WO2005056986A1 - カムシャフト、カムシャフト用のカムの製造方法及びカムシャフト用シャフトの製造方法 - Google Patents

カムシャフト、カムシャフト用のカムの製造方法及びカムシャフト用シャフトの製造方法 Download PDF

Info

Publication number
WO2005056986A1
WO2005056986A1 PCT/JP2004/018510 JP2004018510W WO2005056986A1 WO 2005056986 A1 WO2005056986 A1 WO 2005056986A1 JP 2004018510 W JP2004018510 W JP 2004018510W WO 2005056986 A1 WO2005056986 A1 WO 2005056986A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
cam
camshaft
manufacturing
cold
Prior art date
Application number
PCT/JP2004/018510
Other languages
English (en)
French (fr)
Inventor
Fumio Takeshima
Koji Satake
Hideo Kurasawa
Kozo Ono
Original Assignee
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003414442A external-priority patent/JP4610887B2/ja
Priority claimed from JP2003414521A external-priority patent/JP2006169961A/ja
Priority claimed from JP2003414415A external-priority patent/JP2006169960A/ja
Application filed by Honda Motor Co., Ltd. filed Critical Honda Motor Co., Ltd.
Priority to EP04820319A priority Critical patent/EP1707763A4/en
Priority to US10/582,708 priority patent/US7628129B2/en
Publication of WO2005056986A1 publication Critical patent/WO2005056986A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/20Making machine elements valve parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C43/00Devices for cleaning metal products combined with or specially adapted for use with machines or apparatus provided for in this subclass
    • B21C43/02Devices for cleaning metal products combined with or specially adapted for use with machines or apparatus provided for in this subclass combined with or specially adapted for use in connection with drawing or winding machines or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C9/00Cooling, heating or lubricating drawing material
    • B21C9/005Cold application of the lubricant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C9/00Cooling, heating or lubricating drawing material
    • B21C9/02Selection of compositions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J3/00Lubricating during forging or pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/08Upsetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/06Making machine elements axles or shafts
    • B21K1/10Making machine elements axles or shafts of cylindrical form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/02Camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/026Gear drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/08Shape of cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/14Tappets; Push rods
    • F01L1/146Push-rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • F01L1/181Centre pivot rocking arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49293Camshaft making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49995Shaping one-piece blank by removing material

