WO2005063494A1 - 光学記録媒体および色素 - Google Patents

光学記録媒体および色素 Download PDF

Info

Publication number
WO2005063494A1
WO2005063494A1 PCT/JP2004/019387 JP2004019387W WO2005063494A1 WO 2005063494 A1 WO2005063494 A1 WO 2005063494A1 JP 2004019387 W JP2004019387 W JP 2004019387W WO 2005063494 A1 WO2005063494 A1 WO 2005063494A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
represented
alkyl group
optical recording
Prior art date
Application number
PCT/JP2004/019387
Other languages
English (en)
French (fr)
Inventor
Takashi Miyazawa
Yutaka Kurose
Original Assignee
Mitsubishi Chemical Corporation
Mitsubishi Kagaku Media Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation, Mitsubishi Kagaku Media Co., Ltd. filed Critical Mitsubishi Chemical Corporation
Priority to EP04807743A priority Critical patent/EP1698478A1/en
Publication of WO2005063494A1 publication Critical patent/WO2005063494A1/ja
Priority to US11/416,373 priority patent/US20060223003A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B2007/24618Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes two or more dyes in two or more different layers, e.g. one dye absorbing at 405 nm in layer one and a different dye absorbing at 650 nm in layer two

Definitions

  • the present invention relates to an optical recording medium and the like, and more particularly, to an optical recording medium and the like capable of supporting a blue laser.
  • optical recording media such as CD-R / RW, DVD-R / RW, and MO can store large-capacity information and are easily accessed at random. It has been widely recognized and spread as an external storage device.
  • an organic dye-based optical recording medium provided with a recording layer containing an organic dye compound, such as CD-R and DVD-R is low-cost and easy to manufacture. It is considered to have an advantage.
  • CD-R is suitable for recording / reproducing with laser light having a wavelength of about 780 nm
  • DVD-R is It is designed to be suitable for recording and reproduction using laser light with a wavelength of about 600-700 nm.
  • recording and reproduction using a shorter wavelength laser beam has a low reflectance, so that recording and reproduction cannot be performed. There is a problem.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-096918
  • Patent Document 2 JP 2003-127542 A
  • the optical recording medium described in Patent Document 1 or Patent Document 2 uses a carbostyrilyl conjugate having an amino group at the 7-position as a dye. There is a problem that optical information is not sufficiently recorded / reproduced due to crystallization when a recording layer containing silicon is formed and immediately after that, due to this.
  • the absorption maximum wavelength ( ⁇ max) is observed at about 345 to 375 nm, but almost no absorption occurs at around 405 nm, which is the long wavelength side of the absorption spectrum. Since no spectrum is observed, there is a problem that the sensitivity to blue laser light tends to be low.
  • the present invention has been made to solve a problem highlighted when developing an optical recording medium on which high-density optical information is recorded and reproduced by a short-wavelength blue laser beam. .
  • an object of the present invention is to provide an optical recording medium capable of recording and reproducing high-density optical information with short-wavelength laser light.
  • the present invention uses a carbostilyl conjugate having a condensed ring containing an amino group and a hetero atom in a molecule as a dye. That is, the optical recording medium to which the present invention is applied has a substrate and a recording layer provided on the substrate and capable of recording or reproducing information by irradiating light, and the recording layer includes: It is characterized by containing a 7-aminocarbostiliyl conjugate represented by the following general formula [I]. [0006] [Formula 1]
  • X is an oxygen atom, a sulfur atom or NR.
  • R is hydrocarbon
  • R is each independently a hydrogen atom or any
  • R and R are each independently a hydrogen atom, carbon number 1
  • n 1 to 4 and A in R represents an even number of 87 + 2n
  • R and R may be different from each other. However, adjacent substitution in R—R
  • the groups may form a fused ring in which the groups are bonded to each other.
  • the 7-aminocarbostiliyl conjugate is a compound represented by the general formula [I], wherein R R and R are each independently a hydrogen atom or a carbon atom having 1 carbon atom.
  • aralkyl base having 7 to 18 carbon atoms or a group strength.
  • the 7-aminocarbostyril compound is represented by the general formula [I]:
  • R are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 12 carbon atoms, a cyclic alkyl group having 3 to 12 carbon atoms, or a linear or branched alkenyl group having 2 to 12 carbon atoms.
  • a C7-C18 aralkyl group a C11-C12 linear or branched alkoxy group, a C11-C12 linear or branched alkylthio group, a C6-C18 aryl group, a saturated or Unsaturated heterocyclic group, halogen atom, nitro group, cyano group, mercapto group, hydroxy group, formyl group, acyl group represented by COR, amino group represented by NRR, NHCOR
  • a sulfonamide group represented by a sulfonate group and NHSO R (however, R
  • R 1, R 2, R 3, R 4, R 5 represent a hydrocarbon group or a heterocyclic group
  • R 1, R 2 and R 3 represent a hydrogen atom, a hydrocarbon group or a heterocyclic group.
  • R-R may combine with each other to form a condensed ring
  • the sulfonamide group represented by 23242 be selected. Furthermore, 7—Ami
  • n is preferably 2.
  • the light on which information is recorded or reproduced is preferably laser light having a wavelength of 350 nm to 530 nm.
  • the present invention comprises a 7-aminocarbostilyl irrigated product represented by the above general formula [I]. It is regarded as a dye characterized by the following.
  • the 7-aminocarbostiliyl conjugate is represented by the formula (I), wherein X is an oxygen atom or NR.
  • R is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, and R and R are each independently a hydrogen atom
  • R is a hydrogen atom
  • n is 1 to 4;
  • R and R are each independently a hydrogen atom, a linear or branched alkyl having 11 to 12 carbon atoms;
  • a in R represents an even number of 8 7 + 2n, and B in R is 8 7
  • a and R are each
  • an optical recording medium capable of recording and reproducing high-density optical information with a short-wavelength laser beam is provided.
  • FIG. 2 is a measurement spectrum of an absorption wavelength of a coating film in Example 2.
  • FIG. 4 is a measurement spectrum of an absorption wavelength of a coating film in Comparative Example 2.
  • FIG. 5 is a measurement spectrum of an absorption wavelength of a coating film in Example 16.
  • the 7-aminocarbostyril compound represented by the above general formula [I] used in the optical recording medium to which the present embodiment is applied has an appropriate absorption in a blue light region of 350 nm to 530 nm, and a blue laser. It is a dye compound suitable for recording by light.
  • the substituents described as “optionally substituted.” Or “optionally substituted” or “optional substituents” Does not contain water-soluble groups such as acid groups and carboxylic acids. In addition, there must be an appropriate amount of absorption at the wavelength of the recording / reproducing light.
  • the substituent may be appropriately selected from the viewpoint of the solubility and absorbability of the solvent.
  • X represents an oxygen atom, a sulfur atom, or -NR in the above general formula [I].
  • R, R, and R are each independently a hydrogen atom,
  • an unsubstituted linear or branched alkyl group or cyclic alkyl group is particularly preferable.
  • the number of carbon atoms is too large, there is a problem that the effect is not so large in terms of wavelength, and conversely, there are problems such as a decrease in absorption intensity and a problem that the product is not solidified.
  • a force of about 8 is particularly preferred.
  • R, R, R, and R each independently represent a hydrogen atom or an arbitrary substituent. like this
  • Examples of the arbitrary substituents include, for example, those having 1 carbon atom such as a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, and an n-heptyl group.
  • a linear or branched alkaryl group having 2-18 carbon atoms such as a group
  • a cyclic alkenyl group having 3-18 carbon atoms such as a cyclopentyl group or a cyclohexyl group
  • Heterocyclic groups such as 2-pyridyl group, 4-piperidyl group and morpholino group
  • aryl groups having 6 to 18 carbon atoms such as phenyl, tolyl, xylyl, mesityl and naphthyl
  • R, R, R, and R include halo such as fluorine, chlorine, and bromine.
  • a hole group a sulfier group represented by SOR; a sulfamoy represented by SONRR
  • Sulfonic acid ester group represented by SO R Sulfonic acid ester group represented by SO R
  • sulfone represented by NHSO R Amide groups are mentioned.
  • hydrocarbon group and the heterocyclic group may be substituted as necessary.
  • the hydrocarbon group represented by R -R includes a methyl group, an ethyl group, a propyl group, and an isoprene group.
  • a straight-chain or branched alkyl group having 118 carbon atoms such as a pill group, n-butyl group, sec-butyl group, tert-butyl group, n-heptyl group, cyclopropyl group, cyclopentyl group,
  • a linear or branched alkenyl group having 2 to 18 carbon atoms such as a cyclic alkyl group having 3 to 18 carbon atoms such as a xyl group or an adamantyl group, a butyl group, a propyl group, or a hexyl group;
  • C3-C18 cyclic alkenyl, benzyl, phenethyl and other C7-20 aralkyl, phenyl and tolyl groups, such as pentyl and cyclohexyl groups Represents a C 6-18 aryl group such as, xylyl group and mesityl group.
  • the heterocyclic group represented by R—R is a 4-piperidyl group, a morpholino group, or a 2-morpholino group.
  • Examples of the amino group (one NR R) include substituents having the following structures.
  • the carbamate group (one NHCOOR) includes a substituent having the following structure.
  • the carboxylate group (one COOR) includes a substituent having the following structure.
  • the acyl / reoxy group (one OCOR) includes a substituent having the following structure, [0034] [Formula 7]
  • Examples of the sulfiel group include substituents having the following structures.
  • the sulfamoyl group (one SONRR) includes a substituent having the following structure.
  • the sulfonic acid ester group (one SO R) includes a substituent having the following structure.
  • the sulfonamide group (one NHSO R) includes a substituent having the following structure.
  • R, R, R, and R each have a hydrogen atom or a substituent.
  • V may have a straight-chain or branched alkyl group having 1 to 12 carbon atoms, having a substituent! /, May have! / ⁇ having a cyclic alkyl group having 3 to 12 carbon atoms, having a substituent / !, may! /, A straight-chain or branched alkenyl group having 2 to 12 carbon atoms, an aralkyl group having 7 to 18 carbon atoms which may have a substituent, having a substituent A straight-chain or branched alkoxy group having 1 to 12 carbon atoms, having a substituent! /, A good!
  • a straight-chain or branched alkylthio group having 1 to 12 carbon atoms, substituted Having a group, V may be an aryl group having 6 to 18 carbon atoms, having a substituent! /, May have a saturated or unsaturated heterocyclic group, a halogen atom, a nitro group, a cyano group; , Mercapto group, formyl group, hydroxy group, formyl group, acyl group represented by COR, amino group represented by NR R, NH
  • Carboxylic acid ester group represented by R acyloxy group represented by OCOR, CO
  • R is hydrogen atom, carbon number 1
  • Bonate ester group acyloxy group represented by —OCOR, —CONR R
  • substituents can enhance the solubility in coating solvents described below (especially those having an alkyl group portion) and can shift the dye max to longer wavelengths (aryl groups, unsaturated heterocycles). And an electron-withdrawing group such as a halogenated alkyl group and a cyano group).
  • R—R represents a linear or branched alkyl group, a cyclic alkyl group, a linear or branched alkenyl group, a cyclic alkenyl group, a linear or branched alkoxy group.
  • the kill chain portion may have additional substituents.
  • substituents include an alkoxy group having 11 to 10 carbon atoms such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group and a tert-butoxy group;
  • An alkoxyalkoxy group having 2 to 12 carbon atoms such as a group, an ethoxymethoxy group, a propoxymethoxy group, an ethoxyethoxy group, a propoxyethoxy group, a methoxybutoxy group; a methoxymethoxymethoxy group, a methoxymethoxyethoxy group, a methoxyethoxymethoxy group; C3-C15 alkoxyalkoxyalkoxy groups such as methoxymethoxyethoxy and ethoxyethoxymethoxy groups; C6-C12 aryloxy groups such as phenoxy, toly
  • adjacent substituents of R to R may be bonded to form a saturated or unsaturated condensed ring.
  • a saturated hydrocarbon ring having a 5- to 7-membered ring structure is preferable.
  • n represents 1-4, R is independently a hydrogen atom, a carbon atom,
  • R It is a straight-chain or branched alkyl group having the number of 11 to 12.
  • a in R is of 8 7 + 2n
  • B in R represents an odd number of 8-7 + 2n. For example, if n is 1
  • the plurality of Rs and Rs may be the same or different from each other.
  • n 2, 3, 4! /, Near N (nitrogen atom) at the 7th position, from the carbon side as R, R-R Yes.
  • R to R in such a condensed ring are a hydrogen atom, a linear or branched alkyl group having 11 to 12 carbon atoms.
  • R-R is an alkyl group which may be substituted as described above (provided that a hydroxyl group and
  • the more preferable 7-amino-rubic acid rub-down conjugate used in the optical recording medium to which the present embodiment is applied is as follows. That is, in the general formula [I], X is an oxygen atom or NR. R is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms;
  • R 3 is each independently a hydrogen atom, a linear or branched alkyl group having 18 carbon atoms, a linear or branched alkoxy group having 18 carbon atoms, a halogen atom, an aralkyl group having 7 to 12 carbon atoms. , An unsaturated heterocyclic ring, or an optionally substituted aryl group.
  • R and R are hydrogen atoms, each of which is independently unsubstituted carbon atom 1
  • the A in R represents an even number of 8 7 + 2n, and B in R represents 8 7 + 2n
  • A, R is it
  • the compound represented by the general formula [I] has a molecular weight of preferably 1000 or less, particularly preferably 600 or less. It is preferably at least 180, particularly preferably at least 200. Within this range, good recording characteristics can be expected. If the molecular weight is excessively large, the gram extinction coefficient decreases, which is not preferable.
  • Preferred examples of the compound represented by the general formula [I] include the compounds (1)-(66) shown below.
  • FIG. 1 is a diagram illustrating an optical recording medium to which the present embodiment is applied.
  • FIG. 1A shows the first embodiment
  • FIG. 1B shows the second embodiment.
  • 1A includes a substrate 1 made of a light-transmitting material, a recording layer 2 provided on the substrate 1, a reflective layer 3 and a protective layer laminated on the recording layer 2. 4 are stacked in order.
  • the side on which the protective layer 4 is present is referred to as the upper side, and the side on which the substrate 1 is present is referred to as the lower side.
  • the bottom surface is referred to as the upper side.
  • the substrate 1 various materials can be used as long as the material is basically transparent at the wavelengths of the recording light and the reproduction light.
  • resins such as acrylic resin, methacrylic resin, polycarbonate resin, polyolefin resin (particularly, amorphous polyolefin), polyester resin, polystyrene resin, and epoxy resin.
  • Glass Further, a structure in which a resin layer made of a radiation-curable resin such as a photocurable resin is provided on glass is exemplified.
  • polycarbonate resins used in the injection molding method, and amorphous polyolefins are preferred from the viewpoints of chemical resistance and moisture absorption resistance. Further, from the viewpoint of high-speed response, glass is preferable.
  • a guide groove for recording / reproducing light is formed on the upper surface. Pits may be formed. Examples of the shape of the guide groove include a concentric shape and a spiral shape based on the center of the optical recording medium 10. When a spiral guide groove is formed, the groove pitch is preferably about 0.2 to 1.2 m.
  • the recording layer 2 is formed directly on the substrate 1 or on an undercoat layer or the like provided on the substrate 1 as necessary, and includes a compound represented by the general formula [1].
  • Examples of the method for forming the recording layer 2 include various generally used thin film forming methods such as a vacuum evaporation method, a sputtering method, a doctor blade method, a casting method, a spin coating method, and an immersion method. From the viewpoint of mass productivity and cost, from the viewpoint of obtaining the recording layer 2 having a uniform thickness, which is preferred by the spin coating method, the vacuum deposition method or the like is more preferable than the coating method. Film formation by spin coating In this case, the rotation speed is preferably 500-15000 rpm. In some cases, after spin coating, treatment such as heating or exposure to solvent vapor may be performed.
  • the compound represented by the general formula [1] is dissolved and applied to the substrate 1.
  • the coating solvent used for this purpose is not particularly limited as long as it does not erode the substrate 1.
  • ketone alcohol-based solvents such as diacetone alcohol and 3-hydroxy-3-methyl-2-butanone
  • cellosolve-based solvents such as methyl sorb and ethyl sorb
  • n-hexane and n-octane Cyclic hydrocarbon solvents such as cyclohexane, methylcyclohexane, ethylcyclohexane, dimethylcyclohexane, n-butylcyclohexane, tert-butylcyclohexane, cyclooctane, etc .
  • tetrafluoropropanol Pertanolalkyl alcohol solvents such as otafanololepentanol and hexafenoleolobutanole
  • hydroxycarboxylic acid ester solvents such as methyl lactate, ethyl lactate and methyl 2-hydroxyisobutyrate.
  • the vacuum evaporation method for example, the compound represented by the general formula [1] and, if necessary, the recording layer components such as other dyes and various additives are placed in a vacuum container. placed in the installed crucible, the vacuum vessel 10 to a suitable vacuum pump 2 - after evacuating to about 10 5 Pa, evaporation of the recording layer components are heated the crucible, placed to face the crucible The recording layer 2 is formed by vapor deposition on the substrate.
  • the recording layer 2 includes, in addition to the compound represented by the general formula [1], a transition metal chelate compound (for example, acetone) as a singlet oxygen quencher to improve stability and light resistance.
  • a transition metal chelate compound for example, acetone
  • a recording sensitivity improver such as a metal compound to improve recording sensitivity. May be.
  • the metal-based compound refers to a compound in which a metal such as a transition metal is included in the compound in the form of an atom, an ion, a cluster, or the like.
  • ethylenediamine-based complexes ethylenediamine-based complexes, azomethine-based complexes, phenylhydroxyamine-based complexes, phenantophorin-based complexes, dihydroxyazobenzene-based complexes, dioxime-based complexes, nitrosoaminophenol-based complexes, pyridyltriazine-based complexes, acetyl Organometallic compounds such as acetonate-based complexes, metallocene-based complexes, and vorphyrin-based complexes are exemplified.
  • Metal atom Is not particularly limited, but is preferably a transition metal.
  • a plurality of compounds represented by the general formula [1] may be used in combination, if necessary.
  • a dye of another system can be used in combination as needed.
