WO2005056468A1 - 水素生成装置 - Google Patents

水素生成装置 Download PDF

Info

Publication number
WO2005056468A1
WO2005056468A1 PCT/JP2004/018411 JP2004018411W WO2005056468A1 WO 2005056468 A1 WO2005056468 A1 WO 2005056468A1 JP 2004018411 W JP2004018411 W JP 2004018411W WO 2005056468 A1 WO2005056468 A1 WO 2005056468A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
gas
mixed gas
hydrogen generator
mixed
Prior art date
Application number
PCT/JP2004/018411
Other languages
English (en)
French (fr)
Inventor
Yuji Mukai
Akira Maenishi
Yoshio Tamura
Yutaka Yoshida
Tomonori Asou
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/581,967 priority Critical patent/US7465326B2/en
Publication of WO2005056468A1 publication Critical patent/WO2005056468A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0403Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal
    • B01J8/0423Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more otherwise shaped beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/10Mixing gases with gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/435Mixing tubes composed of concentric tubular members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0476Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0492Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/583Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being the selective oxidation of carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0816Heating by flames
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a hydrogen generator for generating hydrogen by subjecting a raw material containing an organic compound having at least carbon and hydrogen power to water and a hydrogen to generate hydrogen, and supplying the hydrogen to a fuel cell.
  • a fuel cell system is provided with a fuel cell as a main body of a power generation unit.
  • fuel cells such as the phosphoric acid fuel cell (abbreviation: PAFC) already in practical use and the polymer electrolyte fuel cell (abbreviation: PEFC) currently being developed, are used for power generation.
  • PAFC phosphoric acid fuel cell
  • PEFC polymer electrolyte fuel cell
  • this means of supplying hydrogen is not currently available as an infrastructure.
  • a fuel cell system is usually provided with a hydrogen generator for generating hydrogen required for power generation.
  • a hydrocarbon-based raw material such as methane gas and water are used to generate a reformed gas rich in hydrogen.
  • the fuel cell uses the reformed gas and air generated by the hydrogen generator to generate power so as to output predetermined power.
  • a steam reforming method As a method for generating hydrogen in a hydrogen generator, a steam reforming method is generally used.
  • a reformed gas is generated by a steam reforming reaction.
  • a city gas as a raw material for producing hydrogen and steam are subjected to a diagonal reaction under a high temperature condition of about 600 ° C to 800 ° C using a ruthenium catalyst. This is one of the various chemical reactions of hydrogen production that produces a reformed gas containing hydrogen as the main component.
  • FIG. 18 is a longitudinal sectional view schematically showing an internal configuration of an example of a hydrogen generator capable of uniformly mixing a raw material and steam.
  • the arrows shown in FIG. 18 indicate the directions in which gases such as raw materials and water vapor flow.
  • the hydrogen generator 300 capable of uniformly mixing the raw material and the steam has a multi-concentric cylindrical configuration. That is, the hydrogen generator 300 includes a combustion burner 16 that generates a combustion gas in a high-temperature state for advancing a water vapor reforming reaction, and water that is supplied and heated by the combustion burner 16 to produce wet steam or steam. Heaters 17 and 18 that generate Further, the hydrogen generator 300 includes a combustion chamber in which a high-temperature combustion gas generated by the combustion burner 16 passes through a plurality of annular spaces formed by a plurality of concentric cylinders 19 and 128 around the combustion burner 16.
  • a shift catalyst layer 33 for reducing the concentration of carbon monoxide by a predetermined chemical reaction, and a reformed gas whose concentration of carbon monoxide is reduced by this shift catalyst layer 33 and air for the selective oxidation reaction are supplied.
  • Air from the air supply unit 34 The first mixed layer 35 and the second mixed layer 36 for mixing, and one of the reformed gas mixed with air passing through the first mixed layer 35 and the second mixed layer 36
  • a first selective oxidation catalyst layer 37 and a second selective oxidation catalyst layer 38 for further reducing the concentration of carbon oxide by a selective oxidation reaction are provided in a concentric cylindrical shape around the combustion burner 16. Then, as shown in FIG. 18, in the hydrogen generator 300, the preheating layer 30, the heat recovery layer 32, the first mixed layer 35 and the second mixed layer 36 promote mixing of the raw material with steam or air. (See Patent Document 1, for example).
  • water used in the steam reforming reaction is supplied to the heater 17 or the heater 18 to at least partially vaporize the water, and
  • the water (hot water) discharged from the heater 18 is mixed with city gas as a raw material in a mixing section (not shown in FIG. 18), and then mixed between concentric cylinders 25 and 26.
  • city gas as a raw material in a mixing section (not shown in FIG. 18)
  • the mixed gas of the city gas and the water vapor is supplied to the reforming catalyst layer 31 after being sufficiently mixed when passing through the preheating layer 30, and the reforming catalyst layer 31 passes through the combustion gas passage 29.
  • the reformed gas generated by the steam reforming reaction then passes through the heat recovery layer 32, is cooled to a predetermined temperature, and is supplied to the shift catalyst layer 33. Then, by the shift reaction progressing in the shift catalyst layer 33, most of the carbon monoxide contained in the reformed gas is removed. The reformed gas from which much of the carbon monoxide has been removed is then supplied from the air supply unit 34 in the first mixed layer 35 in order to remove most of the carbon monoxide contained in a small amount. After being sufficiently mixed with the air, it is supplied to the first selective oxidation catalyst layer 37.
  • the selective oxidation reaction that proceeds in the first selective oxidation catalyst layer 37 most of the carbon monoxide contained in the reformed gas is removed by combustion. Further, in order to remove the strong carbon which could not be removed by the first selective oxidation catalyst layer 37, the reformed gas having a uniform concentration by the second mixed layer 36 was removed by the second mixing layer 36.
  • the second selective oxidation catalyst layer 38 is supplied to the selective oxidation catalyst layer 38, and the second oxidation catalyst is further removed from the second selective oxidation catalyst layer 38.
  • the reformed gas from which carbon monoxide has been sufficiently removed is supplied to a fuel cell and used for a chemical reaction for power generation in the fuel cell.
  • the preheating layer 30 composed of ceramic spheres is disposed between the concentric cylinder 20 and the concentric cylinder 21, whereby the fluid passing through the preheating layer 30 is provided. Since the flow of gas is disturbed, raw materials such as city gas and water vapor are positively mixed. In other words, the flow of the mixed gas of the raw material and the steam becomes three-dimensionally complicated due to the influence of the ceramic spheres when passing through the preheating layer 30. Will be promoted. Further, according to the hydrogen generator 300, when the reformed gas is supplied to the shift catalyst layer 33, the mixing state of the reformed gas is improved by the mixing action of the heat recovery layer 32. The transformation reaction is suitably performed.
  • the hydrogen generator 300 when the reformed gas is supplied to the first selective oxidation catalyst layer 37 and the second selective oxidation catalyst layer 38, respectively, the first mixed layer 35 and the second Since the mixing state of the reformed gas is improved by the mixing action of the second mixed layer 36, the first selective oxidation catalyst layer The selective oxidation reaction in the 37 and the second selective oxidation catalyst layer 38 suitably proceeds.
  • the preheating layer 30, the heat recovery layer 32, the first mixed layer 35, and the second mixed layer 36, each of which is filled with ceramic spheres exist in the vicinity.
  • the mixing performance between fluids that are relatively good is a force that is relatively good. More specifically, for example, since the raw material and steam used for the reforming reaction are also supplied to the upper right portion of FIG. 18 of the hydrogen generator 300, the raw material in the fluid supplied to the preheating layer 30 on the right side of FIG.
  • the concentration of water vapor is higher than the concentration of raw material and water vapor in the fluid supplied to the preheating layer 30 on the left side of FIG.
  • the fluid is much longer inside the preheating layer 30 than the length of the preheating layer 30 in the vertical direction. Since it must be moved in a long circumferential direction, it is practically difficult to equalize the concentrations of the raw material and the water vapor in the fluid in the preheating layer 30. Therefore, the concentrations of the raw material and the steam supplied to the reforming catalyst layer 31 are non-uniformly distributed in the circumferential direction of the catalyst layer. An excessively heated portion occurs in the reforming catalyst layer 31, which leads to deterioration of the reforming catalyst. In addition, at a position where the concentration of the raw material and the steam in the reforming catalyst layer 31 is high, the temperature of the reforming catalyst layer 31 does not sufficiently rise due to the excessively existing steam, and the conversion rate to hydrogen generation decreases.
  • the concentration of oxygen supplied to the first selective oxidation catalyst layer 37 is unevenly distributed in the circumferential direction of the catalyst layer. Therefore, at a position where the oxygen concentration in the first selective oxidation catalyst layer 37 is low, the carbon monoxide contained in the reformed gas cannot be sufficiently removed. On the other hand, at the position where the concentration of oxygen is high in the first selective oxidation catalyst layer 37, even if the oxygen concentration contained in the reformed gas is removed by oxidation, it is generated by the excess oxygen. Even hydrogen was consumed, causing a decrease in hydrogen generation efficiency.
  • FIG. 19 is a vertical cross-sectional view schematically showing an internal configuration of an example of the hydrogen generator capable of improving the mixing performance of fluids located at positions separated in the circumferential direction. Note that the arrows shown in FIG. 19 indicate the directions in which gases such as raw materials and water vapor flow.
  • the hydrogen generator 400 includes a city gas supply pipe connection 1, a water supply pipe connection 2, a combustion gas exhaust port 13, and an outlet pipe 15.
  • the hydrogen generator 400 includes a combustion gas flow path 416, a city gas supply pipe connection 1 and a water supply pipe connection 2, and a downflow path 8 through which city gas and water supplied from the water supply pipe connection 2 flow down.
  • a reformed gas flow path 11 circulated around the combustion burner 3 in a concentric cylindrical shape.
  • the evaporator 10 is constituted by the downflow channel 8 and the upflow channel 9, and the steam reforming reaction proceeds in a predetermined region inside the reformed gas channel 11. Reforming catalyst layer 12 is provided.
  • a disc-shaped space formed by the ascending flow path 9 and the reformed gas flow path 11 being sandwiched between two disc-shaped side walls 39 and 40. It is connected by 41 and a catalyst pipe.
  • spherical alumina particles 43 having a diameter of about 1Z3, which is at least the height of the space 41, are mixed with the raw material and steam in at least a disk-shaped space 41. Packed in large numbers for promotion.
  • the hydrogen generator 400 configured as described above, when city gas and water are supplied to the downflow channel 8 from the city gas supply pipe connection 1 and the water supply pipe connection 2, the evaporator 10 In the above, a mixed gas of city gas and water vapor is generated. Then, the mixed gas of the city gas and the steam present in the evaporator 10 so as to spread in the circumferential direction then passes through the space 41 and the catalyst pipe 42 to be filled with the reforming catalyst. Is supplied to the high quality catalyst layer 12. Then, in the reforming catalyst layer 12, the reforming catalyst is heated to a high temperature by the combustion gas flowing through the combustion gas flow path 4, and a steam reforming reaction proceeds, whereby the mixed gas is converted into hydrogen.
  • a reformed gas containing diacid carbon and monoacid carbon is generated.
  • the generator 400 as in the case of the hydrogen generator 300 shown in FIG. 18, at least the space 41 is filled with spherical alumina particles 43, which disturbs the flow of the fluid flowing through the disk-shaped space 41.
  • Raw materials such as city gas and water vapor are positively mixed.
  • the flow of the mixed gas of the raw material and the water vapor becomes a three-dimensionally complicated flow under the influence of the alumina particles 43 when passing through the disk-shaped space 41.
  • the mixed state is improved in the same manner as in the case of the hydrogen generator 300 shown in FIG.
  • the concentration of city gas in the mixed gas is high.On the contrary, on the left side of the space 41 shown in Fig. 19, the concentration of city gas in the mixed gas is low. Even when the concentration distribution occurs, the mixed state of, for example, city gas and water vapor in the circumferential direction in the reforming catalyst layer 12 is sufficiently averaged. That is, according to the hydrogen generator 400 shown in FIG. 19, it is possible to improve the mixing state of the fluid such as the mixed gas of the city gas and the water vapor, and to exist at a position distant in the circumferential direction. It is possible to improve the mixing state between fluids.
  • Patent Document 1 International Publication WO2000Z063114
  • the heat capacity of the hydrogen generator 400 is increased. Therefore, when it is necessary to increase the supply amount of the reformed gas supplied to the fuel cell in accordance with the increase in the power consumption of the load, it takes a long time before the temperature distribution inside the hydrogen generator 400 changes to the optimal temperature distribution. Since it takes time, there is a problem that responsiveness is poor. This problem has become particularly important when starting the hydrogen generator 400.
  • the temperature of the alumina particles 43 is at or near room temperature, and then heated by the high-temperature combustion gas generated by the combustion burner 3. As a result, the temperature gradually increases.
  • the amount of heat required to raise the temperature of all the alumina particles 43 from, for example, room temperature to 200 ° C. assumes that the total weight of the alumina particles 43 is about 1 kg and the specific heat is about 0.8 kj / Assuming kg '° C, it is about 140 kJ.
  • the low heating value of the city gas is assumed to be about 42 kJZNLM.
  • About 3.3 NLM of city gas will be required to cover the heat of the city.
  • the heating of the alumina particles 43 is performed by burning about 1.5 NLMZ of city gas, it takes about 2 minutes to raise the temperature of all the alumina particles 43 from room temperature to 200 ° C. It takes time.
  • heat radiation loss occurs in the hydrogen generator 400, a delay in the start-up time of two minutes or more occurs.
  • the raw material and the steam are supplied to the hydrogen generator 400 before the temperature of the alumina particles 43 is sufficiently increased, the supplied steam is cooled by the alumina particles 43 and condensed as water.
  • the reforming catalyst layer 12 is supplied with a raw material having an insufficient amount of steam.
  • the SZC ratio which is the ratio of the molar amount S of steam supplied to the reforming catalyst layer 12 to the molar amount C of carbon contained in the raw material, is 2.7. -3.2
  • the steam reforming reaction proceeds under a range below about 2.2
  • carbon in the raw material precipitates on the surface of the reforming catalyst, and the catalytic activity of the reforming catalyst decreases.
  • the catalytic performance of the entire reforming catalyst layer gradually deteriorates. Therefore, it becomes impossible to use the hydrogen generator 400 for a long period of time. Therefore, in practice, it is necessary to supply the raw material and the steam to the hydrogen generator 400 after the temperature of the alumina particles 43 has sufficiently risen. That is, the above-described hydrogen generator 400 has a problem that the standby time from the start to the start of the output of electric power is long.
  • the preheating layer 30 or the first mixed layer 35 and the like are formed of ceramic spheres, and therefore have the same problems as the hydrogen generator 400 described above. ing.
  • the present invention has been made in view of such circumstances, and is a hydrogen generating apparatus that is lightweight, has a small heat capacity, and is equipped with a high-performance gas mixer and has excellent hydrogen generating efficiency and responsiveness.
  • the purpose is to provide.
  • a hydrogen generator includes a mixed gas flow path through which a mixed gas containing two or more components flows, and a start end of each of the mixed gas flow paths branching from the mixed gas flow path.
  • a hydrogen generating unit for generating hydrogen by causing the mixed gas flowing out of the first flow path and the second flow path to flow out of the mixed gas.
  • the mixed state of the mixed gas supplied to the reforming catalyst layer or the selective oxidation catalyst layer can be improved, and the mixed gas supplied to the reforming catalyst layer or the selective oxidation catalyst layer can be improved.
  • the concentration of the constituent components such as city gas can be made uniform irrespective of the supply position, so that it is possible to provide a hydrogen generator having excellent hydrogen generation efficiency.
  • the first flow path and the second flow path are formed such that the mixed gas flows in the mixed gas outflow direction at the terminal force of the first flow path and the terminal force of the second flow path. It is configured to make a turn in the first direction and a turn in the second direction, respectively, while flowing in a vertical plane.
  • a flat gas mixer can be configured, so that the hydrogen generator can be reduced in thickness.
  • the first flow path and the second flow path each have a central axis coinciding with each other, have an outer peripheral surface opened, and have a hollow shape having a circular opening at the center.
  • the outer peripheral surface forms an inlet at the beginning and the opening forms an outlet at the end, and the first turning means moves the internal space of the first flow path in the direction along the central axis.
  • the partition is formed of a plurality of partitions extending inward from the outer periphery of the inner space from the outer periphery of the inner space to the start end so as to be shifted in the first direction, and the second swirling means is provided with the second flow.
  • the inner space of the road is partitioned in a direction along the central axis, and the outer peripheral force of the inner space is constituted by a plurality of partition walls extending inward so that the end is shifted from the radial direction with respect to the start end in the second direction.
  • the deviation of the terminal end from the start end of the partition wall is a rotation angle in the range of 45 °-90 ° with respect to the rotation angle around the central axis.
