることができない。なお、加工精度のバラツキがある場合には、 この程度の板パネの撓み量では、 この加工精度のバラツキを許容することができ ない。
また、 第 2には、 トルクが入力された時、 雄軸、 板パネ、 球状体、 及び、 雌軸 は、 互いに狭まりあってトルクを伝達するため、 球状体と板パネとの接触点は、 非常に高い面圧となる。 即ち、 トルク伝達時には、 板パネに高い応力が発生する ことから、 板パネの永久変形による 「へたり」 を招来し、 長期にわたる予圧性能 の維持が困難になり、 ステアリングシャフトの長寿命化が阻まれる虞れがある。 さらに、第 3には、 トルク伝達時、板パネが軸方向溝から周方向に横滑りして、 伝達トルクの低下を招いたり、 ヒステリシスの大きさを管理できず、 ヒステリシ スが過大に発生したりするといつた虞れがある。
さらに、 第 4には、 トルクを負荷していない時、 雄軸 ·球状体 ·板パネ ·雌軸 の間では、 その接触点が同一線上にないことから、 トルクを負荷するに従って、 接触角が変化してしまい、 その結果、 ステアリングシャフトに必要なリニアな捩 り特性を得ることができないだけでなく、 適正なヒステリシスをも得ることがで きない虞れがある。 発明の開示
本発明は、 上述したような事情に鑑みてなされたものであって、 回転方向ガ夕 付きを確実に防止して、 高剛性の状態でトルクを伝達できる車両ステアリング用 伸縮軸を提供することを目的とする。
上記の目的を達成するため、 本発明の請求項 1に係る車両ステアリング用伸縮 軸は、 車両のステアリングシャフトに組込み、 雄軸と雌軸を回転不能に且つ摺動 自在に嵌合した車両ステアリング用伸縮軸において、
前記雄軸の外周面と前記雌軸の内周面とに夫々形成した少なくとも一列の軸 方向溝の間に、 弾性体を介して、 第 1トルク伝達部材を介装し、
前記雄軸の外周面と前記雌軸の内周面とに夫々形成した他の少なくとも一列 の軸方向溝の間に、 第 2トルク伝達部材を介装し、
前記弾性体は、
前記第 1 トルク伝達部材に接触する伝達部材側接触部と、
当該伝達部材側接触部に対して、 略周方向に所定間隔をおいて離間してあると 共に、 前記雄軸又は雌軸の軸方向溝の溝面に接触する溝面側接触部と、
前記伝達部材側接触部と当該溝面側接触部を相互に離間する方向に弾性的に 付勢する付勢部と、 を有することを特徴とする。
本発明によれば、 回転方向ガタ付きを確実に防止して高剛性の状態でトルクを 伝達できる車両ステアリング用伸縮軸を提供できる。
本発明によれば、 伸縮軸は安定した摺動荷重を実現する。 本発明によれば、 伝 達部材側接触部が付勢部を介して十分に橈むことができ、 撓み量を十分に確保す ることができる。
また、第 1 トルク伝達部材以外に、第 2トルク伝達部材を備えていることから、 トルク伝達時には、 第 2トルク伝達部材の方が弾性体より先に雄軸と雌軸の軸方 向溝に接触すると共に、 第 2トルク伝達部材が主としてトルクを伝達することが でき、 第 1 トルク伝達部材及び弾性体には、 過大な負荷 (応力) がかかることが ない。
さらに、 弾性体は、 上記のように、 撓み量を十分に確保することができると共 に、 第 1 トルク伝達部材及び弾性体には、 過大な負荷 (応力) がかかることがな いことから、 トルク伝達時に、 第 1トルク伝達部材と弾性体との接触部に発生す る応力を緩和することができ、 これにより、 高い応力が発生することがなく、 永 久変形による 「へたり」 を防止して、 長期にわたり予圧性能を維持することがで きる。
さらに、 弾性体は、 その伝達部材側接触部が第 1 トルク伝達部材に接触してい ると共に、 その溝面側接触部が軸方向溝の溝面に接触していることから、 弾性体 は、 軸方向溝に嵌り合うような状態になっている。 従って、 トルク伝達時に、 弾 性体全体が軸方向溝から周方向に横滑りし難くなること力、ら、 伝達トルクの低下 を招くことがなく、 また、 ヒステリシスが過大になることを防止することができ る。
さらに、 トルクの負荷状態に拘わらず、雄軸 ·球状体 ·弾性体 ·雌軸の間では、 その接触点が同一線上に留まることから、 接触角が変化することがなく、 これに より、 ステアリングシャフトに必要なリニアな捩り特性を得ることができ、 リニ ァで高剛性感のある操舵特性を得ることができる。
また、 本発明に係る車両ステアリング用伸縮軸において、 前記第 1トルク伝達 部材は、 前記両軸の軸方向相対移動の際に転動する転動体であり、
前記第 2トルク伝達部材は、 前記両軸の軸方向相対移動の際に滑り摺動する摺 動体であることを特徴とする。
このように、 本発明による車両ステアリング用伸縮軸において、 第 1 トルク伝 達部材は、 両軸の軸方向相対移動の際に転動する転動体から成り、 第 2トルク伝 達部材は、 両軸の軸方向相対移動の際に滑り摺動する摺動体から成ることが好ま しい。 この構成によれば、 トルク伝達時には、 摺動体の第 2トルク伝達部材の方 が弾性体より先に雄軸と雌軸の軸方向溝に接触すると共に、 摺動体の第 2トルク 伝達部材が主としてトルクを伝達することができ、 転動体の第 1トルク伝達部材 及び弾性体には、 過大な負荷 (応力) がかかることがない。 従って、 セット時及 びトルク伝達時には、 転動体と弾性体との接触部に発生する応力を緩和すること ができ、 永久変形による 「へたり」 を防止して、 長期にわたり予圧性能を維持す ることができる。
さらに、 本発明による車両ステアリング用伸縮軸において、 前記弾性体の付勢 部は、 前記伝達部材側接触部と前記溝面側接触部との間で折曲した折曲形状であ ることが好ましい。 本発明のこの好ましい構成によれば、 弾性体の付勢部は、 伝 達部材側接触部と溝面側接触部との間で折曲した折曲形状であり、 この折曲形状 の付勢部によって、 伝達部材側接触部と溝面側接触部を相互に離間するように弾 性的に付勢することができる。
さらに、 本発明による車両ステアリング用伸縮軸において、 前記雄軸又は雌軸 の軸方向溝は、 前記弾性体の溝面側接触部に接触する平面状側面と、 当該平面状 側面に連接した底面とを有し、
前記弾性体は、 当該軸方向溝の底面に対向した底部を有し、
当該軸方向溝の底面に、 当該弾性体の底部を接触状態にするか、 又は、 当該軸 方向溝の底面と、 当該弾性体の底部との間隔を所定間隔に設定する構成にするこ とが好ましい。 この構成によれば、 弾性体は、 軸方向溝の底面に対向した底部を 有し、 軸方向溝の底面に、 弾性体の底部を接触状態にするか、 又は、 軸方向溝の 底面と、 弾性体の底部との間隔を所定間隔に設定している。 従って、 軸方向溝の 底面に、 弾性体の底部を必要に応じて接触させることにより、 ヒステリシスをコ ントロールすることができ、 所望のヒステリシスを得ることができる。 即ち、 ヒ ステリシスは、 各車両の操舵性能とのマッチングによって種々変える必要がある。 具体的には、 軸方向溝の底面に、 弾性体の底部を接触状態に設定している場合に は、 軸方向溝と弾性体が相対的に移動した際にフリクションが発生し、 ヒステリ シスを比較的大きく設定することができる。 一方、 軸方向溝の底面と、 弾性体の 底部の間隔を所定間隔に設定している場合には、 軸方向溝と弾性体が相対的に移 動した際にフリクションが発生することがなく、 ヒステリシスを比較的小さく設 定することができる。
さらに、 本発明による車両ステアリング用伸縮軸において、 前記弾性体の付勢 部は、 前記伝達部材側接触部と前記溝面側接触部とは、 別体であって、 異なる材 料から形成する構成にしても良い。 この構成によれば、 トルク伝達時に、 付勢部 に発生する応力を比較的小さくすることができる。
本発明による車両ステアリング用伸縮軸において、 前記弾性体は、 前記伝達部 材側接触部、 前記溝面側接触部、 及び前記付勢部以外に、 別体であって異なる材 料から形成してある第 2付勢部を有する構成にすることができる。 この構成によ れば、 弾性体は、 所望の高剛性感のある操舵特性を得ることができる。
さらに、 本発明による車両ステアリング用伸縮軸において、 前記弾性体は、 板 パネからなる構成にすることができる。 この場合、 弾性体は、 製造コストを抑制 しつつ、 所望の高剛性感のある操舵特性を得ることができる。
さらに、 本発明による車両ステアリング用伸縮軸おいて、 別体であって異なる 材料から形成してある前記付勢部、 及び別体であって異なる材料から形成してあ る前記第 2付勢部は、 ゴム又は合成樹脂から形成することができる。 この構成に よれば、 トルク伝達時に付勢部に発生する応力を比較的小さくすることができ、 また、 所望の高剛性感のある操舵特性を得ることができる。
