WO2006115237A1 - 4-アミノ-2-アルキルチオ-5-ピリミジンカルバルデヒドの製法 - Google Patents

4-アミノ-2-アルキルチオ-5-ピリミジンカルバルデヒドの製法 Download PDF

Info

Publication number
WO2006115237A1
WO2006115237A1 PCT/JP2006/308507 JP2006308507W WO2006115237A1 WO 2006115237 A1 WO2006115237 A1 WO 2006115237A1 JP 2006308507 W JP2006308507 W JP 2006308507W WO 2006115237 A1 WO2006115237 A1 WO 2006115237A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkali metal
amino
pyrimidinecarbaldehyde
tolyl
mercapto
Prior art date
Application number
PCT/JP2006/308507
Other languages
English (en)
French (fr)
Inventor
Shigeyoshi Nishino
Shoji Shikita
Tadashi Murakami
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to JP2007514702A priority Critical patent/JP4968066B2/ja
Priority to US11/919,179 priority patent/US20090306380A1/en
Publication of WO2006115237A1 publication Critical patent/WO2006115237A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/47One nitrogen atom and one oxygen or sulfur atom, e.g. cytosine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups

Definitions

  • the present invention relates to a process for producing 4-amino-2-alkylthio-5-pyrimidinecarbaldehyde, and 4-amino- which is an intermediate for the production of 4-amino-2-alkylthio-5-pyrimidinecarbaldehyde.
  • the present invention relates to an alkali metal salt of 2-mercapto-5-pyrimidinecarbaldehyde and a production method thereof.
  • 4-Amino-2-alkylthio-5-pyrimidinecarbaldehyde is a useful compound as a raw material and synthetic intermediate for pharmaceuticals and agricultural chemicals.
  • the raw material 4-amino-2-mercapto-5-pyrimidinecarbaldehyde used in this method has also synthesized 3,3-diethoxy-2-formylpropio-tolyl potassium salt and thiourea (for example,
  • 4-amino-2-mercapto-5-pyrimidinecarbaldehyde produced by this method is a thick slurry, it is difficult to isolate for use as a raw material with extremely poor filterability. Because of this problem, it has been desired to develop an optimal raw material for producing 4-amino-2-alkylthio-5-pyrimidinecarbaldehyde.
  • a method for producing an alkali metal salt of 3,3-dialkoxy-2-hydroxymethylenepropane-tolyl such as 3,3-diethoxy-2-formylpropio-tolyl potassium salt used as a raw material compound in the above method
  • Patent Document 1 Japanese Translation of Special Publication 2004-507540
  • Patent Document 2 JP-A-60-19755
  • An object of the present invention is to solve the above-described problems and to produce 4-amino-2-alkylthio-5-pyrimidinecarbaldehyde from an optimal raw material in a high yield by a simple method.
  • 4-amino-2-alkylthio-5-pyrimidinecarbaldehyde suitable for use in the present invention and intermediate compound 4-amino-2-mercapto-5-pyrimidinecarbaldehyde used in the production thereof, and its intermediate
  • An object of the present invention is to provide an industrially suitable production method capable of producing a compound easily and safely in a high yield.
  • the present invention provides a compound of the general formula (1) in the presence of a base containing an alkali metal.
  • R 3 represents an alkyl group.
  • R 4 represents an alkyl group excluding a methyl group.
  • a formic acid ester (hereinafter referred to as compound (3)) represented by the general formula (4)
  • R 5 and R 6 are the same or different alkyl groups, and M 1 is an alkali metal atom.
  • the present invention also provides a general formula (5)
  • M 2 represents an alkali metal atom.
  • the present invention also provides the above general formula (4)
  • R 5 and R 6 are the same or different alkyl groups, and M 1 is an alkali metal atom.
  • M 2 represents an alkali metal atom.
  • the present invention further provides the general formula (5)
  • M 2 represents an alkali metal atom.
  • R 7 is an alkyl group.
  • the present invention also relates to a process for producing 4-amino-2-alkylthio-5-pyrimidinecarbaldehyde (hereinafter referred to as compound (6)).
  • the present invention further provides a general formula (6)
  • R 7 is an alkyl group.
  • M 2 represents an alkali metal atom.
  • An industrially suitable 4-amino-2-alkylthio-5-pyrimidinecarbamate capable of producing 4-amino-2-alkylthio-5-pyrimidinecarbaldehyde in a high yield by a simple method according to the present invention It is possible to provide an industrially suitable production method capable of easily and safely producing a aldehyde compound, an intermediate compound used in the production method, and an intermediate compound thereof easily and safely in a high yield.
  • the alkyl group refers to a linear or branched saturated aliphatic hydrocarbon group having 1 to 10, preferably 1 to 8, and more preferably 1 to 4 carbon atoms.
  • Specific examples include groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group.
  • the alkali metal atom is specifically a force such as a lithium atom, a sodium atom, a force lithium atom, a rubidium atom, or a cesium atom, preferably a sodium atom or a potassium atom.
  • R 3 represents an alkyl group.
  • R 4 represents an alkyl group excluding a methyl group.
  • R 5 and R 6 are the same or different alkyl groups, and M 1 is an alkali metal atom.
  • R 1 and R 2 may be the same or different. More specifically, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group
  • R 3 is an alkyl group, specifically, Examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, and the like, and a methyl group is preferable. These groups include various isomers.
  • R 4 is an alkyl group excluding a methyl group, specifically, for example, an ethyl group, A propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group and the like are preferred. An ethyl group is preferred. These groups include various isomers.
  • Specific examples of such a compound (3) include ethyl formate in which the R 4 group is an ethyl group.
  • the amount of the formate used is preferably 0.5 to 5 moles, more preferably 0.8 to 3 moles per mole of the -tolyl compound.
  • Examples of the base containing an alkali metal used in the reaction of the present invention include alkali metal hydrides such as sodium hydride and potassium hydride; lithium amides such as lithium diisopropylamide and lithium hexamethyldisilazide; Alkali metal alkoxides such as sodium methoxide, sodium t-butoxide, potassium methoxide, potassium t-butoxide; the ability to include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, preferably alkaline Metal alkoxides, more preferably sodium methoxide are used.
  • alkali metal hydrides such as sodium hydride and potassium hydride
  • lithium amides such as lithium diisopropylamide and lithium hexamethyldisilazide
  • Alkali metal alkoxides such as sodium methoxide, sodium t-butoxide, potassium methoxide, potassium t-butoxide
  • the ability to include alkali metal hydroxides
  • the amount of the base containing the alkali metal is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, per 1 mol of the nitrile compound.
  • a solvent as long as it does not inhibit the reaction.
  • alcohols such as methanol, ethanol and isopropyl alcohol
  • Amides such as ⁇ , ⁇ -dimethylformamide, ⁇ , ⁇ -dimethylacetamide, ⁇ -methylpyrrolidone
  • Ureas such as ⁇ , ⁇ '-dimethylimidazolidinone
  • Sulfoxides such as dimethyl sulfoxide
  • Sulfones such as sulfolane
  • Examples include ethers such as jetyl ether, diisopropyl ether, tetrahydrofuran, and dioxane
  • aromatic hydrocarbons such as benzene, toluene, and xylene, preferably ethers, aromatic hydrocarbons, and more preferably tetrahydrofuran, Toluene is used.
  • the amount of the solvent used is appropriately adjusted depending on the uniformity and stirrability of the reaction solution, but is preferably 1 to 100 g, more preferably 2 to 50 g, based on the nitrile compound lg.
  • the reaction of the present invention is performed by, for example, a method of mixing a nitrile compound, a formate ester, a base group containing an alkali metal, and a solvent and reacting them while stirring.
  • the reaction temperature at that time is ⁇ 10 to 30 ° C., preferably ⁇ 5 to 25 ° C., more preferably ⁇ 5 to 20 ° C., and the reaction pressure is not particularly limited.
  • the compound (1) and compound (2) which are nitrile compounds may be used alone or in admixture of two or more.
  • a preferred form of the reaction of the present invention is a method in which a base containing a nitrile compound and an alkali metal is stirred in a solvent and then a formate is added.
  • R 5 and R 6 are R 1 and
  • M 1 is an alkali metal atom, and specific examples thereof include a lithium atom, a sodium atom, and a potassium atom, and a sodium atom is preferable.
  • the target 3,3-dialkoxy-2-hydroxymethylenepropane-tolyl alkali metal salt is extracted, filtered, concentrated, recrystallized, crystallized, column chromatography, etc. It is isolated and purified by the general method. Further, without isolating and purifying the obtained alkali metal salt of 3,3-dialkoxy-2-hydroxymethylenepropane-tolyl, the reaction solution containing the product can be directly subjected to the subsequent reaction.
  • compound (1) to compound (3) used as starting compounds in the above method are all known compounds and are commercially available or can be easily synthesized by known methods. .
  • M 2 represents an alkali metal atom.
  • M 2 is an alkali metal atom, and specific examples include a lithium atom, a sodium atom, a potassium atom, a rubidium atom, and a cesium atom, preferably sodium. Atom, potassium atom.
  • This compound is a novel compound, and since the alkali metal salt exhibits good filterability, it can be easily isolated. It can be easily derived into 4-amino-2-alkylthio-5-pyrimidinecarbaldehyde, which is a useful compound as a raw material for agricultural chemicals and synthetic intermediates.
  • the compound (5) is a compound represented by the general formula (4) obtained by the method described above according to the method of the present invention.
  • R 5 and R 6 are the same or different alkyl groups, and M 1 is an alkali metal atom.
  • R 5 and R 6 are alkyl groups which may be the same or different. Specifically, for example, a methyl group, an ethyl group, A propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group and the like are preferred. A methyl group and an ethyl group are preferred. These groups include various isomers.
  • M 1 is a good tool alkali metal atom be the same as or different from M 2, specifically, for example, lithium atom, sodium atom, potassium atom, rubidium atom, cesium atom Force A sodium atom or potassium atom is preferred.
  • the amount of thiourea used in the reaction of the present invention is preferably 0.5 to 10 mol, more preferably 0.8 to 5.0 mol, per 1 mol of compound (4).
  • reaction of the present invention is preferably carried out in a solvent in the presence of a base.
  • Examples of the base used in the reaction of the present invention include alkali metal hydrides such as sodium hydride and potassium hydride; lithium amides such as lithium diisopropylamide and lithium hexamethyldisilazide; sodium methoxide and sodium t- Alkali metal alkoxides such as butoxide, potassium methoxide and potassium t-butoxide; Alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; Alkali metal carbonates such as sodium carbonate and potassium carbonate; Sodium bicarbonate
  • the strength includes alkali metal hydrogen carbonates such as potassium hydrogen carbonate, preferably alkali metal alkoxides, more preferably sodium methoxide, strength thallium methoxide.
  • These bases may be used alone or in combination of two or more as long as they contain the same alkali metal atom.
  • the amount of the base to be used is preferably 0.1 to 10 mol, more preferably 0.1 to 5 mol, relative to compound (4).
  • reaction solution obtained in the previous step for obtaining compound (4) from compound (1) and Z or compound (2) is directly subjected to the reaction for obtaining compound (5).
  • the base containing the alkali metal used in the previous step is present in the reaction solution, so that it is not necessary to add a base again in this step.
