WO2005067067A1 - 半導体発光素子 - Google Patents

半導体発光素子 Download PDF

Info

Publication number
WO2005067067A1
WO2005067067A1 PCT/JP2005/000044 JP2005000044W WO2005067067A1 WO 2005067067 A1 WO2005067067 A1 WO 2005067067A1 JP 2005000044 W JP2005000044 W JP 2005000044W WO 2005067067 A1 WO2005067067 A1 WO 2005067067A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
layer
semiconductor
emitting device
light emitting
Prior art date
Application number
PCT/JP2005/000044
Other languages
English (en)
French (fr)
Inventor
Hideaki Maruta
Original Assignee
Rohm Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd. filed Critical Rohm Co., Ltd.
Priority to US10/583,240 priority Critical patent/US20070170415A1/en
Publication of WO2005067067A1 publication Critical patent/WO2005067067A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Definitions

  • the present invention relates to a semiconductor light emitting device having high emission efficiency.
  • the present invention relates to a semiconductor light emitting device which emphasizes light extraction from a side surface.
  • FIG. Figure 1 shows Al Ga In N (x y 1— x— y
  • 81 is a p-side bonding pad
  • 82 is a p-type electrode
  • 83 is a p_GaN semiconductor layer
  • 85 is an InGaN active layer
  • 86 is an n-GaN semiconductor layer
  • 87 is a sapphire substrate
  • 88 is an n-side bonding pad
  • Group III nitride compound represented by Al Ga ln N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1)
  • the GaN-based semiconductor light-emitting device shown in Fig. 1 For example, in the GaN-based semiconductor light-emitting device shown in Fig. 1, light emitted from the InGaN active layer 85 passes through the p-type electrode 82. In order to emit light into the air, the angle of incidence of the ⁇ -GaN semiconductor layer 83 into the air must be less than the critical angle. If the angle of incidence exceeds the critical angle, it cannot be emitted into the air and is totally reflected.
  • FIG. 2 is an example of light propagating in a semiconductor light emitting device having an active layer.
  • 91 is a semiconductor layer
  • 92 is an active layer
  • 93 is a semiconductor layer
  • 94 is a top surface of the semiconductor light emitting device
  • 95 is a bottom surface of the semiconductor light emitting device
  • 96 is a point light source for explaining propagating light.
  • the optical power emitted at the position of a point light source 96 in the active layer 92 passes through the semiconductor layer 91 and reaches the upper surface 94.
  • the incident angle is equal to or smaller than the critical angle, the light is emitted into the air.
  • Critical angle ⁇ is semiconductive
  • the incident angle is less than 1 degree, the light is totally reflected and propagates through the semiconductor layers 91 and 93 again.
  • the semiconductor layers 91 and 93 are transparent to light emitted by the active layer 92, but the active layer
  • 92 Since 92 has a band gap corresponding to emitted light, it can be an absorber. When propagating through the semiconductor layers 91 and 93, it also passes through the active layer 92.
  • the incident angle of the light reaching the side surface of the semiconductor light emitting device is 21 degrees or more, the light is totally reflected again and confined in the semiconductor light emitting device. If the angle of incidence is less than 21 degrees, it will be emitted into the air. As described above, since the light that has passed through the active layer 92 many times is attenuated, the intensity of the emitted light also decreases.
  • the ratio of the light emitted from the active layer confined inside due to total reflection is high, and the light emitted from the side surface is also attenuated.
  • the rate at which light emitted from the active layer can be extracted to the outside is called external quantum efficiency. For these reasons, conventional semiconductor light emitting devices have poor external quantum efficiency.
  • Patent Document 1 JP-A-10-326910
  • the present invention provides an external quantum Aims to improve efficiency.
  • a first invention of the present application provides a semiconductor light-emitting device including a substrate and, on the substrate, at least an L-th semiconductor layer, an active layer, and a second semiconductor layer.
  • the semiconductor light emitting device wherein the total area of the first semiconductor layer, the active layer, and the second semiconductor layer is 5% or more.
  • the second invention of the present application is a semiconductor light emitting device comprising a substrate, and at least a first semiconductor layer, an active layer, and a second semiconductor layer on the substrate in this order.
  • the semiconductor layer is a semiconductor light emitting device having a polarity different from that of the first semiconductor layer, and having a minimum distance of 40 ⁇ m or less from all points included in the active layer to the exposed side surface of the active layer. .
  • the third invention of the present application is directed to a semiconductor light emitting device including: a substrate; and two or more mesa portions including at least a first semiconductor layer, an active layer, and a second semiconductor layer formed on the substrate.
  • the fourth invention of the present application provides a semiconductor light emitting device comprising: a substrate; and two or more mesa portions formed on the substrate and including at least a first semiconductor layer, an active layer, and a second semiconductor layer in this order.
  • the second semiconductor layer has a different polarity from the first semiconductor layer, and at least the second semiconductor layer and the active layer are connected between the mesa portion except for a bridge portion connecting the mesa portion.
  • the fifth invention of the present application is a semiconductor light emitting device including at least a substrate, a first semiconductor layer, an active layer, and a second semiconductor layer in this order, wherein the second semiconductor layer is A semiconductor light emitting device having a polarity different from that of the first semiconductor layer and having a concave portion in which the exposed upper surface on the side of the second semiconductor layer reaches at least the active layer from the exposed upper surface on the side of the second semiconductor layer; It is.
  • the area of the exposed upper surface on the side of the second semiconductor layer is The total area of the first semiconductor layer, the active layer, and the second semiconductor layer on the exposed side surface of the active layer may be 5% or more.
  • the shortest distance force Oam from at least all points included in the active layer to the exposed side surface of the active layer can be set to Oam or less.
  • the shape of the exposed upper surface on the side of the second semiconductor layer can form a vertex at an angle smaller than 45 degrees.
  • one interior angle between the exposed side surface of the active layer and the exposed upper surface on the side of the second semiconductor layer may be 138 degrees or more.
  • a reflective layer may be provided on a surface of the substrate opposite to a surface on which the first semiconductor layer is formed.
  • the semiconductor light-emitting element is formed of Al Ga In ⁇ (0 ⁇ 1, 0 ⁇ x y 1—x—y
  • a group III nitride compound semiconductor light emitting device represented by y ⁇ 1, 0 ⁇ x + y ⁇ 1) can be obtained.
  • the emission efficiency of the semiconductor light emitting device can be increased.
  • FIG. 1 is a diagram illustrating a configuration of a conventional GaN-based semiconductor light-emitting device made of a group III nitride-based compound.
  • FIG. 2 is a diagram illustrating an example of light propagating in a semiconductor light emitting device having an active layer.
  • FIG. 3 is a diagram illustrating an example of an external model of a semiconductor light emitting device of the present invention.
  • FIG. 4 is a diagram illustrating the relationship between the external quantum efficiency and the ratio of the total of the area of the side surface to the area of the upper surface of the semiconductor layer of the semiconductor light emitting device of the present invention.
  • FIG. 5 is a diagram illustrating the principle of the present invention.
  • FIG. 6 is a diagram illustrating a semiconductor light emitting device of the present invention.
  • FIG. 7 is a diagram illustrating an example of the structure of the semiconductor light emitting device of the present invention.
  • FIG. 8 is a diagram illustrating an example of the structure of the semiconductor light emitting device of the present invention.
  • FIG. 9 is a diagram illustrating an example of the structure of the semiconductor light emitting device of the present invention.
  • Garden 10 is a view for explaining an example of the structure of the semiconductor light emitting device of the present invention.
  • Garden 11 is a view for explaining an example of the structure of the semiconductor light emitting device of the present invention.
  • FIG. 12 is a diagram illustrating an example of the structure of the semiconductor light emitting device of the present invention.
  • FIG. 13 is a diagram illustrating the relationship between the external quantum efficiency and the angle of the apex of the upper surface of the semiconductor layer of the semiconductor light emitting device of the present invention.
  • FIG. 14 is a diagram illustrating an example of an external model of the semiconductor light emitting device of the present invention.
  • FIG. 15 is a diagram illustrating an example of the structure of the semiconductor light emitting device of the present invention.
  • FIG. 16 is a diagram illustrating an example of the structure of a semiconductor light emitting device manufactured as an example of the present invention.
  • the present embodiment is a semiconductor light emitting device including a substrate, and at least a first semiconductor layer, an active layer, and a second semiconductor layer on the substrate, wherein the second semiconductor layer is The first semiconductor layer, the active layer, and the active layer have a different polarity from the semiconductor layer, and have an exposed side surface of the active layer with respect to an area of the exposed upper surface on the side of the second semiconductor layer.
  • This is a semiconductor light emitting device in which the external quantum efficiency is increased by increasing the ratio of the total area of the second semiconductor layer.
  • FIG. 3 shows an example of an external model of the semiconductor light emitting device of the present invention.
  • 11 is the second semiconductor layer
  • 12 is the active layer
  • 13 is the first semiconductor layer
  • 14 is the substrate
  • 15 is the upper surface exposed on the side of the second semiconductor layer
  • 17 is the exposed side surface of the active layer.
  • 21 and 22 are bonding pads.
  • a nitride semiconductor light emitting device made of a group III nitride compound represented by Al Ga in N (0 ⁇ x ⁇ l, 0 ⁇ y ⁇ l, 0 ⁇ x + y ⁇ l)
  • a GaN buffer layer an n-GaN first semiconductor layer, a GalnN active layer, and a p-GaN second semiconductor layer on a sapphire substrate, and etching to form an n-GaN first semiconductor layer to form an n-type electrode.
  • the GalnN active layer and the p-GaN second semiconductor layer may be exposed. In this case, a part of the n-GaN first semiconductor layer is left without being etched.
  • the side surface 17 also includes the side surface of the remaining first semiconductor layer.
  • the exposed side surface 17 of the active layer 12 is a portion corresponding to the hatched portion shown in FIG. 3, and corresponds to the side surface of the substrate 14 or the first semiconductor layer 13 left on the substrate 14. Including some side surfaces.
  • the hatched portion of the side surface 17 shown in FIG. 3 shows only one side surface of the semiconductor light emitting device. In this specification, the same applies hereinafter.
  • a first semiconductor layer 13, an active layer 12, and a second semiconductor layer 11 are formed on a substrate 14.
  • the second semiconductor layer 11 and the first semiconductor layer 13 are p-type or n-type semiconductor layers, respectively, and have different polarities.
  • holes supplied from the p-type semiconductor layer and electrons supplied from the n-type semiconductor layer are recombined in the active layer 12 to emit light.
  • the emitted light propagates through the first semiconductor layer 13 and the second semiconductor layer 11, the force emitted from the upper surface 15 on the second semiconductor layer 11, and exits from the side surface.
  • a GaN layer (refractive index: 2.8, transmission 100%) power SO.3 / m and AlGaN layer (refractive index 2.65, transmittance 100%) power 0.011 / im, GalnN layer as active layer 12 (refractive index 2.8, transmittance 95 5%) is 0.1 ⁇
  • the first semiconductor layer 13 is a GaN layer (refractive index 2.8, transmittance 100%) is 0.6 ⁇ ⁇
  • the substrate 14 is a sapphire substrate (refractive index 1.8
  • the external quantum efficiency of the nitride-based compound semiconductor having a transmittance of 100%) was determined by simulation with the reflectance at the bottom surface of the first semiconductor layer 13 being 100%.
  • the area of the top surface is about 300 mx 300 ⁇ m
  • the area of the side surface is about 300 ⁇ ⁇ ⁇ m
  • the ratio of the total area of the side surface 17 to the area of the top surface 15 is 1.4. %.
  • the external quantum efficiency at this time is 1, the relationship between the ratio of the total area of the side surface 17 to the area of the upper surface 15 and the relative external quantum efficiency is shown in Table 1.
  • FIG. 4 shows the external quantum efficiency with respect to (total surface area Z total surface area) of Table 1.
  • increasing the ratio of the total area of the side surface 17 to the area of the upper surface 15 regardless of the shape of the upper surface tends to improve the external quantum efficiency.
  • the ratio of the total area of the side surface 17 to the area of the upper surface 15 exceeds 5%, the external quantum efficiency is greatly improved. This is thought to be because the external quantum efficiency increases because the light emitted from the side surface is not attenuated.
  • the semiconductor light emitting device includes at least the first semiconductor layer 13, the active layer 12, and the second semiconductor layer 11 on the substrate 14, and the second semiconductor layer 1 1 is the first semi-conductor The first semiconductor layer 13, the active layer 12, and the second semiconductor on the exposed side surface of the active layer 12 with respect to the area of the exposed upper surface 15 on the side of the second semiconductor layer 11, having a polarity different from that of the body layer 13.
  • the semiconductor light emitting device in which the total area of the layer 11 is 5% or more, the external quantum efficiency can be increased.
  • the present embodiment is a semiconductor light emitting device including a substrate, and at least a first semiconductor layer, an active layer, and a second semiconductor layer on the substrate, wherein the second semiconductor layer is (1) To increase external quantum efficiency by shortening the minimum distance from all points included in the active layer to the exposed side surface of the active layer, having a polarity different from that of the semiconductor layer. It is a light emitting element.
  • FIG. 5 is a diagram illustrating the principle of the present invention.
  • FIG. 6 is an explanatory diagram of the present invention. 5 and 6, 11 is the second semiconductor layer, 12 is the active layer, 13 is the first semiconductor layer, 14 is the substrate, 15 is the exposed upper surface of the second semiconductor layer, and 17 is the exposed active layer.
  • 28 is a point light source.
  • the point light source 28 is a virtual point that emits light at this position.
  • 16 indicates an exposed side surface of the active layer
  • 50 indicates a point included in the active layer
  • 51 indicates a distance from the point 50 to the side surface 16.
  • a first semiconductor layer 13, an active layer 12, and a second semiconductor layer 11 are formed on a substrate 14.
