WO2005067139A1 - 増幅器 - Google Patents

増幅器 Download PDF

Info

Publication number
WO2005067139A1
WO2005067139A1 PCT/JP2004/019526 JP2004019526W WO2005067139A1 WO 2005067139 A1 WO2005067139 A1 WO 2005067139A1 JP 2004019526 W JP2004019526 W JP 2004019526W WO 2005067139 A1 WO2005067139 A1 WO 2005067139A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplifier
input
power
diode
circuit
Prior art date
Application number
PCT/JP2004/019526
Other languages
English (en)
French (fr)
Inventor
Yuuichi Aoki
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US10/585,206 priority Critical patent/US7768345B2/en
Priority to CN2004800422421A priority patent/CN1926759B/zh
Priority to JP2005516849A priority patent/JP4752509B2/ja
Publication of WO2005067139A1 publication Critical patent/WO2005067139A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/34DC amplifiers in which all stages are DC-coupled
    • H03F3/343DC amplifiers in which all stages are DC-coupled with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • H03F1/0266Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A by using a signal derived from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/302Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in bipolar transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3276Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using the nonlinearity inherent to components, e.g. a diode

Definitions

  • the present invention relates to an amplifier, and more particularly to an amplifier for amplifying and outputting input power by a plurality of transistors connected in multiple stages, which is used for wireless communication performing wide-range output power control.
  • a base bias circuit operating close to a constant voltage source is indispensable.
  • the reason why a constant voltage source is more suitable than a constant current source as a bias circuit is as follows.
  • the collector current of the emitter-grounded bipolar transistor increases and reaches several times or more of the collector bias current. This increase in collector current results in higher saturation power and lower distortion.
  • the collector current is always kept at hFE times the base bias current, so even if the input power is increased, the collector current does not increase.
  • the collector bias current is set equal to the base bias provided by a constant voltage source, gain compression at large signal operation will occur at lower input power. That is, the saturation characteristics deteriorate, leading to a decrease in added power efficiency and a deterioration in linearity.
  • the collector bias current is set equal to the collector current when the base bias is given by a constant voltage source and the input power is large, the RF signal is not input or the input power is small. Also, a large collector current flows, causing problems such as increased power consumption.
  • a power amplifier using an emitter-grounded neupolar transistor is A base bias circuit that operates close to a constant voltage source is essential.
  • a base bias circuit operating close to a constant voltage source there is a first conventional amplifier described in Japanese Patent No. 3377675. This is shown in FIG. The operation of this circuit will be described according to the embodiment of Japanese Patent No. 33 77 675.
  • FIG. 1 is a circuit diagram of a first conventional amplifier of patent 3377675
  • FIG. 2 is A graph showing the voltage applied to the base and the diode of the transistor in the circuit shown in FIG. 1
  • FIG. 3 is graphs showing the input / output characteristics of the circuit of FIG.
  • the applied voltage at point B1 on the base side is the voltage applied from the external voltage source VB, for example, by resistors R1 and R2.
  • a diode D1 is further inserted between the point B2 and the point B1 in the figure so that the B1 point side becomes the force-sword terminal side of the diode.
  • a capacitor C1 is inserted between the B2 point and the ground potential so that the B2 point force is sufficiently smaller than the impedance seen from the bias resistance side and the impedance value is obtained.
  • the amplitude of the voltage of the input power is sufficiently small as shown by VI in FIG. 5 (see FIG. 9 of patent 3377675).
  • the transistor Trl is in linear motion th
  • the gain 'input and output power phase deviations are both constant. However, as the input power increases as shown by V2 in Fig. 5, the voltage amplitude V2 at point B1 increases, and the bias voltage VB1 given at point B1 and the ON voltage V of the diode between the base and emitter
  • transistor Trl When the potential difference of th is exceeded, transistor Trl enters a non-linear operating state, and the operating point as class A can not be maintained, and the power gain gradually decreases. Also, if the voltage value at point B1 fluctuates to the potential below the ON voltage V of the diode between the base and emitter, the above transistor Trl
  • an on state time and an off state time occur.
  • the input impedance of the diode between the base 'emitters is equal to that when maintaining the class A operating point, but when it is in the off state, the diode between the base' emitters is Since the input impedance of H is high compared to when the A class operating point is maintained, the voltage value at point B1 at that time largely fluctuates to the negative side.
  • the voltage value at point B1 was constant at V in time average, but the above-mentioned off state
  • the time average is a voltage value smaller than V.
  • the capacitance value of the connection has voltage dependency. Therefore, when the voltage applied between the base and emitter fluctuates, the junction capacitance of the diode between the base and emitter fluctuates, and when the input impedance of the emitter-grounded amplifier is small enough to maintain class A operation. It has a different value than.
  • the potential at point B2 is determined by the voltage value of the constant voltage source and the division ratio of the resistors R1 and R2, and is not affected by the increase in input power, so the potential at point B1 is gradually increased as described above.
  • the voltage AVBE2 applied to the diode D1 shown in Fig. 1 gradually increases as shown in Fig. 2. Therefore, the junction capacitance of the diode D1 in the bias circuit performs the reverse fluctuation to the fluctuation of the junction capacitance of the base of the transistor Trl of the emitter ground and the emitter of the diode.
  • the amplitude of the input power increases, and the input impedance of the emitter-grounded transistor Trl fluctuates accordingly, so that the impedance of the force diode D1 fluctuates so as to cancel it. Therefore, the fluctuation of the input impedance of the emitter-grounded transistor Tr1 can be suppressed, and the passing phase deviation can be made smaller than that of the conventional circuit. Furthermore, when the voltage applied to the diode D1 increases, the current flowing into the base of the transistor Tr1 through the diode D1 increases, so that the collector current increases and saturation of the output power at the collector end can be eliminated. The reduction in gain can also be improved.
  • the bipolar transistor Tr2 is The base 'emitter of the transistor Tr2 is connected in the forward direction between point B2 of the base bias circuit which divides the power supply voltage VB by the resistors R1 and R2 and the base of the transistor Tr1, and is connected to the collector of the transistor Tr2.
  • Supply voltage VC is applied.
  • the base force also has an impedance sufficiently smaller than the impedance when looking at the bias resistors R1 and R2. Capacitor C1 is inserted.
  • This second conventional amplifier utilizes the PN junction between the base and the emitter of the transistor Tr2 as opposed to the one utilizing the PN junction of the diode D1 provided in the base bias circuit shown in FIG.
  • the operation of the circuit is substantially the same as in the first prior art amplifier shown in FIG. 1 with the diode D1 in the base bias circuit.
  • the transistor Tr2 since the transistor Tr2 forms an amplification circuit, the base bias current is amplified by the transistor Tr2 and supplied to the base of the emitter-grounded transistor Tr1. Therefore, it is possible to reduce the current flowing in the base bias circuit which generates the original base bias which is constituted by the resistors R 1 and R 2.
  • the current flowing to the base of the transistor Tr2 can be neglected in the second conventional amplifier as well as the first conventional amplifier even though it is reduced. It is similar to the first problem that the current flowing to the Furthermore, since the emitter-grounded bipolar transistor has an extremely high transconductance, it is necessary to strictly apply the voltage to be applied to the base.
  • the first and second biases are applied by resistance division by the resistors Rl and R2.
  • the circuit also has a second problem that it is greatly affected by the voltage fluctuation between the base and the emitter due to temperature and manufacturing variations.
  • FIG. 6 A circuit diagram of a third conventional amplifier is shown in FIG. 6 (see FIG. 5 of Japanese Patent Application Laid-Open No. 2002-9 559).
  • the resistor 18 is not directly grounded, but is grounded via a reference voltage circuit consisting of a neupolar transistor Tr19 and a bipolar transistor Tr20.
  • the potential at the base of the bipolar transistor Tr19 is equal to the sum of VBE of the bipolar transistor Tr20 and VBE of the bipolar transistor Trl9.
  • the present circuit is configured by comparing the collector current density of the bipolar transistor Tr20 and the power transistor Tr.
  • the 22 collector current densities are designed to be equal. Therefore, VBE of the bipolar transistor Tr20 and VBE of the power transistor Tr22 are equal.
  • the base current of power transistor Tr22 is equal to the emitter current of bipolar transistor Tr21
  • the base current of bipolar transistor Tr20 is equal to the emitter current of bipolar transistor Trl9
  • the emitter area of bipolar transistor Tr20 is bipolar transistor Trl 9
  • the emitter area of the power transistor Tr22 is set larger than that of the bipolar transistor Tr21. Therefore, the VBE of the bipolar transistor Tr21 is larger than the VBE of the bipolar transistor Trl9.
  • the voltage drop across the resistor 18 is equal to the difference between the VBE of the bipolar transistor Tr21 and the VBE of the bipolar transistor Trl9.
  • Tr22 Tr20 is equal to the relationship of the area ratio of power transistor Tr22 and bipolar transistor Tr20.
  • the area of the power transistor Tr22 is S
  • the area of the bipolar transistor Tr20 is S.
  • This circuit can alleviate the second problem described above because the changes in VBE due to temperature and manufacturing variations cancel each other out. Also with regard to the first problem described above, the increase in input power Since the decrease in VBE of the power transistor Tr22 does not affect the VBE of the bipolar transistor Tr20 and does not cancel it, it can operate close to a constant voltage source.
  • the emitter grounded amplification circuit operating in the vicinity of class B is biased by the bias circuits of the aforementioned first to third conventional amplifiers operating in the vicinity of a constant voltage source.
  • the emitter-grounded amplifier biased in a state near class B causes gain expansion as shown in Fig. 7 because the base current increases as the input power increases due to the rectifying action of the diode between the base and emitter.
  • An amplifier having this gain extension characteristic is a wide band with a power change like a W-CDMA signal.
  • Inputting a modulated signal causes gain fluctuation, which causes a third problem that the signal is distorted.
  • the distortion of this signal appears as a disturbance to the adjacent channel next to the communication channel as shown in FIG.
  • the ratio of the signal strength of the communication channel to the disturbance strength of the adjacent channel is called the adjacent channel leakage power (ACPR).
  • a represents the amplification factor (ie, gain), and the remainder represents the variation of the gain with respect to the input amplitude (ie, whether it is gain expansion or gain compression). Also, the frequency component 2 ⁇ — ⁇ of V is out 1 2
  • Vout It becomes + 5 j sin (2- ⁇ 2 ) ⁇ (7).
  • (7) is a third-order intermodulation distortion ( ⁇ 3) component of V. Where a and a, a have the same sign out 1 3 5
  • the phase can not be defined for signals of different frequencies, but in this case the signal shown in (5) is used for the input, so the frequency ( ⁇ ⁇ ⁇ ).
  • phase angles of the fundamental wave and ⁇ 3 that are identical ( ⁇ - ⁇ ) ⁇ 2 ⁇ apart are 2
  • phase of ⁇ 3 obtained by amplifying the distortion at the former stage and the phase of ⁇ 3 generated by amplifying the fundamental wave at the latter stage differ by ⁇ 90 degrees or more, the distortion cancellation phenomenon occurs. Therefore, in the following, for the sake of simplicity, when the phase angle of the fundamental wave and ⁇ 3 is within 90 °, “phase is the same”, and when it is more than that, “phase is inverse”.
  • FIG. 10 shows the relationship between the fundamental wave and the phase of the ⁇ 3 signal when the third conventional amplifier shown in FIG. 6 is biased to ⁇ class close to ⁇ ⁇ class and analyzed.
  • the magnitude of the ⁇ 3 signal is smaller than that of the fundamental wave, so it is displayed 10 times larger.
  • the absolute value of the phase does not have any particular meaning because it merely represents the delay of input and output.
  • Fig. 11 shows how gain expansion is performed at that time.
  • FIG. 11 the input power range depicted in FIG. 10 is indicated by an arrow.
  • gain In the amplifier that exhibits tension characteristics the phases of the fundamental wave and IM3 are the same.
  • Figure 13 shows an example of the relationship between the fundamental wave and the IM3 signal phase when analysis is performed using the gain expansion amplifier using the variable gain amplifier and multiplier shown in Fig. 12.
  • the size of IM3 is shown enlarged 10 times.
  • the phases of the fundamental wave and IM3 are the same.
  • Fig. 14 shows how gain expansion is performed at that time.
  • Figure 14 shows the gain extension characteristics.
  • the reason why the distortion can be reduced by combining the gain expansion amplification stage and the gain compression amplification stage is that the phase angle of the fundamental wave and IM3 is inverted in each stage. This is because the amplified signal and the IM3 generated by amplifying the fundamental wave in the latter stage have an opposite phase and cancel each other.
  • the first amplifier stage in FIG. 9 has a gain expansion characteristic such that the gate bias of the FET amplifier circuit is B class and the second amplifier stage has a gain compression characteristic.
  • the base stage of the HBT amplification circuit is class AB and the second amplification stage is the first amplification stage in FIG. 9 so as to have gain extension characteristics.
  • the gate bias of the HBT amplifier circuit is set to class A so as to have gain compression characteristics, the gain extension characteristics and the gain compression characteristics are canceled and distortion is reduced.
  • the first amplification stage in FIG. 9 has the gate bias of the MES amplification circuit as class A and the second amplification stage so as to have gain compression characteristics.
  • the gate bias of the MOS amplifier circuit By setting the gate bias of the MOS amplifier circuit to class AB to have gain expansion characteristics Cancel the gain expansion characteristics and the gain compression characteristics to reduce distortion.
  • the base bias of the HBT amplification circuit is set to class AB or C so that the first amplification stage in FIG.
  • the gain expansion characteristics and gain compression characteristics are canceled and distortion is reduced by setting the gate bias of the HBT amplifier circuit to class A so that the amplification stage has gain compression characteristics.
  • these conventional examples are generally referred to as a fourth conventional amplifier.
  • These fourth conventional amplifiers combine the gain expansion amplifier stage and the gain compression amplifier stage to reduce distortion, so all amplifiers with good power addition efficiency and power expansion efficiency at low output power are available. It has the fourth problem that it can not be applied to the amplification stage of
  • differential frequency injection as exemplified in Japanese Patent 3337766 and Japanese Patent Laid-Open No. 2003-338713. There is technology.
  • FIG. 17 is an explanatory view of distortion compensation by second-order distortion (difference frequency) injection shown in FIG. 9 of Japanese Patent No. 3337766.
  • the injection amount D is selected to a (negative) appropriate value, the IM3 component shown in equation 10 can be reduced at an input amplitude ⁇ ⁇ . Therefore, it is necessary to choose an injection amount D that reduces IM3 independently of the value of the input amplitude A! /, So it is necessary to optimize the injection amount in some way such as feedback or feedforward.
  • Patents 3337766 and 2003-338713 are generally referred to as a fifth conventional amplifier.
  • the optimal injection amount depends on the input amplitude, there is a fifth problem when it is necessary to adjust the injection amount by feedback or feed forward.
  • the problems with the first to third conventional amplifiers are that when used in a state close to class B and used to increase power addition efficiency at low output, Signal distortion is the result of gain extension.
  • the problem with the fourth conventional amplifier is the amplifier stage with high power added efficiency at low output because the third problem described above is present. The problem is that you can not use it for all stages.
  • the problem with the fifth conventional amplifier is that the injection of the difference frequency signal depends on the input amplitude because the optimum injection amount depends on the input amplitude. It is necessary to adjust the injection volume by
  • a first object of the present invention is to provide a means for inverting distortion to an amplification stage having gain expansion characteristics.
  • a second object of the present invention is to use an amplification stage having gain expansion characteristics in all stages of a multistage amplifier by bypassing in a state close to class B with high power addition efficiency at low output. It is about providing the method.
  • a third object of the present invention is to control the optimum amount of feedback and feedforward by using an amplifier stage biased in a state close to class B and having gain expansion characteristics in all stages of a multistage amplifier. To offer without doing.
  • An amplifier according to the present invention is an amplifier having a gain expansion characteristic in which a gain increases with an increase in the input power or the output power in a certain range of input power or output power.
  • the phase characteristic of third-order intermodulation distortion at the moment when the phase of the two signals becomes the same when the two signals are input has an output characteristic that rotates 90 degrees or more from the phase of the two signals. It is characterized by
  • the distortions of the respective stages can be offset each other.
  • amplification stages with gain expansion characteristics can be used in all stages of multistage amplifiers by biasing in a state close to class B with high power addition efficiency at low output.
  • FIG. 1 is a circuit diagram illustrating a first conventional amplifier.
  • FIG. 2 is a diagram for explaining the potential difference at each point with respect to the input power of the first conventional amplifier.
  • FIG. 3 is a diagram for explaining gain and phase variations with respect to input power of a first conventional amplifier.
  • FIG. 4 is a circuit diagram illustrating a second conventional amplifier.
  • FIG. 5 is a diagram for explaining a first conventional amplifier.
  • FIG. 6 is a circuit diagram illustrating a third conventional amplifier.
  • FIG. 7 is a circuit diagram illustrating gain expansion characteristics.
  • FIG. 8 is a diagram for explaining adjacent channel leakage power (ACPR).
  • ACPR adjacent channel leakage power
  • FIG. 9 is a diagram for explaining a fourth conventional amplifier.
  • Figure 10 This figure shows the relationship between the fundamental wave and the IM3 signal phase when the third conventional amplifier is biased to class AB close to class B.
  • FIG. 11 is a diagram for explaining the relationship between input power and gain when the third conventional amplifier is biased to class AB close to class B.
  • FIG. 12 is a circuit diagram illustrating a gain extension amplifier.
  • ⁇ 13] A diagram illustrating the phase relationship between the fundamental wave and distortion in a general gain extension amplifier.
  • ⁇ 15] A diagram illustrating the phase relationship between the fundamental wave and distortion in a general gain compression amplifier.
  • FIG. 12 is a diagram for explaining the relationship between input power and gain when a gain compression amplifier is formed in the circuit of FIG.
  • Fig. 17 is a diagram for describing a fifth conventional amplifier.
  • FIG. 18 A diagram for explaining the phase relationship between a fundamental wave and distortion of a second conventional amplifier circuit.
  • FIG. 19 is a diagram for explaining the relationship between the output power and the gain of the second conventional amplifier circuit.
  • FIG. 20 is a diagram for explaining the relationship between the voltage between the base and emitter of the transistor Tr1 of the second conventional amplifier circuit and the emitter current of the transistor Tr2.
  • FIG. 21 A diagram for explaining the phase relationship between the fundamental wave and distortion of the second conventional amplifier circuit.
  • FIG. 22 is a diagram for explaining the relationship between the output power and the gain of the second conventional amplifier circuit.
  • FIG. 24 A diagram for explaining the phase relationship between a fundamental wave and distortion of a second conventional amplifier circuit.
  • ⁇ 24 is a diagram showing a first embodiment of the present invention.
  • FIG. 25 is a circuit diagram for explaining a second embodiment of the present invention.