  • the solvent used in the reaction of the present invention is not particularly limited as long as it does not inhibit the reaction, and examples thereof include methanol, ethanol, isopropyl alcohol, t-butyl alcohol, methoxyethanol, ethoxyethanol, and butoxyethanol.
  • Alcohols such as acetonitrile, propio-tolyl, benzo-tolyl; amides such as ⁇ , ⁇ -dimethylformamide, ⁇ , ⁇ -dimethylacetamide, ⁇ -methylpyrrolidone; ⁇ , ⁇ '-dimethylimidazo Ureas such as lizinone; sulfoxides such as dimethyl sulfoxide; sulfones such as sulfolane; ethers such as jetyl ether, diisopropyl ether, tetrahydrofuran, and dioxane; aromatic hydrocarbons such as benzene, toluene, and xylene.
  • amides such as ⁇ , ⁇ -dimethylformamide, ⁇ , ⁇ -dimethylacetamide, ⁇ -methylpyrrolidone
  • ⁇ , ⁇ '-dimethylimidazo Ureas such as lizinone
  • sulfoxides such as dimethyl
  • Raising Preferably used are alcohols, ethers, aromatic hydrocarbons, more preferably methanol, ethanol, isopropyl alcohol, butoxyethanol, tetrahydrofuran, and toluene. In addition, you may use these solvents individually or in mixture of 2 or more types.
  • the amount of the solvent to be used is appropriately adjusted depending on the uniformity and stirrability of the reaction solution, but is preferably 0.1 to 100 g, more preferably 0.5 to 50 g, relative to compound (4) lg.
  • the reaction of the present invention is carried out, for example, by a method of mixing the compound (4), thiourea, and, if necessary, a base and a solvent and reacting them with stirring.
  • the reaction temperature at that time is preferably 0 to 200 ° C, more preferably 0 to 150 ° C, and the reaction pressure is not particularly limited.
  • the compound (5) is obtained by the reaction of the present invention, and this has good filterability and is easy to isolate. Therefore, extraction, filtration, concentration, recrystallization after completion of the reaction. It is easily isolated and purified by common methods such as crystallization, column chromatography, etc.
  • M 2 represents an alkali metal atom.
  • R 7 is an alkyl group.
  • M 2 is an alkali metal atom, specifically, for example, lithium atom, sodium atom, potassium atom, rubidium Forces such as atoms and cesium atoms, preferably sodium atoms and potassium atoms
  • alkylating agent used in the reaction of the present invention is not particularly limited as long as it can induce a compound alkylated compound (5) by introducing the desired alkyl group R 7 (6)
  • alkyl halides such as methyl iodide and bromide acetyl
  • alkyl sulfonates such as methyl methanesulfonate, methyl trifluoromethanesulfonate, and methyl p-toluenesulfonate
  • the dialkyl sulfuric acid is preferably an alkyl halide or dialkyl sulfuric acid, more preferably methyl oxysulfide or dimethyl sulfuric acid.
  • alkylating agents may be used as a mixture of two or more, provided that the alkyl group to be alkylated is the same.
  • the amount of the alkylating agent used in the reaction of the present invention is preferably 0.5 to 10 equivalents, more preferably 0.8 to 5 equivalents, relative to 1 mol of the compound (5).
  • the reaction of the present invention is carried out in the presence of a solvent.
  • the solvent to be used is not particularly limited as long as it does not inhibit the reaction.
  • water methanol, ethanol, isopropyl alcohol, t -Alcohols such as butyl alcohol, methoxyethanol, ethoxyethanol, butoxyethanol; -tolyls such as acetonitrile, propio-tolyl, benzo-tolyl; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; N, Amides such as N-dimethylformamide, ⁇ , ⁇ -dimethylacetamide, and ⁇ ⁇ ⁇ -methylpyrrolidone; Ureas such as ⁇ , ⁇ '-dimethylimidazolidinone; Sulfoxides such as dimethyl sulfoxide; Sulfones such as sulfolane Powers mentioned Preferably water, alcohol
  • the amount of the solvent used is appropriately adjusted depending on the uniformity and stirrability of the reaction solution, but is preferably 0.1 to 100 g, more preferably 0.5 to 50 g, relative to compound (5) lg.
  • the reaction of the present invention is carried out, for example, by a method of mixing compound (5), an alkylating agent and a solvent and reacting them without stirring.
  • the reaction temperature at that time is preferably ⁇ 30 to 200 ° C., more preferably ⁇ 20 to 150 ° C., and the reaction pressure is not particularly limited.
  • Compound (6) is obtained by the reaction of the present invention, and this is carried out after neutralization. It is isolated and purified by common methods such as extraction, filtration, concentration, distillation, recrystallization, crystallization, column chromatography and the like.
  • Example 1 Synthesis of Compound (4) (Sodium salt of 3.3-diethoxy-2-hydroxymethylenepropane nitrile, sodium of 3-ethoxy-3-methoxy-2-hydroxymethylenepropane nitrile and 3.3-dimethoxy -Synthesis of sodium 2-hydroxymethylenepropane nitrile)
  • Compound (4) Sodium salt of 3.3-diethoxy-2-hydroxymethylenepropane nitrile, sodium of 3-ethoxy-3-methoxy-2-hydroxymethylenepropane nitrile and 3.3-dimethoxy -Synthesis of sodium 2-hydroxymethylenepropane nitrile
  • 11.51 g (100 mmol) of 3,3-dimethoxypropane nitrile, sodium methoxide 10.8 g (200 mmol) and 35 ml of toluene were added.
  • Example 2 Synthesis of Compound (4) (Sodium salt of 3.3-diethoxy-2-hydroxymethylenepropane nitrile, sodium of 3-ethoxy-3-methoxy-2-hydroxymethylenepropane nitrile and 3.3-dimethoxy -Synthesis of sodium 2-hydroxymethylenepropane nitrile)
  • a 100 ml glass flask equipped with a stirrer, thermometer and dropping funnel 11.51 g (100 mmol) of 3,3-dimethoxypropane nitrile, sodium methoxide 10.8 g (200 mmol) and 35 ml of toluene were added.
  • a glass flask equipped with a stirrer, thermometer and dropping funnel with an internal volume of 25 ml was charged with 1.15 g (10 mmol) of 3,3-dimethoxypropane-tolyl, 1.08 g (20 mmol) of sodium methoxide and 3.5 ml of toluene. I was frightened. Next, while maintaining the liquid temperature at 35 to 40 ° C., slowly add a solution prepared by dissolving 0.93 g (12.2 mmol) of 97 mass% ethyl formate in 1.2 ml of toluene and react at the same temperature for 6 hours while stirring. I let you.
  • reaction solution was analyzed by high performance liquid chromatography (absolute quantification method) .
  • the sodium salt of 3,3-diethoxy-2-hydroxymethylenepropane-tolyl, 3-ethoxy-3-methoxy-2-hydroxymethylene A total of 9.32 mmol of sodium salt of propane-tolyl and sodium salt of 3,3-dimethoxy_2_hydroxymethylenepropane-tolyl was formed (reaction yield based on 3,3-dimethoxypropane-tolyl; 93.2%) .
  • the amount of carbon monoxide generated at this time was 1.2 mmol (the rate of occurrence based on ethyl formate; 9.8%).
  • Example 3 Synthesis of compound (4) (sodium salt of 3,3-diethoxy-2-hydroxymethylenepropane nitrile, sodium salt of 3-ethoxy-3-methoxy-2-hydroxymethylenepropane nitrile and Synthesis of sodium salt of 3.3-dimethoxy-2-hydroxymethylenepropanenitrile)
  • compound (4) sodium salt of 3,3-diethoxy-2-hydroxymethylenepropane nitrile, sodium salt of 3-ethoxy-3-methoxy-2-hydroxymethylenepropane nitrile and Synthesis of sodium salt of 3.3-dimethoxy-2-hydroxymethylenepropanenitrile
  • Example 4 Synthesis of compound (4) (sodium salt of 3,3-diethoxy-2-hydroxymethylenepropane nitrile, sodium salt of 3-ethoxy-3-methoxy-2-hydroxymethylenepropane nitrile and Synthesis of sodium salt of 3.3-dimethoxy-2-hydroxymethylenepropane nitrile)
  • compound (4) sodium salt of 3,3-diethoxy-2-hydroxymethylenepropane nitrile, sodium salt of 3-ethoxy-3-methoxy-2-hydroxymethylenepropane nitrile and Synthesis of sodium salt of 3.3-dimethoxy-2-hydroxymethylenepropane nitrile
  • Example 5 Synthesis of Compound (4) (Sodium salt of 3.3-diethoxy-2-hydroxymethylenepropanenitrile, sodium salt of 3-ethoxy-3-methoxy-2-hydroxymethylenepropanenitrile and 3.3- Synthesis of sodium salt of dimethoxy-2-hydroxymethylenepropane nitrile)
  • a 100 ml glass flask equipped with a stirrer, thermometer and dropping funnel 11.51 g (100 mmol) of sodium 3,3-dimethoxypropane nitrile, sodium 10.8 g (200 mmol) of methoxide and 30 ml of tetrahydrofuran were added.
  • reaction solution was analyzed by high performance liquid chromatography (absolute quantification method) .
  • the sodium salt of 3,3-diethoxy-2-hydroxymethylenepropane-tolyl, 3-ethoxy-3-methoxy-2-hydroxy Methylenepu A total of 97.0 mmol of sodium salt of oral pan-tolyl and 3,3-dimethoxy-2-hydroxymethylenepropane-tolyl sodium salt was formed (reaction yield based on 3,3-dimethoxypropane-tolyl; 97.0% ).
  • reaction yield based on 3,3-dimethoxypropane-tolyl; 97.0%
  • the amount of carbon monoxide produced was only 5.9 mmol (the incidence based on ethyl formate; 4.9%).
  • Example 6 Synthesis of compound (4) (sodium salt of 3,3-diethoxy-2-hydroxymethylenepropane nitrile, sodium salt of 3-ethoxy-3-methoxy-2-hydroxymethylenepropane nitrile and Synthesis of sodium salt of 3.3-dimethoxy-2-hydroxymethylenepropanenitrile)
  • Example 1 instead of 3,3-dimethoxypropane-tolyl, 3,3-dimethoxypropane-tolyl and 3-methoxy-2- The reaction was carried out as in Example 1 using a 1: 1 mixture of propene-tolyl (molar ratio) and the sodium salt of 3,3-diethoxy-2-hydroxymethylenepropane-tolyl, 3-ethoxy -3-Methoxy-2-hydroxymethylenepropane-tolyl sodium salt and 3,3-dimethoxy-2-hydroxymethylenepropane-tolyl sodium salt were obtained in high yields. The amount of generation is small.
  • a glass flask with an internal volume of 200 ml equipped with a stirrer, thermometer, dropping funnel and reflux condenser was charged with 11.51 g (100 mmol) of 3,3-dimethoxypropane-tolyl, 10.80 g (200 mmol) of sodium methoxide and 20 ml of tetrahydrofuran.
  • reaction solution was concentrated under reduced pressure, and then 11.2 ml of methanol and water 37.
  • Sodium salt of 4-amino-2-mercapto-5-pyrimidinecarbaldehyde is a novel compound represented by the following physical properties.
  • reaction solution was concentrated under reduced pressure, and then 11.2 ml of methanol and water 37.
  • the potassium salt of 4-amino-2-mercapto-5-pyrimidinecarbaldehyde is a novel compound having the following physical properties.
  • reaction mixture was concentrated under reduced pressure, 37.5 ml of water was added to the concentrate, and the mixture was stirred at 20 to 25 ° C for 1 hour.
  • the obtained solid was filtered and dried under reduced pressure to obtain 4_amino-2_mercapto-5-pyrimidinecarbaldehyde having a purity of 98.4% by mass (quantitative value by high performance liquid chromatography) as a yellow powder.
  • 4_amino-2_mercapto-5-pyrimidinecarbaldehyde having a purity of 98.4% by mass (quantitative value by high performance liquid chromatography) as a yellow powder.
  • sodium salt was obtained (isolated yield based on 3,3-dimethoxypropane nitrile; 54.9%).
  • reaction solution was concentrated under reduced pressure, and then 11.2 ml of methanol and water 37.
  • reaction solution was concentrated under reduced pressure, and then 11.2 ml of methanol and water 37.
  • Test Example 2 Filter vortex properties of 4-amino-2-mercapto-5-pyrimidinecarbaldehyde
  • Example 7 4-Amino-2-mercapto-5-pyrimidinecarbaldehyde synthesized in the same manner as in Example 7 was neutralized by adding water and sulfuric acid to 300 ml of a reaction solution containing 39.3 g of sodium salt. 2-mercapto - 5-pyrimidine carbaldehyde to obtain a reaction solution 300ml containing 27.2 g, which filter paper (5C; manufactured by Toyo Roshi Co.) with a diameter 2.8 X 10- 3 m 2 glass filter equipped with a When filtration was performed under a reduced pressure of 4.8 ⁇ 10 4 Pa, the filtration took about 414 seconds.
  • filter paper 5C; manufactured by Toyo Roshi Co.
  • An industrially suitable 4-amino-2-alkylthio-5-pyrimidinecarbamate which can produce 4-amino-2-alkylthio-5-pyrimidinecarbaldehyde in a high yield by a simple method according to the present invention. It is possible to provide an industrially suitable production method capable of easily and safely producing a aldehyde compound, an intermediate compound used in the production method, and an intermediate compound thereof easily and safely in a high yield.