Definitions

  • Camshaft method of manufacturing cam for cam shaft, and method of manufacturing shaft for cam shaft
  • the present invention relates to a camshaft for opening and closing a valve of an engine, a method of manufacturing a cam for the camshaft, and a method of manufacturing a shaft for a camshaft.
  • an assembly-type camshaft that rotates in conjunction with a crankshaft and controls the open / close timing of intake and exhaust valves.
  • the shaft body is formed of a metal pipe, and this pipe is fixed to the shaft insertion hole of the cam piece by a method such as press fitting.
  • Japanese Patent Laid-Open No. 8-90139 discloses a round bar-shaped drawn steel having a volume corresponding to a cam as a product. It is disclosed to perform hot forging by stamping after heating to 1280 ° C.
  • JP-A-11-107712 Japan
  • a technology in which a hollow shaft is fitted with a cam, and the shaft is expanded by plastic working to fix the cam.
  • Japanese Patent Application Laid-Open No. 52-50963 proposes a technique for forming a camshaft at a low cost and in a short time by using cold forging.
  • the technique proposed in this Japanese Patent Application Laid-Open No. 52-50963 is a technique relating to a method for manufacturing a brake drum force shaft, and the cam has a flat plate shape. As a cam is used to open and close the nose in the engine, the technique proposed in JP-A-52-50963 can not be applied to a camshaft for an engine.
  • the present invention has been made in consideration of the above-mentioned points, and it is an object of the present invention to provide a camshaft having a reduced number of processes and higher productivity.
  • Another object of the present invention is to perform a plurality of cold forging steps continuously, thereby eliminating the need for final finishing (machining) and obtaining high dimensional accuracy. It is intended to provide a method of manufacturing a cam for a possible force shaft.
  • the present invention has an object to provide a method of manufacturing a shaft for a camshaft, which makes it possible to manufacture a shaft for a camshaft in which a pressed-in cam is unlikely to slip in the circumferential direction in a small number of steps.
  • the present invention has a shaft formed by cold forging with a powdery lubricant applied to the surface, and a cam provided on the shaft, the cam Is press-fit into the shaft.
  • the cam is fixed to the shaft, and the process of separately fixing the cam is unnecessary. Further, the cam is fixed by press-fitting, so that the anti-rotation mechanism is not necessary, and the process for forming the anti-rotation mechanism is unnecessary. Therefore, the number of processes can be reduced and the productivity can be improved. Since the shaft itself is also formed by cold forging, productivity can be improved.
  • the powdery lubricant is lime or borax.
  • the shaft is provided with a chamfered portion formed by shearing, interference with other members such as a connecting rod can be avoided. Further, by shearing, the dimensional accuracy of the shaft formed by cold forging can be maintained.
  • a cut surface is formed by shear molding on the side of the shaft, interference with other members such as a compound can be avoided.
  • shear forming can maintain the dimensional accuracy of the shaft formed by cold forging.
  • the shaft insertion hole of the cam may be formed by punching and forming. By means of punching, the axial center hole of the cam can be formed easily.
  • a gear may be provided at an axial center portion, and the gear may be pressed into the shaft.
  • the gear may be made of a synthetic resin provided with a metal bush at an axial center portion, and the metal bush may be pressed into the shaft.
  • the shaft has stepped portions with different diameters, and the cam is positioned in contact with the stepped portion, whereby the cam can be positioned easily and accurately.
  • an outline pre-deflection process is performed on a forging material having a volume larger by a predetermined amount than a final product, and a rough-shaped primary cold forging formed article Get
  • contour drawing is carried out on the first cold forged formed product, and a second cold formed by forming excess metal which has flowed along the contour as burrs on the outer diameter surface.
  • An forged compact is obtained.
  • the third cold forging molded product is obtained by shaping and removing the solder formed on the outer diameter surface and having a relief hole smaller in diameter than the shaft insertion hole formed in the inner diameter.
  • the fourth cold forged product is subjected to an inner diameter surface punching and forming to remove the burrs formed on the inner diameter surface and to form a hole corresponding to the shaft insertion hole.
  • the fifth cold forged compact is obtained.
  • a chamfered portion is formed on the peripheral edge of the first cold-forged body, and is formed on the outer diameter surface by contour drawing.
  • the area of the first chamfer formed on the periphery of one surface close to the burr is larger than the area of the second chamfer formed on the periphery of the other surface opposite to the one surface
  • a first step of applying a powdery lubricant to the outer peripheral surface of a columnar material, and one end of the material in the axial direction The second step of pressing and squeezing the material to a plurality of different diameters, pressing the end in the axial direction, and fixing the other end, the portion of the material in the outer diameter direction
  • the second step, the third step and the fourth step are performed by cold forging.
  • FIG. 1 is a schematic configuration view of an engine using a camshaft manufactured by the method of manufacturing a cam for a camshaft according to the present embodiment.
  • FIG. 2 is a perspective view of a camshaft shown in FIG.
  • FIG. 3 is a flowchart showing a manufacturing process of a cam for a camshaft according to the present embodiment.
  • FIG. 4 is a plan view of a billet cut to a predetermined length.
  • FIG. 5 is a longitudinal sectional view of the billet.
  • FIG. 6 is a perspective view of the billet.
  • FIG. 7 is a plan view of a first cold forging formed by applying contour pre-deflection to the billet with a first cold forging die.
  • FIG. 8 is a longitudinal sectional view of the first cold forged product.
  • FIG. 9 is a perspective view of the first cold forged product.
  • FIG. 10 is a schematic longitudinal sectional structural view of the first cold forging die.
  • FIG. 11 is a partially enlarged longitudinal sectional view of the first cold forged formed article shown in FIG.
  • FIG. 12 is a plan view of a second cold forged product obtained by performing contour drawing and forming on the first cold forged product using a second cold forging die.
  • FIG. 13 is a longitudinal sectional view of the second cold forged product.
  • FIG. 14 is a perspective view of the second cold forged product.
  • FIG. 15 is a schematic longitudinal sectional structural view of the second cold forging die.
  • FIG. 16 shows a third cold forged formed body in which the second cold forged formed body is subjected to simultaneous punching and forming of an inner diameter surface and an outer diameter surface by a third cold forging die. It is a plan view
  • FIG. 17 is a longitudinal sectional view of the third cold forged product.
  • FIG. 18 is a perspective view of the third cold forged product.
  • FIG. 19 is a schematic longitudinal sectional structural view of the third cold forging die.
  • FIG. 20 shows a fourth cold forged formed product in which the third cold forged formed product is press-formed to form the balance as a burr by a fourth cold forging die. It is a plan view of Ru.
  • FIG. 21 is a longitudinal sectional view of the fourth cold forged product.
  • FIG. 22 is a perspective view of the fourth cold forged product.
  • FIG. 23 is a schematic longitudinal sectional structural view of the fourth cold forging die.
  • FIG. 24 is a plan view of a fifth cold forged product having an inner diameter surface punching formed by punching out burrs on the inner surface of the fourth cold forged formed product with a fifth cold forging die. It is a figure.
  • FIG. 25 is a longitudinal sectional view of the fifth cold forged product.
  • FIG. 26 is a perspective view of the fifth cold forged product.
  • FIG. 27 is a schematic longitudinal sectional structural view of the fifth cold forging die.
  • FIG. 28 is a plan view of the final product in which the inner diameter surface and the outer diameter surface of the fifth cold forged product are simultaneously ironed by the sixth cold forging die.
  • FIG. 29 is a longitudinal sectional view of the final product.
  • FIG. 30 is a perspective view of the final product.
  • FIG. 31 is a schematic longitudinal sectional structural view of the sixth cold forging die.
  • Fig. 32 is a side view of the shaft.
  • Fig. 33 is an exploded perspective view of a cutting jig for forming a chamfered portion on the shaft.
  • Fig. 34 is a flowchart showing steps of manufacturing a camshaft.
  • Fig. 35 is a view showing a state in which a drawing process is performed while applying a lubricant to a material.
  • Fig. 36 is a diagram showing a state in which drawing work is performed on a work having a material force cut out.
  • Fig. 37 is a view showing how to form a ridge on a work.
  • Fig. 38 is a view showing how to finish the workpiece.
  • FIG. 39 is an enlarged side cross-sectional view of the stepped portion of the die.
  • a preferred embodiment of a camshaft according to the present invention, a method of manufacturing a cam for the camshaft, and a method of manufacturing a shaft for a camshaft will be described with reference to the attached drawings. This will be described in detail below.
  • FIG. 1 shows a schematic configuration view of an engine 12 in which an assembly-type camshaft 10 manufactured by the method of manufacturing a cam for a camshaft according to the present embodiment is used.
  • the camshaft 10 is used, for example, for a single-cylinder engine 12 and operates the rocker arm 18 to open and close the valve 20 by pushing up the push rod 16 in synchronization with the rotation of the crankshaft 14.
  • the nose 20 is provided in two, one for air supply and one for exhaust, and is provided with separate rocker arm 18 and push rod 16 respectively.
  • the cam shaft 10 is provided with two cams 22 and 24 having different phases in order to push up the two push holes 16 respectively.
  • the camshaft 10 includes a shaft 26 formed by cold forging, a cam 22 and a cam 24 press-fitted into the shaft 26, and a drive gear 14a of the crankshaft 14.
  • a metal bush 28a for example, a carbon steel such as S35C (carbon material with a carbon content of 0.32 to 0.38% by weight for machine structure) in JIS G4051) is provided at the axial center of the gear 28.
  • the metal bush 28 a is press-fitted to the shaft 26.
  • the gear 28 is formed by injection molding of a synthetic resin, and at that time, the metal bush 28 a may be inserted in advance.
  • the shaft 26 can be securely press-fitted and fastened.
  • a synthetic resin for the gear 28 a production method with high production efficiency such as injection molding can be used, and the force can also be made lighter compared to the metal gear.
  • the gear 28 may be a press card product, a machined product, a sintered molded product or the like using a metal according to the specification of the engine 12 and the like!
  • the cam 22 (24) has a cam (profile) surface 30 contacting the lower end surface of the push rod 16 and pressing the push rod 16 upward, and a shaft 26 being inserted therethrough.
  • a shaft insertion hole 32 is provided (see FIG. 2).
  • step SI a rod-shaped material (not shown) is cut into a predetermined length to obtain a cylindrical billet 34 as a forging material (see FIG. 4 and FIG. 6).
  • the billet 34 also has a volume force obtained by adding the volume of the final product cam 22 (24) to the volume of the final product cam 22 (24) and the volume removed as burrs.
  • the billet 34 may be obtained by shearing a coil material (not shown).
  • step S 2 the billet 34 obtained in the step S 1 is loaded into the cavity 38 of the first cold forging die 36 shown in FIG. 10, and the billet 34 is pressed by the punch 40. Perform contour pre-upset.
  • the outer contour dimension (width dimension) thicker than the thickness dimension of the final product is set larger by also pressing the billet 34 upward through the punch 40.
  • a rough-shaped primary cold forged body 42 is formed (see FIG. 7 to FIG. 9).
  • the first cold forged body 42 is such that the portion plastically deformed by the punch 40 sufficiently flows in the direction of the tip end 44 forming the force surface.
  • the tip 44 is thinner compared to other sites (see Figure 9).
  • a first chamfered portion 46a formed of an annular inclined surface is formed at the peripheral edge of the upper surface (one surface), and the lower surface on the opposite side (the other surface)
  • a second chamfered portion 46b which also has an annular inclined surface force, is formed at the peripheral edge portion of the.
  • the area of the first chamfered portion 46a formed on the upper surface is set to be larger than the area of the second chamfered portion 46b formed on the lower surface (see FIG. 11). In this case, the punch side is upward and the die side is downward.
  • first and second chamfered portions 46a and 46b are formed on the upper and lower surfaces of the first cold forged molded body 42, respectively, when cutting the burrs 56 on the outer diameter surface in step S4 described later. It is possible to prevent the occurrence of burrs on the cut surface. Therefore, it is possible to simplify the working process without providing a work for removing the burr specially in the post-process of step S4.
  • step S3 the first cold forged compact 42 obtained in step S2 is loaded into the cavity 50 of the second cold forging die 48 shown in FIG. Contour pressing is performed by pressing the first cold forged compact 42 described above.
  • width direction of the cavity 50 formed by the lower mold 48 a of the second cold forging die 48 By setting the dimension A smaller than the dimension B in the width direction of the cavity 38 formed by the lower mold 36a of the first cold forging die 36, contour drawing can be smoothly performed. Yes (see Figure 10 and Figure 15 for comparison).
  • a volume fraction of excess meat flowing along the contour shape of the outer peripheral surface is formed as an annular burr 56. (See Figure 13).
  • the contour drawing is performed along the contour of the outer peripheral surface which has no influence on the first and second chamfers 46a and 46b formed in the previous step.
  • step S 4 the second cold forged compact 54 obtained in step S 3 is loaded into the third cold forging die 58 shown in FIG. 19 and is inserted into the hole 62 of the die 60.
  • the punch 56 is punched out from the outside surface force, and at the insertion position of the shaft 26 in the subsequent step and thereafter.
  • the inner and outer diameter surfaces of the escape hole 66 which is smaller than the inner diameter of the shaft insertion hole 32 of the final product, in order to flow the excess portion of the flowable meat. Perform simultaneous punching and forming.
  • the escape holes 66 are formed to flow the surplus portion of the fluid meat only on the inner diameter side while the outer peripheral surface is restrained, in the subsequent steps and subsequent steps.
  • step 5 the third cold forged compact 70 obtained in step S 4 is loaded into the cavity of the fourth cold forging die 72 shown in FIG. 23, and the third cold forged compact 70 is obtained.
  • the force toward the lower mold 72a side causes a predetermined length to project.
  • the third cold forging formed body 70 is pressed by a punch 76 having an annular stepped portion 74 to be formed to have a predetermined thickness and to form an excess of flowable metal as burrs 78 on the inner diameter surface. Perform pressure molding.
  • guide holes 80 are respectively provided at the portions of the relief holes 66 close to the upper and lower surfaces as a preforming for punching and forming the inner diameter surface in the next step.
  • a fourth cold forged compact 82 having the same thickness dimension is formed (see FIG. 20-FIG. 22).
  • a through hole 84 penetrating along the thickness direction is formed between the pair of guide holes 80, and the material flows when removing the burr 78 on the inner diameter surface in the next step. It is formed to be easy.
  • step S6 the fourth cold forged compact 82 obtained in step S5 is loaded into the cavity of the fifth cold forging die 86 shown in FIG. 27, and the fourth cold forging is performed.