  • the other type of dye is not particularly limited as long as it has an appropriate absorption mainly in the oscillation wavelength region of the recording laser light.
  • the recording layer 2 differs in that a dye or the like suitable for recording and reproduction using a red laser beam having an oscillation wavelength in a wavelength band of 690 nm is contained in the recording layer 2 in combination with the compound represented by the general formula [1].
  • An optical recording medium 10 that can be used for recording and reproduction using a plurality of types of laser beams belonging to a wavelength band can also be manufactured.
  • Examples of the dyes other than the compound represented by the general formula [1] include metal-containing azo dyes, benzophenone dyes, phthalocyanine dyes, naphthalocyanine dyes, cyanine dyes, and dyes. Azo dyes, squarylium dyes, metal-containing indoor-phosphorus dyes, triarylmethane dyes, merocyanine dyes, azurenium dyes, naphthoquinone dyes, anthraquinone dyes, indophenol dyes, xanthene dyes, and oxazine dyes And pyridium dyes.
  • a binder, a leveling agent, an antifoaming agent, and the like can be used in combination.
  • Preferred binders include polyvinyl alcohol, polyvinylpyrrolidone, nitrocellulose, cellulose acetate, ketone resin, acrylic resin, polystyrene resin, urethane resin, polyvinyl butyral, polycarbonate, polyolefin and the like.
  • the film thickness of the recording layer 2 is not particularly limited because a suitable film thickness varies depending on a recording method or the like, but a certain film thickness is required to enable recording. It is at least lnm or more, preferably at least 5nm. However, if it is too thick, it may not be possible to record well, and it is usually 300 nm or less, preferably 200 nm or less, more preferably 100 nm or less.
  • the reflection layer 3 is formed on the recording layer 2.
  • the thickness of the reflective layer 3 is preferably 50 nm to 300 nm.
  • the material of the reflective layer 3 has a sufficiently high reflectance at the wavelength of the reproduction light.
  • metals such as Au, Al, Ag, Cu, Ti, Cr, Ni, Pt, Ta, and Pd can be used alone or as an alloy.
  • Au, Al, and Ag are suitable as the material of the reflective layer 3 having high reflectance.
  • other materials may be additionally contained.
  • the main component means one having a content of 50% or more.
  • Materials other than the main component include, for example, Mg, Se, Hf, V, Nb, Ru, W, Mn, Re, Fe, Co, Rh, Ir, Cu, Zn, Cd, Ga, In, Si, Metals and metalloids such as Ge, Te, Pb, Po, Sn, Bi, Ta, Ti, Pt, Pd, Nd and the like can be mentioned.
  • those containing Ag as a main component are particularly preferable in that they are inexpensive, easily reflect a high reflectance, and provide a white and beautiful ground color when a print receiving layer described later is provided.
  • an alloy containing about 0.1 atomic% to 5 atomic% of at least one selected from Au, Pd, Pt, Cu, and Nd in Ag has high reflectance, high durability, high sensitivity and low sensitivity. Cost and preferred.
  • examples thereof include an AgPdCu alloy, an AgCuAu alloy, an AgCuAuNd alloy, and an AgCuNd alloy.
  • a low-refractive-index thin film and a high-refractive-index thin film are alternately stacked to form a multilayer film, which can be used as the reflective layer 3.
  • Examples of a method for forming the reflective layer 3 include a sputtering method, an ion plating method, a chemical vapor deposition method, and a vacuum vapor deposition method.
  • a known inorganic or organic intermediate layer or adhesive layer may be provided on the substrate 1 or under the reflective layer 3 in order to improve the reflectance, the recording characteristics, and the adhesion. You can also.
  • the protective layer 4 is formed on the reflective layer 3.
  • the material of the protective layer 4 is not particularly limited as long as it protects the reflective layer 3 from external force.
  • Examples of the material of the organic substance include a thermoplastic resin, a thermosetting resin, an electron beam-curable resin, and a UV-curable resin.
  • Examples of the inorganic substance include silicon oxide, silicon nitride, MgF, and SnO.
  • the protective layer 4 can be formed by applying a coating solution prepared by dissolving in an appropriate solvent onto the reflective layer 3 and drying. it can.
  • a coating solution prepared by dissolving in an appropriate solvent is applied on the reflective layer 3 and irradiated with UV light.
  • UV curable resins include, for example, urethane acrylates, epoxy acrylates, polyester acrylates and other acrylates A series resin can be used. These materials may be used alone or as a mixture of two or more. Further, the protective layer may be formed as a single layer or as a multilayer.
  • the method for forming the protective layer 4 as in the case of the recording layer 2, a coating method such as a spin coating method or a casting method, or a method such as a sputtering method or an evaporation method is used. Is preferred.
  • the thickness of the protective layer 4 is generally 0.1 ⁇ m or more, preferably 3 ⁇ m or more, because a certain thickness is required to perform its protective function. However, if the thickness is too large, the effect is not changed and the formation of the protective layer 4 may take a long time and the cost may increase. Therefore, the thickness is usually 100 ⁇ m or less, preferably 30 ⁇ m or less.
  • the layer structure of the optical recording medium 10 As described above, as the layer structure of the optical recording medium 10, a structure in which a substrate, a recording layer, a reflective layer, and a protective layer are laminated in this order has been described as an example. You can take it.
  • another substrate 1 may be attached to the upper surface of the protective layer 4 in the layer structure of the above example, or to the upper surface of the reflective layer 3 with the protective layer 4 omitted from the layer structure of the above example.
  • the substrate 1 may be a substrate without any layer, or may have an arbitrary layer such as the reflective layer 3 on the bonding surface or the opposite surface.
  • the optical recording medium 10 having the layer structure of the above example and the optical recording medium 10 in which the protective layer 4 is omitted in the layer structure of the above example are obtained by arranging the upper surfaces of the protective layers 4 and Z or the reflective layer 3 respectively. Two sheets may be bonded to face each other.
  • FIG. 1 (b) is a diagram for explaining a second embodiment of the optical recording medium. Portions common to the optical recording medium 10 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • An optical recording medium 20 shown in FIG. 1 (b) includes a substrate 1 made of a light transmitting material, a reflective layer 3 provided on the substrate 1, a recording layer 2 laminated on the reflective layer 3, and a protective coating. 5 are stacked in order. In the optical recording medium 20, information is recorded / reproduced by laser light irradiated from the protective coating 5 side.
  • the protective film 5 may be a film or sheet-like material bonded with an adhesive, or may be formed of a material similar to the above-described protective layer 4 by applying a coating liquid for film formation and curing or drying. Do It may be formed from the following.
  • the thickness of the protective coating 5 is generally at least 0.1 ⁇ m, preferably at least 3 m, since a certain thickness is required to fulfill its protective function. However, if the thickness is too large, the effect is not changed and the formation of the protective coating 5 may take a long time or increase the cost. Therefore, the thickness is usually 300 ⁇ m or less, preferably 20 or less.
  • each of the layers such as the recording layer 2 and the reflective layer 3 can be usually the same as the optical recording medium 10 described above.
  • the substrate 1 does not need to be transparent. Therefore, opaque resin, ceramic, metal (including alloy), and the like are used in addition to the above-described materials. Even in such a layer configuration, an arbitrary layer may be provided between the above-described layers as needed as long as the characteristics of the present invention are not impaired.
  • the substrate and the protective film as thin as possible.
  • the structure of the optical recording medium 20 (substrate 1, reflection layer 3, recording layer 2, It is preferable to use an optical recording medium 20) having a basic layer configuration of the protective film 5. Since the protective film 5 of the optical recording medium 20 is thinner and thinner than the case where the substrate 1 of the optical recording medium 10 is thinned, the optical recording medium 20 is preferably used.
  • the optical recording medium 10 having the basic layer structure of the substrate 1, the recording layer 2, the reflective layer 3, and the protective layer 4
  • the recording / reproducing laser light passes therethrough.
  • the thickness of the transparent substrate 1 By reducing the thickness of the transparent substrate 1 to about 50-300 m, the aberration can be reduced and it can be used.
  • an ultraviolet-cured resin layer or inorganic thin film is applied to the recording / reproducing laser beam incident surface (usually, the lower surface of the substrate 1) for the purpose of protecting the surface and preventing adhesion of dust and the like.
  • the recording / reproducing laser beam incident surface usually, the lower surface of the substrate 1.
  • Surface that is not the recording / reproducing laser beam incident surface usually a reflective layer
  • a print receiving layer On the upper surface of the protective layer 3 and the protective layer 4), there may be provided a print receiving layer which can be filled in and printed by using various printers such as ink jet and thermal transfer, or various writing tools.
  • laser light having a wavelength of 350 to 530 nm is preferable.
  • Typical examples of such laser light include laser light having a central wavelength power of 05 nm, 410 nm, and 515 nm.
  • Laser light having a wavelength of 350 to 530 nm can be obtained by using a high-power semiconductor laser light having a wavelength of 05 nm, 410 nm or blue or 515 nm blue-green.
  • a semiconductor laser beam having a fundamental oscillation wavelength of 740 to 960 nm capable of continuous oscillation and (b) a continuous oscillation having a fundamental oscillation wavelength of 740 to 960 nm excited by the semiconductor laser beam. It can also be obtained by converting the wavelength of any of the oscillation laser beams of the solid laser beam from the second harmonic generation element (SHG).
  • SHG second harmonic generation element
  • the SHG may be any piezo element that lacks inversion symmetry, but is preferably KDP, ADP, BNN, KN, LBO, or a compound semiconductor.
  • the second harmonic include a semiconductor laser beam having a fundamental oscillation wavelength of 860 nm, which is a harmonic of the fundamental oscillation wavelength of 430 nm, and a solid-state laser beam excited by a semiconductor laser beam has a C 430nm of harmonics from r-doped LiSrAlF crystal (fundamental oscillation wavelength 860nm)
  • the recording layer 2 (usually, the substrate 1 is transmitted from the substrate 1 side) Irradiate a laser beam focused to about 0.4-0.6 m.
  • the portion of the recording layer 2 irradiated with the laser beam undergoes thermal deformation such as decomposition, heat generation, and dissolution by absorbing the energy of the laser beam, so that the optical characteristics change.
  • the recording layer 2 When information recorded on the recording layer 2 is reproduced, the recording layer 2 is irradiated with a lower energy laser beam (usually from the same direction as the recording). In the recording layer 2, by reading the difference between the reflectance of the portion where the optical characteristic has changed (that is, the portion where the information is recorded) and the reflectance of the portion where no change has occurred, the information of the information is obtained. Playback is Done.
  • reaction solution was released into 600 ml of water, 200 ml of toluene was added to extract the organic layer, and then 150 ml of toluene was recovered in the extracted aqueous layer, and the mixed toluene layer was washed twice with 400 ml of water. Then, sodium sulfate was added to the toluene layer and allowed to stand still.
  • reaction solution was released into 200 ml of water, extracted with 300 ml of toluene, extracted and then added with 110 ml of toluene to the aqueous layer, and the mixed toluene solution was washed twice with 300 ml of water, and sodium sulfate was added. ⁇ ⁇ Stood still.
  • the exemplified compound (51) had a ⁇ max of 379.5 nm and a molar extinction coefficient of 2.5 X 10 4 in chloroform.
  • the mass spectrum (EI) of this compound was measured.
  • mZz 258 (M +), which was consistent with the target compound, was observed.
  • the peak was 1.0 (1H, s, NH-1), which coincided with the target compound.
  • the reaction solution was mixed with 150 ml of water and 150 ml of ethyl acetate, stirred and extracted, and the aqueous layer was extracted again with 50 ml of ethyl acetate.
  • the combined organic layer was washed twice with 50 ml of water, and sodium sulfate was added. Placed. After filtration, the solvent was distilled off with an evaporator, and the obtained solid was dissolved in hexane. The solid was filtered, filtered and dried in vacuo to synthesize 2.98 g (yield: 82.6%) of the following exemplified compound (52).
  • the ⁇ max of this exemplified compound (52) in black hole form was 380.5 nm, and the molar extinction coefficient was 2.6 ⁇ 10 4 .
  • the above exemplified compound (52) was dissolved in octafluoropentanol and adjusted to ⁇ %.
  • a solution obtained by filtering the solution is dropped on an injection-molded polycarbonate resin substrate having a diameter of 120 mm and a thickness of 1.2 mm, and is applied by a spinner method (500 rpm). Dried.
  • the maximum absorption wavelength ( ⁇ max) of this coating film was 384 nm.
  • a film of Ag or the like is formed by a sputtering method to form a reflective layer, and then a UV curable resin is applied by spin coating or the like.
  • a protective layer is formed to obtain an optical recording medium.
  • recording / reproducing can be performed using a semiconductor laser beam having a center wavelength of 405 nm, for example, based on the value of ⁇ max of the coating film.
  • the compound has a hetero atom at the 6-position and is condensed with the amino group at the 7-position.
  • the compound has a structure effective for recording blue laser light.
  • Exemplified compound (53) was obtained in the same manner as in Example 1. ⁇ max of this exemplified compound (53) in black hole form was 380.5 nm, and the molar extinction coefficient was 2.4 ⁇ 10 4 .
  • the optical recording medium was prepared as follows.
  • the aforementioned exemplified compound (53) was dissolved in octafluoropentanol and adjusted to 0.9 wt%.
  • the solution obtained by filtration is dropped onto an injection-molded polycarbonate resin substrate with a track pitch of 425 nm, a groove width of 163 nm, a groove depth of 90 nm and a diameter of 120 mm and a thickness of 0.6 mm, and spinner method. Applied.
  • the application was carried out by increasing the rotation speed from 600 rpm to 4900 rpm over 25 seconds and maintaining the rotation speed at 4900 rpm for 5 seconds. Further, it was dried at 100 ° C for 30 minutes to obtain a recording layer.
  • a silver alloy was formed to a thickness of 100 nm by a sputtering method to form a reflective layer.
  • a protective coating agent composed of a UV curable resin was applied by a spinner method, and irradiated with UV light to form a protective layer having a thickness of 5 m.
  • a polycarbonate substrate having a thickness of 0.6 mm was adhered to the surface having the protective layer using a delay-setting adhesive to prepare an optical recording medium for evaluation.
  • T is a reference clock cycle corresponding to a frequency of 66 MHz.
  • the number of divided pulses is the mark length nT ( ⁇ -1), head recording pulse width 2 ⁇ , subsequent recording pulse width 0.6 ⁇ , bias power 0.2 mW, reproduction power 0.2 mW, variable recording power
  • a signal with a modulation degree of 28.3% was recorded at 12 mW. It is considered that the degree of modulation is increased by optimizing the recording conditions such as the pulse strategy.
  • Exemplified Compounds (54) to (66) were synthesized by the same method as the above synthesis method, and a coating film was formed in the same manner as in Example 1, and the absorption spectrum of the coating film was measured.
  • the maximum absorption wavelength of these compounds in solution, the molar extinction coefficient, and the maximum absorption wavelength of the coating film were measured. Table 1 shows the results.
  • a film of Ag or the like is formed by a sputtering method to form a reflective layer, and then a UV curable resin is applied by spin coating or the like.
  • a protective layer is formed to obtain an optical recording medium.
  • recording / reproducing can be performed using a semiconductor laser beam having a center wavelength of 405 nm, for example, based on the maximum value of the coating film.
  • a carbostyrilich compound having a hetero atom at the 6-position and condensed with an amino group at the 7-position is a compound having a structure effective for recording with blue laser light.
  • This compound [8] was dissolved in octafluoropentanol, and lwt. / c ⁇ adjusted.
  • the solution obtained by filtration was dropped onto an injection-molded polycarbonate resin substrate with a diameter of 120 mm and a thickness of 0.6 mm, applied by a spinner method (500 rpm), and dried at 100 ° C for 30 minutes after application. did.
  • the maximum absorption wavelength ( ⁇ max) of this coating film was 370.5 nm, and a good spectrum of the coating film was obtained. It can be seen that recording cannot be expected for a laser beam having a center wavelength of 405 nm, which absorbs light at a wavelength of 405 nm. The spectrum is shown in FIG. In other words, even if the carbostilyl conjugate having an amino group at the 7-position does not have a hetero atom at the 6-position, it may be an insufficient dye compound for blue laser light recording. I understand.
  • Compound [9] is dissolved in octafluoropentanol, A solution obtained by filtering the solution is dropped on an injection-molded polycarbonate resin substrate having a diameter of 120 mm and a thickness of 0.6 mm, applied by a spinner method (500 rpm), and dried at 100 ° C for 30 minutes after the application. did.
  • the maximum absorption wavelength ( ⁇ max) of this coating film was 354 nm, a spectrum having a low refractive index and a low reflectance was obtained, and the disk surface was slightly clouded and crystallization occurred. The spectrum is shown in FIG.
  • the carbostilyl conjugate having an amino group at the 7-position does not have a hetero atom at the 6-position, it may be an insufficient dye compound for blue laser light recording. I understand.
  • Exemplified compound (58) was obtained in the same manner as in Example 1.
  • the ⁇ max of this exemplified compound (58) in black hole form was 384.5 nm, and the molar extinction coefficient was 2.4 ⁇ 1CT.
  • the aforementioned exemplified compound (58) was dissolved in octafluoropentanol and adjusted to 0.6 wt%.
  • the solution obtained by filtering this solution has a groove with a track pitch of 425 nm, a groove width of 200 nm, and a groove depth of 70 nm.
  • ZnSZSiO is sputtered onto this groove with a diameter of 120 mm and a thickness of 0.6 mm.
  • the recording pulse strategy is the mark length nT ( ⁇ -1), the first recording pulse width 2 ⁇ , the subsequent recording pulse width 0.6 ⁇ , bias power 0.2 mW, reproduction power 0.2 mW, recording Variable power.
  • a signal having a modulation degree of 72% was recorded at 9.9 W. It is considered that the degree of modulation is increased by optimizing the recording conditions such as the pulse strategy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Description