さらに、 本発明による車両ステアリング用伸縮軸において、 前記雄軸の軸方向 溝、 前記雌軸の軸方向溝、 前記弾性体、 及び前記第 1 トルク伝達部材の間には、 潤滑剤が塗布してあることが好ましい。 この構成によれば、 雄軸の軸方向溝、 雌 軸の軸方向溝、 弾性体、 及び第 1トルク伝達部材の間には、 潤滑剤が塗布してあ ることから、 トルク非伝達時、 雄軸と雌軸は、 ガ夕付きのない安定した摺動荷重 で軸方向に摺動することができる。
さらに、 本発明による車両ステアリング用伸縮軸において、 前記雄軸、 前記第 2トルク伝達部材、 前記雌軸間には所定の隙間が設けられており、 前記雄軸、 前 記弾性体、 前記第 1 トルク伝達部材、 前記雌軸間における雄軸の周方向の回転可 能角を A、前記雄軸、前記第 2トルク伝達部材、前記雌軸間に存在する隙間分の、 雄軸の周方向の回転角を Bとすると、 A> Bの関係であることが好ましい。
本発明による車両ステアリング用伸縮軸において、 前記所定の隙間分の雄軸の 回転角 Bは、 0 . 0 1〜0 . 2 5 ° の範囲に設定されていることが好ましい。 図面の簡単な説明
図 1は、 本発明の実施の形態に係る車両ステアリング用伸縮軸を適用した自動 車の操舵機構部の側面図である。 図 2 Aは、 本発明の第 1実施の形態に係る車両ステアリング用伸縮軸の縦断面 図であり、 図 2 Bは、 弾性体である板パネの斜視図である。
図 3は、 図 2 Aの X— X線に沿った横断面図である。
図 4は、 本発明の第 1実施の形態に係る車両ステアリング用伸縮軸の拡大部分 断面図であり、 トルク非伝達時を示す。
図 5は、 本発明の第 1実施の形態に係る車両ステアリング用伸縮軸の拡大部分 断面図であり、 トルク伝達時を示す。
図 6は、ハンドル操舵角 (回転角)とハンドル操舵トルク(トルク)との関係を示す 特性線図である。
図 7 A、 図 7 Bおよび図 7 Cは、 夫々、 本発明の各実施の形態で使用する板バ ネの撓み状態を示す模式図である。
• 図 8は、 本発明の第 2実施の形態に係る車両ステアリング用伸縮軸の横断面図 である (図 2 Aの X— X線に沿った横断面図に相当)。 ' 図 9は、 本発明の第 3実施の形態に係る車両ステアリング用伸縮軸の横断面図 である (図 2 Aの X— X線に沿った横断面図に相当)。
図 1 0は、 本発明の第 4実施の形態に係る車両ステアリング用伸縮軸の横断面 図である (図 2 Aの X— X線に沿った横断面図に相当)。
図 1 1は、 本発明の第 5実施の形態に係る車両ステアリング用伸縮軸の横断面 図である (図 2 Aの X— X線に沿った横断面図に相当)。
図 1 2は、 本発明の第 6実施の形態に係る車両ステアリング用伸縮軸の横断面 図である (図 2 Aの X— X線に沿った横断面図に相当)。
図 1 3は、 本発明の第 7実施の形態に係る車両ステアリング用伸縮軸の横断面 図である (図 2 Aの X— X線に沿つた横断面図に相当)。
図 1 4は、 本発明の第 8実施の形態に係る車両ステアリング用伸縮軸の横断面. 図である (図 2 Aの X— X線に沿った横断面図に相当)。
図 1 5は、 本発明の第 9実施の形態に係る車両ステアリング用伸縮軸の横断面 図である (図 2 Aの X— X線に沿った横断面図に相当)。
図 16は、 本発明の第 10実施の形態に係る車両ステアリング用伸縮軸の横断 面図である (図 2 Aの X— X線に沿った横断面図に相当)。
図 17は、 本発明の第 11実施の形態に係る車両ステアリング用伸縮軸の横断 面図である (図 2 Aの X— X線に沿った横断面図に相当)。
図 18は、 本発明の第 12実施の形態に係る車両ステアリング用伸縮軸の横断 面図である (図 2 Aの X— X線に沿つた横断面図に相当)。
図 19は、 本発明の第 13実施の形態に係る車両ステアリング用伸縮軸の横断 面図である (図 2 Aの X— X線に沿つた横断面図に相当)。
図 20は、 本発明の第 14実施の形態に係る車両ステアリング用伸縮軸の横断 面図である (図 2 Aの X— X線に沿った横断面図に相当)。
図 21は、 本発明の第 15実施の形態に係る車両ステアリング用伸縮軸の横断 面図である (図 2 Aの X— X線に沿った横断面図に相当)。
図 22は、 独国特許発明 D E3730393 C2号公報に係る車両ステアリン グ用伸縮軸の拡大部分断面図であり、 トルク非伝達時を示す。
図 23は、 独国特許発明 D E3730393C2号公報に係る車両ステアリン グ用伸縮軸の拡大部分断面図であり、 トルク伝達時を示す。
図 24 A、 図 24 Bは、 夫々、 独国特許発明 D E 3730393C 2号公報で 使用する板パネの撓み状態を示す模式図である。 発明の実施の形態
以下、 本発明の実施の形態に係る車両ステアリング用伸縮軸を図面を参照しつ つ説明する。
(車両用ステアリングシャフトの全体構成)
図 1は、 本発明の実施の形態に係る車両ステアリング用伸縮軸を適用した自動 車の操舵機構部の側面図である。 図 1において、 車体側のメンバ 1 0 0にアツパブラケット 1 0 1とロアブラケ ット 1 0 2とを介して取り付けられたアツパステアリングシャフト部 1 2 0 (ス テアリングコラム 1 0 3と、 ステアリングコラム 1 0 3に回転自在に保持された スァリングシャフト 1 0 4を含む) と、 ステアリングシャフト 1 0 4の上端に装 着されたステアリングホイ一ル 1 0 5と、 ステアリングシャフト 1 0 4の下端に ユニバーサルジョイント 1 0 6を介して連結された口アステアリングシャフト 部 1 0 7と、 口アステアリングシャフト部 1 0 7に操舵軸継手 1 0 8を介して連 結されたピニオンシャフト 1 0 9と、 ピニオンシャフト 1 0 9に連結したステア リングラック軸 1 1 2と、 このステアリングラック軸 1 1 2を支持して車体の別 のフレーム 1 1 0に弾性体 1 1 1を介して固定されたステアリングラック支持 部材 1 1 3とから操舵機構部が構成されている。
1 0 7が本発明の実施の形態に係る車両ステアリング用伸縮軸 (以後、 伸縮軸と 記す) を用いている。 ロアステアリングシャフト部 1 0 7は、 雄軸と雌軸とを嵌 合したものであるが、 このようなロアステアリングシャフト部 1 0 7には自動車 が走行する際に発生する軸方向の変位を吸収し、 ステアリングホイール 1 0 5上 にその変位や振動を伝えない性能が要求される。 このような性能は、 車体がサブ フレーム構造となっていて、 操舵機構上部を固定するメンバ 1 0 0とステアリン グラック支持部材 1 1 3が固定されているフレーム 1 1 0が別体となっており ステアリングラック支持部材 1 1 3がゴムなどの弾性体 1 1 1を介してフレー ム 1 1 0に締結固定されている構造'の場合に要求される。 また、 その他のケース として操舵軸継手 1 0 8をピニオンシャフト 1 0 9に締結する際に作業者が、 伸 縮軸をいつたん縮めてからピニオンシャフト 1 0 9に嵌合させ締結させるため 伸縮機能が必要とされる場合がある。 さらに、 操舵機構の上部にあるアツパステ ァリングシャフト部 1 2 0も、 雄軸と雌軸とを嵌合したものであるが、 このよう なアツパステアリングシャフト部 1 2 0には、 運転者が自動車を運転するのに最 適なポジションを得るためにステアリングホイール 1 0 5の位置を軸方向に移 動し、 その位置を調整する機能が要求されるため、 軸方向に伸縮する機能が要求 される。 前述のすべての場合において、 伸縮軸には嵌合部のガタ音を低減するこ とと、 ステアリングホイール 1 0 5上のガ夕感を低減することと、 軸方向搢動時 における摺動抵抗を低減することが要求される。
(第 1実施の形態)
図 2 Aは、 本発明の第 1実施の形態に係る車両ステアリング用伸縮軸の縦断面 図であり、 図 2 Bは、 弾性体である板パネの斜視図である。 図 3は、 図 2 Aの X —X線に沿った横断面図である。
図 2 Aに示すように、 車両ステアリング用伸縮軸 (以後、 伸縮軸と記す) は、 相互に回転不能に且つ摺動自在に嵌合した雄軸 1と雌軸 2とからなる。