  • the fourth cold forged compact 82 is obtained by pressing the upper surface of the fourth cold forged compact 82 with a hollow punch 88 while constraining the outer diameter surface of the forged compact 82.
  • the burr 78 formed on the inner diameter surface is punched out by the fixing punch 90 fixed to the lower mold 86a.
  • a forged body 92 is formed (see FIG. 24 to FIG. 26).
  • step S7 the fifth cold forged compact 92 obtained in step S6 is loaded into the cavity of a sixth cold forging die 94 shown in FIG. 31, and the fifth cold forging is performed.
  • the fifth cold forging is performed such that the fixing punch 96 fixed to the lower mold 94 a is advanced along the shaft insertion hole 32 while the outer diameter surface of the forged molded body 92 is restrained by the mold surface.
  • the upper surface of the molded body 92 is pressed by the hollow punch 98 to simultaneously carry out ironing of the inner diameter surface and the outer diameter surface.
  • a final product as a cam 22, 24 in which a predetermined surface roughness is secured on the inner diameter surface and the outer diameter surface by performing simultaneous ironing of the inner diameter surface and the outer diameter surface (see FIG. 28 and FIG. 30). ) Can be obtained (step S8).
  • the process from step S2 to step S8 may be performed by continuous forming using a forging press.
  • the cam 22 and the cam 24 may have different diameters of the shaft wedge hole 32 according to the diameter of the press-fit portion of the shaft 26. In this case, a fixing punch 96 corresponding to each diameter may be used.
  • the shaft while maintaining a predetermined surface roughness as a cam surface where a fractured surface or a mold drop or the like does not occur on the outer peripheral surface of the final product, the shaft is press-fitted with a shaft.
  • a predetermined fitting size is secured as the insertion hole.
  • a billet 34 having a volume larger than that of the final product is used to form a surplus portion 56 on the outer diameter surface by contour drawing, and a surplus portion is formed on the inner diameter surface by press molding.
  • the burrs 78 are formed, and the burrs 56 on the outer diameter surface and the burrs 78 on the inner diameter surface are respectively removed by punching.
  • the contour drawing process is performed to
  • the flow direction of the wall is a single direction on the outer diameter side, and since the outer diameter surface is constrained in pressure molding, a single direction force in which the flow direction of the meat is on the inner diameter side is also Since the residual portion is removed as the burrs 56 and 78, for example, the final finishing process is not required by cutting and polishing, etc., and it is possible to obtain the final product having high surface roughness and dimensional accuracy. .
  • the first diameter portion 26a which is the end on which the gear 28 is provided is set to the smallest diameter.
  • the second diameter portion 26b adjacent to the other end 26e side (hereinafter referred to as arrow C side) as viewed from the first diameter portion 26a is set to a diameter slightly larger than the first diameter portion 26a, and the gear 28 is press-fit Is positioned by the minute step 27a with the second diameter 26b. Ru.
  • the third diameter portion 26c adjacent to the arrow C side as viewed from the second diameter portion 26b is set to a diameter slightly larger than that of the second diameter portion 26b, and the cam 22 and the third diameter portion 26c Positioning is performed by the minute step 27b.
  • the fourth diameter portion 26d adjacent to the arrow C side with respect to the third diameter portion 26c is set to have a slightly larger diameter than the third diameter portion 26c.
  • the fourth diameter portion 26d is provided with two chamfered portions (force bit surface) 130 force S parallel to the axis, and the chamfered wedges cause interference with the end portion of the shaft 26 force S con rod 33 (see FIG. 1). As a result, the camshaft 10 and the connecting rod 33 can be placed close to each other.
  • a force portion (also referred to as a collar) 26f for positioning when assembling the camshaft 10 to the engine 12 is provided between the fourth diameter portion 26d and the other end 26e.
  • the cam 24 is positioned by the force portion 26f at the time of pressing.
  • FIG. 32 for ease of understanding, the difference in diameter between the first diameter portion 26a and the fourth diameter portion 26d is exaggerated and illustrated, but the difference between these diameters is small. It may be set to and visually recognized as substantially the same diameter.
  • the cutting jig 100 includes a work holder 102 having a hole 102a into which the first diameter portion 26a to the fourth diameter portion 26d of the shaft 26 are inserted, and a cutter 104 for forming the chamfered portion 130. After the holder 130 is inserted and the holder 102 is slid, the other end 26e of the shaft 26 is held and the work holder 102 is pushed into the holder guide 106, and the chamfer 130 is formed.
  • a back plate 110 provided with a gas spring 1 10a (or a mechanism for enabling a forced return such as a spring or the like) that pushes out the holder guide 106, and the movable mold 108, the work holder 102, the holder guide 106 and the back plate 110 It is composed side by side.
  • a gas spring 1 10a or a mechanism for enabling a forced return such as a spring or the like
  • the portion into which the fourth diameter portion 26 d of the shaft 26 is inserted is in communication with the hole 102 b into which the force cutter 104 is inserted.
  • the hole 102b is substantially rectangular so that the cutter 104 can be set, and is in perpendicular communication with the hole 102a.
  • the cutter 104 has two parallel shafts for scraping off the portion of the chamfered portion 130 as well as the shaft 26. It has a blade 104a and an inclined surface 104b inclined so as to approach in the axial direction as the force in the direction of the holder guide 106 (hereinafter referred to as the arrow D direction) is approached.
  • the holder guide 106 has a guide surface 106b on which the inclined surface 104b abuts, and the guide surface 106b is inclined so as to approach the axial center as it moves in the arrow D direction.
  • a material which is a carbon steel having a round bar shape (cylindrical shape) is coated with sulfuric acid and etched, or a phosphate film is coated with lime. Make the surface of the body porous.
  • the treatment with oxalic acid is more preferable for the surface of the material to be porous than the treatment with a phosphate coating.
  • the carbon steel as the raw material can use, for example, the above-mentioned S35C. Also, lower carbon carbon steel can be used when performing liquid nitriding.
  • step S12 drawing is performed using a die 200 (see FIG. 35) so that the material has a predetermined outer diameter.
  • the lubricant 202 is applied to (or jetted from) the material on the front side of the die 200 to perform lubrication.
  • the surface of the material is formed in a porous shape in step S 11.
  • the lubricant 202 is contained, the surface lubricity is improved, and the material can be drawn out smoothly.
  • a powdery lubricant such as lime or borax dissolved in water or the like, or a paste is used.
  • a powdered lubricant makes it difficult for the cams 22 and 24 to slip in the circumferential direction of the shaft 26, and when incorporated into the engine 12, synchronization with the rotation of the crankshaft 14 is maintained.
  • the reduction by extraction may be set small mainly for the purpose of containing the lubricant 202 in the material.
  • step S 13 the material is cut into a predetermined length by cutting such as shearing, and a work 204 for forming the shaft 26 is taken out.
  • step S14 the workpiece 204 is drawn by cold forging using a die 206 and a punch 208 (see FIG. 36).
  • the die 206 is first opened upward. It has a hole 210 composed of a hole 210a and a second hole 210b slightly smaller in diameter than the first hole 210a.
  • the first hole portion 210a squeezes the portion corresponding to the other end 26e and the force portion 26f with respect to the work 204, and the second hole portion 210b corresponds to the first diameter portion 26a with the work 204. Narrow the part that will be the 4 diameter part 26 d.
  • the upper force of the work 204 is also axially pressed by the punch 208 and inserted into the hole 210.
  • the punch 208 is pulled up and the knockout pin 212 provided below the hole 210 is lifted to take out the work 204.
  • the side to be 6e is set to be upward.
  • step S15 a hole having a diameter slightly smaller than that of the first hole 210a of the die 206.
  • a single bar-like protrusion 217 passing through the center point is provided at the bottom of the hole 216 a, and this protrusion is pressed against the upper surface of the work 204 to make the center groove 221 in the work 204. Form and act as a detent to the workpiece 204.
  • the lower surface of the work 204 is set to be in contact with the upper surface of the knockout pin 222, and a chevron-shaped protrusion 224 is provided at the center of the upper surface of the knock out pin 222.
  • the projection 224 When the projection 224 is inserted into a central hole provided in advance on the lower surface of the work 204, it acts as a shaking stopper for the cheek 204.
  • the knockout pin 222 is supported by the bolster 226 Therefore, the lower surface of the work 204 can be pressed reliably, and the bulging portion 218 can be formed with certainty while preventing the runout of the work 204.
  • the shake accuracy of the cake 204 can be inspected, and the shake correction processing can be performed according to the inspection result. .
  • the punch 216 is pulled upward, and the knockout pin 222 is raised to take out the work 204.
  • step S16 using a die 230 and a notch 232, the workpiece 204 is finish-machined by cold forging (see FIG. 38).
  • the hole 234 provided in the die 230 has a first diameter portion 234a, a second diameter portion 234b, a third diameter portion 234c, and a fourth diameter portion 234d in this order from the bottom to the top, Then, the workpiece 204 is narrowed to form a first diameter portion 26a, a second diameter portion 26b, a third diameter portion 26c, and a fourth diameter portion 26d. Thereby, the basic shape of the shaft 26 is formed.
  • the stepped portion between the first diameter portion 234 a and the second diameter portion 234 b of the die 230 is formed in a tapered shape which decreases in diameter downward when enlarged. It has been squeezed out smoothly.
  • each step between the second diameter portion 234b and the fourth diameter portion 234d is formed in a tapered shape.
  • the punch 232 is provided with a hole 232a with a bottom, and the bottom of the hole 232a is a workpiece 2
  • the work 204 While pressing the upper surface of 04, the work 204 is inserted into the hole 230a of the die 230, squeezed and finished. At this time, the bulging portion 21 is formed by the lower surface of the punch 232 and the upper surface of the die 230.
  • step S16 After performing the finishing process in step S16, the punch 232 is pulled upward.
  • the knockout pin 235 provided under the hole 230a is raised to take out the shaft 26 formed from the work 204.
  • the shaft 26 is a work that is a source of force formed by the process of cold forging.
  • step S12 the lubricant 202 is applied in step S12, and the cold forging is performed smoothly, so that cracking and damage are less likely to occur.
  • the action of the lubricant 202 makes the die 2
  • the force S can prevent the burn-in of 00, 206, 214, 230 and the notches 208, 216, 232.
  • the process for heating and the heating equipment are unnecessary.
  • the lubricant 202 is sealed in by the porous formed on the surface of the work 204, it is effective even in the steps S13 to S16 after step S12. It has a lubricating effect, but if necessary, auxiliary lubrication and cooling may be performed by applying oil (such as header oil) to the work 204 and mold in each process.
  • oil such as header oil
  • step S17 two chamfers (cut surfaces) 130 are formed on the fourth diameter portion 26d of the shaft 26 using the cutting jig 100 (see FIG. 33).
  • the first diameter portion 26 a-the fourth diameter portion 26 d of the shaft 26 are inserted into the hole 102 a of the cutting jig 100.
  • the cutter 104 is set in the hole 102 b of the work holder 102. At this time, the two blades 104 a abut on the fourth diameter portion 26 d in a direction parallel to the shaft 26.
  • the driving force of the movable mold 108 is a force sufficiently larger than that of the gas spring 110a, and the work holder 102 and the cutter 104 move in the direction of the arrow D.
  • the inclined surface 104b of the cutter 104 is guided by the guide surface 106a and displaced along the hole 102b in the direction perpendicular to the arrow D.
  • the blade 104 a scrapes off both side surfaces of the fourth diameter portion 26 d to form a chamfered portion 130.
  • the work holder 102 is pushed back by the gas spring 110 a by pulling back the movable mold 108, and therefore the shaft 26 may be pulled out from the hole 102 a after the cutter 104 is removed.
  • the chamfered portion 130 is moved by the simple operation of moving the work holder 102 in the direction of the arrow D while the shaft 26 and the cutter 104 are set in the work holder 102. Can be formed.
  • the shaft 26 since the chamfered portion 130 is scraped off by the blade 104 a of the cutter 104, the shaft 26 does not cause plastic deformation such as bulging. Therefore, it is formed in the process up to step S17. The dimensional accuracy of the shaft 26 can be maintained.
  • step S18 the cams 22 and 24 are press-fit into the shaft 26 in order.
  • the cam 22 is press-fit to the portion of the fourth diameter portion 26d and positioned by the bulk portion 26f.
  • the cam 24 is press-fit to the portion of the second diameter portion 26 b and positioned by the step with the third diameter portion 26 c.
  • step S19 the gear 28 is pressed into the shaft 26.
  • the metal bush 28a of the gear 28 is press-fit into the first diameter portion 26a and positioned by the difference in level with the second diameter portion 26b.
  • steps S18 and S19 ⁇ set the phase so as to be an appropriate angle with respect to the axes of the cams 22, 24 and the gear 28 and the shaft 26, and press fit.
  • the chamfered portion 130 of the shaft 26 may be used as a phase reference plane.
  • the powdery lubricant is only physically attached to the surface of the raw material at the beginning, and the surface force of the raw material falls off during cold forging, and the tightening force by the subsequent press-in increases and the slip occurs. It has become.
  • chemically bonded lubricants such as stearic acid-based (that is, after bondierite treatment) metal cements and the like are retained without falling off during cold forging, and the press-in portion is slippery.
  • the phosphoric acid coating is a surface treatment for facilitating bonding to the later metal stalagmite
  • the initial etching treatment is preferably performed using oxalic acid.
  • the cams 22, 24 and the gear 28 in the camshaft 10 are assembled by the process of press-fitting steps S18 and S19, and there is no need to fix the cams separately, and the productivity is high.
  • the shaft 26, the cams 22 and 24, and the gear 28 do not require an anti-rotation mechanism (key, screw, fixing by plastic processing, brazing, etc.) and a process for forming the anti-rotation mechanism. Due to the absence of the anti-rotation mechanism, the shaft 26 and cams 22 and 24 have simple shapes.
  • the shaft 26 is basically formed by cold forging, which does not require machining such as cutting and has high productivity. At this time, since the lubricant 202 is applied to the material forming the shaft 26, the cold forging process is smoothly performed.
  • the lubricant 202 a powdery lubricant dissolved in water or the like is used, and a sufficient slip torque can be obtained with respect to the cams 22 and 24 and the gear 28 which have been pressed.
  • the camshaft 10 remains synchronized with the crankshaft 14.
  • step of forming the shaft 26 may be performed continuously by one processing machine. For example, after a work 204 having a predetermined length is cut out in step S13, the work 204 is sequentially fed by a single processing machine (including a cutting jig 100) up to step S14-step S17. You may try to make it happen.
  • camshaft 10 has been described as being used for a single-cylinder engine 12, the cam may be increased in accordance with the number of cylinders when used for an engine having two or more cylinders.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Forging (AREA)