  • the second semiconductor layer 11 and the first semiconductor layer 13 are p-type or n-type semiconductor layers, respectively, and have different polarities.
  • the holes supplied from the p-type semiconductor layer and the electrons supplied from the n-type semiconductor layer recombine in the active layer 12 to emit light.
  • the light from the point light source 28 is emitted from the upper surface on the side of the second semiconductor layer 11 in FIG. 5, or propagates through the second semiconductor layer 11 and the first semiconductor layer 13 from the side as described in FIG. Emit. At this time, the light from the point light source 28 crosses the active layer 12 several times.
  • the active layer 12 emits light having a wavelength corresponding to the energy obtained by the recombination of electrons and holes. That is, when the light of the wavelength passes through the active layer 12, the active layer 12 becomes an absorber for the light of the wavelength, and the light is attenuated.
  • the width of the semiconductor layer is relatively larger than the thickness of the semiconductor layer, so that the light emitted from the active layer reaches the side surface of the semiconductor layer by a long distance.
  • the number of times of reflection at the interface between the conductor layer and the outside and crossing the active layer is large. Therefore, when light was emitted from the side surface of the semiconductor layer, the light was attenuated, and sufficient external quantum efficiency could not be obtained.
  • the shortest distance is the shortest of the distances 51 from the point 50 to the side surface 16.
  • the semiconductor light emitting device includes a substrate 14, and at least a first semiconductor layer 13, an active layer 12, and a second semiconductor layer 11 on the substrate 14, wherein the second semiconductor layer 1 1 is a semiconductor having a polarity different from that of the first semiconductor layer 13 and having a minimum distance of 40 / m or less from all the points 50 included in the active layer 12 to the exposed side surfaces 16 of the active layer 12.
  • the external quantum efficiency could be increased.
  • the present embodiment is a semiconductor light emitting device including a substrate, and at least two mesa portions sequentially including at least a first semiconductor layer, an active layer, and a second semiconductor layer formed on the substrate,
  • the second semiconductor layer has a polarity different from that of the first semiconductor layer, and at least the second semiconductor layer and the active layer are spatially separated between the mesas to increase the external quantum efficiency.
  • This is a semiconductor light emitting device to be designed.
  • FIG. 7 shows an example of the structure of the semiconductor light emitting device of the present invention.
  • 11 is the second semiconductor layer
  • 12 is the active layer
  • 13 is the first semiconductor layer
  • 14 is the substrate
  • 15 is the upper surface exposed on the second semiconductor layer side
  • 17 is the exposed upper surface of the active layer.
  • 20 is a mesa portion
  • 21 and 22 are bonding pads.
  • two mesa portions 20 each having a triangular upper surface 15 are formed on the substrate 14.
  • the number of the mesa portions 20 on the substrate 14 is not limited to two, but may be more than one. like this
  • the mesa section 20 can be formed by stacking a semiconductor layer including the active layer 12 on the substrate 14 and then etching except for the portion that becomes the mesa section 20.
  • FIG. 7 at least a first semiconductor layer 13, an active layer 12, and a second semiconductor layer 11 are formed in each mesa section 20 on a substrate 14.
  • a current is supplied from the bonding pad 21 provided on the second semiconductor layer 11 to the second semiconductor layer 11 and from the bonding pad 22 provided on the substrate 14 to the first semiconductor layer 13.
  • the second semiconductor layer 11 and the first semiconductor layer 13 are p-type or n-type semiconductor layers, respectively, and have different polarities.
  • the holes supplied from the p-type semiconductor layer and the electrons supplied from the n-type semiconductor layer recombine in the active layer 12 to emit light.
  • the emitted light propagates through the second semiconductor layer 11 and the first semiconductor layer 13, as described with reference to FIG. 2, the force emitted from the upper surface on the second semiconductor layer 11 side of each mesa unit 20.
  • the light exits from the side surface of each mesa section 20.
  • the light propagating through the first semiconductor layer 13 and the second semiconductor layer 11 is formed by forming a plurality of minute mesa portions on the substrate, rather than forming a large mesa portion. Since the light is emitted from the side surface of the mesa portion 20 before being absorbed by the active layer 12, the emission efficiency is increased, and as a result, the external quantum efficiency is greatly improved.
  • the semiconductor light emitting device As described in the first embodiment, also in the semiconductor light emitting device according to the present embodiment, when the total ratio of the area of the side surface 17 to the area of the upper surface 15 exceeds 5%, the external quantum efficiency is greatly improved. .
  • the shortest distance from a point included in active layer 12 to a side surface where active layer 12 is exposed is 40 ⁇ m Below, the external quantum efficiency is greatly improved.
  • the bonding pad 22 is provided on the substrate 14 because a part of the first semiconductor layer 13 is left without being etched on the substrate 14.
  • the conductor can be the substrate 14
  • the bonding pad 22 can be provided on the substrate 14 even if a part of the first semiconductor layer 13 is not left, and a common bonding pad may be used.
  • the bonding pad 22 is connected to the first semiconductor layer 13 if a part of the first semiconductor layer 13 is left on the substrate 14. What is necessary is just to provide in the shelf part etc. which were formed in the layer 13.
  • FIG. 1 is just to provide in the shelf part etc. which were formed in the layer 13.
  • a semiconductor light emitting device including a substrate 14 and two or more mesa portions 20 formed on the substrate 14 and including at least a first semiconductor layer 13, an active layer 12, and a second semiconductor layer 11 in order.
  • the second semiconductor layer 11 has a polarity different from that of the first semiconductor layer 13, and at least the second semiconductor layer 11 and the active layer 12 are spatially separated between the mesas. Since the ratio of the total area of the side surfaces 17 to the area of 15 can be increased, the external quantum efficiency can be greatly improved. Further, in the semiconductor light emitting device of the present embodiment, since the shortest distance from a point included in active layer 12 to the exposed side surface of the active layer can be shortened, external quantum efficiency can be greatly improved.
  • a semiconductor light emitting element in which the total ratio of the area of the side surface 17 to the area of the upper surface 15 is 5% or more, or the semiconductor light emitting element from all points included in the active layer 12 to the exposed side surface of the active layer 12 In a semiconductor light emitting device having a minimum distance of 40 ⁇ m or less, light emitted from the side surface is hardly attenuated, so that external quantum efficiency can be increased.
  • the present embodiment is a semiconductor light emitting device including a substrate, and at least two mesa portions sequentially including at least a first semiconductor layer, an active layer, and a second semiconductor layer formed on the substrate,
  • the second semiconductor layer has a polarity different from that of the first semiconductor layer, and at least the second semiconductor layer and the active layer are spatially separated between the mesa portions except for a bridge portion connecting the mesa portion.
  • This is a semiconductor light-emitting device that increases the external quantum efficiency by being separated.
  • FIGS. 8 and 9 show examples of the structure of the semiconductor light emitting device of the present invention.
  • 11 is the second semiconductor layer
  • 12 is the active layer
  • 13 is the first semiconductor layer
  • 14 is the substrate
  • 15 is the upper surface exposed on the second semiconductor layer side
  • 17 is the exposed active layer.
  • 20 is a mesa section
  • 21 and 22 are bonding pads
  • 23 is a bridge section
  • 24 is a shelf section.
  • two mesa portions 20 each having a triangular upper surface 15 are formed on the substrate 14.
  • the number of mesas on the substrate is not limited to two, but may be any number.
  • the two mesas are connected by a bridge 23.
  • the bridge portion 23 is for electrically connecting the plurality of mesa portions 20 formed on the substrate, and after laminating the semiconductor layer including the active layer 12 on the substrate 14, It can be formed by etching except for the part that becomes the part 20 or the bridge part 23.
  • each mesa unit 20 The active layer 12 is separated except for a part of the active layer 12, that is, a part connected by the bridge part 23.
  • At least a first semiconductor layer 13, an active layer 12, and a second semiconductor layer 11 are formed in each mesa portion 20 on the substrate 14. From the bonding pad 21 provided on the second semiconductor layer 11 to the second semiconductor layer 11 of the two mesas 20, from the bonding pad 22 provided on the shelf 24 to the first semiconductor of the two mesas 20 Current is supplied to layer 13.
  • the second semiconductor layer 11 and the first semiconductor layer 13 are p-type or n-type semiconductor layers, respectively, and have different polarities. At this time, the holes supplied from the p-type semiconductor layer and the electrons supplied from the n-type semiconductor layer recombine in the active layer 12 to emit light.
  • the emitted light exits from the upper surface of each mesa portion 20 on the side of the second semiconductor layer 11, or propagates through the second semiconductor layer 11 and the first semiconductor layer 13, as described in FIG. The light exits from the side surface of each mesa section 20.
  • the second semiconductor layer 11 and the first semiconductor layer 13 of the two mesa sections 20 are connected by the bridge section 23 so that the respective mesa sections 20 are electrically connected. Only one pad 21 and one bonding pad 22 are sufficient, and the manufacturing process of the semiconductor light emitting device is simplified. Since the substrate 14 in FIG. 8 does not have a portion of the first semiconductor layer 13 on the upper portion of the substrate 14 which is also a conductor, the bonding pad 22 is connected to the first semiconductor layer 13 so that the first semiconductor layer 13 is connected to the first semiconductor layer 13. It is provided on the shelf 24 formed on the layer 13.
  • At least a first semiconductor layer 13, an active layer 12, and a second semiconductor layer 11 are formed in each mesa section 20 on a substrate 14. From the bonding pad 21 provided on the second semiconductor layer 11 to the second semiconductor layer 11 of the two mesa units 20 and from the bonding pad 22 provided on the substrate 14 to the first semiconductor layer 13 of the two mesa units 20 Current is supplied.
  • the second semiconductor layer 11 and the first semiconductor layer 13 are p-type or n-type semiconductor layers, respectively, and have different polarities.
  • the holes supplied from the p-type semiconductor layer and the electrons supplied from the n-type semiconductor layer recombine in the active layer 12 to emit light.
  • the emitted light exits from the upper surface of each mesa portion on the side of the first semiconductor layer or propagates through the second semiconductor layer 11 and the first semiconductor layer 13 as described in FIG. Light is emitted from the side surface of each mesa section 20.
  • the bonding pad 21 and the bonding pad 22 are respectively formed. It suffices to provide one by one, which simplifies the manufacturing process of the semiconductor light emitting device. Since a part of the first semiconductor layer 13 is left unetched on the upper portion of the substrate 14 in FIG. 9, the bonding pad 22 can be provided on the substrate 14. Of course, if the conductor can be the substrate 14, the bonding pad 22 can be provided on the substrate 14 even if a part of the first semiconductor layer 13 is not left.
  • the present embodiment is a semiconductor light emitting device including at least a substrate, a first semiconductor layer, an active layer, and a second semiconductor layer, in which the second semiconductor layer is
  • the external quantum efficiency can be increased by having different polarities and having a concave portion from the exposed upper surface on the side of the second semiconductor layer to at least the active layer on the exposed upper surface on the side of the second semiconductor layer.
  • This is a semiconductor light emitting device to be designed.
  • FIGS. 10 and 11 show examples of the structure of the semiconductor light emitting device of the present invention.
  • 11 is the second semiconductor layer
  • 12 is the active layer
  • 13 is the first semiconductor layer
  • 14 is the substrate
  • 17 is the exposed side of the active layer
  • 21 and 22 are the bonding pads
  • 24 is a shelf
  • 27 is a recess.
  • two recesses 27 having a depth at least reaching the active layer 12 are provided.
  • the number of the recesses 27 on the upper surface on the side of the second semiconductor layer 11 is not limited to two and may be one or more. I just need.
  • Such a concave portion 27 can be formed by stacking a semiconductor layer including the active layer 12 on the substrate 14 and then performing etching.
  • the shape and arrangement of the recesses 27 are shown in FIGS. 10 and 11 in the form of a triangular recess having an acute angle. However, this is an example of the present embodiment, and Regarding the arrangement, we can apply various things.
  • a first semiconductor layer 13, an active layer 12 and a second semiconductor layer 11 are formed on a substrate 14.
  • a current is supplied from the bonding pad 21 provided on the second semiconductor layer 11 to the second semiconductor layer 11 and from the bonding pad 22 provided on the shelf 24 to the first semiconductor layer 13.
  • the second semiconductor layer 11 and the first semiconductor layer 13 are p-type or n-type semiconductor layers, respectively, and have different polarities.
  • the holes supplied from the p-type semiconductor layer Electrons supplied from the n-type semiconductor layer recombine in the active layer 12 to emit light.
  • the emitted light exits from the upper surface on the side of the second semiconductor layer 11, or propagates through the second semiconductor layer 11 and the first semiconductor layer 13 from the side surface of each semiconductor layer, as described in FIG. Emit.
  • the semiconductor light emitting device As described in the first embodiment, also in the semiconductor light emitting device according to the present embodiment, when the total ratio of the area of the side surface 17 to the area of the upper surface 15 exceeds 5%, the external quantum efficiency is greatly improved. .
  • the shortest distance from a point included in active layer 12 to a side surface where active layer 12 is exposed is 40 ⁇ m. Below, the external quantum efficiency is greatly improved.
  • a first semiconductor layer 13, an active layer 12 and a second semiconductor layer 11 are formed on a substrate 14.
  • a current is supplied from the bonding pad 21 provided on the second semiconductor layer 11 to the second semiconductor layer 11, and from the bonding pad 22 provided on the substrate 14 to the first semiconductor layer 13.
  • the second semiconductor layer 11 and the first semiconductor layer 13 are p-type or n-type semiconductor layers, respectively, and have different polarities.
  • the holes supplied from the p-type semiconductor layer and the electrons supplied from the n-type semiconductor layer recombine in the active layer 12 to emit light.