  • FIG. 26 is a diagram for explaining the phase relationship between a fundamental wave and distortion in the second embodiment of the present invention.
  • ⁇ 27] is a diagram showing a second embodiment of the present invention.
  • ⁇ 28 It is a circuit diagram for explaining a second embodiment of the present invention.
  • FIG. 30 is a diagram showing a third embodiment of the present invention.
  • FIG. 31 is a diagram showing a fourth embodiment of the present invention.
  • FIG. 32 is a diagram showing a fifth embodiment of the present invention.
  • FIG. 33 is a diagram showing a sixth embodiment of the present invention.
  • FIG. 34 is a circuit diagram for explaining a sixth embodiment of the present invention.
  • FIG. 35 is a diagram for explaining the phase relationship between a fundamental wave and distortion in the sixth embodiment of the present invention.
  • FIG. 36 A diagram for explaining the relationship between the momentary potential of the emitter potential of the transistor 26 and the current supplied to the emitter of the transistor 26 in the sixth embodiment of the present invention.
  • FIG. 37 is a diagram showing the concept of distortion cancellation in a multistage amplifier according to a seventh embodiment of the present invention.
  • FIG. 38 is a diagram showing a seventh embodiment of the present invention.
  • FIG. 39 is a circuit diagram for explaining a seventh embodiment of the present invention.
  • FIG. 40 is a circuit diagram for explaining a seventh embodiment of the present invention.
  • FIG. 41 is a view for explaining distortion cancellation according to the seventh embodiment of the present invention.
  • the amplifier according to the present invention amplifies input power to output power, and gain expansion characteristics in which gain increases with increase of the input power or the output power in a certain range of the input power or the output power.
  • the amplifier is characterized in that the amplifier has a mechanism for compressing the amplitude at a high frequency at its input.
  • the input power is amplified to be output power, and at least two or more amplification stages are the input power or the output within a range of the input power or the output power.
  • a multi-stage amplifier with gain expansion characteristics where the gain increases with increasing power, with at least one of the amplification stages (in the gain expansion power range) compressing the amplitude at high frequency at the input It is characterized by having a mechanism.
  • the amplifier according to the present invention has an amplitude compression characteristic such that the instantaneous amplitude of the amplifier input is compressed, thereby providing a gain expansion characteristic and an amplification having the characteristic that the phase of the fundamental wave and that of IM3 are reversed.
  • the distortion appearing at the output is reduced by canceling out the distortion between the stage and the normal amplification stage which also has the same gain expansion characteristics and the characteristic that the phase of the fundamental wave and the IM3 are the same.
  • the second conventional amplifier shown in FIG. 4 the case where terminal B 2 is biased by a constant voltage source will be described as an example (when the input power is increased, as described above).
  • the first problem of lowering the potential of B2 is avoided by biasing B2 with a constant voltage source, and the second problem of temperature and manufacturing variation is not assumed here).
  • the second conventional amplifier When the second conventional amplifier is used at a bias close to class B, it can be an amplifier that inverts distortion in the gain extension region by satisfying a certain condition.
  • FIG. 18 shows the relationship between the fundamental wave and IM3 phase when amplifier A is interpreted as amplifier A with the ratio of the area of Trl: Tr2 being 5: 1.
  • IM3 is displayed 50 times larger.
  • FIG. 19 shows the relationship between output power and gain at this time. Since the power range shown in Figure 18 is the gain extension range of output power less than 16dBm, the gain extension power range is But the phases of the fundamental and IM3 are reversed.
  • Figure 20 shows the relationship between the instantaneous value of VBE of transistor Trl and the current supplied by the transistor Tr2.
  • This figure is a load line representing the internal impedance of the transistor Tr2.
  • the two lines shown in the figure represent load lines near the maximum amplitude (when the two frequencies are just added) when two frequencies are input and the output is 16 dBm and 6 dBm.
  • the output impedance of Tr2 when the base potential is lowered is extremely small when the amplitude is large compared to when the amplitude is small.
  • an amplifier B is obtained by enlarging the area of Trl by 7.2 times and making the ratio of the area of Trl: the area of Tr2 36: 1. Then, the relationship between the fundamental wave and the phase of IM3 when the amplifier B is analyzed is shown in FIG. IM3 is also enlarged 50 times and displayed.
  • Figure 22 shows the relationship between output power and gain at this time.
  • the power range shown in Fig. 21 is the gain expansion range of the output power of 16 dBm or less.
  • the fundamental wave and the phase of IM3 are the same. This is because the input impedance of the base of Trl is lowered by expanding the area of Trl, and the influence of the change in impedance of the bias circuit becomes small. This is also reworded as the input power for applying the amplitude until the output impedance of Tr2 is lowered, because the voltage amplitude at the same input power is reduced by lowering the base impedance of Tr1.
  • the input impedance of the amplification transistor side viewed from the input terminal By making one dance appear large, amplifier distortion causes the lower input amplitude force fundamental wave and IM 3 to have opposite phases, and cancels distortion with an amplifier whose latter stage fundamental wave and IM 3 have the same phase. Then, it is possible to use an amplification stage close to an efficient class B at low output power for all stages of the amplifier.
  • the distortion generated in the former stage and the distortion generated in the latter stage are offset! /.
  • IM3 increases three times as much as the increase in input power, so the distortion amount at the former stage and the latter stage increases together. Therefore, according to the present invention, it is possible to control the input power without performing the optimum control according to the input power 4 _ such as feedback and feedforward.
  • the distortion reduction effect can be obtained in a wide range.
  • the distortion of the gain expansion amplifier can be reduced by providing amplitude compression at the input unit
  • the case of injecting the third harmonic of the main signal is considered.
  • V in a e A ⁇ sin ⁇ ⁇ ⁇ + sm ⁇ 2 ⁇ + Z) (sin 3 ⁇ w + sin 3 ⁇ 3 ⁇ 4 2 ⁇ ) ⁇ (1 1) of two waves of the sine wave and mosquitoes ⁇ the third harmonic It is assumed that If the third wave is added to the sine wave, the third wave will have an antiphase peak value at the peak value of the fundamental wave, so the maximum amplitude will be compressed.
  • the IM3 component shown in (13) can be reduced at an input amplitude A where the injection amount D is selected to an appropriate value.
  • the distortion can be reduced in the range of input amplitude A, relatively wide, even if fixed at.
  • FIG. 24 is a diagram showing an amplifier for reversing the phase of IM 3 with respect to a fundamental wave according to a first embodiment of the present invention.
  • the amplification transistor 1 forms an emitter-grounded amplification circuit, and the base of the transistor 1 is connected to the force matching of the input matching circuit 3 and the bias supply diode 4 via the impedance element 2.
  • the anode of the bias supply diode 4 is connected to a reference power supply 5 which has a sufficiently low impedance at high frequencies.
  • the collector of transistor 1 is connected to collector power supply 7 via load 6 and connected to output terminal 9 via output matching circuit 8.
  • FIG. 24 showing the present embodiment corresponds to FIG. 1 showing the first conventional example. Comparing the first embodiment shown in FIG. 24 with the first conventional example shown in FIG. 1, according to the prior art, the force source of the bias supply diode D1 is directly connected to the base terminal of the amplification transistor Tr1. On the other hand, in the present embodiment, the force source of the bias supply diode 4 is connected to the amplification Trl via the impedance element 2 !. By connecting the impedance element 2, the input impedance of the amplification transistor 1 viewed from the input terminal 10 is made high, and a state in which the phase of the fundamental wave and that of IM3 are reversed is achieved at a low input power.
  • FIG. 27 is a diagram showing an amplifier for reversing the phase of IM 3 with respect to a fundamental wave according to a second embodiment of the present invention, which is a diagram of a second prior art example. It corresponds to In this embodiment, instead of the diode 4 of the first embodiment, the base-emitter of the noise supply transistor 11 is used. Therefore, the effects and operations are the same as in the first embodiment.
  • the present embodiment when the reference power supply 5 is realized by a resistor, the above-mentioned second problem that a voltage drop due to the resistor occurs can be alleviated. Also in the present embodiment, since the noise is supplied to the amplification transistor 1 via the impedance element 21, the impedance element 21 does not block direct current.
  • the present embodiment is substantially the same as the above-described first embodiment in effect and operation, and therefore, the present embodiment will be collectively described in the following.
  • FIG. 25 is a view for explaining the second embodiment of the present invention by a more specific example.
  • the base-emitter of the bias supply transistor 11 is considered as a bias supply diode 4.
  • FIG. 25 shows a more specific example using a parallel circuit of a resistor 13 and a capacitor 14 as the impedance element 2.
  • the reference power supply 5 the reference power supply 35 having the same configuration as that of the third conventional amplifier shown in FIG. 6 was used.
  • the base of the bias supply transistor 11 was grounded using the capacitance 19 so as to have a sufficiently low impedance in high frequency.
  • a GaAs heterojunction bipolar transistor As a transistor model for analysis, a GaAs heterojunction bipolar transistor (HBT) is used, and as amplification transistor 1, an array of five 120 ⁇ m 2 unitary elements is used, and an impedance element is used. Resistor 2 of 2 is configured by arranging five 250 ⁇ resistors in parallel and also serving as a ballast resistor of transistor 1, and capacitor 14 of impedance element 2 is configured by connecting five 0.8 pF capacitors in parallel.
  • An HBT with an emitter area of 120 / zm 2 was used as the noise supply transistor 11.
  • an HBT with an emitter area of 30 m 2 was used for the transistors 15 and 16 of the reference power supply 35.
  • a capacitance 19 in the reference power supply 35 As a capacitance 19 in the reference power supply 35, a capacitance of 2 pF was used. As the load 6, a line having a length of 1 ⁇ 4 wavelength with respect to the fundamental wave was used, and for the collector power supply 7 and the bias power supply 12, a constant voltage source of 3.5 V was used.
  • the circuit parameters of the reference power supply 35 and the control power supply 20 are set so that the collector current of the amplification transistor 1 becomes 5 mA when there is no input signal from the input terminal 10, and fl as the fundamental wave
  • the size of IM3 is enlarged 50 times and displayed.
  • the phase of IM3 with respect to the fundamental wave is reversed!
  • FIG. 28 is a view showing another example for more specifically explaining the second embodiment of the present invention, in which an inductor 22 is used as the impedance element 21.
  • the base-emitter of the bias supply transistor 11 is considered as the bias supply diode 4.
  • Figure 29 shows the relationship between the fundamental and ⁇ 3 at an output power of 2 dBm.
  • the size of IM3 is enlarged 50 times and displayed.
  • the phase of IM3 with respect to the fundamental wave is reversed.
  • the present invention is a technique for reducing distortion in a multistage amplifier and not necessarily a technique for reducing distortion in a single-stage amplifier.
  • FIG. 30 is a diagram showing an amplifier for reversing the phase of IM 3 with respect to the fundamental wave according to a third embodiment of the present invention.
  • the amplification transistor 1 forms an emitter-grounded amplification circuit, and the base of the transistor 1 is biased by a bias supply diode 23. Similarly, the base of the transistor 1 is connected to the input matching circuit 3 and the bias supply diode 24 via the impedance element 25.
  • the anodes of the bias supply diodes 23 and 24 are connected to the reference power supply 5.
  • the collector of the transistor 1 is connected to a collector power supply 7 via a load 6 and connected to an output terminal 9 via an output matching circuit 8.
  • This embodiment is the same as the fourth to sixth embodiments described later in the effects and operations, and therefore will be collectively described in the sixth embodiment.
  • FIG. 31 is a diagram showing an amplifier for reversing the phase of IM 3 with respect to a fundamental wave according to a fourth embodiment of the present invention.
  • the base-emitter of the bipolar transistor 26 is used in place of the diode 24 of the third embodiment. Therefore, the effects and operations are the same as those of the third embodiment and the fifth to sixth embodiments described later, and therefore, the sixth embodiment will be collectively described.
  • FIG. 32 is a diagram showing an amplifier for reversing the phase of IM 3 with respect to the fundamental wave according to a fifth embodiment of the present invention.
  • the base-emitter of the bipolar transistor 27 is used as the diode 23 of the third embodiment. Therefore, the effects and operations are the same as those of the third embodiment, the fourth embodiment, and the sixth embodiment described later, and therefore, the sixth embodiment will be collectively described. Do.
  • FIG. 33 is a diagram showing an amplifier for reversing the phase of IM 3 with respect to the fundamental wave according to a sixth embodiment of the present invention.
  • the base 'emitters of the bias supply transistors 26 and 27 are used as the diodes 23 and 24 in the third embodiment. Therefore, the effects and operations are the same as in the third to fifth embodiments.
  • the reason why the phase of IM 3 with respect to the fundamental wave is reversed in the operations of the third to sixth embodiments is substantially the same as in the first to second embodiments.
  • the present embodiment is the same as the third to fifth embodiments in effect and operation, and therefore, the sixth embodiment will be collectively described as an example.
  • FIG. 34 is a view for explaining the sixth embodiment of the present invention.
  • a series circuit of resistors 30 and 31 is connected in parallel with a capacitor 32 as an impedance element 25 in FIG.
  • a reference power supply 5 a reference power supply 36 having the same configuration as that of the third conventional amplifier shown in FIG. 6 was used.
  • a GaAs heterojunction bipolar transistor As a transistor model for analysis, a GaAs heterojunction bipolar transistor (HBT) is used, and as amplification transistor 1, an array of five 120 ⁇ m 2 unitary elements is used, and an impedance element is used.
  • the 25 resistors 30 also served as the transistor ballast resistors and made five 250 ⁇ resistors in parallel, and the 31 resistor used the lk Q resistor.
  • the capacitance 32 of the impedance element 25 is configured by five parallel 0.8 pF capacitors.
  • An HBT with an emitter area of 120 / zm 2 was used as the noise supply transistor 27.
  • an HBT with an emitter area of 30 m 2 was used as the bias supply transistor 26.
  • the transistors 15 and 16 of the reference power supply 36 used one with an emitter area of 30 m 2 .
  • the size of IM3 is enlarged 50 times and displayed.
  • the phase of IM3 with respect to the fundamental wave is reversed!
  • FIG. 36 shows the relationship between the instantaneous value of the emitter potential of the transistor 26 and the current supplied from the emitter of the transistor 26 as well.
  • This figure is a load line representing the internal impedance of transistor 26.
  • the two lines shown in the figure represent load lines near the maximum amplitude (the moment when the two frequencies just add) when two frequencies are input and the output is 10 dBm and -3 dB m.
  • the base voltage when large amplitude is entered compared to when small amplitude. It can be seen that the output impedance of the transistor 26 when the power goes down is extremely small.
  • the advantages of the third to sixth embodiments are as follows.
  • a circuit having a real part of impedance such as a parallel circuit of a resistor and a capacitor is used as an impedance element, and when the input matching is performed, energy is consumed by the real part of the impedance. Loss will occur.
  • the resistor supplies the bias current to the amplification transistor 1, the resistance can not be increased indiscriminately.
  • the bias current supply to the amplification transistor 1 can be performed by the bias supply transistor 27, the value of the resistor 31 can be increased to prevent high frequency from passing through the resistor side.
  • FIGS. 37 and 38 illustrate a multistage amplifier according to a seventh embodiment of the present invention.
  • Fig. 38 [Fig. 38, 80, 82, 84 matching circuits, 81, 83 amplification stages are shown.
  • FIG. 38 in a multistage amplifier having two or more amplification stages having gain expansion characteristics in which the gain increases with an increase in input power or output power in a certain range of input power or output power. Stages other than the stage are designed to have an amplitude compressor mechanism at high frequency at the input.
  • the reason for not using an amplification stage having an amplitude compression mechanism at the final stage is that the size of the amplification transistor at the final stage is usually the largest among all the amplification transistors, so the input impedance is low and This is because it is difficult to control so that the phases of become opposite.
  • FIGS. 39, 40 and 41 are diagrams for explaining the present embodiment.
  • an amplification stage having the same configuration (FIG. 25) as that of the first embodiment is used as an amplification stage having an amplitude compression mechanism at high frequency at its input.
  • the first stage amplification transistor 61 has three emitters with an area of 180 ⁇ m 2 in parallel, and the resistance 43 of the impedance element 62 also serves as a ballast resistance of the transistor 61 and three 250 ⁇ resistors. Parallel and imp
  • the capacitance 44 of the dance element 62 is configured by three parallel ones of 0.8 pF. An emitter area of 60 ⁇ m 2 was used as the bias supply transistor 42.
  • the final stage amplification transistor 71 used is a parallel arrangement of 24 units of emitter area of 180 ⁇ m 2 , and the resistance 53 of the impedance element 72 is 250 ⁇ in combination with the transistor ballast resistance. Twenty-four resistors were arranged in parallel, and a capacitor 54 of the impedance element 72 was constructed by arranging twenty-four capacitors of 0.8 pF in parallel. Two HBTs with an emitter area of 120 / zm 2 were used in parallel as the negative supply transistor 52. HBTs with an emitter area of 30 m 2 were used for the reference power supply 35 and 46 transistors. As the capacitance 39 in the reference power supply 35, a capacitance of 3 pF was used. As the loads 66 and 76, transmission lines having a length of 1Z4 with respect to the fundamental wave were used, and for the collector power supplies 67 and 77 and the noise power supplies 36 and 56, 3.5V constant voltage sources were used.
  • Reference power supply 35 such that the collector current of amplification transistor 61 when there is no input signal from input terminal 60 is 5 mA, and the collector current of amplification transistor 71 when there is no input signal from input terminal 55 is also 15 mA.
  • Figure 41 shows the change in gain and ACPR with respect to the output power when 46 parameters and control power supplies 45 and 49 are set, and a W-CDMA signal is input and measured. For comparison, FIG. 41 also shows the change in gain and ACPR with respect to the output power when measuring only the final stage amplifier shown in FIG.
  • ACPR measured with the first stage + final stage multistage amplifier is lower than ACPR when measuring the final stage amplifier in the range of output power lOdBm to 25dBm. That is, distortions of the first stage and the last stage cancel out in this power range. Comparing the gains of only the final stage with the gains of the first and last stages, the gain difference is expanded in the range of output power lOdBm to 25dBm, so that the first stage and the last stage have gain expansion in this power range I am strong.
  • GaAs heterojunction bipolar transistor (HBT) excellent in high frequency characteristics is used as the transistor in the above, the same effect can be obtained by using other bipolar transistors such as SiGe-HBT and Si bipolar. Needless to say!
  • a reference power supply of the bias circuit a reference power supply using a two-stage stacked diode or an avalanche diode, and other current sources using two-stage stacked diodes or avalanche diodes described in Patents 3377675 and 2002-9559.
  • Use any circuit that acts as a reference power supply, such as a mirror circuit Needless to say, the same effect can be obtained.
  • the reference power supply is grounded with a capacitance of 2 pF so that the impedance is sufficiently low in high frequency, but different capacitance values may be provided or the high frequency impedance may be lowered by using an element other than capacitance (for example, active capacitor). If you do, you can get the same effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Control Of Amplification And Gain Control (AREA)

