WO2005061479A1 - テトラヒドロピラン−4−オン及びピラン−4−オンの製法 - Google Patents

テトラヒドロピラン−4−オン及びピラン−4−オンの製法 Download PDF

Info

Publication number
WO2005061479A1
WO2005061479A1 PCT/JP2004/018949 JP2004018949W WO2005061479A1 WO 2005061479 A1 WO2005061479 A1 WO 2005061479A1 JP 2004018949 W JP2004018949 W JP 2004018949W WO 2005061479 A1 WO2005061479 A1 WO 2005061479A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
represented
pyran
tetrahydropyran
equivalent
Prior art date
Application number
PCT/JP2004/018949
Other languages
English (en)
French (fr)
Inventor
Shigeyoshi Nishino
Kenji Hirotsu
Hidetaka Shima
Shinobu Suzuki
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to EP04807306A priority Critical patent/EP1700853A4/en
Priority to JP2005516480A priority patent/JP4687464B2/ja
Priority to CN2004800380429A priority patent/CN1898229B/zh
Priority to US10/583,562 priority patent/US7745649B2/en
Publication of WO2005061479A1 publication Critical patent/WO2005061479A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/34Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D309/36Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with oxygen atoms directly attached to ring carbon atoms
    • C07D309/38Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with oxygen atoms directly attached to ring carbon atoms one oxygen atom in position 2 or 4, e.g. pyrones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/04Saturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/185Saturated compounds containing keto groups bound to acyclic carbon atoms containing —CHO groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/16Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D309/28Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D309/30Oxygen atoms, e.g. delta-lactones