  • the emitted light is, as described with reference to FIG. 2, a force emitted from the upper surface on the second semiconductor layer 11 side, and propagates through the second semiconductor layer 11 and the first semiconductor layer 13 to form a side surface of each semiconductor layer. Emitted from
  • the second semiconductor layer 11 and the first semiconductor layer 13 are electrically connected Therefore, only one bonding pad 21 and one bonding pad 22 are sufficient, and the manufacturing process of the semiconductor light emitting device is simplified. Since a part of the first semiconductor layer 13 is left unetched on the upper portion of the substrate 14 in FIG. 11, the bonding pad 22 can be provided on the substrate 14. Of course, if the conductor can be the substrate 14, the bonding pad 22 can be provided on the substrate 14 even if a part of the first semiconductor layer 13 is not left.
  • a semiconductor light emitting device including at least the substrate 14, the first semiconductor layer 13, the active layer 12, and the second semiconductor layer 11, 11 has a different polarity from the first semiconductor layer 13, and the exposed upper surface 15 on the side of the second semiconductor layer 11 reaches at least the active layer 12 from the exposed upper surface 15 on the side of the second semiconductor layer 11
  • the ratio of the total area of the side surface 17 to the upper surface 15 can be increased, and the external quantum efficiency can be improved.
  • the semiconductor light emitting device of the present embodiment since the shortest distance from a point included in active layer 12 to the exposed side surface of the active layer can be shortened, external quantum efficiency can be improved.
  • the semiconductor light emitting element in which the total ratio of the area of the side surface 17 to the area of the exposed upper surface 15 on the side of the second semiconductor layer 11 is 5% or more, and all the points included in the active layer 12
  • the semiconductor light emitting device in which the shortest distance to the side surface of the exposed semiconductor layer of the layer 12 is 40 ⁇ or less, light emitted from the side surface is hardly attenuated, so that external quantum efficiency can be increased.
  • the semiconductor layer is electrically connected, so that the bonding pad can be shared.
  • the present embodiment is a semiconductor light emitting device including at least a substrate, a first semiconductor layer, an active layer, and a second semiconductor layer in this order, wherein the second semiconductor layer is different from the first semiconductor layer.
  • a semiconductor light-emitting device having the following polarities and having an apex angle of less than 45 degrees at the exposed upper surface on the side of the second semiconductor layer to increase external quantum efficiency.
  • FIG. 12 shows an example of the structure of the semiconductor light emitting device of the present invention.
  • 11 is the second semiconductor layer
  • 12 is the active layer
  • 13 is the first semiconductor layer
  • 14 is the substrate
  • 15 is the second semiconductor layer side.
  • the exposed top surface, 17 is the exposed side surface of the active layer.
  • the shape of the upper surface 15 is a triangle.
  • the shape is not limited to a triangle, but may be a polygon. Such a shape can be formed by stacking a semiconductor layer including the active layer 12 on the substrate 14 and then performing etching.
  • the second semiconductor layer 11 and the first semiconductor layer 13 are p-type or n-type semiconductor layers, respectively, and have different polarities. At this time, holes supplied from the p-type semiconductor layer and electrons supplied from the n-type semiconductor layer recombine in the active layer 12 to emit light. As described with reference to FIG. 2, the emitted light propagates through the upper surface of the active layer 12 on the side of the second semiconductor layer 11 ⁇ the second semiconductor layer 11 and the first semiconductor layer 13 to propagate through the active layer 12. Exit from the exposed side surface.
  • the shape of the upper surface 15 has a vertex at an angle ⁇ .
  • the GaN layer (refractive index 2.8, transmittance 100%) is 0.3 ⁇ m and the AlGaN layer (refractive index 2.65, transmittance 100%) as the second semiconductor layer 11 in FIG.
  • the active layer 12 is a GalnN layer (refractive index 2.8, transmittance 97.5%) is 0.1 ⁇
  • the first semiconductor layer 13 is a GaN layer (refractive index 2.8, In a nitride-based semiconductor light emitting device having a sapphire substrate (refractive index: 1.8, transmittance: 100%) as the substrate 14 having a reflectance of 0.6 / m and a reflectance of 100
  • the external quantum efficiency was obtained by simulation using the angle ⁇ of the vertex as a parameter when the ratio of the total area of the side surface 17 to the area of the upper surface 15 was 20%.
  • the shape of the conventional semiconductor light emitting element is a square in which the ratio of the total area of the side surfaces 17 to the area of the upper surface 15 is 1.4%. Assuming that the external quantum efficiency at this time is 1, the relationship of the external quantum efficiency to the angle of the top vertex is shown in FIG. As shown in Fig. 13, when the angle of the vertex is 45 degrees or less, the external quantum efficiency improves.
  • the second semiconductor layer 11 has a different polarity from the first semiconductor layer 13 and has a different polarity.
  • the semiconductor light emitting device in which the shape of the exposed upper surface 15 on the 11 side has a vertex at an angle smaller than 45 degrees was able to increase the external quantum efficiency.
  • a semiconductor element in which the shortest distance from all points included in the active layer 12 to the exposed side surface of the active layer 12 is 40 ⁇ m or less, and the sum of the area of the side surface 17 with respect to the area of the upper surface 15 Semiconductor light-emitting element with a ratio of more than 5%, and multiple mesa sections with active layer 12 separated by space
  • a semiconductor light emitting device or a semiconductor light emitting device in which the active layer 12 has a plurality of mesas separated by a space except for a bridge portion on a substrate light emitted from the side surface is hardly attenuated, so that the external quantum efficiency is improved. But high ,.
  • the present embodiment is a semiconductor light emitting device including at least a substrate, a first semiconductor layer, an active layer, and a second semiconductor layer in this order, wherein the second semiconductor layer is different from the first semiconductor layer.
  • the external quantum efficiency is increased by making one of the inner angles between the exposed side surface of the active layer and the exposed upper surface on the side of the second semiconductor layer 138 degrees or more. It is a semiconductor light emitting device.
  • FIG. 14 shows an example of an outer shape model of the semiconductor light emitting device of the present invention.
  • 11 is the second semiconductor layer
  • 12 is the active layer
  • 13 is the first semiconductor layer
  • 14 is the substrate
  • 15 is the upper surface exposed on the second semiconductor layer side
  • 17 is the exposed active layer.
  • Side view 26 is a point light source.
  • the point light source 26 is a virtual point that emits light at this position.
  • the side surface 17 as shown in FIG. 14 is obtained by etching under the condition that the difference between the vertical and horizontal selectivity is small.
  • a first semiconductor layer 13, an active layer 12, and a second semiconductor layer 11 are formed on a substrate.
  • the second semiconductor layer 11 and the first semiconductor layer 13 are p-type or n-type semiconductor layers, respectively, and have different polarities.
  • the holes supplied from the p-type semiconductor layer and the electrons supplied from the n-type semiconductor layer recombine in the active layer 12 to emit light.
  • the light emitted from the point light source 26 in the active layer 12 is emitted from the upper surface on the side of the second semiconductor layer 11, or the second semiconductor layer 11, the first semiconductor layer 13 It propagates through the inside and emits the side force of each semiconductor layer.
  • Light emitted from the active layer 12 is reflected at the upper surface on the side of the second semiconductor layer 11 at a critical angle, further reflected at the bottom surface of the i-th semiconductor layer i 3 and at a critical angle with respect to the side surface.
  • the condition for incidence at an incident angle ⁇ of 21 degrees or less is ⁇ 138. If the angle of incidence on side 17 is less than 21 degrees, The light is emitted into the outside air without being totally reflected by the side surface.
  • the second semiconductor layer 11 has a different polarity from the first semiconductor layer 13, and the side surface 17 and the upper surface
  • the semiconductor light-emitting device with an inner angle of 15 or more than 138 degrees made it possible to increase the external quantum efficiency.
  • a semiconductor device in which the shortest distance from all points included in the active layer 12 to the exposed side surfaces of the active layer 12 is 40 ⁇ m or less, and the ratio of the total area of the side surface 17 to the area of the upper surface 15 Five. /.
  • a semiconductor light emitting device in which a plurality of mesa portions in which the active layer 12 is separated in space is provided on the substrate, and a plurality of mesa in which the active layer 12 is separated in space except for the bridge portion.
  • the light emitted from the side surface is hardly attenuated, so that the effect of improving the external quantum efficiency is high.
  • the present embodiment is a semiconductor light emitting device including at least a substrate, a first semiconductor layer, an active layer, and a second semiconductor layer in this order, wherein the second semiconductor layer is different from the first semiconductor layer.
  • This is a semiconductor light emitting device having the above polarity and having a reflective layer on the surface of the substrate opposite to the surface on which the first semiconductor layer is formed, thereby increasing external quantum efficiency.
  • the second semiconductor layer 11 including the active layer 12 and the first semiconductor layer 13 are formed on the substrate 14.
  • the second semiconductor layer 11 and the first semiconductor layer 13 are p-type or n-type semiconductor layers, respectively, and have different polarities.
  • the holes supplied from the p-type semiconductor layer and the electrons supplied from the n-type semiconductor layer recombine in the active layer 12 to emit light.
  • the emitted light travels toward the substrate 14 from the upper surface on the side of the second semiconductor layer 11.
  • the substrate 14 is a metal substrate, light traveling toward the substrate 14 is reflected by the substrate.
  • the substrate 14 is made of a transparent material, if the reflection layer 25 is provided on the surface of the substrate 14 opposite to the surface on which the semiconductor layer is formed, light traveling toward the substrate 14 is reflected by the reflection layer 25.
  • the light emitted from the active layer 12 is reflected at a critical angle on the upper surface on the side of the second semiconductor layer 11 or is reflected on the reflective layer 25, and the critical angle with respect to the side surface 17 is 21 degrees.
  • the light is incident at a smaller incident angle ⁇ , the light is emitted into the outside air without being totally reflected by the side surface 17.
  • the second semiconductor layer 11 has a different polarity from the first semiconductor layer 13, and In the semiconductor light emitting device having the reflective layer 25 on the surface opposite to the surface on which the semiconductor layer was formed, the external quantum efficiency could be increased.
  • a semiconductor element in which the shortest distance from all points included in the active layer 12 to the exposed side surface of the active layer 12 is 40 ⁇ m or less, or the ratio of the total area of the side surface 17 to the area of the upper surface 15 5% or more, a semiconductor light emitting device in which the active layer 12 has a plurality of mesa portions separated by space on the substrate, and a plurality of active layers 12 in which the active layer 12 is separated by space except for the bridge portion.
  • a semiconductor light emitting device having a mesa portion on a substrate light emitted from a side surface is hardly attenuated, so that the effect of improving external quantum efficiency is high.
  • a compound-based compound semiconductor light emitting device could be manufactured by the following method.
  • Figure 16 shows the structure of the fabricated semiconductor light emitting device. Hereinafter, description will be made with reference to FIG.
  • TMG trimethylgallium
  • H hydrogen gas
  • a layer made of aN is formed to a thickness of about 0.01 to 0.2 zm.
  • the GaN layer becomes the GaN low-temperature buffer layer 37 as a part of the semiconductor layer of the semiconductor light emitting device.
  • SiH may be supplied as necessary to add Si as a dopant.
  • the metal reflective layer 42 is formed on the surface of the silicon sapphire substrate on the side opposite to the surface on which the GaN low-temperature buffer layer 37 is formed, before forming the GaN low-temperature buffer layer 37, the metal The metal reflection layer 42 is formed in advance.
  • n-GaN Si about 2-5 ⁇ m.
  • the n_GaN: Si layer becomes the n-GaN: Si high temperature buffer layer 36 as a part of the semiconductor layer of the semiconductor light emitting device.
  • trimethylindium is introduced in addition to the above-described source gas, and a material whose band gap energy is smaller than the band gap energy of the semiconductor layer, for example, InGaN
  • a layer consisting of (0 ⁇ y ⁇ l) is formed to a thickness of about 0.002 to 0.1 ⁇ .
  • GaN active layer is half
  • CpMg cyclopentagenenylmagnesium
  • the Mg layer is a part of the semiconductor layer of the semiconductor light emitting device.
  • AlGaN: Mg semiconductor layer 34 is obtained.
  • cyclopentagenenylmagnesium (CpMg) is supplied as a p-type dopant in addition to the above-mentioned source gas to form a p-GaN: Mg layer of about 0.3—1 zm. I do. p—
  • the GaN: Mg layer becomes the p-GaN: Mg contact layer 33 as a part of the semiconductor layer of the semiconductor light emitting device.
  • the dopant of the contact layer 33 is activated.
  • Ni / Au is formed as a p-type electrode by vapor deposition.
  • the deposited Ni / Au becomes the Ni / Aup type electrode 32.
  • n-type electrode In order to form an n-type electrode, a resist is applied and pattern jungling is performed, and each of the grown semiconductor layers, active layers, and a part of the p-type electrode are removed by dry etching to form an n-GaN. : Expose the Si high temperature buffer layer 36. Further, a resist is applied and patterning is performed, and Ni / Au is formed by vapor deposition. By performing lift-off, the Al / Aun type electrode 40 is obtained. Here, a part of the semiconductor layer or the like is removed by dry etching, but another method such as wet etching may be used depending on a material for forming the semiconductor layer.
  • the bridge is patterned so as to connect the mesas.
  • the Ni / Aup-type electrode 32 becomes a p-side current spreading layer
  • the n-GaN: Si high temperature buffer layer 36 becomes an n-side current spreading layer. If the upper surface of the semiconductor layer has a vertex at an angle smaller than 45 degrees, the pattern should be patterned according to the shape.
  • a pattern is formed by applying a resist, and Ti / Au is formed by vapor deposition. Lift off to make Ti / Au bonding pads 31 and 39.
  • the current diffusion layer and the bonding pad may be formed by other methods such as wet etching instead of dry etching alone.
  • the parts corresponding to the Ti / Au bonding pads 31 and 39 are wet-etched with a resist pattern and an etchant such as hydrofluoric acid.
  • an etchant such as hydrofluoric acid.
  • the semiconductor light emitting device of the present invention can be applied as an LED.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

