WO2005068552A1 - 両性水溶性高分子を含む組成物 - Google Patents

両性水溶性高分子を含む組成物 Download PDF

Info

Publication number
WO2005068552A1
WO2005068552A1 PCT/JP2005/000635 JP2005000635W WO2005068552A1 WO 2005068552 A1 WO2005068552 A1 WO 2005068552A1 JP 2005000635 W JP2005000635 W JP 2005000635W WO 2005068552 A1 WO2005068552 A1 WO 2005068552A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
monomer
amphoteric
sludge
amphoteric polymer
Prior art date
Application number
PCT/JP2005/000635
Other languages
English (en)
French (fr)
Inventor
Yoshio Mori
Koichi Adachi
Ken Takeda
Tetsuya Tsuzuki
Original Assignee
Toagosei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co., Ltd. filed Critical Toagosei Co., Ltd.
Priority to JP2005517122A priority Critical patent/JP4894264B2/ja
Priority to KR1020067014589A priority patent/KR101113694B1/ko
Priority to EP05709248A priority patent/EP1721933A4/en
Priority to US10/586,679 priority patent/US20080230193A1/en
Publication of WO2005068552A1 publication Critical patent/WO2005068552A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/02Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to polysaccharides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/147Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • D21C5/02Working-up waste paper
    • D21C5/025De-inking
    • D21C5/027Chemicals therefor
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/10Retention agents or drainage improvers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • C02F2103/28Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/64Paper recycling