  • the mixed state of the mixed gas can be suitably improved.
  • a plurality of the first flow path and the second flow path, and a plurality of the first turning means and the second turning means are respectively formed along the central axis. .
  • the mixed state of the mixed gas can be more suitably improved.
  • the first flow path and the second flow path may be configured such that the mixed gas is a mixture of the mixed gas from the end of the first flow path and the end of the second flow path. It is formed so as to turn in the first direction and turn in the second direction, respectively, while flowing in a cylindrical surface parallel to the outflow direction.
  • a cylindrical gas mixer can be configured, so that the size of the hydrogen generator can be reduced.
  • the first flow path and the second flow path are each formed in a cylindrical shape having an annular cross-section shared with the central axis as a central axis, and each of the End face Each end face on the other side constitutes an exit which constitutes an entrance which is a start end and an end which constitutes an end, and the first turning means moves the cylindrical internal space of the first flow path in the first direction. It is composed of a plurality of partition walls that spirally partition in a spiral manner, and the second spiral means spirals in the second direction in the cylindrical internal space of the first flow path. It is composed of a plurality of partition walls.
  • the turning angle force from the start end to the end of the partition wall is in the range of 5 ° to 90 °.
  • the mixed state of the mixed gas can be suitably improved.
  • the mixed state of the mixed gas can be further suitably improved.
  • first flow path and the second flow path are formed so as to be separated by a cylindrical partition wall, and the first flow path and the second flow path are separated from each other.
  • the outlet of any of the front swirling channels is closed, and an opening is formed in a portion of the divided partition wall near the closed outlet.
  • the mixed state of the mixed gas can be more suitably improved.
  • a plurality of the first flow paths and the second flow paths are respectively formed along the central axis, and the first flow path and the second flow path are located on the upstream side in the flow of the mixed gas.
  • the ends of the first flow path and the second flow path are connected to the start ends of the first flow path and the second flow path located on the downstream side.
  • the mixed state of the mixed gas can be further more preferably improved.
  • the mixed gas is a mixed gas obtained by mixing an organic compound having at least carbon and hydrogen with water, and the chemical reaction produces hydrogen from the mixed gas obtained by mixing the organic compound and water.
  • the mixed gas flowing out from the ends of the merged first flow path and second flow path is supplied to the reforming reaction section to generate hydrogen.
  • the mixed gas is a mixed gas obtained by mixing the reformed gas and oxygen, and the selective gas conversion is performed by converting oxygenated carbon into oxygenated carbon using oxygen.
  • a selective oxidation reaction section for reducing carbon dioxide in the reformed gas by a reaction is provided in place of the hydrogen generation section, and the first swirl means and the second swirl means comprise the selective oxidation reaction.
  • the mixed gas that is disposed upstream of the section and flows out from the ends of the merged first flow path and second flow path is supplied to the selective oxidation reaction section to remove carbon monoxide in the reformed gas. Reduce.
  • the present invention provides a hydrogen generator that is implemented as described above, is lightweight, has a small heat capacity, and is equipped with a high-performance gas mixer and having excellent hydrogen generation efficiency and responsiveness. Can be provided.
  • the present invention it is possible to eliminate non-uniformity in temporal and spatial concentrations in a fluid such as a mixed gas of a raw material and steam supplied to a reforming catalyst layer.
  • a fluid such as a mixed gas of a raw material and steam supplied to a reforming catalyst layer.
  • the temporal and spatial uniformity of the concentration of the reformed gas can be ensured, so that carbon monoxide removal such as a reforming catalyst layer and a shift reactor disposed downstream thereof is performed.
  • the catalyst layer can be used effectively, which can greatly contribute to reducing the amount of each catalyst and miniaturizing the hydrogen generator.
  • FIG. 1 is a longitudinal sectional view schematically showing an internal configuration of a hydrogen generator according to Embodiment 1 of the present invention.
  • FIG. 2 is a configuration diagram schematically showing an internal configuration of a gas mixer according to Embodiment 1 of the present invention.
  • FIG. 2 (a) is a plan view of the gas mixer, and
  • FIG. 2 (b) is a sectional view of the gas mixer.
  • FIG. 3 is an explanatory view schematically showing a flow of a mixed gas divided above by a dividing partition.
  • FIG. 4 is an explanatory view schematically showing a flow of a mixed gas divided below by a dividing partition.
  • FIG. 5 is a configuration diagram schematically showing an internal configuration of another gas mixer according to Embodiment 1 of the present invention
  • FIG. 5 (a) is a plan view of the gas mixer
  • FIG. 5B is a cross-sectional view of the gas mixer.
  • FIG. 6 is a plan view illustrating a configuration of a gas mixer in a case where eight flow path defining members are provided on one surface of a divided partition wall.
  • FIG. 7 is a longitudinal sectional view schematically showing an internal configuration of a hydrogen generator according to Embodiment 2 of the present invention.
  • FIG. 8 is a longitudinal sectional view schematically showing an internal configuration of a gas mixer according to Embodiment 2 of the present invention.
  • FIG. 9 is an explanatory view schematically showing a flow of a reformed gas in a gas mixer.
  • FIG. 9 (a) shows a flow of a mixed gas divided inside by a concentric mixing cylinder.
  • FIG. 9 (b) is an explanatory diagram schematically showing a flow of a mixed gas divided outside by a concentric cylinder for mixing.
  • FIG. 10 is an explanatory diagram for explaining the operation of the gas mixer according to the present embodiment shown in FIG. 9 more easily.
  • FIG. 11 is a longitudinal sectional view schematically showing the internal configuration of another gas mixer according to Embodiment 2 of the present invention.
  • FIG. 12 is a longitudinal sectional view schematically showing the internal configuration of still another gas mixer according to Embodiment 2 of the present invention.
  • FIG. 13 is a diagram showing a swirl angle of a mixed gas of a first fluid (for example, a raw material) and a second fluid (for example, steam) in the gas mixer according to the present embodiment,
  • the mixture that passed FIG. 4 is a correlation diagram schematically showing a relationship between a reforming reaction conversion rate in a reforming catalyst layer when a combined gas is used.
  • FIG. 14 is a configuration diagram schematically showing an internal configuration of a gas mixer according to Embodiment 3 of the present invention
  • FIG. 14 (a) is a top view of the gas mixer
  • Fig. 14 (b) is a side view of the gas mixer.
  • FIG. 15 is a configuration diagram schematically showing an internal configuration of a gas mixer according to Embodiment 4 of the present invention.
  • FIG. 15 (a) is a top view of the gas mixer
  • Fig. 15 (b) is a side view of the gas mixer.
  • FIG. 16 is a configuration diagram schematically showing an internal configuration of a first gas mixer assembly in which gas mixers according to Embodiments 2-4 of the present invention are assembled in series.
  • FIG. 17 is a configuration diagram schematically showing an internal configuration of a second gas mixer assembly in which gas mixers according to Embodiments 2 to 4 of the present invention are assembled in series.
  • FIG. 18 is a longitudinal sectional view schematically showing an internal configuration of an example of a hydrogen generator capable of uniformly mixing a raw material and steam.
  • FIG. 19 is a longitudinal sectional view schematically showing an internal configuration of an example of a hydrogen generator capable of improving the mixing performance of fluids present at positions separated in the circumferential direction.
  • Embodiment 1 of the present invention an evaporator that evaporates supplied water and mixes it with a raw material to generate a mixed gas, and a reaction unit that advances a steam reforming reaction for generating a reformed gas are provided.
  • a mode in which the mixing state of the mixed gas is improved in the horizontal direction by connecting them by a disk-shaped space and arranging a gas mixer in the disk-shaped space will be described.
  • FIG. 1 is a longitudinal sectional view schematically showing the internal configuration of the hydrogen generator 100 according to Embodiment 1 of the present invention.
  • the description of a conversion reactor, a selective oxidation reactor, and a fuel cell body for removing carbon monoxide contained in the reformed gas is omitted.
  • the arrows shown in FIG. 1 indicate the directions in which gases such as raw materials and steam flow.
  • the hydrogen generator 100 has a cylindrical housing 77 whose upper end and lower end are closed.
  • the inside of the housing 77 is partitioned by a cylindrical vertical wall and a disk-shaped horizontal wall, and various flow paths and the like described below are formed.
  • the hydrogen generator 100 having such a housing 77 includes a city gas supply pipe connection 1 for supplying city gas from the external infrastructure to the hydrogen generator 100, and water to the water-powered hydrogen generator 100.
  • a water supply pipe connection 2 for supplying water and a combustion burner 3 for generating a high-temperature combustion gas for promoting a water vapor reforming reaction are provided.
  • the hydrogen generator 100 includes a combustion gas flow path 416 through which the high-temperature combustion gas generated by the combustion burner 3 flows inside the hydrogen generator 100, and a city gas supply.
  • the downflow channel 8 through which the city gas and water supplied from the supply pipe connection 1 and the water supply pipe connection 2 flows down, and the water vapor generated in the process of flowing down the downflow channel 8 ⁇
  • the ascending flow path 9 in which the mixed gas with the gas rises, and the reformed gas flow path 11 through which the reformed gas generated by the steam reforming reaction flows inside the hydrogen generator 100, are connected to the hydrogen generator 100 Are provided in a concentric cylindrical shape with respect to the central axis C.
  • an evaporator 10 is constituted by the downflow channel 8 and the ascending channel 9, and the evaporator 10 generates steam and mixes with the city gas. Is performed. Further, a reforming catalyst layer 12 for promoting a steam reforming reaction is formed in a predetermined region inside the reformed gas channel 11.
  • the hydrogen generator 100 passes through a combustion gas exhaust port 13 for discharging the combustion gas that has passed through the combustion gas flow path 416 to the outside of the hydrogen generator 100, and a reformed gas flow path 11.
  • An outlet pipe 15 for discharging the reformed gas to the outside of the hydrogen generator 100 is provided.
  • the catalyst pipe 42 for introducing the mixed gas into the end portion 44 of the rising flow path 9 and the reformed gas flow path 11 are connected by a disc-shaped space 41 sandwiched between two disc-shaped side walls 39 and 40.
  • a through hole having a diameter to which the catalyst pipe 42 can be connected is formed in the center of the lateral wall 40, and one end of the catalyst pipe 42 is connected to this through hole.
  • the present invention for improving the mixing state of the mixed gas of the raw material and the steam having passed through the upflow channel 9 is provided in the disk-shaped space 41 described above.
  • a gas mixer 101 to be characterized is provided. The configuration of the gas mixer 101 will be described later in detail.
  • the raw material such as city gas and the like are supplied from the city gas supply pipe connection part 1 and the water supply pipe connection part 2 to the downflow channel 8.
  • the water is heated in the downflow channel 8 to generate steam, and the steam and the raw material pass through the ascending channel 9 while being gradually mixed with the raw material.
  • the gas is discharged from the end 44 as a mixed gas. That is, in the evaporator 10, a mixed gas of the raw material and the steam is generated. Then, the mixed gas generated in the evaporator 10 is thereafter supplied to the space 41 in which the gas mixer 101 is provided.
  • this gas mixer In 101 the raw material in the mixed gas and the water vapor are sufficiently mixed, and the mixed gas is concentrated and spread in the ascending flow path 9 with a concentration distribution in the circumferential direction of the front side. Mixed.
  • the operation of the gas mixer 101 for improving the mixed state of the mixed gas will be described later in detail.
  • the mixed gas that has passed through the gas mixer 101 then passes through a catalyst pipe 42 and is supplied to a reformed gas channel 11 including a reforming catalyst layer 12 filled with a reforming catalyst. . Then, in the reforming catalyst layer 12, the reforming catalyst layer 12 is heated to a high temperature by the combustion gas flowing through the combustion gas flow path 4, and the steam reforming reaction proceeds. A reformed gas containing carbon oxide and carbon monoxide is generated. Thereafter, the reformed gas further passes through the reformed gas flow path 11 and is supplied from the outlet pipe 15 to the shift reaction reactor for reducing the concentration of carbon monoxide in the reformed gas.
  • the combustion gas that has passed through the combustion gas flow path 4 passes through the combustion gas flow path 5-6, then passes through the combustion gas exhaust port 13, and is discharged to the outside of the hydrogen generator 100.
  • FIG. 2 is a configuration diagram schematically showing an internal configuration of the gas mixer 101 according to Embodiment 1 of the present invention.
  • FIG. 2 (a) is a plan view of the gas mixer 101
  • FIG. 2B is a sectional view of the gas mixer 101.
  • upper flow path defining members 45a to 45d described later in the gas mixer 101 are indicated by solid lines
  • lower flow path defining members 46a to 46d are indicated by broken lines.
  • the gas mixer 101 converts the mixed gas 47 rising from the rising flow path 9 shown in FIG. It has a disk-shaped partition 50 that divides vertically into two parts like a mixed gas 49.
  • a communication hole 51 having a diameter substantially the same as the diameter of the catalyst pipe 42 is provided at the center of the divided partition wall 50. Then, it extends between the outer peripheral portion of the communication hole 51 on both sides of the divided partition wall 50 and the outer peripheral portion of the divided partition wall 50 so as to show a spiral shape in a plan view and a belt shape in a side view.
  • Flow path defining members 45a-45d and 46a-46d showing the shape are provided.
  • a predetermined The four flow path defining members 45a to 45d having the spiral shape are arranged at equal intervals. These flow path defining members 45a to 45d have a spiral shape capable of turning the flow direction of the mixed gas 48 counterclockwise. As shown in FIG. 2 (a), four flow path defining members 46a-46d each having a predetermined spiral shape are arranged at equal intervals below the divided partition wall 50. These flow path defining members 46a to 46d have a spiral shape capable of turning clockwise in the direction in which the mixed gas 49 flows.
  • each of the flow path defining members 45a to 45d is positioned such that the ends on the outer peripheral side of the partition wall 50 in the longitudinal direction are positioned at intervals of 45 °.
  • the first predetermined position A is disposed at the fourth predetermined position D, and the end on the inner peripheral side (outer peripheral side of the communication hole 51) of the divided partition wall 50 in the longitudinal direction is the first predetermined position A- It is disposed on the surface of the dividing partition wall 50 so as to be disposed at the fifth predetermined position E—the eighth predetermined position H, which has been moved counterclockwise by 45 ° with respect to the predetermined position D of 4.
  • each of the flow path defining members 46a-46d has an end on the outer peripheral side of the partition wall 50 in the longitudinal direction, the first predetermined position A-fourth.
  • the right end of the partition wall 50 in the longitudinal direction At the inner peripheral side (outer peripheral side of the communication hole 51) of the partition wall 50 in the longitudinal direction, the right end of which is located at the right side with respect to the first predetermined position A—the fourth predetermined position D. It is disposed on the surface of the dividing partition wall 50 so as to be disposed at the seventh predetermined position G, the sixth predetermined position F, the fifth predetermined position E, and the eighth predetermined position H which have moved around 45 °. ing.
  • the flow path defining members 45a to 45d and the flow path defining members 46a to 46d are, in the plan view shown in FIG. 49 and are swirled so as to swirl in opposite directions, and when viewed from each side of the dividing wall 50, the mixed gas 48 and the mixed gas 49 are swirled in the same direction. It has been. Then, the gas mixer 101 composed of the partition wall 50, the flow path defining members 45a-45d, and the flow path defining members 46a-46d as described above forms a disc-shaped gas connecting the ascending flow path 9 and the catalyst pipe 42.
  • the communication hole 51 of the gas mixer 101 and the catalyst pipe 23 are arranged and fixed by predetermined fixing means so that they substantially coincide with each other in the direction of the central axis C.
  • the reformed gas generated in the reforming catalyst layer 12 is supplied to the outside of the hydrogen generator 100.
  • An outlet pipe 15 for discharging is penetrated.
  • the shapes of the flow path defining members 46a to 46d have the same shape in order to make the flow rate of the mixed gas flowing in each flow path equal.
  • FIG. 3 is an explanatory diagram schematically showing the flow of the mixed gas 48 divided above by the dividing partition 50.
  • FIG. 3 is a plan view when the same directional force as in the plan view shown in FIG. In FIG. 3, the flow of the mixed gas 48 flowing into the upper side of the dividing partition wall 50 from four directions is indicated by arrows having different types of knuckles and tchings for convenience.
  • FIG. 4 is an explanatory view schematically showing the flow of the mixed gas 49 divided below by the dividing partition 50. Note that FIG. 4 also shows a plan view when a force in the same direction as the plan view shown in FIG. 2A is partially seen through. Also in FIG. 4, the flow of the mixed gas 49 flowing into the lower side of the divided partition wall 50 from four directions is conveniently indicated by arrows having different types of knurls and tchings.
  • the upper force in FIG. 3 also flows into the communication hole 51.