Definitions

  • the present invention relates to a method for producing pyran-4-one and tetrahydropyran-4-one.
  • Pyran one 4 one-one and tetrahydropyran - 4 - one is a compound useful as a raw material or synthetic intermediate, such as pharmaceuticals and agricultural chemicals.
  • a method for producing tetrahydropyran-4-one from pyran-4-one for example, pyran-4-one and hydrogen are mixed with ethanol in the presence of Raney nickel at room temperature in ethanol under normal pressure. Reaction for 3 hours to produce tetrahydropyran _4_one with a yield of 58% (for example, see Non-Patent Document 1), or pyran-4-one and hydrogen in the presence of scandium noradium Z carbonate.
  • a method is disclosed in which a reaction is carried out in methanol at 20 ° C. for 30 minutes under pressure to produce pyran-4-one having a tetrahydrido opening at a yield of 75% (for example, see Non-Patent Document 2).
  • Patent Document 1 Japanese Patent Publication No. 47-29512
  • Non-Patent Document 1 Bulletin e la Societe Chimique de France, 1959, 36.
  • Non-Patent Document 2 Helv. Chim. Acta., 31, 65 (1948)
  • An object of the present invention is to solve the above-mentioned problems, and to obtain pyran-4-one in a high yield from an inexpensive raw material by a simple method. It is to provide a manufacturing method of ON.
  • Another object of the present invention is to solve the above-mentioned problems, and to provide a simple method for preparing pyran.
  • An object of the present invention is to provide an industrially suitable process for producing tetrahydropyran-4_one, which obtains tetrahydropyran-4-one in high yield from -4-one.
  • the first invention is a formula (2):
  • the second invention provides a method of formula (7):
  • R 1 represents an alkyl group, and two R 1s may be bonded to each other to form a ring;
  • R 1 is as defined above
  • a process for producing tetrahydropyran_4_one characterized by comprising the following two steps:
  • a third invention provides a formula (3):
  • R 1 is as defined above
  • a fourth invention provides a compound represented by the formula (7):
  • R 1 is as defined above
  • R 1 is as defined above
  • a fifth invention provides a compound of the formula (6):
  • R 1 is as defined above
  • the sixth invention provides a compound represented by the formula (2 ′)
  • pyran-4-one represented by the following formula is reacted with hydrogen in the presence of a metal catalyst in a mixed solvent of an aprotic solvent and an alcohol solvent:
  • R 1 is as defined above
  • the first invention provides a formula (2):
  • the metal catalyst (a) used in the reaction of the present invention contains at least one metal atom selected from the group consisting of palladium, platinum and nickel. Specifically, for example, palladium / Carbon, palladium / barium sulfate, palladium hydroxide Z platinum, platinum / carbon, platinum sulfide Z carbon, palladium-platinum Z carbon, platinum oxide, Raney nickele, and the like. These metal catalysts may be used alone or in combination of two or more.
  • the amount of the metal catalyst to be used is preferably 0.0001-5 mol, more preferably 0.0002-1 mol, relative to 1 mol of pyran-4-one and / or dihydropyran-4-one in terms of metal atoms. And more preferably 0.0005-0.5 mol, most preferably 0.001-0.1 mol.
  • the amount of hydrogen used in the reaction (a) of the first invention is preferably 0.5 to 20 mol, more preferably 1 mol to 1 mol of pyran-4-one and / or dihydropyran-4-one. 1.1 to 10 moles, more preferably 2.1 to 5 moles.
  • the mixed solvent of (a) used in the reaction of the first invention is a mixed solvent of an aprotic solvent and an phenol alcohol solvent. %, More preferably 5-90% by volume.
  • the amount of the mixed solvent used is appropriately adjusted depending on the uniformity and stirring properties of the reaction solution, but is preferably 0.5 to 50 g, more preferably 0.5 to 50 g, based on pyran_4_one and / or dihydroviran-4-one lg. Weighs one 20g.
  • aprotic solvent examples include aliphatic hydrocarbons such as pentane, hexane, heptane, and cyclohexane; and halogenated aliphatic hydrocarbons such as methylene chloride and dichloroethane.
  • Aromatic hydrocarbons such as benzene, toluene and xylene; halogenated aromatic hydrocarbons such as benzene and dichlorobenzene; carboxylic esters such as methyl acetate and ethyl acetate; getyl ether, tetrahydrofuran; Examples include ethers such as dimethoxyethane, and preferably aromatic hydrocarbons, and more preferably toluene and xylene. These aprotic solvents may be used alone or in combination of two or more.
  • Examples of the alcohol solvent include methanol, ethanol, n -propyl alcohol, isopropyl alcohol, and t_butyl alcohol. These alcohol solvents may be used alone or in combination of two or more.
  • reaction of the first invention for example, in a hydrogen gas atmosphere, pyran-4-one and Z or dihydropyran-4-one, a metal catalyst, an aprotic solvent and an alcohol solvent are mixed and stirred.
  • the reaction is performed by a method such as reaction.
  • the reaction temperature at that time is preferably 0 to 100 ° C, more preferably 5 to 60 ° C, and the reaction pressure is preferably 0.1 to 10 MPa, more preferably 0.1 to IMPa.
  • the hydrated metal catalyst (b) used in the reaction of the first invention includes at least one metal atom selected from the group consisting of palladium, platinum and nickel as in (a) above, Specifically, for example, palladium / carbon, palladium / barium sulfate, palladium hydroxide / platinum, platinum / carbon, platinum / carbon sulfide, palladium-platinum / carbon, platinum oxide, Raney Nickole, and the like can be mentioned. These hydrous metal catalysts may be used alone or as a mixture of two or more, and may be suspended in water from the viewpoint of safety.
  • the amount of the hydrated metal catalyst to be used is preferably 0.0001 to 5 mol, more preferably 0.0002 to 1 mol, per mol of pyran-4-one and / or pyran_4_one of dihydrido in terms of metal atom. It is.
  • the amount of hydrogen used in the reaction (b) of the first invention is preferably 0.5 to 20 mol, more preferably 1.1 to 1 mol per 1 mol of pyran-4-one and / or dihydropyran-4-one.
  • hydrophobic organic solvent (b) used in the reaction of the first invention examples include a pen Aliphatic hydrocarbons such as tan, hexane, heptane and cyclohexane; halogenated aliphatic hydrocarbons such as methylene chloride and dichloroethane; aromatic hydrocarbons such as benzene, toluene and xylene; And aromatic hydrocarbons such as dichlorobenzene; carboxylic esters such as methyl acetate, ethyl acetate and butyl acetate; ethers such as getyl ether, preferably aliphatic hydrocarbons and z or aromatics. Group hydrocarbons are used. In addition, these hydrophobic organic solvents may be used alone or in combination of two or more.
  • the amount of the hydrophobic organic solvent to be used is preferably 0.550 g, more preferably 0.550 g with respect to the force of pyran_4_one and / or dihydropyran_4_one lg, which is appropriately adjusted depending on the uniformity and stirring properties of the reaction solution.
  • it is 120 g, more preferably 110 g.
  • the dehydration treatment in the present invention is not particularly limited as long as the hydrated metal catalyst is converted into an anhydrous metal catalyst.
  • the hydrated metal catalyst and an organic solvent that azeotropes with water are mixed, and the dehydration treatment is performed.
  • a method of removing water from the hydrous metal catalyst by a method such as removing water while performing the treatment is preferably used.
  • Examples of the organic solvent azeotropic with water include aliphatic hydrocarbons such as pentane, hexane, heptane and cyclohexane; halogenated aliphatic hydrocarbons such as methylene chloride and dichloroethane; Aromatic hydrocarbons such as benzene, toluene and xylene; halogenated aromatic hydrocarbons such as chlorobenzene, dichlorobenzene and the like; carboxylic acid esters such as methyl acetate, ethyl acetate and butyl acetate; and getyl ether And ethers such as tetrahydrofuran and dimethoxyethane. Among them, aliphatic hydrocarbons, aromatic hydrocarbons and ethers are preferably used. These organic solvents may be used alone or in combination of two or more.
  • the amount of the organic solvent that azeotropes with water is preferably 0.5 to 50 g, more preferably 1 to 20 g, based on pyran_4_one and Z or dihydropyran-4-one lg.
  • organic solvent azeotropic with water and the hydrophobic organic solvent may be the same or different.
  • reaction of the first invention for example, a hydrous metal catalyst (if necessary, suspended in water) and a hydrophobic organic solvent are mixed, and the mixture in the reaction system is refluxed. Boiling dehydration treatment Thereafter, pyran-4-one and / or dihydropyran-4-one are added thereto, and the reaction is carried out while stirring in a hydrogen gas atmosphere.
  • the reaction temperature is preferably 0 to 100 ° C, more preferably 5 to 60 ° C
  • reaction pressure is preferably 0.1 to 10 MPa, more preferably 0.1 to IMPa.
  • the same organic solvent is used for the dehydration treatment and the same hydrophobic organic solvent is used for the reaction.
  • the solvent can be replaced with toluene or the like for the reaction.
  • the final product tetrahydropyran-4-one
  • a general method such as neutralization, extraction, filtration, concentration, distillation, and column chromatography.
  • R 1 is as defined above
  • cyclization reaction is carried out by reacting an acid with 5,5-dialkoxy-3-oxopentanal or an equivalent thereof represented by Wear.
  • R 1 is an alkyl group, preferably a straight-chain or branched alkyl group having 11 to 12 carbon atoms, and more preferably a straight-chain or branched alkyl group having 116 carbon atoms.
  • R 1 is an alkyl group, preferably a straight-chain or branched alkyl group having 11 to 12 carbon atoms, and more preferably a straight-chain or branched alkyl group having 116 carbon atoms.
  • the two R 1 's may be bonded to each other to form a ring. Examples of the ring thus formed include 1,3-dioxolane.
  • 5,5-dialkoxy-3-oxopentanal include, for example, 5,5-dimethoxy-3-oxopentanal, 5,5-diethoxy-3-oxopentanal, 5,5-di-n-propoxy C-3-oxopentanal, 5,5-diisopropoxy-3-oxopentanal, 5,5-di-n-butoxy-3-oxopentanal, 5,5-diisobutoxy-3-o Oxopentanal, 5,5-di-tert-butoxy-3-oxopentanal, and the like.
  • 5,5-dialkoxy-3-oxopentanal examples include, for example, 1,1,5,5-tetramethoxypentan-3-one, 1,5-dimethoxy-1, 4_pentangen-3-one, 1,1,5-trimethoxypentan-4-en-3-one and the like.
  • the organic solvent used in the cyclization reaction of the third invention is not particularly limited as long as it does not inhibit the reaction.
  • examples thereof include methanol, ethanol, isopropyl alcohol, t-butyl alcohol, and ethylene glycol.
  • amides such as N, N_dimethylformamide, N, N_dimethylacetamide, N-methylpyrrolidone
  • N Urea such as N, N'-dimethylimidazolidinone
  • sulfoxides such as dimethyl sulfoxide
  • nitriles such as acetonitrile, propionitrile, benzonitrile
  • ethers such as getyl ether, diisopropyl ether, tetrahydrofuran and dioxane Pentane
  • the amount of the organic solvent to be used is appropriately adjusted depending on the uniformity and stirring property of the reaction solution, and is preferably 0.5 to 50 g based on 1,1-dialkoxybutan-3-one or its equivalent lg. , More preferably 1 to 20 g, even more preferably 1 to 10 g.
  • Examples of the acid used in the cyclization reaction of the third invention include mineral acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid; carboxylic acids such as formic acid and acetic acid; methanesulfonic acid and trifluoromethanesulfonic acid Examples thereof include organic sulfonic acids such as acids, but preferably mineral acids, more preferably hydrochloric acid and sulfuric acid. These acids may be used alone or in combination of two or more.
  • the amount of the acid to be used is preferably 1.0 to 20 mol, more preferably 1.1 to 6.0 mol, per 1 mol of 1,1-dialkoxybutan-3-one or an equivalent thereof.
  • a formate, a base and an organic solvent are mixed, preferably at -30 to 150 ° C. And more preferably at ⁇ 20 to 130 ° C.
  • reaction is preferably carried out at a temperature of -30 to 150 ° C, more preferably -20 to 130 ° C, more preferably -20 to 100 ° C, and most preferably _560 ° C, with stirring. .
  • the reaction pressure at that time is not particularly limited.
  • the sodium salt of 5,5-dialkoxy_3_oxopentanal represented by the above formula (3) or a salt thereof, which is the seventh invention, is a novel compound
  • Specific examples of the dialkoxy-3-oxopentanal sodium salt include, for example, 5,5-dimethoxy-3-oxopentanal sodium salt, 5,5-jetoxy-3-oxopentanal sodium salt, 5,5-di-n-propoxy-3-oxopentanal sodium salt, 5,5-diisopropoxy_3-oxopentanal sodium salt, 5,5-di-n-butoxy-3-oxopentane Naral sodium salt, 5,5-diisobutoxy-3-oxopentanal sodium salt, 5,5-di-tert-butoxy-3-oxopentanal sodium salt and the like.
  • sodium salt of an equivalent of 5,5-dialkoxy-3-oxopentanal include, for example, 1,1,5,5-tetramethoxypentan-3-one, 1,5-dimethoxy- Sodium salts such as 1,4-pentaneden-3-one and 1,1,5-trimethoxypentan-4-en-3-one.
  • the salt of 5,5-dialkoxy-3-oxopentanal represented by the formula (3) or a salt of an equivalent thereof is prepared by reacting a salt of the formula (4):
  • R 1 is as defined above
  • R 2 represents an alkyl group
  • R 2 is an alkyl group, preferably a straight-chain or branched alkyl group having 11 to 12 carbon atoms, and more preferably a straight-chain or branched alkyl group having 116 carbon atoms. Examples thereof include a methynole group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. These groups include various isomers.
  • the amount of the formic ester to be used is preferably 1.0 to 5.0 mol, more preferably 1.1 to 3.0 mol, per 1 mol of 1,1-dialkoxybutan-3-one or an equivalent thereof.
  • the base used in the reaction of the fourth invention includes, for example, alkali metal alkoxides such as sodium methoxide and potassium methoxide; alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; sodium hydride Alkali metal hydrides such as potassium hydride; alkaline earth metal hydrides such as calcium hydride; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate Power that can be used Preferably, an alkali metal alkoxide, more preferably, sodium methoxide or potassium methoxide is used. These bases may be used alone or in combination of two or more.
  • the amount of the base to be used is preferably 1.0 to 5.0 mol, more preferably 1.1 to 3.0 mol, per 1 mol of 1,1-dialkoxybutan-3-one or an equivalent thereof.
  • the pyran-4-one represented by the above formula (2 ′) can also be prepared by reacting a pyran-4-one represented by the formula (6):
  • R 1 is as defined above
  • Examples of the acid used in the cyclization reaction of the fifth invention include mineral acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid; carboxylic acids such as formic acid and acetic acid; methanesulfonic acid and trifluoromethane sulfone.
  • Examples thereof include organic sulfonic acids such as acids, but preferably mineral acids, more preferably hydrochloric acid and sulfuric acid. These acids may be used alone or in combination of two or more.
  • the amount of the acid used is preferably 1.0 to 100 mol, more preferably 1.1 to 10 mol, per mol of 1,1,5,5-tetraalkoxypentan-3-one or an equivalent thereof. And more preferably 1.1 to 6.0 monoles.
  • the cyclization reaction of the fifth invention is performed in the presence or absence of a solvent.
  • a solvent it is not particularly limited as long as it does not inhibit the reaction.
  • examples thereof include water; alcohols such as methanol, ethanol, isopropyl alcohol, t-butyl alcohol, ethylene glycol and triethylene glycol; Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; amides such as N, N-dimethylformamide, ⁇ , ⁇ -dimethylacetoamide, ⁇ -methylpyrrolidone; ⁇ , ⁇ '-dimethylimidazolidinone Ureas; sulfoxides such as dimethyl sulfoxide; nitriles such as acetonitrile, propionitrile, and benzonitrile; ethers such as getyl ether, diisopropyl ether, tetrahydrofuran, and dioxane; and
  • the amount of the solvent to be used is appropriately adjusted depending on the uniformity and stirring properties of the reaction solution, but is preferably based on 1,1,5,5-tetraalkoxypentan-3-one or an equivalent lg thereof. It is 0.50 g, more preferably 0-10 g.
  • the cyclization reaction of the fifth invention may be, for example, 1,1,5,5-tetraalkoxypentan-3-one or The method is carried out by, for example, mixing the equivalent and an acid and reacting them while stirring.
  • the reaction temperature at that time is preferably ⁇ 20 to 100 ° C., more preferably ⁇ 5 to 60 ° C., and the reaction pressure is not particularly limited.
  • the obtained pyran-4-one is isolated by a general method such as filtration, neutralization, extraction, concentration, distillation, recrystallization, crystallization, and column chromatography. Purified.
  • a sixth invention is directed to reacting the pyran-4-one represented by the formula (2 ') with hydrogen in a mixed solvent of an aprotic solvent and an alcohol solvent in the presence of a metal catalyst.
  • reaction conditions include the same conditions as those for the reduction of pyran_4_one represented by the above formula (2 ').
  • the second invention of the present invention relates to a method for producing tetrahydropyran-4-one in which the cyclization reaction and the reduction reaction are carried out continuously.
  • the cyclization reaction step of the present invention comprises, in the presence of a base, a 1,1-dialkoxybutan-3-one represented by the formula (4) or an equivalent thereof and a formate represented by the formula (5):
  • the reaction is carried out in an organic solvent to obtain a salt of 5,5-dialkoxy-3-oxopentanal represented by the formula (3) or a salt of an equivalent thereof, and further reacted with an acid,
  • This is a step of producing a crude product containing pyran-4-one represented by the formula (2 ') as a main component.
  • the cyclization reaction is performed in the same manner as described above.
  • the cyclization reaction step of the present invention yields a crude product containing pyran-4-one as a main component.
  • pyran-4-one is isolated.
  • the reaction solution can be used for the next step without purification, after the treatment of the reaction solution as it is or after concentration.
  • the amount of the metal catalyst to be used is preferably 0.00001 to 0.5 mol, more preferably 0.00002 0.1 mol, based on 1 mol of 1,1-dialkoxybutan-3-one or its equivalent in terms of metal atom. It is.
  • the amount of hydrogen used in the reaction of the present invention is preferably 0.5 to 20 mol, more preferably 1.1 to 10 mol, per 1 mol of 1,1-dialkoxybutan_3_one or an equivalent thereof. is there.
  • reaction conditions (a) and (b) can be performed in the same manner as in the first invention.
  • reaction conditions for the method for producing pyran-4-one are as described above.
  • reaction solution was concentrated under reduced pressure, 50 ml of methanol was added to the concentrated solution, and 60 g (0.6 mol) of 98% sulfuric acid was slowly dropped while maintaining the solution temperature at 15 ° C or lower, and the mixture was stirred.
  • the reaction was carried out at room temperature for 5 hours.
  • the mixture was neutralized by adding a 50% aqueous sodium hydroxide solution, and the precipitated solid was filtered and the obtained filtrate was concentrated.
  • 18.5 g of 1,1,5,5-tetramethoxypentan-3-one was obtained (isolation yield: 18%).
  • 1,1,5,5-Tetramethoxypentane-3-one 1.0 ⁇ (4.811111101) synthesized by the same method as in Reference Example 1 was placed in a 10-ml glass flask equipped with a stirrer and a dropping funnel. After heating and in an ice bath, 5 ml (130 mmol) of 98% formic acid was slowly added dropwise. After the completion of the dropwise addition, the reaction was carried out at room temperature for 19 hours. After the reaction was completed, the reaction mixture was analyzed by gas chromatography (internal standard method). As a result, 0.45 g of pyran-4-one was generated (reaction yield: 97%).
  • reaction yield 85.4%.
  • Example 3 The filtrate obtained in Example 3 was concentrated under reduced pressure, and the concentrate was azeotropically dehydrated by adding 300 ml of toluene (this operation was repeated four times). Add 500 ml of ethyl acetate and saturated salt 500 ml of an aqueous sodium chloride solution was added thereto, followed by stirring. After completion of the stirring, the organic layer and the aqueous layer were separated, and the aqueous layer was extracted twice with 500 ml of ethyl acetate. The extract and the organic layer were combined and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure.
  • a glass flask having a 20 ml internal volume equipped with a stirrer, a thermometer, and a balloon filled with hydrogen was charged with 32.3 g of a crude product mainly composed of pyran_4_one and 5% by mass of palladium Z carbon.
  • thermometer made of glass having an inner volume of 50ml with a balloon filled with reflux condenser and hydrogen, 5 mass 0/0 palladium / carbon (50% water-containing product) 0.2 g, pyran - 4-one
  • reaction yield 7%.
  • the present invention relates to a method for producing tetrahydropyran-4_one from pyran-4_one and / or dihydropyran-4_one, wherein tetrahydropyran-4-one is used as a raw material for pharmaceuticals, agricultural chemicals and the like. And compounds useful as synthetic intermediates. [0093] According to the present invention, it is possible to provide an industrially suitable method for producing pyran-4-one, which can obtain pyran-4-one in a high yield from an inexpensive raw material by a simple method. .
  • an industrially suitable method for producing tetrahydropyran_4_one which obtains tetrahydropyran_4_one from pyran-4-one in a high yield by a simple method. That can be S.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pyrane Compounds (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、式(2):    式中、    は単結合又は二重結合を表す、 で示されるジヒドロピラン-4-オン及びピラン-4-オンの少なくとも一種と水素とを、 (a)金属触媒の存在下、非プロトン性溶媒とアルコール溶媒の混合溶媒中、又は (b)含水金属触媒を脱水処理させた無水金属触媒の存在下、疎水性有機溶媒中で反応させることを特徴とする、式(1): で示されるテトラヒドロピラン-4-オンの製法に関する。