III族窒化物系化合物半導体を始め発光素子を形成する材料の屈折率は、空気に比較してかなり高いため、従来の半導体発光素子では、その構造上、活性層で発光した光が空気中に出射するには、半導体層から空気中への入射角が臨界角以下でなければならず、入射角が臨界角を超えると空気中に出射できなくなり、全反射する。上記課題を解決するために、本発明は、基板と、該基板上に、少なくとも、第1半導体層と、活性層と、第2半導体層と、を順に備える半導体発光素子であって、該第2半導体層は該第1半導体層と異なった極性を持ち、かつ該第2半導体層の側の露出した上面の面積に対して、該活性層の露出している側面の該第1半導体層、該活性層および該第2半導体層の面積の合計が5%以上である半導体発光素子である。  

Description

明 細 書
半導体発光素子
技術分野
[0001] 本発明は、出射効率の高い半導体発光素子に関する。特に、側面からの光の取り 出しを重視した半導体発光素子に関する。
背景技術
[0002] 従来の半導体発光素子は、図 1のように構成されていた。図 1は、 Al Ga In N ( x y 1— x— y
0≤x≤l、 0≤y≤l、 0≤x+y≤l)で表される III族窒化物系化合物半導体からなる GaN系半導体発光素子の例である。図 1において、 81は p側ボンディングパッド、 82 は p型電極、 83は p_GaN半導体層、 85は InGaN活性層、 86は n— GaN半導体層、 87はサファイア基板、 88は n側ボンディングパッド、 89は n型電極である。
[0003] Al Ga ln N (0≤x≤ 1、 0≤y≤ 1、 0≤x+y≤ 1)で表される III族窒化物系化合
1—
物半導体を始め発光素子を形成する材料の屈折率は、空気に比較してかなり高ぐ 例えば、図 1に示す GaN系半導体発光素子では、 InGaN活性層 85で発光した光が p型電極 82を通して空気中に出射するには、 ρ-GaN半導体層 83での空気中への 入射角が臨界角以下でなければならなレ、。入射角が臨界角を超えると空気中に出 射できなくなり、全反射する。
[0004] 全反射された光は半導体発光素子内を伝搬していく。伝搬の状況を図 2に示す。
図 2は活性層を有する半導体発光素子の中を伝搬する光の例である。図 2において 、 91は半導体層、 92は活性層、 93は半導体層、 94は半導体発光素子の上面、 95 は半導体発光素子の底面、 96は伝搬する光を説明するための点光源である。
[0005] 活性層 92の中の例えば点光源 96の位置で発光した光力 半導体層 91を通り、上 面 94に達する。入射角が臨界角以下のときは空気中に出射する。臨界角 Θ は半導
0 体層 91の屈折率を n、空気の屈折率を 1とすると、下記の式で与えられる。
0
Θ =sin_1 (l/n ) (1)
0 0
(1)式より、 n = 2. 8のとき、 Θ = 21度となり、入射角 Θ力 21度未満であれば、上面
0 0
94から空気中に出射する。点光源 96から半導体発光素子の上面 94方向に向かつ た光、又は点光源 96から半導体発光素子の底面 95に向かってから底面 95で反射 された光が半導体発光素子の上面 94から空気中に出射する割合 77は、下記の式で 与えられる。
η = ( 1-cos Θ ) (2)
0
(2)式において、 Θ = 21度のとき、 = 7%となる。半導体発光素子が直方体であ
0
るとすれば、全方向に向かった光のうち、空気中に出射する割合は、 3 η = 21 %で、
79%が半導体発光素子内に閉じ込められる。
[0006] しかし、入射角 Θ力 ¾ 1度以上であれば、全反射して再び半導体層 91、 93内を伝 搬する。活性層 92で発光した光にとって、半導体層 91、 93は透明であるが、活性層
92は発光した光に対応するバンドギャップを有するため吸収体にもなりうる。半導体 層 91、 93を伝搬する際に、活性層 92も通過するため、通過するたびに吸収損により
、伝搬する光が減衰する。
[0007] 半導体発光素子の側面に到達した光は入射角が 21度以上であれば、再び全反射 されて、半導体発光素子内に閉じ込められてしまう。入射角が 21度未満であれば、 空気中に出射する。前述したように、活性層 92を何度も通過した光は減衰しているた め、出射した光も強度が小さくなつてしまう。
[0008] このように、活性層で発光した光が全反射によって、内部に閉じ込められる割合が 多ぐまた、側面から出射する光も減衰している。活性層で発光した光を外部に取り 出すことのできる割合を外部量子効率と呼ぶ。このような理由で従来の半導体発光 素子では外部量子効率が悪レ、。
[0009] 半導体発光素子の側面での全反射を少なくするために、上面の形状を三角形にし た技術もある(例えば、特許文献 1参照。)。しかし、前述したように、レ、くら、側面での 全反射を少なくしても、側面から出射する光が減衰していたのでは、外部量子効率 の向上が望めない。
特許文献 1 :特開平 10 - 326910号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明は、このような問題を解決するために、半導体発光素子において、外部量子 効率を改善することを目的とする。
課題を解決するための手段
[0011] 前述した目的を達成するために、本願第 1発明は、基板と、該基板上に、少なくとも 、第: L半導体層と、活性層と、第 2半導体層と、を順に備える半導体発光素子であつ て、該第 2半導体層は該第 1半導体層と異なった極性を持ち、かつ該第 2半導体層 の側の露出した上面の面積に対して、該活性層の露出している側面の該第 1半導体 層、該活性層および該第 2半導体層の面積の合計が 5%以上である半導体発光素 子である。
[0012] また、本願第 2発明は、基板と、該基板上に、少なくとも、第 1半導体層と、活性層と 、第 2半導体層と、を順に備える半導体発光素子であって、該第 2半導体層は該第 1 半導体層と異なった極性を持ち、かつ該活性層に含まれるすべての点から該活性層 の露出している側面までの最短距離が 40 μ m以下の半導体発光素子である。
[0013] また、本願第 3発明は、基板と、該基板上に形成された少なくとも第 1半導体層と活 性層と第 2半導体層とを順に含む 2以上のメサ部と、を備える半導体発光素子であつ て、該第 2半導体層は該第 1半導体層と異なった極性を持ち、かつ少なくとも該第 2 半導体層および該活性層が該メサ部間で空間的に分離されている半導体発光素子 である。
[0014] また、本願第 4発明は、基板と、該基板上に形成された少なくとも第 1半導体層と活 性層と第 2半導体層とを順に含む 2以上のメサ部と、を備える半導体発光素子であつ て、該第 2半導体層は該第 1半導体層と異なった極性を持ち、かつ該メサ部を接続 するブリッジ部を除いて少なくとも該第 2半導体層および該活性層が該メサ部間で空 間的に分離されている半導体発光素子である。
[0015] また、本願第 5発明は、少なくとも、基板と、第 1半導体層と、活性層と、第 2半導体 層と、を順に備える半導体発光素子であって、該第 2半導体層は、該第 1半導体層と 異なった極性を持ち、かつ該第 2半導体層の側の露出した上面が該第 2半導体層の 側の露出した上面から少なくとも該活性層にまで達する凹部を有する半導体発光素 子である。
[0016] 本願発明において、前記第 2半導体層の側の露出した上面の面積に対して、前記 活性層の露出している側面の前記第 1半導体層、前記活性層および前記第 2半導 体層の面積の合計が 5%以上とすることができる。
[0017] また、本願発明において、少なくとも前記活性層に含まれるすべての点から前記活 性層の露出した側面までの最短距離力 O a m以下とすることができる。
[0018] また、本願発明において、前記第 2半導体層の側の露出した上面の形状が 45度よ りも小さい角度の頂点を形成することができる。
[0019] また、本願発明において、前記活性層の露出している側面と前記第 2半導体層の 側の露出した上面とのなす一方の内角が 138度以上とすることができる。
[0020] また、本願発明において、前記基板の前記第 1半導体層が形成された面に対して 反対の側の面に反射層を備えることができる。
[0021] また、本願発明において、前記半導体発光素子が Al Ga In Ν (0≤χ≤1、 0≤ x y 1— x— y
y≤ 1、 0≤x+y≤ 1)で表される III族窒化物系化合物半導体発光素子とすることがで きる。
なお、本願発明における各構成は、可能な限り組み合わせることができる。
発明の効果
[0022] 以上説明したように、本発明によれば半導体発光素子の出射効率を高めることが できる。とくに、側面からの光の取り出しを優れたものとすることができる。
図面の簡単な説明
[0023] [図 1]従来の III族窒化物系化合物からなる GaN系半導体発光素子の構成を説明す る図である。
[図 2]活性層を有する半導体発光素子の中を伝搬する光の例を説明する図である。
[図 3]本願発明の半導体発光素子の外形モデルの例を説明する図である。
[図 4]本願発明の半導体発光素子の半導体層の上面の面積に対する側面の面積の 合計の割合と外部量子効率との関係を説明する図である。
[図 5]本願発明の原理を説明する図である。
[図 6]本願発明の半導体発光素子を説明する図である。
[図 7]本願発明の半導体発光素子の構造の例を説明する図である。
[図 8]本願発明の半導体発光素子の構造の例を説明する図である。 [図 9]本願発明の半導体発光素子の構造の例を説明する図である。
園 10]本願発明の半導体発光素子の構造の例を説明する図である。
園 11]本願発明の半導体発光素子の構造の例を説明する図である。
園 12]本願発明の半導体発光素子の構造の例を説明する図である。
[図 13]本願発明の半導体発光素子の半導体層の上面の頂点の角度に対する外部 量子効率の関係を説明する図である。
園 14]本願発明の半導体発光素子の外形モデルの例を説明する図である。
園 15]本願発明の半導体発光素子の構造の例を説明する図である。
園 16]本願発明の実施例として作製した半導体発光素子の構造の例を説明する図 である。
符号の説明
11 第 2半導体層
12 活性層
13 第 1半導体層
14 基板
15 第 2半導体層の側の露出した上面
16 活性層の露出した側面
17 活性層の露出した側面
20 メサ部
1 , 22 ボンディングパッド
23 ブリッジ部
24 棚部
25 反射層
26 点光源
27 凹部
28 点光源
29 半径
50 活性層に含まれる点 51 側面までの距離
31 ' . 39 Ti/Auボンディングパッド
32 Ni/Au p型電極
33 p-GaN: Mgコンタクト層
34 Al Ga N : Mg半導体層
35 In Ga N活性層
36 n-GaN: Si高温バッファ層
37 GaN低温バッファ層
38 サファイア基板
40 Al/Au n型電極
41 ノヽ °ッシベーシヨン膜
42 金属反射層
81 P側ボンディングパッド
82 p型電極
83 p— GaN半導体層
85 InGaN活性層
86 n— GaN半導体層
87 サファイア基板
88 n型ボンディングパッド
89 n型電極
91 半導体層
92 活性層
93 半導体層
94 半導体発光素子の上面
95 半導体発光素子の底面
96 点光源
発明を実施するための最良の形態
以下、本願発明の実施の形態について、添付の図面を参照して説明する (実施の形態 1)
本実施の形態は、基板と、該基板上に、少なくとも、第 1半導体層と、活性層と、第 2 半導体層と、を順に備える半導体発光素子であって、該第 2半導体層は該第 1半導 体層と異なった極性を持ち、かつ該第 2半導体層の側の露出した上面の面積に対す る該活性層の露出している側面の該第 1半導体層、該活性層および該第 2半導体層 の面積の合計の割合を大きくすることによって、外部量子効率の拡大を図る半導体 発光素子である。
[0026] 図 3に本願発明の半導体発光素子の外形モデルの例を示す。図 3において、 11は 第 2半導体層、 12は活性層、 13は第 1半導体層、 14は基板、 15は第 2半導体層の 側の露出した上面、 17は活性層の露出している側面、 21、 22はボンディングパット である。