  • the mixed gas 48b flowing from the upper side in FIG. 3 indicated by other arrows is changed by the flow path defining member 45b and the flow path defining member 45a so that the flow path turns to the left. It flows into the communication hole 51.
  • the flow path defining member 45c and the flow path defining member 45b are changed by the flow path defining member 45c and the flow path defining member 45b so that the flow path turns leftward, and from the lower side in FIG. It flows into the communication hole 51.
  • the mixed gas 48d flowing from the lower side in FIG. 3 indicated by other arrows is changed by the flow path defining member 45d and the flow path defining member 45c so that the flow path turns left, and the right side in FIG. Flows into the communication hole 51.
  • the flow path defining members 45a-45d have a function of rotating the flow direction of the mixed gas 48a-mixed gas 48d, which has flowed into the upper side of the partition wall 50, to the left by 90 ° and sending it into the communication hole 51.
  • the mixed gas 49a that has flowed into the right side in FIG. 4 indicated by a white arrow flows rightward by the flow path defining members 46a and 46d.
  • the rotation is changed so that the lower force in FIG. 4 also flows into the communication hole 51.
  • the mixed gas 49b into which the upward force shown in FIG. 4 also flows by another arrow is changed by the flow path defining member 46b and the flow path defining member 46a so that the flow path turns rightward, and the right side in FIG. Flows into the communication hole 51.
  • the flow path defining member 46c and the flow path defining member 46b are changed by the flow path defining member 46c and the flow path defining member 46b so that the flow path turns rightward, and the upward force in FIG. It flows into the communication hole 51.
  • the mixed gas 49d flowing from the lower side in FIG. 4 indicated by another arrow is changed by the flow path defining member 46d and the flow path defining member 46c so that the flow path turns rightward.
  • the left side force also flows into the communication hole 51.
  • the flow path defining members 46a-46d have a function of rotating the flow direction of the mixed gas 49a-mixed gas 49d flowing into the lower side of the divided partition wall 50 by 90 ° to the right and sending it into the communication hole 51. .
  • the gas mixer 101 from the upper side of the communication hole 51, a half of the mixed gas 48a of the mixed gas 48 flowing from the right side of the divided partition wall 50 and the mixed gas 48a having the left-hand force also flowed.
  • the mixed gas 49a flows from the left half of the mixed gas 49a and the left half of the mixed gas 49a, and the mixed gas 49a flows from the left side.
  • the mixed gas 48c flows in half.
  • a mixed gas 48d of a half amount of the mixed gas 48 flowing in from the lower side of the dividing wall 50 and a mixed gas 49b of a half amount of the mixed gas 49 flowing in from the upper side flow in the same manner.
  • the number of contact fields between the mixed gas having a high concentration of city gas and the mixed gas having a high concentration of water vapor increases, so that it is possible to equalize the spatial concentration distribution.
  • the above-described action of improving the mixed state of the mixed gas by the gas mixer 101 makes it possible to improve the mixed state of the city gas and the water vapor in the mixed gas.
  • the heat capacity of the gas mixer 101 can be reduced. It is possible to provide the hydrogen generator 100 having excellent responsiveness.
  • FIG. 5 is a configuration diagram schematically showing an internal configuration of another gas mixer 102 according to Embodiment 1 of the present invention
  • FIG. 5 (a) is a plan view of the gas mixer 102
  • FIG. 5B is a cross-sectional view of the gas mixer 102.
  • the upper flow path defining members 45a-45d described later in the gas mixer 102 are indicated by thick solid lines
  • the lower flow path defining members 46a-46d are indicated by thick broken lines.
  • the flow path defining members 53a-53d and 54a-54d disposed on the lower side are shown by thin solid lines and broken lines.
  • FIGS. 5 (a) and 5 (b) the same components as those shown in FIGS. 2 (a) and 2 (b) are denoted by the same reference numerals.
  • the gas mixer 101 has a configuration corresponding to a configuration in which two stages are stacked in the direction of the central axis C.
  • the first gas mixer 101 including the dividing wall 50, the flow path defining members 45a-45d and the flow path defining members 46a-46d, the divided partition 58 and the flow path defining member 53a-
  • the second gas mixer 101 ' including the flow path defining member 53d and the flow path defining members 54a-54d is interposed via a disk-shaped partition plate 57 having a hole having a diameter substantially equal to the diameter of the communication hole 51 at the center thereof. It has a two-tier configuration. Then, as shown in FIG.
  • the positional relationship between the gas mixer 101 and the second gas mixer 101 ′ has a rotation angle of 45 °, so that the central axis A configuration is adopted in which the gas mixer 101 and the second gas mixer 101 'are stacked in two layers in the direction of C.
  • the other points are the same as those of the gas mixer 101 shown in FIGS. 2 (a) and 2 (b).
  • the mixed gas 47 that has passed through the ascending channel 9 by the dividing wall 50, the partition plate 57, and the dividing wall 58 is mixed in the direction of the central axis C.
  • the present invention is not limited to this mode, and may be a mode in which a number of flow path defining members are arranged at an arbitrary separation angle.
  • the separation angle of the flow path defining member is reduced, that is, as the number of the flow path defining members is increased, the spatial concentration of the city gas and steam in the mixed gas supplied to the catalyst pipe 42 is reduced. The bias can be made even more uniform.
  • FIG. 6 is a plan view illustrating the configuration of the gas mixer 103 in a case where eight flow path defining members are provided on one side of the partition wall 50.
  • upper flow path defining members 59a to 59h described later in the gas mixer 103 are indicated by solid lines, and lower flow path defining members 60a to 60h are indicated by broken lines.
  • the same components as those shown in FIGS. 2 (a) and 2 (b) are denoted by the same reference numerals.
  • FIG. 6 in another gas mixer 103 according to Embodiment 1 of the present invention, eight flow path defining members 59a-59h are provided above divided wall 50. It is arranged. These flow path defining members 59a-59h are arranged on one surface of the dividing partition wall 50 such that the separation angle between adjacent flow path defining members is 45 °. Further, as shown in FIG. 6, in the gas mixer 103, a flow path defining member 60a-a flow path defining member 60h is disposed below the divided partition wall 50. The flow path defining member 60a and the flow path defining member 60h also have the same configuration as the flow path defining member 59a and the flow path defining member 59h.
  • the partition members 50 are arranged on one side of the partition wall 50 so that the separation angle between the defining members is 45 °.
  • the other points are the same as those of the gas mixer 101 shown in FIGS. 2 (a) and 2 (b). As described above, even by increasing the number of flow path defining members, it is possible to further uniform the unevenness in the spatial concentration of city gas and water vapor in the mixed gas supplied to the catalyst pipe 42. Will be possible.
  • the shape of the flow path defining member is gently curved, but the shape of the flow path defining member is such a curved shape.
  • the shape is not limited to this, but may be a simpler or more complicated shape depending on the flow rate of the supplied mixed gas to be supplied and the ease of flow.
  • the present invention does not limit the types of raw materials used. It is also effective for raw materials such as nagu alcohol, LPG, and kerosene. In particular, when a liquid fuel such as alcohol or kerosene is used and mixed with water and evaporated, the spatial concentration distribution of these raw materials and water vapor tends to occur, so the present invention is extremely effective. Technology.
  • a flow path between a reformed gas supply flow path through which a supplied mixed gas flows and a reaction unit that proceeds with a steam reforming reaction for generating a reformed gas is provided.
  • a gas mixer is provided in the flow path, and the mixed state of the mixed gas is improved in the vertical direction by the gas mixer.
  • FIG. 7 is a longitudinal sectional view schematically showing the internal configuration of hydrogen generator 200 according to Embodiment 2 of the present invention.
  • the arrows shown in FIG. 7 indicate the directions in which the raw materials and the gas such as steam flow.
  • hydrogen generator 200 has a multiple concentric cylindrical configuration, similar to the configuration of hydrogen generator 100 shown in the first embodiment. That is, the hydrogen generator 200 is a high temperature combustion gas for advancing the steam reforming reaction. And a heater 17 and 18 that are supplied with water and are heated by the combustion burner 16 to generate wet steam or steam. In the hydrogen generator 200, the combustion gas in the high-temperature state generated by the combustion burner 16 passes through a plurality of annular spaces formed by a plurality of concentric cylinders 19 and 128 around the combustion burner 16.
  • the reformed gas and air for the selective oxidation reaction A gas mixer 202 having a configuration similar to that of the gas mixer 201 for sufficiently mixing the air taken in from the air supply unit 34, and a gas mixer through which the air is sufficiently mixed through the gas mixer 202.
  • the selective oxidation catalyst layer 37 for further reducing the concentration of carbon dioxide in the raw gas by the selective oxidation reaction is the same as in the case of the hydrogen generator 100 according to Embodiment 1 shown in FIG.
  • the combustion burner 16 is provided concentrically around the combustion burner 16. In the present embodiment, a configuration is shown in which a plurality of annular spaces are formed by a plurality of concentric cylinders 19 and 28, but a space corresponding to the annular space is a concentric cylinder.
  • the present invention is not limited to a configuration in which an annular space is formed by a cylinder.
  • the supplied raw material and steam are sufficiently supplied above the reforming catalyst layer 31 in the annular space formed by the concentric cylinders 20 and 21.
  • a gas mixer 201 characterizing the invention for mixing is provided.
  • the gas mixer 201 has a ring-like shape that can be fitted into the annular space formed by the concentric cylinders 20 and 21, and forms a reforming catalyst in the annular space formed by the concentric cylinders 20 and 21. It is fixed at a predetermined position above the layer 31 by predetermined fixing means. Further, in the hydrogen generator 200 according to the present embodiment, the reformed gas and the air to be supplied are sufficiently mixed below the selective oxidation catalyst layer 37 in the annular space formed by the concentric cylinders 26 and 27.
  • a gas mixer 202 characterizing the present invention is provided.
  • the gas mixer 202 has a ring-like shape that can be fitted into the annular space formed by the concentric cylinders 26 and 27, and the gas mixer 202 has a selective shape in the annular space formed by the concentric cylinders 26 and 27. It is fixed to a predetermined position below the dani catalyst layer 37 by predetermined fixing means.
  • the configurations of the gas mixer 201 and the gas mixer 202 will be described later in detail with the gas mixer 202 as a representative.
  • the water used in the steam reforming reaction is supplied to the heater 17 or the heater 18 and at least the water is supplied to the heater 17 or the heater 18.
  • Water (warm water) partially vaporized and discharged from the heater 17 or the heater 18 is primarily mixed with city gas as a raw material in a mixing section (not shown in FIG. 7). The gas is completely vaporized while moving in the space between the concentric cylinder 26 and the concentric cylinder 24, and between the concentric cylinder 24 and the concentric cylinder 25, and is mixed with the city gas.
  • the mixed gas of the city gas and the water vapor is supplied to the gas mixer 201, sufficiently mixed when passing through the gas mixer 201, and then supplied to the reforming catalyst layer 31.
  • the operation of the gas mixer 201 for improving the mixed state of the mixed gas will be described in detail later with the gas mixer 202 as a representative.
  • the mixed gas in which the city gas and the steam are sufficiently mixed from the gas mixer 201 is thereafter supplied to the reforming catalyst layer 31.
  • the reforming catalyst layer 31 is heated by the combustion gas flowing through the combustion gas flow path 29 and used for a steam reforming reaction that proceeds, and a reformed gas rich in mixed gas and hydrogen is generated.
  • the reformed gas generated by the steam reforming reaction passes through the heat recovery layer 32, is cooled to a predetermined temperature, and is supplied to the shift catalyst layer 33.
  • the reformed gas from which much of the carbon monoxide has been removed by the shift catalyst layer 33 is then sufficiently mixed with the air introduced from the air supply unit 34 and the reformed gas passed through the shift catalyst layer 33.
  • the gas is supplied to a gas mixer 202.
  • the reformed gas is sufficiently mixed with the air supplied from the air supply unit 34 when passing through the gas mixer 202, and then supplied to the selective oxidation catalyst layer 37.
  • the operation of the gas mixer 202 for improving the mixed state of the reformed gas and the air will be described later in detail together with the case of the gas mixer 201 described above. explain.
  • the reformed gas sufficiently mixed with air by the gas mixer 202 is supplied to the selective oxidation catalyst layer 37 in order to remove most of the carbon monoxide contained in a small amount. Then, by the selective oxidation reaction that proceeds in the selective oxidation catalyst layer 37, most of the carbon monoxide contained in the reformed gas is removed by combustion using air.
  • the reformed gas from which carbon monoxide has been sufficiently removed is supplied to a fuel cell and used for a chemical reaction for power generation in the fuel cell.
  • the surplus modified gas that is not used for power generation in the fuel cell is supplied to the combustion burner 16, and is reused for generating the combustion gas in the combustion burner 16.
  • FIG. 8 is a longitudinal sectional view schematically showing an internal configuration of gas mixer 202 according to Embodiment 2 of the present invention. Note that, in FIG. 8, illustration of an inner flow path defining member 62c-62d and an outer flow path defining member 63c-63d, which will be described later, located on the near side of the paper of the gas mixer 202 is omitted. In FIG. 8, the visible portions of the inner flow path defining members 62a-62b and the outer flow path defining members 63a-63b are indicated by solid lines, and the invisible parts thereof are indicated by broken lines.
  • the gas mixer 202 supplies air rising in the annular space formed between the concentric cylinder 26 and the concentric cylinder 27 shown in FIG.
  • a cylindrical mixing concentric cylinder 61 that divides the reformed gas 64 into two in the left-right direction (radial direction) like the reformed gas 65 and the reformed gas 66.
  • four spiral inner flow path defining members 62a which are counterclockwise turned in the upward direction of the reformed gas 64 are provided.
  • the flow of the reformed gas 64 is divided into the reformed gases 65 and 66 by the mixing concentric cylinder 61, the inner flow path defining members 62a-62d, and the outer flow path defining members 63a-63d.
  • a gas mixer 202 having a prescribed flow path for rotating the flows of the gases 65 and 66 in opposite directions about the central axis C is configured.
  • the inner flow path defining members 62a to 62d and the outer flow path defining members 63a to 63d are each formed of a predetermined lateral wall.
  • the inner flow path defining members 62a-62d and the outer flow path defining members 63a-63d are provided between the mixing concentric cylinder 61 and the concentric cylinder 26 and the mixing concentric cylinder 61 and the concentric cylinder 27. Is divided into four in the circumferential direction, and in each of the four divided spaces, the space in the opposite direction (clockwise or counterclockwise) in the circumferential direction toward the rising direction of the reformed gas 64 is 90%.
  • Each is arranged so as to form a spiral shape that rotates at ° C.
  • the outer flow path defining member 62a is located at a position facing the lower end of the inner flow path defining member 62a.
  • the upper end of the flow path defining member 63a is arranged, and the lower end of the outer flow path defining member 63a is arranged at a position facing the upper end of the inner flow path defining member 62a.
  • the separation angle between the upper end and the lower end of the inner flow path defining member 62a is 90 °
  • the separation angle between the upper end and the lower end of the outer flow path defining member 63a is 90 °.
  • the gas mixer 202 can rotate the flows of the reformed gases 65 and 66 divided by the mixing concentric cylinder 61 in the directions opposite to each other with respect to the center axis C by 90 °. It is configured to be able to.
  • the shapes of the inner flow path defining members 62a-62d and the outer flow path defining members 63a-63d have the same shape in order to equalize the flow rate of the reformed gas flowing through each flow path. Is preferable! / ,.
  • FIG. 9 is an explanatory view schematically showing the flow of the reformed gas in the gas mixer 202.
  • FIG. 9 (a) is an explanatory diagram schematically showing the flow of the reformed gas 65 divided inside by the mixing concentric cylinder 61
  • FIG. 9 (b) is the outside by the mixing concentric cylinder 61.
  • FIG. 4 is an explanatory diagram schematically showing a flow of a divided reformed gas 66.
  • 9 (a) and 9 (b) show longitudinal views when viewed from the same direction as the longitudinal view shown in FIG. 9 (a) and 9 (b), the flows of the reformed gas 65 and the reformed gas 66 flowing from below the concentric mixing cylinder 61 are indicated by arrows for convenience.
  • the gas mixer 202 according to the present embodiment is divided into its inside by mixing concentric cylinders 61 and raise the space between the concentric cylinders 26 and 2 7 After the reformed gas 65 is turned around the central axis C by 90 ° counterclockwise by the inner flow path defining members 62a and 62b, the upward force of the gas mixer 202 is also discharged.
  • the space between the concentric cylinders 26 and 27 is raised to be divided outside by the concentric cylinder 61 for mixing.
  • the quality gas 66 is turned 90 ° clockwise around the central axis C by the outer flow path defining members 63a and 63b, and then the upward force of the gas mixer 202 is also discharged.
  • the reformed gas 64 introduced into the gas mixer 202 is separated into two reformed gases 65 by the mixing concentric cylinder 61, the inner flow path defining members 62a-62d, and the outer flow path defining members 63a-63d.