Definitions

  • the present invention relates to a composition containing an amphoteric water-soluble polymer, and the composition of the present invention is useful as a polymer flocculant, particularly a sludge dewatering agent, a retention improver, and a thickener. It is useful for applications such as, and can be awarded in these technical fields.
  • water-soluble polymers particularly high-molecular-weight water-soluble polymers, have been used in various technical fields such as polymer flocculants, retention aids and thickeners.
  • starch is used as a water-soluble polymer in order to exhibit excellent sludge dewatering performance that is well compatible with pulp contained in the wastewater.
  • modified polymers hereinafter referred to as starch-modified polymers! /! May be used.
  • starch-modified polymers are used in applications other than sludge dewatering agents, and are well-compatible with pulp.
  • the resulting paper has excellent performance, and is used as a papermaking additive such as a retention aid. Is also considered.
  • a starch-modified polymer or a method for producing the same is a polymer having a specific cation-etherified starch as a trunk polymer, a quaternary ammonium-modified cationic group on a graft side chain, and a specific viscosity.
  • Patent Document 1 a polysaccharide trunk polymer grafted with a copolymer of (meth) acrylamide and (meth) acrylic acid or a salt thereof as a side chain
  • Patent Document 2 polysaccharide and dimethylaminoethyl
  • Non-Patent Document 1 a product obtained by producing a metharylate quaternary salt using a redox polymerization initiator or a cerium-based polymerization initiator.
  • the conventional cationic polymer flocculant has a limited sludge treatment amount, water content of dewatered cake, SS recovery, etc. Processing conditions are not always satisfactory. Improve these points. Therefore, various amphoteric polymer flocculants and dehydration methods using them have been studied.
  • a method of dehydrating sludge by adding a cationic ionic amphoteric polymer flocculant having a specific ion equivalent to an organic sludge containing inorganic flocculant and having an inorganic flocculant having a pH of 5 to 8 (Patent Document 3), Dehydration method of sludge using a combination of an acrylate polymer flocculant and an amphoteric polymer flocculant to 5-8 organic sludge (Patent Document 4), adding an inorganic flocculant to the sludge, and adjusting the pH to less than 5 Dewatering method (Patent Document 5) and addition of an inorganic coagulant, an aionic polymer, and a cationic amphoteric polymer coagulant to wastewater.
  • An organic wastewater treatment method (Patent Document 6) is known.
  • a water-soluble polymer such as a water-soluble high-molecular-weight polyethylene oxide-cationic polyacrylamide is usually used.
  • Patent Document 1 Japanese Patent Publication No. 62-21007 (Claims)
  • Patent Document 2 JP-A-6-254306 (Claims)
  • Non-patent document 1 The Chemical Society of Japan, 1976, 10 volumes, 1625-1630
  • Patent Document 3 Japanese Patent Publication No. 5—56199 (Claims)
  • Patent Document 4 Japanese Patent No. 2933627 (Claims)
  • Patent Document 5 Japanese Patent Publication No. 6-239 (Claims)
  • Patent Document 6 JP-A-6-134213 (Claims)
  • Patent Document 7 Japanese Patent Application Laid-Open No. 4-281095 (Claims)
  • Patent Document 8 Japanese Patent No. 2945761 (Claims)
  • the present inventors have proposed a polymer flocculant comprising a composition containing two types of amphoteric polymers having different ion equivalents in order to solve the above-mentioned problems! (Patent Document 9).
  • this polymer flocculant has excellent performance to solve the above-mentioned problems, it may be insufficient in applications requiring further sludge dewatering performance and yield improvement performance.
  • the granulation properties are insufficient, and more specifically, are insufficient in the same manner as described above, and are used as a retention aid. In some cases, depending on the stock used, even if the yield was good, the consistency of the paper was insufficient.
  • the present inventors have conducted intensive studies to find a composition having excellent coagulation performance for various sludges and papermaking systems, and particularly a composition excellent as a polymer coagulant. It has excellent dewatering performance for sludge, especially sludge dewatering agent with excellent granulation properties, and can realize a high yield rate. In order to find a yield improver, intensive studies were conducted.
  • Patent Document 9 Japanese Patent Application Laid-Open No. 2003-175302 (Claims)
  • composition comprising two or more amphoteric water-soluble polymers obtained by polymerizing a cationic monomer and an aionic monomer on a polysaccharide.
  • present inventors have found that the use of polymers having different ratios of the monomers as the polymers is effective, and completed the present invention.
  • acrylate or methacrylate is represented as (meth) acrylate
  • acrylic acid or methacrylic acid is represented as (meth) acrylic acid
  • acrylamide or methacrylamide is represented as (meth) acrylamide.
  • amphoteric water-soluble polymer used in the present invention can be used in combination with a cationic radical polymerizable monomer (hereinafter simply referred to as “cationic monomer”) in the presence of a polysaccharide. It is obtained by polymerizing a radically polymerizable monomer (hereinafter simply referred to as an aionic monomer and! /).
  • polysaccharide Various substances can be used as the polysaccharide in the present invention.
  • natural product-based polysaccharides include starch, and specifically, potato starch, waxy potato starch, sweet potato starch, waxy corn starch, high amylose corn starch, small barley starch, rice starch, tapio starch , Sago starch, glumannan, galactan, etc., as well as raw starch, such as flour, corn flour, dried sweet potatoes, dried tapio, etc.
  • polysaccharides other than starch include cellulose such as methylcellulose, ethylcellulose, hydroxyethylcellulose and carboxymethylcellulose, sodium alginate, gum arabic, dextran, gelatin, casein, collagen, chitin and chitosan.
  • starch is preferred, and specific examples thereof include those described above.
  • Potato starch, waxy potato starch, sweet potato starch, waxy corn starch, high amylose corn starch, wheat starch, rice starch , Tapioric starch, sago starch, glumannan, galactan and the like are preferred.
  • a modified starch obtained by modifying chemically or enzymatically can be used.
  • examples of the katakana method include oxidation, esterification, etherification, and acid treatment.
  • the above-mentioned polysaccharide obtained by cationizing or amphoteric by a conventional method is excellent in copolymerizability with a monomer described below, and has an excellent performance as a flocculant. It is preferable because it excels.
  • the cationization of the polysaccharide may be performed according to a conventional method.
  • Examples of the cationization include a method of treating a raw starch with a cationizing agent.
  • a cationizing agent include tertiary amines such as getylaminoethyl chloride, and quaternary ammonium salts such as 3-chloro-2-hydroxypropyltrimethylammonium chloride and glycidyltrimethylammonium chloride. And the like.
  • the degree of cation substitution of the cationized polysaccharide is preferably 0.01 to 0.06 mass Z in terms of nitrogen atom, more preferably 0.02 to 0.66 mass Z in mass. is there.
  • the polysaccharide may be one subjected to a known reaction after cationization.
  • an amphoteric polysaccharide that has undergone an Aon-Dani reaction may be used.
  • Specific examples of the ionization reaction include phosphoric esterification with inorganic phosphoric acid and the like; urea phosphoric acid and acid hypochlorite, etc .; And the like
  • the polysaccharide is preferably used as a size liquid
  • the polysaccharide is subjected to a cooking process. It is preferable to use one that has been treated.
  • cooking is a method of heating a polysaccharide to a gelatinization temperature or higher.
  • the heating temperature in this case may be appropriately set according to the type of starch used, but is preferably 70 ° C. or higher.
  • Starch can be cooked either by a notch or a continuous method.
  • the viscosity of the starch paste solution used is preferably a solid content concentration of 10 to 40% by mass, and a value of 100 to 100 mPa's measured at 25 ° C with a B-type viscometer.
  • the size liquid of the polysaccharide used in the present invention is preferably diluted with water to form a slurry of 3 to 10% by mass.
  • the paste liquid of the polysaccharide to be used has aged and solidified or has a poor dispersibility in water
  • a cooking method in this case the same method as described above can be used.
  • cationic monomer various compounds can be used as long as they have radical polymerizability.
  • dimethylaminoethyl (meth) acrylate, getylaminoethyl (meth) acrylate and dimethyl Tertiary salts such as hydrochlorides and sulfates of dialkylaminoalkyl (meth) atalylates such as aminoethyl (meth) acrylate and getylamino-2-hydroxypropyl (meth) acrylate and dimethylamino propyl (meth) acrylate
  • Tertiary salts such as dialkylaminoalkyl (meth) acrylamide hydrochlorides and sulfates such as dimethylaminoethyl (meth) acrylamide; halogenated methyl chloride adducts of dialkylaminoalkyl (meth) acrylates and the like.
  • Halogenated aryl adducts such as alkyl adducts and benzyl chloride adducts Quaternary salts, and quaternary salts of Harogeni spoon Ariru adducts of alkyl halide adduct and base chlorides Njiru adduct of methyl chloride adduct of a dialkylaminoalkyl (meth) Akurirua bromide and the like.
  • halogenated alkyl adducts of dialkylaminoalkyl (meth) acrylates are more preferred, with quaternary salts of dialkylaminoalkyl (meth) acrylates being preferred.
  • aro-monomer A variety of compounds can be used as the aro-monomer as long as they have radical polymerizability. Specifically, unsaturated carboxylic acids such as (meth) acrylic acid, crotonic acid, itaconic acid and maleic acid can be used. Acids and salts thereof. Salts include ammonium salts and alkali metal salts such as sodium and potassium.
  • unsaturated carboxylic acids such as (meth) acrylic acid, crotonic acid, itaconic acid and maleic acid can be used. Acids and salts thereof. Salts include ammonium salts and alkali metal salts such as sodium and potassium.
  • (meth) acrylic acid is preferred.
  • the amphoteric polymer according to the present invention may be a nonionic radical polymerizable monomer (hereinafter referred to as a nonionic radical polymerizable monomer). ).
  • the non-ionic monomers include (meth) acrylamide, dimethyl (meth) acrylamide, getyl (meth) acrylamide and hydroxylethyl (meth) atalylate, and methoxy (meth) ately added with ethylene oxide.
  • (meth) acrylamide is preferred.
  • the monomer if necessary, a monomer other than the above can be used in combination.
  • the monomer include methoxyethyl (meth) acrylate, butoxyshethyl (meth) acrylate, ethyl carbitol (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, and vinyl acetate. And the like.
  • the amphoteric polymer of the present invention is obtained by polymerizing a cationic monomer and an ionic monomer in the presence of a polysaccharide.
  • Examples of the production method in this case include a method of polymerizing a cationic monomer and an anionic monomer in the presence of a polymerization initiator and a polysaccharide according to a conventional method.
  • the ratio of the polysaccharide to the monomer is preferably 50 to 99% by mass, more preferably 50% by mass or more based on the total amount of the polysaccharide and all monomers. Is more preferred.
  • the proportion of the monomer is less than 50% by mass, the obtained polymer becomes insoluble in water, or when the obtained polymer is used as a flocculant, a large amount of polymer cannot be obtained. There are cases.
  • Preferable combinations of the monomers in the present invention include: [1] a tertiary or quaternary salt of a dialkylaminoalkyl atalylate as the cationic monomer, and atalyl as the ionic monomer (2) Tertiary or quaternary salt of dialkylaminoalkyl methacrylate as cationic monomer, and as ionic monomer Copolymers of acrylates and acrylamide as non-ionic monomers, and [3] Tertiary or quaternary salts of dialkylaminoalkyl methacrylates as cationic monomers and dialkylaminoalkyl acrylates There is a tertiary or quaternary salt, and a copolymer composed of an acrylate salt as an aionic monomer and acrylamide as a nonionic monomer.
  • polymerization initiator examples include an azo-based polymerization initiator, a redox-based polymerization initiator, and a photopolymerization initiator.
  • azo-based polymerization initiator examples include an azo-based polymerization initiator, a redox-based polymerization initiator, and a photopolymerization initiator.
  • azo-based polymerization initiator various compounds can be used.
  • 4,4'-azobis (4-cyanovaleric acid) (10-hour half-life temperature 69 ° C, hereinafter the temperatures in parentheses indicate the same meaning).
  • 2,2, -azobisisobuty-tolyl 65 ° C
  • 2,2, -azobis (2-methylbuty-totyl) 67.C
  • 2,2, -azobis [2- Methyl-N- (2-hydroxyethyl) propionamide] 86.C
  • 2,2, -azobis (2-amidinopropane) hydrochloride 56.C
  • the azo polymerization initiator may be used alone or in combination of two or more.
  • azo-based polymerization initiators have high solubility in water, have no insoluble content! / Or have a low content! /, And have an amphoteric polymer.
  • Compounds having a 10-hour half-life temperature of 50 ° C or more are preferred as azo-based polymerization initiators because they produce high molecular weight amphoteric polymers and there are few unreacted monomers in the amphoteric polymers.
  • Compounds at 50-90 ° C are more preferred.
  • Compounds at 50-70 ° C are more preferred.
  • the ratio of the azo polymerization initiator to be used is preferably 50 to 5000 ppm, more preferably 100 to 3000 ppm, and still more preferably 300 to 5000 ppm of the total amount of the polysaccharide and the monomer. One lOOOOppm. If the ratio of the azo-based polymerization initiator is less than 50 ppm, the polymerization is incomplete and the residual monomer increases, while if it exceeds 5000 ppm, the obtained aqueous polymer becomes a low molecular weight polymer.
  • the redox-based polymerization initiator is a combination of an oxidizing agent and a reducing agent.
  • the oxidizing agent is preferably a peroxidic acid compound in that it has an effect of abstracting hydrogen from the polysaccharide and the monomer can be preferably drafted into the polysaccharide.
  • peroxides include persulfates such as sodium persulfate, potassium persulfate and ammonium persulfate, and organic peroxides such as benzoyl peroxide, t-butyl peroxide, and succinic peroxide. Substances, hydrogen peroxide, sodium bromate and the like. Of these, persulfates are preferred because of their excellent hydrogen abstraction effect at low temperatures at the start of polymerization.
  • reducing agent examples include sulfites such as sodium sulfite, bisulfites such as sodium bisulfite, ascorbic acid and its salts, Rongalit, -thionic acid and its salts, triethanolamine, and cuprous sulfate.
  • Preferable combinations of the acid peroxide and the reducing agent include persulfate and sulfite, and persulfate and bisulfite.
  • the ratio of the oxidizing agent is preferably 10 to 100 ppm, more preferably 20 to 500 ppm, and particularly preferably 40 to 200 ppm, based on the total amount of the polysaccharide and the monomer. If this ratio is less than lOppm, the hydrogen extraction will be insufficient, while if it exceeds lOOppm, the molecular weight of the amphoteric polymer will be small and sufficient performance may not be exhibited.
  • the ratio of the reducing agent is preferably 10 to 100 ppm, more preferably 20 to 500 ppm, based on the total amount of the polysaccharide and the monomer.
  • an inorganic metal-based polymerization accelerator such as cupric chloride or ferrous chloride as the polymerization accelerator.
  • photopolymerization initiator As a photopolymerization initiator, it has an effect of abstracting hydrogen from polysaccharides, and monomers are preferred for polysaccharides. From the viewpoint of good grafting, ketal-type photopolymerization initiators and acetophenone-type photopolymerization initiators are preferred. In this case, photocleavage occurs to generate benzoyl radicals, which function as hydrogen abstracting agents.
  • ketal-type photopolymerization initiator examples include 2,2-dimethoxy-1,2-diphenyl-1-one and benzyldimethyl ketal.
  • acetophenone-type photopolymerization initiator examples include ethoxyacetophenone, 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexylphenylketone, and 2-methyl-2-ketone.
  • benzoin-type photopolymerization initiators thioxanthone-type photopolymerization initiators and photopolymerization initiators having a polyalkylene oxide group as described in JP-A-2002-097236 can also be used.
  • the ratio of the photopolymerization initiator is preferably from 10 to 1000 ppm, more preferably from 20 to 500 ppm, still more preferably from 40 to 200 ppm, based on the total amount of the polysaccharide and the monomer. It is. If the amount is less than lOppm, the hydrogen extraction may be insufficient or the residual monomer may increase, and if the amount exceeds lOOOOppm, the molecular weight of the amphoteric polymer may decrease and the performance may not be exhibited. .
  • a photosensitizer such as an amine photosensitizer such as triethanolamine and methyljetanolamine can be used in combination.
  • Examples of the polymerization method include aqueous solution polymerization, reverse phase suspension polymerization, reverse phase emulsion polymerization, and the like. From the viewpoint of easy handling, aqueous solution polymerization and reverse phase emulsion polymerization are preferred.
  • aqueous solution polymerization a method in which a polysaccharide and a monomer are dissolved or dispersed in an aqueous medium and polymerized at 10-100 ° C in the presence of a polymerization initiator, etc. are mentioned.
  • Raw materials of polysaccharides and monomers dissolved or dispersed in water are added to an aqueous medium. Add and use.
  • an aqueous solution containing a polysaccharide and a monomer and an organic dispersion medium containing a hydrophobic surfactant having an HLB of 3-6 are mixed by stirring and emulsified. Then, polymerization is carried out at 10-100 ° C. in the presence of a polymerization initiator to obtain a water-in-oil (reverse phase) polymer emulsion.
  • the organic dispersion medium include high-boiling hydrocarbon solvents such as mineral spirits.
  • the ratio of the polysaccharide and the monomer in the aqueous medium or the organic dispersion medium may be appropriately set according to the purpose, and is preferably 20 to 70% by mass.
  • the polymerization method depends on the type of polymerization initiator used! ⁇ , photopolymerization, redox polymerization or the like may be performed.
  • a polymerization initiator may be added to an aqueous solution containing a polysaccharide and a monomer, or to an inverse emulsion containing a polysaccharide and a monomer.
  • photopolymerization and redox polymerization can be used in combination.
  • a chain transfer agent When the molecular weight is adjusted, a chain transfer agent may be used.
  • the chain transfer agent include thiol compounds such as mercaptoethanol and mercaptopropionic acid, and reducing inorganic salts such as sodium sulfite, sodium bisulfite and sodium hypophosphite.
  • aqueous solution polymerization is preferred.
  • the polymerization is preferably performed under light irradiation, since the polymerization time is short and the productivity is excellent.
  • ultraviolet light or Z and visible light rays are used as irradiation light, and among them, ultraviolet light is preferable.
  • the intensity of light irradiation is determined in consideration of the type of monomer, the type and concentration of photopolymerization initiator and Z or photosensitizer, the molecular weight of the target amphoteric polymer, polymerization time, etc. in general, 0. 5- 1, OOOW / m 2 force preferably, preferably from 5- 400W / m 2 force! /,.