Description

明 細 書
テトラヒドロピラン一 4一オン及びピラン一 4一オンの製法
技術分野
[0001] 本発明は、ピラン- 4-オン及びテトラヒドロピラン- 4-オンを製造する方法に関する。
ピラン一 4一オン及びテトラヒドロピラン- 4-オンは、医薬 ·農薬等の原料や合成中間体 として有用な化合物である。
背景技術
[0002] 従来、ピラン- 4-オンを製造する方法としては、例えば、ナトリウムメトキシドの存在下 、エーテル中にて、 4-メトキシ -3-ブテン- 2-オンとギ酸メチルとを反応させてホルミル 誘導体のナトリウム塩を析出させ、次いで、これに塩ィヒ水素のメタノール溶液を反応 させた後に中和及び減圧蒸留して、 1,5,5-トリメトキシ -1-ペンテン- 3-オンを主成分と する混合物を得、更に、濃塩酸中で一晩放置した後に中和及び抽出して、ピロン- 4- オンを製造する方法が知られている(例えば、特許文献 1参照)。し力 ながら、この 方法では、中間体であるホルミル誘導体のナトリウム塩をー且析出させなければなら ず、又、取り扱いの難しい塩化水素のメタノール溶液を使用しなければならない上に 、反応操作が繁雑で、且つ反応時間が極めて長い等、ピラン _4_オンの工業的な製 法としては不利であった。
[0003] 更に、ピラン- 4-オンからテトラヒドロピラン- 4-オンを製造する方法としては、例えば 、ラネーニッケルの存在下、ピラン- 4-オンと水素とを、常圧下、エタノール中にて室 温で 3時間反応させて、収率 58%でテトラヒドロピラン _4_オンを製造する方法 (例えば 、非特許文献 1参照)や、ノ ラジウム Z炭酸スカンジウムの存在下、ピラン- 4-オンと 水素とを、加圧下、メタノール中にて 20°Cで 30分間反応させて、収率 75%でテトラヒド 口ピラン- 4-オンを製造する方法 (例えば、非特許文献 2参照)が開示されている。
[0004] し力しながら、ピラン- 4-オンを製造する方法においては、中間体であるホルミル誘 導体のナトリウム塩を一旦析出させなければならず、又、取り扱いの難しい塩ィ匕水素 のメタノール溶液を使用しなければならない上に、反応操作が繁雑で、且つ反応時 間が極めて長いという問題があり、又、ピラン- 4_オンからテトラヒドロピラン- 4_オンを 製造する方法においては、 目的物の収率向上のために、触媒活性の調整を行わな ければならない等の細かい操作が必要であり、テトラヒドロピラン- 4-オンの工業的な 製法としては不利であった。
特許文献 1:特公昭 47-29512号公報
非特許文献 1: Bulletin e la Societe Chimique de France, 1959,36.
非特許文献 2 : Helv.Chim.Acta.,31,65(1948)
発明の開示
発明が解決しょうとする課題
[0005] 本発明の課題は、即ち、上記問題点を解決し、安価な原料より、簡便な方法によつ て、高収率でピラン- 4-オンを得る、工業的に好適なピラン _4_オンの製造法を提供 することである。
[0006] 本発明の別の課題は、即ち、上記問題点を解決し、簡便な方法によって、ピラン
-4-オンから高収率でテトラヒドロピラン _4_オンを得る、工業的に好適なテトラヒドロピ ラン- 4_オンの製法を提供することである。
課題を解決するための手段
[0007] 第 1の発明は、式(2) :
Figure imgf000003_0001
式中、
は単結合又は二重結合を表す、
で示されるジヒドロピラン- 4-オン及びピラン- 4-オンの少なくとも一種と水素とを、
(a)金属触媒の存在下、非プロトン性溶媒とアルコール溶媒の混合溶媒中、又は
(b)含水金属触媒を脱水処理させた無水金属触媒の存在下、疎水性有機溶媒中で 反応させることを特徴とする、式(1):
Figure imgf000004_0001
で示されるテトラヒドロピラン- 4-オンの製法を提供するものである c
第 2の発明は、(A)塩基の存在下、式(7) :
Figure imgf000004_0002
式中、 R1は、アルキル基を表す、なお、二つの R1は互いに結合して環を形成し ていてもよい、
で示される 1,1-ジアルコキシブタン- 3-オンと式(5):
Figure imgf000004_0003
式中、 R2は、アルキル基を表す、
で示されるギ酸エステルとを、有機溶媒中で反応させて、式(3)
Figure imgf000004_0004
式中、 R1は、前記と同義である、
で示される 5,5 -ジアルコキシ -3-ォキソペンタナールの塩又はその等価体の塩を得 更に、これに酸を反応させて、式(2' ):
Figure imgf000004_0005
で示されるピラン- 4-オンを主成分とする粗生成物を製造する環化反応工程、
(B)次いで、金属触媒の存在下、ピラン- 4-オンを主成分とする粗生成物と水素とを (a)非プロトン性溶媒とアルコール溶媒の混合溶媒中、又は
(b)含水金属触媒を脱水処理させた無水金属触媒の存在下、疎水性溶媒中で反応 させて式(1):
Figure imgf000005_0001
で示されるテトラヒドロピラン- 4-オンを製造する還元反応工程、
の二つの工程を含んでなることを特徴とする、テトラヒドロピラン _4_オンの製造方法 関する。
第 3の発明は、式(3) :
Figure imgf000005_0002
式中、 R1は、前記と同義である、
で示される 5,5-ジアルコキシ -3-ォキソペンタナールの塩又はその等価体の塩に、酸 を反応させることを特徴とする、式 (2' ) :
Figure imgf000005_0003
で示されるピラン- 4-オンの製法に関する c
第 4の発明は、塩基の存在下、式(7):
Figure imgf000005_0004
式中、 R1は、前記と同義である、
で示される 1,1-ジアルコキシブタン- 3-オンと式(5) HC02R: 式中、 R2は、前記と同義である、
で示されるギ酸エステルとを、有機溶媒中で反応させることを特徴とする、式(3):
Figure imgf000006_0001
式中、 R1は、前記と同義である、
で示される 5,5-ジアルコキシ -3-ォキソペンタナールの塩又はその等価体の塩の製 法に関する。
第 5の発明は、酸の存在下、式(6):
Figure imgf000006_0002
式中、 R1は、前記と同義である、
で示される 1,1,5,5-テトラアルコキシペンタン- 3-オンを環化反応させることを特徴とす る、式(2' ):
Figure imgf000006_0003
で示されるピラン- 4-オンの製法に関する。
第 6の発明は、式(2)で示される化合物のうち、式(2' )
Figure imgf000006_0004
で示されるピラン- 4-オンを、水素と、金属触媒の存在下、非プロトン性溶媒とアルコ ール溶媒の混合溶媒中、反応させることを特徴とする式(2"):
Figure imgf000007_0001
で示されるジヒドロピラン- 4-オンの製法に関する。
[0015] 第 7の発明は、式(3) :
Figure imgf000007_0002
式中、 R1は、前記と同義である、
で示される 5,5 -ジアルコキシ -3-ォキソペンタナールのナトリウム塩又はその等価体の ナトリウム塩に関する。
発明の効果
[0016] 本発明により、簡便な方法によって、ピラン- 4-オンから高収率でテトラヒドロピラン -4-オンを得る、工業的に好適なテトラヒドロピラン- 4-オンの製法を提供することが出 来る。
[0017] また、本発明により、安価な原料より、簡便な方法によって、高収率でピラン- 4-オン を得る、工業的に好適なピラン- 4-オンの製造法を提供することが出来る。
発明を実施するための最良の形態
[0018] 第 1の発明は、式(2) :
Figure imgf000007_0003
式中、 は単結合又は二重結合を表す、
で示されるジヒドロピラン- 4-オン及びピラン- 4-オンの少なくとも一種と水素とを、
(a)金属触媒の存在下、非プロトン性溶媒とアルコール溶媒の混合溶媒中、又は
(b)含水金属触媒を脱水処理させた無水金属触媒の存在下、疎水性有機溶媒中で 反応させることにより、式(1) :
Figure imgf000008_0001
で示されるテトラヒドロピラン- 4-オンを製造する方法である。
[0020] 本発明の反応において使用する(a)の金属触媒としては、パラジウム、白金及び二 ッケルからなる群より選ばれる少なくともひとつの金属原子を含むものであり、具体的 には、例えば、パラジウム/炭素、パラジウム/硫酸バリウム、水酸化パラジウム Z白 金、白金/炭素、硫化白金 Z炭素、パラジウム -白金 Z炭素、酸化白金、ラネ一二ッ ケノレ等が挙げられる。なお、これらの金属触媒は、単独又は二種以上を混合して使 用しても良い。
[0021] 前記金属触媒の使用量は、金属原子換算で、ピラン- 4-オン及び/又はジヒドロピ ラン- 4-オン 1モルに対して、好ましくは 0.0001— 5モル、より好ましくは 0.0002— 1モル 、更に好ましくは 0.0005— 0.5モル、最も好ましくは 0.001— 0.1モルである。
[0022] 第 1の発明の反応(a)において使用する水素の量は、ピラン- 4-オン及び/又はジ ヒドロピラン- 4-オン 1モルに対して、好ましくは 0.5— 20モル、より好ましくは 1.1一 10モ ノレ、更に好ましくは 2.1— 5モルである。
[0023] 第 1の発明の反応において使用する(a)の混合溶媒とは、非プロトン性溶媒とァノレ コール溶媒との混合溶媒であり、混合溶媒中のアルコール溶媒は、好ましくは 1一 95 容量%、更に好ましくは 5— 90容量%である。又、前記混合溶媒の使用量は、反応液 の均一性や攪拌性によって適宜調節するが、ピラン _4_オン及び/又はジヒドロビラ ン -4-オン lgに対して、好ましくは 0.5— 50g、更に好ましくは 1一 20gである。
[0024] 前記非プロトン性溶媒としては、ペンタン、へキサン、ヘプタン、シクロへキサン等の 脂肪族炭化水素類;塩化メチレン、ジクロロェタン等のハロゲン化脂肪族炭化水素類 ;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;クロ口ベンゼン、ジクロロベン ゼン等のハロゲン化芳香族炭化水素類、酢酸メチル、酢酸ェチル等のカルボン酸ェ ステル類;ジェチルエーテル、テトラヒドロフラン、ジメトキシェタン等のエーテル類が 挙げられが、好ましくは芳香族炭化水素類、更に好ましくはトルエン、キシレンが使用 される。なお、これらの非プロトン性溶媒は、単独又は二種以上を混合して使用して も良い。