図 3に示すように、 雄軸 1の外周面には、 周方向に 1 2 0度間隔で等配した 3 個の軸方向に延びる溝 3が延在して形成してある。 これに対応して、 雌軸 2の内 周面にも、周方向に 1 2 0度間隔で等配した 3個の軸方向に延びる溝 (以降軸方向 溝とも言う) 5が延在して形成してある。
雄軸 1の軸方向溝 3と、 雌軸 2の軸方向溝 5との間に、 両軸 1 , 2の軸方向相 対移動の際に転動する複数の剛体の球状体 7が転動自在に介装してある。 なお、 雌軸 2の軸方向溝 5は、 断面略円弧状若しくはゴシックアーチ状である。
雄軸 1の軸方向に延びる溝 (以降軸方向溝とも言う) 3は、 径方向外方に末拡 がりに傾斜した一対の平面状側面 3 aと、 これら一対の平面状側面 3 aの間に平 坦に形成した底面 3 bとから構成してある。
雄軸 1の軸方向溝 3と、 球状体 7との間には、 球状体 7に接触して予圧するた めの板バネ 9が介装してある。
この板パネ 9は、 球状体 7に 2点で接触する平板状の球状体側接触部 9 aと、 球状体側接触部 9 aに対して略周方向に所定間隔をおいて離間してあると共に 雄軸 1の軸方向溝 3の平面状側面 3 aに接触する平板状の溝面側接触部 9 bと、 球状体側接触部 9 aと溝面側接触部 9 bを相互に離間させかつ離間する方向に 弾性的に付勢する付勢部 9 cと、 軸方向溝 3の底面 3 bに対向し、 球状体側接触 部 9 a、 9 aに連続した底部 9 dと、 を有する一体構造である。
付勢部 9 cは、 略 U字形状で略円弧状に折曲した折曲形状であり、 この折曲形 状の付勢部 9 cによって、 球状体側接触部 9 aと溝面側接触部 9 bを相互に離間 するように弾性的に付勢することができる。
図 3に示すように、 雄軸 1の外周面には、 周方向に 1 2 0度間隔で等配した 3 個の軸方向に延びる溝 (以降軸方向溝とも言う) 4が延在して形成してある。 こ れに対応して、 雌軸 2の内周面にも、 周方向に 1 2 0度間隔で等配した 3個の軸 方向に延びる溝 (以降軸方向溝とも言う) 6が延在して形成してある。
雄軸 1の軸方向溝 4と、 雌軸 2の軸方向溝 6との間に、 両軸 1,' 2の軸方向相 対移動の際に滑り摺動する複数の剛体の円柱体 8 (ニードル口一ラ) が微小隙間 をもって介装してある。 なお、 これら軸方向溝 4 , 6は、 断面略円弧状若しくは ゴシックァ一チ状である。
また、 図 2 Aに示すように、 雄軸 1の端部には、 円環状の弾性体付ストッパー プレート 1 0が設けてあり、 この弾性体付ストッパープレート 1 0により、 球状 体 7、 円柱体 8、 板パネ 9の脱落を防止している。
雄軸 1の軸方向溝 3、雌軸 2の軸方向溝 5、板バネ 9、及び球状体 7の間には、 潤滑剤 (グリース)が塗布してあることから、 トルク非伝達時、 雄軸と雌軸は、 ガ 夕付きのない安定した摺動荷重で軸方向に摺動することができる。
雄軸 1の材料としては、 炭素 Cを 0 . 3 %以上、 マンガン M nを 0 . 3 %以上含 んだ鋼材を用い、 硬さは HV 1 2 0以上、 そして加工方法は冷間成形及びブロー チ加工である。 表面に MO S 2、 P T F E等の固体潤滑皮膜を施しても良い。 雌軸 2の材料としては、炭素 Cを 0 . 2 %以上含んだ鋼材を用い、硬さは HV 1 2 0以上、 そして加工方法は冷間成形及びブローチ加工である。 軸方向溝 5, 6 は 3〜 6列とする。表面に MO S 2、 P T F E等の固体潤滑皮膜を施しても良い。 板バネ 9の材料としては、 S K材(S 5 0 C〜6 0 C)、 S U S 3 0 4材等で、 硬さは HV 3 0 0〜4 0 0、 表面処理は焼き入れ焼き戻し、 加工方法はプレス及 び 2次加工である。 球状体 7の材料としては、 S U J 2、 セラミック等で、 硬さ は H V 3 0 0以上、 一列に 3〜 7個配置し、 球径は 3〜 7 mmである。 弾性体付 ストッパープレート 1 0の加工方法はプレスで、 カシメにより固定する。 ダリ一 スは M〇S 2、 P T F E等の固体潤滑材入りのものを使用する。
以上のように構成した伸縮軸では、 雄軸 1と雌軸 2の間に球状体 7を介装し、 板バネ 9により、 球状体 7を雌軸 2に対してガ夕付きのない程度に予圧してある ため、 トルク非伝達時は、 雄軸 1と雌軸 2の間のガタ付きを確実に防止すること ができると共に、 雄軸 1と雌軸 2は軸方向に相対移動する際には、 ガ夕付きのな い安定した摺動荷重で摺動することができる。
トルク伝達時には、 板パネ 9が弹性変形して球状体 7を周方向に拘束すると共 に、 雄軸 1と雌軸 2の間に介装した 3列の円柱体 8が主なトルク伝達の役割を果 たす。
例えば、 雄軸 1からトルクが入力された場合、 初期の段階では、 板バネ 9の予 圧がかかっているため、 ガ夕付きはなく、 板バネ 9がトルクに対する反力を発生 させてトルクを伝達する。 この時は、 雄軸 1 ·板パネ 9 ·球状体 7 ·雌軸 2間の 伝達トルクと入力トルクがつりあった状態で全体的なトルク伝達がなされる。 さらにトルクが増大していくと、 円柱体 8を介した雄軸 1、 雌軸 2の回転方向 のすきまがなくなり、 以後のトルク増加分を、 雄軸 1、 雌軸 2を介して、 円柱体 8が伝達する。 そのため、 雄軸 1と雌軸 2の回転方向ガタを確実に防止するとと もに、 高剛性の状態でトルクを伝達することができる。
以上から、 本実施の形態によれば、 球状体 7以外に、 円柱体 8を設けているた め、 大トルク入力時、 負荷量の大部分を円柱体 8で支持することができる。 従つ て、 雌軸 2の軸方向溝 5と球状体 7との接触圧力を低下して、 耐久性を向上する ことができると共に、 大トルク負荷時には、 高剛性の状態でトルクを伝達するこ とができる。
また、 円柱体 8が雄軸 1及び雌軸 2に接触していることから、 球状体 7への捩 りトルクを低減し、 板バネ 9の横滑りを抑えて、 その結果、 ヒステリシスが過大 となることを抑えることができる。
このように、 本実施の形態によれば、 安定した摺動荷重を実現すると共に、 回 転方向ガ夕付きを確実に防止して、 高剛性の状態でトルクを伝達することができ る。
なお、 球状体 7は、 剛体のボールが好ましい。 また剛体の円柱体 8は、 二一ド ルローラが好ましい。
円柱体(以後、ニードルローラと記す) 8は、線接触でその荷重を受けるため、 点接触で荷重を受けるポールよりも接触圧を低く抑えることができるなど、 さま ざまな効果がある。 したがって、 全列をポール転がり構造とした場合よりも下記 の項目が優れている。
•摺動部での減衰能効果が、 ボール転がり構造に比べて大きい。 よって振動吸収 性能が高い。
-ニードルローラが雄軸と雌軸に微小に接触していることにより、 摺動荷重変動 幅を低く抑えることができ、 その変動による振動がステアリングまで伝わらない。
•同じトルクを伝達するならば、 ニードル口一ラの方が接触圧を低く抑えること ができるため、 軸方向の長さを短くできスペースを有効に使うことができる。 ·同じトルクを伝達するならば、 ニードルローラの方が接触圧を低く抑えること ができるため、 熱処理等によって雌軸の軸方向溝表面を硬化させるための追加工 程が不要である。
•部品点数を少なくすることができる。
-組立性をよくすることができる。
·組立コストを抑えることができる。
このようにニードルローラは、 雄軸 1と雌軸 2の間のトルク伝達のためのキ一 の役割をするとともに、 雌軸 2の内周面とすべり接触する。 ニードルローラの使 用が従来のスプライン嵌合と比較して、 優れている点は下記のとおりである。
•ニードルローラは大量生産品であり、 非常に低コストである。
-ニードルローラは熱処理後、 研磨されているので、 表面硬度が高く、 耐摩耗性 に優れている。
•ニードル口一ラは研磨されているので、 表面粗さがきめ細かく摺動時の摩擦係 数が低いため、 摺動荷重を低く抑えることができる。
-使用条件に応じて、 ニードルローラの長さや配置を変えることができるため、 設計思想を変えること無く、 さまざまなアプリケーションに対応することができ る。
-使用条件によっては、 摺動時の摩擦係数をさらに下げなければならない場合が ある、 この時ニードルローラだけに表面処理をすればその摺動特性を変えること ができるため、 設計思想を変えること無く、 さまざまなアプリケーションに対応 することができる。
·ニードルローラの外径違い品を安価に数ミクロン単位で製造することができる ため、 二一ドルローラ径を選択することによって雄軸 'ニードルローラ ·雌軸間 のすきまを最小限に抑えることができる。 よって軸の捩り方向の剛性を向上させ ることが容易である。