Abstract

 簡便な方法によって、4-アミノ-2-アルキルチオ-5-ピリミジンカルバルデヒドを高収率で製造できる、工業的に好適な4-アミノ-2-アルキルチオ-5-ピリミジンカルバルデヒドの製法、並びにその製法に用いる中間体化合物、およびその中間体化合物を簡便かつ安全に高収率で製造できる、工業的に好適な製法を提供する。  本発明は、アルカリ金属を含む塩基の存在下、3,3-ジアルコキシプロパンニトリル及び3-アルコキシ-2-プロペンニトリルからなる群より選ばれる少なくともひとつのニトリル化合物と、ギ酸エステルとを-10~30°Cで反応させることを特徴とする、3,3-ジアルコキシ-2-ヒドロキシメチレンプロパンニトリルのアルカリ金属塩の製法;4-アミノ-2-メルカプト-5-ピリミジンカルバルデヒドのアルカリ金属塩;3,3-ジアルコキシ-2-ヒドロキシメチレンプロパンニトリルのアルカリ金属塩とチオ尿素とを反応させることを特徴とする、4-アミノ-2-メルカプト-5-ピリミジンカルバルデヒドのアルカリ金属塩の製法;4-アミノ-2-メルカプト-5-ピリミジンカルバルデヒドのアルカリ金属塩とアルキル化剤とを反応させることを特徴とする、4-アミノ-2-アルキルチオ-5-ピリミジンカルバルデヒドの製法;並びに4-アミノ-2-アルキルチオ-5-ピリミジンカルバルデヒドの製造における4-アミノ-2-メルカプト-5-ピリミジンカルバルデヒドのアルカリ金属塩の使用に関する。