[0025] 前記アルコール溶媒としては、メタノーノレ、エタノール、 n -プロピルアルコール、イソ プロピルアルコール、 t_ブチルアルコールが挙げられる。なお、これらのアルコール 溶媒は、単独又は二種以上を混合して使用しても良レ、。
[0026] 第 1の発明の反応は、例えば、水素ガス雰囲気にて、ピラン- 4-オン及び Z又はジヒ ドロピラン- 4-オン、金属触媒、非プロトン性溶媒及びアルコール溶媒を混合し、攪拌 しながら反応させる等の方法によって行われる。その際の反応温度は、好ましくは 0 100°C、更に好ましくは 5— 60°Cであり、反応圧力は、好ましくは 0.1— 10MPa、更に好 ましくは 0.1— IMPaである。
[0027] 第 1の発明の反応において使用する(b)の含水金属触媒としては、前記(a)と同様 パラジウム、白金及びニッケルからなる群より選ばれる少なくともひとつの金属原子を 含むものであり、具体的には、例えば、パラジウム/炭素、パラジウム/硫酸バリウム 、水酸化パラジウム/白金、白金/炭素、硫化白金/炭素、パラジウム-白金/炭素 、酸化白金、ラネーニッケノレ等が挙げられる。なお、これらの含水金属触媒は、単独 又は二種以上を混合して使用しても良ぐ安全性の面から水に懸濁させた状態でも 良い。
[0028] 前記含水金属触媒の使用量は、金属原子換算で、ピラン- 4-オン及び/又はジヒド 口ピラン _4_オン 1モルに対して、好ましくは 0.0001 5モル、更に好ましくは 0.0002—1 モノレである。
[0029] 第 1の発明の反応 (b)において使用する水素の量は、ピラン- 4-オン及び/又はジ ヒドロピラン- 4-オン 1モルに対して、好ましくは 0.5 20モル、より好ましくは 1.1一 10モ ノレ、更に好ましくは 1.1一 5モルである。
[0030] 第 1の発明の反応において使用する(b)の疎水性有機溶媒としては、例えば、ペン タン、へキサン、ヘプタン、シクロへキサン等の脂肪族炭化水素類;塩化メチレン、ジ クロロェタン等のハロゲンィ匕脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳 香族炭化水素類;クロ口ベンゼン、ジクロロベンゼン等のハロゲンィ匕芳香族炭化水素 類;酢酸メチル、酢酸ェチル、酢酸ブチル等のカルボン酸エステル類;ジェチルエー テル等のエーテル類が挙げられるが、好ましくは脂肪族炭化水素類及び z又は芳香 族炭化水素類が使用される。なお、これらの疎水性有機溶媒は、単独又は二種以上 を混合して使用しても良い。
[0031] 前記疎水性有機溶媒の使用量は、反応液の均一性や攪拌性によって適宜調節す る力 ピラン _4_オン及び/又はジヒドロピラン _4_オン lgに対して、好ましくは 0.5 50g、より好ましくは 1一 20g、更に好ましくは 1一 10gである。
[0032] 本発明における脱水処理とは、含水金属触媒を無水金属触媒にする方法ならば特 に限定はされないが、例えば、含水金属触媒と水と共沸する有機溶媒とを混合し、還 流させながら水を除去する等の方法によって、含水金属触媒から水を除去する方法 が好適に用いられる。
[0033] 前記の水と共沸する有機溶媒としては、例えば、ペンタン、へキサン、ヘプタン、シ クロへキサン等の脂肪族炭化水素類;塩化メチレン、ジクロロェタン等のハロゲンィ匕 脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;クロ口べ ンゼン、ジクロロベンゼン等のハロゲン化芳香族炭化水素類;酢酸メチル、酢酸ェチ ノレ、酢酸ブチル等のカルボン酸エステル類;ジェチルエーテル、テトラヒドロフラン、 ジメトキシェタン等のエーテル類が挙げられるが、好ましくは脂肪族炭化水素類、芳 香族炭化水素類、エーテル類が使用される。なお、これらの有機溶媒は、単独又は 二種以上を混合して使用しても良い。
[0034] 前記水と共沸する有機溶媒の使用量は、ピラン _4_オン及び Z又はジヒドロピラン -4-オン lgに対して、好ましくは 0.5— 50g、更に好ましくは 1一 20gである。
[0035] なお、前記の水と共沸する有機溶媒と疎水性有機溶媒とは、同一でも異なっていて も良い。
[0036] 第 1の発明の反応は、例えば、含水金属触媒 (必要ならば水に懸濁させておいても 良レ、)及び疎水性有機溶媒を混合し、還流させながら反応系内の共沸脱水処理を行 つた後、これにピラン- 4-オン及び/又はジヒドロピラン- 4-オンを加え、水素ガス雰囲 気にて、攪拌しながら反応させる等の方法によって行われる。その際の反応温度は、 好ましくは 0— 100°C、更に好ましくは 5— 60°Cであり、反応圧力は、好ましくは 0.1— 10MPa、更に好ましくは 0.1— IMPaである。
[0037] また、脱水処理に使用する有機溶媒と反応で使用する疎水性有機溶媒が同じであ ること力 製造方法の面から好ましいが、場合によっては、例えば、 1,2 -ジメトキシエタ ン等で脱水処理して、トルエン等に溶媒を置換して反応させることも可能である。
[0038] なお、最終生成物であるテトラヒドロピラン- 4-オンは、反応終了後、中和、抽出、濾 過、濃縮、蒸留、カラムクロマトグラフィー等の一般的な方法によって単離 '精製され る。
[0039] 第 1の発明において使用される前記式(2 ' )で示されるピラン _4_オンは、式(3):
Figure imgf000011_0001
式中、 R1は、前記と同義である、
で示される 5,5 -ジアルコキシ -3-ォキソペンタナール又はその等価体、或いはそれら の塩に酸を反応させて環化反応を行うことを特徴とする第 3の発明により得ることがで きる。
[0040] 第 3の発明の反応で使用する 5,5-ジアルコキシ _3_ォキソペンタナールは、前記の 式(3)で示される。その式(3)において、 R1は、アルキル基であり、好ましくは炭素原 子数 1一 12の直鎖又は分岐アルキル基、さらに好ましくは炭素原子数 1一 6の直鎖 又は分岐アルキル基であり、例えば、メチノレ基、ェチル基、プロピル基、ブチル基、 ペンチル基、へキシノレ基等が挙げられる。なお、これらの基は、各種異性体を含む。 また、二つの R1は互いに結合して環を形成していてもよぐこのようにして形成される 環としては、例えば、 1,3-ジォキソラン等が挙げられる。
[0041] 5,5-ジアルコキシ -3-ォキソペンタナールの具体例としては、例えば、 5,5-ジメトキシ -3-ォキソペンタナール、 5,5-ジエトキシ -3-ォキソペンタナール、 5, 5-ジ -n-プロポキ シ -3-ォキソペンタナール、 5,5-ジイソプロポキシ -3-ォキソペンタナール、 5,5-ジ -n- ブトキシ -3-ォキソペンタナール、 5,5-ジイソブトキシ -3-ォキソペンタナール、 5,5-ジ -tert-ブトキシ -3-ォキソペンタナール等が挙げられる。また、 5, 5-ジアルコキシ -3-ォ キソペンタナールの等価体の具体例としては、例えば、 1, 1,5,5-テトラメトキシペンタン -3-オン、 1,5 -ジメトキシ -1,4_ペンタンジェン -3-オン、 1, 1,5-トリメトキシぺンタン-4- ェン -3-オン等が挙げられる。
[0042] 第 3の発明の環化反応で使用する有機溶媒としては、反応を阻害しなレ、ものならば 特に限定されず、例えば、メタノーノレ、エタノール、イソプロピルアルコール、 t-ブチル アルコール、エチレングリコール、トリエチレングリコール等のアルコール類;アセトン、 メチルェチルケトン、メチルイソブチルケトン等のケトン類; N,N_ジメチルホルムアミド、 N,N_ジメチルァセトアミド、 N-メチルピロリドン等のアミド類; N,N'_ジメチルイミダゾリジ ノン等の尿素類;ジメチルスルホキシド等のスルホキシド類;ァセトニトリル、プロピオ二 トリル、ベンゾニトリル等の二トリル類;ジェチルエーテル、ジイソプロピルエーテル、テ トラヒドロフラン、ジォキサン等のエーテル類;ペンタン、へキサン、ヘプタン、シクロへ キサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類 が挙げられるが、好ましくは二トリル類、スルホキシド類、アミド類、脂肪族炭化水素類 、芳香族炭化水素類、更に好ましくは芳香族炭化水素類、二トリル類が使用される。 なお、これらの有機溶媒は、単独又は二種以上を混合して使用しても良い。
[0043] 前記有機溶媒の使用量は、反応液の均一性や攪拌性により適宜調節するが、 1, 1- ジアルコキシブタン- 3-オン又はその等価体 lgに対して、好ましくは 0.5— 50g、より好 ましくは 1一 20g、更に好ましくは 1一 10gである。
[0044] 第 3の発明の環化反応において使用する酸としては、例えば、塩酸、硫酸、硝酸、リ ン酸等の鉱酸類;ギ酸、酢酸等のカルボン酸類;メタンスルホン酸、トリフルォロメタン スルホン酸等の有機スルホン酸類が挙げられるが、好ましくは鉱酸類、更に好ましく は塩酸、硫酸が使用される。なお、これらの酸は、単独又は二種以上を混合して使用 しても良い。
[0045] 前記酸の使用量は、 1,1 -ジアルコキシブタン _3_オン又はその等価体 1モルに対し て、好ましくは 1.0— 20モル、更に好ましくは 1.1一 6.0モルである。 [0046] 第 3の発明の環化反応は、例えば、 1, 1-ジアルコキシブタン- 3-オン又はその等価 体、ギ酸エステル、塩基及び有機溶媒を混合し、好ましくは- 30— 150°C、更に好まし くは- 20— 130°Cで、攪拌しながら反応させて 5,5-ジアルコキシ -3-ォキソペンタナー ルの塩又はその等価体の塩を得、次いで、酸を添加して、好ましくは- 30— 150°C、よ り好ましくは -20 130°C、更に好ましくは- 20— 100°C、最も好ましくは _5 60°Cで、攪 拌しながら反応させる等の方法によって行われる。なお、その際の反応圧力は特に 制限されない。
[0047] また、第 7の発明である前記式(3)で示される 5,5 -ジアルコキシ _3_ォキソペンタナ ールのナトリウム塩又はその等価体の塩は、新規化合物であり、 5,5 -ジアルコキシ -3-ォキソペンタナールのナトリウム塩の具体例としては、例えば、 5,5 -ジメトキシ -3- ォキソペンタナールナトリウム塩、 5,5-ジェトキシ -3-ォキソペンタナールナトリウム塩、 5,5-ジ -n-プロポキシ -3-ォキソペンタナールナトリウム塩、 5,5-ジイソプロポキシ _3 -ォ キソペンタナールナトリウム塩、 5, 5-ジ -n-ブトキシ -3-ォキソペンタナールナトリウム塩 、 5,5-ジイソブトキシ -3-ォキソペンタナールナトリウム塩、 5,5-ジ -tert-ブトキシ -3-ォ キソペンタナールナトリウム塩等が挙げられる。また、 5,5-ジアルコキシ -3-ォキソペン タナールの等価体のナトリウム塩の具体例としては、例えば、 1, 1, 5,5-テトラメトキシぺ ンタン- 3-オン、 1,5-ジメトキシ -1,4-ペンタンジェン -3-オン、 1, 1, 5-トリメトキシペンタ ン -4-ェン -3-オン等のナトリウム塩等が挙げられる。