光学記録媒体および色素
技術分野
[0001] 本発明は、光学記録媒体等に関し、より詳しくは、青色レーザに対応が可能な光学 記録媒体等に関する。
背景技術
[0002] 現在、 CD-R/RW, DVD-R/RW, MO等の各種光学記録媒体は、大容量の 情報を記憶でき、ランダムアクセスが容易であるために、コンピュータ等の情報処理 装置における外部記憶装置として広く認知され普及している。これらの中で、 CD— R や DVD - Rに代表される、有機色素化合物が含有される記録層を設けた有機色素 系光記録媒体は、低コストで且つ製造も容易であるという点で、優位性を有するもの と考えられている。
一方、取り扱われる情報量の増大により、媒体の記録密度を高めることが望まれ、 近年、開発が著 、青色レーザ光等の発振波長の短!、レーザ光を用いた高密度の 記録再生可能な光学記録媒体が提唱されつつある。
しかし、一般に、 CD— Rや DVD— R等として市販されている光学記録媒体の場合、 例えば、 CD— Rは波長 780nm程度のレーザ光による記録 ·再生に適するように、ま た DVD— Rは波長 600— 700nm程度のレーザ光による記録 '再生に適するように設 計されている。このような、比較的長波長のレーザ光を用いる光学的記録'再生用に 適合する記録媒体では、より短波長のレーザ光を用いて記録 ·再生すると、反射率が 低く記録 ·再生ができな 、と 、う問題を有して 、る。
このような光情報の記録再生に、短波長のレーザ光が用いられるのに伴い、光学記 録媒体の記録層に使用される有機色素化合物につ 、ても、従来から使用されて 、る レーザ光の波長より短い波長において吸収特性を有する色素が検討され、このような 色素を記録層に用いた光学記録媒体が報告されている (特許文献 1参照)。また、本 出願人も、特定の分子構造のカルボスチリル化合物が記録層に含有される光学記録 媒体につ ヽて提案した (特許文献 2参照)。 [0003] 特許文献 1:特開 2001-096918号公報
特許文献 2 :特開 2003—127542号公報
発明の開示
発明が解決しょうとする課題
[0004] ところで、特許文献 1又は特許文献 2に記載されて 、る光学記録媒体にぉ 、ては、 7位にアミノ基を有するカルボスチリルイ匕合物が色素として使用されている力 この色 素が含有される記録層が製膜される際に結晶化しやすぐこのために、光情報が十 分に記録 ·再生されないという問題がある。
また、この色素が含有される塗布膜の吸収スペクトルでは、吸収極大波長(λ max) が 345— 375nm程度に観察されるものの、吸収スペクトルの長波長側部分である 40 5nm付近には、ほとんど吸収スペクトルが観察されないため、青色レーザ光に対する 感度が低い傾向があるという問題がある。
このように、本発明は、短波長の青色レーザ光によって高密度の光情報の記録再 生が行われる光学記録媒体を開発する際に浮き彫りになった問題を解決すべくなさ れたものである。
即ち、本発明の目的は、短波長のレーザ光によって高密度の光情報の記録再生が 可能である光学記録媒体を提供することにある。
課題を解決するための手段
[0005] かかる課題を解決すベぐ本発明では、分子中にアミノ基とヘテロ原子とを含む縮 合環を有するカルボスチリルイ匕合物を色素として使用している。即ち、本発明が適用 される光学記録媒体は、基板と、基板上に設けられ、光が照射されることにより情報 の記録又は再生が可能な記録層と、を有し、記録層には、下記一般式 [I]で示される 7—ァミノカルボスチリルイ匕合物が含有されることを特徴とするものである。 [0006] [化 1]
Figure imgf000005_0001
[0007] (式 [I]中、 Xは酸素原子、硫黄原子又は NRである。 R し
7 1、 R
6、 Rは、それぞれ独立 7
て、水素原子、直鎖又は分岐のアルキル基、環状アルキル基、ァラルキル基、直鎖 又は分岐のァルケ-ル基又は COR で表されるァシル基である。 R は、炭化水素
16 16
基又は複素環基である。 R は、それぞれ独立して、水素原子又は任意
2、 R
3、 R
4、 R
5
の置換基である。 R、 Rは、独立して、水素原子、炭素数 1
B 一 12の直鎖又は分岐の
A
アルキル基である。 nは、 1一 4であり、 R における Aは 8 7 + 2nのうちの偶数を表わ
A
し、 Rにおける Bは 8— 7 + 2nのうちの奇数を表わす。 nが 2— 4の場合における複数
B
の R、 Rはそれぞれ互いに異なっていてもよい。但し、 R— Rの中、隣接する置換
A B 1 7
基同士が結合した縮合環を形成していてもよい。 )
[0008] 本発明の光学記録媒体において、 7—ァミノカルボスチリルイ匕合物は、一般式 [I]に おいて、 R R、 Rは、それぞれ独立に、水素原子、炭素数 1
1、 6 7 一 12の直鎖又は分岐 のアルキル基、炭素数 3 12の環状アルキル基、 COR で表されるァシル基及び
16
炭素数 7— 18のァラルキル基力もなる群力も選ばれることが好ましい。
[0009] また、 7—ァミノカルボスチリル化合物は、一般式 [I]において、 R
2、 R
3、 R
4、 Rは、 5 それぞれ独立して水素原子、炭素数 1一 12の直鎖又は分岐のアルキル基、炭素数 3 一 12の環状アルキル基、炭素数 2— 12の直鎖又は分岐のアルケニル基、炭素数 7 一 18のァラルキル基、炭素数 1一 12の直鎖又は分岐のアルコキシ基、炭素数 1一 1 2の直鎖又は分岐のアルキルチオ基、炭素数 6— 18のァリール基、飽和または不飽 和の複素環基、ハロゲン原子、ニトロ基、シァノ基、メルカプト基、ヒドロキシ基、ホルミ ル基、 COR で表されるァシル基、 NR R で表されるアミノ基、 NHCOR で
16 17 18 19 表されるァシルァミノ基、 NHCOOR で表されるカーバメート基、 COOR で表さ
20 21 れるカルボン酸エステル基、 OCOR で表されるァシルォキシ基、 CONR R で
22 23 24 表される力ルバモイル基、 SO R で表されるスルホニル基、 SOR で表されるス ルフィニル基、 SO NR R で表されるスルファモイル基、 SO R で表されるスル
2 27 28 3 29
ホン酸エステル基及び NHSO R で表されるスルホンアミド基(但し、 R
2 30 16、R
19、R 20
、R 、R 、R 、R 、R は、炭化水素基又は複素環基を
29、R 表す。 R
21 22 25 26 30 17、R
18、R 23
、R 、R 、R は、水素原子、炭化水素基又は複素環基を表す。)からなる群力 選
24 27 28
ばれることが好ましい。また、 R一 Rのうち隣接する置換基同士が結合して縮合環を 形成していてもよい
[0010] また、 7—ァミノカルボスチリルイ匕合物は、一般式 [I]において、 R
2、 Rは、それぞれ 3
独立して、水素原子、炭素数 1一 8の直鎖又は分岐のアルキル基、炭素数 3— 8の環 状アルキル基、炭素数 7— 12のァラルキル基、炭素数 1一 8の直鎖又は分岐のアル コキシ基、炭素数 1一 8の直鎖又は分岐のアルキルチオ基、炭素数 6— 18のァリール 基、飽和または不飽和の単環または 2縮合環の複素環基、ハロゲン原子、ニトロ基、 シァノ基、メルカプト基、ヒドロキシ基、ホルミル基、 -COR で表されるァシル基、 N
16
R R で表されるアミノ基、 NHCOR で表されるァシルァミノ基、 NHCOOR で
17 18 19 22 表されるカーバメート基、 COOR で表されるカルボン酸エステル基、 OCOR で
21 22 表されるァシルォキシ基、 CONR R で表される力ルバモイル基及び NHSO R
23 24 2 で表されるスルホンアミド基カもなる群力 選ばれることが好ましい。さらに、 7—アミ
30
ノカルボスチリル化合物は、一般式 [I]において、 nが 2— 3であることが好ましい。
[0011] また、 7—ァミノカルボスチリルイ匕合物は、一般式 [I]において、 Xが酸素原子あるい は NRであることが好ましい。
また、 7—ァミノカルボスチリルイ匕合物は、一般式 [I]において、 nが 2であることが好 ましい。
また、 7—ァミノカルボスチリルイ匕合物は、一般式 [I]において、 Xが酸素原子又は N Rであり、 Rは、水素原子、炭素数 1一 8の直鎖又は分岐のアルキル基、 R、 Rは、
7 1 6 7 それぞれ独立に、炭素数 1一 8の直鎖又は分岐のアルキル基、炭素数 3— 10の環状 アルキル基であり、 nが 2であることが好ましい。
また、本発明の光学記録媒体において、情報の記録又は再生が行われる光は、波 長が 350nm— 530nmのレーザ光であることが好ましい。
[0012] 一方、本発明は、上記一般式 [I]で示される 7—ァミノカルボスチリルイ匕合物からなる ことを特徴とする色素として捉えられる。
また、本発明が適用される色素において、 7—ァミノカルボスチリルイ匕合物は、上記 一般式 [I]において、 Xは、酸素原子又は NRである。 Rは水素原子もしくは炭素数 1一 4の直鎖または分岐のアルキル基であり、 R、 Rはそれぞれ独立して、水素原子
2 3
、炭素数 1一 8の直鎖又は分岐のアルキル基、炭素数 1一 8の直鎖又は分岐のアルコ キシ基、ハロゲン原子、炭素数 7— 12のァラルキル基、不飽和複素環、置換されても よいァリール基である。 R れ独立に、無置換
4、 Rは水素原子であり、 R
5 6、 Rはそれぞ
7
の炭素数 1一 8の直鎖または分岐のアルキル基もしくは環状アルキル基である。 nは 1 一 4であり、 R、 Rは、独立して、水素原子、炭素数 1一 12の直鎖又は分岐のアルキ
A B
ル基である。 Rにおける Aは 8 7 + 2nのうちの偶数を表わし、 Rにおける Bは 8 7
A B
+ 2nのうちの奇数を表わす。 nが 2— 4の場合における複数の R れ互
A、Rはそれぞ
B
いに異なっていてもよい。但し、 R— Rの中、隣接する置換基同士が結合した縮合 環を形成していてもよい。さらに n= 2とすれば、化学的に安定な色素として使用する ことができる。
発明の効果
[0013] 本発明によれば、短波長のレーザ光によって高密度の光情報の記録再生が可能 である光学記録媒体が提供される。
図面の簡単な説明
[0014] [図 1]本実施の形態が適用される光学記録媒体を説明する図である。図 1 (a)は、第 1 の実施の形態であり、図 1 (b)は、第 2の実施形態である。
[図 2]実施例 2における塗布膜の吸収波長の測定スペクトルある。
[図 3]比較例 1における塗布膜の吸収波長の測定スペクトルある。
[図 4]比較例 2における塗布膜の吸収波長の測定スペクトルある。
[図 5]実施例 16における塗布膜の吸収波長の測定スペクトルある。
[図 6]比較例 3における塗布膜の吸収波長の測定スペクトルある。
[図 7]比較例 4における塗布膜の吸収波長の測定スペクトルある。
符号の説明
[0015] 1…基板、 2· ··記録層、 3…反射層、 4…保護層、 5…保護被膜、 10, 20· ··光学記 録媒体
発明を実施するための最良の形態
[0016] 以下、本発明を実施するための最良の形態 (以下、実施の形態と記す)について詳 細に説明する。
本実施の形態が適用される光学記録媒体に使用される上記一般式 [I]で示される 7—ァミノカルボスチリル化合物は、 350nm— 530nmの青色光領域に適度の吸収を 有し、青色レーザ光による記録に適する色素化合物である。
そのためには、まず力かる化合物力 光ディスクの色素に適切な溶媒に溶解する必 要がある。従って、本発明の目的においては、「必要に応じて置換されていてもよい。 」あるいは「置換されてもょ 、」あるいは「任意の置換基」 t 、う記載の置換基の対象は 、スルホン酸基やカルボン酸などの水溶性基を含まない。さらに、記録再生光の波長 において、適切な量の吸収がなければならない。上記置換基は、上記の溶媒の溶解 性や吸収性の観点から適宜選択すればょ 、。
力かる 7—ァミノカルボスチリルイ匕合物は、上記一般式 [I]において、 Xは酸素原子、 硫黄原子、 -NRを表す。ここで R、 R、 Rは、それぞれ独立して水素原子、直鎖又
7 1 6 7
は分岐のアルキル基、環状アルキル基、ァラルキル基、直鎖又は分岐のアルケニル 基、 COR で表されるァシル基を表す。ここで、アルキル基、環状アルキル基、ァラ
16
ルキル基、ァルケ-ル基、ァシル基は、必要に応じて置換されてもよい。
[0017] 一般式 [I]において、 R
1、 R
6、 Rとしては、水素原子、炭素数 1
7 一 12の直鎖又は分 岐のアルキル基、置換されてもよい炭素数 3 12の環状アルキル基、 COR で表
16 されるァシル基及び置換されてもよい炭素数 7— 18のァラルキル基が好ましい。中で も特に好ましいものは、水素原子、炭素数 1一 12の直鎖又は分岐のアルキル基、置 換されてもよい炭素数 3— 10の環状アルキル基、炭素数 7— 18のァラルキル基が好 ましい。
特に R、Rにおいては、ァミノ基の電子供与性を増す事により長波長に λ maxが
6 7
シフトするので、無置換の直鎖または分岐のアルキル基、環状アルキル基であること が特に好ましい。しかし、炭素数が多すぎても波長的にはそれほど効果が見られず 逆に吸収強度が下がる、生成物が固形ィ匕しないなどの問題もあるので、炭素数は 1 力 8程度が特に好ましい。
[0018] R、 R、 R、 Rは、それぞれ独立して水素原子又は任意の置換基を表す。このよう
2 3 4 5