Description

明 細 書
増幅器
技術分野
[0001] 本発明は、増幅器に関し、特に、広範囲の出力電力制御を行う無線通信に用いる 多段に接続された複数のトランジスタによって入力電力を増幅して出力する増幅器 に関する。
背景技術
[0002] ェミッタ接地バイポーラトランジスタを用いた電力増幅器には、定電圧源に近い動 作をするベースバイアス回路が不可欠である。ノ ィァス回路として定電流源よりも定 電圧源の方が適する理由は以下の通りである。
[0003] 定電圧源でベースにバイアスを与えたェミッタ接地バイポーラトランジスタに、 RF入 力を加えることを考える。入力電力が充分小さい場合、このェミッタ接地バイポーラト ランジスタは小信号動作するため、そのコレクタ電流は、増幅器に信号を入力しない 状態で流れる 、わゆるコレクタバイアス電流にほぼ等 、。
[0004] これに対し、入力電力を大きくして行くと、ェミッタ接地バイポーラトランジスタのコレ クタ電流は増加し、コレクタバイアス電流の数倍以上に達する。このコレクタ電流の増 加により、より高い飽和出力と低歪みが実現される。
[0005] 一方、定電流源でベースにバイアスを与えた場合、コレクタ電流はベースバイアス 電流の hFE倍に常に保たれるため、入力電力を大きくしてもコレクタ電流の増加は生 じない。従って、コレクタバイアス電流を、定電圧源でベースバイアスを与えた場合と 同等に設定すると、大信号動作時の利得圧縮がより低い入力電力において生じる。 即ち飽和特性が劣化し、付加電力効率の低下や線形性の劣化を招く。
[0006] また、コレクタバイアス電流を、定電圧源でベースバイアスを与えた場合でかつ入 力電力が大きい場合のコレクタ電流と同等に設定すると、 RF信号が入力されない場 合や入力電力が小さいときにも大きなコレクタ電流が流れるため、消費電力が増加す るなどの問題点が生じる。
[0007] 以上の理由により、ェミッタ接地ノイポーラトランジスタを用いた電力増幅器には、 定電圧源に近 、動作をするベースバイアス回路が不可欠である。定電圧源に近 ヽ 動作をするベースバイアス回路の従来例として、特許第 3377675号公報に記載され ている第 1の従来の増幅器がある。これを図 1に示した。この回路の動作を特許第 33 77675号公報の実施の形態に従って説明する。
[0008] 図 1 (特許第 3377675号公報の図 1参照)は特許第 3377675号公報の第 1の従 来の増幅器の回路図であり、図 2 (特許第 3377675号公報の図 2参照)は図 1に示 す回路中のトランジスタのベース及びダイオードにかかる電圧を示すグラフ、図 3 (特 許第 3377675号公報の図 3参照)は、図 1の回路の入出力特性を示すグラフである 。ノイポーラトランジスタより成るェミッタ接地増幅器を線形増幅器として使用する場 合、図 1に示すようにベース側の B1点の印加電圧は、外部の電圧源 VBより印加され た電圧を例えば抵抗 R1と R2による抵抗分割等で任意の電圧値に変換して、更に図 中 B2点から B1点の間に B1点側をダイオードの力ソード端子側となるようにダイォー ド D1を挿入して与えられている。同時に B2点とアース電位との間に B2点力もバイァ ス抵抗側を見たインピーダンスに比べ、充分小さ!、インピーダンス値となるようなキヤ パシタ C1が挿入されている。
[0009] 図 1のェミッタ接地トランジスタ Trlの動作点を A級にした場合、入力電力の電圧が 図 5 (特許第 3377675号公報の図 9参照)の VIで示すように充分小さぐその振幅 が B1点に与えられて!/、るバイアス電圧 VB1とベース ·ェミッタ間のダイオードの ON 電圧 V との電位差を越えない電圧振幅であるときは、上記トランジスタ Trlは線形動 th
作状態であり、利得'入出力電力の位相偏差は共に一定である。ところが、図 5の V2 で示すように入力電力の増加につれて、 B1点の電圧振幅 V2が増加し、上記 B1点 に与えられているバイアス電圧 VB1とベース 'ェミッタ間のダイオードの ON電圧 V と
th の電位差を越えると、トランジスタ Trlは非線形動作状態となり、 A級としての動作点 を保つことができず電力利得が徐々に減少していく。又、ベース'ェミッタ間のダイォ ードの ON電圧 V 以下の電位まで B1点の電圧値が振れると、上記トランジスタ Trl
th
のベース .ェミッタ間には、オン状態の時間と、オフ状態の時間とが発生する。
[0010] オン状態では、ベース'ェミッタ間のダイオードの入力インピーダンスは A級動作点 を保っているときと等しいが、オフ状態のときは、上記ベース'ェミッタ間のダイオード の入力インピーダンスは A級動作点を保って 、るときに比べ高 、インピーダンスにな るので、そのときの B1点の電圧値は、負側に大きく振れる。 A級動作点を保っている 場合は、時間平均では B1点の電圧値は V で一定であつたが、上記のオフ状態のと
B1
きは時間平均では V よりも小さい電圧値となる。ベース 'ェミッタ間ダイオードのジャ
B1
ンクシヨン容量値は電圧依存性を持っている。従って、ベース'ェミッタ間への印加電 圧が変動すると上記ベース'ェミッタ間ダイオードのジャンクション容量が変動し、エミ ッタ接地増幅器の入力インピーダンスが、入力電力が充分小さく A級動作を保ってい るときに比べ異なった値になる。
[0011] 一方、 B2点の電位は、定電圧源の電圧値と抵抗 Rl、 R2の分割比で決定され、入 力電力の増カロに影響されないので、 B1点の電位が上述のように徐々に小信号動作 時より下がってしまうと、図 1に示すダイオード D1にかかる電圧値 AVBE2は、図 2に 示すように徐々に増加していく。そのため上記ェミッタ接地のトランジスタ Trlのべ一 ス.エミッタ間ダイオードのジャンクション容量の変動とは、逆の変動をバイアス回路中 のダイオード D1の持つジャンクション容量は行うことになる。従って、徐々に入力電 力が増加していくと、入力電力の振幅が増加し、それに伴ってェミッタ接地トランジス タ Trlの入力インピーダンスが変動する力 ダイオード D1のインピーダンスがそれを 相殺するように変動するため、上記ェミッタ接地トランジスタ Trlの入力インピーダン スの変動を抑制し、通過位相偏差を従来回路に比べて小さくできる。更に、ダイォー ド D1にかかる電圧値が大きくなると、ダイオード D1を通ってトランジスタ Trlのベース に流れ込む電流値が増加するので、コレクタ電流が増加し、コレクタ端での出力電力 の飽和を解消でき、電力利得の減少も改善することができる。
[0012] し力しながら、入力電力が高くなり、ダイオード D1に流れるノィァス電流が増えると 、抵抗 R1による電圧降下により電圧が低下し、図 2の B2点の電位までもが下がって きてしまうためもはや定電圧源として動作できなくなってしまう。このため、ダイオード D1に流れる電流が無視できるくらいに抵抗 R2に流れる電流を増やさなければなら ないという第 1の問題がある。
[0013] この第 1の問題を軽減したのが同じく特許第 3377675号公報の図 4に記載されて いる、図 4の第 2の従来の増幅器である。図 4において、バイポーラトランジスタ Tr2は 抵抗 R1、R2で電源電圧 VBを分割するベースバイアス回路の B2点とトランジスタ Tr 1のベース間に上記トランジスタ Tr2のベース'ェミッタが順方向になるように接続され ており、上記トランジスタ Tr2のコレクタには、電源電圧 VCが印加される。ベースバイ ァス回路中の B2点即ち上記トランジスタ Tr2のベース端子と接地点との間には、上 記ベース力もバイアス用抵抗 R1、R2を見たときのインピーダンスよりも充分小さいィ ンピーダンスとなるようなキャパシタ C1が挿入されている。
[0014] この第 2の従来の増幅器は、図 1に示すベースバイアス回路に設けたダイオード D1 の PN接合を利用したものに対して、トランジスタ Tr2のベース 'ェミッタ間の PN接合 を利用するもので、回路の動作はダイオード D1をベースノィァス回路に設けた図 1 に示す第 1の従来の増幅器の場合と実質的に同じである。ただ、上記トランジスタ Tr 2は増幅回路を形成しているので、ベースバイアス電流はこのトランジスタ Tr 2によつ て増幅され、ェミッタ接地トランジスタ Trlのベースに供給される。従って、上記抵抗 R 1、 R2で構成した、もとのベースバイアスを生成するベースバイアス回路に流れる電 流を低減することができる。
[0015] し力しながら、低減されるとは言え、第 2の従来の増幅器にも、第 1の従来の増幅器 と同様にトランジスタ Tr2のベースに流れる電流が無視できるくら!/、に抵抗 R2に流れ る電流を増やさなければならないという第 1の問題が発生するのは同様である。さら に、ェミッタ接地バイポーラトランジスタは相互コンダクタンスが極めて高いため、ベー スに与える電圧を厳密に与える必要がある力 その電圧を抵抗 Rl、 R2による抵抗分 割で与えている第 1および第 2のバイアス回路では、温度や製造ばらつきなどによる ベース'ェミッタ間電圧変動の影響を大きく受けるという第 2の問題も生じる。
[0016] この第 1および第 2の問題を軽減したの力 特開 2002-9559号公報に記載されて いる第 3の従来の増幅器である。第 3の従来の増幅器の回路図を図 6 (特開 2002-9 559号公報の図 5参照)に示す。第 3の従来の増幅器では、抵抗 18を直接接地せず 、 ノイポーラトランジスタ Tr 19とバイポーラトランジスタ Tr20からなる基準電圧回路を 介して接地されている。バイポーラトランジスタ Tr 19のベースの電位は、バイポーラト ランジスタ Tr20の VBEとバイポーラトランジスタ Trl9の VBEの和に等しくなる。
[0017] 本回路は、バイポーラトランジスタ Tr20のコレクタ電流密度と、パワートランジスタ Tr 22のコレクタ電流密度が等しくなるように設計されている。従って、バイポーラトランジ スタ Tr20の VBEとパワートランジスタ Tr22の VBEは等しい。
[0018] パワートランジスタ Tr22のベース電流はバイポーラトランジスタ Tr21のェミッタ電流 に等しぐバイポーラトランジスタ Tr20のベース電流はバイポーラトランジスタ Trl 9の ェミッタ電流に等しぐバイポーラトランジスタ Tr20のェミッタ面積はバイポーラトラン ジスタ Trl 9のそれと等しく、かつパワートランジスタ Tr22のェミッタ面積はバイポーラ トランジスタ Tr21のそれより大きく設定されている。従って、バイポーラトランジスタ Tr 21の VBEの方力 バイポーラトランジスタ Trl 9の VBEよりも大きくなる。抵抗 18の電 圧降下は、バイポーラトランジスタ Tr21の VBEとバイポーラトランジスタ Trl9の VBE の差と等しくなる。
[0019] ここで、簡単のためトランジスタの直流電流増幅率が全て等しい j8であるとすると、 [0020] [数 1]
ΙΟτ,22 = ( 1 )
Figure imgf000007_0001
ここで、バイポーラトランジスタ Tr20のコレクタ電流密度と、パワートランジスタ Tr22 のコレクタ電流密度が等しくなるように設計されていることから、 IC と IC の関係
Tr22 Tr20 はパワートランジスタ Tr22とバイポーラトランジスタ Tr20の面積比の関係に等しい。 パワートランジスタ Tr22の面積を S 、バイポーラトランジスタ Tr20の面積を S とす
22 20 ると、
[0021] [数 2]
Figure imgf000007_0002
となり、 j8 2》lの場合は IC = (S ZS ) 1 の電流源となる。
Tr22 22 20 ref
この回路は、温度や製造ばらつきによる VBEの変化が互いに打ち消しあうため、前 述の第 2の問題を軽減できる。前述の第 1の問題に関しても、入力パワーの増加によ るパワートランジスタ Tr22の VBEの低下はバイポーラトランジスタ Tr20の VBEに影 響せず打ち消しあわないため、定電圧源に近い動作をすることができる。
[0023] ここで I は、
ref
[0024] [数 3] j B - VBETr2X - VBETr22 ( 3 )
で与えられるため、 VBE変動の影響を受ける。
[0025] し力し、図 4に示した第 2の従来の増幅器のバイアス回路力 トランジスタ Tr2のべ ースに流れる電流が無視できるくらいに抵抗 R2に流れる電流を増やさなければなら な ヽと 、う第 1の問題を持って 、たのに対し、図 6の第 3の従来の増幅器のバイアス 回路では、面積比を大きくとれば I の値を小さくできるため、 R17の値を大きくするこ
ref
とができ、変動は小さく抑えられる。
[0026] 以上では、特許第 3377675号公報の実施の形態に従い、増幅トランジスタを A級 にバイアスする場合を考えてきた。以降では、これらの従来の増幅器を、 B級もしくは 、 B級に近い AB級でバイアスする場合について説明する。 W— CDMAなどの CDM A携帯電話端末では、遠近問題 (近 、端末力 の電波の影響により遠くにある端末と 通信できなくなる問題)を避けるために、 50dBを超える大きな出力電力制御を行って いる。したがって、基地局の多い地域では低い電力で通信する頻度が増える。低い 電力で送信する場合の出力電力に対する消費電力の割合は、増幅器の動作を A級 力 B級に近づけるほど小さくなる。つまり、増幅器を B級に近い状態で動作させるほ ど高 ヽ電力付加効率が得られる。
[0027] ここで、 B級に近 、動作をするェミッタ接地増幅回路を、定電圧源に近!、動作をす る前述の第 1乃至第 3の従来の増幅器のバイアス回路でバイアスする場合を考える。 B級に近 、状態でバイアスしたェミッタ接地増幅回路はベース ·ェミッタ間ダイオード の整流作用により、入力電力の増加に伴 、ベース電流が増えるため図 7に示すよう に利得拡張を起こす。