次に、 独国特許発明 D E 3 7 3 0 3 9 3 C 2号公報と本第 1実施の形態とを比 較して、 検討する。
図 4は、 本発明の第 1実施の形態に係る車両ステアリング用伸縮軸の拡大部分 断面図であり、 トルク非伝達時を示す。
図 5は、 本発明の第 1実施の形態に係る車両ステアリング用伸縮軸の拡大部分 断面図であり、 トルク伝達時を示す。
図 6は、ハンドル操舵角 (回転角)とハンドル操舵トルク(トルク)との関係を示す 特性線図である。 図 2 2は、 独国特許発明 D E 3 7 3 0 3 9 3 C 2号公報に係る車両ステアリン グ用伸縮軸の拡大部分断面図であり、 トルク非伝達時を示す。
図 2 3は、 独国特許発明 D E 3 7 3 0 3 9 3 C 2号公報に係る車両ステアリン グ用伸縮軸の拡大部分断面図であり、 トルク伝達時を示す。
図 2 2に示す独国特許発明 D E 3 7 3 0 3 9 3 C 2号公報において、 トルク非 伝達時 (トルクのバランスが左右でとれている状態を含む)、 雄軸 ·ポール '雌 軸の間に予圧を発生させるため、 板パネは、 その曲率と軸方向溝の曲率とを変え て介装している。 しかし、 この状態では、 雄軸と板パネの接触点と、 ポールと板 パネの接触点との接触点間距離 (L 1 ) が非常に小さく、 かつ、 隙間 (A S 2 : 撓み量) が小さいため、 板パネとボールとの接触点に過大な荷重が発生して、 板 パネには、 高い応力が発生する。
図 2 3に示す独国特許発明 D E 3 7 3 0 3 9 3 C 2号公報において、 トルクが 負荷されると、板パネの撓みにより、接触点間距離(L 1 )が徐々に小さくなる。 L 1は、 トルクが増すにつれて零に近づき、 接触点にかかる荷重は、 トルクに比 例して増大し、 板パネに発生する応力は、 さらに高くなつてしまう。 この状態が 繰り返し発生することにより、 トルク伝達部の寿命を長く保つことができない虞 れがある。
これに対して、 図 4及び図 5に示す本第 1実施の形態では、 板パネ 9は、 その 球状体側接触部 9 aが付勢部 9 cを介して十分に撓むことができ、 撓み量を十分 に確保することができる。
また、 球状体 7以外に、 円柱体 8を備えていることから、 トルク伝達時には、 円柱体 8の方が板パネ 9より先に雄軸 1と雌軸 2の軸方向溝 4, 6に接触すると 共に、 円柱体 8が主としてトルクを伝達することができ、 球状体 7及び板パネ 9 には、 過大な負荷 (応力) がかかることがない。
トルク非伝達時においては、 図 4に示すように、 円柱体 8と雌軸 2の軸方向溝 6との間には所定の微小隙間が存在するように設定されている。 雄軸 1の雌軸 2 に対する板バネ 9の部分における回転可能な角度、 即ち、 板バネ 9の撓み量に相 当する角度を A、 円柱体 8と雌軸 2の軸方向溝 6間に存在する前記隙間分の、 雄 軸 1の周方向の回転角を Bとすると、 回転可能角 Aと回転角 Bとは (A> B ) の 関係にある。
トルク伝達時においては、 図 5に示すように、 雄軸 1は雌軸 2に対して回転角 Bだけ回転して、 円柱体 8の方が板パネ 9より先に雄軸 1と雌軸 2の軸方向溝 4, 6に強く接触し、 回転角 Bは 0となる。 同時に、 板バネ 9は撓んでこの部分にお ける実際の雄軸 1の雌軸 2に対する回転角は Bとなって、 この部分における残さ れた回転可能角は (A— B)となる。 高トルク伝達時に、 雄軸 1の回転角度がこれ 以上大きくなると、 図 6に示すグラフからも分かるように、 高剛性域の状態に入 ることになる。
したがって、 雄軸 1の雌軸 2に対する回転角が Bより大きくなることが極力抑 えられる、 即ち、 板バネ 9部分における雄軸 1の回転可能角が (A—B)より小さ くなる程、 雄軸 1が回転して板パネ 9が撓み過ぎることが極力抑えられるため、 これが永久変形するのが防止される。
この回転角 Bは、 0 . 0 1〜0 . 2 5 ° に設定するのが好ましい。 その理由とし て、 雄軸 1 ·円柱体 8 '雌軸 2間に存在する周方向隙間との関係を挙げることが できる。 円柱体 8は、 雄軸 1及び雌軸 2に対して抵抗なく摺動するのに必要なだ けの隙間を有する必要がある。 しかしながら、 この周方向隙間を大きくし過ぎる と、 雄軸.1 ·板パネ 9 ·球状体 7 ·雌軸 2間のトルク伝達領域を大きく取らなけ れぱならず、 高剛性感のある良い操舵フィーリングを得ることが難しくなる。 したがって、 雄軸 1 ·円柱体 8 ·雌軸 2間に存在する周方向隙間 (雌軸 2の回転 角 B)としては、 種々試作品を評価した結果、 上限を 0 . 2 5 ° と定めることが好 ましく、 下限は插動するのに必要な隙間があれば良いことから 2 mと定め、 こ れを角度に換算して、 0 . 0 Γ とすることが好ましい。
この回転角 Bの設定により、 ハンドル操舵角とハンドル操舵トルクの関係が変 化する。 上記回転角 Bは、 雄軸 1に時計回り、 あるいは反時計回りに回転を与え た際の一方向の回転角なので、 両回転方向に振れた場合には角度は 2倍になり、 0 . 0 2〜0 . 5 ° の範囲となる。
回転角 Bの最小値を設定するにあたり、 雄軸 1 ·円柱体 8 ·雌軸 2間の搢動が スムーズに行われるという条件を考慮しなければならない。 そこで、 雄軸 1 -円 柱体 8 ,雌軸 2間に隙間を設けることにより、 雌軸 2スライド時の摺動抵抗が非 常に大きくなるという問題を解消した。 雌軸 2をスライドするのに最小限必要な 隙間を 2 z mと定めた。 伹し、 雄軸 1や雌軸 2のそれぞれの曲がりや、 軸方向の 内外径寸法のバラツキがある場合には、 特に、 摺動抵抗を増大させないように最 小隙間部で 2 mを保つ必要がある。
雄軸 1の最大外径によって回転角は変化するので、 この隙間を 2 にするた めに、 本発明では雄軸 (ステアリングシャフト) 1に適した外径から逆算して回転 角 Bの最小値を 0 . 0 とした。図 4においては、 トルク非伝達状態からトルク 伝達状態に変わり、 円柱体 8が雌軸 2の溝に接触する部分の半径が R2となるよ うに、 又、 トルク伝達時に板ばね 9が撓んだ時に板ばね 9の対向部同士が最も接 近する時に、 板ばね 9が球状体 7に接触する部分の半径が R 1となるように、 雄 軸 1の外径を設定している。
図 6に示すように、 板ばね 9による予圧剛性域に移り変わる点のトルク値とし ては、 + 2 Nm以上及び一 2 Nm以下であることが好ましい。 その理由として、 低剛性域と高剛性域の差が挙げられる。 運転者が、 ステアリング装置系のガタゃ 音を感じたり、 ハンドル操作に対する車両の応答遅れを感じることは好ましくな い。 従来の単純なスプライン構造の場合は、 スプラインの雄軸と雌軸間の隙間が あると、運転者はガ夕として感じてしまう。この現象を引き起こさないためには、 板ばね 9による予圧によって隙間の領域を無くすことである。 したがって、 板ば ね 9による予圧剛性域から高剛性域に移り変わる点のトルク値としては、 + 2 N m以上、 及び一 2 Nm以下であることが好ましいということが、 実際に車両を使 つた官能評価試験を実施した結果導き出された。
同グラフにおいて、 雄軸 1を +方向 (例えば時計方向)に角度 B、 あるいは一方 向 (例えば反時計方向)に角度 Bだけ回転させても、 上記の如く、 高トルク伝達時 には、 さらに若干各々土方向に回転する可能性があることを示しており、 これが 操舵の高剛性域となる。 なお、 雄軸 1の予圧剛性域における士方向の回転角は 2 Bである。
このように、 板バネ 9は、 撓み量を十分に確保することができると共に、 球状 体 7及び板バネ 9には、 過大な負荷 (応力) がかかることがないことから、 トル ク伝達時に、 球状体 7と板バネ 9の接触部に発生する応力を緩和することができ る。 したがって、 板バネ 9部分に高い応力が発生することがないので、 永久変形 による 「へたり」 が防止され、 長期にわたって良好な予圧性能を維持することが できる。
なお、 図 4において、 トルク非伝達時には、 円柱体 8と、 雄軸 1の軸方向溝 4 の底部との間、 並びに、 円柱体 8と、 雌軸 2の軸方向溝 6の底部との間には、 微 小隙間が存在するように成形されているが、 軸方向溝 4, 6の両縁部では接触す るように設定されている。