な任意の置換基の例としては、例えば、メチル基、ェチル基、プロピル基、イソプロピ ル基、 n -ブチル基、 sec -ブチル基、 tert -ブチル基、 n -へプチル基等の炭素数 1 一 18の直鎖又は分岐のアルキル基;シクロプロピル基、シクロペンチル基、シクロへ キシル基、ァダマンチル基等の炭素数 3— 18の環状アルキル基;ビニル基、プロべ -ル基、へキセ -ル基等の炭素数 2— 18の直鎖又は分岐のァルケ-ル基;シクロべ ンテュル基、シクロへキセ -ル基等の炭素数 3— 18の環状ァルケ-ル基; 2 チェ- ル基、 2 -ピリジル基、 4ーピペリジル基、モルホリノ基等の複素環基;フエ-ル基、トリ ル基、キシリル基、メシチル基、ナフチル基等の炭素数 6— 18のァリール基;ベンジ ル基、フエネチル基等の炭素数 7— 20のァラルキル基;メトキシ基、エトキシ基、 n—プ 口ポキシ基、イソプロポキシ基、 n ブトキシ基、 sec ブトキシ基、 tert ブトキシ基等 の炭素数 1一 18の直鎖又は分岐のアルコキシ基;プロべ-ルォキシ基、ブテュルォ キシ基、ペンテ-ルォキシ基等の炭素数 3— 18の直鎖又は分岐のァルケ-ルォキシ 基;メチルチオ基、ェチルチオ基、 n プロピルチオ基、 n—ブチルチオ基、 sec—ブチ ルチオ基、 tert -ブチルチオ基等の炭素数 1一 18の直鎖又は分岐のアルキルチオ 基が挙げられる。ここで、アルキル基、環状アルキル基、ァルケ-ル基、環状アルケ -ル基、複素環基、ァリール基、ァラルキル基、アルコキシ基、ァルケ-ルォキシ基、 アルキルチオ基は、必要に応じて置換されてもよい。
[0019] R、 R、 R、 Rの他の具体例としては、フッ素原子、塩素原子、臭素原子等のハロ
2 3 4 5
ゲン原子;ニトロ基;ニトロソ基;シァノ基;イソシァノ基;シアナト基;イソシアナト基;チ オシアナト基;イソチオシアナト基;メルカプト基;ヒドロキシ基;ヒドロキシァミノ基;ホル ミル基;スルホン酸基;カルボキシル基; COR で表されるァシル基; NR R で
16 17 18 表されるアミノ基; NHCOR で表されるァシルァミノ基; NHCOOR で表される
19 20 カーバメート基; COOR で表されるカルボン酸エステル基; OCOR で表される
21 22 ァシルォキシ基; CONR R で表される力ルバモイル基; SO R で表されるスル
23 24 2 25
ホ-ル基; SOR で表されるスルフィエル基; SO NR R で表されるスルファモイ
26 2 27 28
ル基; SO R で表されるスルホン酸エステル基; NHSO R で表されるスルホン アミド基が挙げられる。
これらの置換基は、必要に応じてさらに置換されてもよい。その場合置換基の位置 は特に限定されず、置換基の数も 1一 4個の範囲で可能である。複数の置換基を有 する場合、同種でも異なってもよい。
[0020] ここで R 、R 、R 、R 、R 、R 、R 、R 、R は炭化水素基、又は複素環基を
16 19 20 21 22 25 26 29 30
表し、 R 、R 、R 、R 、R 、R は水素原子、炭化水素基、複素環基のいずれか
17 18 23 24 27 28
を表す。ここで、炭化水素基、複素環基は、必要に応じて置換されてもよい。
[0021] この R -R で表される炭化水素基とは、メチル基、ェチル基、プロピル基、イソプ
16 30
口ピル基、 n -ブチル基、 sec -ブチル基、 tert -ブチル基、 n -へプチル基等の炭素 数 1一 18の直鎖又は分岐のアルキル基、シクロプロピル基、シクロペンチル基、シク 口へキシル基、ァダマンチル基等の炭素数 3— 18の環状アルキル基、ビュル基、プ 口ぺニル基、へキセ -ル基等の炭素数 2— 18の直鎖又は分岐のァルケ-ル基、シク 口ペンテ-ル基、シクロへキセ -ル基等の炭素数 3— 18の環状アルケ-ル基、ベン ジル基、フエネチル基等の炭素数 7— 20のァラルキル基、フエ-ル基、トリル基、キシ リル基、メシチル基等の炭素数 6— 18ァリール基を表す。これらの基のアルキル鎖部 分及びァリール基部分は後述する R -Rのアルキル鎖部分が有し得る置換基で更
2 5
に置換されていてもよい。
[0022] また、 R — R で表される複素環基は、 4ーピペリジル基、モルホリノ基、 2—モルホリ
16 30
-ル基、ピペラジル基等の飽和複素環でも、 2—フリル基、 2—ピリジル基、 2—チアゾリ ル基、 2 -キノリル基等の芳香族複素環でもよい。これらは複数のへテロ原子を含ん でいても、さらに置換基を有していてもよぐまた結合位置も問わない。複素環として 好ましい構造のものは、 5— 6員環の飽和複素環、 5— 6員環の単環及びその 2縮合 環の芳香族複素環である。
[0023] 具体的な化合物としては、ァシル基 (一 COR )としては、以下の構造の置換基が挙
16
げられる。 [0024] [化 2]
Figure imgf000011_0001
[0025] アミノ基 (一 NR R )としては、以下の構造の置換基が挙げられる。
17 18
[0026] [化 3]
Figure imgf000011_0002
ァシルァミノ基 (一 NHCOR )としては、以下の構造の置換基が挙げられる c
[0028] [化 4]
Figure imgf000012_0001
[0029] カーバメート基 (一 NHCOOR )としては、以下の構造の置換基が挙げられる。
20
[0030] [化 5]
Figure imgf000012_0002
[0031] カルボン酸エステル基 (一 COOR )としては、以下の構造の置換基が挙げられる。
21
[0032] [化 6]
Figure imgf000012_0003
[0033] ァシ /レオキシ基 (一 OCOR )としては、以下の構造の置換基が挙げられる, [0034] [化 7]
Figure imgf000013_0001
[0035] 力ルバモイル基 (一 CONR R )としては、以下の構造の置換基が挙げられる
23 24
[0036] [化 8]
Figure imgf000013_0002
[0037] スルホニル基 (一 SO R )としては、以下の構造の置換基が挙げられる。
[0038] [化 9]
Figure imgf000014_0001
[0039] スルフィエル基 (一 SOR )としては、以下の構造の置換基が挙げられる。
26
[0040] [化 10]
Figure imgf000014_0002
[0041] スルファモイル基 (一 SO NR R )としては、以下の構造の置換基が挙げられる。
[0042] [化 11]
Figure imgf000015_0001
[0043] スルホン酸エステル基 (一 SO R )としては、以下の構造の置換基が挙げられる。
3 29
[0044] [化 12]
Figure imgf000015_0002
[0045] スルホンアミド基 (一 NHSO R )としては、以下の構造の置換基が挙げられる。
[0046] [化 13]
Figure imgf000016_0001
[0047] また、一般式 [I]において、 R、 R、 R、 Rとしては、水素原子又は置換基を有して
2 3 4 5
V、てもよ 、炭素数 1一 12の直鎖又は分岐のアルキル基、置換基を有して!/、てもよ!/ヽ 炭素数 3— 12の環状アルキル基、置換基を有して!/、てもよ!/、炭素数 2— 12の直鎖又 は分岐のァルケ-ル基、置換基を有していてもよい炭素数 7— 18のァラルキル基、 置換基を有して 、てもよ 、炭素数 1一 12の直鎖又は分岐のアルコキシ基、置換基を 有して!/、てもよ!/、炭素数 1一 12の直鎖又は分岐のアルキルチオ基、置換基を有して V、てもよ 、炭素数 6— 18のァリール基、置換基を有して!/、てもよ 、飽和又は不飽和 の複素環基、ハロゲン原子、ニトロ基、シァノ基、メルカプト基、ホルミル基、ヒドロキシ 基、ホルミル基、 COR で表されるァシル基、 NR R で表されるアミノ基、 NH
16 17 18
COR で表されるァシルァミノ基、 NHCOOR で表されるカーバメート基、—COO
19 20
R で表されるカルボン酸エステル基、 OCOR で表されるァシルォキシ基、 CO
21 22
NR R で表される力ルバモイル基、 SO R で表されるスルホニル基、 SOR で
23 24 2 25 26 表されるスルフィエル基、 SO NR R で表されるスルファモイル基、 SO R で表
2 27 28 3 29 されるスルホン酸エステル基、 NHSO R で表されるスルホンアミド基が好ましい。
2 30
[0048] 特に、一般式 [I]において、 R
2、 Rとして、水素原子、炭素数 1
3 一 8の直鎖又は分岐 のアルキル基、炭素数 3— 8の環状アルキル基、炭素数 7— 12のァラルキル基、炭素 数 1一 8の直鎖又は分岐のアルコキシ基、炭素数 1一 8の直鎖又は分岐のアルキル チォ基、炭素数 6— 18のァリール基、飽和又は不飽和の単環又は 2縮合環の複素 環基、ハロゲン原子、ニトロ基、シァノ基、メルカプト基、ヒドロキシ基、ホルミル基、 C OR で表されるァシル基、 NR R で表されるアミノ基、 NHCOR で表されるァ
16 17 18 19 シルァミノ基、 -NHCOOR で表されるカーバメート基、—COOR で表されるカル
20 21
ボン酸エステル基、—OCOR で表されるァシルォキシ基、—CONR R で表される
22 23 24 力ルバモイル基、又は NHSO R で表されるスルホンアミドから選ばれることが特に
2 30
好ましい。これらの置換基は、後述する塗布溶媒に対する溶解性を上げる効果 (特に アルキル基部分を持つもの)や、色素のえ maxをより長波長にシフトさせることができ る(ァリール基、不飽和複素環、ハロゲンィ匕アルキル基やシァノ基などの電子吸引性 基)合成しやす!、点で有用である。
[0049] 前述した一般式 [I]において、 R— Rが示す直鎖又は分岐のアルキル基、環状ァ ルキル基、直鎖又は分岐のアルケニル基、環状アルケニル基、直鎖又は分岐のアル コキシ基、直鎖又は分岐のアルキルチオ基、及び R — R が示すアルキル基のアル
16 30
キル鎖部分は、更に置換基を有することがある。このような置換基としては、例えば、 メトキシ基、エトキシ基、 n プロポキシ基、イソプロポキシ基、 n ブトキシ基、 sec—ブト キシ基、 tert ブトキシ基等の炭素数 1一 10のアルコキシ基;メトキシメトキシ基、エト キシメトキシ基、プロボキシメトキシ基、エトキシエトキシ基、プロポキシエトキシ基、メト キシブトキシ基等の炭素数 2— 12のアルコキシアルコキシ基;メトキシメトキシメトキシ 基、メトキシメトキシェトキシ基、メトキシエトキシメトキシ基、メトキシメトキシェトキシ基、 エトキシエトキシメトキシ基等の炭素数 3— 15のアルコキシアルコキシアルコキシ基; フエノキシ基、トリルォキシ基、キシリルォキシ基、ナフチルォキシ基等の炭素数 6— 1 2のァリールォキシ基;ァリルォキシ基、ビニルォキシ基等の炭素数 2— 12のァルケ ニルォキシ基等が例示される。
[0050] 更に、他の置換基として、 2 チェニル基、 2 ピリジル基、 4ーピペリジル基、モルホ リノ基等の複素環基;シァノ基;ニトロ基;ヒドロキシル基;メルカプト基;メチルメルカブ ト基、ェチルメルカプト基等のアルキルチオ基;アミノ基; N, N-ジメチルァミノ基、 N, N—ジェチルァミノ基等の炭素数 1一 10のアルキルアミノ基;メチルスルホ -ルァミノ 基、ェチルスルホ -ルァミノ基、 n プロピルスルホ -ルァミノ基等の炭素数 1一 6のァ ルキルスルホ -ルァミノ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メチ ルカロボ-ル基、ェチルカルボ-ル基、イソプロピルカルボ-ル基等のアルキルカル ボニル基;メトキシカルボニル基、エトキシカルボニル基、 n—プロポキシカルボニル基 、イソプロポキシカルボ-ル基、 n—ブトキシカルボ-ル等の炭素数 2— 7のアルコキシ カルボ-ル基;メチルカルボ-ルォキシ基、ェチルカルボ-ルォキシ基、 n—プロピル カルボ-ルォキシ基、イソプロピルカルボ-ルォキシ基、 n—ブチルカルボ-ルォキシ 基等の炭素数 2— 7のアルキルカルボ-ルォキシ基;メトキシカルボ-ルォキシ基、ェ トキシカルボ-ルォキシ基、 n—プロポキシカルボニルォキシ基、イソプロポキシカル ボ-ルォキシ基、 n—ブトキシカルボ-ルォキシ基等の炭素数 2— 7のアルコキシカル ボニルォキシ基等が挙げられる。
[0051] 一般式 [I]において、 R -Rのうち隣接する置換基同士が結合して飽和又は不飽 和の縮合環を形成して 、てもよ 、。縮合環の構造としては 5— 7員環構造の飽和の炭 化水素環が好ましい。
[0052] また、一般式 [I]において、 nは 1一 4を表し、 R 、独立して、水素原子、炭素
A、 Rは
B
数 1一 12の直鎖又は分岐のアルキル基である。 R における Aは 8 7 + 2nのうちの
A
偶数を表わし、 Rにおける Bは 8— 7 + 2nのうちの奇数を表わす。例えば、 nが 1のと
B
きは、 7 + 2n= 9となる。このため、 Aは 8、 Bは 9となる。尚、 R
A、 Rは言いかえれば、 B
n= 2— 4の場合は、異なる炭素原子に結合する複数の R とになる
A、Rが存在するこ
B
力 これら複数の R、 Rは、それぞれ互いに同一であっても、異なっていてもよい。
A B
具体的には以下に示すような縮合環を形成する。
[0053] [化 14]
Figure imgf000018_0001
[0054] n= 2、 3、 4にお!/、ては 7位の N (窒素原子)に近 、炭素の方から R、 R一 R として いる。この中でも好ましい環構造は n= 2— 3であり、特に n= 2が好ましい。この場合 、化合物の合成が容易であり、また化学的に安定と考えられる。尚、このような縮合環 における R -R は、水素原子、炭素数 1一 12の直鎖又は分岐のアルキル基である
8 15
。また、 R一 R は、前述した置換されてもよいアルキル基 (ただし、水酸基やシァノ
8 15
基のように、合成を困難にする極性基は除く)等で例示された置換基であってもよ!ヽ
Xは、酸素原子、硫黄原子又は NRを表す (Rについては、既に説明したとおりで ある)。これらのうち、工業的に合成しやすい点から好ましいのは、酸素原子、又は N Rである。合成しやすさの点で特に好ましいのは、酸素原子である。つまり、 nと Xと の組み合わせとして最も好ましいのは、 Xを酸素原子とし、 n= 2とすることである。
[0055] 本実施の形態が適用される光学記録媒体に使用される、さらに好ましい 7—ァミノ力 ルボスチリルイ匕合物は、以下の通りのものである。すなわち、上記一般式 [I]におい て、 Xは、酸素原子又は NRである。 Rは水素原子もしくは炭素数 1一 4の直鎖また は分岐のアルキル基であり、 R
2、 R