Description

明 細 書
4—ァミノ— 2 _アルキルチオ— 5 -ピリミジンカルバルデヒドの製法 技術分野
[0001] 本発明は、 4-ァミノ- 2-アルキルチオ- 5-ピリミジンカルバルデヒドの製法、並びに 4- ァミノ- 2-アルキルチオ- 5-ピリミジンカルバルデヒドの製造のための中間体である 4- ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドのアルカリ金属塩、およびその製法に 関する。 4-ァミノ- 2-アルキルチォ -5-ピリミジンカルバルデヒドは、医薬や農薬等の原 料や合成中間体として有用な化合物である。
背景技術
[0002] 従来、 4-ァミノ- 2-アルキルチオ- 5-ピリミジンカルバルデヒドの製法として、例えば、 炭酸カリウムの存在下、 4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドとヨウ化メチ ルを反応させて、 4-ァミノ- 2-メチルチオ- 5-ピリミジンカルバルデヒドを製造する方法 が開示されている(例えば、特許文献 1参照)。しかしながら、この方法では、過剰のョ ゥ化メチルを使用しなければならない上に、反応が完了するのに非常に長時間を要 するという問題があった。また、この方法で使用する原料の 4-ァミノ- 2-メルカプト- 5- ピリミジンカルバルデヒドは、 3,3-ジエトキシ- 2-ホルミルプロピオ-トリルカリウム塩と チォ尿素力も合成している(例えば、特許文献 1参照)が、この方法により生成する 4- ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドは濃厚なスラリーとなるために濾過性 が極めて悪ぐ原料として使用するための単離が困難であるという問題があるため、 4 -ァミノ- 2-アルキルチォ -5-ピリミジンカルバルデヒドを製造するための最適な原料の 開発も望まれていた。
[0003] 更にまた、上記方法で原料化合物として使用する 3,3-ジエトキシ -2-ホルミルプロピ ォ-トリルカリウム塩などの 3, 3-ジアルコキシ -2-ヒドロキシメチレンプロパン-トリルの アルカリ金属塩の製法としては、例えば、 3,3-ジメトキシプロパン-トリル又は 3_メトキ シ- 2-プロペン-トリルとギ酸メチルとを、ナトリウムメトキシドの存在下、 40〜100°Cの 温度で反応させる方法 (例えば、特許文献 2参照)や、 3,3-ジエトキシプロパン-トリ ルとギ酸メチルとを、カリウム t-ブトキシドの存在下で反応させる方法が開示されて 、 る(例えば、特許文献 1参照)。しかしながら、これらの方法では、有毒ガスである一酸 化炭素が大量に生成してしまうために工業的な製法としては望ましくなぐ 3,3-ジアル コキシ -2-ヒドロキシメチレンプロパン-トリルのアルカリ金属塩を安全かつ高収率で 製造できる工業的に好適な製法も求められていた。
特許文献 1:特表 2004 - 507540号公報
特許文献 2 :特開昭 60— 19755号公報
発明の開示
発明が解決しょうとする課題
[0004] 本発明の課題は、即ち、上記問題点を解決し、簡便な方法によって最適な原料か ら 4-ァミノ- 2-アルキルチォ -5-ピリミジンカルバルデヒドを高収率で製造できる、工業 的に好適な 4-ァミノ- 2-アルキルチオ -5-ピリミジンカルバルデヒドの製法、その製法 に用いる中間体化合物 4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドのアルカリ 金属塩、およびその中間体ィ匕合物を簡便かつ安全に高収率で製造できる、工業的 に好適な製法を提供することにある。
課題を解決するための手段
[0005] 本発明は、アルカリ金属を含む塩基の存在下、一般式(1)
Figure imgf000003_0001
(式中、 R1及び R2は、同一又は異なっていても良ぐアルキル基を示す。 ) で示される 3,3-ジアルコキシプロパン-トリル (以下、化合物(1)と称する)及び一般 式 (2)
Figure imgf000003_0002
(式中、 R3は、アルキル基を示す。 )
で示される 3-アルコキシ -2-プロペン-トリル (以下、化合物(2)と称する)力 なる群 より選ばれる少なくともひとつの-トリルイ匕合物と、一般式(3) HC〇2R4
(式中、 R4は、メチル基を除くアルキル基を示す。 )
で示されるギ酸エステル (以下、化合物(3)と称する)とを- 10 30°Cで反応させること を特徴とする、一般式 (4)
Figure imgf000004_0001
(式中、 R5及び R6は、同一又は異なっていても良ぐアルキル基を示し、 M1は、アル カリ金属原子を示す。 )
で示される 3,3-ジアルコキシ -2-ヒドロキシメチレンプロパン-トリルのアルカリ金属塩( 以下、化合物 (4)と称する)の製法に関する。
[0006] 本発明はまた、一般式 (5)
Figure imgf000004_0002
(式中、 M2は、アルカリ金属原子を示す。 )
で示される 4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドのアルカリ金属塩(以下 、化合物 (5)と称する)に関する。
[0007] 本発明は、また、上記一般式 (4)
Figure imgf000004_0003
(式中、 R5及び R6は、同一又は異なっていても良ぐアルキル基を示し、 M1は、アル カリ金属原子を示す。 )
で示される 3,3-ジアルコキシ -2-ヒドロキシメチレンプロパン-トリルのアルカリ金属塩( 化合物 (4) )とチォ尿素とを反応させることを特徴とする、一般式 (5)
Figure imgf000005_0001
(式中、 M2は、アルカリ金属原子を示す。 )
で示される 4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドのアルカリ金属塩 (ィ匕合 物(5) )の製法にも関する。
[0008] 本発明は、更にまた、上記一般式 (5)
N (5)
ヽ N SM2
(式中、 M2は、アルカリ金属原子を示す。 )
で示される 4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドのアルカリ金属塩 (ィ匕合 物(5) )とアルキルィ匕剤とを反応させることを特徴とする、一般式 (6)
Figure imgf000005_0002
(式中、 R7は、アルキル基である。 )
で示される 4-ァミノ- 2-アルキルチオ- 5-ピリミジンカルバルデヒド(以下、化合物(6)と 称する)の製法にも関する。
[0009] 本発明は、更にまた、一般式 (6)
Figure imgf000005_0003
(式中、 R7は、アルキル基である。 )
で示される 4-ァミノ- 2-アルキルチオ - 5-ピリミジンカルバルデヒドの製造における一般
Figure imgf000006_0001
(式中、 M2は、アルカリ金属原子を示す。 )
で示される 4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドのアルカリ金属塩の使 用にも関する。
発明の効果
[0010] 本発明により簡便な方法によって、 4-ァミノ- 2-アルキルチオ -5-ピリミジンカルバル デヒドを高収率で製造できる、工業的に好適な 4-ァミノ- 2-アルキルチォ -5-ピリミジン カルバルデヒドの製法、並びにその製法に用いる中間体ィ匕合物、およびその中間体 化合物を簡便かつ安全に高収率で製造できる、工業的に好適な製法を提供すること ができる。
発明を実施するための最良の形態
[0011] 本発明においては、アルキル基とは、炭素数 1〜10、好ましくは 1〜8、より好ましく は炭素数 1〜4の直鎖もしくは分岐鎖状の飽和脂肪族炭化水素基をいう。具体的に は、例えば、メチル基、ェチル基、プロピル基、ブチル基、ペンチル基、へキシル基、 ヘプチル基、ォクチル基、ノニル基、デシル基等の基が挙げられる。
[0012] また、アルカリ金属原子とは、具体的には、例えばリチウム原子、ナトリウム原子、力 リウム原子、ルビジウム原子、セシウム原子などが挙げられる力 好ましくはナトリウム 原子、カリウム原子である。
[0013] 化 · ( 1)あ び/または (2)からのィ ί^^Ι (4)の^^
本発明の方法によると、アルカリ金属を含む塩基の存在下、一般式(1)
Figure imgf000006_0002
(式中、 R1及び R2は、同一又は異なっていても良ぐアルキル基を示す。 ) で示される化合物(1)及び一般式 (2)
Figure imgf000007_0001
(式中、 R3は、アルキル基を示す。 )
で示される化合物(2)からなる群より選ばれる少なくともひとつの-トリルイ匕合物と、一 般式 (3)
HC02R4 (3)
(式中、 R4は、メチル基を除くアルキル基を示す。 )
で示される化合物(3)とを- 10〜30°Cで反応させることによって、一般式 (4)
Figure imgf000007_0002
(式中、 R5及び R6は、同一又は異なっていても良ぐアルキル基を示し、 M1は、アル カリ金属原子を示す。 )
で示される化合物 (4)を得ることができる。
[0014] 本発明の反応において使用する-トリルイ匕合物のうち、前記の一般式(1)で示され る化合物(1)においては、 R1及び R2は、同一又は異なっていても良ぐアルキル基で あり、具体的には、例えば、メチル基、ェチル基、プロピル基、ブチル基、ペンチル基
、へキシル基、ヘプチル基等が挙げられる力 好ましくはメチル基である。なお、これ らの基は、各種異性体を含む。
[0015] このような化合物(1)としては具体的には、 3,3-ジメトキシプロパン-トリルを挙げる ことができる。
[0016] 本発明の反応において使用する-トリルイ匕合物のうち、前記の一般式(2)で示され る化合物(2)においては、 R3は、アルキル基であり、具体的には、例えば、メチル基、 ェチル基、プロピル基、ブチル基、ペンチル基、へキシル基、ヘプチル基等が挙げら れるが、好ましくはメチル基である。なお、これらの基は、各種異性体を含む。
[0017] このような化合物(2)としては、具体的には 3-メトキシ -2-プロペン-トリルを挙げるこ とがでさる。
[0018] 本発明の反応において使用する前記の一般式(3)で示される化合物(3)において は、 R4は、メチル基を除くアルキル基であり、具体的には、例えば、ェチル基、プロピ ル基、ブチル基、ペンチル基、へキシル基、ヘプチル基等が挙げられる力 好ましく はェチル基である。なお、これらの基は、各種異性体を含む。
[0019] このような化合物(3)としては具体的には R4基がェチル基であるギ酸ェチルを挙げ ることがでさる。
[0020] 前記ギ酸エステルの使用量は-トリル化合物 1モルに対して、好ましくは 0.5〜5モル 、更に好ましくは 0.8〜3モルである。
[0021] 本発明の反応において使用するアルカリ金属を含む塩基としては、例えば、水素 化ナトリウム、水素化カリウム等のアルカリ金属水素化物;リチウムジイソプロピルアミド 、リチウムへキサメチルジシラジド等のリチウムアミド;ナトリウムメトキシド、ナトリウム t- ブトキシド、カリウムメトキシド、カリウム t-ブトキシド等のアルカリ金属アルコキシド;水 酸ィ匕ナトリウム、水酸ィ匕カリウム等のアルカリ金属水酸ィ匕物が挙げられる力 好ましく はアルカリ金属アルコキシド、更に好ましくはナトリウムメトキシドが使用される。なお、 これらの塩基は、同一のアルカリ金属原子を含むものであれば、単独又は二種以上 を混合して使用しても良い。
[0022] 前記アルカリ金属を含む塩基の使用量は、二トリルイ匕合物 1モルに対して、好ましく は 0.5〜10モル、更に好ましくは 0.8〜5モルである。
[0023] 本発明の反応においては溶媒を使用することが望ましぐ使用する溶媒としては、 反応を阻害しないものならば特に限定されず、例えば、メタノール、エタノール、イソ プロピルアルコール等のアルコール類; Ν,Ν-ジメチルホルムアミド、 Ν,Ν-ジメチルァ セトアミド、 Ν-メチルピロリドン等のアミド類; Ν,Ν'-ジメチルイミダゾリジノン等の尿素類 ;ジメチルスルホキシド等のスルホキシド類;スルホラン等のスルホン類;ジェチルエー テル、ジイソプロピルエーテル、テトラヒドロフラン、ジォキサン等のエーテル類;ベン ゼン、トルエン、キシレン等の芳香族炭化水素類が挙げられるが、好ましくはエーテ ル類、芳香族炭化水素類、更に好ましくは、テトラヒドロフラン、トルエンが使用される 。なお、これらの溶媒は、単独又は二種以上を混合して使用しても良い。 [0024] 前記溶媒の使用量は、反応液の均一性や攪拌性により適宜調節するが、二トリル 化合物 lgに対して、好ましくは l〜100g、更に好ましくは 2〜50gである。