図 2 2及び図 2 3に示す独国特許発明 D E 3 7 3 0 3 9 3 C 2号公報におい て、 板パネの配置してある雄軸の軸方向溝の断面形状は、 曲率を持った円弧形状 であり、 板パネも、 曲率を持った円弧形状であり、 それぞれの曲率を変えること で、 板パネにパネ性を持たせている。 そのため、 板パネと雄軸との接触点は、 図 2 2に示すように、 雄軸の角部になる。 従って、 図 2 3に示すように、 トルクが 負荷された場合、 板パネ全体が横滑りし、 伝達トルクの低下を招いたり、 ヒステ リシスが過大に発生したりする。
これに対して、 図 4及び図 5に示す本発明の第 1実施の形態では、 雄軸 1の軸 方向溝 3は、 平面で構成されている。 軸方向溝 3の中心は、 雄軸 1の中心と一致 しており、 軸方向溝 3の中心として左右対称のくさび形状をなしている。 くさび の角度 (接触角) は、 軸方向溝 3の中心に対して、 40〜70度が好ましい。 こ れにより、 軸方向溝 3のくさび面に板パネ 9がしつかり固定されるため、 トルク が負荷された際に、 板パネ 9全体が横滑りを起こし難いことから、 伝達トルクの 低下を招くことがなく、 また、 ヒステリシスが過大に発生することを防止するこ とができる。
図 22及び図 23に示す独国特許発明 D E 3730393 C 2号公報におい て、 トルクを負荷していない時、 雄軸 ·球状体 ·板バネ ·雌軸の間では、 その接 触点が同一線上にないことから、 トルクを負荷するに従って、 接触角が変化して しまい、 その結果、 ステアリングシャフトに必要なリニアな捩り特性を得ること ができないだけでなく、 適正なヒステリシスをも得ることができない虞れがある。 これに対して、 図 4及び図 5に示す本発明の第 1実施の形態では、 トルクの負 荷状態に拘わらず、 雄軸 1 ·球状体 7 ,板パネ 9 ·雌軸 2の間では、 その接触点 が同一線上に留まることから、 接触角が変化することがなく、 これにより、 ステ ァリングシャフトに必要なリ二ァな捩り特性を得ることができ、 リ二ァで高剛性 感のある操舵特性を得ることができる。
なお、 雄軸、 雌軸、 及び弾性体の製造誤差は、 弾性体の弾性変形により吸収す ることができるため、 公差を大きくすることができ、 低コスト化を図ることがで きる。
次に、 図 7Α、 図 7 Βおよび図 7 Cは、 夫々、 本発明の各実施の形態で使用す る板パネの撓み状態を示す模式図である。
図 24 Α、 図 24 Βは、 夫々、 独国特許発明 D E 3730393C2号公報で 使用する板バネの撓み状態を示す模式図である。
図 24は、 独国特許発明 D E 3730393C2号公報で示された板パネを単 純化したモデルであり、 図 24Αでは、 トルクを負荷していない状態で、 適度な 予圧が負荷されることを望んだ状態であるが、板パネと軸方向溝との距離(C 2) 分がパネとしての予圧を発生できるだけのストロークとなる。 図 24 Βでは、 さ らに荷重 (F 1) が 2点で負荷されると、 板パネが撓み、 やがて軸方向溝の側面 と接触してしまう。 これにより、 全トルクをポールと接触する点で受けなければ ならない。従って、 板パネは、 その撓み量(AS 2) を大きくとることができず、 ステアリングシャフトとして必要な寿命を有することが困難と推察される。 なお、 C2≤AS 2である。
これに対して、 図 7 Aに示す本発明の第 1実施の形態では、 板パネ 9の球状体 側接触部 9 aと溝面側接触部 9 bとの間隔は、 (C 1 ) に設定してあり、 この状 態で、 荷重 (F 1) が (球状体側接触部 9 aに相当する) 2点で負荷されると、 弾性体は、 十分に撓むことができ、 十分な撓み量 (AS l) を確保することがで きる。 従って、 永久変形による 「へたり」 を防止して、 長期にわたり予圧性能を 維持することができる。 なお、 C 1>AS 1である。
図 7 Bに示す本発明の実施の形態 (後述する第 3実施の形態) では、 板パネ 9 の球状体側接触部 9 aと溝面側接触部 9 bとの間隔は、 (C 1 ) に設定してあり、 この状態で、 荷重 (F 1) が (球状体側接触部 9 aに相当する) 2点で負荷され ると、 弾性体は、 十分に撓むことができ、 十分な撓み量 (AS l) を確保するこ とができる。 従って、 永久変形による 「へたり」 を防止して、 長期にわたり予圧 性能を維持することができる。 なお、 C 1〉AS 1である。
図 7 Cに示す本発明の実施の形態 (後述する第 14実施の形態) では、 板パネ 9の球状体側接触部 9 aと溝面側接触部 9 bとの間隔は、 (C 1 ) に設定してあ り、 付勢部 9 cは、 これら接触部 9 aと 9 bとは別材料のゴム、 合成樹脂等から 形成してある。 この状態で、 荷重 (F 1) が (球状体側接触部 9 aに相当する) 2点で負荷されると、 弾性体は、 十分に撓むことができ、 十分な撓み量 (AS l) を確保することができる。 従って、 永久変形による 「へたり」 を防止して、 長期 にわたり予圧性能を維持することができる。 なお、 C 1>AS 1である。
次に、 上記のように、 トルクが負荷された際に、 板パネ 9の全体は、 横滑りを 起こし難いように構成しているが、 扳バネ 9の底部 9 dは、 軸方向溝 3の底面 3 bに対して若干横ずれすることができるようになつている。
即ち、 板バネ 9は、 本第 1実施の形態のように、 その底部 9 dを軸方向溝 3の 底面 3 bに接触状態にするか、 又は、 後述する第 2実施の形態のように、 軸方向 溝 3の底面 3 bとの間隔を所定間隔に設定している。
従って、 軸方向溝 3の底面 3 bに、 板パネ 9の底部 9 dを必要に応じて接触さ せることにより、 ヒステリシスをコントロールすることができ、 所望のヒステリ シスを得ることができる。 ヒステリシスは、 各車両の操舵性能とのマッチングに よって種々変える必要がある。 具体的には、 軸方向溝 3の底面 3 bに、 板パネ 9 の底部 9 dを接触状態に設定している場合には、 軸方向溝 3と板パネ 9が相対的 に移動した際にフリクションが発生し、 ヒステリシスを比較的大きく設定するこ とができる。 一方、 軸方向溝 3の底面 3 bと、 板パネ 9の底部 9 dの間隔を所定 間隔に設定している場合には、 軸方向溝 3と板パネ 9が相対的に移動した際にフ リクションが発生することがなく、.ヒステリシスを比較的小さく設定することが できる。
(第 2実施の形態)
図 8は、 本発明の第 2実施の形態に係る車両ステアリング用伸縮軸の横断面図 である (図 2 Aの X— X線に沿つた横断面図に相当)。
本第 2実施の形態は、 上述した第 1実施の形態と略同様であり、 軸方向溝 3の 底面 3 bと、 板バネ 9の底部 9 dの間隔を所定間隔に離間して設定している。 従って、 この場合には、 上述したように、 ヒステリシスをコントロールするこ とができ、 軸方向溝 3と板パネ 9が相対的に移動した際にフリクシヨンが発生す ることがなく、 ヒステリシスを比較的小さく設定することができる。
(第 3実施の形態)
図 9は、 本発明の第 3実施の形態に係る車両ステアリング用伸縮軸の横断面図 である (図 2 Aの X— X線に沿った横断面図に相当)。
本第 3実施の形態は、 上述した第 2実施の形態と略同様であり、 板バネ 9にお いて、 球状体側接触部 9 aは、 板パネ 9の折り返し端部に構成してあり、 溝面側 接触部 9 bは、 板バネ 9の折り返しの中間部に構成してある。
また、 上述した第 2実施の形態と同様に、 軸方向溝 3の底面 3 bと、 板バネ 9 の底部 9 dの間隔を所定間隔に離間して設定している。
(第 4実施の形態)
図 1 0は、 本発明の第 4実施の形態に係る車両ステアリング用伸縮軸の横断面 図である (図 2 Aの X— X線に沿つた横断面図に相当)。
本第 4実施の形態は、 上述した第 1実施の形態と略同様であり、 板パネ 9にお いて、 球状体側接触部 9 aには、 溝面側接触部 9 bに向けて突出した突起部 9 e が形成してある。
これにより、 球状体側接触部 9 aは、 4点で球状体 7に接触することができ、 板パネ 9と球状体 7との接触点の荷重を軽減することができ、 応力を緩和するこ とができる。