  • a fluorescent chemical lamp for example, a fluorescent chemical lamp, a fluorescent blue lamp, a metal halide lamp, a high-pressure mercury lamp, or the like can be used.
  • the temperature of the aqueous solution of the monomer is not particularly limited. However, in order to allow the photopolymerization reaction to proceed smoothly under mild conditions, the polymerization is usually carried out at a temperature of 5 to 5%. To be 100 ° C More preferably, the temperature is 10-95 ° C. The temperature at the start of the polymerization is preferably from 5 to 15 ° C. from the viewpoint that the molecular weight of the resulting amphoteric polymer can be increased and the heat can be easily removed.
  • the light irradiation polymerization reaction of the aqueous solution of the monomer may be performed in a batch system or a continuous system.
  • an amphoteric polymer As a method for producing an amphoteric polymer, a method of polymerizing a cationic monomer and an a-on monomer in the presence of a polysaccharide, an azo-based polymerization initiator, and a hydrogen abstracting agent has been proposed.
  • the amphoteric polymer When the amphoteric polymer is used as an aggregating agent, the polymer can be grafted with a small amount of residual monomer, and it is preferable because various aggregating properties are excellent.
  • Examples of the azo polymerization initiator include the same ones as described above.
  • Examples of the hydrogen abstracting agent include a redox-based hydrogen abstracting agent (hereinafter, referred to as an RD abstracting agent) and a photopolymerization initiator-based hydrogen abstracting agent (hereinafter, referred to as a PT abstracting agent).
  • the RD abstracting agent and the PT abstracting agent not only extract polysaccharide hydrogen, but also function as a polymerization initiator for monomers.
  • RD extracting agent specific examples in which an oxidizing agent or the like is preferable include the same ones as described above. In this case, it is preferable to use together with a reducing agent.
  • PT withdrawing agent examples include a ketal-type photopolymerization initiator and an acetophenone-type photopolymerization initiator, and specific examples thereof are the same as those described above.
  • the amphoteric polymer obtained by aqueous solution polymerization is usually in the form of a gel, shredded by a known method, dried at a temperature of about 60 to 150 ° C with a band dryer, far-infrared dryer, etc.
  • the polymer is pulverized into a powdery polymer by a machine or the like, and the particle size is adjusted, or an additive or the like is added for use.
  • amphoteric polymer obtained by water-in-oil (reverse phase) emulsion polymerization When an amphoteric polymer obtained by water-in-oil (reverse phase) emulsion polymerization is actually used, a hydrophilic surfactant with a relatively high HLB is added, diluted with water, and phase-inverted. Used as a mold emulsion.
  • a powdery product is preferably used as the amphoteric polymer.
  • amphoteric polymer those having a 0.5% salt viscosity of 10 to 200 mPa's, which is an index of molecular weight, are preferable, and when used as a polymer flocculant described later, stable dehydration treatment is achieved.
  • a force of 15 to 120 mPa's is more preferable, and a force of 15 to 90 mPa's is particularly preferable.
  • the 0.5% salt viscosity means that the amphoteric polymer is added to a 4% sodium chloride aqueous solution.
  • the amphoteric polymer may be any one as long as the main component is a graft copolymer obtained by grafting a monomeric polymer to a polysaccharide, but the amphoteric polymer has an ability to graft the monomeric polymer to the polysaccharide.
  • a solid polymer may be present.
  • the composition of the present invention comprises, as the amphoteric polymer, two or more amphoteric polymers having different ratios of a cationic monomer and an aionic monomer unit.
  • An amphoteric polymer that satisfies the formula (1) hereinafter amphoteric polymer 1
  • an amphoteric polymer that satisfies the following formula (2) hereinafter amphoteric polymer 2
  • An amphoteric polymer that satisfies hereinafter referred to as amphoteric polymer 3 is used in combination.
  • Cal and Anl are the total amount of thione monomer when the total amount of all constituent monomers in amphoteric polymer 1 is converted to 100 mol. And the number of moles of the total amount of ionic monomers, and Ca2 and An2 are the same as above. Similarly, the total number of thione monomers and the total number of ionic monomers in the amphoteric polymer 2 represent the number of moles, and Ca3 and An3 represent the total cationicity in the amphoteric polymer 3 in the same manner as described above. It represents the number of moles of the monomer amount and the total amount of the ionic monomer. ]
  • composition of the present invention in which the amphoteric polymer 1 and the amphoteric polymer 2 are used in combination will be described.
  • This composition is a combination of a cationic-rich amphoteric polymer 1 and an a-on-rich amphoteric polymer 2.
  • the amphoteric polymer 1 more preferably has a CalZAnl of 1.5 to 10.0, and the amphoteric polymer 2 preferably has a Ca2ZAn2 of 0.5 to 0.9.
  • the composition uses both amphoteric polymer 1 and amphoteric polymer 3, both of which are cationic-rich amphoteric polymers, and the difference between the cationic monomer units and the aionic monomer that constitute them is large. , A thing and a small thing are used together.
  • Cal / Anl is preferably 1.2 to 40.0
  • Ca3 / An3 is preferably 1.2 to 40.0.
  • I (Cal-Anl)-(Ca3-An3) is preferably 1.5 to 40.0. If this value is less than 1.5, high-performance cohesive performance by blending may not be exhibited.
  • the amphoteric polymers 1 and 3 can be obtained by copolymerizing a cationic monomer and an ionic monomer so as to satisfy the above monomer ratio.
  • composition of the present invention can be produced by mixing the amphoteric polymer 2 or the amphoteric polymer 3 with the amphoteric polymer 1. In the sludge dewatering and papermaking processes described later, each component can be added separately.
  • amphoteric polymers 1 and 3 it is possible to use one kind or two or more kinds in combination, and it is convenient and preferable to use one kind of the amphoteric polymers 3 each.
  • the proportion of the amphoteric polymer in the composition may be appropriately set according to the purpose.
  • the amphoteric polymer 1 contains 40 to 90% by mass.
  • the content of the amphoteric polymer 2 is preferably in the range of 60 to 10% by mass.
  • the amphoteric polymer 1 is preferably in a range of 10 to 90% by mass and the amphoteric polymer 3 is in a range of 90 to 10% by mass.
  • a powdery amphoteric coagulant it is preferable to add sodium hydrogen sulfate, sodium sulfate, sulfamic acid and the like at the time of use. Further, as long as the dewatering treatment is not adversely affected, it may be used by mixing with known additives.
  • composition obtained by the present invention can be applied to various uses, and is particularly useful as a polymer flocculant.
  • a polymer flocculant it can be further preferably used as a sludge dewatering agent, a papermaking agent in a papermaking process such as a retention aid, and the like.
  • the polymer flocculant of the present invention is particularly useful as a sludge dewatering agent and a retention aid.
  • a sludge dewatering agent and a retention aid are particularly useful as a sludge dewatering agent and a retention aid.
  • the sludge dewatering agent and the yield improver will be described.
  • the polymer flocculant of the present invention is used as a sludge dewatering agent (hereinafter sometimes referred to as a polymer flocculant)
  • the polymer is preferably a powdery one or a reversed-phase emulsion.
  • the powder is dissolved in water and used as an aqueous solution.
  • the polymer is a reversed-phase emulsion, it is diluted with water and phase-inverted, and used as an oil-in-water emulsion.
  • the sludge dewatering agent of the present invention is applicable to various sludges, and organic sludge and coagulated sludge generated in sewage, night soil, and general industrial wastewater such as food industry, chemical industry, and pulp or paper industry sludge. And the like.
  • the sludge dewatering agent of the present invention can be preferably applied to sludge having a low fiber content, a high sludge ratio or a high surplus ratio, and sludge. Specifically, it can be preferably applied to sludge having a surplus ratio of 10 SS% or more, and more preferably to sludge having a surplus ratio of 20 to 50 SS%.
  • the dewatering method using the sludge dewatering agent of the present invention is, specifically, a method of adding a sludge dewatering agent to sludge and then dewatering.
  • a sludge dewatering agent is added to sludge to form sludge flocs.
  • the method of forming the flocks may be in accordance with a known method.
  • an inorganic coagulant, an organic cationic compound, a cationic polymer coagulant, and an aionic polymer coagulant can be used in combination.
  • inorganic coagulant examples include aluminum sulfate, polychlorinated aluminum, ferric chloride, ferrous sulfate, and polyiron sulfate.
  • organic cationic conjugate examples include polymer polyamines, polyamidines, and cationic surfactants.
  • the pH adjustment is not particularly necessary, but does not satisfy the range limited by the present invention. ⁇ In the case, adjust by adding acid or alkali.
  • Examples of the acid include hydrochloric acid, sulfuric acid, acetic acid, and sulfamic acid.
  • Examples of the alkali include caustic soda, caustic potash, slaked lime, and ammonia.
  • Examples of the cationic polymer coagulant include a homopolymer of the above-mentioned cationic monomer and a copolymer of the above-mentioned cationic monomer and nonionic monomer.
  • Examples of the a-on polymer coagulant include a homopolymer of the above-described a-on monomer and a copolymer of the above-described anionic monomer and nonionic monomer. it can.
  • the addition ratio of the polymer flocculant to sludge is preferably 5 to 500 ppm, and is preferably 0.05 to 1% by mass for SS.
  • a polymer flocculant and another polymer flocculant are used together, it is preferable that the total amount of all the polymer flocculants satisfies the above-mentioned addition ratio.
  • the addition amount of the sludge dewatering agent and other coagulants, the stirring speed, the stirring time, and the like may be in accordance with the dehydration conditions conventionally used.
  • the floc thus formed is dehydrated using a known means to obtain a dehydrated cake.
  • Examples of the dehydrator include a screw press dehydrator, a belt press dehydrator, a filter press dehydrator, a screw decanter and the like.
  • the sludge dewatering agent of the present invention can also be used in a dewatering method using a granulation and concentration tank having a filtration unit. Applicable.
  • the sludge is introduced into a granulation and concentration tank having a filtration part for the sludge, and filtered from the filtration part
  • the liquid is taken out and granulated, and the granulated material is subjected to a dehydration treatment with a dehydrator.
  • the polymer is preferably a powdery one or a reversed-phase emulsion.
  • the powder is dissolved in water and used as an aqueous solution, and when the polymer is a reverse-phase emulsion, it is diluted and inverted with water. Used together as an oil-in-water emulsion.
  • the solid content in each case is preferably 0.01 to 0.5% by mass, more preferably 0.01 to 0.1% by mass.
  • papermaking may be performed after adding the composition of the present invention to a stock that is satisfactory according to a conventional method.
  • the method for adding the retention aid may be a conventional method. For example, it is added when diluting the paper stock to the final concentration to be fed into the paper machine or after the dilution.
  • the paper stock to which the retention aid is applied may be any paper stock used in the usual papermaking process, and usually contains at least pulp and filler, and if necessary, additives other than filler. Specifically, it contains a sizing agent, a fixing agent, a paper strength enhancer, a colorant, and the like.
  • the retention aid of the present invention can be preferably applied to pulp having a relatively high ratio of waste paper such as deinked waste paper in the pulp. Further, the retention aid of the present invention can be preferably applied to papermaking systems having a high filler ratio, neutral papermaking systems, and high-speed papermaking systems.
  • Examples of the filler include clay, kaolin, agarite, talc, calcium carbonate, magnesium carbonate, lime sulfate, barium sulfate, zinc oxide and titanium oxide.
  • Examples of the sizing agent include acrylic acid-styrene copolymer, etc.
  • examples of the fixing agent include a sulfuric acid band, potassium thione starch and alkyl ketene dimer, and examples of the paper strength enhancer include starch and cationic.
  • amphoteric polyacrylamide and the like can be mentioned.
  • the preferred addition ratio of the retention aid is 0.0 per mass of dry pulp in the paper stock. 05-0. 8 mass 0/0 Power weight, more preferably ⁇ or 0.5 005- 0.5 mass 0/0.
  • the ⁇ of the stock after the addition of the retention aid is preferably maintained at 5-10, more preferably 5-8. After the addition of the retention aid, the stock is immediately sent to the paper machine.
  • composition of the present invention when used as a polymer flocculant, it can be used as a sludge dewatering agent for a variety of sludges in terms of the floc growth in a flocculation-stirring mixing tank and the granulation properties of its maintenance.
  • it is excellent in various dehydration performances, such as being excellent in self-sustainability and releasability of flocs obtained at a high filtration rate.
  • a retention aid it can be used as a one-pack type, which is not easily affected by the location and timing of addition in the papermaking process, and achieves a highly balanced paper formation and yield rate in the papermaking process. can do.
  • the present invention relates to a composition comprising two or more amphoteric polymers, wherein the amphoteric polymer is a composition obtained by using amphoteric polymer 1 and amphoteric polymer 2 in combination. This is a composition comprising molecule 1 and amphoteric polymer 3 in combination.
  • the composition can be preferably used as an amphoteric polymer flocculant.
  • Preferred uses of the polymer flocculant include a sludge dewatering agent and a retention aid.
  • a sludge dewatering agent it is preferable to add a sludge dewatering agent to sludge and then dewater the sludge to be dewatered.
  • It can be used, and when used as a retention aid, it can be preferably used in a papermaking method in which the papermaking is performed after the retention aid is added to the stock.
  • Aqueous solution of dimethylaminoethyl phthalate methyl chloride quaternary salt hereinafter, referred to as "DAC”
  • AA aqueous solution of acrylic acid
  • AM aqueous acrylamide
  • Amphoteric starch slurry [Ace KT 245 manufactured by Oji Constarch Co., Ltd. Solids content: 22% or less, referred to as "KT 245".
  • KT 2445 was diluted with ion-exchanged water to a solid content of 5%, and further heated at 80 ° C. for 30 minutes for cooking to obtain an amphoteric starch slurry having a solid content of 6%.
  • the above-mentioned amphoteric starch slurry was charged with 213 g corresponding to 3% of the total solid content of the monomer and starch, and 20 g of ion-exchanged water was added thereto. The concentration was adjusted to 43% and the total weight was 1. Okg, and the mixture was stirred and dispersed.
  • V-50 azobisamidinopropane hydrochloride
  • the resulting amphoteric polymer was taken out of a container and dried and pulverized under the same conditions as in Example 1 to obtain a powdery amphoteric polymer.
  • This amphoteric polymer is called SCR-1.
  • a water-soluble polymer was produced in the same manner as in Production Example 1 except that the components used and the proportions were changed as shown in Table 1 below. Incidentally, in Production Example 4 and 8 as described above, starch was not used, and only the monomer was used.
  • the obtained water-soluble polymer was measured for 0.5% salt viscosity. Table 1 shows the results.
  • Example 1 (Use of sludge dewatering agent)
  • SBL-1 polymer flocculant
  • Papermaking sludge (SS: 38, 200 mg / l VSS: 21, 700 mg / l, fiber content 580 mg / l) 200 ml was collected in a 300 ml beaker, stirred with a three-one motor at 100 rpm for 60 seconds, and then polymer aggregated A 0.2% aqueous solution of the agent was added to sludge to add 80 ppm, and the mixture was stirred at 100 rpm with a three-phase motor for 60 seconds to form flocs. At this time, the granulation property of the floc was evaluated on the following three scales, and the particle size of the obtained floc was measured.
  • Table 3 shows the evaluation results.
  • a composition (BL-1) shown in Table 2 below was prepared in the same manner as in Example 1.
  • Sludge dewatering treatment was performed in the same manner as in Example 1 except that a flocculant shown in Table 3 below was used as the polymer flocculant.
  • Table 3 shows the results of the evaluation performed in the same manner as in Example 1.
  • the polymer flocculants of the examples were excellent in various sludge dewatering performances.
  • the polymer flocculant BL-1 used in Comparative Example 1 is equivalent to the unmodified starch blend of SBL-1.
  • various dehydration performances were insufficient.
  • the polymer flocculant CO-1 used in Comparative Example 2 had the same monomer composition as SBL-1, but was composed of a single amphoteric polymer and was not starch-modified.
  • the floc was inferior in granulation properties and had insufficient dehydration performance.
  • Example 2 (Use of sludge dewatering agent)
  • SBL-1 As an amphoteric polymer, 50 parts of SCR-1 and 50 parts of SCR-2 were used and mixed to prepare a composition, which was used as a polymer flocculant (hereinafter referred to as SBL-2).
  • Table 5 shows the results of the evaluation performed in the same manner as in Example 1.
  • a composition (BL-2) shown in Table 4 below was prepared in the same manner as in Example 2.
  • Sludge dehydration treatment was performed in the same manner as in Example 2 except that the flocculants shown in Table 5 below were used as the polymer flocculant.
  • Table 5 shows the results of the evaluation performed in the same manner as in Example 2.
  • the polymer flocculants of the examples were excellent in various sludge dewatering performances.
  • amphoteric polymer flocculant BL-2 used in Comparative Example 3 is equivalent to the unmodified starch blend of SBL-2.
  • Various dehydration performances were insufficient.
  • C1 used in Comparative Example 4 has the same monomer composition as SBL-2, but is a single amphoteric polymer and has not been modified with starch. The performance was insufficient.
  • An aqueous solution containing 0.05% by mass of SBL-1 was used as a retention aid.
  • the deinked waste paper and hardwood kraft pulp are disintegrated and beaten, and deinked waste paper (50SS%) and broadleaf ⁇ kraft pulp (50SS%) are used. .
  • the disintegration of waste paper and pulp is to be 350 ml according to Canadian Standard Freeness (Canadian Standard Freeness, hereinafter CSF!) According to JIS P 8121, except that 1% sample is used. went.
  • Example 3 As a retention aid, an aqueous solution containing 0.05% by mass of SBL-2 was used. Except for using, papermaking was performed in the same manner as in Example 3 and evaluated.
  • Table 7 shows the obtained results.
  • the final pH of the pulp slurry was 7.9.
  • composition of the present invention can be preferably used as a polymer flocculant, and particularly preferably as a sludge dewatering agent and a retention aid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Toxicology (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)
  • Graft Or Block Polymers (AREA)
  • Paper (AREA)