[0025] 本発明の反応は、例えば、二トリル化合物、ギ酸エステル、アルカリ金属を含む塩 基及び溶媒を混合し、攪拌しながら反応させる等の方法によって行われる。その際の 反応温度は、 - 10〜30°C、好ましくは- 5〜25°C、更に好ましくは- 5〜20°Cであり、反 応圧力は特に制限されない。なお、二トリルイ匕合物である化合物(1)およびィ匕合物( 2)は、単独又は二種以上を混合して使用しても良い。
[0026] なお、本発明の反応の好ましい形態としては、二トリル化合物とアルカリ金属を含む 塩基を溶媒中で攪拌させた後に、ギ酸エステルを添加する方法が挙げられる。
[0027] 本発明の反応によって得られる前記の一般式 (4)で示される 3,3-ジアルコキシ -2- ヒドロキシメチレンプロパン-トリルのアルカリ金属塩において、 R5及び R6は、 R1及び
R2で定義したものと同義である。また、 M1は、アルカリ金属原子であり、具体的に、例 えば、リチウム原子、ナトリウム原子、カリウム原子等が挙げられるが、好ましくはナトリ ゥム原子である。
[0028] なお、 目的物である 3,3-ジアルコキシ -2-ヒドロキシメチレンプロパン-トリルのアル カリ金属塩は、反応終了後、抽出、濾過、濃縮、再結晶、晶析、カラムクロマトグラフィ 一等の一般的な方法によって単離.精製される。また、得られた 3,3-ジアルコキシ -2- ヒドロキシメチレンプロパン-トリルのアルカリ金属塩を単離.精製せずに、生成物を 含む反応溶液をそのまま以降の反応に付すこともできる。
[0029] なお、上記の方法において出発化合物として用いる化合物(1)〜化合物(3)は、い ずれも公知の化合物であり、市販されているか、又は公知の方法により容易に合成 することができる。
[0030] 化合物(5)
本発明の一般式 (5)
Figure imgf000009_0001
(式中、 M2は、アルカリ金属原子を示す。 )
で示される化合物(5)においては、 M2は、アルカリ金属原子であり、具体的には、例 えば、リチウム原子、ナトリウム原子、カリウム原子、ルビジウム原子、セシウム原子が 挙げられるが、好ましくはナトリウム原子、カリウム原子である。
[0031] このような化合物(5)として、具体的には以下の化合物を挙げることができる。
4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドのナトリウム塩
4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドのカリウム塩
[0032] 本化合物は、新規化合物であり、当該アルカリ金属塩は良好な濾過性を示すことか ら、単離が容易であるため、反応工程において非常に取り扱いしゃすぐ後述するよ うに、医薬や農薬等の原料や合成中間体として有用な化合物である 4-ァミノ- 2-アル キルチオ- 5-ピリミジンカルバルデヒドに容易に誘導することができる。
[0033] イ^^ (4)からの · (5)の^^
上記化合物(5)は、本発明の方法により、上述の方法で得られる一般式 (4)
Figure imgf000010_0001
(式中、 R5及び R6は、同一又は異なっていても良ぐアルキル基を示し、 M1は、アル カリ金属原子を示す。 )
で示される化合物 (4)とチォ尿素とを反応させることによって得ることができる。
[0034] 本発明の反応において使用する化合物 (4)においては、 R5及び R6は、同一又は 異なっていても良ぐアルキル基であり、具体的には、例えば、メチル基、ェチル基、 プロピル基、ブチル基、ペンチル基、へキシル基、ヘプチル基等が挙げられる力 好 ましくはメチル基、ェチル基である。なお、これらの基は、各種異性体を含む。
[0035] また、 M1は、 M2と同一又は異なっていても良ぐアルカリ金属原子であり、具体的 には、例えば、リチウム原子、ナトリウム原子、カリウム原子、ルビジウム原子、セシウム 原子が挙げられる力 好ましくはナトリウム原子、カリウム原子である。
[0036] このような化合物 (4)としては、具体的には以下の化合物を挙げることができる。
3, 3-ジエトキシ- 2-ヒドロキシメチレンプロパン-トリルのナトリウム塩; 3-エトキシ -3-メトキシ- 2-ヒドロキシメチレンプロパン-トリルのナトリウム塩;及び
3, 3-ジメトキシ- 2-ヒドロキシメチレンプロパン-トリルのナトリウム塩
[0037] 本発明の反応において使用するチォ尿素の量は、化合物 (4) 1モルに対して、好ま しくは 0.5〜10モル、更に好ましくは 0.8〜5.0モルである。
[0038] 本発明の反応は、塩基の存在下、溶媒中で行うのが望ましい。
[0039] 本発明の反応において使用する塩基としては、例えば、水素化ナトリウム、水素化 カリウム等のアルカリ金属水素化物;リチウムジイソプロピルアミド、リチウムへキサメチ ルジシラジド等のリチウムアミド;ナトリウムメトキシド、ナトリウム t-ブトキシド、カリウムメ トキシド、カリウム t-ブトキシド等のアルカリ金属アルコキシド;水酸ィ匕ナトリウム、水酸 化カリウム等のアルカリ金属水酸ィ匕物;炭酸ナトリウム、炭酸カリウム等のアルカリ金属 炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸水素塩が挙げ られる力 好ましくはアルカリ金属アルコキシド、更に好ましくはナトリウムメトキシド、力 リウムメトキシドが使用される。なお、これらの塩基は、同一のアルカリ金属原子を含 むものであれば単独又は二種以上を混合して使用しても良い。
[0040] 前記塩基の使用量は、化合物 (4)に対して、好ましくは 0.1〜10モル、更に好ましく は 0.1〜5モルである。
[0041] なお、化合物(1)および Zまたは化合物(2)から化合物 (4)を得る先の工程で得ら れた反応溶液をそのままィ匕合物(5)を得る反応に付す場合には、先の工程で用いた アルカリ金属を含む塩基が反応溶液中に存在して!/ヽるため、本工程にお!ヽて再度塩 基を追加する必要がな ヽ場合もある。
[0042] 本発明の反応において使用する溶媒としては、反応を阻害しないものならば特に 限定されず、例えば、メタノール、エタノール、イソプロピルアルコール、 t-ブチルアル コール、メトキシエタノール、エトキシエタノール、ブトキシエタノール等のアルコール 類;ァセトニトリル、プロピオ-トリル、ベンゾ-トリル等の-トリル類; Ν,Ν-ジメチルホ ルムアミド、 Ν,Ν-ジメチルァセトアミド、 Ν-メチルピロリドン等のアミド類; Ν,Ν'-ジメチル イミダゾリジノン等の尿素類;ジメチルスルホキシド等のスルホキシド類;スルホラン等 のスルホン類;ジェチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジォ キサン等のエーテル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類が挙げ られる力 好ましくはアルコール類、エーテル類、芳香族炭化水素類、更に好ましく は、メタノール、エタノール、イソプロピルアルコール、ブトキシエタノール、テトラヒドロ フラン、トルエンが使用される。なお、これらの溶媒は、単独又は二種以上を混合して 使用しても良い。
[0043] 前記溶媒の使用量は、反応液の均一性や攪拌性により適宜調節するが、化合物( 4) lgに対して、好ましくは 0.1〜100g、更に好ましくは 0.5〜50gである。
[0044] 本発明の反応は、例えば、化合物 (4)、チォ尿素、必要な場合には塩基及び溶媒 を混合し、攪拌しながら反応させる等の方法によって行われる。その際の反応温度は 、好ましくは 0〜200°C、更に好ましくは 0〜150°Cであり、反応圧力は特に制限されな い。
[0045] なお、本発明の反応によって化合物(5)が得られるが、これは、良好な濾過性を有 し、単離が容易であるため、反応終了後、抽出、濾過、濃縮、再結晶、晶析、カラムク 口マトグラフィ一等の一般的な方法によって容易に単離 '精製される。
[0046] 化合物( 5)からの化合物(6)の合成
本発明の方法により、上述の方法で得られる一般式 (5)
Figure imgf000012_0001
(式中、 M2は、アルカリ金属原子を示す。 )
で示される化合物(5)とアルキル化剤とを反応させることによって、一般式 (6)
Figure imgf000012_0002
(式中、 R7は、アルキル基である。 )
で示される化合物(6)を得ることができる。
[0047] 本発明の方法において使用する化合物(5)においては、 M2は、アルカリ金属原子 であり、具体的には、例えば、リチウム原子、ナトリウム原子、カリウム原子、ルビジウム 原子、セシウム原子等が挙げられる力 好ましくはナトリウム原子、カリウム原子である
[0048] 本発明の反応において使用するアルキル化剤としては、所望のアルキル基 R7を導 入することにより化合物(5)をアルキル化して化合物(6)に誘導できるものであれば 特に限定されないが、例えば、ヨウ化メチル、臭化工チル等のハロゲン化アルキル;メ タンスルホン酸メチル、トリフルォロメタンスルホン酸メチル、 p-トルエンスルホン酸メチ ル等の有機スルホン酸アルキル;ジメチル硫酸、ジェチル硫酸等のジアルキル硫酸 が挙げられるが、好ましくはハロゲン化アルキル、ジアルキル硫酸、更に好ましくはョ ゥ化メチル、ジメチル硫酸が使用される。なお、これらのアルキル化剤は、アルキル化 するアルキル基が同一であれば、二種以上を混合して使用しても良 、。
[0049] 本発明の反応において使用するアルキル化剤の量は、化合物(5) 1モルに対して、 好ましくは 0.5〜10当量、更に好ましくは 0.8〜5当量である。
[0050] 本発明の反応は溶媒の存在下で行うのが望ましぐ使用する溶媒としては、反応を 阻害しないものならば特に限定されず、例えば、水;メタノール、エタノール、イソプロ ピルアルコール、 t-ブチルアルコール、メトキシエタノール、エトキシエタノール、ブト キシエタノール等のアルコール類;ァセトニトリル、プロピオ-トリル、ベンゾ-トリル等 の-トリル類;アセトン、メチルェチルケトン、メチルイソブチルケトン等のケトン類; N, N-ジメチルホルムアミド、 Ν,Ν-ジメチルァセトアミド、 Ν-メチルピロリドン等のアミド類; Ν,Ν'-ジメチルイミダゾリジノン等の尿素類;ジメチルスルホキシド等のスルホキシド類; スルホラン等のスルホン類が挙げられる力 好ましくは水、アルコール類、更に好まし くは、水、メタノールが使用される。なお、これらの溶媒は、単独又は二種以上を混合 して使用しても良い。
[0051] 前記溶媒の使用量は、反応液の均一性や攪拌性により適宜調節するが、化合物( 5) lgに対して、好ましくは 0.1〜100g、更に好ましくは 0.5〜50gである。
[0052] 本発明の反応は、例えば、化合物(5)、アルキル化剤及び溶媒を混合し、攪拌しな 力 反応させる等の方法によって行われる。その際の反応温度は、好ましくは- 30〜2 00°C、更に好ましくは- 20〜150°Cであり、反応圧力は特に制限されない。
[0053] なお、本発明の反応によって化合物(6)が得られるが、これは、反応終了後、中和 、抽出、濾過、濃縮、蒸留、再結晶、晶析、カラムクロマトグラフィー等の一般的な方 法によって単離 '精製される。
実施例
[0054] 次に、実施例を挙げて本発明を具体的に説明する力 本発明の範囲はこれらに限 定されるものではない。なお、生成物である 3,3-ジアルコキシ -2-ヒドロキシメチレンプ 口パン-トリルのアルカリ金属塩 (ィ匕合物 (4))は、高速液体クロマトグラフィーによる分 析中に、 2-シァノマロンアルデヒドに分解するため、 2-シァノマロンアルデヒドとして定 量し反応収率を算出した。
[0055] 実施例 1:化合物 (4)の合成 (3.3-ジエトキシ -2-ヒドロキシメチレンプロパン二トリルの ナトリウム塩、 3-エトキシ- 3-メトキシ- 2-ヒドロキシメチレンプロパン二トリルのナトリウム 及び 3.3-ジメトキシ- 2-ヒドロキシメチレンプロパン二トリルのナトリウム の合成) 攪拌装置、温度計及び滴下漏斗を備えた内容積 100mlのガラス製フラスコに、 3,3- ジメトキシプロパン二トリル 11.51g(100mmol)、ナトリウムメトキシド 10.8g(200mmol)及び トルエン 35mlをカ卩えた。次いで、液温を 15〜20°Cに保ちながら、 97質量%のギ酸ェチ ル 9.30g(122mmol)をトルエン 12mlに溶解させた溶液をゆるやかに加え、攪拌しながら 同温度で 8時間反応させた。反応終了後、反応溶液を高速液体クロマトグラフィーに より分析 (絶対定量法)したところ、 3,3-ジエトキシ -2-ヒドロキシメチレンプロパン-トリ ルのナトリウム塩、 3-エトキシ -3-メトキシ- 2-ヒドロキシメチレンプロパン-トリルのナトリ ゥム塩及び 3,3-ジメトキシ _2_ヒドロキシメチレンプロパン-トリルのナトリウム塩が合計 93.3mmol生成していた(3,3-ジメトキシプロパン-トリル基準の反応収率; 93.3%)。な お、この時の一酸ィヒ炭素の発生量は僅か 4.7mmolであった (ギ酸ェチル基準の発生 率; 3.9%)。