また、 軸方向溝 3の底面 3 bに、 板パネ 9の底部 9 dを接触状態に設定してい る。 この場合には、 上述したように、 ヒステリシスをコントロールすることがで き、 軸方向溝 3と板バネ 9が相対的に移動した際にフリクションが発生し、 ヒス テリシスを比較的大きく設定することができる。
(第 5実施の形態)
図 1 1は、 本発明の第 5実施の形態に係る車両ステアリング用伸縮軸の横断面 図である (図 2 Aの X _ X線に沿った横断面図に相当)。
本第 5実施の形態は、 上述した第 4実施の形態と略同様であり、 軸方向溝 3の 底面 3 bと、 板パネ 9の底部 9 dの間隔を所定間隔に離間して設定している。 従って、 この場合には、 上述したように、 ヒステリシスをコントロールするこ とができ、 軸方向溝 3と板パネ 9が相対的に移動した際にフ 'リクションが発生す ることがなく、 ヒステリシスを比較的小さく設定することができる。
(第 6実施の形態) ' 図 1 2は、 本発明の第 6実施の形態に係る車両ステアリング用伸縮軸の横断面 図である (図 2 Aの X— X線に沿った横断面図に相当)。
本第 6実施の形態は、 上述した第 1実施の形態と略同様であり、 板パネ 9にお いて、 溝面側接触部 9 bは、 その先端部を内側に折り返して、 球状体側接触部 9 aに接触させている。
これにより、 板パネ 9の剛性を増大することができ、 捩り剛性を向上すること ができる。
(第 7実施の形態)
図 1 3は、 本発明の第 7実施の形態に係る車両ステアリング用伸縮軸の横断面 図である (図 2 Aの X— X線に沿った横断面図に相当)。
本第 7実施の形態は、 上述した第 6実施の形態と略同様であり、 軸方向溝 3の 底面 3 bと、 板パネ 9の底部 9 dの間隔を所定間隔に離間して設定している。 従って、 この場合には、 上述したように、 ヒステリシスをコント口一ルするこ とができ、 軸方向溝 3と板パネ 9が相対的に移動した際にフリクションが発生す ることがなく、 ヒステリシスを比較的小さく設定することができる。
(第 8実施の形態)
図 1 4は、 本発明の第 8実施の形態に係る車両ステアリング用伸縮軸の横断面 図である (図 2 Aの X— X線に沿った横断面図に相当)。
本第 8実施の形態は、 上述した第 3実施の形態と略同様であり、 板パネ 9にお いて、 球状体側接触部 9 aは、 板パネ 9の折り返し端部側に構成してあり、 溝面 側接触部 9 bは、 板パネ 9の折り返しの中間部に構成してある。 この場合にも、 上述した第 3実施の形態と同様の作用 ·効果を発揮することができる。
板パネ 9において、 球状体側接触部 9 aは、 その先端部を外側に折り返して、 溝面側接触部 9 bに接触させている。 これにより、 板バネ 9の剛性を増大するこ とができ、 捩り剛性を向上することができる。
(第 9実施の形態) 図 1 5は、 本発明の第 9実施の形態に係る車両ステアリング用伸縮軸の横断面 図である (図 2 Aの X— X線に沿った横断面図に相当)。
本第 9実施の形態は、 上述した第 1実施の形態と略同様であり、 板パネ 9にお いて、 折曲形状の付勢部 9 cを廃止し、 一対の球状体側接触部 9 aは、 略 U字形 状に折り曲げた内側板 9 fからなり、 一対の溝面側接触部 9 bは、 略 U字形状に 折り曲げた外側板 9 gからなる。 これら内側板 9 f の平面部と、 外側板 9 gの平 面部との間に、 ゴム又は合成樹脂等の異なる弾性材料からなる付勢部 9 hが介装 してある。
内側板 9 f の底平面部と外側板 9 gの底平面部の間にはすきまがなく、 接触状 態に設定している。 この場合には、ヒステリシスをコントロールすることができ、 内側板 9 f と外側板 9 gが相対的に移動した際にフリクションが発生し、 ヒステ リシスを比較的大きく設定することができる。
(第 1 0実施の形態)
図 1 6は、 本発明の第 1 0実施の形態に係る車両ステアリング用伸縮軸の横断 面図である (図 2 Aの X— X線に沿った横断面図に相当)。
本第 1 0実施の形態は、 上述した第 9実施の形態と略同様であり、 内側板 9 f の底平面部と外側板 9 gの底平面部との間にはわずかなすきまがあり、 非接触状 態に設定している。 この場合には、 ヒステリシスをコントロールすることができ、 内側板 9 f と外側板 9 gが相対的に移動した際にフリクションが発生すること がなく、 ヒステリシスを比較的小さく設定することができる。
(第 1 1実施の形態)
図 1 7は、 本発明の第 1 1実施の形態に係る車両ステアリング用伸縮軸の横断 面図である (図 2 Aの X— X線に沿った横断面図に相当)。
本第 1 1実施の形態は、 上述した第 1実施の形態と略同様であるが、 板パネ 9 において、 球状体側接触部 9 aと、 溝面側接触部 9 bとの間に、 ゴム又は合成樹 脂等の異なる弾性材料からなる第 2付勢部 9 jが介装してある点が異なる。 これにより、 板パネ 9本体が持つ弾性に異なる弾性材料が持つ弾性を付加する ことにより、 より高い捩り剛性を得ることができる。
(第 1 2実施の形態)
図 1 8は、 本発明の第 1 2実施の形態に係る車両ステアリング用伸縮軸の横断 面図である (図 2 Aの X— X線に沿った横断面図に相当)。
本第 1 2実施の形態は、 上述した第 2実施の形態と略同様であり、 板パネ 9に おいて、 球状体側接触部 9 aと、 溝面側接触部 9 bとの間に、 ゴム又は合成樹脂 等の異なる弾性材料からなる第 2付勢部 9 jが介装してある。
これにより、 板パネ 9本体が持つ弾性に異なる弾性材料が持つ弾性を付加する ことにより、 より高い捩り剛性を得ることができる。 ' (第 1 3実施の形態)
図 1 9は、 本発明の第 1 3実施の形態に係る車両ステアリング用伸縮軸の横断 面図である (図 2 Aの X— X線に沿った横断面図に相当)。
本第 1 3実施の形態は、 上述した第 3実施の形態と略同様であり、 板パネ 9に おいて、 球状体側接触部 9 aと、 溝面側接触部 9 bとの間に、 ゴム又は合成樹脂 等の異なる弾性材料からなる第 2付勢部 9 jが介装してある。
これにより、 板パネ 9本体が持つ弾性に異なる弾性材料が持つ弾性を付加する ことにより、 より高い捩り剛性を得ることができる。
(第 1 4実施の形態)
図 2 0は、 本発明の第 1 4実施の形態に係る車両ステアリング用伸縮軸の横断 面図である (図 2 Aの X— X線に沿った横断面図に相当)。
本第 1 4実施の形態は、 上述した第 9又は第 1 0実施の形態と略同様であり、 板パネ 9において、 一対の球状体側接触部 9 aは、 内側板が 2枚の板から構成し てあり、 一対の溝面側接触部 9 bは、 略 U字形状に折り曲げた外側板 9 gからな る。 これらの間に、 ゴム又は合成樹脂等の異なる弾性材料からなる付勢部 9 hが 介装してある。 これにより、 材料そのものが持つ弹性を生かすことができ、 特に低捩り剛性が 求められる場合にその特性を発揮することができる。
(第 1 5実施の形態)
図 2 1は、 本発明の第 1 4実施の形態に係る車両ステアリング用伸縮軸の横断 面図である (図 2 Aの X— X線に沿った横断面図に相当)。
本第 1 4実施の形態は、 上述した第 1実施の形態において、 板パネ 9を雌軸 2 側に設けたものである。
雌軸 2の軸方向溝 5は、 傾斜した一対の平面状側面 5 aと、 これら一対の平面 状側面 5 aの間に平坦に形成した底面 5 bとから構成してある。
雌軸 2の軸方向溝 5と、 球状体 7との間には、 球状体 7に接触して予圧するた めの板バネ 9が介装してある。
この板パネ 9は、 球状体 7に 2点で接触する球状体側接触部 9 aと、 球状体側 接触部 9 aに対して略周方向に所定間隔をおいて離間してあると共に雌軸 2の 軸方向溝 5の平面状側面 5 aに接触する溝面側接触部 9 bと、 球状体側接触部 9 aと溝面側接触部 9 bを相互に離間する方向に弹性的に付勢する付勢部 9 cと、 軸方向溝 5の底面 5 bに対向した底部 9 dと、 を有している。
この付勢部 9 cは、 略 U字形状で略円弧状に折曲した折曲形状であり、 この折 曲形状の付勢部 9 cによって、 球状体側接触部 9 aと溝面側接触部 9 bを相互に 離間するように弹性的に付勢することができる。
このように、 第 1実施の形態に対して、 板パネ 9の配置を逆転しても、 同様の 作用 ·効果を発揮することができる。
なお、 本発明は、 上述した実施の形態に限定されず、 種々変形可能である。