  • the gas is turned 90 ° counterclockwise in the circumferential direction, and then the two reformed gases 65 and 66 are combined again into one flow and mixed. Is done.
  • FIG. 10 is an explanatory diagram for explaining the operation of the gas mixer 202 according to the present embodiment shown in FIG. 9 in a more easily understood manner.
  • FIG. 10 is an explanatory view schematically showing a state observed when viewed from the center axis C of the gas mixer 202 shown in FIG. 9 and rotated 360 ° from a viewpoint.
  • the inner flow path defining members 62a-62d that are directly visible from the viewpoint on the central axis C of the gas mixer 202 are indicated by solid lines, and on the central axis C of the gas mixer 202.
  • the outer flow path defining members 63a-63d that are not directly visible from the viewpoint of are indicated by broken lines.
  • positions obtained by dividing the circumference of the gas mixer 202 into four at every 90 ° are shown by broken lines shown as 0 ° and 270 °.
  • the reformed gas 65 flowing inside the mixing concentric cylinder 61 turns the inside of the gas mixer 202 leftward by 90 °.
  • the reformed gas 66 flowing outside the mixing concentric cylinder 61 is swirled 90 ° clockwise inside the gas mixer 202 to be discharged from the upper part of the gas mixer 202, and then discharged to the gas mixer 202.
  • the reformed gas discharged at the 90 ° exit position I shown in FIG. 10 is a reformed mixture in which half of the reformed gas flowing in from the 0 ° position and the 180 ° position shown in FIG. 10 is mixed.
  • the mixed gas is a mixed reformed gas. That is, according to the gas mixer 202 according to the present embodiment, the inner flow path defining members 62a-62d and the outer flow path defining members 63a-63d exert a positional force of 180 ° apart, and a half of each mixed gas that flows in. Therefore, it is possible to effectively mix the mixed gases flowing in opposite positions of the annular flow path composed of the concentric cylinders 26 and 27, which are opposite to each other by 180 °. In other words, as in the case of the first embodiment, the number of contact fields where two types of mixed gas present at positions separated from each other come into contact increases, so that it is possible to equalize the spatial concentration distribution bias. become.
  • the inner flow path defining members 62a-62d and the outer flow path defining members 63a-63d in the gas mixer 202 are formed by the horizontal walls. It is possible to reduce the standby time required to cope with startup with small heat capacity and load fluctuation. Further, since the gas mixer 202 according to the present embodiment has excellent mixing performance, the two-stage mixing layers 35 and 36 and the selective oxidation catalyst layer 37 required in the conventional hydrogen generator 300 are required. , 38 can be simplified by a single-stage gas mixture layer 202 and selective oxidation catalyst layer 37. Therefore, the heat capacity of the hydrogen generator 200 can be further reduced, and the supply amount of air for the selective oxidation reaction can be minimized. It is possible to suppress wasteful consumption of air for use, and to obtain a highly efficient hydrogen generator 200.
  • the gas mixer 202 includes four inner flow path defining members 62a-62d and four outer flow path defining members 63a-63d on both sides of the mixing concentric cylinder 61.
  • the force explaining the form to be provided It is not limited to such a form.For example, as shown in FIG. 11, eight concentric cylinders 61 arranged on both sides of the mixing concentric cylinder 61 at equal intervals of 45 ° Inner channel It is also possible to adopt a mode in which the regulating members 67a to 67h and eight outer flow passage regulating members 68a to 68h arranged at equal intervals of 45 ° are provided.
  • each of the inner flow path defining members 67a-67h and the outer flow path defining members 68a-68h can rotate the respective flows of the reformed gases 65 and 66 shown in FIG. it can. Therefore, by adopting a strong configuration, as shown in FIG. 11, two arrows indicate the flow of the reformed gas, the reformed gas existing at a position 90 ° apart in the circumferential direction at the inlet of the gas mixer 203. Can be effectively mixed.
  • the gas mixer 202 includes four inner flow path defining members 62a-62d and four outer flow path defining members 63a on both sides of the mixing concentric cylinder 61.
  • the concentric cylinders 61 for mixing are arranged at equal intervals of 90 ° on both sides.
  • a configuration may be provided in which the eight inner flow path defining members 67a to 67h provided and the eight outer flow path defining members 68a to 68h arranged at equal intervals of 90 °.
  • each of the inner flow path defining members 67a-67h and the outer flow path defining members 68a-68h can rotate the respective flows of the reformed gases 65 and 66 shown in FIG. 8 by 90 ° in opposite directions. . Therefore, by adopting such a configuration, as shown by the two arrows in FIG. 12, the flow of the fluid is indicated by two arrows, so that the reformed gas present at a position 180 ° apart in the circumferential direction at the inlet of the gas mixer 204 can be further separated. It becomes possible to mix more effectively.
  • the shapes of the inner flow path defining member and the outer flow path defining member are not limited to the curved shapes as shown in Fig. 8-12, and the pressure loss can be reduced and more effective.
  • the shape may be a linear shape or a combination of a linear shape and a curved shape.
  • FIG. 13 is a graph showing the mixing angle of the mixed gas of the first fluid (for example, the raw material) and the second fluid (for example, water vapor) in the gas mixer 201 according to the present embodiment, and the gas mixer 201.
  • FIG. 4 is a correlation diagram schematically showing a relationship between a reforming reaction conversion rate in a reforming catalyst layer when a mixed gas that has passed through is used.
  • the curve a in FIG. 13 shows the swirl angle of the mixed gas and the reforming reaction. The correlation with the conversion rate is shown.
  • the vertical axis indicates the reforming reaction conversion rate (%) in the reforming catalyst layer
  • the horizontal axis indicates the mixing angle (°) of the gas mixture of the first fluid and the second fluid. Is shown.
  • the reaction conversion rate in the steam reforming reaction can be improved, and the reformer efficiency can be improved. It can be seen that improvement can be achieved.
  • the swirl angle of the mixed gas when the swirl angle of the mixed gas is 90 °, the highest transfer ratio can be obtained.
  • the swirl angle of the mixed gas is smaller than 45 °, although the improvement of the transfer ratio is obtained, the effect of the improvement is relatively small. Therefore, in the gas mixer 201 according to the present embodiment, it is effective to set the swirl angle of the mixed gas by the inner flow path defining member and the outer flow path defining member to 45 ° or more and 90 ° or less.
  • each of the inner flow path defining member and the outer flow path defining member is constituted by a lateral wall.
  • three-dimensional molding of the lateral wall is required. Therefore, the production cost of the gas mixer may be high. Therefore, instead of forming each of the inner flow path defining member and the outer flow path defining member by a lateral wall, each of the inner flow path defining member and the outer flow path defining member is made of a rod material such as a round bar or a square bar. It is good also as a form which comprises. By adopting a powerful structure, it is relatively easy to three-dimensionally shape a rod such as a round bar or a square bar, so that it is possible to avoid a high production cost of the gas mixer. become.
  • the configuration and operation of the gas mixer 201 described in detail with respect to the configuration and operation of the gas mixer 202 are the same as the configuration and operation of the gas mixer 202.
  • a gas mixer 201 is provided for mixing the raw material supplied to the reforming catalyst layer 31 with steam, and the reformed gas supplied to the selective oxidation catalyst layer 37 is provided.
  • the form in which the gas mixer 202 is also provided for mixing with air is exemplified, it is not limited to such a form, and any one of them may be used according to the required performance of the hydrogen generator. Alternatively, the gas mixer may be provided only on the side.
  • the structure of the hydrogen generator 200 shown in the second embodiment is described. Only the internal configuration of the gas mixer is different from that of the gas mixer. Therefore, in Embodiment 3 of the present invention, only the internal configuration of the gas mixer will be described.
  • FIG. 14 is a configuration diagram schematically showing an internal configuration of gas mixer 205 according to Embodiment 3 of the present invention
  • FIG. 14 (a) is a top view of gas mixer 205.
  • FIG. 14B is a side view of the gas mixer 205.
  • 14 (a) and 14 (b) schematically show a state where the gas mixer 205 having a ring shape is developed in a plane for explanation.
  • the visible portions of the concentric cylinder 26, the concentric cylinder 27, and the mixing concentric cylinder 61 are indicated by solid lines, and the concentric cylinder 26, the concentric cylinder 27, and the mixing concentric cylinder 61 are shown. Invisible portions are indicated by broken lines.
  • FIG. 14 (a) the visible portions of the concentric cylinder 26, the concentric cylinder 27, and the mixing concentric cylinder 61 are indicated by solid lines, and the concentric cylinder 26, the concentric cylinder 27, and the mixing concentric cylinder 61 are shown. Invisible portions are indicated by broken lines.
  • FIG. 14 (a) the
  • the inner flow path defining members 62a to 62d on the front side of the drawing are indicated by solid lines
  • the outer flow path defining members 63a to 63d on the rear side of the drawing are indicated by broken lines.
  • the same components as those of the gas mixer 202 shown in FIG. 8 are denoted by the same reference numerals.
  • the fluid force of a mixed gas of raw materials such as city gas and steam or a reformed gas in which a reformed gas and air are mixed flows upward from below in FIG. Assume that
  • the gas mixer 205 shown in the present embodiment has basically the same internal configuration as that of the gas mixer 202 shown in FIG. That is, as shown in FIGS. 14A and 14B, the gas mixer 205 according to the present embodiment includes four inner flow path defining members 62a-62d on both sides of the divided partition wall 61, Four outer flow path defining members 63a to 63d are provided.
  • the mixed gas defined by the inner flow path defining members 62a-62d Each half of the respective outlets 69 of the fluid such as the fluid and the respective outlets 70 of the fluid such as the mixed gas defined by the outer flow path defining members 63a-63d are each controlled by the baffle plate 71 having a rectangular shape.
  • the configuration is different from the configuration of the gas mixer 202 shown in the second embodiment in that it is closed. That is, in the gas mixer 205 according to the present embodiment, by providing the baffle plate 71 at each of the outlets 69 and 70 described above of the gas mixer 205, the opening area of each of the outlets 69 and 70 is reduced. However, this is different from the configuration of the gas mixer 202 shown in the second embodiment. In other respects, the configuration is the same as that of the gas mixer 202 shown in Embodiment 2. It is.
  • the outlet of a fluid such as a mixed gas defined by the inner flow path defining members 62c and 62d shown in FIG. 69 is partially closed by the baffle plate 71, whereby the opening area of the outlet 69 is reduced to approximately half.
  • the flow velocity of the fluid discharged from the gas mixer 205 can be increased.
  • the flow velocity of both the fluid flowing out of the gas concentrating cylinder 61 and the fluid flowing out of the concentric cylinder 61 discharged from the gas mixer 205 is increased.
  • the mixed state can be further improved.
  • the size of the baffle plate 71 is described as a size that can close, for example, approximately half of the area of the outlet portion 69, but is limited to such a shape.
  • the size of the baffle plate 71 can be arbitrarily set according to the required mixing state of the fluid such as the mixed gas.
  • Embodiment 4 of the present invention also differs from the configuration of hydrogen generator 200 shown in Embodiment 2 only in the internal configuration of the gas mixer. Therefore, in the fourth embodiment of the present invention, as in the third embodiment, only the internal configuration of the gas mixer will be described.
  • FIG. 15 is a configuration diagram schematically showing an internal configuration of gas mixer 206 according to Embodiment 4 of the present invention
  • FIG. 15 (a) is a top view of gas mixer 206.
  • FIG. 15B is a side view of the gas mixer 206.
  • FIGS. 15 (a) and 15 (b) also show a state in which a gas mixer having a ring shape is developed in a plane for explanation, similarly to the case of Embodiment 3. Is shown.
  • FIG. 15 (a) the visible portions of the concentric cylinder 26, the concentric cylinder 27, and the mixing concentric cylinder 61 are indicated by solid lines, and the concentric cylinder 26, the concentric cylinder 27, and the mixing concentric cylinder 61 are shown. Are indicated by broken lines.
  • FIG. 15 (a) the visible portions of the concentric cylinder 26, the concentric cylinder 27, and the mixing concentric cylinder 61 are indicated by solid lines, and the concentric cylinder 26, the concentric cylinder 27, and the mixing concentric cylinder 61 are shown
  • the gas mixer 206 shown in the present embodiment has basically the same internal configuration as the gas mixer 205 shown in the third embodiment. That is, as shown in FIGS. 15A and 15B, the gas mixer 206 according to the present embodiment has four inner flow path defining members 62a on both sides of the mixing concentric cylinder 61. 62d and four outer flow path defining members 63a-63d.
  • the mixed gas in the gas mixer 206 divided by the fluid such as reformed gas.
  • the flow path inside or outside the mixing concentric cylinder 61 that is, the side where the inner flow path defining members 62a-62d are disposed
  • the outer flow path defining member 63a-63d is provided with an opening 72 or a baffle plate 74 having an opening 73 only in the flow path on the side of the mixing concentric cylinder 61 near the above-mentioned outlet.
  • the configuration is different from that of the gas mixer 205 shown in the third embodiment in that an opening 75 is provided at a predetermined position.
  • the openings 72 and 73 in the baffle plate 74 are formed alternately in the longitudinal direction of the baffle plate 74 on the concentric cylinder 26 side and the concentric cylinder 27 side.
  • the opening area of each of the openings 72 and 73 is, for example, about half of the opening area at the outlet of the flow path defined by the inner flow path defining members 62a and 62b, as in the case of the third embodiment. Area. Further, as shown in FIG.
  • the opening 75 is formed in a substantially rectangular shape at a position corresponding to the openings 72 and 73 at the end on the outlet side side of the mixing concentric cylinder 61 described above. ing. That is, in the gas mixer 206 according to the present embodiment, the baffle plate 74 is provided at the above-described outlet portion of the gas mixer 206, and the baffle plate 74 has the openings 72 and 73 formed therein. An opening 75 is formed in the mixing concentric cylinder 61, which is different from the configuration of the gas mixer 205 described in the third embodiment. In other respects, the configuration is the same as that of the gas mixer 205 shown in the third embodiment.
  • the fluid that has passed through the flow path defined by the inner flow path defining members 62a and 62b is discharged only from the opening 75, and at this time, The fluid is mixed with the fluid that has passed through the flow path defined by the flow path defining members 63d and 63a. Then, the gas is discharged from the opening 73 to the outside of the gas mixer 206. That is, according to the gas mixer 206 according to the present embodiment, the fluid that has passed through the inside and outside of the concentric mixing cylinder 61 is forcibly mixed when passing through the opening 72 and the openings 73 and 75. Therefore, it is possible to further improve the mixing state of the fluid such as the mixing gas.
  • the opening areas of the openings 72 and 73 are set to, for example, about half the opening area of the outlets of the flow paths defined by the inner flow path defining members 62b and 62c.
  • the opening areas of the openings 72 and 73 can be arbitrarily set according to the required mixing state of the fluid such as the mixed gas. is there.
  • the opening area and the shape of the opening 75 can be arbitrarily set according to the required mixing state of the fluid such as the mixed gas.
  • the gas mixers 201, 202 and the gas mixer 206 shown in Embodiments 2-4 are very compact, so that a plurality of gas mixers are arranged in series to form a gas mixer assembly. Even if it is configured, it can be disposed inside the hydrogen generator 200. In this case, since the gas mixers are assembled in series, it is possible to further improve the mixing state of the fluid such as the mixed gas.
  • FIG. 16 is a diagram schematically showing an internal configuration of a first gas mixer assembly 207 in which gas mixers 203 and 206 according to Embodiments 2 and 4 of the present invention are assembled in series. It is a figure. Note that FIG. 16 also schematically shows a state where the first gas mixer aggregate having a ring-like shape is developed in a planar shape for explanation, similarly to the case of the third embodiment. .
  • the gas mixer 206 shown in Embodiment 4 is arranged on the upstream side of a fluid such as a mixed gas, and as shown in FIG. A gas mixer 203 is arranged on the downstream side.
  • the configurations and the like of the gas mixer 203 and the gas mixer 206 are as described in the second and fourth embodiments.
  • the mixing performance of each of the gas mixers 203 and 206 is added, so that the mixing state of the fluid such as the mixed gas is further improved. Further improvements can be made.
  • FIG. 17 shows gas mixer 203 and gas mixer according to Embodiments 2 and 4 of the present invention.
  • FIG. 4 is a configuration diagram schematically showing an internal configuration of a second gas mixer assembly 208 in which 206 are assembled in series.
  • the first gas mixer assembly 207 described above has a mixing concentric cylinder 61 of the gas mixer 203 and a mixing concentric cylinder of the gas mixer 206. 61 are provided independently of each other, while the gas mixer 203 and the gas mixer 206 and the power mixing concentric cylinder 76 are shared. This is different from the case of the container assembly 207. With such a large configuration, the configuration of the gas mixer assembly 207 can be simplified.