Abstract

【課題】種々の汚泥や抄紙系に対して各種凝集性能に優れる組成物であって、特に高分子凝集剤として優れる組成物の提供。さらに、種々の汚泥に対する脱水性能に優れ、特に造粒性に優れる汚泥脱水剤、並びに高い歩留率を実現できることはもちろんのこと、同時に紙の高地合性が確保でき、さらには使用方法が簡便な新規な歩留向上剤の提供。 【解決手段】多糖類の存在下に、カチオン性ラジカル重合性単量体とアニオン性ラジカル重合性単量体を重合させて得られた下記に示す2種以上の両性水溶性高分子を含む組成物。1.前記高分子として、カチオン性ラジカル重合性単量体のアニオン性ラジカル重合性単量体に対するモル基準の割合(以下Ca/Anという)がCa/An≧1を満たす高分子とCa/An<1を満たす高分子を併用するもの。 2.前記高分子として、Ca/An≧1を満たす2種の高分子を併用するもの。                                                                                 

Description

明 細 書
両性水溶性高分子を含む組成物
技術分野
[0001] 本発明は、両性水溶性高分子を含む組成物に関するものであり、本発明の組成物 は、高分子凝集剤として有用であり、特に汚泥脱水剤、歩留向上剤及び増粘剤等の 用途に有用であり、これら技術分野で賞用され得るものである。
背景技術
[0002] 従来から、水溶性高分子、特に高分子量の水溶性高分子は、高分子凝集剤、歩留 向上剤及び増粘剤等の種々の技術分野で利用されている。
[0003] 上記水溶性高分子としては、特に製紙廃水の汚泥脱水処理においては、廃水中 に含まれるパルプとの馴染みが良ぐ優れた汚泥脱水性能を発揮するため、澱粉を 水溶性高分子で変性した高分子 (以下澱粉変性高分子と!/ヽぅ)を使用する場合があ る。
又、澱粉変性高分子は、汚泥脱水剤以外の用途として、パルプとの馴染みが良ぐ 得られる紙が各種性能に優れるものとなるため、歩留向上剤等の製紙用添加剤の用 途としての検討もなされて 、る。
[0004] 澱粉変性高分子又はその製造方法としては、特定のカチオンエーテル化澱粉を幹 ポリマーとし、 4級アンモ-ゥム変性したカチオン性基をグラフト側鎖に持ち、特定粘 度を有する高分子 (特許文献 1)、多糖類の幹ポリマーに、側鎖として (メタ)アクリルァ ミドと (メタ)アクリル酸又はその塩とのコポリマーをグラフトさせたもの(特許文献 2)、 多糖類とジメチルアミノエチルメタタリレート 4級塩とを、レドックス重合開始剤またはセ リウム系重合開始剤を使用して製造して得られたもの (非特許文献 1)等がある。
[0005] ところで、汚泥の脱水処理には、カチオン性高分子凝集剤が単独で使用されること が多かった。
しかしながら、近年、汚泥発生量の増加及び汚泥性状の悪化により、従来のカチォ ン性高分子凝集剤では、汚泥の処理量に限界があることや、脱水ケーキ含水率、 SS 回収率等の点で処理状態は必ずしも満足できるものではなぐこれらの点を改善する ことが要求されているため、種々の両性高分子凝集剤やこれらを使用した脱水方法 が検討される様になった。
例えば、無機汚泥を含まな 、無機凝集剤を添加した pHが 5— 8の有機質汚泥に、 特定イオン当量のカチオンリツチ両性高分子凝集剤を添加する汚泥の脱水方法 (特 許文献 3)、 pHが 5— 8の有機質汚泥に、アタリレート系カチオン性高分子凝集剤と 両性高分子凝集剤を併用する汚泥の脱水方法 (特許文献 4)、汚泥に無機凝集剤を 添加し、 pHを 5未満に設定し、特定組成のァ-オンリツチ両性高分子凝集剤を添カロ する脱水方法 (特許文献 5)および排水に無機凝集剤、ァ-オン性高分子及びカチ オンリツチ両性高分子凝集剤を順次添加する有機性排水の処理方法 (特許文献 6) 等が知られている。
[0006] 一方、従来より抄紙工程にお ヽては、填料を含む紙料を抄紙機に送入する最終濃 度に希釈する際、又は希釈後に、歩留向上剤を添加し、抄紙機からの白水中へのパ ルプ及び填料流出を抑制し、歩留を向上させて 、る。
[0007] 歩留向上剤としては、通常、水溶性の高分子量ポリエチレンオキサイドゃカチオン 性ポリアクリルアミド等の水溶性重合体が用いられて 、る。
しカゝしながら、これら水溶性重合体含む歩留向上剤は、歩留率をより向上させる目 的で、歩留向上剤を比較的多量に使用する必要があり、その結果、巨大なフロックが 生成し、紙の地合性を極度に悪ィ匕させてしまうという問題を有するものであった。 この問題を解決するため、最近では、カチオン性重合体とァ-オン性ィ匕合物又は 重合体を併用するデュアルシステムと呼ばれる方法が脚光を浴びて 、る。その代表 例としては、カチオン性重合体を添加後にベントナイト等のァ-オン性無機化合物を 添加する方法 (特許文献 7)や、カチオン性重合体の添加後にァ-オン性コロイダル シリカを添加する方法等が挙げられる(特許文献 8)。
[0008] 特許文献 1:特公昭 62— 21007号公報 (特許請求の範囲)
特許文献 2:特開平 6— 254306号公報 (特許請求の範囲)
非特許文献 1 :日本化学会誌、 1976年、 10卷、 1625— 1630頁
特許文献 3:特公平 5— 56199号公報 (特許請求の範囲)
特許文献 4:特許 2933627号公報 (特許請求の範囲) 特許文献 5:特公平 6— 239号公報 (特許請求の範囲)
特許文献 6 :特開平 6-134213号公報 (特許請求の範囲)
特許文献 7:特開平 4-281095号公報 (特許請求の範囲)
特許文献 8:特許第 2945761号公報 (特許請求の範囲)
発明の開示
発明が解決しょうとする課題
[0009] し力しながら、特許文献 3—同 6記載の両性高分子からなる汚泥脱水剤は、それな りに特長を有するものではあるが、最近の廃水の難脱水化傾向に対して、必ずしも有 効的な方法とは言 ヽ難 、ものであった。
[0010] 又、特許文献 7及び同 8記載の歩留向上剤は、歩留率と紙の地合性のバランス性 に比較的優れているいるものの、そのレベルは未だ不十分であり、さらに、これらの歩 留向上剤は 2液を併用して使用する必要があるため、抄紙工程においてそれぞれの 剤の添加箇所、添加のタイミング及び添加量のバランス等といった、使用方法が煩雑 であるという問題を有するものであった。
[0011] 又、特許文献 1及び同 2並びに非特許文献 1記載の澱粉変性高分子を、汚泥脱水 剤及び歩留向上剤等の高分子凝集剤として使用した場合、廃水の種類や紙料に含 まれる原料パルプ種類等によっては、凝集 ·脱水性能が不十分となる場合があった。 特に、適用する汚泥によっては、造粒性が不十分であった。より具体的には、廃水等 に高分子凝集剤を添加した後、フロックを素早く形成し、かつ攪拌を続けても崩れに くいという点で、不十分であった。
[0012] 本発明者らは、前記課題を解決するため、イオン当量の異なる 2種の両性高分子を 含む組成物からなる高分子凝集剤を提案して!/、る (特許文献 9)。
この高分子凝集剤は、前記課題を解決する優れた性能を有するものであるが、さら なる汚泥脱水性能及び歩留り向上性能が要求される用途においては、不十分となる 場合があった。特に、汚泥脱水剤として使用する場合、適用する汚泥によっては、造 粒性が不十分であり、より具体的には、前記と同様の点で不十分であり、又歩留向上 剤として使用する場合、使用する紙料によっては、歩留率が良好であっても紙の地 合性が不十分となる場合があった。 [0013] 本発明者らは、種々の汚泥や抄紙系に対して各種凝集性能に優れる組成物であ つて、特に高分子凝集剤として優れる組成物を見出すため鋭意検討を行い、さらに 種々の汚泥に対する脱水性能に優れ、特に造粒性に優れる汚泥脱水剤、並びに高 い歩留率を実現できることはもちろんのこと、同時に紙の高地合性が確保でき、さら には使用方法が簡便な新規な歩留向上剤を見出すため、鋭意検討を行ったのであ る。
[0014] 特許文献 9 :特開 2003— 175302号公報 (特許請求の範囲)
課題を解決するための手段
[0015] 本発明者らは、種々の検討の結果、多糖類にカチオン性単量体とァ-オン性単量 体を重合させて得られた 2種以上の両性水溶性高分子を含む組成物であって、それ ら高分子として、前記単量体の割合が異なるものを使用したものが有効であること見 出し、本発明を完成した。
以下、本発明を詳細に説明する。
尚、本明細書においては、アタリレート又はメタタリレートを (メタ)アタリレートと表し、 アクリル酸又はメタクリル酸を (メタ)アクリル酸と表し、アクリルアミド又はメタクリルアミ ドを (メタ)アクリルアミドと表す。
[0016] 1.両件水溶件高分子
本発明で使用する両性水溶性高分子 (以下単に両性高分子という)は、多糖類の 存在下に、カチオン性ラジカル重合性単量体 (以下単にカチオン性単量体という)と ァ-オン性ラジカル重合性単量体 (以下単にァ-オン性単量体と!/、う)を重合させて 得られたものである。
以下、それぞれの成分及び製造方法について説明する。
[0017] 1—1.多糖街
本発明における多糖類としては、種々のものが使用できる。
例えば、天然物系多糖類としては、澱粉が挙げられ、具体的には、馬鈴薯澱粉、モ チ馬鈴薯澱粉、甘藷澱粉、モチトウモロコシ澱粉、高アミローストウモロコシ澱粉、小 麦粉澱粉、米澱粉、タピオ力澱粉、サゴ澱粉、グルマンナン及びガラクタン等、並び に小麦粉、トウモロコシ粉、切干甘藷及び切干タピオ力等の原料澱粉等が挙げられる 澱粉以外の多糖類としては、メチルセルロース、ェチルセルロース、ヒドロキシェチ ルセルロース及びカルボキシメチルセルロース等のセルロース、アルギン酸ナトリウム 、アラビアゴム、デキストラン、ゼラチン、カゼイン、コラーゲン、キチン並びにキトサン 等が挙げられる。
[0018] 多糖類としては、澱粉が好ましぐ具体的には、前記したもの等が挙げられ、馬鈴薯 澱粉、モチ馬鈴薯澱粉、甘藷澱粉、モチトウモロコシ澱粉、高アミローストウモロコシ 澱粉、小麦粉澱粉、米澱粉、タピオ力澱粉、サゴ澱粉、グルマンナン及びガラクタン 等が好ましい。
澱粉としては、化学的又は酵素的に修飾して得られる加工澱粉を使用することがで きる。カ卩ェ方法としては、例えば、酸化、エステル化、エーテル化及び酸処理化等が 挙げられる。
[0019] 本発明における多糖類としては、前記した多糖類を常法によりカチオンィ匕又は両性 ィ匕されたものが、後記する単量体との共重合性に優れ、又凝集剤としての性能に優 れるため好ましい。
[0020] 多糖類のカチオン化は、常法に従えば良い。
カチオン化としては、原料澱粉をカチオン化剤で処理する方法が挙げられる。カチ オン化剤の具体例としては、ジェチルアミノエチルクロライド等の 3級ァミン、並びに 3 —クロ口— 2—ヒドロキシプロピルトリメチルアンモ -ゥムクロライド及びグリシジルトリメチ ルアンモ -ゥムクロライド等の 4級アンモ-ゥム塩等が挙げられる。
カチオン化された多糖類のカチオン置換度は、窒素原子換算で 0. 01-0. 06質 量 Z質量%であることが好ましぐより好ましくは 0. 02-0. 06質量 Z質量%である。
[0021] 多糖類としては、カチオン化後に、公知の反応がなされたものであっても良い。例え ば、ァ-オンィ匕反応がなされた両性多糖類でも良い。ァ-オン化反応の具体例とし ては、無機リン酸等によるリン酸エステル化;尿素リン酸ィ匕及び次亜ハロゲン酸塩等 による酸ィ匕;モノクロ口酢酸によるカルボキシメチルイ匕;並びに硫酸ィ匕等が挙げられる
[0022] 多糖類としては、糊液として使用することが好ましいため、多糖類にクッキングの処 理がなされたものを使用することが好ましい。ここで、クッキングとは、多糖類を糊化温 度以上に加熱処理する方法である。この場合の加熱温度としては、使用する澱粉の 種類に応じて適宜設定すれば良いが、 70°C以上が好ましい。澱粉のクッキングは、 ノ ツチ式でも、連続式でも行うことができる。
クッキングは、前記カチオンィ匕後に行うことも、カチオンィ匕と同時に行うこともできる。 使用する澱粉糊液の粘度は、固形分濃度が 10— 40質量%で、 25°Cにおいて B型 粘度計で測定した値力 100— lOOOOmPa' sであることが好ましい。
[0023] 本発明で使用する多糖類の糊液は、水で希釈して 3— 10質量%のスラリーとしたも のを使用することが好まし 、。
尚、使用する多糖類の糊液が老化し、固化したり、水への分散性が乏しくなった場 合には、使用前にクッキングの処理がなされたものを使用することが好ましい。この場 合のクッキングの方法としては、前記と同様の方法が挙げられる。
[0024] 1-2.カチオン件単量体