[0048] また、前記式(3)で示される 5,5-ジアルコキシ -3-ォキソペンタナールの塩又はその 等価体の塩は、塩基の存在下、式 (4):
Figure imgf000013_0001
式中、 R1は、前記と同義である、
で示される 1, 1-ジアルコキシブタン- 3-オン又はその等価体と式(5):
HC02R2 (5) 式中、 R2は、アルキル基を表す、
で示されるギ酸エステルとを、有機溶媒中で反応させることを特徴とする第 4の発明 により得ること力 Sできる。
[0049] 第 4の発明の反応で使用する 1, 1-ジアルコキシブタン- 3-オン又はその等価体は、 前記の式 (4)で示される。その式 (4)において、 R1は、前記式(3)において説明した のと同義である。
[0050] 第 4の発明の反応で使用するギ酸エステルは、前記の式(5)で示される。その式(5 )において、 R2は、アルキル基であり、好ましくは炭素原子数 1一 12の直鎖又は分岐 アルキル基、さらに好ましくは炭素原子数 1一 6の直鎖又は分岐アルキル基であり、 例えば、メチノレ基、ェチル基、プロピル基、ブチル基、ペンチル基、へキシル基等が 挙げられる。なお、これらの基は、各種異性体を含む。
[0051] 前記ギ酸エステルの使用量は、 1, 1 -ジアルコキシブタン- 3-オン又はその等価体 1 モルに対して、好ましくは 1.0— 5.0モル、更に好ましくは 1.1一 3.0モルである。
[0052] 第 4の発明の反応において使用する塩基としては、例えば、ナトリウムメトキシド、力 リウムメトキシド等のアルカリ金属アルコキシド;水酸化ナトリウム、水酸化カリウム等の アルカリ金属水酸化物;水素化ナトリウム、水素化カリウム等のアルカリ金属水素化物 ;水素化カルシウム等のアルカリ土類金属水素化物;炭酸ナトリウム、炭酸カリウム等 のアルカリ金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸 水素塩が挙げられる力 好ましくはアルカリ金属アルコキシド、更に好ましくはナトリウ ムメトキシド、カリウムメトキシドが使用される。なお、これらの塩基は、単独又は二種以 上を混合して使用しても良い。
[0053] 前記塩基の使用量は、 1,1 -ジアルコキシブタン _3_オン又はその等価体 1モルに対 して、好ましくは 1.0— 5.0モル、更に好ましくは 1.1一 3.0モルである。
[0054] 前記式(2 ' )で示されるピラン- 4-オンは、また、酸の存在下、式 (6):
Figure imgf000014_0001
式中、 R1は、前記と同義である、
で示される 1, 1, 5,5-テトラアルコキシペンタン- 3-オン又はその等価体を環化反応させ ることを特徴とする第 5の発明によっても得ることができる。
[0055] 第 5の発明の環化反応で使用する 1, 1,5,5-テトラアルコキシペンタン- 3-オン又はそ の等価体は、前記の式 (6)で示される。その式 (6)において、 R1は、前記と同義であ る。
[0056] 第 5の発明の環化反応において使用する酸としては、例えば、塩酸、硫酸、硝酸、リ ン酸等の鉱酸類;ギ酸、酢酸等のカルボン酸類;メタンスルホン酸、トリフルォロメタン スルホン酸等の有機スルホン酸類が挙げられるが、好ましくは鉱酸類、更に好ましく は塩酸、硫酸が使用される。なお、これらの酸は、単独又は二種以上を混合して使用 しても良い。
[0057] 前記酸の使用量は、 1,1, 5,5 -テトラアルコキシペンタン- 3_オン又はその等価体 1モ ノレに対して、好ましくは 1.0— 100モル、より好ましくは 1.1一 10モル、更に好ましくは 1.1 一 6.0モノレである。
[0058] 第 5の発明の環化反応は、溶媒の存在下又は非存在下において行われる。溶媒を 使用する場合には、反応を阻害しないものならば特に限定されず、例えば、水;メタノ ール、エタノール、イソプロピルアルコール、 t-ブチルアルコール、エチレングリコー ノレ、トリエチレングリコール等のアルコール類;アセトン、メチルェチルケトン、メチルイ ソブチルケトン等のケトン類; N,N-ジメチルホルムアミド、 Ν,Ν-ジメチルァセトアミド、 Ν-メチルピロリドン等のアミド類; Ν,Ν'-ジメチルイミダゾリジノン等の尿素類;ジメチル スルホキシド等のスルホキシド類;ァセトニトリル、プロピオ二トリル、ベンゾニトリル等 の二トリル類;ジェチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジォキ サン等のエーテル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類が挙げら れる。なお、これらの溶媒は、単独又は二種以上を混合して使用しても良い。
[0059] 前記溶媒の使用量は、反応液の均一性や攪拌性により適宜調節するが、 1, 1,5,5- テトラアルコキシペンタン- 3_オン又はその等価体 lgに対して、好ましくは 0 50g、更 に好ましくは 0— 10gである。
[0060] 第 5の発明の環化反応は、例えば、 1, 1,5,5 -テトラアルコキシペンタン- 3-オン又は その等価体及び酸を混合して、攪拌しながら反応させる等の方法によって行われる。 なお、その際の反応温度は、好ましくは- 20— 100°C、更に好ましくは- 5— 60°Cであり 、反応圧力は特に制限されない。
[0061] なお、得られるピラン- 4-オンは、反応終了後、例えば、濾過、中和、抽出、濃縮、 蒸留、再結晶、晶析、カラムクロマトグラフィー等の一般的な方法によって単離 '精製 される。
[0062] 第 6の発明は、前記式(2 ' )で示されるピラン- 4-オンを、水素と、金属触媒の存在 下、非プロトン性溶媒とアルコール溶媒の混合溶媒中、反応させることを特徴とする 前記式(2")で示されるジヒドロピラン _4_オンの製法である。
[0063] 反応条件は、前記式(2 ' )で示されるピラン _4_オンの還元反応と同様の条件が挙 げられる。
[0064] 本発明の第 2の発明は、前記環化反応と還元反応を連続して行うテトラヒドロピラン -4-オンの製法に関する。
[0065] (A)環化反応工程
本発明の環化反応工程は、塩基の存在下、式 (4)で示される 1, 1-ジアルコキシブタ ン -3-オン又はその等価体と式(5)で示されるギ酸エステルとを、有機溶媒中で反応 させて、式(3)で示される 5,5-ジアルコキシ -3-ォキソペンタナールの塩又はその等 価体の塩を得、更に、これに酸を反応させて、式(2 ' )で示されるピラン- 4-オンを主 成分とする粗生成物を製造する工程である。環化反応は前記と同様に行われる。
[0066] なお、本発明の環化反応工程によって、ピラン- 4-オンを主成分とする粗生成物が 得られるが、本発明においては、反応終了後、ピラン- 4-オンの単離 ·精製を行わず に、反応液をそのまま又は濃縮等の処理を施した後に、次の工程に使用することが できる。
[0067] (B)還元反応工程
本発明の還元反応工程は、金属触媒の存在下、式(2 ' )で示されるピラン- 4-オン を主成分とする粗生成物と水素とを、
(a)非プロトン性溶媒とアルコール溶媒の混合溶媒中、又は
(b)含水金属触媒を脱水処理させた無水金属触媒の存在下、疎水性溶媒中で反応 させて、式(1)で示されるテトラヒドロピラン- 4-オンを製造する工程である。還元反応 は前記と同様に行われる。
[0068] 前記金属触媒の使用量は、金属原子換算で、 1, 1-ジアルコキシブタン- 3-オン又は その等価体 1モルに対して、好ましくは 0.00001— 0.5モル、更に好ましくは 0.00002 0.1モルである。
[0069] 本発明の反応において使用する水素の量は、 1, 1 -ジアルコキシブタン _3_オン又は その等価体 1モルに対して、好ましくは 0.5— 20モル、より好ましくは 1.1一 10モルであ る。
[0070] 前記(a)及び (b)の反応条件は、第 1の発明と同様に行うことができる。
[0071] また、本願においては、塩基の存在下、式(7)で示される 1, 1-ジアルコキシブタン -3-オン又はその等価体と式(5)で示されるギ酸エステルとを、有機溶媒中で反応さ せて、式(3)で示される 5,5-ジアルコキシ _3_ォキソペンタナールの塩又はその等価 体の塩を得、更に、これに酸を反応させて、式(2 ' )で示されるピラン- 4-オンを製造 することを特徴とするピラン- 4-オンの製法が提供される。
[0072] 前記ピラン- 4-オンの製法の反応条件は前記のとおりである。
実施例
[0073] 次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限 定されるものではない。
[0074] 参考例 1 (1,1,5,5 -テトラメトキシペンタン _3_オンの合成)
攪拌装置及び滴下漏斗を備えた内容積 500mlのガラス製フラスコに、ナトリウムメト キシド 37g(0.68mol)及びトルエン 200mlを加え、液温を 15°C以下に保ちながら、 1_メト キシ _1 -ブテン- 3-オン 50g(0.50mol)とギ酸メチル 60g(1.0mol)の混合液をゆるやかに 滴下した。滴下終了後、攪拌しながら、 15°C以下にて 1時間、室温にて 3時間反応さ せた。その後、反応溶液を減圧下で濃縮し、濃縮液にメタノール 50mlをカ卩え、液温を 15°C以下に保ちながら、 98%硫酸 60g(0.6mol)をゆるやかに滴下して、攪拌しながら、 室温にて 5時間反応させた。反応終了後、 50%水酸化ナトリウム水溶液を加えて中和 した後に析出した固体を濾過し、得られた濾液を濃縮した。濃縮物をシリカゲルカラ ムクロマトグラフィー(展開溶媒;へキサン:酢酸ェチル =10: 1)で精製して、橙色液体と して、 1, 1,5,5-テトラメトキシペンタン- 3-オン 18.5gを得た (単離収率: 18%)。
1, 1, 5,5-テトラメトキシペンタン- 3-オンの物性値は以下の通りであった。
[0075] CI_MS(mん); 175(M_Ome)
NMR(CDC1, δ (ppm)) ; 2.76(4H,d,J=5.6Hz)、 3.36(12H,s)、 4.79(2H,t,J=5.6Hz)