3はそれぞれ独立して、水素原子、炭素数 1一 8の 直鎖または分岐のアルキル基、炭素数 1一 8の直鎖または分岐のアルコキシ基、ハロ ゲン原子、炭素数 7— 12のァラルキル基、不飽和複素環、置換されてもよいァリール 基である。 R、 Rは水素原子であり、 R ぞれ独立に、無置換の炭素数 1
4 5 6、 Rはそれ
7
一 8の直鎖または分岐のアルキル基もしくは環状アルキル基である。 nは 1一 4であり 、 R、 Rは、独立して、水素原子、炭素数 1一 12の直鎖又は分岐のアルキル基であ
A B
る。 Rにおける Aは 8 7 + 2nのうちの偶数を表わし、 Rにおける Bは 8 7 + 2nのう
A B
ちの奇数を表わす。 nが 2— 4の場合における複数の R ぞれ互いに異な
A、Rはそれ
B
つていてもよい。但し、 R— Rの中、隣接する置換基同士が結合した縮合環を形成 していてもよい。さらに n= 2とすれば、化学的に安定な色素として使用することができ る。
[0056] 一般式 [I]で表される化合物は、その分子量が、好ましくは 1000以下、特に好まし くは 600以下の化合物である。また好ましくは 180以上、特に好ましくは 200以上で ある。この範囲内であれば、良好な記録特性を期待することが出来る。分子量が過度 に大き 、と、グラム吸光係数が減少してしまうため好ましくな 、。 一般式 [I]で表される化合物の好ましい例として下記に示された(1)一(66)の化合 物が挙げられる。
[化 15]
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000021_0002
Figure imgf000022_0001
Figure imgf000022_0002
§00597 [0060] [化 18]
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000024_0002
〔〕〔s0061 I
Figure imgf000025_0001
〔〕s0062 [化 21]
Figure imgf000026_0001
(合成方法)
本発明にお 、て請求書記載の化合物の合成方法にっ 、ては特に限定されるもの ではないが、キノリン環を合成する一般的な製法としては (便宜的に n= 2、 R 、 R , R
7 8
, R
9 10を水素原子で表しておく)、
(l) m (meta)—フエ-レンジァミン誘導体と 13ーケトエステル、マロン酸ジェチル誘導 体との縮合反応 [0065] [化 22]
Figure imgf000027_0001
[0066] 上記の反応の様に j8—ケトエステルの R
2, Rの置換基の種類を変更することにより
3
様々な置換基の導入が可能である。 (ref. J. O. C. 56, 3, 980 (1991)等)
[0067] [化 23]
Figure imgf000027_0002
[0068] またマロン酸ジェチル誘導体を用いて R = OHの化合物を合成することができる。
3
(2) 2—置換ニトロベンゼンからの合成
[0069] [化 24]
Figure imgf000027_0003
[0070] ref. Chem. Pharm. Bull, 48 (12) , 2003 (2000)
(3)ァセトァ-リドの Vilsmeier反応
[0071] [化 25]
Figure imgf000027_0004
[0072] ref. J. Hetero. Chem. 31, 701 (1994) [0073] [化 26]
Figure imgf000028_0001
[0074] ref . J. C. S. perkinl, 1537 (1981)
等が知られている。
一方、 N— C (RARB)— Xで表される芳香族環の合成法としては、実施例 1に記載の 方法以外にも、 0 (ortho)— aminophenol誘導体とハロゲン化アルキルとの反応(M onatsch. Chem. 127, 305-311 (1 , Heterocycles, 38, 1, 5 (1994) 等でち合成することがでさる。
[0075] [化 27]
Figure imgf000028_0002
[0076] また X=NRの環としては、 J. Hetero. Chem. 25, 479 (1988)にあるように 3, 4 —ジフルォ口-トロア-リンとエチレンジァミン力も合成することができる。
[0077] [化 28]
Figure imgf000028_0003
[0078] X= Sの環としては、アミノチォフエノールからの類似の合成するルートや、 J. O. C . 60, 2597 (1995)にあるようなベンゾチアゾールカも合成する方法等が考えられる 次に、本実施の形態が適用される光学記録媒体について説明する。本実施の形態 が適用される光学記録媒体は、少なくとも、基板と、一般式 [1]で表される化合物を 含有する記録層とから構成される。尚、必要に応じて、更に下引き層、反射層、保護 層等を設けてもよい。図 1は、本実施の形態が適用される光学記録媒体を説明する 図である。図 1 (a)は、第 1の実施の形態であり、図 1 (b)は、第 2の実施形態である。 図 1 (a)に示される光学記録媒体 10は、光透過性材料からなる基板 1と、基板 1上に 設けられた記録層 2と、記録層 2上に積層された反射層 3及び保護層 4とが順番に積 層されている。光学記録媒体 10は、基板 1側力 照射されるレーザ光により、情報の 記録 '再生が行われる。
なお、説明の便宜上、光学記録媒体 10において、保護層 4が存在する側を上方、 基板 1が存在する側を下方とし、これらの方向に対応する各層の各面を、それぞれ各 層の上面及び下面とする。
[0080] 基板 1は、基本的に記録光及び再生光の波長において透明な材料であれば、様 々な材料を使用することができる。具体的には、例えば、アクリル系榭脂、メタクリル 系榭脂、ポリカーボネート榭脂、ポリオレフイン系榭脂 (特に、非晶質ポリオレフイン)、 ポリエステル系榭脂、ポリスチレン榭脂、エポキシ榭脂等の榭脂;ガラスが挙げられる 。また、ガラス上に光硬化性榭脂等の放射線硬化性榭脂からなる榭脂層を設けた構 造が挙げられる。中でも、高生産性、コスト、耐吸湿性等の観点からは、射出成型法 にて使用されるポリカーボネート榭脂、耐薬品性及び耐吸湿性等の観点からは、非 晶質ポリオレフインが好ましい。更に、高速応答等の観点からは、ガラスが好ましい。
[0081] 榭脂製の基板 1を使用した場合、又は、記録層と接する側 (上側)に榭脂層を設け た基板 1を使用した場合には、上面に、記録再生光の案内溝やピットを形成してもよ い。案内溝の形状としては、光学記録媒体 10の中心を基準とした同心円状の形状 やスパイラル状の形状が挙げられる。スパイラル状の案内溝を形成する場合には、溝 ピッチが 0. 2- 1. 2 m程度であることが好ましい。
[0082] 記録層 2は、基板 1の上側に直接、又は必要に応じて基板 1上に設けた下引き層等 の上側に形成され、一般式 [1]で表される化合物が含まれる。記録層 2の成膜方法と しては、真空蒸着法、スパッタリング法、ドクターブレード法、キャスト法、スピンコート 法、浸漬法等、一般に行なわれている様々な薄膜形成法が挙げられる。量産性ゃコ ストの観点からは、スピンコート法が好ましぐ均一な厚みの記録層 2が得られるという 観点からは、塗布法よりも真空蒸着法等の方が好ましい。スピンコート法による成膜 の場合、回転数は 500— 15000rpmが好ましい。また、場合によっては、スピンコー トの後に、加熱する、溶媒蒸気にあてる等の処理を施してもよい。
[0083] ドクターブレード法、キャスト法、スピンコート法、浸漬法等の塗布法により記録層 2 を形成する場合に、一般式 [1]で表される化合物を溶解させて基板 1に塗布するた めに使用する塗布溶媒は、基板 1を侵食しない溶媒であれば特に限定されない。具 体的には、例えばジアセトンアルコール、 3—ヒドロキシー 3—メチルー 2—ブタノン等のケ トンアルコール系溶媒;メチルセ口ソルブ、ェチルセ口ソルブ等のセロソルブ系溶媒; n-へキサン、 n-オクタン等の鎖状炭化水素系溶媒;シクロへキサン、メチルシクロへ キサン、ェチルシクロへキサン、ジメチルシクロへキサン、 n—ブチルシクロへキサン、 t ert—プチルシクロへキサン、シクロオクタン等の環状炭化水素系溶媒;テトラフルォロ プロパノール、オタタフノレォロペンタノール、へキサフノレオロブタノ一ノレ等のパーフノレ ォロアルキルアルコール系溶媒;乳酸メチル、乳酸ェチル、 2—ヒドロキシイソ酪酸メチ ル等のヒドロキシカルボン酸エステル系溶媒等が挙げられる。
[0084] 真空蒸着法を用いる場合には、例えば、一般式 [1]で表される化合物と、必要に応 じて他の色素や各種添加剤等の記録層成分とを、真空容器内に設置されたるつぼ に入れ、この真空容器内を適当な真空ポンプで 10— 2— 10— 5Pa程度にまで排気した 後、るつぼを加熱して記録層成分を蒸発させ、るつぼと向き合って置かれた基板上 に蒸着させることによって、記録層 2を形成する。
また、記録層 2には、一般式 [1]で表される化合物に加えて、安定性ゃ耐光性の向 上のために、一重項酸素クェンチヤ一として遷移金属キレートイヒ合物(例えば、ァセ チルァセトナートキレート、ビスフエ-ルジチオール、サリチルアルデヒドォキシム、ビ スジチォー α—ジケトン等)等を含有させたり、記録感度の向上のために、金属系化合 物等の記録感度向上剤を含有させたりしてもよい。ここで、金属系化合物とは、遷移 金属等の金属が原子、イオン、クラスタ一等の形でィ匕合物に含まれるものを言う。例 えばエチレンジアミン系錯体、ァゾメチン系錯体、フエ-ルヒドロキシアミン系錯体、フ ェナント口リン系錯体、ジヒドロキシァゾベンゼン系錯体、ジォキシム系錯体、ニトロソ ァミノフエノール系錯体、ピリジルトリアジン系錯体、ァセチルァセトナート系錯体、メタ 口セン系錯体、ボルフイリン系錯体のような有機金属化合物が挙げられる。金属原子 としては特に限定されないが、遷移金属であることが好ましい。
[0085] なお、記録層 2には、必要に応じて、一般式 [1]で表される化合物を複数種類併用 してもよい。更に、記録層 2には、一般式 [1]で表される化合物に加え、必要に応じて 他系統の色素を併用することもできる。他系統の色素としては、主として記録用レー ザ光の発振波長域に適度な吸収を有するものであればよぐ特に制限されない。また 、 CD— R等に使用され、 770— 830nmの波長帯域中に発振波長を有する近赤外レ 一ザ光を用いた記録'再生に適する色素や、 DVD— R等に使用され、 620— 690nm の波長帯域中に発振波長を有する赤色レーザ光を用いた記録'再生に適する色素 等を、一般式 [1]で表される化合物と併用して記録層 2に含有させることにより、異な る波長帯域に属する複数種のレーザ光を用いた記録,再生に対応する光学記録媒 体 10を製造することもできる。
[0086] 一般式 [1]で表される化合物以外の他系統の色素としては、含金属ァゾ系色素、 ベンゾフエノン系色素、フタロシア-ン系色素、ナフタロシア-ン系色素、シァニン系 色素、ァゾ系色素、スクァリリウム系色素、含金属インドア-リン系色素、トリアリールメ タン系色素、メロシアニン系色素、ァズレニウム系色素、ナフトキノン系色素、アントラ キノン系色素、インドフエノール系色素、キサンテン系色素、ォキサジン系色素、ピリリ ゥム系色素等が挙げられる。
更に、必要に応じて、バインダー、レべリング剤、消泡剤等を併用することもできる。 好ましいバインダーとしては、ポリビュルアルコール、ポリビュルピロリドン、ニトロセル ロース、酢酸セルロース、ケトン系榭脂、アクリル系榭脂、ポリスチレン系榭脂、ウレタ ン系榭脂、ポリビニルブチラール、ポリカーボネート、ポリオレフイン等が挙げられる。 記録層 2の膜厚は、記録方法等により適した膜厚が異なる為、特に限定するもので はないが、記録を可能とするためにはある程度の膜厚が必要とされるため、通常、少 なくとも lnm以上であり、好ましくは 5nm以上である。但しあまり厚すぎても記録が良 好に行えなくなるおそれがあり、通常 300nm以下、好ましくは 200nm以下、より好ま しくは lOOnm以下である。
[0087] 反射層 3は、記録層 2の上に形成されている。反射層 3の膜厚は、好ましくは 50nm 一 300nmである。反射層 3の材料としては、再生光の波長において十分高い反射率 を有する材料、例えば、 Au、 Al、 Ag、 Cu、 Ti、 Cr、 Ni、 Pt、 Ta、 Pd等の金属を、単 独あるいは合金にして用いることができる。これらの中でも Au、 Al、 Agは反射率が高 ぐ反射層 3の材料として適している。また、これらの金属を主成分とした上で、加えて 他の材料を含有させてもよい。ここで主成分とは、含有率が 50%以上のものをいう。 主成分以外の他の材料としては、例えば、 Mg、 Se、 Hf、 V、 Nb、 Ru、 W、 Mn、 Re、 Fe、 Co、 Rh、 Ir、 Cu、 Zn、 Cd、 Ga、 In、 Si、 Ge、 Te、 Pb、 Po、 Sn、 Bi、 Ta、 Ti、 Pt 、 Pd、 Nd等の金属及び半金属を挙げることができる。中でも Agを主成分とするもの は、コストが安い点、高反射率が出やすい点、後述する印刷受容層を設けた場合に 地色が白く美しいものが得られる点等から、特に好ましい。例えば、 Agに Au、 Pd、 P t、 Cu、及び Ndから選ばれる一種以上を 0. 1原子%— 5原子%程度含有させた合 金は、高反射率、高耐久性、高感度且つ低コストであり好ましい。具体的には、例え ば、 AgPdCu合金、 AgCuAu合金、 AgCuAuNd合金、 AgCuNd合金等である。金 属以外の材料としては、低屈折率薄膜と高屈折率薄膜を交互に積み重ねて多層膜 を形成し、これを反射層 3として用いることも可能である。
反射層 3を形成する方法としては、例えば、スパッタリング法、イオンプレーティング 法、化学蒸着法、真空蒸着法等が挙げられる。また、基板 1の上や反射層 3の下に、 反射率の向上、記録特性の改善、密着性の向上等のために、公知の無機系又は有 機系の中間層、接着層を設けることもできる。
保護層 4は、反射層 3の上に形成される。保護層 4の材料は、反射層 3を外力から 保護するものであれば、特に限定されない。有機物質の材料としては、熱可塑性榭 脂、熱硬化性榭脂、電子線硬化性榭脂、 UV硬化性榭脂等を挙げることができる。ま た、無機物質としては、酸化ケィ素、窒化ケィ素、 MgF、 SnO等が挙げられる。