[0027] ここで、 Al Ga in N (0≤x≤l、 0≤y≤l、 0≤x+y≤l)で表される III族窒化物 系化合物からなる窒化物系半導体発光素子では、サファイア基板上に GaNバッファ 層、 n - GaN第 1半導体層、 GalnN活性層、 p - GaN第 2半導体層を積層し、 n型電 極形成のために、エッチングによって n— GaN第 1半導体層の一部、 GalnN活性層、 p— GaN第 2半導体層を露出させることがある。この場合、 n— GaN第 1半導体層の一 部がエッチングされないで残される。本明細書では、側面 17には残された第 1半導 体層の側面も含まれる。図 3においては、活性層 12の露出している側面 17とは、図 3 に示す斜線部に相当した部分で、基板 14の側面や、基板 14上に残されている第 1 半導体層 13の一部分の側面を含む。但し、図 3に示す側面 17の斜線部は半導体発 光素子の 1つの側面のみを表している。なお、本明細書において、以下同様とする。
[0028] 図 3において、基板 14上に第 1半導体層 13、活性層 12、第 2半導体層 11、が形成 されてレ、る。第 2半導体層 11と第 1半導体層 13はそれぞれ p型又は n型の半導体層 で、かつ極性が異なっている。このとき、 p型半導体層から供給されたホールと n型半 導体層から供給された電子が活性層 12で再結合して発光する。発光した光は、図 2 で説明したように、第 2半導体層 11の側の上面 15から出射する力、、第 1半導体層 13 、第 2半導体層 11を伝搬して側面から出射する。
[0029] 本実施の形態では、図 3における第 2半導体層 11として GaN層(屈折率 2. 8、透過 率 100%)力 SO. 3 / mと AlGaN層(屈折率 2· 65、透過率 100%)力 0. 01 /i m、活 性層 12として GalnN層(屈折率 2. 8、透過率 95 · 5 %)が 0. Ι μ ΐη、第 1半導体層 1 3として GaN層(屈折率 2· 8、透過率 100%)が 0· 6 μ ΐη、基板 14としてサファイア基 板(屈折率 1. 8、透過率 100%)の窒化物系化合物半導体において、第 1半導体層 13の底面の反射率を 100%として外部量子効率をシミュレーションによって求めた。 従来の半導体発光素子の形状では、上面の面積は 300 m X 300 μ m、側面の 面積は 300 μ χη Ι μ m程度となり、上面 15の面積に対する側面 17の面積の合計 の割合が 1. 4%となる。このときの外部量子効率を 1として、上面 15の面積に対する 側面 17の面積の合計の割合と相対的な外部量子効率との関係を表 1に示す。
[表 1]
Figure imgf000010_0001
[0031] 表 1の(側面の面積の合計 Z上面の面積)に対する外部量子効率を図 4に示す。図 4に示すように、上面の形状に係らず上面 15の面積に対する側面 17の面積の合計 の割合を増加させると外部量子効率が向上する傾向にある。特に、上面 15の面積に 対する側面 17の面積の合計の割合が 5%を超えると外部量子効率が大きく改善する ことがわかる。これは、側面から出射する光が減衰していないので、外部量子効率が 高くなると考えられる。
[0032] 従って、基板 14と、基板 14上に、少なくとも、第 1半導体層 13と、活性層 12と、第 2 半導体層 1 1と、を順に備える半導体発光素子であって、第 2半導体層 1 1は第 1半導 体層 13と異なった極性を持ち、かつ第 2半導体層 11の側の露出した上面 15の面積 に対する活性層 12の露出している側面の第 1半導体層 13、活性層 12および第 2半 導体層 11の面積の合計が 5%以上である半導体発光素子では、外部量子効率の拡 大を図ることができた。
[0033] (実施の形態 2)
本実施の形態は、基板と、該基板上に、少なくとも、第 1半導体層と、活性層と、第 2 半導体層と、を順に備える半導体発光素子であって、該第 2半導体層は該第 1半導 体層と異なった極性を持ち、かつ該活性層に含まれるすべての点から該活性層の露 出している側面までの最短距離を短くすることによって、外部量子効率の拡大を図る 半導体発光素子である。
[0034] 図 5は本願発明の原理を説明した図である。図 6は本願発明の説明図である。図 5 、図 6において、 11は第 2半導体層、 12は活性層、 13は第 1半導体層、 14は基板、 15は第 2半導体層の露出した上面、 17は活性層の露出している側面、 28は点光源 である。点光源 28はこの位置で発光したとする仮想的な点である。図 6において、 16 は活性層の露出した側面、 50は活性層に含まれる点、 51は点 50から側面 16までの 距離を示す。
[0035] 図 5において、基板 14上に第 1半導体層 13、活性層 12、第 2半導体層 11、が形成 されてレ、る。第 2半導体層 11と第 1半導体層 13はそれぞれ p型又は n型の半導体層 で、かつ極性が異なっている。このとき、 p型半導体層から供給されたホールと n型半 導体層力 供給された電子が活性層 12で再結合して発光する。点光源 28からの光 は、図 2で説明したように、図 5における第 2半導体層 11の側の上面から出射するか 、第 2半導体層 11、第 1半導体層 13を伝搬して側面から出射する。このとき、点光源 28からの光は活性層 12を何回か横切る。また、活性層 12は、電子とホールとの再結 合によって得られたエネルギーに対応した波長をもつ光を発する。つまり、逆にその 波長の光が活性層 12を通過すると、活性層 12はその波長の光にとって吸収体となり 、光は減衰する。
[0036] 従来の半導体発光素子では、半導体層の幅が半導体層の厚みに比べ相対的に大 きいため、活性層で発光した光が半導体層の側面に到達するまでの距離が長ぐ半 導体層と外部との境界面で反射して活性層を横切る回数が多い。そのため、光が半 導体層の側面から出射したときには、光が減衰しており、十分な外部量子効率を得る ことができなかった。
[0037] 本実施の形態では、図 6における活性層 12に含まれる点 50から側面 16までの距 離 51を短くすることにより、結果として、活性層 12で発光した光が側面 16に到達する までに活性層 12を横切る回数を減らし、光の減衰量を少なくすることが可能となった 。つまり、側面 16から出射する光の出射効率を高くし、外部量子効率を向上させるこ とが可能となった。
[0038] 本実施の形態では、実験を重ねた結果、図 6において、活性層 12に含まれる点 50 力 側面 16までの最短距離が 40 x m以下のとき、外部量子効率が大きく向上するこ とがわかった。ここで、最短距離とは、点 50から側面 16までの距離 51のうち最短のも のをいう。
[0039] 従って、基板 14と、基板 14上に、少なくとも、第 1半導体層 13と、活性層 12と、第 2 半導体層 11と、を順に備える半導体発光素子であって、第 2半導体層 1 1は第 1半導 体層 13と異なった極性を持ち、かつ活性層 12に含まれるすべての点 50から活性層 12の露出している側面 16までの最短距離を 40 / m以下である半導体発光素子で は、外部量子効率の拡大を図ることができた。
[0040] (実施の形態 3)
本実施の形態は、基板と、該基板上に形成された少なくとも第 1半導体層と活性層 と第 2半導体層とを順に含む 2以上のメサ部と、を備える半導体発光素子であって、 該第 2半導体層は該第 1半導体層と異なった極性を持ち、かつ少なくとも該第 2半導 体層および該活性層が該メサ部間で空間的に分離されることによって外部量子効率 の拡大を図る半導体発光素子である。
[0041] 図 7に本願発明の半導体発光素子の構造の例を示す。図 7において、 1 1は第 2半 導体層、 12は活性層、 13は第 1半導体層、 14は基板、 15は第 2半導体層の側の露 出した上面、 17は活性層の露出している側面、 20はメサ部、 21、 22はボンディング パッドである。図 7では、上面 15の形状が三角形をしたメサ部 20が基板 14上に 2つ 形成されている。基板 14上のメサ部 20は 2つに限らず、複数あればよレ、。このような メサ部 20は、基板 14上に活性層 12を含む半導体層を積層した後に、メサ部 20とな る部分を除いてエッチングすることによって形成することができる。
[0042] 図 7において、基板 14上の各メサ部 20に少なくとも第 1半導体層 13、活性層 12、 第 2半導体層 11、が形成されている。第 2半導体層 11上に設けられたボンディング パッド 21から第 2半導体層 11へ、基板 14上に設けられたボンディングパッド 22から 第 1半導体層 13へ電流が供給される。第 2半導体層 11と第 1半導体層 13はそれぞ れ p型又は n型の半導体層で、かつ極性が異なっている。このとき、 p型半導体層から 供給されたホールと n型半導体層から供給された電子が活性層 12で再結合して発 光する。発光した光は、図 2で説明したように、それぞれのメサ部 20の第 2半導体層 1 1の側の上面から出射する力、、第 2半導体層 11、第 1半導体層 13内を伝搬してそれ ぞれのメサ部 20の側面から出射する。
[0043] 図 7に示すように、大きなメサ部を形成するよりも、複数の微小なメサ部を基板上に 形成する方が、第 1半導体層 13、第 2半導体層 11を伝搬する光は活性層 12で吸収 される前にメサ部 20の側面から出射するため出射効率が高くなり、その結果、外部 量子効率が大きく向上する。
[0044] 実施の形態 1で説明したように、本実施の形態による半導体発光素子においても、 上面 15の面積に対する側面 17の面積の合計の割合が 5%を超えると外部量子効率 が大きく改善する。
[0045] また、実施の形態 2で説明したように、本実施の形態による半導体発光素子におい ても、活性層 12に含まれる点から活性層 12が露出した側面までの最短距離が 40 β m以下であると外部量子効率が大きく改善する。
[0046] 図 7では、基板 14の上部には第 1半導体層 13の一部がエッチングされないで残さ れているため、ボンディングパッド 22は基板 14に設けられている。もちろん、導体を 基板 14とすることができれば、第 1半導体層 13の一部が残されなくても、ボンディン グパッド 22は基板 14上に設けることができ、さらに、共通のボンディングパッドでもよ レ、。基板 14が導体でもなぐ基板 14の上部に第 1半導体層 13の一部が残されても レ、ない場合は、ボンディングパッド 22は第 1半導体層 13に接続されるように、第 1半 導体層 13に形成した棚部等に設ければよい。 [0047] 従って、基板 14と、基板 14上に形成された少なくとも第 1半導体層 13と活性層 12 と第 2半導体層 11とを順に含む 2以上のメサ部 20と、を備える半導体発光素子であ つて、第 2半導体層 11は第 1半導体層 13と異なった極性を持ち、かつ少なくとも第 2 半導体層 11および活性層 12がメサ部間で空間的に分離された半導体発光素子で は、上面 15の面積に対する側面 17の面積の合計の割合を大きくすることができるた め、外部量子効率を大きく改善することができた。また、本実施の形態の半導体発光 素子では、活性層 12に含まれる点から活性層の露出した側面までの最短距離を短く することもできるため、外部量子効率を大きく改善することができた。
[0048] さらに、上面 15の面積に対する側面 17の面積の合計の割合を 5%以上にした半導 体発光素子や、活性層 12に含まれるすべての点から活性層 12の露出した側面まで の最短距離が 40 μ m以下の半導体発光素子では、側面から出射する光が減衰し難 いので、外部量子効率の拡大を図ることが可能となる。
[0049] (実施の形態 4)
本実施の形態は、基板と、該基板上に形成された少なくとも第 1半導体層と活性層 と第 2半導体層とを順に含む 2以上のメサ部と、を備える半導体発光素子であって、 該第 2半導体層は該第 1半導体層と異なった極性を持ち、かつ該メサ部を接続する ブリッジ部を除レ、て少なくとも該第 2半導体層および該活性層が該メサ部間で空間的 に分離されることによって外部量子効率の拡大を図る半導体発光素子である。
[0050] 図 8、図 9に本願発明の半導体発光素子の構造の例を示す。図 8、図 9において、 1 1は第 2半導体層、 12は活性層、 13は第 1半導体層、 14は基板、 15は第 2半導体層 の側の露出した上面、 17は活性層の露出している側面、 20はメサ部、 21、 22はボン デイングパッド、 23はブリッジ部、 24は棚部である。図 8、図 9では、上面 15の形状が 三角形をしたメサ部 20が基板 14上に 2つ形成されている。基板上のメサ部は 2つに 限らず、複数あればよい。 2つのメサ部はブリッジ部 23によって接続されている。