Abstract

 最終製品よりも所定量だけ大きな体積を有するビレットに対して輪郭予備据え込み成形、輪郭絞り成形、内径面及び外径面の同時打ち抜き成形、余剰分を内径面にバリとして形成する押圧成形、内径面のバリを打ち抜く内径面打ち抜き成形、内径面及び外径面の同時しごき成形からなる複数の冷間鍛造成形工程を連続して遂行することにより、カム(プロフィール)面の最終の仕上げ加工(機械加工)を不要とし、高い寸法精度を有するカムシャフト用のカムの最終製品を得る。

Description

明 細 書
カムシャフト、カムシャフト用のカムの製造方法及びカムシャフト用シャフト の製造方法
技術分野
[0001] 本発明は、エンジンのバルブを開閉させるためのカムシャフト、該カムシャフト用の カムの製造方法及びカムシャフト用のシャフトの製造方法に関する。
背景技術
[0002] ガソリンエンジン等において、クランクシャフトと連動して回転し、吸気及び排気バル ブの開閉タイミングを制御する組立式のカムシャフトが知られている。
[0003] この組立式のカムシャフトは、例えば、シャフト本体を金属製のパイプで構成し、こ のパイプをカムピースのシャフト揷入孔に圧入等の方法によって固定している。
[0004] この種の従来技術に係るカムシャフトの製造方法として、例えば、特開平 8— 90139 号公報(日本)には、製品としてのカムに対応する容積を有する丸棒状延伸鋼材を 1 250— 1280°Cまで加熱した後、型打ちによる熱間鍛造成形を行うことが開示されて いる。
[0005] また、特開 2001— 355709号公報(日本)及び特開 2002— 147572号公報(日本) には、 V、わゆるファインブランキング (精密打ち抜き)法を用いて型だれを抑制するこ とにより、成形精度と製造コストを両立させる技術的思想が開示されている。
[0006] しかしながら、特開平 8— 90139号公報に開示された熱間鍛造成形方法を使用し た場合、鍛造品の表層部に酸ィ匕物層が形成されると共に、型打ち鍛造によってバリ のしわ傷や巻き込み傷が発生するために、仕上げ加工として機械加工が必要となる
[0007] さらに、特開 2001— 355709号公報及び特開 2002-147572号公報に開示され たファインブランキング法を使用した場合、前記ファインブランキング法が剪断加工で あるため、その破断面又は型だれの発生を抑制して最小となることを目的としている 力 加工品であるカムの表面に破断面あるいは型だれが発生すると、カム面でバル ブを押圧する際に面圧が局部的に上昇するという問題がある。 [0008] 一方、カムとカムシャフトとを結合することによって一体化した組み立て式カムシャフ トにおいては、カムがシャフトに対して滑りを生じると、クランクシャフトとバルブの開閉 動作の同期がとれなくなる。このような背景から、特開平 7-293666号公報(日本)に は、カムの嵌合孔内に廻り止め機構を設ける技術が提案されている。
[0009] また、特開平 11— 107712号公報(日本)には、中空状のシャフトにカムを嵌合させ 、塑性加工によって軸部を膨出させてカムを固定する技術が提案されて 、る。
[0010] これらの特開平 7-293666号公報及び特開平 11— 107712号公報において提案 されている技術では、廻り止め機構を形成するための加工が必要であることからその 分の工程を要する。また、廻り止め機構を備えることからシャフトやカムの形状が複雑 になっている。
[0011] さらに、特開昭 52-50963号公報(日本)には、カムシャフトの製造方法としては冷 間鍛造を用いて低コストで短時間に形成する技術が提案されている。
[0012] この特開昭 52— 50963号公報において提案されている技術はブレーキドラム用力 ムシャフトの製法に関する技術であり、カムは平板形状となっている。エンジンにおい てノ レブを開閉させるためにはカムを用いることから、特開昭 52-50963号公報に ぉ 、て提案されて 、る技術はエンジン用のカムシャフトには適用できな 、。
[0013] また、シャフトとカムとを別に製造した後に組み立ててカムシャフトを得る場合には、 シャフトとカムとに廻り止め機構を形成するための加工が必要であり、その分の工程 を要する。また、廻り止め機構を備えることからシャフトやカムの形状が複雑になる。 発明の開示
[0014] 本発明は、前記の点を考慮してなされたものであり、工程数を低減し、より生産性の 高 、カムシャフトを提供することである。
[0015] また、本発明の他の目的は、複数の冷間鍛造成形工程を連続して遂行すること〖こ より、最終の仕上げ加工 (機械加工)を不要とし、高い寸法精度を得ることが可能な力 ムシャフト用のカムの製造方法を提供することを目的とする。
[0016] さらに本発明は、圧入されたカムが周方向に滑りにくいカムシャフト用のシャフトを 少ない工程数で製造することを可能とするカムシャフト用のシャフトの製造方法を提 供することを目的とする。 [0017] 前記の目的を達成するために、本発明は、表面に粉末状潤滑剤を施した状態で冷 間鍛造により形成されたシャフトと、前記シャフトに設けられるカムとを有し、前記カム は前記シャフトに圧入されて 、ることを特徴とする。
[0018] このように、カムをシャフトに対して圧入することにより、カムはシャフトに対して固定 され、別途カムを固定する工程が不要である。また、圧入によりカムが固定されること 力も廻り止め機構が不要であり、廻り止め機構を形成するための工程が不要である。 従って、工程数を低減し、生産性を向上させることができる。シャフト自体も冷間鍛造 により形成されることから、生産性を向上させることができる。
[0019] この場合、前記粉末状潤滑剤は、石灰又はほう砂であるとょ ヽ。
[0020] また、前記シャフトには、剪断加工により形成された面取り部が設けられていると、コ ンロッド等の他の部材との干渉を避けることができる。また、剪断加工することにより、 冷間鍛造により形成されたシャフトの寸法精度を維持することができる。
[0021] さらに、前記シャフトの側方には、剪断成形によってカット面を形成すると、コンロッ ド等の他の部材との干渉を避けることができる。また、剪断成形によれば、冷間鍛造 により形成されたシャフトの寸法精度を維持することができる。
[0022] 前記カムのシャフト挿入孔は打ち抜き成形により形成されていてもよい。打ち抜き加 ェによれば、カムの軸心孔を簡便に形成することができる。
[0023] 軸心部にギヤを有し、前記ギヤが前記シャフトに圧入されるようにしてもよい。この 場合、前記ギヤは、軸心部に金属ブッシュを備える合成樹脂製であり、前記金属ブッ シュが前記シャフトに圧入されるようにしてもよ 、。
[0024] 前記シャフトは、径の異なる段差部を有し、前記カムは、前記段差部に当接して位 置決めされて 、ると、カムを容易かつ正確に位置決めすることができる。
[0025] 本発明に係るカムの製造方法は、最終製品よりも所定量だけ大きな体積を有する 鍛造用素材に対して輪郭予備据え込み成形を行い、荒形状からなる第 1次冷間鍛 造成形体を得る。
[0026] 続 ヽて、前記第 1次冷間鍛造成形体に対して輪郭絞り成形を行!ヽ、輪郭形状に沿 つて流動した余剰肉が外径面にバリとして形成された第 2次冷間鍛造成形体を得る。
[0027] 次に、前記第 2次冷間鍛造成形体に対して内径面及び外径面の同時打ち抜き成 形を行い、前記外径面に形成されたノ リを除去すると共に、シャフト挿入孔よりも小径 な逃がし孔が内径に形成された第 3次冷間鍛造成形体を得る。
[0028] さらに、前記第 3次冷間鍛造成形体を押圧する押圧成形を行い、所定の肉厚寸法 に形成されると共に、余剰肉が内径面にバリとして形成された第 4次冷間鍛造成形体 を得る。
[0029] さらにまた、前記第 4次冷間鍛造成形体に対して内径面打ち抜き成形を行い、前記 内径面に形成されたバリを除去すると共に、シャフト挿入孔に対応する孔部が形成さ れた第 5次冷間鍛造成形体を得る。
[0030] 最後に、前記第 5次冷間鍛造成形体に対して内径面及び外径面の同時しごき成形 を行うことにより、例えば、カム (プロフィール)面に対して切削研磨カ卩ェ等の仕上げ 加工を施すことがなぐ寸法精度及び所定の面粗度が確保された最終製品が得られ る。
[0031] なお、前記鍛造用素材に対して輪郭予備据え込み成形を行った際、第 1次冷間鍛 造成形体の周縁部に面取り部を形成し、輪郭絞り成形によって外径面に形成される バリに近接する一方の面の周縁部に形成される第 1面取り部の面積を、前記一方の 面と反対側の他方の面の周縁部に形成される第 2面取り部の面積よりも大きく設定こ とにより、前記輪郭絞り成形が円滑になされる。
[0032] 本発明に係るカムシャフト用のシャフトの製造方法は、円柱状の素材の外周面に粉 末状潤滑剤を塗布する第 1の工程と、前記素材の一方の端部を軸方向に押圧し、前 記素材を複数の異なる径に絞り形成する第 2の工程と、前記端部を軸方向に押圧す るとともに、他方の端部を固定し、前記素材の一部分を外径方向に膨出させて環状 膨出部を形成する第 3の工程と、前記環状膨出部を軸方向に押圧して力さ部を形成 するとともに、前記素材を複数の異なる径に絞り形成する第 4の工程とを有し、前記 第 2工程、前記第 3工程及び前記第 4工程は、冷間鍛造により行われることを特徴と する。
[0033] このように、素材に粉末状潤滑剤を塗布した後に冷間鍛造を行うことにより、圧入さ れたカムが周方向に滑りにくいカムシャフト用のシャフトを少な 、工程数で製造するこ とがでさる。 図面の簡単な説明
[図 1]図 1は、本実施の形態に係るカムシャフト用のカムの製造方法によって製造され るカムシャフトが用いられるエンジンの概略構成図である。
[図 2]図 2は、図 1に示すカムシャフトの斜視図である。
[図 3]図 3は、本実施の形態に係るカムシャフト用のカムの製造工程を示すフローチヤ ートである。
[図 4]図 4は、所定長に切断されたビレットの平面図である。
[図 5]図 5は、前記ビレットの縦断面図である。
[図 6]図 6は、前記ビレットの斜視図である。
[図 7]図 7は、第 1冷間鍛造用金型によって前記ビレットに輪郭予備据え込み成形が 施された第 1次冷間鍛造成形体の平面図である。
[図 8]図 8は、前記第 1次冷間鍛造成形体の縦断面図である。
[図 9]図 9は、前記第 1次冷間鍛造成形体の斜視図である。
[図 10]図 10は、前記第 1冷間鍛造用金型の概略縦断面構造図である。
[図 11]図 11は、図 8に示す第 1次冷間鍛造成形体の部分拡大縦断面図である。
[図 12]図 12は、第 2冷間鍛造用金型によって前記第 1次冷間鍛造成形体に輪郭絞り 成形が施された第 2次冷間鍛造成形体の平面図である。
[図 13]図 13は、前記第 2次冷間鍛造成形体の縦断面図である。
[図 14]図 14は、前記第 2次冷間鍛造成形体の斜視図である。
[図 15]図 15は、前記第 2冷間鍛造用金型の概略縦断面構造図である。
[図 16]図 16は、第 3冷間鍛造用金型によって前記第 2次冷間鍛造成形体に内径面 及び外径面の同時打ち抜き成形が施された第 3次冷間鍛造成形体の平面図である
[図 17]図 17は、前記第 3次冷間鍛造成形体の縦断面図である。
[図 18]図 18は、前記第 3次冷間鍛造成形体の斜視図である。
[図 19]図 19は、前記第 3冷間鍛造用金型の概略縦断面構造図である。
[図 20]図 20は、第 4冷間鍛造用金型によって前記第 3次冷間鍛造成形体にその余 剰分をバリとして形成する押圧成形が施された第 4次冷間鍛造成形体の平面図であ る。
図 21]図 21は、前記第 4次冷間鍛造成形体の縦断面図である。
図 22]図 22は、前記第 4次冷間鍛造成形体の斜視図である。
図 23]図 23は、前記第 4冷間鍛造用金型の概略縦断面構造図である。
図 24]図 24は、第 5冷間鍛造用金型によって前記第 4次冷間鍛造成形体の内径面 のバリを打ち抜く内径面打ち抜き成形が施された第 5次冷間鍛造成形体の平面図で ある。
図 25]図 25は、前記第 5次冷間鍛造成形体の縦断面図である。
図 26]図 26は、前記第 5次冷間鍛造成形体の斜視図である。
図 27]図 27は、前記第 5冷間鍛造用金型の概略縦断面構造図である。
図 28]図 28は、第 6冷間鍛造用金型によって前記第 5次冷間鍛造成形体の内径面 及び外径面の同時しごき成形が施された最終製品の平面図である。
図 29]図 29は、前記最終製品の縦断面図である。
図 30]図 30は、前記最終製品の斜視図である。
図 31]図 31は、前記第 6冷間鍛造用金型の概略縦断面構造図である。
図 32]図 32は、シャフトの側面図である。
図 33]図 33は、シャフトに面取り部を形成するためのカット治具の分解斜視図である 図 34]図 34は、カムシャフトを製作する工程を示すフローチャートである。
図 35]図 35は、素材に潤滑材を塗布しながら引き抜き加工を行う様子を示す図であ る。
図 36]図 36は、素材力 切り出したワークに絞り加工を行う様子を示す図である。 図 37]図 37は、ワークにかさ形成力卩ェを行う様子を示す図である。
図 38]図 38は、ワークに仕上げ力卩ェを行う様子を示す図である。
図 39]図 39は、ダイスの段差部における側面拡大断面図である。
発明を実施するための最良の形態
本発明に係るカムシャフト、該カムシャフト用のカムの製造方法及びカムシャフト用 のシャフトの製造方法について好適な実施の形態を挙げ、添付の図面を参照しなが ら以下詳細に説明する。
[0036] 図 1は、本実施の形態に係るカムシャフト用のカムの製造方法により製造される組 立式のカムシャフト 10が用いられるエンジン 12の概略構成図を示す。このカムシャフ ト 10は、例えば、単気筒のエンジン 12に用いられるものであって、クランクシャフト 14 の回転に同期してプッシュロッド 16を押し上げることによりロッカーアーム 18を操作し てバルブ 20を開閉させることができる。
[0037] ノ レブ 20は給気用と排気用の 2つが設けられており、それぞれ個別のロッカーァー ム 18及びプッシュロッド 16が設けられている。カムシャフト 10には、 2つのプッシュ口 ッド 16をそれぞれ個別に押し上げるために、位相の異なる 2つのカム 22及びカム 24 が設けられている。