2 2
熱可塑性榭脂、熱硬化性榭脂等を用いる場合は、適当な溶剤に溶解して調製した 塗布液を反射層 3の上に塗布して乾燥させれば、保護層 4を形成することができる。 UV硬化性榭脂を用いる場合は、そのまま反射層 3の上に塗布するカゝ、又は適当な 溶剤に溶解して調製した塗布液を反射層 3の上に塗布し、 UV光を照射して硬化さ せること〖こよって、保護層 4を形成することができる。 UV硬化性榭脂としては、例えば 、ウレタンアタリレート、エポキシアタリレート、ポリエステルアタリレート等のアタリレート 系榭脂を用いることができる。これらの材料は、単独で用いても、複数種を混合して 用いてもよい。また、保護層は、単層として形成しても、多層として形成してもよい。
[0089] 保護層 4の形成方法としては、記録層 2と同様に、スピンコート法やキャスト法等の 塗布法や、スパッタリング法やィ匕学蒸着法等の方法が用いられるが、中でもスピンコ ート法が好ましい。保護層 4の膜厚は、その保護機能を果たすためにはある程度の 厚みが必要とされるため、一般に 0. 1 μ m以上であり、好ましくは 3 μ m以上である。 但しあまり厚すぎると、効果が変わらないだけでなく保護層 4の形成に時間がかかつ たりコストが高くなる虞があるので通常 100 μ m以下であり、好ましくは 30 μ m以下で ある。
[0090] 上述したように、光学記録媒体 10の層構造として、基板、記録層、反射層、保護層 をこの順に積層して成る構造を例に採って説明したが、この他の層構造を採っても構 わない。
例えば、上例の層構造における保護層 4の上面に、又は上例の層構造から保護層 4を省略して反射層 3の上面に、更に別の基板 1を貼り合わせてもよい。この際の基 板 1は、何ら層を設けていない基板そのものであってもよぐ貼り合わせ面又はその反 対面に反射層 3等任意の層を有するものでもよい。また、同じく上例の層構造を有す る光学記録媒体 10や、上例の層構造力も保護層 4を省略した光学記録媒体 10を、 それぞれの保護層 4及び Z又は反射層 3の上面を相互に対向させて 2枚貼り合わせ てもよい。
[0091] 次に、光学記録媒体の第 2の実施の形態について説明する。図 1 (b)は、光学記録 媒体の第 2の実施の形態を説明する図である。第 1の実施の形態の光学記録媒体 1 0と共通する部分は同じ符号を付し、説明を省略する。図 1 (b)に示される光学記録 媒体 20は、光透過性材料からなる基板 1と、基板 1上に設けられた反射層 3と、反射 層 3上に積層された記録層 2及び保護被膜 5とが順番に積層されている。光学記録 媒体 20は、保護被膜 5側から照射されるレーザ光により、情報の記録 *再生が行われ る。
[0092] 保護被膜 5は、フィルム又はシート状のものを接着剤によって貼り合わせてもよぐま た、前述の保護層 4と同様の材料を用い、成膜用の塗液を塗布し硬化又は乾燥する こと〖こより形成してもよい。保護被膜 5の厚さは、その保護機能を果たすためにはある 程度の厚さが必要とされるため、一般に 0. 1 μ m以上であり、好ましくは 3 m以上で ある。但しあまり厚すぎると、効果が変わらないだけでなく保護被膜 5の形成に時間が 力かったりコストが高くなるおそれがあるので通常 300 μ m以下であり、好ましくは 20 以下である。尚、記録層 2、反射層 3等の各層は通常、前述の光学記録媒体 1 0と同様のものが用い得る。但し、本層構成では基板 1は透明である必要はなぐ従つ て、前述の材料以外にも、不透明な榭脂、セラミック、金属 (合金を含む)等が用いら れる。このような層構成においても、上記各層間には、本発明の特性を損なわない限 り、必要に応じて任意の層を有してよい。
[0093] ところで、光学記録媒体 10, 20の記録密度を上げるための一つの手段として、対 物レンズの開口数を上げることがある。これにより情報記録面に集光される光スポット を微小化できる。し力しながら、対物レンズの開口数を上げると、記録'再生を行うた めにレーザ光を照射した際に、光学記録媒体 10, 20の反り等に起因する光スポット の収差が大きくなりやすいため、良好な記録再生信号が安定して得られない場合が ある。
このような収差は、レーザ光が透過する透明基板や保護被膜の膜厚が厚 ヽほど大 きくなりやすいので、収差を小さくするためには基板や保護被膜をできるだけ薄くす るのが好ましい。ただし、通常、基板 1は光学記録媒体 10, 20の強度を確保するた めにある程度の厚みを要するので、この場合、光学記録媒体 20の構造 (基板 1、反 射層 3、記録層 2、保護被膜 5なる基本的層構成の光学記録媒体 20)を採用するの が好ましい。光学記録媒体 10の基板 1を薄くするのに比べると、光学記録媒体 20の 保護被膜 5は薄くしゃすいため、好ましくは光学記録媒体 20を用いる。
[0094] 但し、光学記録媒体 10の構造 (基板 1、記録層 2、反射層 3、保護層 4なる基本的 層構成の光学記録媒体 10)であっても、記録'再生用レーザ光が通過する透明な基 板 1の厚さを 50— 300 m程度にまで薄くすることにより、収差を小さくして使用でき るよつになる。
また、他の各層の形成後に、記録 ·再生レーザ光の入射面 (通常は、基板 1の下面 )に、表面の保護ゃゴミ等の付着防止の目的で、紫外線硬化榭脂層や無機系薄膜 等を成膜形成してもよぐ記録,再生レーザ光の入射面ではない面 (通常は、反射層
3や保護層 4の上面)に、インクジェット、感熱転写等の各種プリンタ、あるいは各種筆 記具を用いて記入や印刷が可能な印刷受容層を設けてもょ 、。
[0095] 本実施の形態が適用される光学記録媒体 10, 20において、情報の記録'再生の ために使用するレーザ光は、高密度記録を実現する観点から波長が短いほど好まし いが、特に波長が 350— 530nmのレーザ光が好ましい。かかるレーザ光の代表例と して、中心波長力 05nm、 410nm、 515nmのレーザ光が挙げられる。
波長が 350— 530nmのレーザ光は、波長力 05nm、 410nmの青色又は 515nm の青緑色の高出力半導体レーザ光を使用することによって得られる。また、その他に も、例えば、(a)基本発振波長が 740— 960nmの連続発振可能な半導体レーザ光 、及び (b)半導体レーザ光によって励起される基本発振波長が 740— 960nmの連 続発振可能な固体レーザ光の何れかの発振レーザ光を、第二高調波発生素子 (SH G)〖こより波長変換すること〖こよっても得られる。
尚、 SHGとしては、反転対称性を欠くピエゾ素子であればいかなるものでもよいが 、 KDP、 ADP、 BNN、 KN、 LBO、化合物半導体等が好ましい。第二高調波の具体 例として、基本発振波長が 860nmの半導体レーザ光の場合には、その基本発振波 長の倍波である 430nm、また、半導体レーザ光励起の固体レーザ光の場合には、 C rドープした LiSrAlF結晶(基本発振波長 860nm)からの倍波の 430nm等が挙げ
6
られる。
[0096] 本実施の形態が適用される光学記録媒体 10、 20に、情報の記録を行なう際には、 記録層 2に対して (通常は、基板 1側から基板 1を透過させ)、通常、 0. 4-0. 6 m 程度に集束したレーザ光を照射する。記録層 2のレーザ光が照射された部分は、レ 一ザ光のエネルギーを吸収することによって分解、発熱、溶解等の熱的変形を起こ すため、光学的特性が変化する。
記録層 2に記録された情報の再生を行なう際には、同じく記録層 2に対して (通常は 、記録時と同じ方向から)、よりエネルギーの低いレーザ光を照射する。記録層 2にお いて、光学的特性の変化が起きた部分 (すなわち、情報が記録された部分)の反射 率と、変化が起きていない部分の反射率との差を読みとることにより、情報の再生が 行なわれる。
実施例
[0097] 以下に実施例に基づき、本実施の形態をさらに具体的に説明するが、尚、本実施 の形態はその要旨を越えない限り、これら実施例によって限定されるものではない。 (実施例 1)
一般式 [I]で示される化合物のうち、前述した例示化合物(51)を以下のとおりに製 し 7こ。
(a)製造例
下記構造式 [1]で示される 2—ヒドロキシァセトァ -リド 30. 23g (0. 2mol)をテトラヒ ドロフラン 200ml+トルエン 250ml溶媒中に懸濁させ、撹拌条件下、氷浴で反応容 器を冷却し、 0— 10°Cに保った。ここに水酸ィ匕ナトリウム 32g (0. 8mol)、テトラプチ ルアンモ -ゥムブロマイド 6g (0. O19mol)を添カ卩し、上記 [2]で示される 1, 2—ジブ ロモェタン 150. 4g (0. 8mol)を滴下した。その後氷浴中で 1時間撹拌してから室温 に戻して 28時間撹拌した。
反応液は水 600ml中に放出し、トルエン 200mlをカ卩えて有機層に抽出し、その後 抽出水層にまたトルエン 150mlをカ卩ぇ回収し、混合させたトルエン層を水 400mlで 2 回洗浄し、トルエン層に硫酸ナトリウムを加え、ー晚静置した。
トルエン溶液は濾過後、エバポレーターで溶媒を留去させ下記化合物 [3] 28. 17 g (収率 79. 5%)を合成した。
[0098] [化 29]
Figure imgf000036_0001
[0099] [化 30]
Figure imgf000037_0001
[0100] 次に、メタノール 120ml+水 60ml混合溶媒に水酸化ナトリウム 32gを加えて溶解さ せ、そこに得られた化合物 [3] 28gのメタノール 50ml溶液を滴下し、滴下終了後反 応液を 4時間還流させた。
反応液は水 200ml中に放出し、トルエン 300ml加えて抽出し、その後水層にトル ェン 110ml加えて回収し、混合したトルエン溶液を水 300mlで 2回洗浄し、硫酸ナト リウムを加えてー晚静置した。
トルエン溶液は濾過後、エバポレーターで溶媒を留去させ下記化合物 [4] 17. 36 g (収率 80. 2%)を合成した。
[0101] [化 31]
Figure imgf000037_0002
[0102] 得られた化合物 [4] 7. 4g (0. O55mol)を N—メチルー 2—ピロリドン 65mlに溶解さ せ、 n—プロピルョージド 11. 16g (0. 066mol)、炭酸カリウム 4. 55g (0. O33mol) を加え、 80— 90°Cで 8時間加熱した。反応液は冷却後、水 150ml中に放出し、トル ェン 200mlで抽出した。抽出したトルエン層は水 100mlで 3回洗浄し、硫酸ナトリウ ムをカ tlえ、ー晚静置した。
トルエン溶液は濾過後、エバポレーターで溶媒を留去し、下記化合物 [5] 9g (収率 92. 7%)を得ることが出来た。 [0103] [化 32]
Figure imgf000038_0001
[0104] 得られた化合物 [5] 9g (0. O51mol)を氷浴で 10°C以下に保った硫酸 30ml中に 滴下した。別の容器で硫酸 12. 7gを氷浴で 10°C以下に保ち、そこに 60%硝酸 5. 1 7g (0. O51mol)を滴下し、混酸を生成した。この混酸溶液を、化合物 [5]が溶けて いる硫酸溶液に 10°C以下を保ちながら滴下し、その後 1時間撹拌した。反応後、反 応液は氷水 150ml中に放出し、アンモニア水で中和した。中和後、ここにトルエン 10 Oml加えて抽出し、水層をトルエン 100mlで再抽出し、混合した抽出層は水 100ml で 3回洗浄し、硫酸ナトリウムを加えて静置、濾過後エバポレーターで溶媒を留去し、 シリカゲルカラムで精製 (展開溶媒;へキサン Z酢酸ェチル)し、下記化合物 [6] 8. 3 3g (収率 73. 8%)を得た。
[0105] [化 33]
Figure imgf000038_0002
[0106] 鉄粉 12. 58g (0. 22mol)を水 12ml、醉酸 1. 6ml中に懸淘させ、 80。Cにカロ熱した 。ここに前述の [6] 8. 33g (0. O37mol)の IPA20ml溶液を 70— 80°Cに保ちながら 滴下し、その後 90°Cで 1時間半加熱した。反応終了後、冷却し、炭酸カリウムを加え 中和し、反応液を濾過して、鉄粉を取り除いた。濾液は水 50mlをカ卩ぇ酢酸ェチルで 抽出(100ml X 3)し、硫酸ナトリウムを加えて静置し、濾過後エバポレーターで溶媒 を留去して下記化合物 [7] 6. 29g (粗収率 88%)を得た。 [0107] [化 34]
【7 ]
Figure imgf000039_0001
[0108] 得られたィ匕合物 [7] 5. 03g (0. 026mol)とァセト酢酸ェチノレ 3. 41g (0. 026mol) を撹拌条件下、 150°Cで 8時間加熱した。反応物は冷却後、酢酸ェチルを加えて撹 拌し、濾別した。得られた固体は酢酸ェチル中に懸濁させ撹拌し、濾過した。得られ た固体は真空中で乾燥し、例示化合物(51)に示される化合物 4g (収率 59. 2%)を 得た (付属の番号は命名則に基づ!/、て表示)。
[0109] [化 35]
Figure imgf000039_0002
[0110] この例示化合物(51)のクロ口ホルム中での λ maxは 379. 5nm、モル吸光係数は 2. 5 X 104であった。この化合物のマススペクトル (EI)を測定したところ、目的化合物 と一致する mZz = 258 (M + )を観測された。
また 1H— NMR (DMSO ( δ =ppm) 270MHz)を測定したところ、 0. 9 (3H、 t、 > N-CH CH CH )、 1. 6 (2H、 m、 >N— CH CH CH )、 2. 2 (3H、 s、 Me— 4)、 3
2 2 3 2 2 3
. 2 (2H、 t、 Ph-N-CH CH O)、 3. 4 (2H、 t、 Ph—O—CH )、4. 1 (2H、 t、 >N—
2 2 2
CH CH CH )、 6. 0 (1H、 s、 H— 3)、 6. 5 (1H、 s、 H— 8)、 6. 9 (1H、 s、 H— 5)、 1
2 2 3
1. 0 (1H、 s、 NH— 1)と目的の化合物と一致するピークであった。