[0051] ここで、ブリッジ部 23は、基板上に形成された複数のメサ部 20を電気的に接続する ためのもので、基板 14上に活性層 12を含む半導体層を積層した後に、メサ部 20又 はブリッジ部 23となる部分を除いてエッチングすることによって形成することができる 。本実施の形態では、実施の形態 3に示した半導体発光素子において、各メサ部 20 の活性層 12の一部、即ちブリッジ部 23によって接続された部分を除いて分離した形 態となつている。
[0052] 図 8において、基板 14上の各メサ部 20に少なくとも第 1半導体層 13、活性層 12、 第 2半導体層 11が形成されてレ、る。第 2半導体層 11上に設けられたボンディングパ ッド 21から 2つのメサ部 20の第 2半導体層 11へ、棚部 24上に設けられたボンディン グパッド 22から 2つのメサ部 20の第 1半導体層 13へ電流が供給される。第 2半導体 層 11と第 1半導体層 13はそれぞれ p型又は n型の半導体層で、かつ極性が異なって いる。このとき、 p型半導体層から供給されたホールと n型半導体層から供給された電 子が活性層 12で再結合して発光する。発光した光は、図 2で説明したように、それぞ れのメサ部 20の第 2半導体層 11の側の上面から出射するか、第 2半導体層 11、第 1 半導体層 13内を伝搬してそれぞれのメサ部 20の側面から出射する。
[0053] 図 8において、 2つのメサ部 20の第 2半導体層 11及び第 1半導体層 13はブリッジ 部 23で接続されることによってそれぞれのメサ部 20が電気的に接続されているため 、ボンディングパッド 21とボンディングパッド 22はそれぞれ 1つずつあれば足り、半導 体発光素子の製造工程が簡易になる。図 8の基板 14は導体でもなぐ基板 14の上 部に第 1半導体層 13の一部が残されていないため、ボンディングパッド 22は第 1半 導体層 13に接続されるように、第 1半導体層 13に形成した棚部 24に設けてレ、る。
[0054] 図 9において、基板 14上の各メサ部 20に少なくとも第 1半導体層 13、活性層 12、 第 2半導体層 11、が形成されている。第 2半導体層 11上に設けられたボンディング パッド 21から 2つのメサ部 20の第 2半導体層 11へ、基板 14上に設けられたボンディ ングパッド 22から 2つのメサ部 20の第 1半導体層 13へ電流が供給される。第 2半導 体層 11と第 1半導体層 13はそれぞれ p型又は n型の半導体層で、かつ極性が異な つている。このとき、 p型半導体層から供給されたホールと n型半導体層から供給され た電子が活性層 12で再結合して発光する。発光した光は、図 2で説明したように、そ れぞれのメサ部の第 1半導体層の側の上面から出射するか、第 2半導体層 11、第 1 半導体層 13内を伝搬してそれぞれのメサ部 20の側面から出射する。
[0055] 図 9において、 2つのメサ部 20の第 2半導体層 11及び第 1半導体層 13はブリッジ 部 23で接続されているため、ボンディングパッド 21とボンディングパッド 22はそれぞ れ 1つずつあれば足り、半導体発光素子の製造工程が簡易になる。図 9の基板 14の 上部には第 1半導体層 13の一部がエッチングされなレ、で残されてレ、るため、ボンディ ングパッド 22は基板 14に設けることができる。もちろん、導体を基板 14とすることがで きれば、第 1半導体層 13の一部が残されなくても、ボンディングパッド 22は基板 14上 に設けることができる。
[0056] 本実施の形態では、前述した実施の形態 3で説明したのと同様の効果が得られるこ とに加え、ボンディングパッドを共通とすることが可能となる。
[0057] (実施の形態 5)
本実施の形態は、少なくとも、基板と、第 1半導体層と、活性層と、第 2半導体層と、 を順に備える半導体発光素子であって、該第 2半導体層は、該第 1半導体層と異な つた極性を持ち、かつ該第 2半導体層の側の露出した上面が該第 2半導体層の側の 露出した上面から少なくとも該活性層にまで達する凹部を有することによって外部量 子効率の拡大を図る半導体発光素子である。
[0058] 図 10、図 11に本願発明の半導体発光素子の構造の例を示す。図 10、図 11にお いて、 11は第 2半導体層、 12は活性層、 13は第 1半導体層、 14は基板、 17は活性 層の露出している側面、 21、 22はボンディングパッド、 24は棚部、 27は凹部、である 。図 10、図 11では、深さが少なくとも活性層 12にまで達する凹部 27が 2つ設けられ ているが、第 2半導体層 11の側の上面の凹部 27は 2つに限らず、 1以上あればよい 。このような凹部 27は、基板 14上に活性層 12を含む半導体層を積層した後に、エツ チングすることによって形成することができる。なお、凹部 27の形状および配置につ いて、鋭角を持つ三角形形状をした凹部 27を図 10、図 11に示すものとしたが、本実 施の形態の 1例であり、凹部 27の形状および配置については、種々のものを適用す ること力 Sできる。
[0059] 図 10において、基板 14上に第 1半導体層 13、活性層 12および第 2半導体層 11、 が形成されている。第 2半導体層 11上に設けられたボンディングパッド 21から第 2半 導体層 11へ、棚部 24上に設けられたボンディングパッド 22から第 1半導体層 13へ 電流が供給される。第 2半導体層 11と第 1半導体層 13はそれぞれ p型又は n型の半 導体層で、かつ極性が異なっている。このとき、 p型半導体層から供給されたホールと n型半導体層から供給された電子が活性層 12で再結合して発光する。発光した光は 、図 2で説明したように、第 2半導体層 11の側の上面から出射するか、第 2半導体層 11、第 1半導体層 13内を伝搬してそれぞれの半導体層の側面から出射する。
[0060] 図 10に示すように、 1以上の凹部 27を設けることによって、活性層 12が露出した側 面が新たに形成され、第 1半導体層 13、第 2半導体層 11を伝搬する光は活性層 12 で吸収される前に新たに形成された側面から出射するため出射効率が高くなり、その 結果、外部量子効率が大きく向上する。
[0061] 実施の形態 1で説明したように、本実施の形態による半導体発光素子においても、 上面 15の面積に対する側面 17の面積の合計の割合が 5%を超えると外部量子効率 が大きく改善する。
[0062] また、実施の形態 2で説明したように、本実施の形態による半導体発光素子におい ても、活性層 12に含まれる点から活性層 12が露出した側面までの最短距離が 40 μ m以下であると外部量子効率が大きく改善する。
[0063] 図 10において、第 2半導体層 11及び第 1半導体層 13は電気的に接続されている ため、ボンディングパッド 21とボンディングパッド 22はそれぞれ 1つずつあれば足り、 半導体発光素子の製造工程が簡易になる。図 10の基板 14は導体でもなぐ基板 14 の上部に第 1半導体層 13の一部が残されていない場合は、ボンディングパッド 22は 第 1半導体層 13に接続されるように、第 1半導体層 13に形成した棚部 24に設けなけ ればならない。
[0064] 図 11において、基板 14上に第 1半導体層 13、活性層 12および第 2半導体層 11、 が形成されている。第 2半導体層 11上に設けられたボンディングパッド 21から第 2半 導体層 11へ、基板 14上に設けられたボンディングパッド 22から第 1半導体層 13へ 電流が供給される。第 2半導体層 11と第 1半導体層 13はそれぞれ p型又は n型の半 導体層で、かつ極性が異なっている。このとき、 p型半導体層から供給されたホールと n型半導体層から供給された電子が活性層 12で再結合して発光する。発光した光は 、図 2で説明したように、第 2半導体層 11の側の上面から出射する力、、第 2半導体層 11、第 1半導体層 13内を伝搬してそれぞれの半導体層の側面から出射する。
[0065] 図 11において、第 2半導体層 11及び第 1半導体層 13は電気的に接続されている ため、ボンディングパッド 21とボンディングパッド 22はそれぞれ 1つずつあれば足り、 半導体発光素子の製造工程が簡易になる。図 11の基板 14の上部には第 1半導体 層 13の一部がエッチングされないで残されているため、ボンディングパッド 22は基板 14に設けることができる。もちろん、導体を基板 14とすることができれば、第 1半導体 層 13の一部が残されなくても、ボンディングパッド 22は基板 14上に設けることができ る。
[0066] 従って、本実施の形態では、少なくとも、基板 14と、第 1半導体層 13と、活性層 12 と、第 2半導体層 11と、を順に備える半導体発光素子であって、第 2半導体層 11は、 第 1半導体層 13と異なった極性を持ち、かつ第 2半導体層 11の側の露出した上面 1 5が第 2半導体層 11の側の露出した上面 15から少なくとも活性層 12にまで達する凹 部を有することによって、上面 15に対する側面 17の面積の合計の割合を大きくする ことが可能で、外部量子効率を改善することができた。また、本実施の形態の半導体 発光素子では、活性層 12に含まれる点から活性層の露出した側面までの最短距離 を短くすることもできるため、外部量子効率を改善することができた。
[0067] さらに、第 2半導体層 11の側の露出した上面 15の面積に対する側面 17の面積の 合計の割合を 5%以上にした半導体発光素子や、活性層 12に含まれるすべての点 力 活性層 12の露出した半導体層の側面までの最短距離が 40 μ ΐη以下の半導体 発光素子では、側面から出射する光が減衰し難いので、外部量子効率の拡大を図る ことが可能となる。また、さらに、凹部 27を設けても半導体層は電気的に接続されて いるため、ボンディングパッドを共通とすることが可能となる。
[0068] (実施の形態 6)
本実施の形態は、少なくとも、基板と、第 1半導体層と、活性層と、第 2半導体層と、 を順に備える半導体発光素子であって、該第 2半導体層は該第 1半導体層と異なつ た極性を持ち、かつ該第 2半導体層の側の露出した上面の形状が 45度よりも小さい 角度の頂点を有することによって外部量子効率の拡大を図る半導体発光素子である
[0069] 図 12に本願発明の半導体発光素子の構造の例を示す。図 12において、 11は第 2 半導体層、 12は活性層、 13は第 1半導体層、 14は基板、 15は第 2半導体層の側の 露出した上面、 17は活性層の露出している側面、である。図 12では、上面 15の形状 が三角形をしている。形状は三角形に限らず、多角形でもよい。このような形状は、 基板 14上に活性層 12を含む半導体層を積層した後に、エッチングすることによって 形成すること力 Sできる。
[0070] 第 2半導体層 11と第 1半導体層 13はそれぞれ p型又は n型の半導体層で、かつ極 性が異なっている。このとき p型半導体層から供給されたホールと n型半導体層から 供給された電子が活性層 12で再結合して発光する。発光した光は、図 2で説明した ように、活性層 12の第 2半導体層 11の側の上面から出射する力 \第 2半導体層 11、 第 1半導体層 13内を伝搬して活性層 12が露出した側面から出射する。
[0071] 図 12において、上面 15の形状は角度 Θの頂点を有する。本実施の形態では、図 1 2における第 2半導体層 11として GaN層(屈折率 2. 8、透過率 100%)が 0. 3 μ mと AlGaN層(屈折率 2. 65、透過率 100%)が 0. 01 μ m、活性層 12として GalnN層( 屈折率 2. 8、透過率 97. 5%)が 0. 1 μ ΐη、第 1半導体層 13として GaN層(屈折率 2 . 8、透過率 100%)が 0. 6 / m、基板 14としてサファイア基板(屈折率 1. 8、透過率 100%)の窒化物系半導体発光素子において、第 1半導体層 13の底面に反射率を 100%として、上面 15の面積に対する側面 17の面積の合計の割合が 20%のときの 、頂点の角度 Θをパラメータに外部量子効率をシミュレーションによって求めた。