カチオン性単量体としては、ラジカル重合性を有するものであれば種々の化合物が 使用でき、具体的には、ジメチルアミノエチル (メタ)アタリレート、ジェチルアミノエチ ル (メタ)アタリレート及びジメチルアミノエチル (メタ)アタリレート及びジェチルァミノ - 2 -ヒドロキシプロピル (メタ)アタリレート及びジメチルァミノプロピル (メタ)アタリレート等 のジアルキルアミノアルキル (メタ)アタリレートの塩酸塩及び硫酸塩等の 3級塩;ジメ チルアミノエチル (メタ)アクリルアミド等のジアルキルアミノアルキル (メタ)アクリルアミ ドの塩酸塩及び硫酸塩等の 3級塩;ジアルキルアミノアルキル (メタ)アタリレートの塩 化メチル付加物等のハロゲン化アルキル付加物及び塩化べンジル付加物等のハロ ゲン化ァリール付加物等の 4級塩、並びにジアルキルアミノアルキル (メタ)アクリルァ ミドの塩化メチル付加物等のハロゲン化アルキル付加物及び塩化べンジル付加物等 のハロゲンィ匕ァリール付加物等の 4級塩等が挙げられる。
これらの中でも、ジアルキルアミノアルキル (メタ)アタリレートの 4級塩が好ましぐジ アルキルアミノアルキル (メタ)アタリレートのハロゲン化アルキル付加物がより好まし い。
[0025] 1-3.ァ-オン 単 ァ-オン性単量体としては、ラジカル重合性を有するものであれば種々の化合物が 使用でき、具体的には、(メタ)アクリル酸、クロトン酸、ィタコン酸及びマレイン酸等の 不飽和カルボン酸及びその塩が挙げられる。塩としては、アンモ-ゥム塩、ナトリウム 及びカリウム等のアルカリ金属塩が挙げられる。
これらの中でも、(メタ)アクリル酸が好ましい。
[0026] 1-4.その他の単量体
本発明における両性高分子は、前記カチオン性単量体及びァ-オン性単量体を 必須とするものである力 必要に応じて、ノ-オン性ラジカル重合性単量体 (以下ノ- オン性単量体という)併用することができる。
[0027] ノ-オン性単量体としては、(メタ)アクリルアミド、ジメチル (メタ)アクリルアミド、ジェ チル (メタ)アクリルアミド及びヒドロキシルェチル (メタ)アタリレート、エチレンォキサイ ド付加メトキシ (メタ)アタリレート及びエチレンオキサイド付カ卩 (メタ)ァリルエーテル等 が挙げられる。
これらの中でも、(メタ)アクリルアミドが好ましい。
[0028] 単量体としては、必要に応じて、前記以外の単量体を併用することもできる。当該 単量体の例としては、メトキシェチル (メタ)アタリレート、ブトキシェチル (メタ)アタリレ ート、ェチルカルビトール (メタ)アタリレート、メチル (メタ)アタリレート、ェチル (メタ)ァ タリレート及びビニルアセテート等が挙げられる。
[0029] 1-5. m^
本発明の両性高分子は、多糖類の存在下、カチオン性単量体及びァ-オン性単 量体を重合させて得られたものである。
この場合の製造方法としては、重合開始剤及び多糖類の存在下、カチオン性単量 体及びァニオン性単量体を、常法に従 、重合させる方法等が挙げられる。
以下、使用するそれぞれの成分及び重合方法等について、説明する。
[0030] 1)多糖街 単量体の割合'組み合わせ
本発明の両性高分子における、多糖類と単量体の割合としては、多糖類及び全単 量体の合計量に対して、単量体が 50質量%以上が好ましぐ 50— 99質量%がより 好ましい。 単量体の割合が 50質量%に満たない場合は、得られる高分子が水に不溶性とな つたり、得られる高分子を凝集剤として使用する場合において、高分量の高分子が 得られない場合がある。
[0031] 本発明における好ましい単量体の組合せとしては、 [1]カチオン性単量体としてジァ ルキルアミノアルキルアタリレートの 3級塩又は 4級塩、ァ-オン性単量体としてアタリ ル酸塩及びノ-オン性単量体としてアクリルアミドからなる共重合体、 [2]カチオン性 単量体としてジアルキルアミノアルキルメタタリレートの 3級塩又は 4級塩、ァ-オン性 単量体としてアクリル酸塩及びノ-オン性単量体としてアクリルアミドからなる共重合 体、並びに [3]カチオン性単量体としてジアルキルアミノアルキルメタタリレートの 3級 塩又は 4級塩、ジアルキルアミノアルキルアタリレートの 3級塩又は 4級塩、ァ-オン性 単量体としてアクリル酸塩及びノ-オン性単量体としてアクリルアミドからなる共重合 体がある。
[0032] 2) M^fM
重合開始剤としては、ァゾ系重合開始剤、レドックス系重合開始剤及び光重合開始 剤等が挙げられる。以下、それぞれの重合開始剤について説明する。
[0033] (1)ァゾ 合開始剤
ァゾ系重合開始剤としては、種々の化合物が使用でき、例えば、 4, 4'ーァゾビス (4 ーシァノ吉草酸)(10時間半減期温度 69°C、以下括弧内の温度は同様の意味を示 す)、 2, 2,ーァゾビスイソブチ口-トリル(65°C)、 2, 2,ーァゾビス(2—メチルブチ口-ト チル)(67。C)、 2, 2,ーァゾビス [2—メチルー N—(2—ヒドロキシェチル)プロピオンアミ ド] (86。C)、 2, 2,ーァゾビス(2—アミジノプロパン)塩酸塩(56。C)、 2, 2,ーァゾビス [2 ー(2—イミダゾリン- 2—ィル)プロパン]塩酸塩 (44°C)等を挙げることができる。
ァゾ系重合開始剤は、単独で使用しても又は 2種以上を併用しても良 ヽ。
[0034] 前記したァゾ系重合開始剤の中でも、水に対する溶解性が高い点、不溶解分を含 有しな!/、か又は含有量の少な!/、両性高分子を生成する点、高分子量の両性高分子 を生成する点、両性高分子中の未反応単量体が少ない点等から、ァゾ系重合開始 剤として、 10時間半減期温度が 50°C以上の化合物が好ましぐ 50— 90°Cの化合物 力 り好ましぐ 50— 70°Cの化合物が更に好ましい。 [0035] ァゾ系重合開始剤の使用割合としては、多糖類及び単量体の合計量に対して、 50 一 5000ppm力 S好ましく、より好ましく ίま 100— 3000ppmであり、更に好ましく ίま 300 一 lOOOppmである。ァゾ系重合開始剤の使用割合が 50ppmに満たない場合は、 重合が不完全で残存モノマーが多くなり、一方 5000ppmを超えると得られる水溶液 高分子が低分子量体となる。
[0036] (2)レドックス系重合開始剤
レドックス系重合開始剤は、酸化剤と還元剤を併用したものである。
酸化剤としては、多糖類の水素引抜き効果があり、多糖類に単量体を好ましくダラ フトできる点で、過酸ィ匕物が好ましい。過酸化物としては、過硫酸ナトリウム、過硫酸 カリウム及び過硫酸アンモ-ゥム等の過硫酸塩、ベンゾィルパーオキサイド、 tーブチ ルノヽイド口パーオキサイド、コハク酸パーオキサイド等の有機過酸ィ匕物、過酸化水素 、並びに臭素酸ナトリウム等が挙げられる。これらの中でも、重合開始時の低温状態 にお!/、ても水素引き抜き効果に優れる点で、過硫酸塩が好ま ヽ。
還元剤としては、亜硫酸ナトリウム等の亜硫酸塩、亜硫酸水素ナトリウム等の亜硫酸 水素塩、ァスコルビン酸及びその塩、ロンガリット、亜-チオン酸及びその塩、トリエタ ノールァミン、並びに硫酸第一銅が挙げられる。
過酸ィ匕物と還元剤の好ましい組合わせとしては、過硫酸塩と亜硫酸塩、過硫酸塩と 亜硫酸水素塩等が挙げられる。
[0037] 酸化剤の割合としては、多糖類及び単量体の合計量に対して、 10— lOOOppmが 好ましく、より好ましくは 20— 500ppmであり、特に好ましくは 40— 200ppmである。 この割合が lOppmに満たないと、水素引き抜きが不十分となり、一方 lOOOppmを超 えると、両性高分子の分子量が小さくなり十分な性能が発揮できないことがある。 還元剤の割合としては、多糖類及び単量体の合計量に対して 10— lOOOppmが好 ましく、より好ましくは 20— 500ppmである。
[0038] レドックス系重合開始剤を使用する場合には、重合促進剤として、塩化第二銅、塩 化第一鉄、等の無機金属系の重合促進剤を添加することが好ましい。
[0039] (3)光¾合開始剤
光重合開始剤としては、多糖類の水素引抜き効果があり、多糖類に単量体を好まし くグラフトできる点で、ケタール型光重合開始剤及びァセトフエノン型光重合開始剤 等が好ましい。この場合、光開裂して発生してベンゾィルラジカルが発生し、これが 水素引抜き剤として機能する。
ケタール型光重合開始剤としては、 2, 2—ジメトキシー 1, 2—ジフエ-ルェタン 1-ォ ン及びべンジルジメチルケタール等が挙げられる。
ァセトフエノン型光重合開始剤としては、ジェトキシァセトフェノン、 4- (2—ヒドロキシ エトキシ)フエ-ルー(2—ヒドロキシー 2—プロピル)ケトン、 1ーヒドロキシシクロへキシルー フエ二ルケトン、 2—メチルー 2モルホリノ(4ーチオメチルフエ-ル)プロパン 1 オン、 2 —ベンジルー 2—ジメチルァミノ— 1— (4 モルホリノフエ-ル) ブタン、 2—ヒドロキシー 2 ーメチルー 1—フエ-ルプロパン 1 オン及び 2—ヒドロキシー 2メチルー 1—〔4— ( 1ーメチ ルビ-ル)フエ-ル〕のオリゴマー等が挙げられる。
これら以外にも、ベンゾイン型光重合開始剤、チォキサントン型光重合開始剤及び 特開 2002-097236で記載された様なポリアルキレンオキサイド基を有する光重合 開始剤も使用することができる。
[0040] 光重合開始剤の割合としては、多糖類及び単量体の合計量に対して、 10— 1000 ppm力 S好ましく、より好ましく ίま 20— 500ppmであり、更に好ましく ίま 40— 200ppm である。この量が lOppmに満たないと、水素引き抜きが不十分となるか又は残存モノ マーが多くなることがあり、 lOOOppmを超えると両性高分子の分子量が小さくなり性 能が発揮できな 、ことがある。
[0041] 光重合開始剤を使用する場合には、トリエタノールァミン及びメチルジェタノールァ ミン等のアミン系光増感剤等の光増感剤を併用することもできる。
[0042] 3)重合形式
重合形式としては、水溶液重合、逆相懸濁重合及び逆相エマルシヨン重合等が挙 げられ、取り扱いが容易である点で、水溶液重合及び逆相エマルシヨン重合が好まし い。
[0043] 水溶液重合を採用する場合にお!ヽては、水性媒体中に、多糖類及び単量体を溶 解又は分散させ、重合開始剤の存在下 10— 100°Cで重合させる方法等が挙げられ る。原料の多糖類及び単量体は、水中に溶解又は分散させたものを、水性媒体に添 加して使用する。
逆相エマルシヨン重合を採用する場合にぉ ヽては、多糖類及び単量体を含む水溶 液と、 HLBが 3— 6である疎水性界面活性剤を含む有機分散媒とを攪拌混合し乳化 させた後、重合開始剤の存在下 10— 100°Cで重合させ、油中水型 (逆相)重合体ェ マルシヨンを得る方法が挙げられる。有機分散媒としては、ミネラルスピリット等の高沸 点炭化水素系溶剤等が挙げられる。
水性媒体中又は有機分散媒中の多糖類及び単量体の割合は、目的に応じて適宜 設定すれば良ぐ 20— 70質量%が好ましい。
[0044] 重合方法としては、使用する重合開始剤の種類に従!ヽ、光重合ゃレドックス重合等 を行えば良い。
具体的な重合方法としては、多糖類及び単量体を含む水溶液に、又は多糖類及 び単量体を含む逆相乳化液に重合開始剤を添加すれば良い。
重合方法としては、光重合とレドックス重合を併用することも可能である。
[0045] 分子量の調節を行う場合、連鎖移動剤を使用しても良い。連鎖移動剤としては、メ ルカプトエタノール及びメルカプトプロピオン酸等のチオール化合物や、亜硫酸ナトリ ゥム、重亜硫酸水素ナトリウム及び次亜リン酸ナトリウム等の還元性無機塩類等が挙 げられる。
[0046] 本発明では、水溶液重合が好ましぐこの場合、特に重合時間が早く生産性に優れ るため、重合を光照射下で行うことが好ましい。
[0047] 光照射重合を行う場合にお!ヽて、照射する光としては、紫外線又は Z及び可視光 線が用いられ、そのうちでも紫外線が好ましい。
光照射の強度は、単量体の種類、光重合開始剤及び Z又は光増感剤の種類や濃 度、目的とする両性高分子の分子量、重合時間などを考慮して決定されるが、一般 に 0. 5— 1, OOOW/m2力好ましく、 5— 400W/m2力より好まし!/、。
光源としては、例えば、蛍光ケミカルランプ、蛍光青色ランプ、メタルノヽライドランプ 及び高圧水銀ランプ等を使用することができる。
[0048] 光照射重合反応にお!、て、単量体の水溶液の温度は特に制限されな 、が、光重 合反応を温和な条件下で円滑に進行させるために、通常は、 5— 100°Cであることが 好ましぐ 10— 95°Cであることがより好ましい。重合開始時の温度としては、得られる 両性高分子の分子量を大きいものとすることができ、さらに除熱が容易である点で、 5 一 15°Cが好ましい。
[0049] 単量体の水溶液の光照射重合反応は、バッチ式で行っても、又は連続式で行って も良い。