[0028] この利得拡張特性を持つアンプに W— CDMA信号のような電力変化を伴う広帯域 変調された信号を入力すると利得変動が起きるが、このため信号が歪んでしまうとい う第 3の問題を引き起こす。この信号の歪みは図 8に示すように、通信チャネルの隣 にある隣接チャンネルへの妨害波となって現れる。通信チャネルの信号強度と隣接 チャネルの妨害波の強度の比を隣接チャネル漏洩電力(ACPR)と呼ぶ。
[0029] この第 3の問題を解決するための従来例として、特開 2000-183663号公報、特開 2002— 111400号公報、特開 2002— 171145号公報、特開平 10— 135750号公報 に挙げられるような歪みキャンセル手法がある。これらの手法には、図 9に示すように 、第 2増幅段に示す利得拡張特性を持つ増幅段に対し、第 1増幅段に示すもう一方 の増幅段を、利得圧縮特性を持つようにすることで、両者の利得変動を打ち消し、歪 み低減を図ると 、う共通点がある。以下ではこの利得拡張増幅段と利得圧縮増幅段 の歪み相殺について説明する。
[0030] 任意の増幅器の増幅特性をティラー展開したものを、
[0031] [数 4]
n とする。
[0032] この増幅器に、
[0033] [数 5]
Vin = A(sm ωχί + sin ω2ί) ( 5 ) という 2波の正弦波を入力すると、増幅器の非線形性により主信号および歪み成分 変化が生じる。
[0034] (4)に(5)を代入し、 η= 5まで計算すると、 V の周波数 ω の成分は、
out 1
[0035] [数 6]
Figure imgf000009_0001
となる。
[0036] sinの係数のうち、 a は増幅率 (つまり利得)、残りは利得の入力振幅に対する変 動(つまり利得拡張カゝ利得圧縮か)を表す。また V の周波数成分 2 ω — ω は、 out 1 2
[0037] [数 7]
Vout
Figure imgf000010_0001
+ 5 jsin(2 - ω2 )ί ( 7 ) となる。
[0038] (7)は、 V の 3次相互変調歪み(ΙΜ3)成分である。ここで、 aと a、 aが同符号の out 1 3 5
とき、 (6)は、入力振幅 Aの広い範囲で、 Aにつれて利得が増大する利得拡張特性を 示す。また、同じ条件のとき、(7)の sinの係数は、(6)の sinの係数と同じになる。この 場合を基本波と IM3の位相が同じであると定義する。
[0039] 通常、違う周波数の信号で位相は定義できな 、が、この場合入力に(5)に示した信 号を用いているため、周波数(ω — ω
2 1 )Ζ2πだけ離れた 2波の位相は、 2π Ζ( ω
2 ω )秒毎に揃う。同じぐ(ω — ω ) Ζ2 πだけ離れた基本波と ΙΜ3の位相角は、 2
1 2 1
π / ( ω ~ ω )秒毎に同じ角度を持っため、「位相が同じ」または「位相が逆」という
2 1
言葉で定義している。(6)、(7)は入力電力の広い範囲に渡って利得拡張を起こして V、る場合は基本波と ΙΜ3の位相が同じであることを示して!/、る。
[0040] ここで、前段の歪みを後段が増幅した ΙΜ3の位相と、後段が基本波を増幅すること で発生する ΙΜ3の位相が ± 90度以上違っていれば歪みの相殺現象がおきる。そこ で、以降では簡単のため基本波と ΙΜ3の位相角が士 90度以内の場合を「位相が同 じ」とし、それ以上の場合を「位相が逆」と表現する。
[0041] 図 6に示した第 3の従来の増幅器を Β級に近い ΑΒ級にバイアスし、解析した場合の 基本波と ΙΜ3信号の位相の関係を例として図 10に示す。ここで ΙΜ3信号の大きさは 基本波と比較して小さ 、ため 10倍に拡大して表示して 、る。位相の絶対値は単に入 出力の遅延を表しているだけなので特に意味を持っていない。また、そのときの利得 拡張の様子を図 11に示す。
[0042] 図 11には図 10に描画した入力電力範囲を矢印で示してある。多くの場合、利得拡 張特性を示す増幅器では、基本波と IM3の位相が同じである。図 12の利得可変増 幅器と乗算器を用いた利得拡張増幅器を用いて解析を行った場合の基本波と IM3 信号の位相の関係の例を図 13に示す。ここでも IM3の大きさは 10倍に拡大して表 示している。図示されるように、基本波と IM3の位相が同じである。また、そのときの 利得拡張の様子を図 14に示す。図 14は利得拡張特性を示して ヽる。
[0043] 逆に、多くの場合、利得圧縮特性を示す増幅器では、基本波と IM3の位相が逆で ある。利得拡張増幅器の場合と同じぐ図 12の利得可変増幅器 (利得制御端子の制 御特性を逆にして用いて ヽる)と乗算器を用いた利得拡張増幅器を用いて解析を行 つた場合の基本波と IM3信号の位相の関係の例を図 15に示す。ここでも IM3の大き さは 10倍に拡大して表示している。図示されるように、基本波と IM3の位相が逆であ る。また、そのときの利得拡張の様子を図 16に示す。図 16は利得圧縮特性を示して いる。
[0044] つまり、利得拡張増幅段と利得圧縮増幅段を組み合わせて歪みを低減できる理由 は、それぞれの段で基本波と IM3の位相角が反転しているため、前段で出た IM3を 後段が増幅したものと、後段が基本波を増幅することにより発生した IM3が反対の位 相を持ち、相殺しているからである。
[0045] それぞれの従来例では以下のようにして歪み低減を図って!/、る。まず、特開 2000
183663号公報記載の従来例では、図 9における第 1増幅段を、利得拡張特性を 持つよう FET増幅回路のゲートバイアスを B級に、第 2増幅段を、利得圧縮特性を持 つよう FET増幅回路のゲートバイアスを AB級にすることにより、利得拡張特性と利得 圧縮特性をキャンセルさせ歪みを低減して 、る。
[0046] 次に、特開 2002—111400号公報記載の従来例では、図 9における第 1増幅段を 、利得拡張特性を持つよう HBT増幅回路のベースノ ィァスを AB級に、第 2増幅段を 、利得圧縮特性を持つよう HBT増幅回路のゲートバイアスを A級にすることにより、 利得拡張特性と利得圧縮特性をキャンセルさせ歪みを低減している。
[0047] そして、特開 2002— 171145号公報記載の従来例では、図 9における第 1増幅段 を、利得圧縮特性を持つよう MES増幅回路のゲートバイアスを A級に、第 2増幅段を 、利得拡張特性を持つよう MOS増幅回路のゲートバイアスを AB級にすることにより 、利得拡張特性と利得圧縮特性をキャンセルさせ歪みを低減して 、る。
[0048] 最後に、特開平 10— 135750号公報記載の従来例では、図 9における第 1増幅段 を、利得拡張特性を持つよう HBT増幅回路のベースバイアスを AB級もしくは C級に 、第 2増幅段を、利得圧縮特性を持つよう HBT増幅回路のゲートバイアスを A級にす ることにより、利得拡張特性と利得圧縮特性をキャンセルさせ歪みを低減している。
[0049] 簡単のため、これらの従来例を総じて第 4の従来の増幅器と呼ぶ。これら第 4の従 来の増幅器は、利得拡張増幅段と利得圧縮増幅段を組み合わせて歪み低減を図つ ているために、低出力時の電力付加効率の良い利得拡張特性を持つアンプを、全て の増幅段に適用することができないという第 4の問題を持っている。
[0050] 他に、位相反転させた歪み成分を相殺させることにより歪み低減を図った従来例と して、特許 3337766号公報、特開 2003— 338713号公報に挙げられるような、差周 波数注入技術がある。
[0051] 図 17は、特許 3337766号公報の図 9に示された 2次歪み(差周波数)注入による 歪み補償の説明図である。非線形素子に差周波数を注入することにより、位相反転 させた歪み成分を相殺させて!/、る。
[0052] (4)にお 、て、入力信号を
[0053] [数 8]
Vin = A\ sin ωλί + sin ω + Ό cos{co2 - cox )t) ( 8 ) という 2波の正弦波とその差周波をカ卩えたものであるとして、(4)に(8)を代入し n= 5 まで計算すると、増幅器の非線形性により生じる V の基本波(ω )の成分は、 out 1
[0054] [数 9]
V out Id)]
{a, A +
+ α2Α D
Figure imgf000012_0001
となる。
[0055] また V の ΙΜ3 (2 ω — ω )成分は、
out 1 2
[0056] [数 10]
Figure imgf000013_0001
3 ^3 ίΐ + Ζ)2 )+— l + 3Dz + -D + 16α2Α2 + -a4A (9D + 3D3 ) 4 3 ' 8 2 、 ' χ sin(2<a1 - ω2
( 1 0 ) となる。
[0057] よって、注入量 Dを (負の)適当な値に選べばある入力振幅 Αにおいて数 10に示し た IM3成分を小さくできることがわかる。し力しながら、入力振幅 Aの値と独立に IM3 を小さくするような注入量 Dを選べな!/、ため、フィードバックやフィードフォワードなど 何らかの方法で注入量を最適にする必要が生じる。
[0058] 簡単のため、特許 3337766号公報、特開 2003— 338713号公報の従来例を総じ て第 5の従来の増幅器と呼ぶ。第 5の従来の増幅器では、最適な注入量が入力振幅 に依存するため、フィードバックやフィードフォワードなどによる注入量調整が必要に なると 、う第 5の問題を持って 、る。
[0059] 以上まとめると、従来技術には、次のような問題点がある。
[0060] 前述した第 3の問題点の通り、第 1乃至第 3の従来の増幅器の課題は、低出力時の 電力付加効率を上げるために B級に近 、状態でバイアスして用いると、利得拡張に より信号が歪んでしまうことである。
[0061] また、前述した第 4の問題点の通り、第 4の従来の増幅器の課題は、前述の第 3の 問題点があるために、低出力時の電力付加効率の良い増幅段を、全ての段に用い ることができな ヽと 、うことである。
[0062] そして、前述した第 5の問題点の通り、第 5の従来の増幅器の課題は、差周波信号 の注入は、最適な注入量が入力振幅に依存するため、フィードバックやフィードフォ ワードなどによる注入量調整が必要になるということである。
発明の開示 [0063] 本発明の第 1の目的は、利得拡張特性を持つ増幅段に対して、歪みを反転する手 段を提供することにある。
[0064] 本発明の第 2の目的は、低出力時の電力付加効率の良い B級に近い状態でバイァ スして利得拡張特性を持つ増幅段を多段増幅器の全ての段にぉ 、て用いる手法を 提供することにある。
[0065] 本発明の第 3の目的は、 B級に近 、状態でバイアスして利得拡張特性を持つ増幅 段を多段増幅器の全ての段において用いる手法をフィードバックやフィードフォヮ一 ドなどの最適量制御をすることなく提供することにある。
[0066] 本発明の増幅器は、入力電力または出力電力のある範囲において前記入力電力 または前記出力電力の増加に応じて利得が増加する利得拡張特性を持つ増幅器に おいて、前記増幅器に周波数の近い 2波の信号を入力した際、前記 2波の信号の位 相が同じになる瞬間における 3次相互変調歪みの位相力 前記 2波の信号の位相よ り 90度以上回転する出力特性を持つことを特徴とする。
[0067] 本発明によれば、多段増幅器において、各段の歪みを互いに相殺することができる 。また、低出力時の電力付加効率の良い B級に近い状態でバイアスして利得拡張特 性を持つ増幅段を多段増幅器の全ての段において用いることができる。
図面の簡単な説明
[0068] [図 1]第 1の従来の増幅器を説明する回路図である。
[図 2]第 1の従来の増幅器の入力電力に対する各点の電位差について説明する図で ある。
[図 3]第 1の従来の増幅器の入力電力に対する利得と位相の変動について説明する 図である。
[図 4]第 2の従来の増幅器を説明する回路図である。
[図 5]第 1の従来の増幅器を説明する図である。
[図 6]第 3の従来の増幅器を説明する回路図である。
[図 7]利得拡張特性について説明する回路図である。
[図 8]隣接チャネル漏洩電力(ACPR)について説明する図である。
[図 9]第 4の従来の増幅器を説明する図である。 [図 10]第 3の従来の増幅器を B級に近い AB級にバイアスした場合の基本波と IM3信 号の位相の関係を示す。
[図 11]第 3の従来の増幅器を B級に近い AB級にバイアスした場合の入力電力と利得 の関係を説明する図である。
圆 12]利得拡張増幅器について説明する回路図である。
圆 13]—般的な利得拡張増幅器における、基本波と歪みの位相関係を説明する図 である。
圆 14]図 12の回路で利得拡張増幅器をつくった場合の入力電力と利得の関係を説 明する図である。
圆 15]—般的な利得圧縮増幅器における、基本波と歪みの位相関係を説明する図 である。
圆 16]図 12の回路で利得圧縮増幅器をつくった場合の入力電力と利得の関係を説 明する図である。
圆 17]第 5の従来の増幅器について説明する図である。
圆 18]第 2の従来の増幅回路の基本波と歪みの位相関係を説明する図である。 圆 19]第 2の従来の増幅回路の出力電力と利得の関係を説明する図である。
[図 20]第 2の従来の増幅回路のトランジスタ Trlのベース'ェミッタ間電圧とトランジス タ Tr2のェミッタ電流との関係を説明する図である。
圆 21]第 2の従来の増幅回路の基本波と歪みの位相関係を説明する図である。 圆 22]第 2の従来の増幅回路の出力電力と利得の関係を説明する図である。
圆 23]第 2の従来の増幅回路の基本波と歪みの位相関係を説明する図である。 圆 24]本発明の第 1の実施の形態を示す図である。