  • the entire gas mixer can be made of a thin plate such as stainless steel, the weight can be reduced to, for example, 300 g or less.
  • the heat capacity can be set to, for example, about 0.5 kjZkg '° C. Therefore, the amount of heat required for heating the gas mixer can be set to, for example, about 26 kJ, so that the delay in the start-up time of the hydrogen generator can be reduced to, for example, 1Z5 or less. Further, since the amount of heat required for heating the gas mixer can be set to, for example, about 26 kJ, it is possible to reduce the operating energy of the fuel cell system.
  • the heat capacity of the gas mixer can be reduced to 1Z5 or less of the heat capacity of the gas mixer filled with ceramic balls or the like. It is possible to effectively prevent water vapor from condensing by cooling on the surface of the vessel. As a result, it is possible to effectively prevent the SZC ratio from decreasing when the hydrogen generator is started. In addition, the catalytic performance of the reforming catalyst can be stably maintained over a long period of time.
  • Embodiment 14 of the present invention a modified gas mixture of a mixed gas of city gas and water vapor supplied to the reforming catalyst layer and air supplied to the selective oxidation catalyst layer is mixed. Since the mixing state of fluid such as high quality gas is dramatically improved by the gas mixer, the reformed gas is efficiently generated in the reforming catalyst layer, and the amount of the selective oxidation catalyst is minimized. It becomes possible to do. Therefore, the size of the reforming catalyst layer and the selective oxidation catalyst layer can be reduced. Further, it is possible to prevent wasteful combustion of hydrogen in the reformed gas in the selective oxidation catalyst layer, so that it is possible to provide a highly efficient hydrogen generator. Industrial applicability
  • the hydrogen generator according to the present invention is useful as a hydrogen generator that is lightweight, has a small heat capacity, and is equipped with a high-performance gas mixer and has excellent hydrogen generation efficiency and responsiveness.
  • the present invention it is possible to eliminate non-uniformity in temporal and spatial concentrations in a fluid such as a mixed gas of a raw material and steam supplied to a reforming catalyst layer. And, as a result, the temporal and spatial uniformity of the concentration of the reformed gas can be ensured. Therefore, the carbon monoxide removal catalyst such as the reforming catalyst layer and the shift reactor disposed downstream thereof This makes it possible to use the bed effectively and greatly contributes to reducing the amount of each catalyst and miniaturizing the hydrogen generator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】軽量でありかつ熱容量が小さい高性能のガス混合器を備えた、水素生成効率及び応答性に優れる水素生成装置を提供する。 【解決手段】水素生成装置が、2以上の成分を含有する混合ガスが流通する混合ガス流路(9)と、各々の始端が前記混合ガス流路から分岐し各々の終端が互いに合流する第1の流路及び第2の流路と、前記第1の流路に設けられ該第1の流路を流れる混合ガスを第1の方向に旋回させる第1の旋回手段(45a)~(45d)と、前記第2の流路に設けられ該第2の流路を流れる混合ガスを第1の方向と反対の第2の方向に旋回させる第2の旋回手段(46a)~(46d)と、前記合流した第1の流路及び第2の流路の終端から流出する前記混合ガスを化学反応させて水素を生成する水素生成部とを備えている。

Description

明 細 書
水素生成装置
技術分野
[0001] 本発明は、少なくとも炭素及び水素力もなる有機化合物を含有する原料と水とをィ匕 学反応させて水素を生成し、この水素を燃料電池に供給する水素生成装置に関す る。
背景技術
[0002] 従来から、エネルギーを有効に利用することが可能な分散型の発電装置として、発 電効率及び総合効率が高 、燃料電池コージェネレーションシステム(以下、単に燃 料電池システムと!/、う)が注目されて 、る。
[0003] 燃料電池システムには、その発電部の本体として、燃料電池が配設されて 、る。こ の燃料電池の多ぐ例えば、既に実用化されているリン酸型燃料電池(略称、 PAFC )や、現在開発が進められている固体高分子型燃料電池 (略称、 PEFC)は、発電の ための燃料として水素を用いる。し力しながら、この水素の供給手段は、現在、インフ ラストラクチャ一として整備されていない。そのため、燃料電池システムには、通常、 発電の際に必要となる水素を生成するための水素生成装置が設けられて 、る。この 水素生成装置では、メタンガス等の炭化水素系の原料と水とが用いられて、水素を 豊富に含む改質ガスが生成される。燃料電池は、この水素生成装置で生成される改 質ガスと空気とを用いて、所定の電力を出力するべく発電を行う。
[0004] 水素生成装置における水素の生成方法としては、水蒸気改質法が一般的に用いら れている。この水蒸気改質法では、水蒸気改質反応により改質ガスが生成される。こ の水蒸気改質反応は、例えば、水素を生成するための原料となる都市ガスと水蒸気 とをルテニウム触媒を用いて 600°C— 800°C程度の高温条件下でィ匕学反応させるこ とにより水素を主成分とする改質ガスを生成する、種々ある水素生成反応の 1つの化 学反応である。
[0005] 従来の水素生成装置の具体的な構成例としては、例えば、多重同心円筒状の構 成を有する水素生成装置がある。 [0006] 図 18は、原料と水蒸気とを均一に混合可能な水素生成装置の一例の内部構成を 模式的に示す縦断図である。尚、図 18中に示す矢印は、原料や水蒸気等のガスが 流れる方向を示している。
[0007] 図 18に示すように、原料と水蒸気とを均一に混合することが可能な水素生成装置 3 00は、多重同心円筒状の構成を備えている。即ち、この水素生成装置 300は、水蒸 気改質反応を進行させるための高温状態の燃焼ガスを生成する燃焼バーナー 16と 、水が供給されると共に燃焼バーナー 16により加熱されて湿り水蒸気又は水蒸気を 生成する加熱器 17及び 18とを備えている。又、この水素生成装置 300は、燃焼バー ナー 16を中心とした複数の同心円筒 19一 28により構成される複数の円環状空間に 、燃焼バーナー 16によって生成した高温状態の燃焼ガスが通過する燃焼ガス用流 路 29と、原料と水蒸気との混合ガスを水蒸気改質反応の前に予熱するための予熱 層 30と、所定の反応温度に加熱されて水蒸気改質反応を進行させる改質触媒層 31 と、この改質触媒層 31において生成した高温状態の改質ガスの温度を低下させるた めに熱を回収する熱回収層 32と、この熱回収層 32により冷却された改質ガス中の一 酸化炭素の濃度を所定の化学反応により低減するための変成触媒層 33と、この変 成触媒層 33により一酸化炭素の濃度が低減された改質ガスと選択酸化反応用の空 気を供給する空気供給部 34から取り入れた空気とを混合するための第 1の混合層 3 5及び第 2の混合層 36と、これらの第 1の混合層 35及び第 2の混合層 36を通過して 空気が混合された改質ガス中の一酸化炭素の濃度を選択酸化反応により更に低減 するための第 1の選択酸化触媒層 37及び第 2の選択酸化触媒層 38とを、燃焼バー ナー 16を中心として同心円筒状に備えている。そして、図 18に示すように、この水素 生成装置 300では、予熱層 30と熱回収層 32と第 1の混合層 35及び第 2の混合層 36 とが、原料と水蒸気又は空気との混合促進のためのセラミック球が充填された充填体 により構成されている(例えば、特許文献 1参照)。
[0008] このように構成された水素生成装置 300では、水蒸気改質反応において使用され る水は、加熱器 17若しくは加熱器 18に供給されて少なくともその一部が気化し、カロ 熱器 17又は加熱器 18から排出された水(温水)は、図 18では特に図示しない混合 部において原料としての都市ガスと混合された後、同心円筒 25と同心円筒 26との間 、及び、同心円筒 24と同心円筒 25との間の各々の空間を移動する間に完全に気化 して、都市ガスと混合される。そして、この都市ガスと水蒸気との混合ガスは、予熱層 30を通過する際に十分に混合された後に改質触媒層 31に供給され、この改質触媒 層 31が燃焼ガス用流路 29を流れる燃焼ガスによって加熱されて進行する水蒸気改 質反応に利用される。この水蒸気改質反応によって生成された改質ガスは、その後、 熱回収層 32を通過して所定の温度にまで冷却された後に変成触媒層 33に供給され る。そして、この変成触媒層 33において進行する変成反応により、改質ガスに含有さ れる一酸化炭素の多くが除去される。この一酸化炭素の多くが除去された改質ガス は、更にその後、少量含まれる一酸ィ匕炭素の殆どを除去するために、第 1の混合層 3 5において空気供給部 34から供給される空気と十分に混合された後、第 1の選択酸 化触媒層 37に供給される。そして、この第 1の選択酸化触媒層 37において進行する 選択酸化反応によって、改質ガスに含有される一酸化炭素の殆どが燃焼により除去 される。又、第 1の選択酸ィ匕触媒層 37によって除去し得な力 た一酸ィ匕炭素を除去 するために、第 2の混合層 36により濃度が均一化された改質ガスが第 2の選択酸ィ匕 触媒層 38に供給され、この第 2の選択酸ィ匕触媒層 38において一酸ィ匕炭素が更に除 去される。一酸化炭素が十分に除去された改質ガスは燃料電池に供給され、この燃 料電池における発電のための化学反応に利用される。
この図 18に示す水素生成装置 300によれば、同心円筒 20と同心円筒 21との間に セラミック球により構成される予熱層 30が配設されており、これにより予熱層 30を通 過する流体の流れが乱れるので、都市ガス等の原料と水蒸気とが積極的に混合され る。換言すれば、原料と水蒸気との混合ガスの流れが予熱層 30を通過する際にセラ ミック球の影響を受けて三次元的に入り組んだ流れとなるので、原料と水蒸気との混 合が好適に促進される。又、この水素生成装置 300によれば、変成触媒層 33に改質 ガスが供給される際、熱回収層 32が有する混合作用によって改質ガスの混合状態 が向上するので、変成触媒層 33における変成反応が好適に行われる。更に、この水 素生成装置 300によれば、第 1の選択酸化触媒層 37及び第 2の選択酸化触媒層 38 に対して改質ガスが各々供給される際、第 1の混合層 35及び第 2の混合層 36が有 する混合作用によって改質ガスの混合状態が向上するので、第 1の選択酸化触媒層 37及び第 2の選択酸化触媒層 38における選択酸化反応が好適に進行する。
[0010] し力しながら、この水素生成装置 300では、セラミック球が充填されてなる予熱層 30 、熱回収層 32、第 1の混合層 35、及び第 2の混合層 36では、近隣に存在する流体 同士の混合性能は比較的良好である力 比較的離れた位置に存在する流体同士の 混合性能は劣っている。具体的に説明すると、例えば、改質反応に用いられる原料 及び水蒸気は水素生成装置 300の図 18の右上部力も供給されるため、図 18の右側 の予熱層 30に供給される流体中の原料及び水蒸気の濃度は、図 18の左側の予熱 層 30に供給される流体中の原料及び水蒸気の濃度よりも高い。この場合、予熱層 3 0における流体中の原料及び水蒸気の濃度をその周方向において均一化しようとし ても、その流体を予熱層 30の内部で予熱層 30の鉛直方向における長さよりも遙かに 長い円周方向に移動させなければならないので、事実上、予熱層 30において流体 中の原料及び水蒸気の濃度を均一化することは困難である。そのため、改質触媒層 31に供給される原料及び水蒸気の濃度はその触媒層の円周方向において不均一 に分布することになり、改質触媒層 31における原料及び水蒸気の濃度が低い位置 では、改質触媒層 31に過剰に加熱される部分が生じて、改質触媒の劣化につなが る。又、改質触媒層 31における原料及び水蒸気の濃度が高い位置では、過剰に存 在する水蒸気により十分に改質触媒層 31の温度が上昇せず、水素生成への転化率 が減少する。
[0011] 又、第 1の混合層 35においても、上述した予熱層 30の場合と同様、図 18に示す P 1及び P2の位置から供給される空気の濃度の違 、からその周方向にお 、て均一化 が困難であるため、第 1の選択酸ィ匕触媒層 37に供給される酸素の濃度はその触媒 層の円周方向において不均一に分布する。そのため、第 1の選択酸化触媒層 37に おける酸素の濃度が低い位置では、改質ガスに含まれる一酸ィ匕炭素を十分に除去 するこができない。一方、第 1の選択酸ィ匕触媒層 37における酸素の濃度が高い位置 では、改質ガスに含まれる一酸ィ匕炭素を酸ィ匕除去してもなお余剰に存在する酸素に よって生成した水素までもが消費されてしまい、水素生成効率を低下させる原因とな つていた。
[0012] そこで、上述のように改質触媒層 31に供給される原料及び水蒸気の濃度に大きな 違!、が生じることを抑制するために、円周方向にお!、て離れた位置に存在する流体 同士の混合性能を高めることが可能な水素生成装置が提案されている。
[0013] 図 19は、円周方向において離れた位置に存在する流体同士の混合性能を高める ことが可能な水素生成装置の一例の内部構成を模式的に示す縦断図である。尚、図 19中に示す矢印は、原料や水蒸気等のガスが流れる方向を示して!/、る。
[0014] 図 19に示すように、この水素生成装置 400は、都市ガス供給用配管接続部 1と、水 供給用配管接続部 2と、燃焼ガス排気口 13と、出口配管 15とを備えている。又、この 水素生成装置 400は、燃焼ガス用流路 4一 6と、都市ガス供給用配管接続部 1及び 水供給用配管接続部 2から供給される都市ガス及び水が流下する流下流路 8と、こ の流下流路 8を流下する過程において生成した水蒸気と都市ガスとの混合ガスが上 昇する上昇流路 9と、水蒸気改質反応により生成した改質ガスを水素生成装置 400 の内部で流通させる改質ガス用流路 11とを、燃焼バーナー 3を中心として同心円筒 状に備えている。尚、この水素生成装置 400では、流下流路 8と上昇流路 9とにより 蒸発器 10が構成されていると共に、改質ガス用流路 11の内部の所定領域に水蒸気 改質反応を進行させるための改質触媒層 12が設けられている。そして、この図 19〖こ 示す水素生成装置 400では、上昇流路 9と改質ガス用流路 11とが 2つの円盤状の横 壁 39及び横壁 40により挟まれて構成される円盤形状の空間 41と触媒配管 42とによ つて接続されている。そして、図 19に示すように、この水素生成装置 400では、少なく とも円盤形状の空間 41に、その直径が空間 41の高さの 1Z3程度の球状のアルミナ 粒子 43が、原料と水蒸気との混合促進のために多数充填されている。