[0056] 実施例 2 :化合物 (4)の合成 (3.3-ジエトキシ -2-ヒドロキシメチレンプロパン二トリルの ナトリウム塩、 3-エトキシ- 3-メトキシ- 2-ヒドロキシメチレンプロパン二トリルのナトリウム 及び 3.3-ジメトキシ- 2-ヒドロキシメチレンプロパン二トリルのナトリウム の合成) 攪拌装置、温度計及び滴下漏斗を備えた内容積 100mlのガラス製フラスコに、 3,3- ジメトキシプロパン二トリル 11.51g(100mmol)、ナトリウムメトキシド 10.8g(200mmol)及び トルエン 35mlをカ卩えた。次いで、液温を 10〜15°Cに保ちながら、 97質量%のギ酸ェチ ル 9.30g(122mmol)をトルエン 12mlに溶解させた溶液をゆるやかに加え、攪拌しながら 同温度で 8時間反応させた。反応終了後、反応溶液を高速液体クロマトグラフィーに より分析 (絶対定量法)したところ、 3,3-ジエトキシ -2-ヒドロキシメチレンプロパン-トリ ルのナトリウム塩、 3-エトキシ -3-メトキシ- 2-ヒドロキシメチレンプロパン-トリルのナトリ ゥム塩及び 3,3-ジメトキシ _2_ヒドロキシメチレンプロパン-トリルのナトリウム塩が合計 89.2mmol (3,3-ジメトキシプロパン-トリル基準の反応収率; 89.2%)が生成して!/、た。 なお、この時の一酸ィ匕炭素の発生量は僅か 3.0mmolであった (ギ酸ェチル基準の発 生率; 2.5%)。
[0057] 比較例 1 (3,3-ジエトキシ -2-ヒドロキシメチレンプロパン二トリルのナトリウム塩、 3-エト キシ- 3-メトキシ- 2-ヒドロキシメチレンプロパン二トリルのナトリウム 及び 3.3-ジメトキ シ- 2-ヒドロキシメチレンプロパン二トリルのナトリウム の合成)
攪拌装置、温度計及び滴下漏斗を備えた内容積 25mlのガラス製フラスコに、 3,3-ジ メトキシプロパン-トリル 1.15g(10mmol)、ナトリウムメトキシド 1.08g(20mmol)及びトルェ ン 3.5mlをカ卩えた。次いで、液温を 35〜40°Cに保ちながら、 97質量%のギ酸ェチル 0. 93g(12.2mmol)をトルエン 1.2mlに溶解させた溶液をゆるやかに加え、攪拌しながら同 温度で 6時間反応させた。反応終了後、反応溶液を高速液体クロマトグラフィーにより 分析 (絶対定量法)したところ、 3,3-ジエトキシ -2-ヒドロキシメチレンプロパン-トリル のナトリウム塩、 3-エトキシ -3-メトキシ- 2-ヒドロキシメチレンプロパン-トリルのナトリウ ム塩及び 3,3-ジメトキシ _2_ヒドロキシメチレンプロパン-トリルのナトリウム塩が合計 9. 32mmol生成していた(3,3-ジメトキシプロパン-トリル基準の反応収率; 93.2%)。なお 、この時の一酸ィ匕炭素の発生量は 1.2mmolであった (ギ酸ェチル基準の発生率; 9.8 %)。
[0058] 比較例 2 (3,3-ジメトキシ -2-ヒドロキシメチレンプロパン二トリルのナトリウム塩の合成)
攪拌装置、温度計及び滴下漏斗を備えた内容積 25mlのガラス製フラスコに、 3,3-ジ メトキシプロパン-トリル 1.15g(10mmol)、ナトリウムメトキシド 1.08g(20mmol)及びトルェ ン 3.5mlをカ卩えた。次いで、液温を 35〜40°Cに保ちながら、 97質量%のギ酸メチル 0.7 6g(12.2mmol)をトルエン 1.2mlに溶解させた溶液をゆるやかに加え、攪拌しながら同 温度で 6時間反応させた。反応終了後、反応溶液を高速液体クロマトグラフィーにより 分析 (絶対定量法)したところ、 3,3-ジメトキシ -2-ヒドロキシメチレンプロパン-トリルの ナトリウム塩が 5.50mmol生成して!/、た(3,3_ジメトキシプロパン-トリル基準の反応収 率; 55.0%)。なお、この時の一酸ィ匕炭素の発生量は 2.8mmolであった(ギ酸メチル基 準の発生率; 23.0%)。
[0059] 実施例 3:化合物(4)の合成(3,3-ジエトキシ -2-ヒドロキシメチレンプロパン二トリルの ナトリウム塩、 3-エトキシ -3-メトキシ -2-ヒドロキシメチレンプロパン二トリルのナトリウム 塩及び 3.3-ジメトキシ- 2-ヒドロキシメチレンプロパン二トリルのナトリウム塩の合成) 攪拌装置、温度計及び滴下漏斗を備えた内容積 100mlのガラス製フラスコに、 3-メ トキシ- 2-プロペン二トリル 8.3g(100mmol)、ナトリウムメトキシド 10.8g(200mmol)及びテト ラヒドロフラン 30mlをカ卩えた。次いで、液温を 0〜10°Cに保ちながら、 97質量%のギ酸 ェチル 9.16g(120mmol)をテトラヒドロフラン 10mlに溶解させた溶液をゆるやかに加え、 攪拌しながら同温度で 6時間反応させた。反応終了後、反応溶液を高速液体クロマト グラフィ一により分析 (絶対定量法)したところ、 3,3-ジェトキシ -2-ヒドロキシメチレンプ 口パン-トリルのナトリウム塩、 3-エトキシ -3-メトキシ- 2-ヒドロキシメチレンプロパン-ト リルのナトリウム塩及び 3,3-ジメトキシ- 2-ヒドロキシメチレンプロパン-トリルのナトリウ ム塩が合計 94.9mmol生成して!/、た(3_メトキシ _2_プロペン-トリル基準の反応収率; 94.9%) oなお、この時の一酸化炭素の発生量は僅力 .9mmolであった(ギ酸ェチル 基準の発生率; 4.1%)。
[0060] 比較例 3 (3.3-ジエトキシ -2-ヒドロキシメチレンプロパン二トリルのナトリウム塩、 3-エト キシ -3-メトキシ -2-ヒドロキシメチレンプロパン二トリルのナトリウム塩及び 3,3-ジメトキ シ- 2-ヒドロキシメチレンプロパン二トリルのナトリウム塩の合成)
攪拌装置、温度計及び滴下漏斗を備えた内容積 25mlのガラス製フラスコに、 3-メト キシ- 2-プロペン-トリル 0.83g(10mmol)、ナトリウムメトキシド 1.08g(20mmol)及びトルェ ン 3.5mlをカ卩えた。次いで、液温を 35〜40°Cに保ちながら、 97質量%のギ酸ェチル 0. 93g(12.2mmol)をトルエン 1.2mlに溶解させた溶液をゆるやかに加え、攪拌しながら同 温度で 6時間反応させた。反応終了後、反応溶液を高速液体クロマトグラフィーにより 分析 (絶対定量法)したところ、 3,3-ジエトキシ -2-ヒドロキシメチレンプロパン-トリル のナトリウム塩、 3-エトキシ -3-メトキシ- 2-ヒドロキシメチレンプロパン-トリルのナトリウ ム塩及び 3,3-ジメトキシ -2-ヒドロキシメチレンプロパン-トリルのナトリウム塩が合計 8. 90mmol生成していた(3-メトキシプロペン-トリル基準の反応収率; 89.0%)。なお、こ の時の一酸ィ匕炭素の発生量は 1.4mmolであった (ギ酸ェチル基準の発生率; 11.4%)
[0061] 実施例 4:化合物(4)の合成(3,3-ジエトキシ- 2-ヒドロキシメチレンプロパン二トリルの ナトリウム塩、 3-エトキシ -3-メトキシ -2-ヒドロキシメチレンプロパン二トリルのナトリウム 塩及び 3.3-ジメトキシ- 2-ヒドロキシメチレンプロパン二トリルのナトリウム塩の合成) 攪拌装置、温度計及び滴下漏斗を備えた内容積 100mlのガラス製フラスコに、 3,3- ジメトキシプロパン二トリル 11.51g(100mmol)、ナトリウムメトキシド 10.8g(200mmol)及び テトラヒドロフラン 20mlを加えた。次いで、液温を 0〜5°Cに保ちながら、 97質量%のギ 酸ェチル 9.16g(120mmol)をテトラヒドロフラン 10mlに溶解させた溶液をゆるやかに加 え、攪拌しながら同温度で 6時間反応させた。反応終了後、反応溶液を高速液体クロ マトグラフィ一により分析 (絶対定量法)したところ、 3,3-ジエトキシ -2-ヒドロキシメチレ ンプロパン-トリルのナトリウム塩、 3-エトキシ -3-メトキシ- 2-ヒドロキシメチレンプロパ ン-トリルのナトリウム塩及び 3, 3-ジメトキシ- 2-ヒドロキシメチレンプロパン-トリルのナ トリウム塩が合計 97.8mmol生成して 、た(3,3_ジメトキシプロパン-トリル基準の反応 収率; 97.8%)。この時の一酸化炭素の発生量は僅力 3.0mmolであった(ギ酸ェチル 基準の発生率; 2.5%)。
[0062] 実施例 5:化合物 (4)の合成 (3.3-ジエトキシ -2-ヒドロキシメチレンプロパン二トリルの ナトリウム塩、 3-エトキシ -3-メトキシ -2-ヒドロキシメチレンプロパン二トリルのナトリウム 塩及び 3.3-ジメトキシ- 2-ヒドロキシメチレンプロパン二トリルのナトリウム塩の合成) 攪拌装置、温度計及び滴下漏斗を備えた内容積 100mlのガラス製フラスコに、 3,3- ジメトキシプロパン二トリル 11.51g(100mmol)、ナトリウムメトキシド 10.8g(200mmol)及び テトラヒドロフラン 30mlを加えた。次いで、液温を 10〜15°Cに保ちながら、 97質量%の ギ酸ェチル 9.16g(120mmol)をテトラヒドロフラン 10mlに溶解させた溶液をゆるやかに 加え、攪拌しながら同温度で 6時間反応させた。反応終了後、反応溶液を高速液体 クロマトグラフィーにより分析 (絶対定量法)したところ、 3,3-ジエトキシ- 2-ヒドロキシメ チレンプロパン-トリルのナトリウム塩、 3-エトキシ -3-メトキシ- 2-ヒドロキシメチレンプ 口パン-トリルのナトリウム塩及び 3, 3-ジメトキシ- 2-ヒドロキシメチレンプロパン-トリル のナトリウム塩が合計 97.0mmol生成して 、た(3,3-ジメトキシプロパン-トリル基準の 反応収率; 97.0%)。この時の一酸ィ匕炭素の発生量は僅か 5.9mmolであった(ギ酸ェ チル基準の発生率; 4.9%)。
[0063] 実施例 6:化合物(4)の合成(3,3-ジエトキシ- 2-ヒドロキシメチレンプロパン二トリルの ナトリウム塩、 3-エトキシ -3-メトキシ -2-ヒドロキシメチレンプロパン二トリルのナトリウム 塩及び 3.3-ジメトキシ- 2-ヒドロキシメチレンプロパン二トリルのナトリウム塩の合成) 実施例 1において、 3,3-ジメトキシプロパン-トリルの代わりに、 3,3-ジメトキシプロパ ン-トリルと 3-メトキシ- 2-プロペン-トリルの 1:1 (モル比)の混合物を使用して、実施 例 1と同様に反応を行うと、 3,3-ジエトキシ- 2-ヒドロキシメチレンプロパン-トリルのナ トリウム塩、 3-エトキシ -3-メトキシ- 2-ヒドロキシメチレンプロパン-トリルのナトリウム塩 及び 3,3-ジメトキシ -2-ヒドロキシメチレンプロパン-トリルのナトリウム塩が高い収率で 得られ、この時の一酸化炭素の発生量は僅かである。
[0064] ¾施例 7:化合物 (5)「M2=ナトリウム原子 Ίの合成 (4-アミノ -2-メルカプト- 5-ピリミジ ンカルバルデヒドのナトリウム の合成)
攪拌装置、温度計、滴下漏斗及び還流冷却器を備えた内容積 200mlのガラス製フ ラスコに、 3,3-ジメトキシプロパン-トリル 11.51g(100mmol)、ナトリウムメトキシド 10.80g( 200mmol)及びテトラヒドロフラン 20mlをカ卩えた。次いで、液温を 5〜10°Cに保ちながら 、 97質量0 /0のギ酸ェチル 9.16g(120mmol)をテトラヒドロフラン 10mlに溶解させた溶液 をゆるや力にカ卩え、攪拌しながら同温度で 4.5時間反応させ、 3,3-ジメトキシ -2-ヒドロ キシメチレンプロパン-トリルのナトリウム塩を主成分とする溶液を得た。
[0065] 上記で得られた 3,3-ジメトキシ _2_ヒドロキシメチレンプロパン二トリルのナトリウム塩 を主成分とする溶液に、チォ尿素 7.99g(105mmol)、 2-ブトキシエタノール 25ml及びィ ソプロピルアルコール 30mlを加え、攪拌しながら 50°Cで 3時間反応させた。
[0066] 反応終了後、反応液を減圧下で濃縮した後、濃縮物にメタノール 11.2ml及び水 37.
5mlを加え、 20〜25°Cで 1時間攪拌させた。得られた固体を濾過した後、減圧下で乾 燥させて、黄色粉末として、純度 94.5質量% (高速液体クロマトグラフィーによる定量 値)の 4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドのナトリウム塩 13.28gを得た( 3,3-ジメトキシプロパン-トリル基準の単離収率; 70.8%)。