3
[0076] 実施例 1 (ピラン _4_オンの合成)
攪拌装置及び滴下漏斗を備えた内容積 10mlのガラス製フラスコに、参考例 1と同様 な方法で合成した 1, 1,5,5-テトラメトキシペンタン- 3_オン 1.0g(4.8mmol)を加え、氷浴 中、 12mol/l塩酸 1.2ml(14.1mmol)をゆるやかに滴下した。滴下終了後、室温にて 4時 間反応させた。反応終了後、反応液をガスクロマトグラフィーで分析(内部標準法)し たところ、ピラン- 4-オンが 0.45g生成していた (反応収率: 97%)。
[0077] 実施例 2 (ピラン _4_オンの合成)
攪拌装置及び滴下漏斗を備えた内容積 10mlのガラス製フラスコに、参考例 1と同様 な方法で合成した 1,1,5,5-テトラメトキシぺンタン-3-ォン1.0§(4.811111101)を加ぇ、氷浴 中、 98%ギ酸 5ml(130mmol)をゆるやかに滴下した。滴下終了後、室温にて 19時間反 応させた。反応終了後、反応液をガスクロマトグラフィーで分析(内部標準法)したとこ ろ、ピラン- 4-オンが 0.45g生成してレ、た (反応収率: 97%)。
[0078] 実施例 3 (ピラン- 4-オンの合成)
攪拌装置、温度計及び滴下漏斗を備えた内容積 1000mlのガラス製フラスコに、ナト リウムメトキシド 81.7g(1.51mol)及びァセトニトリル 400mlを加え、氷浴中、液温を 12°C 以下に保ちながら、 1, 1-ジメトキシブタン- 3-オン 100g(0.76mol)とギ酸メチル
68.2g(1.14mol)の混合液をゆるやかに滴下した。滴下終了後、 17— 22°Cにて 4時間反 応させ、 5,5-ジメトキシ _3_ォキソペンタナール(その等価体を含む)のナトリウム塩を 含む反応液を得た。
[0079] 次いで、攪拌装置、温度計及び滴下漏斗を備えた内容積 2000mlのガラス製フラス コに、 12mol/l塩酸 277ml(3.32mol)を加え、氷浴中、液温を 12°C以下に保ちながら、 前記 5,5-ジメトキシ -3-ォキソペンタナール(その等価体を含む)のナトリウム塩を含む 反応液をゆるやかに滴下した。滴下終了後、 17— 22°Cにて 16時間反応させた。
[0080] 反応終了後、液温を 0°C以下に保ちながら、 28%ナトリウムメトキシドのメタノール溶 液 350g(1.81mol)をゆるやかに滴下して中和し、滴下終了後、析出した固体を濾過し た。濾液をガスクロマトグラフィーで分析(内部標準法)したところ、ピラン- 4-オンが 61.9g生成してレ、た (反応収率: 83%)。
[0081] 実施例 4 (5,5-ジメトキシ -3-ォキソペンタナール(その等価体を含む)のナトリウム塩 の合成)
攪拌装置、温度計及び滴下漏斗を備えた内容積 1000mlのガラス製フラスコに、ナト リウムメトキシド 81.7g(1.51mol)及びァセトニトリル 400mlを加え、氷浴中、液温を 12。C 以下に保ちながら、 1, 1 -ジメトキシブタン- 3-オン 100g(0.76mol)とギ酸メチル
68.2g(1.14mol)の混合液をゆるやかに滴下した。滴下終了後、 17— 22°Cにて 4時間反 応させ、 5,5-ジメトキシ _3_ォキソペンタナール(その等価体を含む)のナトリウム塩を 含む反応液を得た。この反応液の一部を濾過し、得られた固体を減圧下で乾燥させ 、薄黄色固体として、 5,5 -ジメトキシ -3-ォキソペンタナール(その等価体を含む)のナ トリウム塩を得た。
5,5-ジメトキシ- 3-ォキソペンタナール(その等価体を含む)のナトリウム塩は、以下 の物性値で示される新規な化合物である。
[0082] FAB-MS ; 183(M)
NMR(DMSO— d , δ (ppm)) ; 2.61(lH,brs)、 2.86(lH,brs)、 3.41(6H,s)、
6
4.81(lH,t,J=5.7Hz)、 5.27(lH,d,J=10.5Hz)、 9.00(lH,d,J=10.5Hz)0
[0083] 実施例 5 (テトラヒドロピラン- 4-オンの合成)
攪拌装置、温度計、還流冷却器及び水素を充填した風船を備えた内容積 20mlの ガラス製フラスコに、ピラン- 4-オン 577mg(6.0mol)、 5質量0 /0パラジウム/炭素
120mg(50%wet品;パラジウム原子として 0.03mmol)、トルエン 5ml及びエタノール lml を加え、水素雰囲気下、攪拌しながら室温で 3時間反応させた。反応終了後、反応液 をガスクロマトグラフィーで分析(内部標準法)したところ、テトラヒドロピラン- 4-オン 513mgが生成してレ、た (反応収率: 85.4%)。
[0084] 実施例 6 (テトラヒドロピラン _4_オンの合成)
実施例 3で得られた濾液を減圧下で濃縮し、濃縮物にトルエン 300mlを加えて共沸 脱水させた(この操作を 4回繰り返した)。この溶液に、酢酸ェチル 500ml及び飽和塩 化ナトリウム水溶液 500mlを加えて攪拌させた。攪拌終了後、有機層と水層を分液し た後、水層を酢酸ェチル 500mlで 2回抽出し、抽出液と有機層を合わせて無水硫酸 マグネシウムで乾燥させた。濾過後、濾液を減圧下で濃縮した後、更にトルエン
300mlを加えて不溶物を濾過した。再び濾液を濃縮し、茶色液体として、ピラン- 4-ォ ンを主成分とする粗生成物 36. lgを得た。
[0085] 攪拌装置、温度計及び水素を充填した風船を備えた内容積 20mlのガラス製フラス コに、ピラン _4_オンを主成分とする粗生成物 32.3g、 5質量%パラジウム Z炭素
6.5g(50%含水品;パラジウム原子として 1.5mmol)、トルエン 162ml及びエタノール 24ml を加え、水素雰囲気下、攪拌しながら室温で 8.5時間反応させた。反応終了後、反応 液を減圧下で濃縮し、濃縮物を減圧蒸留(55 65°C、 933Pa)し、無色液体としてテト ラヒドロピラン- 4-オン 10.18gを得た (1, 1 -ジメトキシブタン- 3-オン基準の単離収率: 14.9%)。
[0086] 実施例 7 (ジヒドロピラン- 4-オンの合成)
攪拌装置、温度計、還流冷却器及び水素を充填した風船を備えた内容積 20mlの ガラス製フラスコに、ピラン- 4-オン 3.0g(31.2mmol)、 5質量0 /0パラジウム/炭素
0.6g(50%含水品;パラジウム原子として 0.14mmol)、トルエン 30ml及びエタノール 3ml を加え、水素雰囲気下、攪拌しながら室温で 1時間反応させた。反応終了後、反応液 を濾過し、濾液を濃縮した。濃縮物をシリカゲルカラムクロマトグラフィー (展開溶媒; へキサン:酢酸ェチル =10: 1)で精製して、無色液体として、ジヒドロピラン- 4-オン l.Og を得た (単離収率; 33%)。
ジヒドロピラン- 4-オンの物性値は以下の通りであった。
[0087] CI-MS(m/e) ; 99(M+l)
1H-NMR(CDC13, δ (ppm)); 2.57— 2.63(2H,m)、 4.50(2H,dd,J=7.6Hz,6.8Hz)、
5.41(lH,d,J=6.1Hz)、 7.35(lH,d,J=6.1Hz)
[0088] 実施例 8 (テトラヒドロピラン _4_オンの合成)
攪拌装置、温度計、還流冷却器及び水素を充填した風船を備えた内容積 20mlの ガラス製フラスコに、参考例 1で合成したジヒドロピラン - 4_オン 500mg(5.1mmol)、 5質 量0 /0パラジウム/炭素 100mg(50%含水品;パラジウム原子として 0.02mmol)、トルエン 5ml及びエタノール 0.5mlを加え、水素雰囲気下、攪拌しながら室温で 3時間反応させ た。反応終了後、反応液をガスクロマトグラフィーで分析(内部標準法)したところ、テ トラヒドロピラン- 4-オン 361mgが生成していた (反応収率: 71%)。
[0089] 実施例 9 (テトラヒドロピラン _4_オンの合成)
攪拌装置、温度計、還流冷却器及び Dean-Stark装置を備えた内容積 50mlのガラス 製容器に、 5質量%パラジウム/炭素(50。/o含水品) 0.2g及びトルエン 30mlをカ卩え、常 圧下、攪拌しながら 30分間還流させた (共沸脱水)。次いで、水素を充填した風船を 備えた後、ピラン- 4-オン 1.0g(10.4mmol)をカ卩え、水素雰囲気下、攪拌しながら室温 で 12時間反応させた。反応終了後、反応液をガスクロマトグラフィーで分析(内部標 準法)したところ、テトラヒドロピラン- 4-オン 807mgが生成していた (反応収率: 77%)。
[0090] 実施例 10 (テトラヒドロピラン _4_オンの合成)
攪拌装置、温度計、還流冷却器及び Dean-Stark装置を備えた内容積 50mlのガラス 製容器に、 5質量%パラジウム/炭素(50%含水品) 0.2gを水 lmlに懸濁させた液及 びトルエン 30mlを加え、常圧下、攪拌しながら 60分間還流させた(共沸脱水)。次い で、水素を充填した風船を備えた後、ピラン- 4-オン 1.0g(10.4mmol)をカ卩え、水素雰 囲気下、攪拌しながら室温で 12時間反応させた。反応終了後、反応液をガスクロマト グラフィ一で分析(内部標準法)したところ、テトラヒドロピラン- 4-オン 825mgが生成し ていた (反応収率: 79%)。
[0091] 比較例 1 (テトラヒドロピラン- 4-オンの合成)
攪拌装置、温度計、還流冷却器及び水素を充填した風船を備えた内容積 50mlの ガラス製容器に、 5質量0 /0パラジウム/炭素(50%含水品) 0.2g、ピラン- 4-オン
1.0g(10.4mmol)及びトルエン 30mlを加え、水素雰囲気下、攪拌しながら室温で 12時 間反応させた。反応終了後、反応液をガスクロマトグラフィーで分析(内部標準法)し たところ、テトラヒドロピラン- 4-オン 86mgが生成していた (反応収率: 7%)。
産業上の利用可能性
[0092] 本発明は、ピラン- 4_オン及び/又はジヒドロピラン- 4_オンからテトラヒドロピラン- 4_ オンを製造する方法に関するものであり、テトラヒドロピラン- 4-オンは、医薬.農薬等 の原料や合成中間体として有用な化合物である。 [0093] 本発明によれば、安価な原料より、簡便な方法によって、高収率でピラン- 4-オンを 得る、工業的に好適なピラン- 4-オンの製造法を提供することができる。
[0094] また、本発明によれば、簡便な方法によって、ピラン- 4-オンから高収率でテトラヒド 口ピラン _4_オンを得る、工業的に好適なテトラヒドロピラン _4_オンの製法を提供する こと力 Sできる。