圆 25]本発明の第 2の実施の形態を説明する回路図である。
圆 26]本発明の第 2の実施の形態における基本波と歪みの位相関係を説明する図 である。
圆 27]本発明の第 2の実施の形態を示す図である。
圆 28]本発明の第 2の実施の形態を説明する回路図である。
圆 29]本発明の第 2の実施の形態における基本波と歪みの位相関係を説明する図 である。
[図 30]本発明の第 3の実施の形態を示す図である。
[図 31]本発明の第 4の実施の形態を示す図である。
[図 32]本発明の第 5の実施の形態を示す図である。
[図 33]本発明の第 6の実施の形態を示す図である。
[図 34]本発明の第 6の実施の形態を説明する回路図である。
[図 35]本発明の第 6の実施の形態における基本波と歪みの位相関係を説明する図 である。
[図 36]本発明の第 6の実施の形態におけるトランジスタ 26のェミッタ電位の瞬時地と 、同じくトランジスタ 26のェミッタ供給される電流の関係を説明する図である。
[図 37]本発明の第 7の実施の形態において、多段増幅器での歪み相殺の概念を示 す図である。
[図 38]本発明の第 7の実施の形態を示す図である。
[図 39]本発明の第 7の実施の形態を説明する回路図である。
[図 40]本発明の第 7の実施の形態を説明する回路図である。
[図 41]本発明の第 7の実施の形態による歪み相殺を説明する図である。
発明を実施するための最良の形態
[0069] まず、本発明の原理について説明する。
[0070] 本発明の増幅器は、入力電力を増幅して出力電力とし、前記入力電力または前記 出力電力のある範囲において前記入力電力または前記出力電力の増加に応じて利 得が増加する利得拡張特性を持つ増幅器であり、前記増幅器が入力に高周波にお V、て振幅を圧縮する機構を持つことを特徴とする。
[0071] 本発明を多段増幅器に用いる場合は、入力電力を増幅して出力電力とし、少なくと も 2段以上の増幅段が前記入力電力または前記出力電力のある範囲において前記 入力電力または前記出力電力の増加に応じて利得が増加する利得拡張特性を持つ 多段増幅器であり、前記増幅段のうち終段以外の少なくとも 1段が (利得拡張電力範 囲において)、入力に高周波において振幅を圧縮する機構を持つことを特徴とする。
[0072] 第 4の従来の増幅器として示した従来例では、利得拡張増幅段と利得圧縮増幅段 を組み合わせて歪み低減を図っていた。多くの増幅器ではこの関係が成り立つが、 利得拡増幅段と利得圧縮増幅段を組み合わせれば歪み低減できると 、うのは、必ず しも本質的ではない。なぜならば、数 4の増幅器の特性は、入力の瞬時値が出力の 瞬時値としてどう 、う値をとるかと!/、う関係を与えて 、るだけであり、例えば増幅器を B 級に近いバイアスとした場合に、入力電力の増加とともにバイアス量が増えて利得拡 張すると 、うような効果は含んで 、な 、。
[0073] これはつまり、平均入力電力の増加にともないバイアス量が増えて利得拡張するよ うな B級に近いバイアスの増幅器でも入力の瞬時値と出力の瞬時値の関係を変える ことにより基本波と IM3の位相を逆にすることが出来るということである。本発明の増 幅器では、増幅器入力の瞬時振幅が圧縮するような振幅圧縮特性を持たせることに よって、利得拡張特性を持ち、基本波と IM3の位相が逆になる特性を持たせた増幅 段と、同じく利得拡張特性を持ち、基本波と IM3の位相が同じである特性を持つ通 常の増幅段との間で、歪みを相殺することで、出力にあらわれる歪みを低減する。し V、ては、低出力時にぉ 、て効率の良 、B級に近 、状態にバイアスした増幅段を増幅 器の全ての段に使うことができるようになる。
[0074] 作用についてさらに詳しく説明するために、図 4に示した第 2の従来の増幅器にお いて、端子 B2を定電圧源でバイアスした場合を例にとって説明する (前述した入力 電力が上がると B2の電位が下がるという第 1の問題は、 B2を定電圧源でバイアスす ることにより回避されている。また、温度や製造ばらつきに関する第 2の問題はここで は想定しない)。第 2の従来の増幅器を B級に近いバイアスで用いた場合、ある一定 の条件を満たすことにより、利得拡張領域で歪みを反転させる増幅器になり得る。
[0075] その条件とは、増幅トランジスタ Trlに対して、ノィァス供給トランジスタ Tr2のサイ ズが 10分の 1以上の大きさであり、また、入力振幅がある程度大きいことである。図 1 8に、 Trlの面積: Tr2の面積の比を 5:1にしたものを増幅器 Aとして、増幅器 Aを解 祈した場合の基本波と IM3の位相の関係を示す。 IM3は 50倍に拡大して表示して いる。入力が小さいとき、 IM3は最初基本波と同じ方向に生じた後反転して基本波と 逆転する。図 19に、このときの出力電力対利得の関係を示す。図 18に表示した電力 範囲は出力電力 16dBm以下の利得拡張している範囲なので、利得拡張電力範囲 でも基本波と IM3の位相が逆になつている。
[0076] 振幅が大きなときに IM3の位相が逆になる理由は以下の通りである。図 20にトラン ジスタ Trlの VBEの瞬時値とトランジスタ Tr2のェミッタカゝら供給される電流の関係を 示す。この図はトランジスタ Tr2の内部インピーダンスを表す負荷線である。図中に示 した 2本の線は、 2周波数を入力し、出力が 16dBm、 6dBmとなる場合の最大振幅付 近(2周波がちょうど足し合わさる瞬間)の負荷線を表して 、る。図からわかるように、 小振幅時と比較して、大振幅が入った場合にはベース電位が下がったときの Tr2の 出力インピーダンスが極端に小さくなつていることがわかる。
[0077] このインピーダンスの変化により入力信号の一部はバイアス回路側に漏れる形にな り、振幅の瞬時値は圧縮され、出力の基本波と IM3の位相が逆になる。
[0078] ここで、 Trlの面積を 7.2倍拡大し、 Trlの面積: Tr2の面積の比を 36: 1にしたもの を増幅器 Bとする。そして、増幅器 Bを解析した場合の基本波と IM3の位相の関係を 図 21に示す。 IM3は同じく 50倍に拡大して表示している。図 22に、このときの出力 電力対利得の関係を示す。図 21に表示した電力範囲は出力電力 16dBm以下の利 得拡張している範囲である。この場合、基本波と IM3の位相が同じになっている。こ れは、 Trlの面積を拡大したことにより Trlのベースの入力インピーダンスが下がった ため、バイアス回路のインピーダンスが変化して小さくなつた場合の影響が見えにくく なったためである。これは、 Trlのベースインピーダンスが下がったことにより、同じ入 力電力での電圧振幅が小さくなるため、 Tr2の出力インピーダンスを下げるまで振幅 を振り込むための入力電力が等価的に高くなるとも言い換えられる。
[0079] ここで、増幅器 Aがある入力電力範囲で基本波と IM3の位相が逆になり、増幅器 B が基本波と IM3の位相が同じであるならば、増幅器 Aを前段、増幅器 Bを後段とした 2段増幅器では歪みを低減できるように見える力 そうではない。図 22より、出力 16d Bmのときの利得は約 14dBだとわ力るので、増幅器 Bには 2dBmの入力電力が入る 。増幅器 Aの出力電力 2dBmのときの基本波と IM3の関係を図 23に示す。この場合 、基本波と IM3の位相は同じであるため、増幅器 Aで生じた IM3を増幅器 Bで増幅し たものと、増幅器 Bで生じた IM3が足し合わされ、歪みは増加してしまう。
[0080] ここで、本発明の増幅器では、入力端子から見た増幅トランジスタ側の入力インピ 一ダンスを大きく見せることにより、増幅器歪みは、より低い入力振幅力 基本波と IM 3が逆の位相を持つようになり、後段の基本波と IM3が同じ位相である増幅器と歪み を相殺することができるようになり、しいては、低出力時において効率の良い B級に近 い状態にノィァスした増幅段を増幅器の全ての段に使うことができるようになる。
[0081] さらに、本発明を多段増幅器に用いる場合では、前段で発生させた歪みと後段で 発生させた歪みを相殺させて!/、る。通常 IM3は入力電力増加分の 3倍増加するため 、前段と後段の歪み量は連動して増える。そのため、本発明によれば、フィードバック 、フィードフォワードなど入力電 -力 4 _ に応じた最適制御を行なうことなしに、入力電力の
4
広 、範囲で歪み低減効果を得ることができる。
[0082] ここで、入力部に振幅圧縮を持たせることで利得拡張増幅器の歪みを低減できる 例として、主信号の3倍波を注入する場合を考える。
[0083] (4)において、入力信号を
[0084] [数 11]
Vin = A {sin ωχί + sm ω2ί + Z)(sin 3<w + sin 3<¾2ί )} ( 1 1 ) という 2波の正弦波とその 3倍波をカ卩えたものであるとする。正弦波に 3倍波をカ卩える と、基本波のピーク値で 3倍波が逆位相のピーク値を持つことになるので、最大振幅 が圧縮される。
[0085] (4)に(11)を代入し η= 5まで計算すると、増幅器の非線形性により生じる V の基
out 本波(ω )の成分は、
[0086] [数 12]
25 ,
aiA + -a3A3l l - -D2 H α5Α' \ - ^D + -D2 - -D' + -D4
4 8 10 5
X smiy
( 1 2 ) となる。
[0087] また V の ΙΜ3 (2 ω —ω )成分は、 [0088] [数 13]
Figure imgf000020_0001
( 1 3 ) となる。
[0089] よって、注入量 Dを適当な値に選べばある入力振幅 Aにおいて(13)に示した IM3 成分を小さくできることがわかる。この場合、(10)とは違い、各項を独自に消すことが できる。例えば、 D = 0.5とすれば IM3の aの項が 0になる。よって、注入量をある値
3
に固定したままでも、比較的広!、入力振幅 Aの範囲で歪みを低減できる。
[0090] 以下、具体的な実施の形態について説明していく。
[0091] (第 1の実施の形態)図 24は本発明の第 1の実施の形態である基本波に対する IM 3の位相を逆にする増幅器を表す図である。増幅トランジスタ 1はェミッタ接地増幅回 路を形成し、トランジスタ 1のベースはインピーダンス素子 2を介して入力整合回路 3と バイアス供給ダイオード 4の力ソードに接続されて 、る。バイアス供給ダイオード 4の アノードは高周波で十分低いインピーダンスとなる基準電源 5に接続されている。トラ ンジスタ 1のコレクタは、負荷 6を介してコレクタ電源 7に接続され、また出力整合回路 8を介して出力端子 9につながれている。
[0092] 本実施の形態を表す図 24は、第 1の従来例を表す図 1に対応している。図 24に示 す第 1の実施の形態と、図 1の第 1の従来例を比較すると、従来技術がバイアス供給 ダイオード D1の力ソードを直接増幅トランジスタ Trlのベース端子に接続しているの に対し、本実施の形態では、バイアス供給ダイオード 4の力ソードは、インピーダンス 素子 2を介して増幅 Trlに接続されて!、る。インピーダンス素子 2を接続することによ り、入力端子 10から見た増幅トランジスタ 1の入力インピーダンスを高く見せ、基本波 と IM3の位相が逆になる状態を低い入力電力力 達成する。ここで、ノ ィァスはイン ピーダンス素子 2を介して増幅トランジスタ 1に供給されて 、るため、このインピーダン ス素子 2は直流電流を阻止しないものである。本実施の形態は後述の実施の形態 2 と効果や動作がほぼ同じなので、第 2の実施の形態において、まとめて説明する。 [0093] (第 2の実施の形態)図 27は本発明の第 2の実施の形態である基本波に対する IM 3の位相を逆にする増幅器を表す図で、第 2の従来例の図 4に対応している。本実施 の形態は、第 1の実施の形態のダイオード 4の代わりに、ノィァス供給トランジスタ 11 のベース .ェミッタ間を用いている。そのため、効果や動作は第 1の実施の形態と同じ である。本実施例によると、基準電源 5を抵抗で実現した際に、抵抗による電圧降下 が起きるという前述の第 2の問題点を軽減できる。本実施の形態でも、ノ ィァスはイン ピーダンス素子 21を介して増幅トランジスタ 1に供給されているため、このインピーダ ンス素子 21は直流電流を阻止しないものである。本実施の形態は前述の第 1の実施 の形態と効果や動作がほぼ同じなので、以下本実施の形態において、まとめて説明 する。
[0094] 図 25は本発明の第 2の実施の形態をより具体的な例で説明する図である。第 1の 実施の形態の説明に対してはバイアス供給トランジスタ 11のベース'ェミッタ間をバイ ァス供給ダイオード 4と考える。図 25はインピーダンス素子 2として抵抗 13とコンデン サ容量 14の並列回路を用いたより具体的な例を示したものである。また、基準電源 5 として、図 6に示した第 3の従来の増幅器と同様の構成の基準電源 35を用いた。ただ し、高周波的に十分低 ヽインピーダンスとなるようにバイアス供給トランジスタ 11のべ ースを、容量 19を用いて接地した。
[0095] 解析のためのトランジスタモデルとして、 GaAsヘテロ接合バイポーラトランジスタ(H BT)を用い、増幅トランジスタ 1としてェミッタ面積が 120 μ m2の単位 ΗΒΤを 5個並 列したものを使用し、インピーダンス素子 2の抵抗 13は、トランジスタ 1のバラスト抵抗 も兼ねて 250 Ωの抵抗を 5個並列にし、インピーダンス素子 2の容量 14は 0.8pFのも のを 5個並列にして構成した。ノィァス供給トランジスタ 11としてェミッタ面積を 120 /z m2の HBTを使用した。基準電源 35のトランジスタ 15、 16にはェミッタ面積 30 m 2の HBTを使用した。基準電源 35内の容量 19としては、 2pFの容量を用いた。負荷 6としては基本波に対して 1/4波長の長さとなる線路を用い、コレクタ電源 7とバイァ ス電源 12には 3.5 Vの定電圧源を用いた。