[0067] 4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドのナトリウム塩は、以下の物性値 で示される新規な化合物である。
融点; 297〜300°C
1H-NMR(DMSO-d , δ (ppm)) ;6.75〜7.70(2H,brs)ゝ 7.99(lH,s)ゝ 9.38(lH,s)
6
[0068] 実施例 8 :化合物(5)「M2=カリウム原子 Ίの合成 (4-ァミノ- 2-メルカプト- 5-ピリミジン カルバルデヒドのカリウム塩の合成)
攪拌装置、温度計、滴下漏斗及び還流冷却器を備えた内容積 200mlのガラス製フ ラスコに、 3,3-ジメトキシプロパン-トリル 11.51g(100mmol)、 95質量0 /0のカリウムメトキ シド 14.77g(200mmol)及びテトラヒドロフラン 50mlをカ卩えた。次!、で、液温を 5〜10°Cに 保ちながら、 97質量0 /0のギ酸ェチル 9.16g(120mmol)をテトラヒドロフラン 10mlに溶解さ せた溶液をゆるやかに加え、攪拌しながら同温度で 4.5時間反応させ、 3,3-ジメトキシ -2-ヒドロキシメチレンプロパン-トリルのカリウム塩を主成分とする溶液を得た。
[0069] 上記で得られた 3,3-ジメトキシ- 2-ヒドロキシメチレンプロパン-トリルのカリウム塩を 主成分とする溶液に、チォ尿素 7.99g(105mmol)、 2-ブトキシエタノール 25ml及びイソ プロピルアルコール 30mlを加え、攪拌しながら 50°Cで 3時間反応させた。
[0070] 反応終了後、反応液を減圧下で濃縮した後、濃縮物にメタノール 11.2ml及び水 37.
5mlを加え、 20〜25°Cで 1時間攪拌させた。得られた固体を濾過した後、減圧下で乾 燥させて、淡黄色粉末として、純度 99.0質量% (高速液体クロマトグラフィーによる定 量値)の 4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドのカリウム塩 7.63gを得た(3 ,3-ジメトキシプロパン-トリル基準の単離収率; 39.0%)。
[0071] 4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドのカリウム塩は、以下の物性値で 示される新規な化合物である。
融点; 303〜305°C
1H-NMR(DMSO-d , δ (ppm)) ;6.80〜7.70(2H,brs)ゝ 7.99(lH,s)ゝ 9.36(lH,s)
6
[0072] 実施例 9 :化合物(5)「M2=ナトリウム原子 Ίの合成 (4-ァミノ- 2-メルカプト- 5-ピリミジ ンカルバルデヒドのナトリウム塩の合成)
実施例 7と同じ方法により、 3,3-ジメトキシ -2-ヒドロキシメチレンプロパン-トリルのナ トリウム塩を主成分とする溶液を得た。
[0073] 得られた 3,3-ジメトキシ- 2-ヒドロキシメチレンプロパン-トリルのナトリウム塩を主成 分とする溶液に、チォ尿素 7.99g(105mmol)、 2-ブトキシエタノール 25ml及びメタノー ル 30mlをカ卩え、攪拌しながら 50°Cで 3時間反応させた。
[0074] 反応終了後、反応液を減圧下で濃縮した後、濃縮物に水 37.5mlを加え、 20〜25°C で 1時間攪拌させた。得られた固体を濾過した後、減圧下で乾燥させて、黄色粉末と して、純度 98.4質量% (高速液体クロマトグラフィーによる定量値)の 4_ァミノ- 2_メル カプト- 5-ピリミジンカルバルデヒドのナトリウム塩 9.89gを得た(3,3-ジメトキシプロパン 二トリル基準の単離収率; 54.9%)。
[0075] ¾施例 ίθ :化合物 (5)「Μ2=ナトリウム原子 Ίの合成 (4-ァミノ- 2-メルカプト- 5-ピリミ ジンカルバルデヒドのナトリウム塩の合成)
実施例 7と同じ方法により、 3,3-ジメトキシ -2-ヒドロキシメチレンプロパン-トリルのナ トリウム塩を主成分とする溶液を得た。
[0076] 得られた 3,3-ジメトキシ- 2-ヒドロキシメチレンプロパン-トリルのナトリウム塩を主成 分とする溶液に、チォ尿素 7.99g(105mmol)、 2-ブトキシエタノール 25ml及びエタノー ル 30mlをカ卩え、攪拌しながら 50°Cで 3時間反応させた。
[0077] 反応終了後、反応液を減圧下で濃縮した後、濃縮物にメタノール 11.2ml及び水 37.
5mlを加え、 20〜25°Cで 1時間攪拌させた。得られた固体を濾過した後、減圧下で乾 燥させて、黄色粉末として、純度 96.5質量% (高速液体クロマトグラフィーによる定量 値)の 4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドのナトリウム塩 13.05gを得た(
3,3-ジメトキシプロパン-トリル基準の単離収率; 71.0%)。
[0078] 実施例 11:化合物(5)「M2=ナトリウム原子 Ίの合成 (4-ァミノ- 2-メルカプト- 5-ピリミ ジンカルバルデヒドのナトリウム塩の合成)
実施例 7と同じ方法により、 3,3-ジメトキシ -2-ヒドロキシメチレンプロパン-トリルのナ トリウム塩を主成分とする溶液を得た。
[0079] 得られた 3, 3-ジメトキシ- 2-ヒドロキシメチレンプロパン-トリルのナトリウム塩を主成 分とする溶液に、チォ尿素 7.99g(105mmol)及び 2-ブトキシエタノール 55mlを加え、攪 拌しながら 50°Cで 3時間反応させた。 [0080] 反応終了後、反応液を減圧下で濃縮した後、濃縮物にメタノール 11.2ml及び水 37. 5mlを加え、 20〜25°Cで 1時間攪拌させた。得られた固体を濾過した後、減圧下で乾 燥させて、黄色粉末として、純度 96.0質量% (高速液体クロマトグラフィーによる定量 値)の 4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドのナトリウム塩 12.40gを得た( 3,3-ジメトキシプロパン-トリル基準の単離収率; 67.2%)。
[0081] 実施例 12:化合物( 5)「M2=ナトリウム原子 Ίの合成 (4-ァミノ- 2-メルカプト- 5-ピリミ ジンカルバルデヒドのナトリウム塩の合成)
実施例 7と同じ方法により、 3,3-ジメトキシ -2-ヒドロキシメチレンプロパン-トリルのナ トリウム塩を主成分とする溶液を得た。
[0082] 得られた 3,3-ジメトキシ- 2-ヒドロキシメチレンプロパン-トリルのナトリウム塩を主成 分とする溶液に、チォ尿素 7.99g(105mmol)及びイソプロピルアルコール 55mlをカロえ、 攪拌しながら 50°Cで 3時間反応させた。
[0083] 反応終了後、反応液を減圧下で濃縮した後、濃縮物にメタノール 11.2ml及び水 37.
5mlを加え、 20〜25°Cで 1時間攪拌させた。得られた固体を濾過した後、減圧下で乾 燥させて、黄色粉末として、純度 78.4質量% (高速液体クロマトグラフィーによる定量 値)の 4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドのナトリウム塩 14.88gを得た( 3,3-ジメトキシプロパン-トリル基準の単離収率; 65.8%)。
[0084] ¾施例 ί 3:化合物 (6)「RZ=メチル Ίの合成 (4-アミノ -2-メチルチオ- 5-ピリミジン力 ルバルデヒドの合成)
攪拌装置、温度計及び滴下漏斗を備えた内容積 2000mlのガラス製フラスコに、実 施例 7と同様な方法で合成した 50.0質量%の 4-ァミノ- 2-メルカプト- 5-ピリミジンカル バルデヒドのナトリウム塩 200.0g(564mmol)、メタノール 325ml及び水 225mlをカ卩えた後 、液温を 15〜25°Cに保ちながら、 95質量%ヨウ化メチル 92.7g(620mmol)をゆるやかに 加え、攪拌しながら同温度で 2時間反応させた。反応終了後、析出した結晶を濾過し 、減圧下で乾燥させ、黄色結晶として、純度 94.2質量% (高速液体クロマトグラフィー による定量値)の 4-ァミノ- 2-メチルチオ- 5-ピリミジンカルバルデヒド 99.6gを得た (4- ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドのナトリウム塩基準の単離収率; 98.3 %)。 [0085] 4-ァミノ- 2-メチルチオ- 5-ピリミジンカルバルデヒドの物性値は以下の通りであった CI-MS(m/e) ; 170(M+l)
1H-NMR(DMSO-d , δ (ppm)) ;2.50(3H,s)ゝ 8.03(lH,brs)ゝ 8.28(lH,brs)ゝ 8.57(lH,s)ゝ 9.
6
77(lH,s)
[0086] 実施例 14 :化合物(6)「RZ=メチル某 Ίの合成 (4-ァミノ- 2-メチルチオ- 5-ピリミジン力 ルバルデヒドの合成)
攪拌装置、温度計及び滴下漏斗を備えた内容積 200mlのガラス製フラスコに、実施 例 7と同様な方法で合成した 50.0質量%の 4-ァミノ- 2-メルカプト- 5-ピリミジン力ルバ ルデヒドのナトリウム塩 20.0g(56.4mmol)及び水 55mlをカ卩えた後、液温を 15〜25°Cに 保ちながら、 95質量%ヨウ化メチル 10.1g(67.6mmol)をゆるやかに加え、攪拌しながら 同温度で 2時間反応させた。反応終了後、析出した結晶を濾過し、減圧下で乾燥さ せ、黄色結晶として、純度 94.7質量% (高速液体クロマトグラフィーによる定量値)の 4 -ァミノ- 2-メチルチオ- 5-ピリミジンカルバルデヒド 9.84gを得た(4-ァミノ- 2-メルカプト -5-ピリミジンカルバルデヒドのナトリウム塩基準の単離収率; 97.6%)。
[0087] ¾施例 ί 5:化合物 (6)「RZ=メチル Ίの合成 (4-アミノ -2-メチルチオ- 5-ピリミジン力 ルバルデヒドの合成)
攪拌装置、温度計及び滴下漏斗を備えた内容積 200mlのガラス製フラスコに、実施 例 7と同様な方法で合成した 55.7質量%の 4-ァミノ- 2-メルカプト- 5-ピリミジン力ルバ ルデヒドのナトリウム塩 18.0g(56.6mmol)及び水 59.5mlをカ卩えた後、液温を 15〜30°Cに 保ちながら、 95質量 %ジメチル硫酸 8.2g(61.8mmol)をゆるやかに加え、攪拌しながら 同温度で 1時間反応させた。反応終了後、析出した結晶を濾過し、減圧下で乾燥さ せ、黄色結晶として、純度 92.1質量% (高速液体クロマトグラフィーによる定量値)の 4 -ァミノ- 2-メチルチオ- 5-ピリミジンカルバルデヒド 8.34gを得た(4-ァミノ- 2-メルカプト -5-ピリミジンカルバルデヒドのナトリウム塩基準の単離収率; 80.2%)。
[0088] 試験例 1 :化合物(5)「M2=ナトリウム原子 Ί (4-ァミノ- 2-メルカプト- 5-ピリミジンカル バルデヒドのナトリウム塩)の濾渦性
実施例 7と同様な方法で合成した 4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒド のナトリウム塩 39.3gを含む反応液 300mlを、濾紙(5C;東洋濾紙社製)を備えた直径 2 .8 X 10— 3m2のガラス製濾過器を用いて、 4.8 X 104Paの減圧下で濾過したところ、約 59 秒で濾過が完了した。
[0089] 試験例 2: 4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドの濾渦性
実施例 7と同様な方法で合成した 4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒド のナトリウム塩 39.3gを含む反応液 300mlに、水及び硫酸をカ卩えて中和し、 4-ァミノ- 2- メルカプト- 5-ピリミジンカルバルデヒド 27.2gを含む反応液 300mlを得、これを、濾紙( 5C;東洋濾紙社製)を備えた直径 2.8 X 10— 3m2のガラス製濾過器を用いて、 4.8 X 104P aの減圧下で濾過したところ、約 414秒も濾過に時間を要した。
産業上の利用可能性
[0090] 本発明により簡便な方法によって、 4-ァミノ- 2-アルキルチオ -5-ピリミジンカルバル デヒドを高収率で製造できる、工業的に好適な 4-ァミノ- 2-アルキルチォ -5-ピリミジン カルバルデヒドの製法、並びにその製法に用いる中間体ィ匕合物、およびその中間体 化合物を簡便かつ安全に高収率で製造できる、工業的に好適な製法を提供すること ができる。