[0038] 図 2に示すように、カムシャフト 10は、冷間鍛造により成形されたシャフト 26と、該シ ャフト 26に圧入されたカム 22及びカム 24と、前記クランクシャフト 14の駆動ギヤ 14a ( 図 1参照)に嚙合してシャフト 26を回転させる合成樹脂製 (例えば、ナイロン等)のギ ャ 28とを有する。ギヤ 28の軸心部には金属ブッシュ 28a (例えば、 JIS G4051にお ける S35C (炭素含有量 0. 32-0. 38重量%の機械構造用炭素鋼材)等の炭素鋼) が設けられており、該金属ブッシュ 28aがシャフト 26に圧入されている。
[0039] ギヤ 28は合成樹脂をインジェクション成型することにより形成され、その際、金属ブ ッシュ 28aを予めインサートしておくとよい。ギヤ 28には金属ブッシュ 28aが設けられ ることにより、シャフト 26を確実に圧入 ·締結することができる。ギヤ 28には、例えば、 合成樹脂を用いることにより、インジェクション成型等の生産効率の高い生産方法を 用いることができ、し力も金属のギヤに比べて軽量にすることができる。
[0040] なお、ギヤ 28は、エンジン 12の仕様等に応じて金属を用いたプレスカ卩ェ品、機械 加工品又は焼結成形品等であってもよ!/、。
[0041] 前記カム 22 (24)には、プッシュロッド 16の下端面に接触して該プッシュロッド 16を 上方に向かって押圧するカム(プロフィール)面 30と、シャフト 26が挿入される貫通し たシャフト挿入孔 32とが設けられる(図 2参照)。
[0042] 次に、前記カム 22 (24)の製造工程について、図 3に示すフローチャートに沿って 説明する。 [0043] 先ず、ステップ SIでは、図示しない棒状材料を所定長に切断することにより、鍛造 用素材として円柱状のビレット 34を得る(図 4一図 6参照)。このビレット 34は、最終製 品であるカム 22 (24)の体積に対応するものではなぐ最終製品であるカム 22 (24) の体積とバリとして除去される体積とが加算された体積力もなる。なお、前記ビレット 3 4は、図示しないコイル材を剪断して得てもよい。
[0044] ステップ S2では、前記ステップ S1で得られたビレット 34を図 10に示される第 1冷間 鍛造用金型 36のキヤビティ 38に装填し、パンチ 40によって前記ビレット 34を加圧す ることにより、輪郭予備据え込み成形を行う。
[0045] この輪郭予備据え込み成形では、パンチ 40を介してビレット 34を上方力も押圧す ることにより、最終製品の厚さ寸法よりも厚ぐ外周の輪郭寸法 (幅寸法)が大きく設定 された荒形状からなる第 1次冷間鍛造成形体 42が形成される(図 7—図 9参照)。
[0046] この第 1次冷間鍛造成形体 42は、前記パンチ 40によって塑性変形された部分が力 ム面を形成する先端部 44の方向に対して十分に流動して 、な 、ため、前記先端部 4 4は他の部位と比較して薄くなつている(図 9参照)。
[0047] また、第 1次冷間鍛造成形体 42では、上面 (一方の面)の周縁部に環状傾斜面か らなる第 1面取り部 46aが形成され、反対側の下面 (他方の面)の周縁部に環状傾斜 面力もなる第 2面取り部 46bが形成される。この場合、上面に形成された第 1面取り部 46aの面積は、下面に形成された第 2面取り部 46bの面積よりも大きくなるように設定 される(図 11参照)。この場合、パンチ側を上方向とし、ダイス側を下方向としている。
[0048] 第 1次冷間鍛造成形体 42の上下面にそれぞれ第 1及び第 2面取り部 46a、 46bを 形成することにより、後述するステップ S4において、外径面のバリ 56を切断する際に その切断面に対してバリが発生することを阻止することができる。従って、ステップ S4 の後工程で特別にバリを除去する作業を設けることがなぐ作業工程を簡素化するこ とがでさる。
[0049] 次に、ステップ S3では、前記ステップ S2で得られた第 1次冷間鍛造成形体 42を図 15に示される第 2冷間鍛造用金型 48のキヤビティ 50に装填し、パンチ 52によって前 記第 1次冷間鍛造成形体 42を加圧することにより、輪郭絞り成形を行う。
[0050] なお、第 2冷間鍛造用金型 48の下型 48aによって形成されるキヤビティ 50の幅方 向寸法 Aを、第 1冷間鍛造用金型 36の下型 36aによって形成されるキヤビティ 38の 幅方向寸法 Bと比較して小さく設定することにより、輪郭絞り成形を円滑に遂行するこ とができる(図 10と図 15とを比較参照)。
[0051] この輪郭絞り成形では、パンチ 52を介して第 1次冷間鍛造成形体 42を上方力 押 圧することにより、最終製品の形状に対応する外周面の輪郭形状に沿って塑性変形 した肉が流動し、前記輪郭予備据え込み工程で不十分であった先端部 44aに塑性 肉が十分に充填された第 2次冷間鍛造成形体 54が形成される(図 12—図 14参照)
[0052] なお、前記第 2次冷間鍛造成形体 54の上面部近傍の外周面には、外周面の輪郭 形状に沿って流動した余分な肉の体積分が環状のバリ 56として形成される(図 13参 照)。また、前記輪郭絞り成形は、前工程で形成された第 1及び第 2面取り部 46a、 4 6bに何ら影響を与えることがなぐ外周面の輪郭に沿ってなされる。
[0053] ステップ S4では、前記ステップ S3で得られた第 2次冷間鍛造成形体 54を図 19に 示される第 3冷間鍛造用金型 58に装填し、ダイス 60の孔部 62内に挿入される中空 のパンチ 64によって前記第 2次冷間鍛造成形体 54を上方力も押圧することにより、 外周面力も突出するノ リ 56を打ち抜くと共に、シャフト 26の挿入位置に、次工程以 降での流動肉の余剰分を流動させるために、最終製品のシャフト挿入孔 32の内径よ りも小径な逃がし孔 66を下型 58aに固定された固定パンチ 68によって打ち抜いた内 径面及び外径面の同時打ち抜き成形を行う。
[0054] この内径面及び外径面の同時打ち抜き成形では、外周面力 突出するバリ 56を打 ち抜く際、前記外周面がしごかれてバリが発生することなく面精度が向上した破断面 を有し、しかも、内径面にシャフト挿入孔 32よりも小径な逃がし孔 66が穿孔された第 3次冷間鍛造成形体 70が形成される(図 16—図 18参照)。
[0055] 前記逃がし孔 66は、次工程以降において、外周面を拘束した状態で内径側にの み流動肉の余剰分を流動させるために形成されるものである。
[0056] ステップ 5では、前記ステップ S4で得られた第 3次冷間鍛造成形体 70を図 23に示 される第 4冷間鍛造用金型 72のキヤビティに装填し、前記第 3次冷間鍛造成形体 70 の外周面が金型面によって拘束された状態で、下型 72a側に向力つて所定長だけ突 出する環状段付き部 74を有するパンチ 76によって前記第 3次冷間鍛造成形体 70を 押圧することにより、所定の肉厚に形成すると共に、余剰分の流動肉を内径面にバリ 78として形成する押圧成形を行う。
[0057] 前記押圧成形では、次工程で内径面の打ち抜き成形をするための予備成形として 上面及び下面に近接する逃がし孔 66の部位にそれぞれガイド孔 80を有し、し力も、 最終製品と略同一の厚さ寸法に設定された第 4次冷間鍛造成形体 82が形成される( 図 20—図 22参照)。
[0058] なお、前記一組のガイド孔 80の間には、厚さ方向に沿って貫通する貫通孔 84が形 成され、次工程で内径面のバリ 78を除去する際、素材が流動しやすいように形成さ れている。
[0059] ステップ S6では、前記ステップ S5で得られた第 4次冷間鍛造成形体 82を図 27に 示される第 5冷間鍛造用金型 86のキヤビティに装填し、前記第 4次冷間鍛造成形体 82の外径面を拘束した状態で、該第 4次冷間鍛造成形体 82の上面を中空状のパン チ 88によって押圧することにより、該第 4次冷間鍛造成形体 82の内径面に形成され たバリ 78を、下型 86aに固定された固定パンチ 90で打ち抜く内径面打ち抜き成形を 行う。
[0060] この内径面打ち抜き成形では、第 4次冷間鍛造成形体 82の内径面に形成された ノ リ 78を打ち抜くことにより、所定の内径力もなるシャフト挿入孔 32を有する第 5次冷 間鍛造成形体 92が形成される(図 24—図 26参照)。
[0061] ステップ S7では、前記ステップ S6で得られた第 5次冷間鍛造成形体 92を図 31に 示される第 6冷間鍛造用金型 94のキヤビティに装填し、前記第 5次冷間鍛造成形体 92の外径面を金型面で拘束した状態で、下型 94aに固定された固定パンチ 96がシ ャフト挿入孔 32に沿って進入されるように、該第 5次冷間鍛造成形体 92の上面を中 空状のパンチ 98によって押圧する、内径面及び外径面のしごき成形を同時に行う。
[0062] 内径面及び外径面の同時しごき成形を行うことにより、前記内径面及び外径面に 所定の面粗度が確保されたカム 22, 24としての最終製品(図 28—図 30参照)を得る ことができる(ステップ S8)。なお、前記ステップ S 2からステップ S8までの工程をへッ ダーある!/、は鍛造プレスによって連続結成形してもょ 、。 [0063] なお、カム 22とカム 24はシャフト 26における圧入箇所の径に応じてシャフト揷入孔 32の径を相違させるようにするとよい。この場合、各径に応じた固定パンチ 96を用い ればよい。
[0064] 本実施の形態では、第 1一第 6冷間鍛造用金型 36、 48、 58、 72、 86、 94を用い、 輪郭予備据え込み成形、輪郭絞り成形、内径面及び外径面の同時打ち抜き成形、 余剰分を内径面にバリ 78として形成する押圧成形、内径面のバリ 78を打ち抜く内径 面打ち抜き成形、内径面及び外径面の同時しごき成形からなる複数の冷間鍛造成 形工程を連続して遂行することにより、カム (プロフィール)面の最終の仕上げカ卩ェ( 機械加工)を不要とし、高 、寸法精度を有する最終製品を得ることができる。
[0065] 従って、本実施の形態では、最終製品の外周面に破断面や型だれ等が発生するこ とがなぐカム面として所定の面粗度が確保されると共に、シャフトが圧入されるシャフ ト挿入孔として所定の嵌合寸法が確保された最終製品を得ることができる。
[0066] さらに、本実施の形態では、最終製品よりも大なる体積を有するビレット 34を用い、 輪郭絞り成形によって外径面に余剰分のバリ 56を形成し、押圧成形によって内径面 に余剰分のバリ 78を形成し、前記外径面のバリ 56及び内径面のバリ 78をそれぞれ 打ち抜き成形によって除去して 、る。
[0067] この場合、最終製品に対応する体積を有するビレットを用いて複数の鍛造成形によ つて鍛造成形品を成形した場合と比較して、本実施の形態では、輪郭絞り成形にお いて肉の流動方向が外径面側となる単一の方向からなり、また、押圧成形において 外径面が拘束されているために肉の流動方向が内径面側となる単一の方向力もなり 、その剰余分をバリ 56、 78として除去しているために、例えば、切削研磨加工等によ つて最終の仕上げ加工が不要となり、高精度な面粗度と寸法精度を有する最終製品 を得ることができる。
[0068] 次に、シャフト 26の形状について、図 32を参照しながら説明する。
[0069] 図 32に示すように、シャフト 26において、ギヤ 28が設けられる側の端部である第 1 径部 26aは最も小径に設定されている。第 1径部 26aから見て他端部 26e側(以下、 矢印 C側という)に隣接する第 2径部 26bは第 1径部 26aよりやや大きい径に設定され ており、ギヤ 28は、圧入時に第 2径部 26bとの微小段差部 27aによって位置決めされ る。また、第 2径部 26bからみて矢印 C側に隣接する第 3径部 26cは第 2径部 26bより もやや大きい径に設定されており、カム 22は、圧入時に第 3径部 26cとの微小段差 部 27bによって位置決めされる。
[0070] さらに、第 3径部 26cからみて矢印 C側に隣接する第 4径部 26dは第 3径部 26cより もやや大き ヽ径に設定されて 、る。第 4径部 26dには軸に平行な 2つの面取り部 (力 ット面) 130力 S設けられており、該面取り咅 によって、シャフト 26力 Sコンロッド 33 ( 図 1参照)の端部と干渉することが防止され、カムシャフト 10とコンロッド 33とを近い位 置に配置可能である。
[0071] また、第 4径部 26dと他端部 26eとの間には、カムシャフト 10をエンジン 12に組み立 てる際の位置決め用の力さ部(つば部ともいう) 26fが設けられており、カム 24は、圧 入時に力さ部 26fによって位置決めされる。なお、図 32においては、理解を容易にす るため、第 1径部 26a—第 4径部 26dの径に差があることを誇張して図示しているが、 これらの径の差を微小に設定して目視上では略同一径と認識されるものであってもよ い。
[0072] 次に、シャフト 26に面取り部 130を形成するためのカット治具 100について図 33を 参照しながら説明する。
[0073] カット治具 100は、シャフト 26の第 1径部 26a—第 4径部 26dまでが挿入される孔 1 02aを有するワークホルダ 102と、面取り部 130を形成するためのカツタ 104と、ヮー クホルダ 102がスライド挿入されるホルダガイド 106と、シャフト 26の他端部 26eを保 持してワークホルダ 102をホルダガイド 106へ押し込む可動型 108と、面取り部 130 が形成された後にワークホルダ 102をホルダガイド 106から押し出すガススプリング 1 10a (又はばね等の強制復帰を可能にする機構)を備えるバックプレート 110とを有し 、可動型 108、ワークホルダ 102、ホルダガイド 106及びバックプレート 110の順に並 んで構成される。
[0074] ワークホルダ 102の孔 102aのうちシャフト 26の第 4径部 26dが挿入される部分は力 ッタ 104が挿入される孔 102bと連通している。孔 102bは、カツタ 104がセットされるよ うに略長方形となっており、孔 102aと直角に連通して 、る。
[0075] カツタ 104はシャフト 26力も面取り部 130の部分を削ぎ落とすための平行な 2つの 刃 104aと、ホルダガイド 106の方向(以下、矢印 D方向という)に向力うに従って軸心 方向に接近するように傾斜する傾斜面 104bとを有する。また、ホルダガイド 106は、 傾斜面 104bが当接するガイド面 106bを有し、該ガイド面 106bは、矢印 D方向に向 力うに従って軸心方向に接近するように傾斜して 、る。
[0076] 次に、シャフト 26を製造する工程及びカムシャフト 10を組み立てる工程について図 34—図 39を参照しながら説明する。