[0015] このように構成された水素生成装置 400では、都市ガス供給用配管接続部 1及び 水供給用配管接続部 2から流下流路 8に都市ガス及び水が供給されると、蒸発器 10 において都市ガスと水蒸気との混合ガスが生成される。そして、この蒸発器 10の内部 で円周方向に広がるようにして存在する都市ガスと水蒸気との混合ガスは、その後、 空間 41及び触媒配管 42を通過して、改質触媒が充填された改質触媒層 12に供給 される。すると、この改質触媒層 12では、燃焼ガス用流路 4を流れる燃焼ガスによつ て改質触媒が高温に加熱されて水蒸気改質反応が進行して、これにより混合ガスか ら水素と二酸ィ匕炭素と一酸ィ匕炭素とを含む改質ガスが生成される。ここで、この水素 生成装置 400では、図 18に示す水素生成装置 300の場合と同様、少なくとも空間 4 1に球状のアルミナ粒子 43が充填されており、これにより円盤形状の空間 41を流れ る流体の流れが乱れるので、都市ガス等の原料と水蒸気とが積極的に混合される。 換言すれば、原料と水蒸気との混合ガスの流れが円盤形状の空間 41を通過する際 にアルミナ粒子 43の影響を受けて三次元的に入り組んだ流れとなるので、これにより 原料と水蒸気との混合状態が図 18に示す水素生成装置 300の場合と同様にして改 善される。
[0016] 又、この水素生成装置 400では、上昇流路 9と改質ガス用流路 11とが 2つの円盤 状の横壁 39及び横壁 40により挟まれて構成される円盤形状の空間 41と触媒配管 4 2とによって接続されているので、蒸発器 10を通過した都市ガスと水蒸気との混合ガ スは、蒸発器 10の全周領域力も円盤形状の空間 41をアルミナ粒子 43の影響を受け ながら乱流状態で通過して触媒配管 42に集約された後に、改質触媒層 12に供給さ れる。そのため、都市ガス供給用配管接続部 1から供給される都市ガスが流下流路 8 と上昇流路 9との内部を都市ガス供給用配管接続部 1側に片寄って流れ、図 19に示 す空間 41の右側において混合ガス中の都市ガスの濃度が高ぐ逆に、図 19に示す 空間 41の左側において混合ガス中の都市ガスの濃度が低くなる、即ち、円周方向に おいて空間的な濃度分布が発生する場合であっても、改質触媒層 12内の円周方向 における例えば都市ガスと水蒸気との混合状態は十分に平均化される。つまり、図 1 9に示す水素生成装置 400によれば、都市ガスと水蒸気との混合ガス等の流体の混 合状態を改善することが可能になると共に、円周方向において離れた位置に存在す る流体同士の混合状態を改善することが可能になる。
特許文献 1:国際公開 WO2000Z063114号公報
発明の開示
発明が解決しょうとする課題
[0017] し力しながら、上述した水素生成装置 400では、混合ガスにおける都市ガスと水蒸 気との混合状態を改善するためのアルミナ粒子 43が少なくとも空間 41に数多く充填 されているため、水素生成装置 400の重量が増加するという問題があった。そして、 この問題に起因して、水素生成装置 400を備える燃料電池システムの軽量ィ匕が阻害 されると!、う問題が生じて!/ヽた。
[0018] 又、この水素生成装置 400では、アルミナ粒子 43が数多く用いられているため、水 素生成装置 400の熱容量が増大している。そのため、負荷の消費電力の増加に応じ て燃料電池に供給する改質ガスの供給量を増加させる必要がある場合、水素生成 装置 400の内部の温度分布が最適な温度分布に変化するまでに長い時間を要する ので、応答性が劣るという問題があった。この問題は、特に、水素生成装置 400を起 動する際において重要な問題となった。
[0019] 具体的に説明すると、水素生成装置 400の起動時、アルミナ粒子 43の温度は室温 若しくは室温に近い温度であるが、その後、燃焼バーナー 3により生成される高温状 態の燃焼ガスによって加熱されることにより、その温度は徐々に上昇する。この場合、 全てのアルミナ粒子 43の温度を例えば室温から 200°Cにまで上昇させるのに必要な 熱量は、アルミナ粒子 43の合計重量を約 lkgと仮定し、かつその比熱を約 0. 8kj/ kg'°Cと仮定すると、約 140kJとなる。一方、都市ガスを原料とする水素生成装置 40 0では、起動直後では都市ガスを燃焼することによりアルミナ粒子 43を加熱するため 、都市ガスの低位発熱量を約 42kjZNLMと仮定すると、上述した約 140kJの熱量 を賄うためには、約 3. 3NLMの都市ガスが必要となる。この場合、アルミナ粒子 43 の加熱を約 1. 5NLMZ分の都市ガスの燃焼によって行うと仮定すると、全てのアル ミナ粒子 43の温度を室温から 200°Cにまで上昇させるためには、約 2分間の時間を 要することになる。そして、実際には、水素生成装置 400において放熱損失が生じる ため、 2分以上の起動時間の遅れが生じる。
[0020] この際、アルミナ粒子 43の温度が十分に上昇する前に水素生成装置 400に原料 及び水蒸気を供給すると、その供給された水蒸気がアルミナ粒子 43によって冷却さ れて水として凝縮するので、改質触媒層 12には水蒸気の量が不足した原料が供給 されることになる。この場合、水蒸気の量が少ない条件 (具体的には、改質触媒層 12 に供給される水蒸気のモル量 Sと原料に含まれる炭素のモル量 Cとの比である SZC 比が 2. 7-3. 2程度の範囲を下回る条件)において水蒸気改質反応を進行させると 、改質触媒の表面に原料中の炭素が析出して、改質触媒の触媒活性が低下する。 そして、このような運転条件を継続させると、次第に改質触媒層全体の触媒性能が劣 化するので、水素生成装置 400を長期的に利用することが不可能となる。そのため、 実際には、アルミナ粒子 43の温度が十分に上昇した後に、水素生成装置 400に原 料及び水蒸気を供給する必要があった。つまり、上述した水素生成装置 400では、 起動から電力の出力開始までの待機時間が長いという問題があった。
[0021] 又、図 18に示す水素生成装置 300についても、予熱層 30又は第 1の混合層 35等 はセラミック球により構成されており、従って、上記水素生成装置 400と同様の問題を 有している。
[0022] 本発明はこのような事情に鑑みてなされてものであり、軽量でありかつ熱容量が小 έ 、高性能のガス混合器を備えた、水素生成効率及び応答性に優れる水素生成装 置を提供することを目的とする。
課題を解決するための手段
[0023] 上記課題を解決するために、本発明に係る水素生成装置は、 2以上の成分を含有 する混合ガスが流通する混合ガス流路と、各々の始端が前記混合ガス流路から分岐 し各々の終端が互いに合流する第 1の流路及び第 2の流路と、前記第 1の流路に設 けられ該第 1の流路を流れる混合ガスを第 1の方向に旋回させる第 1の旋回手段と、 前記第 2の流路に設けられ該第 2の流路を流れる混合ガスを第 1の方向と反対の第 2 の方向に旋回させる第 2の旋回手段と、前記合流した第 1の流路及び第 2の流路の 終端力 流出する前記混合ガスをィ匕学反応させて水素を生成する水素生成部とを 備えている。
[0024] かかる構成とすると、改質触媒層又は選択酸化触媒層に供給される混合ガスの混 合状態を改善することができると共に、改質触媒層又は選択酸化触媒層に供給され る混合ガスにおける都市ガス等の構成成分の濃度を供給位置に関係無く均一にす ることができるので、水素生成効率が優れた水素生成装置を提供することが可能に なる。
[0025] この場合、前記第 1の流路及び前記第 2の流路は、前記混合ガスが、前記第 1の流 路の終端及び第 2の流路の終端力 の混合ガスの流出方向に垂直な平面内を流れ ながら、それぞれ、前記第 1の方向の旋回及び前記第 2の方向の旋回を行うように形 成されている。 [0026] カゝかる構成とすると、平板状のガス混合器を構成することができるので、水素生成 装置を薄型化することが可能になる。
[0027] この場合、前記第 1の流路及び前記第 2の流路が、それぞれ、互いに一致する中 心軸を有し、外周面が開放され、かつ中心に円形の開口を有する中空状に形成され 、前記外周面が始端たる入口を構成するとともに前記開口が終端たる出口を構成し ており、前記第 1の旋回手段が前記第 1の流路の内部空間を前記中心軸に沿う方向 に仕切りかつ該内部空間の外周から内方へ終端が始端に対して半径方向力 前記 第 1の方向にずれるように延びる複数の隔壁で構成され、前記第 2の旋回手段が前 記第 2の流路の内部空間を前記中心軸に沿う方向に仕切りかつ該内部空間の外周 力 内方へ終端が始端に対して半径方向から前記第 2の方向にずれるように延びる 複数の隔壁で構成されて ヽる。
[0028] カゝかる構成とすると、ガス混合性能が優れた平板状のガス混合器を好適に構成す ることが可能になる。
[0029] この場合、前記隔壁の始端に対する終端のずれが、前記中心軸の周りの回転角度 において、 45° — 90° の範囲の回転角度である。
[0030] 力かる構成とすると、混合ガスの混合状態を好適に改善することが可能になる。
[0031] この場合、前記第 1の流路及び前記第 2の流路と、前記第 1の旋回手段及び前記 第 2の旋回手段とが、前記中心軸に沿って、それぞれ複数形成されている。
[0032] 力かる構成とすると、混合ガスの混合状態を更に好適に改善することが可能になる
[0033] 又、上記の場合、前記第 1の流路及び前記第 2の流路は、前記混合ガスが、前記 第 1の流路の終端及び第 2の流路の終端からの混合ガスの流出方向に平行な筒状 の面内を流れながら、それぞれ、前記第 1の方向の旋回及び前記第 2の方向の旋回 を行うように形成されている。
[0034] 力かる構成とすると、円筒状のガス混合器を構成することができるので、水素生成 装置を小型化することが可能になる。
[0035] この場合、前記第 1の流路及び前記第 2の流路が、それぞれ、前記中心軸を中心 軸として共有しかつ環状の断面を有する筒状に形成され、一方の側の各々の端面が 始端たる入口を構成するとともに他方の側の各々の端面が終端たる出口を構成して おり、前記第 1の旋回手段が前記第 1の流路の筒状の内部空間を前記第 1の方向に 旋回するようにして螺旋状に仕切る複数の隔壁で構成され、前記第 2の旋回手段が 前記第 1の流路の筒状の内部空間を前記第 2の方向に旋回するようにして螺旋状に 仕切る複数の隔壁で構成されて ヽる。
[0036] カゝかる構成とすると、ガス混合性能が優れた筒状のガス混合器を好適に構成するこ とが可能になる。
[0037] この場合、前記隔壁の始端から終端までの旋回角度力 5° — 90° の範囲の旋回 角度である。
[0038] 力かる構成とすると、混合ガスの混合状態を好適に改善することが可能になる。
[0039] この場合、前記隔壁で区画された旋回流路の出口がー部閉鎖されている。
[0040] 力かる構成とすると、混合ガスの混合状態を更に好適に改善することが可能になる
[0041] この場合、前記第 1の流路と前記第 2の流路とが円筒状の分割隔壁で隔てられるよ うにして形成され、前記第 1の流路及び前記第 2の流路のいずれかの前旋回流路の 出口が閉鎖され、前記分割隔壁の該閉鎖された出口の近傍部分に開口が形成され ている。
[0042] 力かる構成とすると、混合ガスの混合状態を、より一層好適に改善することが可能に なる。
[0043] この場合、前記第 1の流路及び前記第 2の流路が、前記中心軸に沿って、それぞ れ、複数形成され、前記混合ガスの流れにおいて上流側に位置する前記第 1の流路 及び前記第 2の流路の終端が下流側に位置する前記第 1の流路及び前記第 2の流 路の始端に接続されている。
[0044] カゝかる構成とすると、混合ガスの混合状態を、更により一層好適に改善することが可 會 になる。
[0045] 又、上記の場合、前記混合ガスが少なくとも炭素及び水素を有する有機化合物と 水とが混合した混合ガスであり、前記化学反応が前記有機化合物と水とが混合した 混合ガスから水素を生成する水蒸気改質反応であり、前記水素生成部が前記水蒸 気改質反応により水素を豊富に含有する改質ガスを生成する改質反応部であって、 前記第 1の旋回手段及び前記第 2の旋回手段が前記改質反応部の上流に配設され 、前記合流した第 1の流路及び第 2の流路の終端から流出する前記混合ガスが前記 改質反応部に供給されて水素を生成する。
[0046] かかる構成とすると、改質反応部に供給される混合ガスの混合状態が改善されるの で、改質反応部における改質反応を好適に進行させることが可能になる。
[0047] 又、上記の場合、前記混合ガスが前記改質ガスと酸素とが混合した混合ガスであり 、酸素を用いて一酸ィ匕炭素を二酸ィ匕炭素に変換する選択酸ィ匕反応により前記改質 ガス中の一酸ィ匕炭素を低減する選択酸ィ匕反応部を前記水素生成部に代えて備え、 前記第 1の旋回手段及び前記第 2の旋回手段が前記選択酸化反応部の上流に配 設され、前記合流した第 1の流路及び第 2の流路の終端から流出する前記混合ガス が前記選択酸化反応部に供給されて前記改質ガス中の一酸化炭素を低減する。
[0048] かかる構成とすると、選択酸化反応部に供給される混合ガスの混合状態が改善さ れるので、選択酸化反応部における選択酸化反応を好適に進行させることが可能に なる。
発明の効果
[0049] 本発明は、以上に説明した解決手段のように実施され、軽量でありかつ熱容量が 小さ!、高性能のガス混合器を備えた、水素生成効率及び応答性に優れる水素生成 装置を提供することが可能になる。
[0050] 本発明によれば、改質触媒層に供給する原料と水蒸気との混合ガス等の流体にお ける時間的及び空間的な濃度の不均一性を解消することが可能である。そして、そ の結果、改質ガスの濃度の時間的及び空間的な均一性を確保することができるので 、改質触媒層やその下流側に配設される変成反応器等の一酸化炭素除去触媒層を 有効に使用することが可能となり、各触媒量の低減や水素生成装置の小型化に大き く貢献することが可能になる。
図面の簡単な説明
[0051] [図 1]図 1は、本発明の実施の形態 1に係る水素生成装置の内部構成を模式的に示 す縦断図である。 [図 2]図 2は、本発明の実施の形態 1に係るガス混合器の内部構成を模式的に示す 構成図であって、図 2 (a)はガス混合器の平面図であり、図 2 (b)はガス混合器の断 面図である。
[図 3]図 3は、分割隔壁によりその上側に分割された混合ガスの流れを模式的に示す 解説図である。
[図 4]図 4は、分割隔壁によりその下側に分割された混合ガスの流れを模式的に示す 解説図である。
[図 5]図 5は、本発明の実施の形態 1に係る他のガス混合器の内部構成を模式的に 示す構成図であって、図 5 (a)はガス混合器の平面図であり、図 5 (b)はガス混合器 の断面図である。
圆 6]図 6は、分割隔壁の片面に 8枚の流路規定部材を配設した場合におけるガス混 合器の構成を例示する平面図である。
[図 7]図 7は、本発明の実施の形態 2に係る水素生成装置の内部構成を模式的に示 す縦断図である。
[図 8]図 8は、本発明の実施の形態 2に係るガス混合器の内部構成を模式的に示す 縦断図である。
[図 9]図 9は、ガス混合器における改質ガスの流れを模式的に示す解説図であって、 図 9 (a)は混合用同心円筒によりその内側に分割された混合ガスの流れを模式的に 示す解説図であり、図 9 (b)は混合用同心円筒によりその外側に分割された混合ガス の流れを模式的に示す解説図である。
[図 10]図 10は、図 9に示す本実施の形態に係るガス混合器の動作を更に分かり易く 説明するための解説図である。
[図 11]図 11は、本発明の実施の形態 2に係る他のガス混合器の内部構成を模式的 に示す縦断図である。
[図 12]図 12は、本発明の実施の形態 2に係る更に他のガス混合器の内部構成を模 式的に示す縦断図である。
[図 13]図 13は、本実施の形態に係るガス混合器における第 1の流体 (例えば、原料) と第 2の流体 (例えば、水蒸気)との混合ガスの旋回角度と、ガス混合器を通過した混 合ガスを用いた場合の改質触媒層における改質反応転化率との関係を模式的に示 す相関図である。
[図 14]図 14は、本発明の実施の形態 3に係るガス混合器の内部構成を模式的に示 す構成図であって、図 14 (a)はガス混合器の上面図であり、図 14 (b)はガス混合器 の側面図である。
[図 15]図 15は、本発明の実施の形態 4に係るガス混合器の内部構成を模式的に示 す構成図であって、図 15 (a)はガス混合器の上面図であり、図 15 (b)はガス混合器 の側面図である。
[図 16]図 16は、本発明の実施の形態 2— 4に係るガス混合器を直列に集合した第 1 のガス混合器集合体の内部構成を模式的に示す構成図である。
[図 17]図 17は、本発明の実施の形態 2— 4に係るガス混合器を直列に集合した第 2 のガス混合器集合体の内部構成を模式的に示す構成図である。
[図 18]図 18は、原料と水蒸気とを均一に混合可能な水素生成装置の一例の内部構 成を模式的に示す縦断図である。
[図 19]図 19は、円周方向において離れた位置に存在する流体同士の混合性能を高 めることが可能な水素生成装置の一例の内部構成を模式的に示す縦断図である。 符号の説明