[0096] 入力端子 10から入力信号のないときの増幅トランジスタ 1のコレクタ電流が 5mAと なるよう基準電源 35の回路パラメータおよび制御電源 20を設定し、基本波として fl = 1948 (MHz)、 f2= 1952 (MHz)の 2波を入力し解析した場合の、出力電力 2dB mのときの基本波と IM3の関係を図 26に示す。ここで、 IM3の大きさは 50倍に拡大 して表示して 、る。基本波に対する IM3の位相が逆になつて!/、る。
[0097] 全く同じ条件で、図 25の回路図における、 1.バイアス供給トランジスタ 11のェミッタ とインピーダンス素子 2内の容量 14を直接つないでいる配線を切断する、 2.インピ 一ダンス素子 2をなくし、バイアス供給トランジスタ 11のェミッタを増幅トランジスタ 1の ベースに直接つなぎ、バラスト抵抗を 2.2 Ω ( = 250/ β Ω )にしてェミッタ側に接続 する、 3.基準電源 35内の容量 19を取り除ぐのいずれを行った場合でも、高周波に 対して入力端子 10 (入力整合回路 3の出口)から見た増幅トランジスタ 1のベース入 力インピーダンスに対するバイアス供給トランジスタ 11のェミッタ出力インピーダンス が高くなるため、出力電力 2dBmのときの基本波に対する ΙΜ3の位相は同じになる。
[0098] 図 28は本発明の第 2の実施の形態をより具体的に説明する他の例を示した図で、 インピーダンス素子 21としてインダクタ 22を用いたものである。ここでも、第 1の実施 の形態の説明に対してはバイアス供給トランジスタ 11のベース'ェミッタ間をバイアス 供給ダイオード 4と考える。インピーダンス素子 21として 5nHのインダクタ 22を用い、 ノ ラスト抵抗を 2.2 Ω ( = 250/ β Ω )にしてェミッタ側に並列に接続する以外は第 1 の実施の形態と同じ条件で解析した場合の、出力電力 2dBmのときの基本波と ΙΜ3 の関係を図 29に示す。ここで、 IM3の大きさは 50倍に拡大して表示している。基本 波に対する IM3の位相が逆になつている。
[0099] ここで、図 29に示した本実施の形態の基本波と IM3の大きさの割合と、図 23に示 した従来例の基本波と IM3の大きさの割合を比較すると本実施例の方が基本波に対 する IM3の大きさの割合が大きい。このことは、本発明が多段増幅器において歪み を低減する技術であり必ずしも 1段の増幅器での歪みを低減する技術ではな 、ことを 示している。
[0100] 本実施例と全く同じ条件で、図 28の回路図における、 1.インピーダンス素子である インダクタ 22をなくす、 2.基準電源 35内の容量を取り除ぐのいずれを行った場合 でも、高周波に対して入力端子 10 (入力整合回路 3の出口)から見た増幅トランジス タ 1のベース入力インピーダンスに対するバイアス供給トランジスタ 11のェミッタ出力 インピーダンスが高くなるため、出力電力 2dBmのときの基本波に対する IM3の位相 は同じになる。
[0101] (第 3の実施の形態)図 30は本発明の第 3の実施の形態である基本波に対する IM 3の位相を逆にする増幅器を表す図である。増幅トランジスタ 1はェミッタ接地増幅回 路を形成し、トランジスタ 1のベースはバイアス供給ダイオード 23によってバイアスさ れている。また、同じくトランジスタ 1のベースはインピーダンス素子 25を介して入力 整合回路 3とバイアス供給ダイオード 24に接続されて ヽる。バイアス供給ダイオード 2 3および 24のアノードは基準電源 5に接続されている。トランジスタ 1のコレクタは、負 荷 6を介してコレクタ電源 7に接続され、また出力整合回路 8を介して出力端子 9につ ながれている。
[0102] 本実施の形態は後述する第 4から第 6の実施の形態と効果や動作が同じなので、 第 6の実施の形態において、まとめて説明する。
[0103] (第 4の実施の形態)図 31は本発明の第 4の実施の形態である基本波に対する IM 3の位相を逆にする増幅器を表す図である。本実施の形態は、第 3の実施の形態の ダイオード 24の代わりにバイポーラトランジスタ 26のベース 'ェミッタ間を用いている。 そのため、効果や動作は第 3の実施の形態、および後述する第 5から第 6の実施の 形態と効果や動作が同じなので、第 6の実施の形態において、まとめて説明する。
[0104] (第 5の実施の形態)図 32は本発明の第 5の実施の形態である基本波に対する IM 3の位相を逆にする増幅器を表す図である。本実施の形態は、第 3の実施の形態の ダイオード 23として、バイポーラトランジスタ 27のベース'ェミッタ間を用いている。そ のため、効果や動作は第 3の実施の形態、第 4の実施の形態、および後述する第 6の 実施の形態と効果や動作が同じなので、第 6の実施の形態において、まとめて説明 する。
[0105] (第 6の実施の形態)図 33は本発明の第 6の実施の形態である基本波に対する IM 3の位相を逆にする増幅器を表す図である。本実施の形態は、第 3の実施の形態の ダイオード 23および 24として、バイアス供給トランジスタ 26、 27のベース'ェミッタ間 を用いている。そのため、効果や動作は上記第 3から第 5の実施の形態と同じである [0106] 第 3乃至第 6の実施の形態の動作について基本波に対する IM3の位相が逆になる 理由は、第 1乃至第 2の実施の形態とほぼ同じである。本実施の形態は上記第 3から 第 5の実施の形態と効果や動作が同じなので、以下、第 6の実施の形態を例にしてま とめて説明する。
[0107] 図 34は本発明の第 6の実施の形態を説明する図である。図 34は図 33におけるィ ンピーダンス素子 25として、抵抗 30と抵抗 31の直列回路を容量 32と並列回路にし ている。また、基準電源 5として、図 6に示した第 3の従来の増幅器と同じ構成の基準 電源 36を用いた。
[0108] 解析のためのトランジスタモデルとして、 GaAsヘテロ接合バイポーラトランジスタ(H BT)を用い、増幅トランジスタ 1としてェミッタ面積が 120 μ m2の単位 ΗΒΤを 5個並 列したものを使用し、インピーダンス素子 25の抵抗 30は、トランジスタのバラスト抵抗 も兼ねて 250 Ωの抵抗を 5個平行にし、同じく抵抗 31は、 lk Qの抵抗を用いた。イン ピーダンス素子 25の容量 32は 0.8pFのものを 5個平行にして構成した。ノ ィァス供 給トランジスタ 27としてェミッタ面積を 120 /z m2の HBTを使用した。また、ノ ィァス供 給トランジスタ 26としてェミッタ面積を 30 m2の HBTを使用した。基準電源 36のトラ ンジスタ 15、 16にはェミッタ面積 30 m2のものを使用した。負荷 6としては基本波に 対して 1/4波長の長さとなる線路を用い、コレクタ電源 7とバイアス電源 12には 3.5V の定電圧源を用いた。
[0109] 入力端子 10からの入力信号のないときの増幅トランジスタ 1のコレクタ電流が 5mA となるよう基準電源 36の回路パラメータおよび制御電源 20を設定し、基本波として fl = 1948 (MHz)、 f2= 1952 (MHz)の 2波を入力し解析した場合の、出力電力 2dB mのときの基本波と IM3の関係を図 35に示す。ここで、 IM3の大きさは 50倍に拡大 して表示して 、る。基本波に対する IM3の位相が逆になつて!/、る。
[0110] 図 36にトランジスタ 26のェミッタ電位の瞬時値と同じくトランジスタ 26のェミッタから 供給される電流の関係を示す。この図はトランジスタ 26の内部インピーダンスを表す 負荷線である。図中に示した 2本の線は、 2周波数を入力し、出力が 10dBm、— 3dB mとなる場合の最大振幅付近(2周波がちょうど足し合わさる瞬間)の負荷線を表して いる。図からわ力るように、小振幅時と比較して、大振幅が入った場合にはベース電 位が下がったときのトランジスタ 26の出力インピーダンスが極端に小さくなつているこ とがわかる。
[0111] このインピーダンスの変化により増幅トランジスタ 1に入力される振幅の瞬時値が圧 縮され、出力の基本波と IM3の位相が逆になる点は第 1乃至第 2の実施の形態と同 じである。第 3乃至第 6の実施の形態をとる利点は、以下の通りである。第 1乃至第 2 の実施の形態では、インピーダンス素子として抵抗と容量の並列回路などインピーダ ンスの実部を持つ回路を用い、入力整合を取った際に、インピーダンス実部によりェ ネルギ一が消費されるため損失が生じる。また、抵抗は増幅トランジスタ 1へのバイァ ス電流を供給しているためむやみに大きくできない。第 3乃至第 6の実施の形態をと れば増幅トランジスタ 1へのバイアス電流供給はバイアス供給トランジスタ 27によって 行えるため、抵抗 31の値を大きくし、高周波が抵抗側を通らないようにできる。
[0112] また、本実施例では基準電源を高周波的に低インピーダンスにするような工夫は特 に行っていないが、バイアス供給トランジスタ 26および 27のベースを、容量を用いて 接地した場合にも同様の効果が得られる。
[0113] (第 7の実施の形態)図 37および図 38は本発明の第 7の実施の形態を示す多段増 幅器を表す図である。図 38【こお!ヽて、 80、 82、 84ίま整合回路、 81、 83ίま増幅段を 示す。図 38に示すように、入力電力または出力電力のある範囲において入力電力ま たは出力電力の増加に応じて利得が増加する利得拡張特性を持つ 2段以上の増幅 段を持つ多段増幅器において、終段以外の段が入力に高周波における振幅圧縮機 構を持つようになつている。
[0114] 終段に振幅圧縮機構を持つ増幅段を用いない理由は、終段の増幅トランジスタの サイズは通常、全増幅トランジスタの中で最大となるため、入力インピーダンスが低く なり、基本波に対する ΙΜ3の位相が逆になるよう制御するのが困難なためである。
[0115] 図 39、図 40、および図 41は本実施の形態を説明する図である。本実施の形態は 入力に高周波における振幅圧縮機構を持つ増幅段として、第 1の実施の形態と同じ 構成(図 25)の増幅段を用いている。初段増幅トランジスタ 61として、ェミッタ面積が 180 μ m2の単位 ΗΒΤを 3個並列したものを使用し、インピーダンス素子 62の抵抗 4 3は、トランジスタ 61のバラスト抵抗も兼ねて 250 Ωの抵抗を 3個並列にし、インピー ダンス素子 62の容量 44は 0.8pFのものを 3個並列にして構成した。バイアス供給トラ ンジスタ 42としてェミッタ面積を 60 μ m2の ΗΒΤを使用した。
[0116] 終段増幅トランジスタ 71として、ェミッタ面積が 180 μ m2の単位 ΗΒΤを 24個並列し たものを使用し、インピーダンス素子 72の抵抗 53は、トランジスタのバラスト抵抗も兼 ねて 250 Ωの抵抗を 24個並列にし、インピーダンス素子 72の容量 54は 0.8pFのも のを 24個並列にして構成した。ノィァス供給トランジスタ 52としてェミッタ面積を 120 /z m2の HBTを 2個並列に使用した。基準電源 35および 46のトランジスタには、エミ ッタ面積 30 m2の HBTを使用した。基準電源 35内の容量 39としては、 3pFの容量 を用いた。負荷 66、 76としては基本波に対して 1Z4波長の長さとなる伝送線路を用 い、コレクタ電源 67、 77とノ ィァス電源 36、 56には 3.5Vの定電圧源を用いた。
[0117] 入力端子 60から入力信号のないときの増幅トランジスタ 61のコレクタ電流が 5mA、 同じく入力端子 55から入力信号のないときの増幅トランジスタ 71のコレクタ電流が 15 mA、となるよう基準電源 35、 46のパラメータおよび制御電源 45、 49を設定し、 W— CDMA信号を入力して実測した場合の出力電力に対する利得と ACPRの変化を表 した図が図 41である。図 41には、比較のため、図 40に示した終段のみの増幅器を 測定した場合の出力電力に対する利得と ACPRの変ィ匕もあわせて示して 、る。
[0118] 図 41において、出力電力 lOdBmから 25dBmの範囲で終段のみの増幅器の測定 した場合の ACPRより、初段 +終段の多段増幅器で測定した場合の ACPRが低く抑 えられている。つまり、この電力範囲において初段と終段の歪みが相殺している。終 段のみの利得と、初段 +終段の利得を比較すると、出力電力 lOdBmから 25dBmの 範囲で利得の差が拡大しているので、この電力範囲では初段、終段ともに利得拡張 していることがわ力る。
[0119] 以上において、トランジスタとして高周波特性に優れた GaAsヘテロ接合バイポーラ トランジスタ(HBT)を用いたが、 SiGe— HBTや Siバイポーラなどの他のバイポーラト ランジスタを用いても同様の効果が得られることは言うまでもな!/、。
[0120] また、バイアス回路の基準電源として、特許第 3377675号公報、特開 2002— 955 9号公報記載のものを用いた力 2段積みダイオードやアバランシェダイオードを用い た基準電源や、他のカレントミラー回路など、基準電源として働くいかなる回路を用い ても同様の効果が得られることも言うまでもない。
また、基準電源が高周波的に十分低いインピーダンスになるように 2pFの容量で接 地したが、異なる容量値を持たせたり、容量以外の素子 (例えばアクティブキャパシタ )を用いて高周波のインピーダンスを下げたりした場合にも、同様の効果を得ることが できる。