[0072] 従来の半導体発光素子の形状は、上面 15の面積に対する側面 17の面積の合計 の割合が 1. 4%の正方形である。このときの外部量子効率を 1として、上面の頂点の 角度に対する外部量子効率の関係を図 13に示す。図 13に示すように、頂点の角度 が 45度以下になると外部量子効率が向上する。
[0073] 従って、基板 14上に活性層 12を含む半導体層が形成された半導体発光素子であ つて、第 2半導体層 11は第 1半導体層 13と異なった極性を持ち、かつ第 2半導体層 11の側の露出した上面 15の形状が 45度よりも小さい角度の頂点を有する半導体発 光素子は、外部量子効率の拡大を図ることができた。特に、活性層 12に含まれるす ベての点から活性層 12の露出している側面までの最短距離が 40 μ m以下である半 導体素子や、上面 15の面積に対する側面 17の面積の合計の割合を 5%以上にした 半導体発光素子や、活性層 12が空間で分離された複数のメサ部を基板上に備える 半導体発光素子や、活性層 12がブリッジ部をのぞいて空間で分離された複数のメサ 部を基板上に備える半導体発光素子では、側面から出射する光が減衰し難いので、 外部量子効率の改善効果が高レ、。
[0074] (実施の形態 7)
本実施の形態は、少なくとも、基板と、第 1半導体層と、活性層と、第 2半導体層と、 を順に備える半導体発光素子であって、該第 2半導体層は該第 1半導体層と異なつ た極性を持ち、かつ該活性層の露出している側面と該第 2半導体層の側の露出した 上面とのなす一方の内角が 138度以上とすることによって外部量子効率の拡大を図 る半導体発光素子である。
[0075] 図 14に本願発明の半導体発光素子の外形モデルの例を示す。図 14において、 1 1は第 2半導体層、 12は活性層、 13は第 1半導体層、 14は基板、 15は第 2半導体層 の側の露出した上面、 17は活性層の露出している側面、 26は点光源である。点光 源 26はこの位置で発光したとする仮想的な点である。図 14に示すような側面 17は、 縦、横の選択比の差が小さい条件でエッチングすると得られる。
[0076] 図 14において、基板 14上に第 1半導体層 13、活性層 12、第 2半導体層 11、が形 成されてレ、る。第 2半導体層 11と第 1半導体層 13はそれぞれ p型又は n型の半導体 層で、かつ極性が異なっている。このとき p型半導体層から供給されたホールと n型半 導体層から供給された電子が活性層 12で再結合して発光する。図 14に示すように、 例えば、活性層 12の中の点光源 26で発光した光は、第 2半導体層 11の側の上面か ら出射するか、第 2半導体層 11、第 1半導体層 13内を伝搬して各半導体層の側面 力 出射する。
[0077] 図 14において、本実施の形態では、第 2半導体層 11として GaN層(屈折率 2. 8)と AlGaN層(屈折率 2. 65)、活性層 12として GalnN層(屈折率 2. 8)、第 1半導体層 13として GaN層(屈折率 2. 8)の窒化物系半導体発光素子において、第 1半導体層 13の底面の反射率を 100%として側面 17と上面 15のなす内角の最適値を求めた。
[0078] 活性層 12で発光した光が第 2半導体層 11の側の上面で臨界角で反射して、さらに 、第 i半導体層 i 3の底面で反射して、側面に対して臨界角である 21度以下入射角 φで入射する条件は、 ひ≥ 138である。側面 17への入射角が 21度よりも小さいと、 側面で全反射されずに、外部の空気中に出射する。
[0079] 従って、基板 14上に活性層 12を含む半導体層が形成された半導体発光素子であ つて、第 2半導体層 11は第 1半導体層 13と異なった極性を持ち、かつ側面 17と上面 15のなす内角を 138度以上とする半導体発光素子は、外部量子効率の拡大を図る こと力 Sできた。特に、活性層 12に含まれるすべての点から活性層 12の露出している 側面までの最短距離が 40 μ m以下である半導体素子や、上面 15の面積に対する 側面 17の面積の合計の割合を 5。/。以上にした半導体発光素子や、活性層 12が空 間で分離された複数のメサ部を基板上に備える半導体発光素子や、活性層 12がブ リッジ部をのぞいて空間で分離された複数のメサ部を基板上に備える半導体発光素 子では、側面から出射する光が減衰し難いので、外部量子効率の改善効果が高い。
[0080] (実施の形態 8)
本実施の形態は、少なくとも、基板と、第 1半導体層と、活性層と、第 2半導体層と、 を順に備える半導体発光素子であって、該第 2半導体層は該第 1半導体層と異なつ た極性を持ち、かつその基板上の第 1半導体層が形成された面と反対側の面に反射 層を有することによって、外部量子効率の拡大を図る半導体発光素子である。
[0081] 図 15において、基板 14上に活性層 12を含む第 2半導体層 11、第 1半導体層 13 が形成されてレ、る。第 2半導体層 11と第 1半導体層 13はそれぞれ p型又は n型の半 導体層で、かつ極性が異なっている。このとき p型半導体層から供給されたホールと n 型半導体層から供給された電子が活性層 12で再結合して発光する。発光した光は、 第 2半導体層 11の側の上面から出射する力 \基板 14に向かう。基板 14が金属基板 であれば、基板 14に向かった光は、基板で反射される。基板 14が透明材料の場合 は、基板 14の半導体層が形成された面と反対側の面に反射層 25を設けると、基板 1 4に向かった光は、反射層 25で反射される。
[0082] 活性層 12で発光した光が第 2半導体層 11の側の上面で臨界角で反射したり、反 射層 25で反射したりして、側面 17に対して臨界角である 21度よりも小さい入射角 φ で入射すると、側面 17で全反射されずに、外部の空気中に出射する。
[0083] 従って、基板 14上に活性層 12を含む半導体層が形成された半導体発光素子であ つて、第 2半導体層 11は第 1半導体層 13と異なった極性を持ち、かつその基板 14上 の半導体層が形成された面と反対側の面に反射層 25を有する半導体発光素子は、 外部量子効率の拡大を図ることができた。特に、活性層 12に含まれるすべての点か ら活性層 12の露出している側面までの最短距離が 40 β m以下である半導体素子や 、上面 15の面積に対する側面 17の面積の合計の割合を 5%以上にした半導体発光 素子や、活性層 12が空間で分離された複数のメサ部を基板上に備える半導体発光 素子や、活性層 12がブリッジ部をのぞいて空間で分離された複数のメサ部を基板上 に備える半導体発光素子では、側面から出射する光が減衰し難いので、外部量子効 率の改善効果が高い。
実施例
[0084] 本願発明の Al Ga in N (0≤x≤l、 0≤y≤l、 0≤x+y≤l)で表される III族窒
x y 1— x— y
化物系化合物半導体発光素子は、以下の方法で作製することができた。作製した半 導体発光素子の構造を図 16に示す。以下、図 16を参照して説明する。
[0085] 基板としてのサファイア基板 38上に 400— 700°Cの温度でキャリアガスである水素 ガス (H )と共に有機金属化合物ガスであるトリメチルガリウム (TMG)と反応ガスであ
2
るアンモニア (NH )を原料ガスとして供給し、有機金属化合物気相成長法により、 G
3
aNからなる層を 0. 01-0. 2 z m程度形成する。 GaN層は半導体発光素子の半導 体層の一部としての GaN低温バッファ層 37となる。サファイア基板 38の形成の際に 、必要により SiHを供給して、ドーパントとしての Siを添カ卩してもよい。半導体発光素
4
子のサファイア基板の GaN低温バッファ層 37が形成される面と反対側の面に金属反 射層 42を形成する場合は、 GaN低温バッファ層 37を形成する前に、予め、金属で 蒸着等により金属反射層 42を形成しておく。
[0086] 次に、 900— 1200。Cの温度で前述の原料ガスに加えてドーパントとしての SiHを
4 供給し、 n— GaN : Siからなる層を 2— 5 μ m程度形成する。 n_GaN : Si層は半導体 発光素子の半導体層の一部としての n-GaN : Si高温バッファ層 36となる。
[0087] 次に、前述の原料ガスに加えてトリメチルインディウムを導入し、バンドギャップエネ ルギが半導体層のバンドギャップエネルギよりも小さくなる材料、例えば、 In Ga N
l— y y
(0<y≤l)からなる層を 0. 002— 0. 1 μ ΐη程度形成する。 In Ga N活性層は半
1— y y
導体発光素子の活性層としての In Ga N活性層 35となる。 [0088] 次に、前述の原料ガスに加えて p型のドーパントとしてシクロペンタジェニルマグネ シゥム(Cp Mg)を供給し、 Al Ga N (0く xく 1) : Mgからなる層を 0· 01 /i m程度
2 1—
形成する。 Al Ga Ν (0<χ< 1): Mg層は半導体発光素子の半導体層の一部とし
1—
ての Al Ga N : Mg半導体層 34となる。
1—
[0089] 次に、前述の原料ガスに加えて p型のドーパントとしてシクロペンタジェニルマグネ シゥム(Cp Mg)を供給し、 p— GaN : Mgからなる層を 0. 3—: 1 z m程度形成する。 p—
2
GaN: Mg層は半導体発光素子の半導体層の一部としての p— GaN: Mgコンタクト層 33となる。
[0090] さらに、 400— 800。Cでァニーノレを行レ、、 Al Ga N : Mg半導体層 34と p_GaNコ
1—
ンタクト層 33のドーパントの活性化を図る。 III族窒化物系化合物からなる窒化物系 半導体素子の p型層はドーパントしての Mgなどがドーピングされている力 Mgなど はドーピングの際、キャリアガスである Hや反応ガスである NHの Hと化合し、ドーパ
2 3
ントとしての働きをせず高抵抗になる。そこで、 Mgと Hを切り離し、 Hを放出して低抵 抗化するために、ァニールをおこなう。
[0091] 次に、 p型電極として Ni/Auを蒸着により形成する。蒸着された Ni/Auは Ni/A u p型電極 32となる。
[0092] 次に、 n型電極を形成するため、レジストを塗布してパターユングを行い、成長した 各半導体層、活性層、 p型電極の一部をドライエッチングにより除去して、 n-GaN : S i高温バッファ層 36を露出させる。さらに、レジストを塗布してパターニングを行レ、、 Ni /Auを蒸着により形成する。リフトオフを行って、 Al/Au n型電極 40となる。ここで は、ドライエッチングにより半導体層等の一部を除去したが、半導体層を形成する材 料によっては、ウエットエッチング等、他の手法を使用してもよい。
[0093] 基板上に複数のメサ部や凹部を形成する場合は、各メサ部や凹部に対応してバタ 一二ングを行う。複数のメサ部の半導体層上面に電流を拡散させるための電流拡散 層を設けるためには、各メサ部を結ぶようにブリッジ部をパターユングする。このとき、 Ni/Au p型電極 32が p側の電流拡散層に、 n— GaN : Si高温バッファ層 36が n側 の電流拡散層となる。半導体層の上面に形状 45度よりも小さい角度の頂点を持たせ る場合は、その形状に合わせてパターユングする。 [0094] 次に、レジストを塗布してパターユングを行レ、、 Ti/Auを蒸着により形成する。リフ トオフを行って、 Ti/Auボンディングパッド 31、 39とする。電流拡散層、ボンディング パッドの形成には、ドライエッチングだけでなぐウエットエッチング等、他の手法を用 いてもよい。
[0095] 次に、電極金属と III族窒化物系化合物半導体との間をォーミック接触にするためと 、 Ni/Au p型電極を半透明にするため、 300°C程度の熱処理を行う。ついで、 SiO 膜をパッシベーシヨン膜 41として形成する。 Ti/Auボンディングパッド 31、 39を露
2
出するために、レジストでパターユングしてフッ酸等のエツチェントで Ti/Auボンディ ングパッド 31、 39にあたる部分をウエットエッチングする。サファイア基板ごとダイシン グにより、チップ化し、本願発明の半導体発光素子を得ることができた。
産業上の利用可能性
[0096] 本発明の半導体発光素子は、 LEDとして適用することができる。