1 都市ガス供給用配管接続部
2 水供給用配管接続部
3 燃焼バーナー
4一 6 燃焼ガス用流路
8 流下流路
9 上昇流路
10 蒸発器
11 改質ガス用流路
12 改質触媒層
13 燃焼ガス排気口 燃焼バーナー, 18 加熱器 、一 28 同心円筒 燃焼ガス用流路 予熱層
改質触媒層 熱回収層
変成触媒層 第 1の混合層 第 2の混合層 第 1の選択酸化触媒層 第 2の選択酸化触媒層 、一 40 横壁
空間
触媒配管
アルミナ粒子 端部
a— 45d 流路規定部材a-46d 流路規定部材 — 49 混合ガス 分割隔壁
連通孔
端部
a— 53d 流路規定部材a- 54d 流路規定部材, 56 混合ガス 仕切り板 58 分割隔壁
59a-59h 流路規定部材
60a— 60h 流路規定部材
61 混合用同心円筒
62a-62d 内側流路規定部材
63a— 63d 外側流路規定部材
64— 66 改質ガス
67a-67h 内側流路規定部材
68a— 68h 外側流路規定部材
69, 70 出口部
71 邪魔板
72, 73 開口部
74 邪魔板
75 開口部
76 混合用同心円筒
77 ハウジング
101 ガス混合器
101, ガス混合器
102, 103 ガス混合器
201, 202 ガス混合器
203—208 ガス混合器
100— 400 水素生成装置
A 第 1の所定位置
B 第 2の所定位置
C 第 3の所定位置
D 第 4の所定位置
E 第 5の所定位置
F 第 6の所定位置 G 第 7の所定位置
H 第 8の所定位置
c 中心軸
発明を実施するための最良の形態
[0053] 以下、本発明を実施するための最良の形態について、図面を参照しながら詳細に 説明する。
[0054] (実施の形態 1)
本発明の実施の形態 1では、供給される水を蒸発させかつ原料と混合させて混合 ガスを生成する蒸発器と、改質ガスを生成するための水蒸気改質反応を進行させる 反応部とを円盤形状の空間によって接続し、この円盤形状の空間にガス混合器を配 設することにより混合ガスの混合状態を水平方向において改善する形態について説 明する。
[0055] 先ず、本発明の実施の形態 1に係る水素生成装置 100の基本的な構成及び動作 について、図 1を参照しながら説明する。
[0056] 図 1は、本発明の実施の形態 1に係る水素生成装置 100の内部構成を模式的に示 す縦断図である。尚、図 1では、改質ガスに含まれる一酸ィ匕炭素を除去するための変 成反応器や選択酸化反応器、及び燃料電池本体の記載は省略している。又、図 1中 に示す矢印は、原料や水蒸気等のガスが流れる方向を示している。
[0057] 図 1に示すように、本実施の形態に係る水素生成装置 100は、上端及び下端が閉 鎖された円筒状のハウジング 77を有している。このハウジング 77の内部は円筒状の 縦壁と円板状の横壁とで区画されて、以下に述べる各種の流路等が形成されている 。このようなハウジング 77を備える水素生成装置 100は、外部のインフラストラクチャ 一から水素生成装置 100に都市ガスを供給するための都市ガス供給用配管接続部 1と、水道力 水素生成装置 100に水を供給するための水供給用配管接続部 2と、水 蒸気改質反応を進行させるための高温状態の燃焼ガスを生成する燃焼バーナー 3と を備えている。
[0058] 又、この水素生成装置 100は、燃焼バーナー 3によって生成した高温状態の燃焼 ガスを水素生成装置 100の内部で流通させる燃焼ガス用流路 4一 6と、都市ガス供 給用配管接続部 1及び水供給用配管接続部 2から供給される都市ガス及び水が流 下する流下流路 8と、この流下流路 8を流下する過程にお 、て生成した水蒸気と都巿 ガスとの混合ガスが上昇する上昇流路 9と、水蒸気改質反応により生成した改質ガス を水素生成装置 100の内部で流通させる改質ガス用流路 11とを、水素生成装置 10 0の中心軸 Cに対して同心円筒状に備えている。ここで、本実施の形態に係る水素生 成装置 100では、流下流路 8と上昇流路 9とにより蒸発器 10が構成されており、この 蒸発器 10によって水蒸気の生成と都市ガスとの混合が行われる。又、改質ガス用流 路 11の内部の所定領域には、水蒸気改質反応を進行させるための改質触媒層 12 が形成されている。又、この水素生成装置 100は、燃焼ガス用流路 4一 6を通過した 燃焼ガスを水素生成装置 100の外部へ放出するための燃焼ガス排気口 13と、改質 ガス用流路 11を通過した改質ガスを水素生成装置 100の外部へ排出するための出 口配管 15とを備えている。
[0059] そして、図 1に示すように、本実施の形態に係る水素生成装置 100では、上昇流路 9の端部 44と改質ガス用流路 11に混合ガスを導入する触媒配管 42とが、 2つの円 盤状の横壁 39及び横壁 40により挟まれて構成される円盤形状の空間 41によって接 続されている。ここで、横壁 40の中央部には触媒配管 42が継合可能な直径の貫通 孔が形成されており、この貫通孔に触媒配管 42の一端が接続されている。又、図 1 に示すように、この水素生成装置 100では、上述した円盤形状の空間 41に、上昇流 路 9を通過した原料と水蒸気との混合ガスの混合状態を改善するための本発明を特 徴付けるガス混合器 101が配設されて 、る。このガス混合器 101の構成については 、後に詳細に説明する。
[0060] このように構成された本実施の形態に係る水素生成装置 100では、都市ガス供給 用配管接続部 1及び水供給用配管接続部 2から流下流路 8に都市ガス等の原料及 び水が供給されると、その流下流路 8において水が加熱されて水蒸気が生成し、そ の水蒸気と原料とが徐々に混合しながら上昇流路 9を通過し、その後、上昇流路 9の 端部 44から混合ガスとして排出される。つまり、蒸発器 10において、原料と水蒸気と の混合ガスが生成される。そして、蒸発器 10において生成された混合ガスは、その 後、ガス混合器 101が配設されている空間 41に供給される。そして、このガス混合器 101において、混合ガス中の原料と水蒸気とが十分に混合されると共に、上昇流路 9 にお 、てその円周方向に濃度分布を有して広がって 、る混合ガスが集約されて均一 に混合される。このガス混合器 101による混合ガスの混合状態の改善作用につ 、て は、後に詳細に説明する。
[0061] ガス混合器 101を通過した混合ガスは、その後、触媒配管 42を通過して、改質触 媒が充填された改質触媒層 12を備える改質ガス用流路 11に供給される。すると、こ の改質触媒層 12では、燃焼ガス用流路 4を流れる燃焼ガスによって改質触媒層 12 が高温に加熱されて水蒸気改質反応が進行して、これにより混合ガスから水素と二 酸化炭素と一酸化炭素とを含む改質ガスが生成される。その後、この改質ガスは、改 質ガス用流路 11を更に通過して、出口配管 15から改質ガス中の一酸ィ匕炭素濃度を 低減するための変成反応器へと供給される。尚、燃焼ガス用流路 4を通過した燃焼 ガスは、燃焼ガス用流路 5— 6を通過した後、燃焼ガス排気口 13を通過して水素生 成装置 100の外部に放出される。
[0062] 次に、本発明の実施の形態 1に係るガス混合器 101の構成について、図面を参照 しながら詳細に説明する。
[0063] 図 2は、本発明の実施の形態 1に係るガス混合器 101の内部構成を模式的に示す 構成図であって、図 2 (a)はガス混合器 101の平面図であり、図 2 (b)はガス混合器 1 01の断面図である。尚、図 2 (a)では、ガス混合器 101における後述する上側の流路 規定部材 45a— 45dを実線により示しており、下側の流路規定部材 46a— 46dを破 線により示している。
[0064] 図 2 (a)及び図 2 (b)に示すように、本実施の形態に係るガス混合器 101は、図 1に 示す上昇流路 9から上昇する混合ガス 47を混合ガス 48及び混合ガス 49の如く上下 に 2分割する円盤状の分割隔壁 50を有している。この分割隔壁 50の中央部には、 触媒配管 42の直径と略同一径の直径を有する連通孔 51が設けられている。そして、 この分割隔壁 50の両面における連通孔 51の外周部と分割隔壁 50の外周部との間 に渡るようにして、平面視にお!、て渦巻き形状を示しかつ側面視にお 、て帯形状を 示す流路規定部材 45a— 45d及び 46a— 46dが配設されている。
[0065] 具体的に説明すると、図 2 (a)に示すように、分割隔壁 50の上側には、各々が所定 の渦巻き形状を有する 4枚の流路規定部材 45a— 45dが等間隔で配設されている。 これらの流路規定部材 45a— 45dは、混合ガス 48が流れる方向を左回りに旋回させ ることが可能な渦巻き形状を有している。又、図 2 (a)に示すように、分割隔壁 50の下 側には、各々が所定の渦巻き形状を有する 4枚の流路規定部材 46a— 46dが等間 隔で配設されている。これらの流路規定部材 46a— 46dは、混合ガス 49が流れる方 向を右回りに旋回させることが可能な渦巻き形状を有している。ここで、図 2 (a)に示 すように、流路規定部材 45a— 45dの各々は、その長手方向における分割隔壁 50の 外周部側の端部が 45° 毎の間隔で位置決めされる第 1の所定位置 A—第 4の所定 位置 Dに配置され、その長手方向における分割隔壁 50の内周部側 (連通孔 51の外 周部側)の端部が第 1の所定位置 A—第 4の所定位置 Dに対して左回りに 45° 移動 した第 5の所定位置 E—第 8の所定位置 Hに配置されるようにして、分割隔壁 50の表 面に配設されている。一方、図 2 (a)に示すように、流路規定部材 46a— 46dの各々 は、その長手方向における分割隔壁 50の外周部側の端部が上述した第 1の所定位 置 A—第 4の所定位置 Dに配置され、その長手方向における分割隔壁 50の内周部 側 (連通孔 51の外周部側)の端部が第 1の所定位置 A—第 4の所定位置 Dに対して 右回りに 45° 移動した第 7の所定位置 G、第 6の所定位置 F、第 5の所定位置 E、第 8の所定位置 Hに配置されるようにして、分割隔壁 50の表面に配設されている。つま り、本実施の形態に係るガス混合器 101では、流路規定部材 45a— 45dと流路規定 部材 46a— 46dとは、図 2 (a)に示す平面図においては混合ガス 48と混合ガス 49と を互いに逆方向に旋回させるように、又、分割隔壁 50の各々の面から見た場合には 混合ガス 48と混合ガス 49とを同方向に旋回させるように、各々渦巻き状に配設され ている。そして、このように分割隔壁 50及び流路規定部材 45a— 45d及び流路規定 部材 46a— 46dから構成されるガス混合器 101が、上昇流路 9と触媒配管 42とを接 続する円盤形状の空間 41に、ガス混合器 101の連通孔 51と触媒配管 23とが中心 軸 Cの方向にぉ 、て略一致するようにして、所定の固定手段により配設及び固定さ れている。尚、図 2 (a)及び図 2 (b)に示すように、ガス混合器 101における所定の位 置には、改質触媒層 12において生成された改質ガスを水素生成装置 100の外部に 排出するための出口配管 15が貫通している。又、上述した流路規定部材 45a— 45d 及び流路規定部材 46a— 46dの形状は、各流路に流れる混合ガスの流量を等しくす るために、各々同一の形状を有していることが好ましい。
[0066] 次に、本発明の実施の形態 1に係るガス混合器 101による混合ガスの混合状態の 改善作用について、図面を参照しながら詳細に説明する。
[0067] 図 3は、分割隔壁 50によりその上側に分割された混合ガス 48の流れを模式的に示 す解説図である。尚、図 3は、図 2 (a)に示す平面図と同一方向力も見た場合の平面 図を示している。又、図 3では、分割隔壁 50の上側に 4方向から流入する混合ガス 4 8の流れを各々異なった種類のノ、ツチングを有する矢印により便宜的に示している。
[0068] 又、図 4は、分割隔壁 50によりその下側に分割された混合ガス 49の流れを模式的 に示す解説図である。尚、図 4も、図 2 (a)に示す平面図と同一方向力も一部を透視 して見た場合の平面図を示している。又、図 4でも、分割隔壁 50の下側に 4方向から 流入する混合ガス 49の流れを各々異なった種類のノ、ツチングを有する矢印により便 宜的に示している。
[0069] 図 3に示すように、例えば白矢印で示した図 3における右側力も流入した混合ガス 4 8aは、流路規定部材 45a及び流路規定部材 45dによってその流路が左旋回するよう に変更され、図 3における上側力も連通孔 51へと流れ込む。又、他の矢印で示した 図 3における上側から流入した混合ガス 48bは、流路規定部材 45b及び流路規定部 材 45aによってその流路が左旋回するように変更され、図 3における左側力も連通孔 51に流れ込む。又、他の矢印で示した図 3における左側力 流入した混合ガス 48c は、流路規定部材 45c及び流路規定部材 45bによってその流路が左旋回するように 変更され、図 3における下側から連通孔 51に流れ込む。又、他の矢印で示した図 3 における下側から流入した混合ガス 48dは、流路規定部材 45d及び流路規定部材 4 5cによってその流路が左旋回するように変更され、図 3における右側力 連通孔 51 へと流れ込む。このように、流路規定部材 45a— 45dは、分割隔壁 50の上側に流入 した混合ガス 48a—混合ガス 48dの流れの向きを、左へ 90° 回転させて連通孔 51 へ送り込む作用を有する。
[0070] 一方、図 4に示すように、例えば白矢印で示した図 4における右側力 流入した混 合ガス 49aは、流路規定部材 46a及び流路規定部材 46dによってその流路が右旋 回するように変更され、図 4における下側力も連通孔 51へと流れ込む。又、他の矢印 で示した図 4における上側力も流入した混合ガス 49bは、流路規定部材 46b及び流 路規定部材 46aによってその流路が右旋回するように変更され、図 4における右側か ら連通孔 51に流れ込む。又、他の矢印で示した図 4における左側から流入した混合 ガス 49cは、流路規定部材 46c及び流路規定部材 46bによってその流路が右旋回 するように変更され、図 4における上側力も連通孔 51に流れ込む。又、他の矢印で示 した図 4における下側から流入した混合ガス 49dは、流路規定部材 46d及び流路規 定部材 46cによってその流路が右旋回するように変更され、図 4における左側力も連 通孔 51へと流れ込む。このように、流路規定部材 46a— 46dは、分割隔壁 50の下側 に流入した混合ガス 49a—混合ガス 49dの流れの向きを、右へ 90° 回転させて連通 孔 51へ送り込む作用を有する。
以上の結果、本実施の形態に係るガス混合器 101によれば、連通孔 51の上側から は分割隔壁 50の右側から流入した混合ガス 48の半量の混合ガス 48aと左側力も流 入した混合ガス 49の半量の混合ガス 49cとが流入し、同様にして、連通孔 51の下側 力もは分割隔壁 50の右側力も流入した混合ガス 49の半量の混合ガス 49aと左側か ら流入した混合ガス 48の半量の混合ガス 48cとが流入する。又、連通孔 51の右側か らは分割隔壁 50の下側力も流入した混合ガス 48の半量の混合ガス 48dと上側から 流入した混合ガス 49の半量の混合ガス 49bとが流入し、同様にして、連通孔 51の左 側からは分割隔壁 50の上側カゝら流入した混合ガス 48の半量の混合ガス 48bと下側 力も流入した混合ガス 49の半量の混合ガス 49dとが流入する。そのため、例えば、分 割隔壁 50に対して右側力 都市ガスの濃度の高い混合ガスが供給され、又、左側か ら水蒸気の濃度の高 ヽ混合ガスが供給された場合のように、混合ガスを構成する成 分の濃度が空間的に著しく偏って分布している場合であっても、連通孔 51の上下か らは各々が半分ずつの量で供給されるので、空間的な濃度分布の偏りを均一化する ことができる。換言すれば、都市ガスの濃度の高い混合ガスと水蒸気の濃度の高い 混合ガスとの接触する接触場が多くなるので、空間的な濃度分布の偏りを均一化す ることが可能になる。その結果、触媒配管 42を通過して改質触媒層 12の端部 52 (図 1参照)に供給される混合ガスの濃度の偏りを解消することが可能となり、これにより、 改質ガスの濃度を空間的に均一化することが可能になる。又、上述したガス混合器 1 01による混合ガスの混合状態の改善作用により、混合ガスにおける都市ガスと水蒸 気との混合状態を改善することが可能になる。更に、上述した分割隔壁 50及び流路 規定部材 45a— 45d及び流路規定部材 46a— 46dからなる構成を採用することによ り、ガス混合器 101の熱容量を低減することが可能になるので、応答性に優れた水素 生成装置 100を提供することが可能になる。
[0072] ここで、上述した実施の形態では、円盤形状の空間 41に 1つの混合器 101を配設 した場合の形態について説明したが、この形態に限定されることはなぐ複数の混合 器を配設する形態としてもょ 、。
[0073] 図 5は、本発明の実施の形態 1に係る他のガス混合器 102の内部構成を模式的に 示す構成図であって、図 5 (a)はガス混合器 102の平面図であり、図 5 (b)はガス混合 器 102の断面図である。尚、図 5 (a)では、ガス混合器 102における後述する上側の 流路規定部材 45a— 45dを太い実線により示しており、下側に配置される流路規定 部材 46a— 46dを太い破線により示しており、下側に配置される流路規定部材 53a 一 53d及び 54a— 54dを細い実線及び破線により示している。又、図 5 (a)及び図 5 ( b)では、図 2 (a)及び図 2 (b)に示す構成要素と同一の構成要素に対しては、同一の 符号を付している。