[0077] 先ず、図 34のステップ S11において、丸棒状(円柱状)の炭素鋼である素材にシュ ゥ酸を用 、てエッチングを行 、、又はリン酸塩被膜に石灰を塗布することにより素材 の表面をポーラス状にする。この場合、シユウ酸を用いる処理の方がリン酸塩被膜を 用いる処理よりも素材の表面をポーラス状にしゃすく好適である。
[0078] この素材としての炭素鋼は、例えば、前記 S35Cを用いることができる。また、液体 窒化を行う場合にはより低炭素の炭素鋼を用いることもできる。
[0079] 次に、ステップ S12において、ダイス 200 (図 35参照)を用いて素材が所定の外径 となるように引き抜き加工を行う。この際、ダイス 200よりも手前側において素材に対し て潤滑剤 202を塗布 (又は噴出等)して潤滑を行う。素材は、前記ステップ S11にお いて表面がポーラス状に形成されていること力 潤滑剤 202が封じ込められて表面の 潤滑性が向上し、素材をスムーズに引き出すことができる。また、ダイス 200の焼き付 きを防止し、高寿命化を図ることができる。
[0080] 潤滑剤 202としては、石灰又はほう砂等の粉末状潤滑剤を水等に溶かしたもの又 はペースト状にしたものを用いる。後述するように、粉末状潤滑剤を用いることにより カム 22及び 24がシャフト 26の周方向に滑りにくくなりエンジン 12に組み込んだ場合 にクランクシャフト 14の回転と同期が保たれる。
[0081] このステップ S 12の処理においては、素材に潤滑剤 202を封じ込めることを主目的 として、引き抜きによるリダクションは小さく設定されていてもよい。
[0082] ステップ S13において、素材をシャーリング等の切断加工することによって所定の 長さに切り出し、シャフト 26を形成するためのワーク 204を取り出す。
[0083] 次に、ステップ S 14において、ワーク 204に対してダイス 206及びパンチ 208を用い て、冷間鍛造により絞り加工を行う(図 36参照)。ダイス 206は、上方に開口する第 1 孔部 210a及び該第 1孔部 210aよりやや小径の第 2孔部 210bからなる孔 210を有 する。第 1孔部 210aは、ワーク 204に対して前記他端部 26e及び前記力さ部 26fとな る部分を絞り、第 2孔部 210bは、ワーク 204に対して前記第 1径部 26a—第 4径部 26 dとなる部分を絞る。
[0084] ワーク 204はパンチ 208により上部力も軸方向に押圧されて孔 210に挿入され、第
1孔部 210a及び第 2孔部 210bによって絞られて所定の径に形成される。
[0085] 絞り加工が行われた後、パンチ 208を上方へ引き戻すとともに、孔 210の下方に設 けられたノックアウトピン 212を上昇させてワーク 204を取り出す。
[0086] なお、このステップ S 14及びこれ以降のステップ S 15及び S16において、ワーク 20
4は第 1径部 26aとなる側を下向きとしてダイス 206、 214、 230に挿入され、他端部 2
6eとなる側が上向きとなるように設定されるものとする。
[0087] 次に、ステップ S 15において、前記ダイス 206の第 1孔部 210aよりもやや小径の孔
214a (図 37参照)が設けられたダイス 214と、孔 214aと略同径で有底の穴 216aが 設けられたパンチ 216とを用い、冷間鍛造によりワーク 204に対して力さ形成力卩ェを 行う。
[0088] 具体的には、図 37に示すように、ワーク 204を孔 214aに挿入した後に、パンチ 21 6の穴 216aをワーク 204の上部に合わせ、パンチ 216を軸方向に向けて押圧し、ヮ ーク 204の上面が穴 216aの底部に当接するまで下降させる。これにより、ワーク 204 の上部は穴 216aによって絞り込まれるとともに、一部が塑性流動によって外径方向 に向けて膨出し、パンチ 216の下面とダイス 214の上面との間に環状の膨出部 218 が形成される。該膨出部 218は力さ部 26fの基礎となる。
[0089] また、穴 216aの底部には中心点を通る 1本の筋状の突起 217が設けられており、こ の突起がワーク 204の上面に押圧されることにより、ワーク 204にセンター溝 221が 形成され、ワーク 204の廻り止めとして作用する。
[0090] ワーク 204の下面はノックアウトピン 222の上面に接するように設定されており、該ノ ックアウトピン 222の上面における中心部には山形の突起 224が設けられている。該 突起 224がワーク 204の下面に予め設けられた中心穴に挿入されることにより、ヮー ク 204の振止めとして作用する。ノックアウトピン 222はボルスタ 226によって支持され ているため、ワーク 204の下面を確実に押圧することができ、ワーク 204の振れを防 止するとともに確実に膨出部 218を形成させることができる。
[0091] また、パンチ 216の突起 217によってワーク 204の上面に形成される溝により、ヮー ク 204の振れ精度を検査することができ、また検査結果に応じて振れの矯正処理を 行うことができる。
[0092] 力さ形成力卩ェが行われた後、パンチ 216を上方へ引き戻すとともに、ノックアウトピ ン 222を上昇させてワーク 204を取り出す。
[0093] 次に、ステップ S 16において、ダイス 230とノ ンチ 232とを用いて、ワーク 204に対 して、冷間鍛造により仕上げ加工を行う(図 38参照)。
[0094] ダイス 230に設けられた孔 234は、下方から上方に向力つて順に第 1径部 234a、 第 2径部 234b、第 3径部 234c及び第 4径部 234dとを有し、各部がワーク 204を絞つ て、それぞれ第 1径部 26a、第 2径部 26b、第 3径部 26c及び第 4径部 26dを形成す る。これにより、シャフト 26の基本形状が形成される。
[0095] また、図 39に示すように、ダイス 230における第 1径部 234aと第 2径部 234bとの間 の段差部は、拡大してみると下方に向けて縮径するテーパ状に形成されており、ヮー ク 204がスムーズに絞られる。第 2径部 234b—第 4径部 234dまでの各段差部も同様 にテーパ状に形成されて 、る。
[0096] パンチ 232には、有底の穴 232aが設けられており、該穴 232aの底部によりワーク 2
04の上面を押圧しながらワーク 204をダイス 230の孔 230aに挿入して絞り、仕上げ 加工を行う。このとき、パンチ 232の下面とダイス 230の上面によって前記膨出部 21
8が挟まれ、軸方向に押圧されることにより外方に向けて塑性流動し、扁平な形状と なって力さ部 26fを形成する。
[0097] このステップ S16の仕上げ力卩ェを行った後、パンチ 232を上方へ引き戻すとともに
、孔 230aの下方に設けられたノックアウトピン 235を上昇させてワーク 204から形成さ れたシャフト 26を取り出す。
[0098] このようにして、シャフト 26は冷間鍛造の工程によって形成される力 元となるワーク
204には、ステップ S12において潤滑剤 202が塗布されていること力も冷間鍛造がス ムーズに行われ、割れや傷が発生しにくい。また、潤滑剤 202の作用により、ダイス 2 00、 206、 214、 230及びノ ンチ 208、 216、 232の焼き付きを防止すること力 Sできる 。さらに、冷間鍛造を用いる場合には加熱のための工程と加熱設備が不要である。
[0099] さらにまた、潤滑剤 202は、ワーク 204の表面に形成されたポーラスによって封じ込 められて 、ることから、ステップ S 12以降のステップ S 13— S 16にお!/、ても有効に潤 滑作用を奏するが、必要に応じ、各工程においてワーク 204及び金型に力卩ェ油(へ ッダーオイル等)をかけることにより補助的な潤滑及び冷却を行ってもょ ヽ。
[0100] 次に、ステップ S17において、カット治具 100 (図 33参照)を用いて、シャフト 26の 第 4径部 26dに 2面の面取り部 (カット面) 130を形成する。
[0101] 具体的には、先ず、シャフト 26の第 1径部 26a—第 4径部 26dをカット治具 100の孔 102aに挿入する。
[0102] 次に、カツタ 104をワークホルダ 102の孔 102bにセットする。このとき、 2つの刃 104 aは第 4径部 26dの部分でシャフト 26と平行な向きで当接する。
[0103] 次いで、可動型 108によってシャフト 26の他端部 26eを保持しながら、ワークホルダ 102及びカツタ 104をホルダガイド 106の孔に押圧 ·挿入する。可動型 108の駆動力 は、ガススプリング 110aよりも十分に大きい力であり、ワークホルダ 102及びカツタ 10 4は矢印 D方向に進行する。
[0104] このとき、ワークホルダ 102が矢印 D方向に進むに従ってカツタ 104の傾斜面 104b はガイド面 106aによってガイドされ、孔 102bに沿って矢印 Dに対して直角な方向に 変位する。ワークホルダ 102及びカツタ 104が矢印 D方向に十分変位することにより、 刃 104aが第 4径部 26dの両側面を削ぎ落とし、面取り部 130が形成される。
[0105] この後、可動型 108を引き戻すことによりワークホルダ 102はガススプリング 110aに よって押し戻されるので、カツタ 104を取り外した後にシャフト 26を孔 102aから引き抜 けばよい。
[0106] このように、カット治具 100によれば、シャフト 26及びカツタ 104をワークホルダ 102 にセットした状態で、該ワークホルダ 102を矢印 D方向へ移動させるという簡便な操 作によって面取り部 130を形成することができる。
[0107] また、面取り部 130は、カツタ 104の刃 104aによって削ぎ落とされることから、シャフ ト 26が膨出等の塑性変形を起こさない。従って、ステップ S17までの工程で形成され たシャフト 26の寸法精度を維持することができる。
[0108] 肖 IJぎ落とされた部分は金型内に設けられた所定の経路に沿って落下して排出され る。
[0109] 次に、ステップ S18において、カム 22及びカム 24を順にシャフト 26に圧入する。
[0110] カム 22は、第 4径部 26dの部分まで圧入されてかさ部 26fによって位置決めされる
。カム 24は、第 2径部 26bの部分まで圧入されて第 3径部 26cとの段差によって位置 決めされる。
[0111] 次に、ステップ S19において、ギヤ 28をシャフト 26に圧入する。ギヤ 28の金属ブッ シュ 28aは、第 1径部 26aに圧入されて第 2径部 26bとの段差によって位置決めされ る。なお、ステップ S18及び S19【こお!ヽて、カム 22、 24及びギヤ 28ίまシャフト 26の 軸に対して位相が適正な角度となるように設定して圧入することはもちろんである。こ の場合、シャフト 26の面取り部 130を位相の基準面として利用してもよい。
[0112] ところで、シャフト 26にはステップ S12において塗布される潤滑剤 202の潤滑作用 によってカム 22、 24及びギヤ 28が滑ってしまうと、カムシャフト 10とクランクシャフト 1 4との同期が保たれなくなる。このような観点力も本願発明者はシャフト 26に対して種 々の潤滑剤を塗布し、その結果得られるカムシャフト 10のカム 22、 24及びギヤ 28が どの程度のトルクで周方向にスリップを生じる力試験を行った。
[0113] 試験の結果によれば、例えば、潤滑剤として一般的なりん酸被膜に金属石鹼を塗 布するボンデ処理を用いる場合には、周方向に対する十分なスリップトルクが得られ ずにカム 22、 24及びギヤ 28に滑りを生じた。一方、石灰又はほう砂等の粉末状潤滑 剤を水等に溶力した潤滑剤 202を用いた場合には、周方向に対する十分なスリップト ルクが得られ、カムシャフト 10をエンジン 12 (図 1参照)に組み込んで使用する際に 必要とされるスリップトルクの基準値を満たすことが確認された。
[0114] つまり、粉末状潤滑剤は、当初素材の表面に物理的に付着しているのみであって、 冷間鍛造成形時に素材の表面力 脱落し、その後の圧入による締め付け力が大きく なり滑りに《なっている。一方、ステアリン酸系(つまりボンデライト処理後)の金属石 鹼等の化学結合された潤滑剤の場合、冷間鍛造時にぉ ヽて脱落せずに残存するた め、圧入箇所が滑りやすくなつている。 [0115] また、リン酸被膜は、後の金属石鹼と結合しやすくするための表面処理であることか ら、当初のエッチングの処理はシユウ酸を用 、ると好適である。
[0116] さらに、実験によれば、潤滑剤 202の摩擦係数はボンデ処理と同等の 0. 03-0. 0 7程度とすると、冷間鍛造の工程においてワーク 204に対する十分な潤滑作用を奏し 、好適であった。
[0117] 上述したように、カムシャフト 10におけるカム 22、 24及びギヤ 28はステップ S 18及 び S19の圧入の工程により組み立てられ、別途カムを固定する必要がなく生産性が 高い。また、シャフト 26、カム 22、 24及びギヤ 28には廻り止め機構 (キー、ねじ、塑 性加工による固定、ろう付け等)及び該廻り止め機構を形成するための工程が不要 である。廻り止め機構がないことにより、シャフト 26及びカム 22、 24は簡便な形状で める。
[0118] さらに、シャフト 26は、基本的には冷間鍛造によって形成され、切削等の機械加工 が不要であって生産性が高い。この際、シャフト 26を形成する素材には潤滑剤 202 が塗布されて 、ることから、冷間鍛造の処理がスムーズに行われる。
[0119] さらにまた、潤滑剤 202には粉末状潤滑剤を水等に溶力 たものを用いており、圧 入されたカム 22、 24及びギヤ 28に対して十分なスリップトルクが得られる。従って、 カムシャフト 10はクランクシャフト 14に対して同期を維持する。
[0120] また、シャフト 26を形成する工程は 1台の加工機械によって連続的に実行されるよ うにしてもよい。例えば、ステップ S13において素材力も所定長さのワーク 204が切り 出された後、ステップ S14—ステップ S17までの工程を 1台の加工機械 (カット治具 1 00を含む)によって、ワーク 204を順送りしながらカ卩ェするようにしてもよい。
[0121] なお、上記のカムシャフト 10は、単気筒のエンジン 12に用いられるものとして説明 したが、 2気筒以上のエンジンに用いる場合には、カムを気筒数に合わせて増やせ ばよい。