Claims

請求の範囲
[1] 入力電力または出力電力のある範囲において前記入力電力または前記出力電力の 増加に応じて利得が増加する利得拡張特性を持つ増幅器において、
前記増幅器に周波数の近い 2波の信号を入力した際、前記 2波の信号の位相が同 じになる瞬間における 3次相互変調歪みの位相力 前記 2波の信号の位相より 90度 以上回転する出力特性を持つことを特徴とする増幅器。
[2] 入力電力または出力電力のある範囲において前記入力電力または前記出力電力の 増加に応じて利得が増加する利得拡張特性を持つ増幅器において、
前記増幅器が入力に高周波において振幅を圧縮する機構を持つことを特徴とする 増幅器。
[3] 入力電力または出力電力のある範囲において前記入力電力または前記出力電力の 増加に応じて利得が増加する利得拡張特性を持つ増幅器において、
第 1のバイポーラトランジスタより成るェミッタ接地増幅回路のベース端子が、直流を 阻止しない第 1のインピーダンス素子を介して入力整合回路とバイアス電圧を供給す る第 1のダイオードの力ソードに接続されており、前記第 1のダイオードのアノードは、 高周波で十分低いインピーダンスとなる基準電源に接続されていることを特徴とする 増幅器。
[4] 請求項 3の増幅器において、
前記第 1のダイオードの力ソードの面積力 前記第 1のバイポーラトランジスタのエミ ッタの面積の 10分の 1以上であることを特徴とする増幅器。
[5] 入力電力または出力電力のある範囲において前記入力電力または前記出力電力の 増加に応じて利得が増加する利得拡張特性を持つ増幅器において、
第 1のバイポーラトランジスタより成るェミッタ接地増幅回路のベース端子と、前記べ ース端子にベースバイアス電圧を供給する基準電圧端子との間に、第 1のダイオード を順方向に設け、前記第 1のダイオードと並列に、第 2のダイオードと直流を阻止しな い第 1のインピーダンス素子が直列に接続された回路を、前記第 2のダイオードが順 方向になるように設けたことを特徴とする増幅器。
[6] 請求項 5の増幅器において、 前記第 2のダイオードを、コレクタをバイアス電源に接続されェミッタを前記第 1のィ ンピーダンス素子に接続され、ベースを基準電圧端子に接続された第 3のバイポーラ トランジスタのベース ·ェミッタ間としたことを特徴とする増幅器。
[7] 請求項 3乃至請求項 6の増幅器において、
前記第 1のダイオードが、コレクタをバイアス電源に接続されェミッタを前記第 1のバ イポーラトランジスタに接続されベースを基準電圧端子に接続された第 2のバイポー ラトランジスタのベース'ェミッタ間であることを特徴とする増幅器。
[8] 請求項 3乃至請求項 7の増幅器において、
前記第 1のインピーダンス素子が容量と抵抗の並列回路であることを特徴とする増 幅器。
[9] 請求項 3乃至請求項 8の前記増幅器にお 、て、
入力端子力 前記ェミッタ接地増幅回路を見た高周波のインピーダンスが、入力端 子からバイアス供給回路を見た高周波のインピーダンスより高いことを特徴とする増 幅器。
[10] 少なくとも 2段以上の増幅段を備え入力電力または出力電力のある範囲において前 記入力電力または前記出力電力の増加に応じて利得が増加する利得拡張特性を持 つ多段増幅器において、
前記増幅段のうち終段以外の少なくとも 1段が前記利得拡張特性を持つ電力範囲 において、周波数の近い 2波の信号を入力した際、前記 2波の信号の位相が同じに なる瞬間における 3次相互変調歪みの位相力 前記 2波の信号の位相より 90度以上 回転する出力特性となることを特徴とする多段増幅器。
[11] 少なくとも 2段以上の増幅段が入力電力または出力電力のある範囲において前記入 力電力または前記出力電力の増加に応じて利得が増加する利得拡張特性を持つ多 段増幅器において、
前記増幅段のうち終段以外の少なくとも 1段が入力に高周波において振幅を圧縮 する機構を持つことを特徴とする多段増幅器。
[12] 請求項 11の多段増幅器において、
前記入力に振幅を圧縮する機構を持つ増幅回路として、第 1のバイポーラトランジ スタより成るェミッタ接地増幅回路のベース端子が入力整合回路とバイアスを供給す る第 1のダイオードの力ソードに接続されており、前記第 1のダイオードのアノードは、 高周波で十分低いインピーダンスとなる基準電源に接続されていることを特徴とする 多段増幅器。
[13] 請求項 12の多段増幅器において、
前記第 1のダイオードの力ソード面積が、前記第 1のノイポーラトランジスタのェミツ タ面積の 10分の 1以上であることを特徴とする多段増幅器。
[14] 請求項 12乃至 13の多段増幅器において、
前記第 1のバイポーラトランジスタより成るェミッタ接地増幅回路のベース端子に直 列に、直流を阻止しない第 1のインピーダンス素子を設けたことを特徴とする多段増 幅器。
[15] 請求項 11の多段増幅器において、
前記入力に振幅を圧縮する機構を持つ増幅回路として、第 1のバイポーラトランジ スタより成るェミッタ接地増幅回路のベース端子と、前記ベース端子にベースバイァ スを供給する基準電圧端子との間に、第 1のダイオードを順方向に設け、前記第 1の ダイオードと並列に、第 2のダイオードと第 1のインピーダンス素子が直列に接続され た回路を、第 2のダイオードが順方向になるように設けたことを特徴とする多段増幅器
[16] 請求項 15の多段増幅器において、
前記第 2のダイオードが、コレクタをバイアス電源に接続されェミッタを前記第 1のィ ンピーダンス素子に接続されベースを基準電圧端子に接続された第 3のバイポーラト ランジスタのベース'ェミッタ間であることを特徴とする多段増幅器。
[17] 請求項 14乃至 16の多段増幅器において、
前記第 1のインピーダンス素子が容量と抵抗の並列回路であることを特徴とする多 段増幅器。
[18] 請求項 12乃至請求項 17の多段増幅器において、
前記第 1のダイオードが、コレクタをバイアス電源に接続されェミッタを前記第 1のバ イポーラトランジスタに接続されベースを基準電圧端子に接続された第 2のバイポー ラトランジスタのベース'ェミッタ間であることを特徴とする多段増幅器。
[19] 請求項 12乃至 17の多段増幅器において、
前記入力に振幅を圧縮する機構を持つ増幅回路が、入力端子から前記ェミッタ接 地増幅回路を見たインピーダンスが、入力端子からバイアス供給回路を見たインピー ダンスより高い増幅回路であることを特徴とする多段増幅器。
[20] 請求項 12乃至 19の多段増幅器において、
前記入力に振幅を圧縮する機構を持つ増幅回路以降の段にある増幅段が、入力 端子力も前記ェミッタ接地増幅回路を見たインピーダンスが、入力端子からバイアス 供給回路を見たインピーダンスより低いことを特徴とする多段増幅器。
PCT/JP2004/019526 2004-01-05 2004-12-27 増幅器 WO2005067139A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/585,206 US7768345B2 (en) 2004-01-05 2004-12-27 Amplifier
CN2004800422421A CN1926759B (zh) 2004-01-05 2004-12-27 放大器
JP2005516849A JP4752509B2 (ja) 2004-01-05 2004-12-27 増幅器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-000672 2004-01-05
JP2004000672 2004-01-05