[0111] DMF40ml中に、この例示化合物(51) 3. 4g (0. 013mol)、水酸化カリウム 7. 39 g (0. 13mol)を加え、室温で 1時間撹拌した。その後ヨウ化メチル 9. 34g (0. 065m ol)を滴下し、室温で 3時間撹拌した。
反応液に 150mlの水と酢酸ェチル 150mlをカ卩ぇ撹拌、抽出して、水層を再度酢酸 ェチル 50mlで抽出し、混合した有機層は水 50mlで 2回洗浄し、硫酸ナトリウムを加 ぇ静置した。濾過後、エバポレーターで溶媒を留去し、得られた固形物をへキサン中 で懸濁させて撹拌して濾過、濾別した固体を真空中で乾燥させ、下記例示化合物(5 2) 2. 98g (収率 82. 6%)を合成した。この例示化合物(52)のクロ口ホルム中での λ maxは 380. 5nm、モル吸光係数は 2. 6 X 104であった。
[化 36]
Figure imgf000040_0001
[0113] (b)光学記録媒体の評価
前述の例示化合物(52)をォクタフルォロペンタノールに溶解し、 ^%に調整した 。これを濾過して出来た溶解液を直径 120mm、厚さ 1. 2mmの射出成形型ポリカー ボネート榭脂基板上に滴下し、スピナ一法により塗布(500rpm)し、塗布後 100°Cで 30分間乾燥した。この塗布膜の最大吸収波長( λ max)は 384nmであった。
また、このように形成した塗布膜上に、必要に応じてスパッタリング法にて Ag等を製 膜して反射層を形成し、さらに紫外線硬化榭脂をスピンコート等にて塗布 ·υν照射 により硬化させて保護層を形成し、光学記録媒体とすることができる。この光学記録 媒体は、塗布膜の λ maxの値より、例えば中心波長 405nmの半導体レーザ光によ る記録再生が可能である。即ち、 6位にヘテロ原子を持ち、 7位のアミノ基と縮合した カルボスチリルイ匕合物力 青色レーザ光の記録に対して、有効な構造の化合物であ ることが分力ゝる。
[0114] (実施例 2)
一般式 [I]で示される化合物のうち、前述した例示化合物(53)を以下のとおりに製 し 7こ。
(a)製造例
実施例 1と同様の方法で、例示化合物(53)を得ることが出来た。この例示化合物( 53)のクロ口ホルム中での λ maxは 380. 5nm、モル吸光係数は 2. 4 X 104であった
(b)光学記録媒体の評価 例示化合物(53)をォクタフルォロペンタノールに溶解し、
Figure imgf000041_0001
これ を濾過して出来た溶解液を直径 120mm、厚さ 1. 2mmの射出成形型ポリカーボネ ート榭脂基板上に滴下し、スピナ一法により塗布し、塗布後 100°Cで 30分間乾燥し た。この塗布膜の最大吸収波長(λ max)は 385nmであった。結果を図 2に示す。
[0115] 尚、光学記録媒体は以下のとおり調製した。
前述の例示化合物(53)をォクタフルォロペンタノールに溶解し、 0. 9wt%に調整 した。これをろ過してできた溶解液をトラックピッチ 425nm、溝幅 163nm、溝深さ 90 nmの溝を持つ直径 120mm、厚さ 0. 6mmの射出成型ポリカーボネート榭脂基板に 滴下し、スピナ一法により塗布した。なお、塗布は、回転数 600rpm力も 4900rpmへ 25秒かけて回転数を上げ、 4900rpmで 5秒間保持して行った。更に 100°Cで 30分 間乾燥し、記録層とした。次いで、スパッタリング法にて銀合金を lOOnmの厚さで成 膜し、反射層を形成した。その後、 UV硬化性榭脂からなる保護コート剤をスピナ一 法により塗布し、 UV光を照射して厚さ 5 mの保護層を形成させた。更に、遅延硬 化型接着剤を用いて、保護層のある面に、厚さ 0. 6mmのポリカーボネート製基板を 接着して、評価用の光学記録媒体を調製した。
[0116] (c)記録例
前述した評価用の光学記録媒体を線速度 5. 7mZsecで回転させながら、波長 40 5nm (対物レンズの開口数 NA=0. 65)のレーザ光で、 8Tマーク Z8Tスペースの 単一周波数信号を溝上に記録した。なお、 Tは、周波数 66MHzに対応する基準クロ ック周期である。記録パルスストラテジーとして、分割パルス数はマーク長を nTとして (η - 1)、先頭記録パルス幅 2Τ、後続記録パルス幅 0. 6Τ、バイアスパワー 0. 2mW 、再生パワー 0. 2mW、記録パワーを可変とした。その結果、 12mWで変調度 28. 3 %の信号が記録できた。変調度は、パルスストラテジー等記録条件の最適化によつ て、より大きくなると考えられる。
[0117] (実施例 3—実施例 15)
以下、前記の合成法と同様の方法で、例示化合物(54)—(66)を合成し、実施例 1 と同様にして塗布膜を形成し塗布膜の吸収スペクトルを測定した。これらの化合物の 溶液中での最大吸収波長、モル吸光係数、塗布膜での最大吸収波長を測定した。 結果を表 1に示す。
また、このように形成した塗布膜上に、必要に応じてスパッタリング法にて Ag等を製 膜して反射層を形成し、さらに紫外線硬化榭脂をスピンコート等にて塗布 ·υν照射 により硬化させて保護層を形成し、光学記録媒体とすることができる。この光学記録 媒体は、塗布膜のえ maxの値より、例えば中心波長 405nmの半導体レーザ光によ る記録再生が可能である。即ち、 6位にヘテロ原子を持ち、 7位のアミノ基と縮合した カルボスチリルイヒ合物が、青色レーザ光の記録に対して、有効な構造の化合物であ ることが分力ゝる。
[表 1]
Figure imgf000042_0001
(比較例 1)
比較のため、下記に示される化合物(8)を合成し、光学記録媒体としての評価を行 つた o
(a)製造例
[0120] [化 37]
Figure imgf000043_0001
[0121] m-N, N—ジェチルァ-リンより同様の方法で合成した上記化合物 [8]は、クロロホ ルム中での λ maxは 368nm、モル吸光係数は 2. 5 X 104であった。
(b)光学記録媒体例
この化合物 [8]をォクタフルォロペンタノールに溶解し、 lwt。/c^調整した。これを 濾過して出来た溶解液を直径 120mm、厚さ 0. 6mmの射出成形型ポリカーボネート 榭脂基板上に滴下し、スピナ一法により塗布(500rpm)し、塗布後 100°Cで 30分間 乾燥した。この塗布膜の最大吸収波長(λ max)は 370. 5nmであり、良好な塗布膜 のスペクトルが得られた。し力し、波長 405nmには吸収がなぐ中心波長 405nmの レーザ光に対して記録が期待できないことが分かる。尚、スペクトルを図 3に示した。 即ち、 7位のアミノ基を有するカルボスチリルイ匕合物であっても、 6位にヘテロ原子を 有さない場合は、青色レーザ光の記録に対して、不十分な色素化合物であることが 分かる。
[0122] (比較例 2)
比較のため、下記に示される化合物(9)を合成し、光学記録媒体としての評価を行 つた o
(a)製造例 [0123] [化 38]
Figure imgf000044_0001
[0124] 1, 2, 3, 4-テトラハイド口キノリン((株)東京化成品)を原料にして、同様の合成方 法で得られた下記化合物 [9]は、クロ口ホルム中での maxは 376nm、モル吸光係 数は 2. 7 X 104であった。
(b)光学記録媒体例
化合物 [9]をォクタフルォロペンタノールに溶解し、
Figure imgf000044_0002
これを濾過 して出来た溶解液を直径 120mm、厚さ 0. 6mmの射出成形型ポリカーボネート榭脂 基板上に滴下し、スピナ一法により塗布(500rpm)し、塗布後 100°Cで 30分間乾燥 した。この塗布膜の最大吸収波長( λ max)は 354nmであり、低屈折率且つ低反射 率のスペクトルが得られ、また、ディスク表面上がうすく白濁して結晶化が起きていた 。尚、スペクトルを図 4に示した。
即ち、 7位のアミノ基を有するカルボスチリルイ匕合物であっても、 6位にヘテロ原子を 有さない場合は、青色レーザ光の記録に対して、不十分な色素化合物であることが 分かる。
[0125] (実施例 16)
(a)製造例
実施例 1と同様の方法で、例示化合物(58)を得ることが出来た。この例示化合物( 58)のクロ口ホルム中での λ maxは 384. 5nm、モル吸光係数は 2. 4 X 1CTであった
(b)光学記録媒体の評価
例示化合物(58)をォクタフルォロペンタノールに溶解し、
Figure imgf000044_0003
これ を濾過して出来た溶解液を直径 120mm、厚さ 1. 2mmの射出成形型ポリカーボネ ート榭脂基板上に滴下し、スピナ一法により塗布し、塗布後 100°Cで 30分間乾燥し た。この塗布膜の最大吸収波長(λ max)は 389. 5nmであった。結果を図 5に示す [0126] 尚、光学記録媒体は、以下のとおり調製した。
前述の例示化合物(58)をォクタフルォロペンタノールに溶解し、 0. 6wt%に調整 した。これをろ過してできた溶解液をトラックピッチ 425nm、溝幅 200nm、溝深さ 70 nmの溝を持ち、これに ZnSZSiOをスパッタした直径 120mm、厚さ 0. 6mmの射
2
出成型ポリカーボネート榭脂基板に滴下し、スピナ一法により塗布した。なお、塗布 は、回転数 600rpmから 4900rpmへ 25秒かけて回転数を上げ、 4900rpmで 5秒間 保持して行った。更に 100°Cで 30分間乾燥し、記録層とした。次いで、スパッタリング 法にて銀合金を lOOnmの厚さで成膜し、反射層を形成した。その後、 UV硬化性榭 脂からなる保護コート剤をスピナ一法により塗布し、 UV光を照射して厚さ 5 μ mの保 護層を形成させた。更に、遅延硬化型接着剤を用いて、保護層のある面に、厚さ 0. 6mmのポリカーボネート製基板を接着して、評価用の光学記録媒体を調製した。
[0127] (c)記録例
前述した評価用の光学記録媒体を線速度 5. 7mZsecで回転させながら、波長 40 5nm (対物レンズの開口数 NA=0. 65)のレーザ光で、 11Tマーク Zl lTスペース の単一周波数信号を溝上に記録した。なお、 Tは、周波数 66MHzに対応する基準 クロック周期である。記録パルスストラテジーとして、分割パルス数はマーク長を nTと して(η— 1)、先頭記録パルス幅 2Τ、後続記録パルス幅 0. 6Τ、バイアスパワー 0. 2 mW、再生パワー 0. 2mW、記録パワーを可変とした。その結果、 9. 9Wで変調度 7 2%の信号が記録できた。変調度は、パルスストラテジー等記録条件の最適化によつ て、より大きくなると考えられる。
[0128] (比較例 3)
比較のため、下記に示される化合物 [10]を合成し、光学記録媒体としての評価を 行った。
(a)製造例 [0129] [化 39]
H3CO、
H N' 、NHCOCH3
[0130] 上記 3—アミノー 4ーメトキシァセトァ-リドと 1, 5—ジブロモペンタンを実施例 1の化合 物 [4]と n—プロピルョージドとの反応と同様の反応条件で環化して下記化合物を合 成し、その後、
[0131] [化 40]
Figure imgf000046_0001
[0132] 硫酸水溶液で加熱してァセチル基を加水分解して得られた 3—ピベリジノー 4ーメトキシ ァニリンを、前記実施例 1の化合物 [7]とァセト酢酸ェチルと同様の条件で環化して 下記化合物 [10]を得ることができた。
[0133] [化 41]
Figure imgf000046_0002
[0134] 得られた上記化合物 [10]は、クロ口ホルム中での λ maxは 370, 358nm、モル吸 光係数は 1. 5 X 104、 1. 6 X 104であった。
[0135] (b)光学記録媒体例
化合物 [10]をォクタフルォロペンタノールに溶解し、 lwt。/c^調整した。これを濾 過して出来た溶解液を直径 120mm、厚さ 0. 6mmの射出成形型ポリカーボネート榭 脂基板上に滴下し、スピナ一法により塗布(500rpm)し、塗布後 100°Cで 30分間乾 燥した。この塗布膜の最大吸収波長(λ max)は 354. 5, 373nmであり、酸素原子と 縮合していない構造の化合物と比べて λ maxが短いため、 405nmに吸収を持たず 、また εが低いため薄膜にした際の吸収も小さい。尚、スペクトルを図 6に示した。 即ち、 7位のアミノ基と 6位のへテロ原子を有するカルボスチリルイ匕合物であっても、 互いに縮合して環を形成する構造を有しない場合は、青色レーザ光の記録に対して 、不十分な色素化合物であることが分力る。
[0136] (比較例 4)
(a)製造例
[0137] [化 42]
Figure imgf000047_0001
[0138] 上記 2, 3—ジメチルインドリンを前記実施例 1の化合物 [4]と n—プロピルョージドと の反応と同様の反応条件で、イソプロピル化、その後も同様の条件でニトロ化、還元 、環化を行い、
[0139] [化 43]
Figure imgf000047_0002
[0140] 上記の化合物 [11]を得ることが出来た。この化合物 [11]のクロ口ホルム中での λ maxは 377nm、モル吸光係数は 2. 6 X 104であった。
[0141] (b)光学記録媒体の評価
例示化合物(58)をォクタフルォロペンタノールに溶解し、
Figure imgf000047_0003
これ を濾過して出来た溶解液を直径 120mm、厚さ 1. 2mmの射出成形型ポリカーボネ ート榭脂基板上に滴下し、スピナ一法により塗布し、塗布後 100°Cで 30分間乾燥し た。この塗布膜の最大吸収波長(λ max)は 378. 5nmであった。結果を実施例 3の 同スペクトルとあわせて図 7に示す。
スペクトルを比較して分力るようにこの化合物の塗布膜のスペクトルでは 405nmの 吸収がわず力しかないことが分かる。すなわち、 7位のアミノ基と 6位のへテロ原子を 有するカルボスチリルイ匕合物が互いに縮合して環を形成する構造を有して 、ても、一 般式 {1}の X=炭素原子である場合には、実施例 2、 3 (X=酸素原子)で記録したィ匕 合物より λ max力短く、 405nmの吸収力 、さいことにより、記録するために高パワー のレーザーで記録しなくてはならないことが明らかである。
なお、本発明の開示内容には、 2003年 12月 26日付けで出願された日本出願 (特 願 2003— 433328)の明細書に開示された全体の内容が引用により援用される。