Claims

請求の範囲
[1] 基板と、該基板上に、少なくとも、第 1半導体層と、活性層と、第 2半導体層と、を順 に備える半導体発光素子であって、該第 2半導体層は該第 1半導体層と異なった極 性を持ち、かつ該第 2半導体層の側の露出した上面の面積に対して、該活性層の露 出している側面の該第 1半導体層、該活性層および該第 2半導体層の面積の合計が 5。/0以上である半導体発光素子。
[2] 基板と、該基板上に、少なくとも、第 1半導体層と、活性層と、第 2半導体層と、を順 に備える半導体発光素子であって、該第 2半導体層は該第 1半導体層と異なった極 性を持ち、かつ該活性層に含まれるすべての点から該活性層の露出している側面ま での最短距離が 40 μ m以下の半導体発光素子。
[3] 基板と、該基板上に形成された少なくとも第 1半導体層と活性層と第 2半導体層とを 順に含む 2以上のメサ部と、を備える半導体発光素子であって、該第 2半導体層は該 第 1半導体層と異なった極性を持ち、かつ少なくとも該第 2半導体層および該活性層 が該メサ部間で空間的に分離されている半導体発光素子。
[4] 基板と、該基板上に形成された少なくとも第 1半導体層と活性層と第 2半導体層とを 順に含む 2以上のメサ部と、を備える半導体発光素子であって、該第 2半導体層は該 第 1半導体層と異なった極性を持ち、かつ該メサ部を接続するブリッジ部を除いて少 なくとも該第 2半導体層および該活性層が該メサ部間で空間的に分離されている半 導体発光素子。
[5] 少なくとも、基板と、第 1半導体層と、活性層と、第 2半導体層と、を順に備える半導 体発光素子であって、該第 2半導体層は、該第 1半導体層と異なった極性を持ち、か っ該第 2半導体層の側の露出した上面が該第 2半導体層の側の露出した上面から 少なくとも該活性層にまで達する凹部を有する半導体発光素子。
[6] 前記第 2半導体層の側の露出した上面の面積に対して、前記活性層の露出してい る側面の前記第 1半導体層、前記活性層および前記第 2半導体層の面積の合計が 5 %以上であることを特徴とする請求項 2から請求項 5に記載の半導体発光素子。
[7] 少なくとも前記活性層に含まれるすべての点から前記活性層の露出した側面まで の最短距離が 40 / m以下の請求項 3から請求項 5に記載の半導体発光素子。
[8] 前記第 2半導体層の側の露出した上面の形状が 45度よりも小さい角度の頂点を有 することを特徴とする請求項 1から請求項 5に記載の半導体発光素子。
[9] 前記活性層の露出している側面と前記第 2半導体層の側の露出した上面とのなす 一方の内角が 138度以上であることを特徴とする請求項 1から請求項 5に記載の半 導体発光素子。
[10] 前記基板の前記第 1半導体層が形成された面に対して反対の側の面に反射層を 有することを特徴とする請求項 1から請求項 5に記載の半導体発光素子。
[11] 前記半導体発光素子が Al Ga In N (0≤x≤ 1、 0≤y≤ 1、 0≤x+y≤ 1)で表さ れる III族窒化物系化合物半導体発光素子であることを特徴とする請求項 1から請求 項 5に記載の半導体発光素子。
PCT/JP2005/000044 2004-01-07 2005-01-05 半導体発光素子 WO2005067067A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/583,240 US20070170415A1 (en) 2004-01-07 2005-01-05 Semiconductor light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-002377 2004-01-07
JP2004002377A JP2005197473A (ja) 2004-01-07 2004-01-07 半導体発光素子

Publications (1)

Publication Number Publication Date
WO2005067067A1 true WO2005067067A1 (ja) 2005-07-21

Family

ID=34747034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000044 WO2005067067A1 (ja) 2004-01-07 2005-01-05 半導体発光素子

Country Status (6)

Country Link
US (1) US20070170415A1 (ja)
JP (1) JP2005197473A (ja)
KR (1) KR20060107568A (ja)
CN (2) CN100416876C (ja)
TW (1) TW200527723A (ja)
WO (1) WO2005067067A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047850A (ja) * 2006-07-19 2008-02-28 Mitsubishi Cable Ind Ltd 窒化物半導体発光ダイオード素子
WO2007055262A1 (ja) * 2005-11-09 2007-05-18 Mitsubishi Cable Industries, Ltd. 窒化物半導体発光ダイオード素子
US7375379B2 (en) * 2005-12-19 2008-05-20 Philips Limileds Lighting Company, Llc Light-emitting device
JP5230091B2 (ja) * 2006-11-17 2013-07-10 株式会社ジャパンディスプレイイースト 液晶表示装置
JP2008091942A (ja) * 2007-11-22 2008-04-17 Mitsubishi Cable Ind Ltd 窒化物半導体発光ダイオード
US8315885B2 (en) 2009-04-14 2012-11-20 Baxter International Inc. Therapy management development platform
JP5197654B2 (ja) * 2010-03-09 2013-05-15 株式会社東芝 半導体発光装置及びその製造方法
JP5687864B2 (ja) * 2010-08-10 2015-03-25 株式会社ディスコ サファイアウェーハの分割方法
JP2012114377A (ja) * 2010-11-26 2012-06-14 Mitsubishi Chemicals Corp 半導体発光素子
JP5734935B2 (ja) 2012-09-20 2015-06-17 株式会社東芝 半導体装置及びその製造方法
JP6191409B2 (ja) * 2013-11-15 2017-09-06 日亜化学工業株式会社 発光素子
JP7060508B2 (ja) * 2016-08-26 2022-04-26 スタンレー電気株式会社 Iii族窒化物半導体発光素子および該素子構成を含むウエハ
JP6384578B2 (ja) * 2017-08-04 2018-09-05 日亜化学工業株式会社 発光素子
KR102474953B1 (ko) * 2018-03-22 2022-12-06 엘지이노텍 주식회사 반도체 소자

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145118A (ja) * 1991-11-19 1993-06-11 Mitsubishi Cable Ind Ltd 発光素子
JPH065912A (ja) * 1992-06-18 1994-01-14 Sharp Corp 発光ダイオード
JPH10326910A (ja) * 1997-05-19 1998-12-08 Song-Jae Lee 発光ダイオードとこれを適用した発光ダイオードアレイランプ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3795298B2 (ja) * 2000-03-31 2006-07-12 豊田合成株式会社 Iii族窒化物系化合物半導体発光素子の製造方法
CN1218410C (zh) * 2002-01-14 2005-09-07 联铨科技股份有限公司 具螺旋布置金属电极的氮化物发光二极管及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145118A (ja) * 1991-11-19 1993-06-11 Mitsubishi Cable Ind Ltd 発光素子
JPH065912A (ja) * 1992-06-18 1994-01-14 Sharp Corp 発光ダイオード
JPH10326910A (ja) * 1997-05-19 1998-12-08 Song-Jae Lee 発光ダイオードとこれを適用した発光ダイオードアレイランプ

Also Published As

Publication number Publication date
CN100416876C (zh) 2008-09-03
US20070170415A1 (en) 2007-07-26
CN1906775A (zh) 2007-01-31
CN101246944A (zh) 2008-08-20
CN101246944B (zh) 2011-01-12
JP2005197473A (ja) 2005-07-21
KR20060107568A (ko) 2006-10-13
TW200527723A (en) 2005-08-16

Similar Documents

Publication Publication Date Title
CN103828073B (zh) 发光二极管及制造该发光二极管的方法
TWI464914B (zh) 發光二極體
JP4954549B2 (ja) 半導体発光素子およびその製法
JP5223102B2 (ja) フリップチップ型発光素子
JP5659728B2 (ja) 発光素子
US20100019257A1 (en) Semiconductor light emitting device and method for manufacturing the same
WO2010041370A1 (ja) 窒化物半導体発光ダイオード
WO2007086366A1 (ja) 窒化物半導体発光素子
JP2008140918A (ja) 発光素子の製造方法
WO2005067067A1 (ja) 半導体発光素子
WO2011030789A1 (ja) 発光装置
CN110246941A (zh) 在硅衬底上生长的发光器件
TW200421636A (en) Semiconductor light emitting device
JP6553541B2 (ja) 深紫外発光素子
JP2009252860A (ja) 半導体発光素子
JP2006128659A (ja) 窒化物系半導体発光素子及びその製造方法
JP5945736B2 (ja) 発光素子
JP4824129B2 (ja) 発光素子
JP2009059851A (ja) 半導体発光ダイオード
TW201411883A (zh) 半導體紫外發光元件
JP4751093B2 (ja) 半導体発光素子
JP2013175635A (ja) 半導体発光素子、およびその製造方法
US20140084327A1 (en) Light-emitting device
JP5123221B2 (ja) 発光装置
JP2007173569A (ja) 発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001835.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007170415

Country of ref document: US

Ref document number: 10583240

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067013119

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10583240

Country of ref document: US