Publications (1)

Publication Number Publication Date
WO2005067139A1 true WO2005067139A1 (ja) 2005-07-21

Family

ID=34746955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019526 WO2005067139A1 (ja) 2004-01-05 2004-12-27 増幅器

Country Status (4)

Country Link
US (1) US7768345B2 (ja)
JP (1) JP4752509B2 (ja)
CN (1) CN1926759B (ja)
WO (1) WO2005067139A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288736A (ja) * 2006-04-20 2007-11-01 New Japan Radio Co Ltd 電力増幅回路
JP2007295238A (ja) * 2006-04-25 2007-11-08 Sharp Corp 電力増幅器及び無線通信装置
JP2009164930A (ja) * 2008-01-08 2009-07-23 Mitsubishi Electric Corp 電力増幅器
WO2009125555A1 (ja) * 2008-04-08 2009-10-15 三菱電機株式会社 高周波増幅器
JP2010074542A (ja) * 2008-09-18 2010-04-02 Sharp Corp 電力増幅器、電力増幅器の制御方法、および無線通信装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4077831B2 (ja) * 2005-05-11 2008-04-23 松下電器産業株式会社 高周波増幅器
JP2007036973A (ja) * 2005-07-29 2007-02-08 Sharp Corp 電力増幅器および通信装置
FR2911447B1 (fr) * 2007-01-16 2011-12-16 St Microelectronics Sa Amplificateur de puissance reconfigurable et utilisation d'un tel amplificateur pour la realisation d'un etage d'amplification multistandard pour la telephonie mobile
US7714659B2 (en) * 2008-07-25 2010-05-11 Infineon Technologies Ag Bias circuit with a feedback path and a method for providing a biasing signal
US8026767B2 (en) * 2009-08-21 2011-09-27 Richwave Technology Corp. Adaptive bias circuit and system thereof
US7965139B1 (en) * 2010-03-05 2011-06-21 Texas Instruments Incorporated Amplifier offset and noise reduction in a multistage system
CN101888215B (zh) * 2010-07-02 2012-09-26 苏州英诺迅科技有限公司 具有可调预失真功能的射频功率放大器电路
CN102983815B (zh) * 2012-11-26 2016-03-02 中国人民解放军第四军医大学 一种自适应干扰信号扩大装置
CN103023440B (zh) * 2012-12-20 2015-10-07 中国科学院微电子研究所 一种提高功率放大器线性度的电路
CN104539244A (zh) * 2014-12-23 2015-04-22 天津大学 基于失真和噪声抵消的高线性度cmos宽带低噪声放大器
US9806674B2 (en) * 2015-12-14 2017-10-31 Murata Manufacturing Co., Ltd. Power amplifier circuit
RU2638633C1 (ru) * 2017-01-30 2017-12-14 Илья Николаевич Джус Магнитный реверсивный усилитель (его варианты)
JP2018198355A (ja) * 2017-05-23 2018-12-13 株式会社村田製作所 電力増幅回路
JP2019068404A (ja) * 2017-10-04 2019-04-25 株式会社村田製作所 電力増幅回路
CN109617531B (zh) * 2017-10-04 2023-08-25 株式会社村田制作所 功率放大电路
US10277173B1 (en) * 2017-11-17 2019-04-30 Qualcomm Incorporated Amplifier linearizer with wide bandwidth
KR102029558B1 (ko) * 2017-12-27 2019-10-07 삼성전기주식회사 광대역 선형화가 개선된 파워 증폭 장치
JP2019129402A (ja) * 2018-01-24 2019-08-01 株式会社村田製作所 歪補償回路
TWI699964B (zh) 2018-06-15 2020-07-21 立積電子股份有限公司 偏壓電路
CN109390702B (zh) * 2018-09-19 2020-11-10 天津大学 基于基片集成波导天线的锗硅异质结双极晶体管探测器
CN108988796A (zh) * 2018-10-22 2018-12-11 深圳飞骧科技有限公司 一种低压功率放大器及其偏置电路
TWI710210B (zh) * 2019-06-13 2020-11-11 立積電子股份有限公司 偏壓裝置
JP2022036687A (ja) * 2020-08-24 2022-03-08 株式会社村田製作所 無線周波数増幅回路
CN112803900B (zh) * 2021-03-30 2021-07-16 广州慧智微电子有限公司 偏置电路及射频功率放大器
CN117879508A (zh) * 2024-03-12 2024-04-12 成都明夷电子科技股份有限公司 一种功率放大器用线性度佳的偏置结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273559A (ja) * 1994-03-28 1995-10-20 Nec Eng Ltd 電力増幅器
JPH1075130A (ja) * 1996-08-30 1998-03-17 Sharp Corp トランジスタ電力増幅器
JP2001313531A (ja) * 2000-04-28 2001-11-09 Sharp Corp 電力増幅器
JP2002084144A (ja) * 2000-09-07 2002-03-22 Sharp Corp 電力増幅器および無線通信装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532477A (en) * 1983-12-23 1985-07-30 At&T Bell Laboratories Distortion compensation for a microwave amplifier
JPS63224358A (ja) * 1987-03-13 1988-09-19 Toshiba Corp 高周波用パワ−増幅器
JP3337766B2 (ja) 1993-06-30 2002-10-21 富士通株式会社 線形増幅器
JP3393514B2 (ja) * 1994-03-03 2003-04-07 日本電信電話株式会社 モノリシック集積化低位相歪電力増幅器
JP3393518B2 (ja) * 1994-09-13 2003-04-07 日本電信電話株式会社 モノリシック集積化低位相歪電力増幅器
EP0762630A1 (en) * 1995-09-08 1997-03-12 AT&T IPM Corp. Low distortion amplifier circuit with improved output power
JP3377675B2 (ja) 1996-03-19 2003-02-17 シャープ株式会社 高周波増幅回路
US5781069A (en) * 1996-05-16 1998-07-14 Xemod, Inc. Pre-post distortion amplifier
US5808511A (en) * 1996-08-09 1998-09-15 Trw Inc. Active feedback pre-distortion linearization
JPH10135750A (ja) 1996-11-01 1998-05-22 Mitsubishi Electric Corp マイクロ波帯アンプ
US6054895A (en) * 1997-08-27 2000-04-25 Harris Corporation Apparatus and method for pre-distortion correction of a power amplifier stage
JPH11355054A (ja) * 1998-06-10 1999-12-24 Kokusai Electric Co Ltd 高周波増幅器
JP2000183663A (ja) * 1998-12-18 2000-06-30 Nec Corp 多段増幅器
US6313705B1 (en) * 1999-12-20 2001-11-06 Rf Micro Devices, Inc. Bias network for high efficiency RF linear power amplifier
US6304145B1 (en) * 2000-02-02 2001-10-16 Nokia Networks Oy Large signal amplifier gain compensation circuit
CN1302615C (zh) * 2000-08-28 2007-02-28 三菱电机株式会社 多级放大器
JP2002111400A (ja) 2000-10-03 2002-04-12 Nec Corp 電力増幅器
JP2002171145A (ja) 2000-11-30 2002-06-14 Gigatec Kk 電力増幅回路
US6469581B1 (en) * 2001-06-08 2002-10-22 Trw Inc. HEMT-HBT doherty microwave amplifier
US6864742B2 (en) 2001-06-08 2005-03-08 Northrop Grumman Corporation Application of the doherty amplifier as a predistortion circuit for linearizing microwave amplifiers
US6486739B1 (en) * 2001-11-08 2002-11-26 Koninklijke Philips Electronics N.V. Amplifier with self-bias boosting using an enhanced wilson current mirror biasing scheme
JP2003338713A (ja) 2002-05-20 2003-11-28 Sony Corp 電力増幅装置およびこれを用いた無線通信装置
CN1141787C (zh) * 2002-07-05 2004-03-10 清华大学 变增益的单端到差分的射频低噪声放大器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273559A (ja) * 1994-03-28 1995-10-20 Nec Eng Ltd 電力増幅器
JPH1075130A (ja) * 1996-08-30 1998-03-17 Sharp Corp トランジスタ電力増幅器
JP2001313531A (ja) * 2000-04-28 2001-11-09 Sharp Corp 電力増幅器
JP2002084144A (ja) * 2000-09-07 2002-03-22 Sharp Corp 電力増幅器および無線通信装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288736A (ja) * 2006-04-20 2007-11-01 New Japan Radio Co Ltd 電力増幅回路
JP2007295238A (ja) * 2006-04-25 2007-11-08 Sharp Corp 電力増幅器及び無線通信装置
JP2009164930A (ja) * 2008-01-08 2009-07-23 Mitsubishi Electric Corp 電力増幅器
WO2009125555A1 (ja) * 2008-04-08 2009-10-15 三菱電機株式会社 高周波増幅器
JP5165050B2 (ja) * 2008-04-08 2013-03-21 三菱電機株式会社 高周波増幅器
JP2010074542A (ja) * 2008-09-18 2010-04-02 Sharp Corp 電力増幅器、電力増幅器の制御方法、および無線通信装置
JP4560573B2 (ja) * 2008-09-18 2010-10-13 シャープ株式会社 電力増幅器、電力増幅器の制御方法、および無線通信装置
US7893769B2 (en) 2008-09-18 2011-02-22 Sharp Kabushiki Kaisha Power amplifier, method for controlling power amplifier, and wireless communication apparatus

Also Published As

Publication number Publication date
CN1926759B (zh) 2010-04-28
JP4752509B2 (ja) 2011-08-17
JPWO2005067139A1 (ja) 2008-04-17
US7768345B2 (en) 2010-08-03
CN1926759A (zh) 2007-03-07
US20070164824A1 (en) 2007-07-19

Similar Documents

Publication Publication Date Title
WO2005067139A1 (ja) 増幅器
US6917246B2 (en) Doherty bias circuit to dynamically compensate for process and environmental variations
JP5064224B2 (ja) デュアルバイアス制御回路
US8314655B2 (en) RF power amplifier and RF power module using the same
KR20020055473A (ko) 저전력 저잡음 증폭기
US7425873B2 (en) Radio frequency amplification apparatus
KR100427878B1 (ko) 증폭회로
JP2002043862A (ja) プリディストーション回路
US6496067B1 (en) Class AB voltage current convertor having multiple transconductance stages and its application to power amplifiers
CN100459424C (zh) 放大器和频率变换器
US10014835B1 (en) Frequency enhanced active transistor
US6731173B1 (en) Doherty bias circuit to dynamically compensate for process and environmental variations
CN104617905B (zh) 射频放大器及射频放大方法
US7696822B2 (en) Amplifying circuit and associated linearity improving method
Shi et al. A 0.1-3.4 GHz LNA with multiple feedback and current-reuse technique based on 0.13-μm SOI CMOS
JP2552089B2 (ja) Fet増幅器の消費電力低減方式
JP3853604B2 (ja) 周波数変換回路
TWI623193B (zh) 功率放大器電路
Pazhouhesh A broadband class AB power amplifier with second harmonic injection
JP4739717B2 (ja) 歪補償回路
US7474155B2 (en) Power amplifier
JP3355883B2 (ja) 歪み補償回路および低歪半導体増幅器
US6940350B2 (en) Amplifier and method for canceling nonlinearity in amplifier
Shi et al. Design and implementation of a CMOS power feedback linearization IC for RF power amplifiers
US10924072B2 (en) Power amplification circuit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516849

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007164824

Country of ref document: US

Ref document number: 10585206

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 200480042242.1

Country of ref document: CN

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10585206

Country of ref document: US