Claims

請求の範囲
[1] 式 (2) :
Figure imgf000023_0001
式中、
は単結合又は二重結合を表す、
で示されるジヒドロピラン- 4-オン及びピラン- 4-オンの少なくとも一種と水素とを、
(a)金属触媒の存在下、非プロトン性溶媒とアルコール溶媒の混合溶媒中、又は
(b)含水金属触媒を脱水処理させた無水金属触媒の存在下、疎水性有機溶媒中で 反応させることを特徴とする、式(1):
Figure imgf000023_0002
で示されるテトラヒドロピラン- 4-オンの製法。
[2] 脱水処理を、水と共沸する有機溶媒を用いて行う請求項 1記載のテトラヒドロピラン -4-オンの製法。
[3] 金属触媒力 パラジウム、白金及びニッケルからなる群より選ばれる少なくともひと つの金属原子を含むものである請求の範囲第 1項記載のテトラヒドロピラン _4_オンの 製法。
[4] 非プロトン性溶媒が、脂肪族炭化水素類、ハロゲン化脂肪族炭化水素類、芳香族 炭化水素類、ハロゲン化芳香族炭化水素類、カルボン酸エステル類、エーテル類、 又はそれらの混合物である請求の範囲第 1項記載のテトラヒドロピラン _4_オンの製法
[5] 混合溶媒中のアルコール溶媒が 5— 95容量%の範囲にある請求の範囲第 1項記載 のテトラヒドロピラン- 4-オンの製法。 [6] 疎水性有機溶媒が脂肪族炭化水素類又は芳香族炭化水素類である請求の範囲 第 1項記載のテトラヒドロピラン- 4-オンの製法。
[7] 式(2)で示される化合物が、式(2' ):
Figure imgf000024_0001
で示されるピラン- 4-オンである請求の範囲第 1項記載のテトラヒドロピラン- 4-オンの 製法。
式(2' )で示されるピラン- 4-オンが、式(3):
Figure imgf000024_0002
式中、 R1は、アルキル基を表す、なお、二つの R1は互いに結合して環を形成し ていてもよい、
で示される 5,5 -ジアルコキシ -3-ォキソペンタナール若しくはその等価体、又はそれら の塩に酸を反応させて得られるものである請求の範囲第 7項記載のテトラヒドロピラン -4-オンの製法。
式(3)で示される 5,5-ジアルコキシ -3-ォキソペンタナールの塩又はその等価体の 塩が、塩基の存在下、式 (4) :
Figure imgf000024_0003
式中、 R1は、前記と同義である、
で示される 1,1-ジアルコキシブタン- 3-オンと式(5):
HC02R; (5) 式中、 Rは、アルキル基を表す、
で示されるギ酸エステルとを、有機溶媒中で反応させて得られるものである請求の範 囲第 8項記載のテトラヒドロピラン- 4-オンの製法。
[10] 式(2 ' )で示されるピラン- 4-オン力 S、酸の存在下、式 (6):
Figure imgf000025_0001
式中、 R1は、前記と同義である、
で示される 1, 1,5,5-テトラアルコキシペンタン- 3-オン又はその等価体を環化反応させ て得られるものである請求の範囲第 7項記載のテトラヒドロピラン _4_オンの製法。
[11] 式(2 ' )で示されるピラン- 4-オン力 S、塩基の存在下、式(7):
Figure imgf000025_0002
式中、 R1は、前記と同義である、
で示される 1, 1 -ジアルコキシブタン- 3-オン又はその等価体と式(5):
Figure imgf000025_0003
式中、 R2は、前記と同義である、
で示されるギ酸エステルとを、有機溶媒中で反応させて、式(3)
Figure imgf000025_0004
式中、 R1は、前記と同義である、
で示される 5,5 -ジアルコキシ -3-ォキソペンタナールの塩又はその等価体の塩を得、 次いで、これに酸を反応させることにより得られるものである請求の範囲第 7項記載の テトラヒドロピラン- 4-オンの製法。
有機溶媒が芳香族炭化水素類又は二トリル類である請求の範囲第 11項記載のテト ラヒドロピラン- 4-オンの製法。
(A)塩基の存在下、式(7) :
Figure imgf000026_0001
式中、 R1は、アルキル基を表す、なお、二つの R1は互いに結合して環を形成し ていてもよい、
で示される 1,1-ジアルコキシブタン- 3-オン又はその等価体と式(5):
Figure imgf000026_0002
式中、 Rは、 基を表す、
で示されるギ酸 、有機溶媒中で反応させて、式 (3)
Figure imgf000026_0003
式中、 R1は、前記と同義である、
で示される 5,5 -ジアルコキシ -3-ォキソペンタナールの塩又はその等価体の塩を得 更に、これに酸を反応させて、式 (2' ) :
Figure imgf000026_0004
で示されるピラン- 4-オンを主成分とする粗生成物を製造する環化反応工程、
(B)次いで、金属触媒の存在下、ピラン- 4-オンを主成分とする粗生成物と水素とを、
(a)非プロトン性溶媒とアルコール溶媒の混合溶媒中、又は (b)含水金属触媒を脱水処理させた無水金属触媒の存在下、疎水性溶媒中で反応 させて、式(1):
Figure imgf000027_0001
で示されるテトラヒドロピラン- 4-オンを製造する還元反応工程、
の二つの工程を含んでなることを特徴とする、テトラヒドロピラン _4_オンの製造方法。
[14] 金属触媒が、パラジウム、白金及びニッケルからなる群より選ばれる少なくともひと つの金属原子を含むものである請求の範囲第 13項記載のテトラヒドロピラン- 4-オン の製法。
[15] 非プロトン性溶媒が、脂肪族炭化水素類、ハロゲン化脂肪族炭化水素類、芳香族 炭化水素類、ハロゲン化芳香族炭化水素類、カルボン酸エステル類、エーテル類、 又はそれらの混合物である請求の範囲第 13項記載のテトラヒドロピラン _4_オンの製 法。
[16] 混合溶媒中のアルコール溶媒力 一 95容量%の範囲にある請求の範囲第 13項記 載のテトラヒドロピラン- 4_オンの製法。
[17] 式 (3) :
Figure imgf000027_0002
式中、 R1は、アルキル基を表す、なお、二つの R1は互いに結合して環を形成し ていてもよい、
で示される 5,5 -ジアルコキシ -3-ォキソペンタナール若しくはその等価体、又はそれら の塩に酸を反応させることを特徴とする式(2 ' ):
(2')
Figure imgf000027_0003
で示されるピラン- 4-オンの製法
塩基の存在下、式 (4) :
Figure imgf000028_0001
式中、 R1は、アルキル基を表す、なお、二つの R1は互いに結合して環を形成し ていてもよい、
で示される 1,1-ジアルコキシブタン- 3-オンと式(5):
HC02R2 (5) 式中、 R2は、アルキル基を表す、
で示されるギ酸エステルとを、有機溶媒中で反応させることを特徴とする式(3):
Figure imgf000028_0002
式中、 R1は、前記と同義である、
で示される 5,5 -ジアルコキシ -3-ォキソペンタナールの塩又はその等価体の製法。 酸の存在下、式 (6):
Figure imgf000028_0003
式中、 R1は、アルキル基を表す、なお、二つの R1は互いに結合して環を形成し ていてもよい、
で示される 1,1,5,5-テトラアルコキシペンタン- 3-オン又はその等価体を環化反応させ ることを特徴とする式(2' ):
Figure imgf000029_0001
で示されるピラン- 4-オンの製法。
式 (2,):
Figure imgf000029_0002
で示されるピラン- 4-オンを、水素と、金属触媒の存在下、非プロトン性溶媒とアルコ ール溶媒の混合溶媒中、反応させることを特徴とする式 (2"):
Figure imgf000029_0003
で示されるジヒドロピラン- 4-オンの製法。
式 (3) :
Figure imgf000029_0004
式中、 R1は、アルキル基を表す、なお、二つの R1は互いに結合して環を形成し ていてもよい、
で示される 5,5-ジアルコキシ -3-ォキソペンタナールのナトリウム塩又はその等価体の ナトリウム塩。
[22] 塩基の存在下、式(7) :
Figure imgf000029_0005
式中、 R1は、アルキル基を表す、なお、二つの R1は互いに結合して環を形成し ていてもよい、
で示される 1, 1-ジアルコキシブタン- 3-オン又はその等価体と式(5):
HC02R2 (5) 式中、 R2は、アルキル基を表す、
で示されるギ酸エステルとを、有機溶媒中で反応させて、式(3):
Figure imgf000030_0001
式中、 R1は、前記と同義である、
で示される 5,5 -ジアルコキシ -3-ォキソペンタナールの塩又はその等価体の塩を得 更に、これに酸を反応させて、式 (2' ) :
Figure imgf000030_0002
で示されるピラン- 4-オンを製造することを特徴とする、ピラン- 4-オンの製法。
[23] ピラン- 4-オン及びジヒドロピラン- 4-オンを還元するための無水金属触媒の使用。
[24] 無水金属触媒が、含水金属触媒を水と共沸する有機溶媒を用いて脱水処理するこ とによって得られる請求の範囲第 1項一第 16項のいずれかに記載のテトラヒドロビラ ン -4-オンの製法。
PCT/JP2004/018949 2003-12-19 2004-12-17 テトラヒドロピラン−4−オン及びピラン−4−オンの製法 WO2005061479A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04807306A EP1700853A4 (en) 2003-12-19 2004-12-17 PROCESSES FOR PRODUCING TETRAHYDROPYRAN-4-ONE AND PYRAN-4-ONE
JP2005516480A JP4687464B2 (ja) 2003-12-19 2004-12-17 テトラヒドロピラン−4−オン及びピラン−4−オンの製法
CN2004800380429A CN1898229B (zh) 2003-12-19 2004-12-17 四氢吡喃-4-酮以及吡喃-4-酮的制备方法
US10/583,562 US7745649B2 (en) 2003-12-19 2004-12-17 Processes for preparing tetrahydropyran-4-one and pyran-4-one