[0050] 4)好ましい重合方法
両性高分子の製造方法としては、多糖類、ァゾ系重合開始剤及び水素引抜き剤の 存在下、カチオン性単量体及びァ-オン性単量体を重合する方法が、多糖類に高 分子量の重合体をグラフトすることができるうえ、残存モノマー量が少なぐ得られる 両性高分子を凝集剤として使用した場合、各種凝集性能に優れたものとなる理由で 好ましい。
[0051] ァゾ系重合開始剤としては、前記と同様のものが挙げられる。
水素引抜き剤としては、レドックス系水素引抜き剤(以下 RD引抜き剤という)及び光 重合開始剤系水素引抜き剤 (以下 PT引抜き剤という)等が挙げられる。 RD引抜き剤 及び PT引抜き剤は、多糖類力 水素引き抜きする他、単量体の重合開始剤としても 機能する。
RD引抜き剤としては、酸化剤等が好ましぐ具体例としては、前記と同様のものが 挙げられる。この場合、還元剤と併用することが好ましい。
PT引抜き剤としては、ケタール型光重合開始剤及びァセトフヱノン型光重合開始 剤等が好ましぐ具体例としては、前記と同様のものが挙げられる。
[0052] 5)得られた両性高分子の処理方法
水溶液重合により得られた両性高分子は、通常ゲル状で、公知の方法で細断し、 バンド式乾燥機、遠赤外線式乾燥機等で温度 60— 150°C程度で乾燥し、ロール式 粉砕機等で粉砕して粉末状の高分子とされ、粒度調整され、あるいは添加剤等が加 えられて使用される。
油中水型 (逆相)エマルシヨン重合で得られた両性高分子を実際に使用する場合 には、 HLBの比較的高い親水性界面活性剤を添加し、水で希釈、転相させて水中 油型エマルシヨンとして使用する。 両性高分子としては、粉末状品のものが好ましく使用される。
[0053] 両性高分子としては、分子量の指標である 0. 5%塩粘度が 10— 200mPa' sのもの が好ましぐ後記する高分子凝集剤として使用する場合、安定した脱水処理を達成 するためには、 15— 120mPa' sのもの力 Sより好ましく、 15— 90mPa' sのものが特に 好ましい。
尚、本発明において 0. 5%塩粘度とは、 4%塩ィ匕ナトリウム水溶液に両性高分子を
0. 5%溶解した試料を 25°Cで、 B型粘度計にて、ローター No. 1又は 2を用いて、 6
Orpmで測定した値を!、う。
[0054] 両性高分子は、多糖類に単量体の高分子がグラフトイ匕した、グラフト共重合体が主 成分であれば良 、が、多糖類に単量体の高分子がグラフトしな力つた重合体が存在 していても良い。
[0055] 2.組成物
本発明の組成物は、前記両性高分子として、カチオン性単量体とァ-オン性単量 体単位の割合が異なる 2種以上の両性高分子を含むものであり、具体的には、下記 式 (1)を満たす両性高分子 (以下両性高分子 1という)と、下記式 (2)を満たす両性高 分子 (以下両性高分子 2と 、う)又は下記式 (3)及び式 (4)を満たす両性高分子 (以下 両性高分子 3という)を併用してなるものである。
〔式 1〕
Cal/Anl≥l · ' · ·(1)
〔式 2〕
Ca2/An2< l … )
〔式 3〕
Ca3/An3≥l · ' · ·(3)
43
I (Cal-Anl)-(Ca3-An3) | ≥1. 5 · ' · ·(4)
〔尚、上記式 (1)一 (4)において、 Cal及び Anlは、それぞれ、両性高分子 1における 全構成単量体の合計量を 100モルに換算した場合における、全力チオン性単量体 量及び全ァ-オン性単量体量のモル数を表し、 Ca2及び An2は、それぞれ前記と同 様に、両性高分子 2における全力チオン性単量体量及び全ァ-オン性単量体量の モル数を表し、 Ca3及び An3は、それぞれ前記と同様に、両性高分子 3における全 カチオン性単量体量及び全ァ-オン性単量体量のモル数を表す。〕
[0056] 本発明における両性高分子 1と両性高分子 2を併用した組成物について説明する 。当該組成物は、カチオンリツチな両性高分子 1とァ-オンリツチな両性高分子 2を併 用したものである。
この場合の両性高分子 1としては、さらに CalZAnlが 1. 5— 10. 0のものが好まし く、両性高分子 2としては Ca2ZAn2が 0. 5-0. 9のものが好ましい。
[0057] 次に、本発明における両性高分子 1と両性高分子 3を併用した組成物について説 明する。当該組成物は、いずれもカチオンリツチな両性高分子である両性高分子 1と 両性高分子 3を併用し、それらを構成するカチオン性単量体単位とァ-オン性単量 体の差が大き 、ものと小さ 、ものを併用するものである。
この場合の Cal/Anlとしては 1. 2— 40. 0が好ましぐ Ca3/An3としては 1. 2 一 40. 0が好ましい。
I (Cal-Anl)-(Ca3-An3) |としては 1. 5— 40. 0が好ましい。この値が 1. 5 に満たな 、と、ブレンドによる高性能の凝集性能を発揮できな 、ことがある。
[0058] 両性高分子 1一同 3は、前記単量体割合を満たす様にカチオン性単量体とァ-ォ ン性単量体を共重合して得ることができる。
[0059] 本発明の組成物は、両性高分子 1に、両性高分子 2又は両性高分子 3を混合する ことにより製造することができる。又、後記する汚泥の脱水や抄紙工程においては、 それぞれの成分を別々に添加することもできる。
両性高分子 1一同 3としては、それぞれ 1種を使用することも、 2種以上を併用するこ ともでき、両性高分子 1一同 3の 1種づっを使用することが簡便であり好ましい。
[0060] 組成物における両性高分子の割合としては、目的に応じて適宜設定すれば良いが 、両性高分子 1及び同 2からなる組成物の場合は、両性高分子 1が 40— 90質量%及 び両性高分子 2が 60— 10質量%の範囲が好ましい。
両性高分子 1及び同 3からなる組成物の場合は、両性高分子 1が 10— 90質量%及 び両性高分子 3が 90— 10質量%の範囲が好ましい。 [0061] 両性高分子凝集剤として粉末のものを使用する場合には、使用に際して、硫酸水 素ナトリウム、硫酸ナトリウム及びスルフアミン酸等を添加することが好ましい。又、脱 水処理に悪影響がでないかぎり公知の添加剤と混合して使用しても良い。
[0062] 3.用涂
本発明で得られる組成物は、種々の用途に応用することが可能であり、特に高分子 凝集剤として有用である。高分子凝集剤としては、さらに汚泥脱水剤、及び歩留向上 剤等の製紙工程における抄紙用薬剤等に好ましく使用できる。
本発明の高分子凝集剤は、特に汚泥脱水剤及び歩留向上剤として有用なもので ある。以下、汚泥脱水剤及び歩留向上剤について説明する。
[0063] 3-1.汚泥脱水剤及び汚泥の脱水方法
本発明の高分子凝集剤を汚泥脱水剤 (以下高分子凝集剤と ヽうこともある)として 使用する場合、高分子としては、粉末状のものや逆相乳化物が好ましい。実際の使 用に当たっては、高分子が粉末の場合には、粉末を水に溶解させ水溶液として使用 する。又、高分子が逆相乳化物の場合には、水で希釈、転相させて水中油型ェマル シヨンとして使用する。
又、汚泥脱水剤として粉末のものを使用する場合には、使用に際して、硫酸水素ナ トリウム、硫酸ナトリウム及びスルフアミン酸等を添加することが好ましい。又、脱水処 理に悪影響がでないかぎり公知の添加剤と混合して使用しても良い。
[0064] 本発明の汚泥脱水剤は、種々の汚泥に適用可能であり、下水、し尿、並びに食品 工業、化学工業及びパルプ又は製紙工業汚泥等の一般産業排水で生じる有機性 汚泥及び凝集沈降汚泥を含む混合汚泥等を挙げることができる。
本発明の汚泥脱水剤は、特に繊維分が少な!、汚泥や余剰比率の高!、汚泥に好ま しく適用できるものである。具体的には、余剰比率が 10SS%以上の汚泥に好ましく 適用でき、より好ましくは 20— 50SS%の汚泥に適用できる。
[0065] 本発明の汚泥脱水剤を使用する脱水方法は、具体的には、汚泥に汚泥脱水剤を 添加した後、脱水する方法である。
まず、汚泥に汚泥脱水剤を添加し、汚泥フロックを形成させる。フロックの形成方法 は、公知の方法に従えば良い。 [0066] 又、必要に応じて、無機凝集剤、有機カチオン性化合物、カチオン性高分子凝集 剤及びァ-オン性高分子凝集剤を併用することができる。
[0067] 無機凝集剤としては、硫酸アルミニウム、ポリ塩ィ匕アルミニウム、塩化第二鉄及び硫 酸第一鉄及びポリ硫酸鉄等を例示できる。
[0068] 有機カチオン性ィ匕合物としては、ポリマーポリアミン、ポリアミジン及びカチオン性界 面活性剤等を例示できる。
[0069] 無機凝集剤又は有機カチオン性ィ匕合物を添加した場合においては、 pHを 4一 8と することが、より効果的に汚泥の処理を行うことができるため好ましい。
pHの調整方法としては、無機凝集剤又は有機カチオン性ィ匕合物を添加した後、当 該 pH値を満たす場合は、特に pH調整の必要はないが、本発明で限定する範囲を 満たさな ヽ場合は、酸又はアルカリを添加して調整する。
酸としては、塩酸、硫酸、酢酸及びスルフアミン酸等を挙げることができる。又、アル カリとしては、苛性ソーダ、苛性カリ、消石灰及びアンモニア等が挙げられる。
[0070] カチオン性高分子凝集剤としては、前記したカチオン性単量体の単独重合体及び 前記したカチオン性単量体及びノニオン性単量体の共重合体等を挙げることができ る。
[0071] ァ-オン性高分子凝集剤としては、前記したァ-オン性単量体の単独重合体及び 前記したァニオン性単量体及びノニオン性単量体の共重合体等を挙げることができ る。
[0072] 高分子凝集剤の汚泥に対する添加割合としては、 5— 500ppmが好ましぐ SSに 対しては 0. 05— 1質量%が好ましい。高分子凝集剤とその他の高分子凝集剤を併 用する場合は、全高分子凝集剤の合計量が前記添加割合を満たすことが好まし ヽ。
[0073] 汚泥脱水剤、その他凝集剤の添加量、攪拌速度、攪拌時間等は、従来行われて!/ヽ る脱水条件に従えば良い。
[0074] このようにして形成したフロックは、公知の手段を用いて脱水し、脱水ケーキとする。
[0075] 脱水装置としては、スクリュープレス型脱水機、ベルトプレス型脱水機、フィルタープ レス型脱水機及びスクリューデカンター等を例示することが出来る。
[0076] 又、本発明の汚泥脱水剤は、濾過部を有する造粒濃縮槽を使用する脱水方法にも 適用可能である。
具体的には、汚泥に、無機凝集剤を添加し、さらに汚泥脱水剤を添加した後、又は 汚泥脱水剤と共に、該汚泥の濾過部を有する造粒濃縮槽に導入し、該濾過部からろ 液を取り出すと共に造粒し、この造粒物を脱水機で脱水処理する方法等が挙げられ る。
[0077] 3-2. 向十.剤及び 糸丘 法
本発明の組成物を歩留向上剤として使用する場合、高分子としては、粉末状のも のや逆相乳化物が好ましい。実際の使用に当たっては、前記と同様に、高分子が粉 末の場合には、粉末を水に溶解させ水溶液として使用し、高分子が逆相乳化物の場 合には、水で希釈、転相させて水中油型エマルシヨンとして使用する。この場合の固 形分としては、いずれの場合も、 0. 01-0. 5質量%が好ましぐより好ましくは 0. 01 一 0. 1質量%である。
[0078] 本発明の組成物を使用した抄紙方法は、常法に従えば良ぐ紙料に対して、本発 明の組成物を添加した後、抄紙すれば良い。
歩留向上剤の添加方法としては常法に従えば良ぐ例えば、紙料を抄紙機に送入 する最終濃度に希釈する際、又は希釈後に添加する。
[0079] 歩留向上剤が適用される紙料としては、通常の抄紙工程で使用されるものであれ ばよぐ通常、少なくともパルプ及び填料を含み、必要に応じて填料以外の添加剤、 具体的には、サイズ剤、定着剤、紙力増強剤及び着色剤等を含むものである。
本発明の歩留向上剤は、パルプとして、パルプ中に占める脱墨古紙等の古紙比率 が比較的高いものに好ましく適用できる。又、本発明の歩留向上剤は、填料比率の 高い抄紙系、中性抄紙系、高速抄紙系に好ましく適用できる。
填料としては、白土、カオリン、ァガライト、タルク、炭酸カルシウム、炭酸マグネシゥ ム、硫酸石灰、硫酸バリウム、酸化亜鉛及び酸化チタン等が挙げられる。サイズ剤と しては、アクリル酸 'スチレン共重合体等が挙げられ、定着剤としては、硫酸バンド、力 チオン澱粉及びアルキルケテンダイマー等が挙げられ、紙力増強剤としては、澱粉 及びカチオン性又は両性ポリアクリルアミド等が挙げられる。
[0080] 歩留向上剤の好ましい添加割合としては、紙料中の乾燥パルプ質量当たり、 0. 0 05-0. 8質量0 /0力好ましく、より好ましく ίま 0. 005— 0. 5質量0 /0である。
歩留向上剤の添加後の紙料の ρΗとしては、 5— 10に維持することが好ましぐより 好ましくは 5— 8である。歩留向上剤の添加後に、紙料は直ちに抄紙機に送入される 発明の効果