Claims

請 求 の 範 囲
1 . 車両のステアリングシャフトに組込み、 雄軸と雌軸を回転不能に且つ摺動 自在に嵌合した車両ステアリング用伸縮軸において、
前記雄軸の外周面と前記雌軸の内周面とに夫々形成した少なくとも一列の軸 方向溝の間に、 弾性体を介して、 第 1トルク伝達部材を介装し、
前記雄軸の外周面と前記雌軸の内周面とに夫々形成した他の少なくとも一列 の軸方向溝の間に、 第 2トルク伝達部材を介装し、
前記弾性体は、
前記第 1トルク伝達部材に接触する伝達部材側接触部と、
当該伝達部材側接触部に対して、 略周方向に所定間隔をおいて離間してあると 共に、 前記雄軸又は雌軸の軸方向溝の溝面に接触する溝面側接触部と、
前記伝達部材側接触部と当該溝面側接触部を相互に離間する方向に弹性的に 付勢する付勢部と、 を有することを特徴とする車両ステアリング用伸縮軸。
2 . 前記第 1トルク伝達部材は、 前記両軸の軸方向相対移動の際に転動する転 動体であり、
前記第 2トルク伝達部材は、 前記両軸の軸方向相対移動の際に滑り摺動する摺 動体であることを特徴とする請求項 1に記載の車両ステアリング用伸縮軸。
3 . 前記弾性体の付勢部は、 前記伝達部材側接触部と前記溝面側接触部との間 で折曲した折曲形状であることを特徴とする請求項 1又は 2に記載の車両ステ ァリング用伸縮軸。
4 . 前記雄軸又は雌軸の軸方向溝は、 前記弾性体の溝面側接触部に接触する平 面状側面と、 当該平面状側面に連接した底面とを有し、 前記弾性体は、 当該軸方向溝の底面に対向した底部を有し、 当該軸方向溝の底面に、 当該弾性体の底部を接触状態にするか、 又は、 当該軸 方向溝の底面と、 当該弾性体の底部との間隔を所定間隔に設定することを特徴と する請求項 1乃至 3のいずれか 1項に記載の車両ステアリング用伸縮軸。
5 . 前記弾性体の付勢部は、 前記伝達部材側接触部と前記溝面側接触部とは、 別体であって、 異なる材料から形成してあることを特徴とする請求項 1乃至 4の いずれか 1項に記載の車両ステアリング用伸縮軸。
6 . 前記弾性体は、 前記伝達部材側接触部、 前記溝面側接触部、 及び前記付勢 部以外に、 別体であって異なる材料から形成してある第 2付勢部を有することを 特徴とする請求項 1乃至 4のいずれか 1項に記載の車両ステアリング用伸縮軸。
7 . 前記弾性体は、 板パネからなることを特徴とする請求項 1乃至 6のいずれ か 1項に記載の車両ステアリング用伸縮軸。
8 . 別体であって異なる材料から形成してある前記付勢部、 及び別体であって 異なる材料から形成してある前記第 2付勢部は、 ゴム又は合成樹脂から形成して あることを特徴とする請求項 6又は 7に記載の車両ステアリング用伸縮軸。
9 . 前記雄軸の軸方向溝、 前記雌軸の軸方向溝、 前記弾性体、 及び前記第 1 ト ルク伝達部材の間には、 潤滑剤が塗布してあることを特徴とする請求項 1乃至 8 のいずれか 1項に記載の車両ステアリング用伸縮軸。
1 0 . 前記雄軸、 前記第 2トルク伝達部材、 前記雌軸間には所定の隙間が設け られており、 前記雄軸、 前記弾性体、 前記第 1トルク伝達部材、 前記雌軸間にお ける雄軸の周方向の回転可能角を A、 前記雄軸、 前記第 2トルク伝達部材、 前記 雌軸間に存在する前記隙間分の、 雄軸の周方向の回転角を Bとすると、 A〉Bの 関係であることを特徴とする請求項 1乃至 8のいずれか 1項に記載の車両ステ ァリング用伸縮軸。
1 1. 前記所定の隙間分の雄軸の回転角 Bは、 0.01〜0.25° の範囲に設 定されていることを特徴とする請求項 10記載の車両ステアリング用伸縮軸。
PCT/JP2004/000056 2003-01-10 2004-01-08 車両ステアリング用伸縮軸 WO2004062981A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04700759A EP1588921A4 (en) 2003-01-10 2004-01-08 TELESCOPIC SHAFT FOR STEERING A MOTOR VEHICLE
US10/541,870 US20060156855A1 (en) 2003-01-10 2004-01-08 Telescopic shaft for motor vehicle steering
JP2005507968A JPWO2004062981A1 (ja) 2003-01-10 2004-01-08 車両ステアリング用伸縮軸

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-004774 2003-01-10
JP2003004774 2003-01-10

Publications (1)

Publication Number Publication Date
WO2004062981A1 true WO2004062981A1 (ja) 2004-07-29

Family

ID=32708977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000056 WO2004062981A1 (ja) 2003-01-10 2004-01-08 車両ステアリング用伸縮軸

Country Status (5)

Country Link
US (1) US20060156855A1 (ja)
EP (1) EP1588921A4 (ja)
JP (1) JPWO2004062981A1 (ja)
CN (1) CN1747867A (ja)
WO (1) WO2004062981A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007042859A1 (en) * 2005-10-12 2007-04-19 Renault Trucks Vehicle including a sterring column
JP2007237797A (ja) * 2006-03-06 2007-09-20 Nsk Ltd ステアリング装置
JP2011257005A (ja) * 2007-12-03 2011-12-22 Mando Corp 自動車操向装置のスリップジョイント
CN111520416A (zh) * 2020-05-07 2020-08-11 豫北凯斯特隆(新乡)汽车科技有限公司 汽车转向中间轴滑动副结构