Claims

請求の範囲
[1] 表面に粉末状潤滑剤 (220)を施した状態で冷間鍛造により形成されたシャフト(26 )と、
前記シャフト(26)に設けられるカム(22, 24)と、
を有し、
前記カム(22, 24)は前記シャフト(26)に圧入されて 、ることを特徴とするカムシャ フト。
[2] 請求項 1記載のカムシャフト(10)において、
前記粉末状潤滑剤(220)は、石灰又はほう砂であることを特徴とするカムシャフト。
[3] 請求項 1記載のカムシャフト(10)において、
前記シャフト(26)の側方には、剪断成形によって形成されたカット面(130)が設け られて 、ることを特徴とするカムシャフト。
[4] 請求項 1記載のカムシャフト(10)において、
前記カム(22, 24)のシャフト挿入孔(32)は打ち抜き成形により形成されて!、ること を特徴とするカムシャフト。
[5] 請求項 1記載のカムシャフト(10)において、
軸心部にギヤ(28)を有し、
前記ギヤ(28)が前記シャフト(26)に圧入されて 、ることを特徴とするカムシャフト。
[6] 請求項 5記載のカムシャフト(10)において、
前記ギヤ(28)は、軸心部に金属ブッシュ(28a)を備える合成樹脂製であり、前記 金属ブッシュ(28a)が前記シャフト(26)に圧入されて 、ることを特徴とするカムシャフ
[7] 請求項 1記載のカムシャフト(10)において、
前記シャフト(26)は、径の異なる段差部を有し、
前記カム(22, 24)は、前記段差部に当接して位置決めされていることを特徴とする カムシャフト。
[8] エンジンを構成するカムシャフト(10)用のカム(22, 24)の製造方法において、 最終製品よりも所定量だけ大きな体積を有する鍛造用素材に対して輪郭予備据え 込み成形を行!ヽ、荒形状からなる第 1次冷間鍛造成形体 (42)を得る工程と、 前記第 1次冷間鍛造成形体 (42)に対して輪郭絞り成形を行い、輪郭形状に沿つ て流動した余剰肉が外径面にバリ (56)として形成された第 2次冷間鍛造成形体 (54 )を得る工程と、
前記第 2次冷間鍛造成形体 (54)に対して内径面及び外径面の同時打ち抜き成形 を行い、前記外径面に形成されたバリ(56)を除去すると共に、シャフト挿入孔(32) よりも小径な逃がし孔 (66)が内径に形成された第 3次冷間鍛造成形体 (70)を得る 工程と、
前記第 3次冷間鍛造成形体 (70)を押圧する押圧成形を行い、所定の肉厚寸法に 形成されると共に、余剰肉が内径面にバリ (78)として形成された第 4次冷間鍛造成 形体 (82)を得る工程と、
前記第 4次冷間鍛造成形体 (82)に対して内径面打ち抜き成形を行い、前記内径 面に形成されたバリ(78)を除去すると共に、シャフト挿入孔(32)に対応する孔部が 形成された第 5次冷間鍛造成形体 (92)を得る工程と、
前記第 5次冷間鍛造成形体 (92)に対して内径面及び外径面の同時しごき成形を 行い、最終製品を得る工程と、
を有することを特徴とするカムの製造方法。
[9] 請求項 8記載の製造方法において、
鍛造用素材に対して輪郭予備据え込み成形を行った際、第 1次冷間鍛造成形体( 42)の周縁部には、面取り部 (46a, 46b)が形成されることを特徴とするカムの製造 方法。
[10] 請求項 9記載の製造方法において、
輪郭絞り成形によって外径面に形成されるバリ (56)に近接する一方の面の周縁部 に形成される第 1面取り部 (46a)の面積は、前記一方の面と反対側の他方の面の周 縁部に形成される第 2面取り部 (46b)の面積よりも大きく設定されることを特徴とする カムの製造方法。
[11] エンジンを構成するカムシャフト(10)用のシャフト(26)の製造方法において、 円柱状の素材の外周面に粉末状潤滑剤 (220)を塗布する第 1の工程と、 前記素材の一方の端部を軸方向に押圧し、前記素材を複数の異なる径に絞り形成 する第 2の工程と、
前記端部を軸方向に押圧するとともに、他方の端部を固定し、前記素材の一部分 を外径方向に膨出させて環状膨出部を形成する第 3の工程と、
前記環状膨出部を軸方向に押圧して力さ部(26f)を形成するとともに、前記素材を 複数の異なる径に絞り形成する第 4の工程と、
を有し、
前記第 2工程、前記第 3工程及び前記第 4工程は、冷間鍛造により行われることを 特徴とするシャフトの製造方法。
[12] 請求項 11記載のシャフト(26)の製造方法にぉ 、て、
前記粉末状潤滑剤(220)は、石灰又はほう砂であることを特徴とするシャフトの製 造方法。
[13] 請求項 11記載のシャフト(26)の製造方法にぉ 、て、
剪断成形によって、側方にカット面(130)を形成する第 5の工程を有することを特 徴とするシャフトの製造方法。
PCT/JP2004/018510 2003-12-12 2004-12-10 カムシャフト、カムシャフト用のカムの製造方法及びカムシャフト用シャフトの製造方法 WO2005056986A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04820319A EP1707763A4 (en) 2003-12-12 2004-12-10 CAMSHAFT, METHOD FOR MAKING A CAM FOR A CAMSHAFT AND METHOD FOR PRODUCING THE CAMSHAFT WAVE
US10/582,708 US7628129B2 (en) 2003-12-12 2004-12-10 Camshaft, method of manufacturing cam for camshaft, and method of manufacturing shaft for camshaft