[0081] 本発明の組成物によれば、高分子凝集剤として使用した場合、汚泥脱水剤として 種々の汚泥に対して、凝集攪拌混和槽でのフロックの成長性とその維持性という造 粒性に特に優れ、濾過速度が速ぐ得られるフロックの自立性及び剥離性に優れると いう、各種脱水性能に優れたものとなる。
又、歩留向上剤としては、抄紙工程における添加場所、タイミング等の影響を受け にくい 1液タイプとして使用することができ、紙の地合性と抄紙工程の歩留率を高度に ノ ランス化することができる。
発明を実施するための最良の形態
[0082] 本発明は、 2種以上の両性高分子を含む組成物であって、前記両性高分子として 両性高分子 1と両性高分子 2とを併用してなる組成物である力 又は両性高分子 1と 両性高分子 3とを併用してなる組成物である。
当該組成物としては、両性高分子凝集剤として好ましく使用できる。
高分子凝集剤の好ましい用途としては、汚泥脱水剤及び歩留向上剤が挙げられる 汚泥脱水剤として使用する場合、汚泥に対して、汚泥脱水剤を添加した後、脱水 する汚泥の脱水方法に好ましく使用でき、歩留向上剤として使用する場合、紙料に 対して歩留向上剤を添加した後、抄紙する抄紙方法に好ましく使用できる。
実施例
[0083] 以下、実施例及び比較例を挙げ、本発明をより具体的に説明する。
尚、以下において、「%」とは、質量%を意味し、「部」とは質量部を意味する。
[0084] 〇製造例 1
ジメチルアミノエチルアタリレート塩化メチル 4級塩(以下、「DAC」という。)水溶液、 アクリル酸(以下、「AA」という。)水溶液及びアクリルアミド(以下、「AM」という。)水 溶液を、各単量体がモル比で DACZAAZAM=42Z5Z53 (重量比で DACZA A/AM = 66. 3/3. 0/30. 7)で固形分 56%となる様に、ステンレス製反応容器 に合計 760g仕込んだ。
両性化澱粉スラリー〔王子コンスターチ (株)製エース KT 245。固形分: 22%以下 、「KT 245」という。〕を、イオン交換水を使用して、固形分 5%まで希釈し、さらに 8 0°Cで 30分加熱しクッキングし、固形分 6%の両性化澱粉スラリーとした。当該両性ィ匕 澱粉スラリーを、単量体及び澱粉の固形分換算合計量に対して 3%分に相当する 21 3gを仕込み、イオン交換水を 20g加えて、全単量体及び澱粉の固形分濃度 43%、 総重量 1. Okgに調整して、攪拌分散させた。
続いて、窒素ガスを 60分間溶液に吹き込みながら溶液温度を 10°Cに調節後、全 単量体及び澱粉の固形分重量を基準として、ァゾビスアミジノプロパン塩酸塩 (以下 、 V— 50という。)を 1000ppm、塩ィ匕第二銅を 0. 3ppm、過硫酸アンモニゥムを 30pp m、亜硫酸水素ナトリウムを 30ppmとなるように加えて、反応容器の上方から、 100W ブラックライトを用いて 6. OmWZcm2の照射強度で 60分間照射して重合を行い、含 水ゲル状の水溶性両性高分子を得た。
得られた両性高分子を容器カゝら取り出し、実施例 1と同様の条件で乾燥,粉砕して 粉末状の両性高分子を得た。この両性高分子を SCR-1という。
得られた高分子について、塩粘度を測定した。その結果を表 1に示す。
[0085] 〇製造例 2—同 8
使用する成分及び割合を、下記表 1の通り変更する以外は製造例 1と同様の方法 で水溶性高分子を製造した。尚、製造例 4一同 8については、澱粉を使用せず、単 量体のみを使用した。
得られた水溶性高分子について、 0. 5%塩粘度を測定した。それらの結果を表 1に 示す。
[0086] [表 1] 製造例 両性高分子 Ian粘 fit 略称 構成単量体 (モル ¾) Ca/An (mPa . s )
D A C A A A
1 SCR- 1 3 4 2 5 5 3 8 . 4 0 2 5
2 SCR-2 3 1 2 2 8 6 6 . 0 0 3 5
3 SAR- 1 3 3 0 3 5 3 5 0 . 8 6 2 0
4 CR- 1 0 4 2 5 5 3 8 . 4 0 3 8
5 C -2 0 1 2 2 8 6 6 . 0 0 4 5
6 AR- 1 0 3 0 3 5 3 5 0 . 8 6 3 0
7 CO- 1 0 3 8 1 5 4 7 2 . 5 3 3 5
8 C- 1 0 2 4 3 7 3 8 . 0 0 3 5
1 ) 澱粉と単量体合計量に対する割合
[0087] 〇実施例 1 (汚泥脱水剤の用途)
両性高分子として SCR— 1の 70部と SAR— 1の 30部を使用し、これらを混合して組 成物を製造し、これを高分子凝集剤 (以下 SBL— 1という)として使用した。
製紙汚泥(SS : 38, 200mg/l VSS : 21, 700mg/l,繊維分 580mg/l) 200m 1を 300mlのビーカーに採取し、スリーワンモーターで lOOrpmにて 60秒間攪拌後、 続いて高分子凝集剤の 0. 2%水溶液を汚泥に対して、 80ppm添カ卩した後、スリーヮ ンモーターで lOOrpmにて 60秒間攪拌してフロックを形成させた。この時のフロック の造粒性を下記の 3段階で評価し、得られたフロックの粒径を測定した。
その後、ヌッチェに、 80メッシュの濾布を敷き、その上に円筒を立て、前記汚泥フロ ック分散液を円筒内に流し込み、重力濾過した。 10秒後の濾液容量を測定し、これ を濾過速度とした。得られた濾液の外観を目視で観察し、下記の 3段階で評価した。 濾過後、円筒を取り外し、得られたケーキについて、下記の 3段階で評価した。
評価結果を表 3に示す。
[0088] ·造粒性
優:攪拌すると直ちに粒径の大きなフロックを形成し、攪拌によってフロックが破壊さ れ難かった。
良:攪拌すると直ちに粒径の大きなフロックを形成する力 攪拌によってフロックが 破壊され易かった。
不良:攪拌を続けても粒径の比較的小さなフロックしか形成せず、例え形成しても 攪拌により破壊されやすかつた [0089] ·濾過外観
優:完全に透明。良好:僅かに浮遊物あり。不良:多くの浮遊物あり。
[0090] ·自立性
優:完全にケーキが自力で立った。良好:僅かにケーキが流れた。不良:ケーキが 流れてしまった。
[0091] 〇比較例 1及び同 2 (汚泥脱水剤の用途)
高分子凝集剤として、実施例 1と同様の方法で、下記表 2に示す組成物 (BL— 1)を 調製した。
高分子凝集剤として、下記表 3に示す凝集剤を使用する以外は、実施例 1と同様に して汚泥の脱水処理を行った。
実施例 1と同様に評価した結果を、表 3に示す。
[0092] [表 2]
Figure imgf000022_0001
[0093] [表 3]
Figure imgf000022_0002
実施例の高分子凝集剤は、各種汚泥脱水性能に優れるものであった。 これに対して、比較例 1で使用した高分子凝集剤 BL— 1は、 SBL— 1の澱粉未変性 ブレンド体に相当するものである力 攪拌と続けるとフロックが破壊されやすぐその 結果として各種脱水性能が不十分なものであった。比較例 2で使用した高分子凝集 剤 CO— 1は、 SBL— 1と同じ単量体組成であるが単一の両性高分子カゝらなり、澱粉変 性されていないものである力 これもフロックの造粒性に劣り、各種脱水性能が不充 分なものであった。
[0095] 〇実施例 2 (汚泥脱水剤の用途)
両性高分子として SCR— 1の 50部と SCR— 2の 50部を使用し、これらを混合して組 成物を製造し、これを高分子凝集剤 (以下 SBL-2という)として使用した。
製紙?亏泥 (SS: 13, 600mg/l、 VSS: 10, 000mg/l、繊維分 4100mg/l) 200 mlを使用し、高分子凝集剤の 0. 2%水溶液を汚泥に対して、 30ppmを添加する以 外は、実施例 1と同様の方法でフロックを形成させた。
実施例 1と同様に評価した結果を、表 5に示す。
[0096] 〇比較例 3及び同 4 (汚泥脱水剤の用途)
高分子凝集剤として、実施例 2と同様の方法で、下記表 4に示す組成物 (BL - 2)を 調製した。
高分子凝集剤として、下記表 5に示す凝集剤を使用する以外は、実施例 2と同様に して汚泥の脱水処理を行った。
実施例 2と同様に評価した結果を、表 5に示す。
[0097] [表 4]
Figure imgf000023_0001
[0098] [表 5] 両性高分子 評価結果
造粒性 フロック径 濾過速度 濾過外観 自立性 凝集剤 (ppm)
(mm;
実施例 2 S B L - 2 優 8 - 1 0 1 7 5 優 優
3 0
比較例 3 B し一 2 良好 6 - 8 1 6 0 良好 良好
3 0
" 4 C一 1 不良 3 - 4 1 4 0 不良 不良
3 0
[0099] 実施例の高分子凝集剤は、各種汚泥脱水性能に優れるものであった。
これに対して、比較例 3で使用した両性高分子凝集剤 BL— 2は、 SBL— 2の澱粉未 変性ブレンド体に相当するものである力 攪拌を続けるとフロックが破壊されやすぐ その結果として各種脱水性能が不十分なものであった。比較例 4で使用した C 1は SBL— 2と同じ単量体組成であるが単一の両性高分子力 なり澱粉変性されていな いものである力 これもフロックの造粒性に劣り、各種脱水性能が不十分なものであつ た。
[0100] 〇実施例 3 (歩留向上剤の用途)
歩留向上剤として、 SBL— 1の 0. 05質量%を含む水溶液を使用した。
脱墨古紙及び広葉樹クラフトパルプを、離解、叩解し、脱墨古紙 (50SS%)と広葉 榭クラフトパルプ(50SS%)と力もなる固形分 1%のノ ルプスラリー(以下原料パルプ スラリーという)を使用した。尚、古紙及びパルプの離解は、 1%の試料を使用する以 外は、 JIS P 8121に準拠したカナダ標準ろ水度 (カナディアン スタンダード フリ 一ネス、以下 CSFと!、う)で 350mlとなるまで行った。
原料パルプスラリーに、 lOOOrpmで攪拌しながら、下記 [1]一 [5]の成分を 30秒おき にこの順で添加し、ダイナミックドレネージジャー法にて総歩留率を測定した。又地合 性は歩留向上剤添加後のパルプスラリーを使用して、熊谷理機工業 (株)製角型プロ ンズスクリーンにより抄紙し、角型シートマシーンプレスにてプレス後、オートドライヤー 100°Cにて乾燥して出来た紙の地合をフォーメーションテスターによって地合指数( 数値大程良好)を測定した。
得られた結果を表 6に示す。尚、パルプスラリーの最終 pHは 7. 9であった。
[0101] [1]軽質炭酸カルシウム: 20% (パルプスラリー中のパルプ固形分に対する割合。以 下、単に「対パルプ」と表す)
[2]カチオン澱粉 : 0. 3% (対パルプ)
[3]硫酸バンド: 1. 7% (対パルプ)
[4]紙力増強剤 [DAC/AA/AM=20/10/70 (モル比)の共重合体の 15%水溶液。粘度
; 3500mPa.s] : 0. 5%
[5]歩留向上剤: 250ppm (対パルプ)
[0102] 〇比較例 5及び同 6 (歩留向上剤の用途)
歩留向上剤として表 4に示したものを使用した以外は実施例 3と同様の方法により 歩留向上剤としての性能を評価した。得られた結果を表 4に示す。
[0103] [表 6]
Figure imgf000025_0001
[0104] 表 6の結果より、本発明の歩留向上剤は、総歩留率と地合性が共に優れているの に対し、比較例 5及び同 6では、総歩留率又は地合性のいずれかが不十分なもので めつに。
[0105] 〇実施例 4 (歩留向上剤の用途)
歩留向上剤として、 SBL— 2の 0. 05質量%を含む水溶液を使用し、脱墨古紙パル プを、離解、叩解し、脱墨古紙(100SS%)で固形分 1%のパルプスラリーを使用した 以外は、実施例 3と同様の方法により抄紙を行い、評価した。
得られた結果を表 7に示す。尚、パルプスラリーの最終 pHは 7. 9であった。
[0106] 〇比較例 7及び同 8 (歩留向上剤の用途)
歩留向上剤として表 7に示したものを使用した以外は実施例 4と同様の方法により 歩留向上剤としての性能を評価した。得られた結果を表 7に示す。
[0107] [表 7] 歩留向上剤(ppm) 評価糸5果
SBL-2 BL-2 c-i 総歩留率(¾) 地合性 実施例 4 2 5 0 9 0. 0 4 4. 0 比較例 7 2 5 0 9 0. 5 3 8. 0
" 8 2 5 0 8 3. 5 3 5. 0
[0108] 表 7の結果より、本発明の歩留向上剤は、総歩留率と地合性が共に優れているの に対し、比較例 7及び同 8では、総歩留率又は地合性のいずれかが不十分なもので めつに。
産業上の利用可能性
[0109] 本発明の組成物は、高分子凝集剤として好ましく利用でき、特に汚泥脱水剤及び 歩留向上剤としてより好ましく利用できる。