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2003422053 2003-12-19
JP2003-422053 2003-12-19
JP2004-110674 2004-04-05
JP2004-110673 2004-04-05
JP2004110674 2004-04-05
JP2004110673 2004-04-05
JP2004-118686 2004-04-14
JP2004118686 2004-04-14
JP2004140152 2004-05-10
JP2004-140152 2004-05-10
JP2004-198148 2004-07-05
JP2004198148 2004-07-05

Publications (1)

Publication Number Publication Date
WO2005061479A1 true WO2005061479A1 (ja) 2005-07-07

Family

ID=34714678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018949 WO2005061479A1 (ja) 2003-12-19 2004-12-17 テトラヒドロピラン−4−オン及びピラン−4−オンの製法

Country Status (5)

Country Link
US (1) US7745649B2 (ja)
EP (1) EP1700853A4 (ja)
JP (3) JP4687464B2 (ja)
CN (2) CN1898229B (ja)
WO (1) WO2005061479A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108586405A (zh) * 2018-02-05 2018-09-28 南京法恩化学有限公司 一种四氢吡喃酮的制备方法
CN108912081A (zh) * 2018-06-18 2018-11-30 苏州盖德精细材料有限公司 一种医药中间体四氢吡喃-4-酮的合成方法
CN110229130A (zh) * 2019-07-04 2019-09-13 海门华祥医药科技有限公司 四氢吡喃酮及其衍生物的合成与制备工艺方法
CN114560835A (zh) * 2020-11-27 2022-05-31 苏州艾缇克药物化学有限公司 一种四氢吡喃酮衍生物的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170372A (ja) * 1987-01-09 1988-07-14 Nissan Chem Ind Ltd テトラヒドロピラン−3−オン類の製造法
JPH07145162A (ja) * 1993-11-26 1995-06-06 Shionogi & Co Ltd 4h−ピラン−4−オンの製造方法
JPH1045660A (ja) * 1996-08-07 1998-02-17 Toyotama Koryo Kk ケトアルデヒドの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1315630A (en) 1971-03-31 1973-05-02 Beecham Group Ltd Penicillins
JPS4729512U (ja) 1971-04-30 1972-12-04
JPS59160538A (ja) * 1983-03-03 1984-09-11 Nippon Pillar Packing Co Ltd 触媒の製造方法
JP4123542B2 (ja) * 1997-07-07 2008-07-23 住友化学株式会社 ピラゾリノン誘導体の製造法
BR0213928A (pt) * 2001-11-08 2004-08-31 Degussa Catalisador suportado para hidrogenação de nitroaromáticos

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170372A (ja) * 1987-01-09 1988-07-14 Nissan Chem Ind Ltd テトラヒドロピラン−3−オン類の製造法
JPH07145162A (ja) * 1993-11-26 1995-06-06 Shionogi & Co Ltd 4h−ピラン−4−オンの製造方法
JPH1045660A (ja) * 1996-08-07 1998-02-17 Toyotama Koryo Kk ケトアルデヒドの製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CORNUBERT R.ET AL: "Heterocyclohexane stereochemistry. III. Stereo-chemistry of the tetrahydropyran ring. Derivates substituted in the 3 and 5 positions.", BULLETIN DE LA SOCIETE CHIMIQUE DE FRANCE, 1950, pages 36 - 40, XP008112009 *
OGATA Y.ET AL: "Yuki kagobutsu no sanka to kangen.", NANCODO CO. LTD., 1964, pages 528 - 540, XP003004047 *
See also references of EP1700853A4 *
SORKIN E.ET AL: "Chemical similarity. II.", HELVETICA CHIMICA ACTA., vol. 31, 1948, pages 65 - 75, XP002401416 *

Also Published As

Publication number Publication date
US20070078272A1 (en) 2007-04-05
JPWO2005061479A1 (ja) 2007-12-13
JP5338798B2 (ja) 2013-11-13
CN1898229B (zh) 2012-05-30
CN102627621A (zh) 2012-08-08
CN1898229A (zh) 2007-01-17
JP5724119B2 (ja) 2015-05-27
JP4687464B2 (ja) 2011-05-25
JP2011121951A (ja) 2011-06-23
CN102627621B (zh) 2015-05-27
EP1700853A4 (en) 2009-07-22
JP2013227322A (ja) 2013-11-07
US7745649B2 (en) 2010-06-29
EP1700853A1 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
JP5735491B2 (ja) 中間体としてのスピロエポキシド
JP5724119B2 (ja) テトラヒドロピラン−4−オン及びピラン−4−オンの製法
CN108623497B (zh) 一种2-氰基-4’-甲基联苯的制备方法
KR101653025B1 (ko) 2-아미노-4-트리플루오로메틸피리딘류의 제조 방법
WO1997043265A1 (fr) Procedes de preparation d'un compose pyrimidine
EP1247807B1 (en) Processes for producing tetrahydropyranyl-4-sulfonate and 4-aminotetrahydropyran compound
JP3795970B2 (ja) α,β−不飽和アルデヒドの製造方法
TW200306304A (en) Process for the preparation of bicyclic diketone salts
JP4598917B2 (ja) ラクトンの製造方法
WO2001072698A1 (en) Optically active cyanobutantriol derivatives and process for preparing same
US7164047B2 (en) Processes for preparation of cyclopropylethanol, cyclopropylacetonitorile and intermediates of both
JP4216042B2 (ja) シクロプロピルアセトニトリルの製造方法
WO2006115237A1 (ja) 4-アミノ-2-アルキルチオ-5-ピリミジンカルバルデヒドの製法
JP4032593B2 (ja) 4−アミノテトラヒドロピラン誘導体の製法
JP4561197B2 (ja) 5−(4−テトラヒドロピラニル)ヒダントインの製法及びその中間体
JP3477915B2 (ja) 1,6−ジオキシイミノヘキサンの製造法
KR100710556B1 (ko) 3,4,5,7,8,9-헥사히드로-2수소-디벤조퓨란-1-온, 및 이를중간체로 하는 1-히드록시디벤조퓨란, 4-히드록시카바졸의제조 방법
JP5612345B2 (ja) 4−(シクロペンテニル)シクロヘキセノン誘導体およびその製造方法
JPH0435471B2 (ja)
KR20090029306A (ko) 이미다졸리딘-2,4-디온 화합물의 제조 방법 및 고체상 4,5-디히드록시-2-이미다졸리디논 화합물의 취득 방법
JP2004244373A (ja) 2−置換−テトラヒドロピラン−4−オールの製法及びその中間体並びにその製法
Stanoeva et al. and Norbert De Kimpe
EP1472239A1 (en) Method for the preparation of enterolactone from matairesinol
JPH07242582A (ja) 3−ヘキシナールアセタール及びシス−3−ヘキセナールジシス−3−ヘキセニルアセタールの製造法
JPH08333295A (ja) 6−メチルヘプタン−2−オンの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480038042.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516480

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007078272

Country of ref document: US

Ref document number: 10583562

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2004807306

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2644/CHENP/2006

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2004807306

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10583562

Country of ref document: US