Claims

請求の範囲 基板と、 前記基板上に設けられ、光が照射されることにより情報の記録又は再生が可能な 記録層と、を有し、 前記記録層には、下記一般式 [I]で示される 7—ァミノカルボスチリルイ匕合物が含有 されることを特徴とする光学記録媒体。
[化 1]
【I】
Figure imgf000049_0001
(式 [I]中、 Xは酸素原子、硫黄原子又は NRである。 R、 R、 Rは、それぞれ独立し
7 1 6 7
て、水素原子、直鎖又は分岐のアルキル基、環状アルキル基、ァラルキル基、直鎖 又は分岐のァルケ-ル基又は COR で表されるァシル基である。 R は、炭化水素
16 16
基又は複素環基である。 R、 R、 R、 R
2 3 4 5は、それぞれ独立して、水素原子又は任意 の置換基である。 R、 R
A Bは、独立して、水素原子、炭素数 1一 12の直鎖又は分岐の アルキル基である。 nは、 1一 4であり、 Rにおける Aは 8 7 + 2nのうちの偶数を表わ
A
し、 Rにおける Bは 8— 7 + 2nのうちの奇数を表わす。 nが 2— 4の場合における複数
B
の R、 Rはそれぞれお互いに異なっていてもよい。但し、 R— Rの中、隣接する置
A B 1 7
換基同士が結合した縮合環を形成していてもよい。 )
[2] 前記 7—ァミノカルボスチリルイ匕合物は、前記一般式 [I]において、 R R、 Rは、そ
1、 6 7 れぞれ独立に、水素原子、炭素数 1一 12の直鎖又は分岐のアルキル基、炭素数 3— 12の環状アルキル基、—COR で表されるァシル基及び炭素数 7— 18のァラルキル
16
基からなる群から選ばれることを特徴とする請求項 1に記載の光学記録媒体。
[3] 前記 7—ァミノカルボスチリルイ匕合物は、前記一般式 [I]にお 、て、 R、 R、 R、 R
2 3 4 5 は、それぞれ独立して水素原子、炭素数 1一 12の直鎖又は分岐のアルキル基、炭素 数 3— 12の環状アルキル基、炭素数 2— 12の直鎖又は分岐のアルケニル基、炭素 数 7— 18のァラルキル基、炭素数 1一 12の直鎖又は分岐のアルコキシ基、炭素数 1 一 12の直鎖又は分岐のアルキルチオ基、炭素数 6— 18のァリール基、飽和または 不飽和の複素環基、ハロゲン原子、ニトロ基、シァノ基、メルカプト基、ヒドロキシ基、 ホルミル基、—COR で表されるァシル基、 NR R で表されるアミノ基、 NHCO
16 17 18
R で表されるァシルァミノ基、 NHCOOR で表されるカーバメート基、 COOR
19 20 21 で表されるカルボン酸エステル基、 OCOR で表されるァシルォキシ基、 CONR
22 2
R で表される力ルバモイル基、 SO R で表されるスルホニル基、 SOR で表さ
3 24 2 25 26 れるスルフィニル基、 SO NR R で表されるスルファモイル基、 SO R で表され
2 27 28 3 29 るスルホン酸エステル基及び NHSO R で表されるスルホンアミド基(但し、 R R
2 30 16、
、R 、R 、R 、R 、R 、R 、R は、炭化水素基又は複素環基を表す。 R 、R
19 20 21 22 25 26 29 30 17 1
、R 、R 、R 、R は、水素原子、炭化水素基又は複素環基を表す。)からなる群
8 23 24 27 28
力も選ばれ、 R— のうち隣接する置換基同士が結合して縮合環を形成していても ょ ヽことを特徴とする請求項 1に記載の光学記録媒体。
[4] 前記 7—ァミノカルボスチリルイ匕合物は、前記一般式 [I]にお 、て、 R
2、 Rは、それ 3 ぞれ独立して、水素原子、炭素数 1一 8の直鎖又は分岐のアルキル基、炭素数 3— 8 の環状アルキル基、炭素数 7— 12のァラルキル基、炭素数 1一 8の直鎖又は分岐の アルコキシ基、炭素数 1一 8の直鎖又は分岐のアルキルチオ基、炭素数 6— 18のァリ ール基、飽和または不飽和の単環または 2縮合環の複素環基、ハロゲン原子、ニトロ 基、シァノ基、メルカプト基、ヒドロキシ基、ホルミル基、 -COR で表されるァシル基、
16
-NR R で表されるアミノ基、 NHCOR で表されるァシルァミノ基、 NHCOOR
17 18 19
で表されるカーバメート基、—COOR で表されるカルボン酸エステル基、—OCOR
20 21
で表されるァシルォキシ基、—CONR R で表される力ルバモイル基及び NHS
22 23 24
O R で表されるスルホンアミド基力 なる群力 選ばれることを特徴とする請求項 3
2 30
に記載の光学記録媒体。
[5] 前記 7—ァミノカルボスチリルイ匕合物は、前記一般式 [I]において、 nが 2— 3であるこ とを特徴とする請求項 1に記載の光学記録媒体。
[6] 前記 7-ァミノカルボスチリルイ匕合物は、前記一般式 [I]にお 、て、 Xが酸素原子あ るいは NRであることを特徴とする請求項 1に記載の光学記録媒体。
[7] 前記 7—ァミノカルボスチリルイ匕合物は、前記一般式 [I]において、 nが 2であることを 特徴とする請求項 1に記載の光学記録媒体。
[8] 前記 7-ァミノカルボスチリルイ匕合物は、前記一般式 [I]にお 、て、 Xが酸素原子又 は NRであり、 Rは、水素原子、炭素数 1一 8の直鎖又は分岐のアルキル基、 R、 R
7 1 6 7 は、それぞれ独立に、炭素数 1一 8の直鎖又は分岐のアルキル基、炭素数 3— 10の 環状アルキル基であり、 nが 2であることを特徴とする請求項 1に記載の光学記録媒 体。
[9] 前記光が、波長が 350nm— 530nmのレーザ光であることを特徴とする請求項 1に 記載の光学記録媒体。
[10] 下記一般式 [I]で示される 7—ァミノカルボスチリルイ匕合物からなることを特徴とする 色素。
[化 2]
Figure imgf000051_0001
(式 [I]中、 Xは酸素原子又は NRである。 は水素原子もしくは炭素数 1一 4の直鎖 又は分岐のアルキル基であり、 R
2、 Rはそれぞれ独立して、水素原子、炭素数 1 3 一 8 の直鎖又は分岐のアルキル基、炭素数 1一 8の直鎖又は分岐のアルコキシ基、ハロ ゲン原子、炭素数 7— 12のァラルキル基、不飽和複素環、ァリール基である。 R R
4. 5 は水素原子であり、 R
6、 Rはそれぞれ独立に、無置換の炭素数 1
7 一 8の直鎖又は分 岐のアルキル基もしくは環状アルキル基である。 R 、水素
A、 Rは、それぞれ独立して
B
原子、炭素数 1一 12の直鎖又は分岐のアルキル基である。 nは 1一 4であり、 R
A、 R B
は、独立して、水素原子、炭素数 1一 12の直鎖又は分岐のアルキル基である。 R に
A
おける Aは 8 7 + 2nのうちの偶数を表わし、 Rにおける Bは 8 7 + 2nのうちの奇
B
数を表わす。 nが 2— 4の場合における複数の R てい
A、Rはそれぞれ互いに異なっ
B
てもよい。但し、 R— Rの中、隣接する置換基同士が結合した縮合環を形成してい てちよい。 )
PCT/JP2004/019387 2003-12-26 2004-12-24 光学記録媒体および色素 WO2005063494A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04807743A EP1698478A1 (en) 2003-12-26 2004-12-24 Optical recording medium and dye
US11/416,373 US20060223003A1 (en) 2003-12-26 2006-05-03 Optical recording medium and dye

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-433328 2003-12-26
JP2003433328 2003-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/416,373 Continuation US20060223003A1 (en) 2003-12-26 2006-05-03 Optical recording medium and dye

Publications (1)

Publication Number Publication Date
WO2005063494A1 true WO2005063494A1 (ja) 2005-07-14

Family

ID=34736512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019387 WO2005063494A1 (ja) 2003-12-26 2004-12-24 光学記録媒体および色素

Country Status (5)

Country Link
US (1) US20060223003A1 (ja)
EP (1) EP1698478A1 (ja)
CN (1) CN1902057A (ja)
TW (1) TW200531060A (ja)
WO (1) WO2005063494A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082637A1 (ja) * 2004-02-26 2005-09-09 Mitsubishi Chemical Corporation 光記録材料及び光学記録媒体
JP2008027549A (ja) * 2006-07-25 2008-02-07 Ricoh Co Ltd 光記録媒体の製造方法
JP4537430B2 (ja) * 2007-07-31 2010-09-01 太陽誘電株式会社 光ディスク記録方法、光ディスク記録再生装置及び光ディスク

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096918A (ja) * 1999-10-01 2001-04-10 Tdk Corp 光記録媒体
JP2001287466A (ja) * 2000-02-04 2001-10-16 Mitsubishi Chemicals Corp 光学記録媒体
JP2003508402A (ja) * 1999-08-27 2003-03-04 リガンド・ファーマシューティカルズ・インコーポレイテッド アンドロゲン受容体モジュレーター化合物および方法
JP2003096330A (ja) * 2001-09-25 2003-04-03 Fuji Photo Film Co Ltd 顔料分散剤、これを含む顔料分散組成物及び着色感光性組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891352A (en) * 1988-12-23 1990-01-02 Eastman Kodak Company Thermally-transferable fluorescent 7-aminocarbostyrils
WO2005082637A1 (ja) * 2004-02-26 2005-09-09 Mitsubishi Chemical Corporation 光記録材料及び光学記録媒体
KR100766764B1 (ko) * 2004-07-16 2007-10-17 미츠비시 가가쿠 메디아 가부시키가이샤 광기록 매체 및 광기록 매체의 광기록 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508402A (ja) * 1999-08-27 2003-03-04 リガンド・ファーマシューティカルズ・インコーポレイテッド アンドロゲン受容体モジュレーター化合物および方法
JP2001096918A (ja) * 1999-10-01 2001-04-10 Tdk Corp 光記録媒体
JP2001287466A (ja) * 2000-02-04 2001-10-16 Mitsubishi Chemicals Corp 光学記録媒体
JP2003096330A (ja) * 2001-09-25 2003-04-03 Fuji Photo Film Co Ltd 顔料分散剤、これを含む顔料分散組成物及び着色感光性組成物

Also Published As

Publication number Publication date
US20060223003A1 (en) 2006-10-05
TW200531060A (en) 2005-09-16
EP1698478A1 (en) 2006-09-06
CN1902057A (zh) 2007-01-24

Similar Documents

Publication Publication Date Title
JP4818000B2 (ja) 光学記録媒体および金属錯体化合物。
WO2006104196A1 (ja) 光学記録媒体、金属錯体化合物及び有機色素化合物
JP3438587B2 (ja) 光学記録媒体
WO2007007748A1 (ja) 光学記録媒体、光記録材料および金属錯体化合物
JP4439574B2 (ja) 光学記録媒体及び光学記録方法
US20100173114A1 (en) Optical recording medium and azacyanine dye
JP3540327B2 (ja) 光安定化シアニン色素
WO2008018337A1 (fr) Composé complexe chélate d'hydrazide, support d'enregistrement optique utilisant le composé et procédé d'enregistrement associé
JP4519795B2 (ja) 光学記録媒体及び金属錯体化合物
JP4178783B2 (ja) 光学記録媒体
JP2001214084A (ja) 金属キレート色素及びこれを用いた光学記録媒体
WO2005063494A1 (ja) 光学記録媒体および色素
JP4334859B2 (ja) 新規化合物、光学記録媒体及び光学記録方法
JP2001287466A (ja) 光学記録媒体
JP3876970B2 (ja) 光学記録媒体の記録層形成用色素、及びそれを用いた光学記録媒体、その光学記録媒体の記録方法
JP4145529B2 (ja) 光学記録媒体及び記録方法
JP4120340B2 (ja) 光学記録媒体および光学記録方法
JP4158553B2 (ja) 光学記録方法
JP3960276B2 (ja) 光学記録媒体および光学記録方法
JP5352986B2 (ja) 金属錯体化合物、光学記録媒体及び光記録材料
JP2003019867A (ja) 光記録媒体
JP2002114922A (ja) アゾ金属キレート色素及びこれを用いた光学記録媒体
JP4869018B2 (ja) 光学記録材料
JP2005205907A (ja) 光学記録媒体および色素
JP2005305839A (ja) 光記録材料及び光記録媒体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480039147.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004807743

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 996/KOLNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 11416373

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004807743

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11416373

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004807743

Country of ref document: EP