Claims

請求の範囲
[1] 多糖類の存在下に、カチオン性ラジカル重合性単量体とァ-オン性ラジカル重合性 単量体を重合させて得られた 2種以上の両性水溶性高分子を含む組成物であって、 前記高分子として、下記式 (1)を満たす両性高分子 (以下両性高分子 1という)と、下 記式 (2)を満たす両性高分子 (以下両性高分子 2と 、う)又は下記式 (3)及び式 (4)を満 たす両性高分子 (以下両性高分子 3と 、う)を併用してなる組成物。
〔式 1〕
Cal/Anl≥l · ' · ·(1)
〔式 2〕
Ca2/An2< l … )
〔式 3〕
Ca3/An3≥l · ' · ·(3)
43
I (Cal-Anl)-(Ca3-An3) | ≥1. 5 · ' · ·(4)
〔尚、上記式 (1)一 (4)において、 Cal及び Anlは、それぞれ、両性高分子 1における 全構成単量体の合計量を 100モルに換算した場合における、全力チオン性単量体 量及び全ァ-オン性単量体量のモル数を表し、 Ca2及び An2は、それぞれ前記と同 様に、両性高分子 2における全力チオン性単量体量及び全ァ-オン性単量体量の モル数を表し、 Ca3及び An3は、それぞれ前記と同様に、両性高分子 3における全 カチオン性単量体量及び全ァ-オン性単量体量のモル数を表す。〕
[2] 請求項 1記載の組成物を含有してなる高分子凝集剤。
[3] 請求項 2記載の高分子凝集剤からなる汚泥脱水剤。
[4] 汚泥に対して、請求項 3に記載の汚泥脱水剤を添加した後、脱水することを特徴とす る汚泥の脱水方法。
[5] 請求項 2記載の高分子凝集剤からなる歩留向上剤。
[6] 紙料に対して、請求項 5記載の歩留向上剤を添加した後、抄紙することを特徴とする 抄紙方法。
PCT/JP2005/000635 2004-01-20 2005-01-20 両性水溶性高分子を含む組成物 WO2005068552A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005517122A JP4894264B2 (ja) 2004-01-20 2005-01-20 両性水溶性高分子を含む組成物
KR1020067014589A KR101113694B1 (ko) 2004-01-20 2005-01-20 양쪽성 수용성 고분자를 함유하는 조성물
EP05709248A EP1721933A4 (en) 2004-01-20 2005-01-20 COMPOSITION CONTAINING A WATER SOLUBLE AMPHOTERIC POLYMER
US10/586,679 US20080230193A1 (en) 2004-01-20 2005-01-20 Composition Containing Amphoteric Water-Soluble Polymer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004011836 2004-01-20
JP2004-011840 2004-01-20
JP2004011840 2004-01-20
JP2004-011836 2004-01-20

Publications (1)

Publication Number Publication Date
WO2005068552A1 true WO2005068552A1 (ja) 2005-07-28

Family

ID=34797767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000635 WO2005068552A1 (ja) 2004-01-20 2005-01-20 両性水溶性高分子を含む組成物

Country Status (5)

Country Link
US (1) US20080230193A1 (ja)
EP (1) EP1721933A4 (ja)
JP (1) JP4894264B2 (ja)
KR (1) KR101113694B1 (ja)
WO (1) WO2005068552A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012086117A (ja) * 2010-10-15 2012-05-10 Tomooka Kaken Kk 粉末状凝集脱水剤及び有機汚泥の凝集脱水方法
US20120128608A1 (en) * 2005-07-21 2012-05-24 Akzo Nobel N.V. Hybrid copolymer compositions
US8636918B2 (en) 2011-08-05 2014-01-28 Ecolab Usa Inc. Cleaning composition containing a polysaccharide hybrid polymer composition and methods of controlling hard water scale
US8674021B2 (en) 2006-07-21 2014-03-18 Akzo Nobel N.V. Sulfonated graft copolymers
US8679366B2 (en) 2011-08-05 2014-03-25 Ecolab Usa Inc. Cleaning composition containing a polysaccharide graft polymer composition and methods of controlling hard water scale
US8841246B2 (en) 2011-08-05 2014-09-23 Ecolab Usa Inc. Cleaning composition containing a polysaccharide hybrid polymer composition and methods of improving drainage
US8853144B2 (en) 2011-08-05 2014-10-07 Ecolab Usa Inc. Cleaning composition containing a polysaccharide graft polymer composition and methods of improving drainage
US8945314B2 (en) 2012-07-30 2015-02-03 Ecolab Usa Inc. Biodegradable stability binding agent for a solid detergent
JP2016501121A (ja) * 2012-11-16 2016-01-18 ロケット フレールRoquette Freres 水を飲用にするプロセス
US9365805B2 (en) 2014-05-15 2016-06-14 Ecolab Usa Inc. Bio-based pot and pan pre-soak

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666963B2 (en) 2005-07-21 2010-02-23 Akzo Nobel N.V. Hybrid copolymers
US20080020961A1 (en) 2006-07-21 2008-01-24 Rodrigues Klin A Low Molecular Weight Graft Copolymers
WO2009020649A1 (en) * 2007-08-08 2009-02-12 Jordi Flp Suspension homopolymerization of an isocyanurate
WO2013064647A1 (en) 2011-11-04 2013-05-10 Akzo Nobel Chemicals International B.V. Hybrid dendrite copolymers, compositions thereof and methods for producing the same
EP2773321B1 (en) 2011-11-04 2015-09-09 Akzo Nobel Chemicals International B.V. Graft dendrite copolymers, and methods for producing the same
CN102977269B (zh) * 2012-11-12 2014-10-29 中山大学 一种壳聚糖丙烯酸酯接枝物胶乳及含有该胶乳的棉纤维处理液
JP2014117625A (ja) * 2012-12-13 2014-06-30 Hymo Corp 廃棄物の処理方法
CN103911902B (zh) * 2013-01-09 2017-11-03 荒川化学工业株式会社 卫生纸添加剂、使用该添加剂的卫生纸制造方法及卫生纸
US9540473B2 (en) * 2013-03-13 2017-01-10 Akzo Nobel Chemicals International B.V. Rheology modifiers
US10000393B2 (en) * 2015-01-14 2018-06-19 Ecolab Usa Inc. Enhancement of dewatering using soy flour or soy protein
CN109678235A (zh) * 2019-01-08 2019-04-26 广东海洋大学 一种天然阴阳离子复合污水处理絮凝剂及其应用方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08215686A (ja) * 1995-02-14 1996-08-27 Kurita Water Ind Ltd 泥水の凝集処理方法
JP2003175302A (ja) * 2001-09-04 2003-06-24 Toagosei Co Ltd 組成物、両性高分子凝集剤及びその用途

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976552A (en) * 1975-08-13 1976-08-24 The United States Of America As Represented By The Secretary Of Agriculture Water-soluble graft polymers produced by an outwardly dry radiation polymerization process
US5132284A (en) * 1988-04-26 1992-07-21 National Starch And Chemical Investment Holding Corporation Polyamphoteric polysaccharide graft copolymers neutrally charged
JPH06254306A (ja) * 1993-03-01 1994-09-13 Kurita Water Ind Ltd 水溶性高分子凝集剤
JP3633726B2 (ja) * 1996-06-14 2005-03-30 ハイモ株式会社 汚泥の処理方法
JP3944803B2 (ja) * 1997-06-30 2007-07-18 荒川化学工業株式会社 抄き合わせ紙用添加剤および抄き合わせ紙の製造方法
TW483970B (en) * 1999-11-08 2002-04-21 Ciba Spec Chem Water Treat Ltd A process for making paper and paperboard
US6846384B2 (en) * 2000-08-07 2005-01-25 Akzo Nobel N.V. Process for sizing paper
JP3906636B2 (ja) * 2000-12-15 2007-04-18 東亞合成株式会社 両性高分子凝集剤及び汚泥の脱水方法
EP1236748A1 (en) * 2001-02-22 2002-09-04 Ecole Polytechnique Federale De Lausanne Polymer flocculents and preparation thereof
US7087556B2 (en) * 2001-04-16 2006-08-08 Wsp Chemicals & Technology, L.L.C. Compositions for treating subterranean zones penetrated by well bores
JP4161559B2 (ja) * 2001-10-11 2008-10-08 東亞合成株式会社 組成物、両性高分子凝集剤及び汚泥の脱水方法
KR100876116B1 (ko) * 2001-09-04 2008-12-26 도아고세이가부시키가이샤 조성물, 양성 고분자 응집제 및 이들의 용도

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08215686A (ja) * 1995-02-14 1996-08-27 Kurita Water Ind Ltd 泥水の凝集処理方法
JP2003175302A (ja) * 2001-09-04 2003-06-24 Toagosei Co Ltd 組成物、両性高分子凝集剤及びその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1721933A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9109068B2 (en) * 2005-07-21 2015-08-18 Akzo Nobel N.V. Hybrid copolymer compositions
US20120128608A1 (en) * 2005-07-21 2012-05-24 Akzo Nobel N.V. Hybrid copolymer compositions
US9321873B2 (en) 2005-07-21 2016-04-26 Akzo Nobel N.V. Hybrid copolymer compositions for personal care applications
US8674021B2 (en) 2006-07-21 2014-03-18 Akzo Nobel N.V. Sulfonated graft copolymers
JP2013501104A (ja) * 2009-07-31 2013-01-10 アクゾ ノーベル ナムローゼ フェンノートシャップ ハイブリッドコポリマー組成物
JP2012086117A (ja) * 2010-10-15 2012-05-10 Tomooka Kaken Kk 粉末状凝集脱水剤及び有機汚泥の凝集脱水方法
US8636918B2 (en) 2011-08-05 2014-01-28 Ecolab Usa Inc. Cleaning composition containing a polysaccharide hybrid polymer composition and methods of controlling hard water scale
US8853144B2 (en) 2011-08-05 2014-10-07 Ecolab Usa Inc. Cleaning composition containing a polysaccharide graft polymer composition and methods of improving drainage
US8841246B2 (en) 2011-08-05 2014-09-23 Ecolab Usa Inc. Cleaning composition containing a polysaccharide hybrid polymer composition and methods of improving drainage
US9309489B2 (en) 2011-08-05 2016-04-12 Ecolab Usa Inc Cleaning composition containing a polysaccharide hybrid polymer composition and methods of improving drainage
US8679366B2 (en) 2011-08-05 2014-03-25 Ecolab Usa Inc. Cleaning composition containing a polysaccharide graft polymer composition and methods of controlling hard water scale
US8945314B2 (en) 2012-07-30 2015-02-03 Ecolab Usa Inc. Biodegradable stability binding agent for a solid detergent
JP2016501121A (ja) * 2012-11-16 2016-01-18 ロケット フレールRoquette Freres 水を飲用にするプロセス
US9365805B2 (en) 2014-05-15 2016-06-14 Ecolab Usa Inc. Bio-based pot and pan pre-soak
US10053652B2 (en) 2014-05-15 2018-08-21 Ecolab Usa Inc. Bio-based pot and pan pre-soak

Also Published As

Publication number Publication date
JPWO2005068552A1 (ja) 2007-09-13
KR101113694B1 (ko) 2012-03-13
JP4894264B2 (ja) 2012-03-14
KR20070029660A (ko) 2007-03-14
EP1721933A4 (en) 2010-01-20
US20080230193A1 (en) 2008-09-25
EP1721933A1 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
JP4894264B2 (ja) 両性水溶性高分子を含む組成物
JP4946051B2 (ja) 水溶性高分子の製造方法
JP4940952B2 (ja) 歩留向上剤用組成物
JPWO2006070853A6 (ja) 歩留向上剤用組成物
RU2705060C2 (ru) Порошкообразная растворимая в воде катионогенная полимерная композиция
JP2005205409A (ja) 両性高分子凝集剤
JP4742861B2 (ja) 組成物
CN100587000C (zh) 含有两性水溶性聚合物的组合物
US7141181B2 (en) Composition comprising amphoteric polymeric flocculants
JP4743205B2 (ja) 水溶性重合体の製造方法及びその用途
JP2009022840A (ja) 高分子凝集剤及びその用途
JP4175062B2 (ja) 組成物、両性高分子凝集剤及びその用途
CA3140016A1 (en) Polymeric structure and its uses
JP2004210986A (ja) 組成物、高分子凝集剤及び汚泥の脱水方法
JP4058621B2 (ja) 組成物、高分子凝集剤及び汚泥の脱水方法
JP2005255749A (ja) 両性重合体を含む組成物
CN101094954A (zh) 保留性改进用组合物
JP2004261752A (ja) 有機物を含む水性懸濁液の凝集方法及び汚泥の脱水方法
JPH02175706A (ja) カチオン性アクリルアミド系重合体の製造方法およびその用途
JP2005255748A (ja) 水溶性両性重合体を含む組成物
JPH03174092A (ja) カチオン性ロジンエマルジョンサイズ剤の製造方法
JP2004261750A (ja) 有機性懸濁液の凝集方法及び汚泥の脱水方法
JP2005068336A (ja) 組成物、高分子凝集剤及び汚泥の脱水方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005709248

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10586679

Country of ref document: US

Ref document number: 1020067014589

Country of ref document: KR

Ref document number: 200580002816.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005517122

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2005709248

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067014589

Country of ref document: KR