Claims

請求の範囲
[1] アルカリ金属を含む塩基の存在下、一般式(1)
Figure imgf000024_0001
(式中、 R1及び R2は、同一又は異なっていても良ぐアルキル基を示す。 ) で示される 3,3-ジアルコキシプロパン-トリル及び一般式(2)
Figure imgf000024_0002
(式中、 R3は、アルキル基を示す。 )
で示される 3-アルコキシ -2-プロペン-トリルカ なる群より選ばれる少なくともひとつ の二トリル化合物と、一般式 (3)
HC02R4 (3)
(式中、 R4は、メチル基を除くアルキル基を示す。 )
で示されるギ酸エステルとを- 10〜30°Cで反応させることを特徴とする、一般式 (4)
Figure imgf000024_0003
(式中、 R5及び R6は、同一又は異なっていても良ぐアルキル基を示し、 M1は、アル カリ金属原子を示す。 )
で示される 3,3-ジアルコキシ -2-ヒドロキシメチレンプロパン-トリルのアルカリ金属塩 の製法。
[2] -5〜20°Cで反応させる、請求項 1記載の 3,3-ジアルコキシ -2-ヒドロキシメチレンプ 口パン-トリルのアルカリ金属塩の製法。
[3] アルカリ金属を含む塩基が、ナトリウム原子又はカリウム原子を含む塩基である、請 求項 1又は 2に記載の 3,3-ジアルコキシ -2-ヒドロキシメチレンプロパン-トリルのアル カリ金属塩の製法。
R4がェチル基である請求項 1〜3のいずれ力 1項記載の 3,3-ジアルコキシ -2-ヒドロ キシメチレンプロパン-トリルのアルカリ金属塩の製法。
一般式 (5)
Figure imgf000025_0001
(式中、 M2は、アルカリ金属原子を示す。 )
で示される 4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドのアルカリ金属塩。
4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドのナトリウム塩又はカリウム塩, 一般式 (4)
Figure imgf000025_0002
(式中、 R5及び R6は、同一又は異なっていても良ぐアルキル基を示し、 M1は、アル カリ金属原子を示す。 )
で示される 3,3-ジアルコキシ -2-ヒドロキシメチレンプロパン-トリルのアルカリ金属塩 とチォ尿素とを反応させることを特徴とする、一般式 (5)
Figure imgf000025_0003
(式中、 M2は、アルカリ金属原子を示す。 )
で示される 4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドのアルカリ金属塩の製 法。
[8] 反応を、塩基の存在下、溶媒中で行う、請求項 7記載の 4-ァミノ- 2-メルカプト- 5-ピ リミジンカルバルデヒドのアルカリ金属塩の製法。
[9] 請求項 1記載の方法により 3,3-ジアルコキシ -2-ヒドロキシメチレンプロパン-トリル のアルカリ金属塩を得る工程を更に含む、請求項 7又は請求項 8記載の方法。
[10] 一般式 (5)
Figure imgf000026_0001
(式中、 M2は、アルカリ金属原子を示す。 )
で示される 4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドのアルカリ金属塩とアル キル化剤とを反応させることを特徴とする、一般式 (6)
Figure imgf000026_0002
(式中、 R7は、アルキル基である。 )
で示される 4-ァミノ- 2-アルキルチオ- 5-ピリミジンカルバルデヒドの製法。
[11] 一般式 (6)
Figure imgf000026_0003
(式中、 R7は、アルキル基である。 )
で示される 4-ァミノ- 2-アルキルチオ- 5-ピリミジンカルバルデヒドの製造における一般 式 (5)
Figure imgf000026_0004
(式中、 M2は、アルカリ金属原子を示す。 )
で示される 4-ァミノ- 2-メルカプト- 5-ピリミジンカルバルデヒドのアルカリ金属塩の使
PCT/JP2006/308507 2005-04-25 2006-04-24 4-アミノ-2-アルキルチオ-5-ピリミジンカルバルデヒドの製法 WO2006115237A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007514702A JP4968066B2 (ja) 2005-04-25 2006-04-24 4−アミノ−2−アルキルチオ−5−ピリミジンカルバルデヒドの製法
US11/919,179 US20090306380A1 (en) 2005-04-25 2006-04-24 Process for preparing 4-amino-2-alkylthio-5-pyrimidinecarbaldehyde

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-126090 2005-04-25
JP2005126090 2005-04-25
JP2005166513 2005-06-07
JP2005-166512 2005-06-07
JP2005-166513 2005-06-07
JP2005166512 2005-06-07

Publications (1)

Publication Number Publication Date
WO2006115237A1 true WO2006115237A1 (ja) 2006-11-02

Family

ID=37214851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308507 WO2006115237A1 (ja) 2005-04-25 2006-04-24 4-アミノ-2-アルキルチオ-5-ピリミジンカルバルデヒドの製法

Country Status (3)

Country Link
US (1) US20090306380A1 (ja)
JP (2) JP4968066B2 (ja)
WO (1) WO2006115237A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321749A (ja) * 2005-05-19 2006-11-30 Ube Ind Ltd 2−シアノマロンアルデヒドのアルカリ金属塩の製法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115032318A (zh) * 2022-06-28 2022-09-09 中国食品药品检定研究院 一种检测3-(n-亚硝基甲氨基)丙腈含量的液相色谱分析方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019755A (ja) * 1983-07-12 1985-01-31 Ube Ind Ltd 2−アルカリホルミル−3,3−ジアルコキシプロパンニトリル類の製法
JP2004507540A (ja) * 2000-08-31 2004-03-11 エフ.ホフマン−ラ ロシュ アーゲー 7−オキソ−ピリドピリミジン類

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183168A (ja) * 1984-09-28 1986-04-26 Ube Ind Ltd 2−メルカプト−4−アミノ−5−ホルミルピリミジンおよびその製法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019755A (ja) * 1983-07-12 1985-01-31 Ube Ind Ltd 2−アルカリホルミル−3,3−ジアルコキシプロパンニトリル類の製法
JP2004507540A (ja) * 2000-08-31 2004-03-11 エフ.ホフマン−ラ ロシュ アーゲー 7−オキソ−ピリドピリミジン類

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321749A (ja) * 2005-05-19 2006-11-30 Ube Ind Ltd 2−シアノマロンアルデヒドのアルカリ金属塩の製法

Also Published As

Publication number Publication date
US20090306380A1 (en) 2009-12-10
JP2012102123A (ja) 2012-05-31
JP5516567B2 (ja) 2014-06-11
JPWO2006115237A1 (ja) 2008-12-18
JP4968066B2 (ja) 2012-07-04

Similar Documents

Publication Publication Date Title
EP1873151B1 (en) Improved process for producing moxonidine
JP5516567B2 (ja) 4−アミノ−2−アルキルチオ−5−ピリミジンカルバルデヒドの製法
JP6695908B2 (ja) ベンズアミド化合物の製造方法
JP4984676B2 (ja) ベンジルオキシ基を有するアニリンの製法
TWI483934B (zh) 4,6-dialkoxy-2-cyanomethylpyrimidine and a synthetic intermediate thereof
JP4899385B2 (ja) 3−アミノメチルオキセタン化合物の製法
JP5205971B2 (ja) テトラヒドロピラン化合物の製造方法
JP2003212861A (ja) ピリミジニルアルコール誘導体の製造方法及びその合成中間体
JP3959178B2 (ja) ヒドラジン誘導体の製造方法、その中間体および中間体の製造方法
CN105017219A (zh) 一种p53-MDM2结合抑制剂二羟基异喹啉衍生物的合成方法
JP4792892B2 (ja) シアノケトンのアルカリ金属塩の製法
JP5034277B2 (ja) 3−(n−アシルアミノ)−3−(4−テトラヒドロピラニル)−2−オキソプロパン酸エステル及び3−(n−アシルアミノ)−3−(4−テトラヒドロピラニル)−2−オキソプロパノヒドラジドの製造方法
JP4923698B2 (ja) 4−アミノテトラヒドロピラン化合物の製法
JP4561197B2 (ja) 5−(4−テトラヒドロピラニル)ヒダントインの製法及びその中間体
JP2003113153A (ja) β−オキソニトリル誘導体又はそのアルカリ金属塩の製法
JP2008069089A (ja) 4−アミノ−2−メルカプト−5−ピリミジンカルバルデヒドの製法
JP2006321749A (ja) 2−シアノマロンアルデヒドのアルカリ金属塩の製法
EP4357333A1 (en) Hybutimibe intermediate and preparation method therefor
JP3918468B2 (ja) 3,3−ビス(アルコキシカルボニル−メチルチオ)プロピオニトリル及びその製造方法
JP2008239531A (ja) 4−シアノテトラヒドロピランの製造方法
JP2011037724A (ja) ピリミジニルアルコール誘導体の製造方法及びその合成中間体
JP2009215259A (ja) 3−ハロゲノ−4−ヒドロカルビルオキシニトロベンゼン化合物の製造方法
JP2006045108A (ja) 3−(n−アシルアミノ)−3−(4−テトラヒドロピラニル)プロペン酸エステル及びその製法
KR20130132854A (ko) α-메틸-β-케토에스테르의 신규 제조 방법
JP2007031331A (ja) 5−ヒドロキシ−4−メトキシ−2−ニトロ安息香酸化合物の製法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680014022.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514702

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11919179

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4960/CHENP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06745585

Country of ref document: EP

Kind code of ref document: A1