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003-414442 2003-12-12
JP2003414442A JP4610887B2 (ja) 2003-12-12 2003-12-12 カムシャフト用シャフトの製造方法
JP2003-414521 2003-12-12
JP2003414521A JP2006169961A (ja) 2003-12-12 2003-12-12 カムシャフト用カムの製造方法
JP2003414415A JP2006169960A (ja) 2003-12-12 2003-12-12 カムシャフト
JP2003-414415 2003-12-12

Publications (1)

Publication Number Publication Date
WO2005056986A1 true WO2005056986A1 (ja) 2005-06-23

Family

ID=34681970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018510 WO2005056986A1 (ja) 2003-12-12 2004-12-10 カムシャフト、カムシャフト用のカムの製造方法及びカムシャフト用シャフトの製造方法

Country Status (3)

Country Link
US (1) US7628129B2 (ja)
EP (1) EP1707763A4 (ja)
WO (1) WO2005056986A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4906676B2 (ja) * 2007-10-29 2012-03-28 武蔵精密工業株式会社 カムロブの成形方法
US7895743B2 (en) * 2007-12-18 2011-03-01 Caterpillar Inc. Refurbished camshaft and method
US7895982B2 (en) * 2007-12-18 2011-03-01 Caterpillar Inc. Refurbished camshaft and method
CN102363194B (zh) * 2011-07-21 2013-01-02 南京迪威尔高端制造股份有限公司 一种确定圆截面多级台阶轴自由锻造毛坯辅料料重的方法
US9481932B2 (en) * 2012-04-26 2016-11-01 Cheung Woh Technologies Ltd. Method and apparatus for progressively forging a hard disk drive base plate
CN103317082B (zh) * 2013-05-23 2016-03-23 塞里姆株式会社 高挤压精锻全自动驻车制动器底板的制造装置和制造方法
EP2907598B1 (en) * 2014-02-18 2016-06-15 C.R.F. Società Consortile per Azioni Method for manufacturing a camshaft for an internal combustion engine, by expanding a tubular element with a high pressure fluid and simultaneously compressing the tubular element axially
CN104148574B (zh) * 2014-07-01 2016-06-08 杭州新坐标科技股份有限公司 一种精密冷锻成形的凸轮片制造方法
CN105448308B (zh) 2014-08-27 2019-04-09 祥和科技有限公司 用于形成具有延长高度的硬盘驱动器基板的方法和装置
CN112658182A (zh) * 2020-09-25 2021-04-16 宁波振华汽车零部件有限公司 一种带齿脱水轴的冷镦成型工艺
CN113664134A (zh) * 2021-09-13 2021-11-19 陕西南水汽车配件制造有限公司 一种汽车发动机凸轮块成型镦锻模具的设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179422A (en) * 1981-04-30 1982-11-05 Aisin Chem Co Ltd Bush for resin gear in engine
JPS6072906U (ja) * 1983-10-25 1985-05-22 川崎重工業株式会社 カムシヤフトとタイミングギヤの取付装置
JPS63134807A (ja) * 1986-11-27 1988-06-07 Nippon Piston Ring Co Ltd 中空カムシヤフトの製造方法
JPH0691322A (ja) * 1992-09-11 1994-04-05 Sanwa Kinzoku Kogyo Kk 偏肉部材の原管及び偏肉部材製造用プラグ並びに偏肉部材の製造方法
JPH0890139A (ja) * 1993-09-28 1996-04-09 Shoei:Kk 大型カム、その製作方法および鍛造用金型
JP2003285138A (ja) * 2002-01-24 2003-10-07 Nissan Motor Co Ltd 組立式カムシャフト用カムピースの製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4553416A (en) * 1983-06-20 1985-11-19 Sumitomo Metal Industries, Ltd. Dry type continuous wire drawing process
JPS6375505U (ja) 1986-11-07 1988-05-19
IT1239918B (it) * 1989-05-19 1993-11-23 Mitsuba Electric Mfg Co Ltd Albero forgiato a freddo, metodo e dispositivo per fabbricare lo stesso
JP2776619B2 (ja) 1990-06-26 1998-07-16 株式会社大同機械製作所 鍛造用被膜潤滑処理方法及び被膜潤滑処理手段を有する鍛造装置
JPH0698379B2 (ja) 1990-09-28 1994-12-07 新日本製鐵株式会社 金属スケールの除去方法
JPH04253559A (ja) 1991-01-30 1992-09-09 Mazda Motor Corp 複合カムシャフトおよびその製造方法
JPH05177542A (ja) 1991-12-24 1993-07-20 Nippon Steel Corp 金属材のスケール除去方法
JPH05293513A (ja) 1992-04-21 1993-11-09 Nkk Corp 中空圧延素材内面への流体噴射管
JP3396261B2 (ja) 1993-07-12 2003-04-14 三菱重工業株式会社 内燃機関のカム軸製造方法
JP3405372B2 (ja) 1994-10-11 2003-05-12 日本精工株式会社 組立用カムロブの製造方法
JPH11280419A (ja) 1998-03-31 1999-10-12 Sumitomo Electric Ind Ltd シムとカムの組合せ体
JP4169231B2 (ja) 1999-06-08 2008-10-22 日本精線株式会社 ばね用高耐熱合金線、及びそれを用いた高耐熱合金ばね
JP2001152173A (ja) 1999-11-30 2001-06-05 Sumitomo Metal Ind Ltd 冷間加工用潤滑剤
JP4230631B2 (ja) 1999-12-20 2009-02-25 東芝電子エンジニアリング株式会社 透明導電膜のエッチング液組成物
JP2001181665A (ja) 1999-12-24 2001-07-03 Sumitomo Metal Ind Ltd 冷間加工用潤滑剤
JP3772620B2 (ja) 2000-01-12 2006-05-10 日本精工株式会社 組立式カムシャフトに使用するためのカムロブの製造方法
JP3345408B2 (ja) 2000-09-08 2002-11-18 関東化学株式会社 エッチング液組成物
JP3445570B2 (ja) 2000-10-12 2003-09-08 株式会社東芝 酸化インジウム錫膜用エッチング液およびエッチング方法
DE20116112U1 (de) 2001-10-01 2001-12-13 Thyssen Krupp Automotive Ag Nockenwelle mit Einbuchtungen
US7134939B2 (en) * 2003-09-05 2006-11-14 Fricso Ltd. Method for reducing wear of mechanically interacting surfaces

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179422A (en) * 1981-04-30 1982-11-05 Aisin Chem Co Ltd Bush for resin gear in engine
JPS6072906U (ja) * 1983-10-25 1985-05-22 川崎重工業株式会社 カムシヤフトとタイミングギヤの取付装置
JPS63134807A (ja) * 1986-11-27 1988-06-07 Nippon Piston Ring Co Ltd 中空カムシヤフトの製造方法
JPH0691322A (ja) * 1992-09-11 1994-04-05 Sanwa Kinzoku Kogyo Kk 偏肉部材の原管及び偏肉部材製造用プラグ並びに偏肉部材の製造方法
JPH0890139A (ja) * 1993-09-28 1996-04-09 Shoei:Kk 大型カム、その製作方法および鍛造用金型
JP2003285138A (ja) * 2002-01-24 2003-10-07 Nissan Motor Co Ltd 組立式カムシャフト用カムピースの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1707763A4 *

Also Published As

Publication number Publication date
EP1707763A4 (en) 2010-06-23
US7628129B2 (en) 2009-12-08
EP1707763A1 (en) 2006-10-04
US20070144468A1 (en) 2007-06-28

Similar Documents

Publication Publication Date Title
CN104061033B (zh) 用在液压间隙调节器中的球柱塞以及其制造方法
WO2005056986A1 (ja) カムシャフト、カムシャフト用のカムの製造方法及びカムシャフト用シャフトの製造方法
JP4819329B2 (ja) 鍛造方法、鍛造品及び鍛造装置
JP4823367B2 (ja) アンダーカット部を有する部材の成形方法
KR100851651B1 (ko) 환형부품 제조방법, 이 제조방법에서 이용되는 다이, 및이에 의해 제조된 환형부품
EP2386730A1 (en) Cold-Formed Flat Top Plunger for Use in a Hydraulic Lash Adjuster and Method of Making Same
JP5069514B2 (ja) テーパ付ピストンピンの形成方法
JPS6087946A (ja) 自動車のトランスミツシヨン用クラツチギヤの加工方法
KR20170084343A (ko) 금속 단부 단면 외주의 가공 방법 및 그 가공 방법에 의해서 얻어지는 금속 부품과 타부재의 접합 방법
JP2005344886A (ja) 円筒状軸受部材
JP4382627B2 (ja) 鍛造方法、鍛造品及び鍛造装置
JP2006169960A (ja) カムシャフト
JP2004358538A (ja) ロッカーアームの製造方法
US20080120846A1 (en) Apparatus And Method For Manufacturing Outer Race Member For Constant Velocity Joint And Intermediate Molded Body Of The Outer Race Member
JP4610887B2 (ja) カムシャフト用シャフトの製造方法
US10239113B2 (en) Net shaped forging for fluid ends and other work pieces
JP2006169961A (ja) カムシャフト用カムの製造方法
JPH11210417A (ja) ロッカーアームの製造方法
EP1637705A1 (en) Rocker arm and method of producing the arm
RU2732514C1 (ru) Штамп для открытой объемной штамповки с расширяющимся облойным мостиком
JP4384336B2 (ja) ピストンピンの製造方法
RU2753482C1 (ru) Штамп для открытой объемной штамповки с расширяющимся облойным мостиком
RU2756213C1 (ru) Штамп для открытой объемной штамповки с расширяющимся облойным мостиком
JPH0360839A (ja) 等速ジョイント外輪の製造方法および製造装置
JP2006316829A (ja) 円筒状軸受部材及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480037118.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007144468

Country of ref document: US

Ref document number: 10582708

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004820319

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004820319

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10582708

Country of ref document: US