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031250A1 (fr) 2001-10-01 2003-04-17 Nsk Ltd. Arbre telescopique de direction de vehicule
AU2003242153A1 (en) * 2002-06-11 2003-12-22 Nsk Ltd. Telescopic shaft for steering vehicle and telescopic shaft for steering vehicle with cardan shaft coupling
JP4196630B2 (ja) 2002-10-02 2008-12-17 日本精工株式会社 車両ステアリング用伸縮軸
AU2003302651A1 (en) 2002-11-29 2004-06-23 Nsk Ltd. Telescoping shaft for vehicle steering
JP4190905B2 (ja) 2003-02-06 2008-12-03 日本精工株式会社 車両用ステアリング装置
JPWO2005002947A1 (ja) * 2003-07-02 2006-08-10 日本精工株式会社 車両ステアリング用伸縮軸
WO2005070744A1 (ja) * 2004-01-27 2005-08-04 Nsk Ltd. 車両ステアリング用伸縮軸
JP4921762B2 (ja) * 2005-09-30 2012-04-25 株式会社ジェイテクト 伸縮自在シャフトおよび車両操舵用伸縮自在シャフト
EP1800795A3 (en) * 2005-12-22 2007-08-15 Doosan Infracore Co., Ltd. Workpiece unloader device including a spline shaft
DE102009021426A1 (de) * 2008-05-15 2009-11-19 Neumayer Tekfor Holding Gmbh Verschiebeeinheit
US8075412B2 (en) 2008-06-20 2011-12-13 Neumayer Tekfor Holding Gmbh Displacement unit
DE102008034805B3 (de) * 2008-07-24 2010-04-15 Getrag Ford Transmissions Gmbh Kupplungsvorrichtung zur Übertragung einer Drehbewegung mit Federelement
EP2213410B1 (de) * 2009-02-03 2015-04-01 Ab Skf Linearführung mit Klemmvorrichtung
CN102700608B (zh) * 2012-06-27 2013-11-20 山西大运汽车制造有限公司 大范围伸缩式转向传动轴
CN103223972A (zh) * 2013-05-04 2013-07-31 范茂荣 汽车动力转向限位器
CN106460943A (zh) * 2014-06-12 2017-02-22 博格华纳公司 电相位器联接方法
JP6146539B2 (ja) * 2014-07-03 2017-06-14 日本精工株式会社 伸縮式回転伝達軸
JP6455703B2 (ja) * 2014-09-04 2019-01-23 株式会社ジェイテクト インターミディエートシャフト
CN106627734B (zh) * 2015-09-06 2019-07-23 北京宝沃汽车有限公司 转向管柱的芯轴组件
JP6622653B2 (ja) * 2016-06-06 2019-12-18 株式会社ジェイテクト スプライン伸縮軸の製造方法
DE102016218830A1 (de) * 2016-09-29 2018-03-29 Aktiebolaget Skf Baueinheit
DE102016222795A1 (de) 2016-11-18 2018-05-24 Thyssenkrupp Ag Lenkwelle für ein Kraftfahrzeug
DE102017207012A1 (de) 2017-02-27 2018-08-30 Thyssenkrupp Ag Lager für eine Lenkspindel und Lenksäule für ein Kraftfahrzeug
DE102017209167A1 (de) 2017-05-31 2018-12-06 Thyssenkrupp Ag Lenkwelle für ein Kraftfahrzeug
CN107444471B (zh) * 2017-07-31 2019-05-07 安徽江淮汽车集团股份有限公司 转向传动轴连接结构
JP6991658B2 (ja) * 2017-11-30 2022-01-12 株式会社山田製作所 ステアリング装置
CN108357557B (zh) * 2018-02-12 2019-10-25 安徽江淮汽车集团股份有限公司 长度可调的转向传动轴组件
CN108327779B (zh) * 2018-02-12 2019-10-25 安徽江淮汽车集团股份有限公司 长度可调的转向传动轴组件
CN108357561B (zh) * 2018-02-12 2020-01-14 安徽江淮汽车集团股份有限公司 长度可调的转向传动轴组件
CN108340963B (zh) * 2018-02-12 2020-01-14 安徽江淮汽车集团股份有限公司 长度可调的转向传动轴组件
CN108327777B (zh) * 2018-02-12 2020-01-14 安徽江淮汽车集团股份有限公司 长度可调的转向传动轴组件
DE102018120628A1 (de) * 2018-08-23 2020-02-27 Trw Automotive Gmbh Lagervorrichtung für Kraftfahrzeugwellen sowie Kraftfahrzeugwellenbaugruppe für ein Kraftfahrzeug
CN109296639B (zh) * 2018-12-06 2023-03-31 株洲易力达机电有限公司 新型滑动副总成

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3730393A1 (de) 1987-09-10 1989-03-23 Lemfoerder Metallwaren Ag Drehmomentuebertragende verbindung fuer axial ineinander verschiebliche wellenteile, insbesondere der lenkwelle von kraftfahrzeugen
JPH04123775U (ja) * 1991-04-22 1992-11-10 富士機工株式会社 伸縮自在シヤフト
JP2000038142A (ja) * 1998-05-30 2000-02-08 Daimlerchrysler Ag 自動車用の伸縮可能なかじ取り軸
JP2001050293A (ja) * 1999-06-30 2001-02-23 Nacam France Sa 2つの滑動シャフトのボール結合装置
JP2001239944A (ja) * 2000-03-01 2001-09-04 Nsk Ltd 伸縮自在シャフトの結合構造
JP2002286034A (ja) * 2001-01-31 2002-10-03 Torrington Co:The インターロック形リニアローラベアリング
JP2002539033A (ja) * 1999-03-16 2002-11-19 カステリョン メルチョール,ダウマル 荷重制御滑動システムを備えた自動車のステアリングコラム用のテレスコピックシャフト

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3392599A (en) * 1966-12-30 1968-07-16 Gen Motors Corp Energy absorbing device
CH553350A (fr) * 1972-06-20 1974-08-30 Betrix Claude Dispositif de guidage du deplacement axial d'un organe cylindrique.
US4886295A (en) * 1988-12-05 1989-12-12 General Motors Corporation Vehicle occupant protection system
US5460574A (en) * 1993-08-31 1995-10-24 Trw Inc. Variable length shaft assembly with a lash bushing
US5709605A (en) * 1996-12-23 1998-01-20 General Motors Corporation Shaft coupling
ATE203803T1 (de) * 1999-12-10 2001-08-15 Skf Linearsysteme Gmbh Wälzlager für längsbewegungen
US6620050B2 (en) * 2001-10-30 2003-09-16 Mando Corporation Universal joint
AU2003242153A1 (en) * 2002-06-11 2003-12-22 Nsk Ltd. Telescopic shaft for steering vehicle and telescopic shaft for steering vehicle with cardan shaft coupling

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3730393A1 (de) 1987-09-10 1989-03-23 Lemfoerder Metallwaren Ag Drehmomentuebertragende verbindung fuer axial ineinander verschiebliche wellenteile, insbesondere der lenkwelle von kraftfahrzeugen
JPH04123775U (ja) * 1991-04-22 1992-11-10 富士機工株式会社 伸縮自在シヤフト
JP2000038142A (ja) * 1998-05-30 2000-02-08 Daimlerchrysler Ag 自動車用の伸縮可能なかじ取り軸
JP2002539033A (ja) * 1999-03-16 2002-11-19 カステリョン メルチョール,ダウマル 荷重制御滑動システムを備えた自動車のステアリングコラム用のテレスコピックシャフト
JP2001050293A (ja) * 1999-06-30 2001-02-23 Nacam France Sa 2つの滑動シャフトのボール結合装置
JP2001239944A (ja) * 2000-03-01 2001-09-04 Nsk Ltd 伸縮自在シャフトの結合構造
JP2002286034A (ja) * 2001-01-31 2002-10-03 Torrington Co:The インターロック形リニアローラベアリング

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007042859A1 (en) * 2005-10-12 2007-04-19 Renault Trucks Vehicle including a sterring column
JP2007237797A (ja) * 2006-03-06 2007-09-20 Nsk Ltd ステアリング装置
JP2011257005A (ja) * 2007-12-03 2011-12-22 Mando Corp 自動車操向装置のスリップジョイント
US8182354B2 (en) 2007-12-03 2012-05-22 Mando Corporation Slip joint of steering apparatus for vehicle
CN111520416A (zh) * 2020-05-07 2020-08-11 豫北凯斯特隆(新乡)汽车科技有限公司 汽车转向中间轴滑动副结构
CN111520416B (zh) * 2020-05-07 2024-05-28 豫北凯斯特隆(新乡)汽车科技有限公司 汽车转向中间轴滑动副结构

Also Published As

Publication number Publication date
EP1588921A1 (en) 2005-10-26
CN1747867A (zh) 2006-03-15
EP1588921A4 (en) 2006-11-29
JPWO2004062981A1 (ja) 2006-05-18
US20060156855A1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
WO2004062981A1 (ja) 車両ステアリング用伸縮軸
JP4258470B2 (ja) 車両ステアリング用伸縮軸、及びカルダン軸継手付き車両ステアリング用伸縮軸
JP4419841B2 (ja) 車両ステアリング用伸縮軸
JP4770193B2 (ja) 車両ステアリング用伸縮軸
US7559267B2 (en) Extendable shaft for vehicle steering
WO2005002947A1 (ja) 車両ステアリング用伸縮軸
WO2004069630A1 (ja) 車両用ステアリング装置
WO2004024535A1 (ja) 車両ステアリング用伸縮軸
WO2005070744A1 (ja) 車両ステアリング用伸縮軸
WO2004056638A1 (ja) 車両ステアリング用伸縮軸
JP4586983B2 (ja) 車両ステアリング用伸縮軸
JP2005306216A (ja) 車両用ステアリングシステム
JP2006177517A (ja) 車両ステアリング用伸縮軸
WO2005102820A1 (ja) 車両ステアリング用伸縮軸
JP4544252B2 (ja) 車両ステアリング用伸縮軸、及びカルダン軸継手付き車両ステアリング用伸縮軸
JP2007191149A5 (ja)
JP2007321789A (ja) 機械部品の組立方法
JP2005262919A (ja) 車両ステアリング用伸縮軸
JP2006205833A (ja) 車両ステアリング用伸縮軸及び軸端部固定方法
JP2003063414A (ja) 車両ステアリング用伸縮軸

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005507968

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006156855

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10541870

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004700759

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048039097

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004700759

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10541870

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004700759

Country of ref document: EP