[0074] 図 5 (a)及び図 5 (b)に示すように、本発明の実施の形態 1に係る他のガス混合器 1 02では、図 2 (a)及び図 2 (b)に示すガス混合器 101を中心軸 Cの方向に 2段重ねた 構成に相当する構成を備えている。つまり、このガス混合器 102では、分割隔壁 50と 流路規定部材 45a— 45d及び流路規定部材 46a— 46dとからなる第 1のガス混合器 101と、分割隔壁 58と流路規定部材 53a— 53d及び流路規定部材 54a— 54dとから なる第 2のガス混合器 101 'とを、その中央部に連通孔 51の直径と略同一径の直径 の孔を有する円盤状の仕切り板 57を介して 2段積層した構成が採られている。そして 、図 5 (a)に示すように、このガス混合器 102では、ガス混合器 101と第 2のガス混合 器 101 'との位置関係が 45° の回転角度を有するようにして、中心軸 Cの方向にガス 混合器 101と第 2のガス混合器 101 'とを 2段積層した構成が採られている。尚、その 他の点については、図 2 (a)及び図 2 (b)に示すガス混合器 101の場合と同様である [0075] このように構成されたガス混合器 102によれば、分割隔壁 50と仕切り板 57と分割隔 壁 58とによって上昇流路 9を通過した混合ガス 47が中心軸 Cの方向に混合ガス 48 及び混合ガス 49及び混合ガス 55及び混合ガス 56の 4つの混合ガスに分割されると 共に、これらの混合ガス 48及び混合ガス 49及び混合ガス 55及び混合ガス 56の各 々が流路規定部材 45a— 45d及び流路規定部材 46a— 46d及び流路規定部材 53a 一 53d及び流路規定部材 54a— 54dによって各々所定の角度に旋回されるので、触 媒配管 42に供給される混合ガスにおける都市ガスと水蒸気との空間的な濃度の偏り をより一層均一化することが可能になる。
[0076] 又、上述した本実施の形態では、分割隔壁 50 (分割隔壁 50及び分割隔壁 58)の 片面に 4枚の流路規定部材を 90° 毎に隔てて配設した場合の形態について説明し たが、この形態に限定されることはなぐ流路規定部材を任意の隔離角度で多数配 設する形態としてもよい。この場合、流路規定部材の隔離角度を小さくする、つまり、 流路規定部材の配設数を増加させるに従って、触媒配管 42に供給される混合ガス における都市ガスと水蒸気との空間的な濃度の偏りをより一層均一化することが可能 になる。
[0077] 図 6は、分割隔壁 50の片面に 8枚の流路規定部材を配設した場合におけるガス混 合器 103の構成を例示する平面図である。尚、図 6では、ガス混合器 103における後 述する上側の流路規定部材 59a— 59hを実線により示しており、下側の流路規定部 材 60a— 60hを破線により示している。又、図 6では、図 2 (a)及び図 2 (b)に示す構 成要素と同一の構成要素に対しては、同一の符号を付している。
[0078] 図 6に示すように、本発明の実施の形態 1に係る他のガス混合器 103では、分割隔 壁 50の上側に、 8枚の流路規定部材 59a—流路規定部材 59hが配設されている。こ れらの流路規定部材 59a—流路規定部材 59hは、隣接する流路規定部材同士の隔 離角度が 45° となるようにして、分割隔壁 50の片面に配設されている。又、図 6に示 すように、このガス混合器 103では、分割隔壁 50の下側に、流路規定部材 60a—流 路規定部材 60hが配設されている。尚、これらの流路規定部材 60a—流路規定部材 60hも、流路規定部材 59a—流路規定部材 59hの配設形態と同様、隣接する流路 規定部材同士の隔離角度が 45° となるようにして、分割隔壁 50の片面に配設され ている。尚、その他の点については、図 2 (a)及び図 2 (b)に示すガス混合器 101の 場合と同様である。このように、流路規定部材の枚数を増やすことによつても、触媒配 管 42に供給される混合ガスにおける都市ガスと水蒸気との空間的な濃度の偏りをよ り一層均一化することが可能になる。
[0079] 尚、本実施の形態では、図 2 (a)に示すように、流路規定部材の形状を緩やかに湾 曲する形状としているが、流路規定部材の形状はこのような湾曲状の形状に限定さ れることはなぐ供給する混合ガスの流量や流れ易さ等に応じて、より簡単な形状や より複雑な形状としてもよい。
[0080] 又、本実施の形態では、少なくとも炭素と水素とから構成される有機化合物を含む 原料として都市ガスを用いる形態について説明したが、本発明は使用する原料の種 類を限定することはなぐアルコールや LPGや灯油等を原料とする場合に対しても有 効である。特に、アルコールや灯油等の液体燃料を使用してこれを水と一緒に混合 して蒸発させる場合には、これらの原料と水蒸気との空間的な濃度分布が生じ易い ため、本発明は極めて有効な技術となる。
[0081] (実施の形態 2)
本発明の実施の形態 2では、例えば、供給される混合ガスを流通させる改質ガス供 給用流路と、改質ガスを生成するための水蒸気改質反応を進行させる反応部との間 の流路にガス混合器を配設して、このガス混合器により混合ガスの混合状態を垂直 方向にお 、て改善する形態にっ 、て説明する。
[0082] 先ず、本発明の実施の形態 2に係る水素生成装置 200の基本的な構成及び動作 について、図 7を参照しながら説明する。
[0083] 図 7は、本発明の実施の形態 2に係る水素生成装置 200の内部構成を模式的に示 す縦断図である。尚、図 7中に記載している矢印は、原料や水蒸気等のガスが流れ る方向を示している。
[0084] 図 7に示すように、本実施の形態に係る水素生成装置 200は、実施の形態 1で示し た水素生成装置 100の構成と同様、多重同心円筒状の構成を備えている。即ち、こ の水素生成装置 200は、水蒸気改質反応を進行させるための高温状態の燃焼ガス を生成する燃焼バーナー 16と、水が供給されると共に燃焼バーナー 16により加熱さ れて湿り水蒸気又は水蒸気を生成する加熱器 17及び 18とを備えている。又、この水 素生成装置 200は、燃焼バーナー 16を中心とした複数の同心円筒 19一 28により構 成される複数の円環状空間に、燃焼バーナー 16によって生成した高温状態の燃焼 ガスが通過する燃焼ガス用流路 29と、原料と水蒸気との混合ガスが水蒸気改質反応 に利用される前に均一な混合状態となるよう混合するガス混合器 201と、所定の反応 温度に加熱されて水蒸気改質反応を進行させる改質触媒層 31と、この改質触媒層 3 1にお 、て生成した高温状態の改質ガスの温度を低下させるために熱を回収する熱 回収層 32と、この熱回収層 32により冷却された改質ガス中の一酸ィ匕炭素の濃度を 所定の化学反応により低減するための変成触媒層 33と、この変成触媒層 33により一 酸化炭素の濃度が低減された改質ガスと選択酸化反応用の空気を供給する空気供 給部 34から取り入れた空気とを十分に混合するためのガス混合器 201と同様の構成 を有するガス混合器 202と、このガス混合器 202を通過して空気が十分に混合され た改質ガス中の一酸ィ匕炭素の濃度を選択酸ィ匕反応により更に低減するための選択 酸化触媒層 37とを、図 1に示す実施の形態 1に係る水素生成装置 100の場合と同様 にして、燃焼バーナー 16を中心として同心円筒状に備えている。尚、本実施の形態 では、複数の同心円筒 19一 28により複数の円環状空間が構成されている形態を示 しているが、円環状空間に相当する空間は同心筒であればよぐ同心円筒により円 環状空間が構成される形態に限定されることはない。
上述したように、本実施の形態に係る水素生成装置 200では、同心円筒 20及び 2 1により構成される円環状空間の改質触媒層 31の上方に、供給される原料と水蒸気 とを十分に混合するための本発明を特徴付けるガス混合器 201が配設されている。 このガス混合器 201は、同心円筒 20及び 21により構成される円環状空間に勘合可 能なリング状の形状を有しており、同心円筒 20及び 21により構成される円環状空間 における改質触媒層 31の上方の所定位置に、所定の固定手段によって固定されて いる。又、本実施の形態に係る水素生成装置 200では、同心円筒 26及び 27により 構成される円環状空間の選択酸化触媒層 37の下方に、供給される改質ガスと空気 とを十分に混合するための本発明を特徴付けるガス混合器 202が配設されている。 このガス混合器 202は、同心円筒 26及び 27により構成される円環状空間に勘合可 能なリング状の形状を有しており、同心円筒 26及び 27により構成される円環状空間 における選択酸ィ匕触媒層 37の下方の所定位置に、所定の固定手段によって固定さ れている。これらのガス混合器 201及びガス混合器 202の構成については、ガス混 合器 202を代表として後に詳細に説明する。
[0086] このように構成された本実施の形態に係る水素生成装置 200では、水蒸気改質反 応にお 、て使用される水は、加熱器 17若しくは加熱器 18に供給されて少なくともそ の一部が気化し、加熱器 17又は加熱器 18から排出された水(温水)は、図 7では特 に図示しない混合部において原料としての都市ガスと一次的に混合された後、同心 円筒 25と同心円筒 26との間、及び、同心円筒 24と同心円筒 25との間の各々の空間 を移動する間に完全に気化して、都市ガスと混合される。そして、この都市ガスと水蒸 気との混合ガスは、ガス混合器 201に供給され、このガス混合器 201を通過する際に 十分に混合された後、改質触媒層 31に供給される。尚、このガス混合器 201による 混合ガスの混合状態の改善作用につ ヽては、ガス混合器 202を代表として後に詳細 に説明する。
[0087] ガス混合器 201から都市ガスと水蒸気とが十分に混合された混合ガスは、その後、 改質触媒層 31に供給される。そして、この改質触媒層 31が燃焼ガス用流路 29を流 れる燃焼ガスによって加熱されて進行する水蒸気改質反応に利用されて、混合ガス 力 水素を豊富に含有する改質ガスが生成される。そして、この水蒸気改質反応によ つて生成された改質ガスは、その後、熱回収層 32を通過して所定の温度にまで冷却 された後、変成触媒層 33に供給される。そして、この変成触媒層 33において進行す る変成反応によって、改質ガスに含有される一酸ィ匕炭素の多くが除去される。
[0088] 変成触媒層 33によって一酸ィ匕炭素の多くが除去された改質ガスは、その後、空気 供給部 34から取り入れた空気と変成触媒層 33を通過した改質ガスとを十分に混合 するためのガス混合器 202に供給される。そして、改質ガスは、ガス混合器 202を通 過する際に空気供給部 34から供給される空気と十分に混合され、その後、選択酸化 触媒層 37に供給される。尚、このガス混合器 202による改質ガスと空気との混合状 態の改善作用については、上述したガス混合器 201の場合と合わせて後に詳細に 説明する。
[0089] ガス混合器 202によって空気と十分に混合された改質ガスは、少量含まれる一酸 化炭素の殆どを除去するために、選択酸化触媒層 37に供給される。そして、この選 択酸化触媒層 37において進行する選択酸化反応によって、改質ガスに含有される 一酸化炭素の殆どが、空気が用いられる燃焼によって除去される。尚、一酸化炭素 が十分に除去された改質ガスは燃料電池に供給され、この燃料電池における発電の ための化学反応に利用される。又、燃料電池での発電に用いられなカゝつた余剰の改 質ガスは燃焼バーナー 16に供給され、この燃焼バーナー 16における燃焼ガスの生 成のために再利用される。
[0090] 次に、本発明の実施の形態 2に係るガス混合器 202の構成について、図面を参照 しながら詳細に説明する。
[0091] 図 8は、本発明の実施の形態 2に係るガス混合器 202の内部構成を模式的に示す 縦断図である。尚、図 8では、ガス混合器 202における紙面手前側に位置する後述 する内側流路規定部材 62c— 62d及び外側流路規定部材 63c— 63dの記載は省略 している。又、図 8では、内側流路規定部材 62a— 62b及び外側流路規定部材 63a 一 63bの視認可能な部分を実線により示しており、それらの視認不可能な部分を破 線により示している。
[0092] 以下、ガス混合器 202を例に挙げて、その構成を詳細に説明する。
[0093] 図 8に示すように、本実施の形態に係るガス混合器 202は、図 7に示す同心円筒 2 6と同心円筒 27との間に形成される円環状空間を上昇する空気が供給された改質ガ ス 64を改質ガス 65及び改質ガス 66の如く左右方向(半径方向)に 2分割する円筒状 の混合用同心円筒 61を有している。そして、この混合用同心円筒 61と図 7に示す同 心円筒 26との間に、改質ガス 64の上昇方向に向力つて左回りとされた螺旋形状の 4 つの内側流路規定部材 62a— 62d (紙面手前側にある内側流路規定部材 62c及び 62dは図示せず)力 改質ガス 65が流れる方向を改質ガス 64の上昇方向に向かつ て左周りに旋回させることが可能となるように、各々配設されている。又、図 8に示すよ うに、混合用同心円筒 61と図 7に示す同心円筒 27との間に、改質ガス 64の上昇方 向に向力つて右回りとされた螺旋形状の 4つの外側流路規定部材 63a— 63d (紙面 手前側にある外側流路規定部材 63c及び 63dは図示せず)が、改質ガス 66が流れ る方向を改質ガス 64の上昇方向に向力つて右周りに旋回させることが可能となるよう に、各々配設されている。これらの混合用同心円筒 61及び内側流路規定部材 62a 一 62d及び外側流路規定部材 63a— 63dにより、改質ガス 64の流れを改質ガス 65 及び 66に分割すると共に、その分割した改質ガス 65及び 66の流れを中心軸 Cに対 して互 ヽに逆方向に旋回させる規定流路を有するガス混合器 202が構成されて 、る
[0094] 本実施の形態に係るガス混合器 202では、内側流路規定部材 62a— 62d及び外 側流路規定部材 63a— 63dは各々所定の横壁によって構成されている。そして、こ れらの内側流路規定部材 62a— 62d及び外側流路規定部材 63a— 63dは、混合用 同心円筒 61及び同心円筒 26の間の空間と混合用同心円筒 61及び同心円筒 27の 間の空間とを各々円周方向に 4分割し、この 4分割した各々の空間において改質ガ ス 64の上昇方向に向かって円周方向の対向する方向(右回り、又は、左周り)に 90 °C旋回する螺旋形状となるように、各々配設されている。例えば、内側流路規定部材 62aと外側流路規定部材 63aとが配設されている上記 4分割した内の 1部分に着目し た場合、内側流路規定部材 62aの下端と対向する位置に外側流路規定部材 63aの 上端が配置されており、又、内側流路規定部材 62aの上端と対向する位置に外側流 路規定部材 63aの下端が配置されている。そして、内側流路規定部材 62aの上端と 下端との隔離角度は 90° とされており、同様にして、外側流路規定部材 63aの上端 と下端との隔離角度も 90° とされている。このように、本実施の形態に係るガス混合 器 202は、混合用同心円筒 61によって分割された改質ガス 65及び 66の流れを中心 軸 Cに対して互いに逆方向に 90° 旋回させることができるように構成されている。尚 、上述した内側流路規定部材 62a— 62d及び外側流路規定部材 63a— 63dの形状 は、各流路に流れる改質ガスの流量を等しくするために、各々同一の形状を有して 、ることが好まし!/、。
[0095] 次に、本発明の実施の形態 2に係るガス混合器 202による改質ガスの混合状態の 改善作用について、図面を参照しながら詳細に説明する。
[0096] 図 9は、ガス混合器 202における改質ガスの流れを模式的に示す解説図であって、 図 9 (a)は混合用同心円筒 61によりその内側に分割された改質ガス 65の流れを模 式的に示す解説図であり、図 9 (b)は混合用同心円筒 61によりその外側に分割され た改質ガス 66の流れを模式的に示す解説図である。尚、図 9 (a)及び図 9 (b)は、図 8に示す縦断図と同一方向から見た場合の縦断図を示している。又、図 9 (a)及び図 9 (b)では、混合用同心円筒 61の下側から流入する改質ガス 65及び改質ガス 66の 流れを各々矢印により便宜的に示している。
[0097] 図 9 (a)に示すように、本実施の形態に係るガス混合器 202では、同心円筒 26及び 27の間の空間を上昇して混合用同心円筒 61によってその内側に分割された改質ガ ス 65は、内側流路規定部材 62a及び 62bによって中心軸 Cの周りを左周りに 90° 旋 回された後、ガス混合器 202の上方力も排出される。一方、図 9 (b)に示すように、本 実施の形態に係るガス混合器 202では、同心円筒 26及び 27の間の空間を上昇して 混合用同心円筒 61によってその外側に分割された改質ガス 66は、外側流路規定部 材 63a及び 63bによって中心軸 Cの周りを右周りに 90° 旋回された後、ガス混合器 2 02の上方力も排出される。このように、ガス混合器 202に導入された改質ガス 64は、 混合用同心円筒 61、内側流路規定部材 62a— 62d、及び外側流路規定部材 63a— 63dによって、 2つの改質ガス 65及び 66に示す流れに分割されると共に、各々円周 方向に左右逆方向に 90° 旋回され、その後、その分割された 2つの改質ガス 65及 び 66が 1つの流れに再び合流されて混合される。
[0098] 図 10は、図 9に示す本実施の形態に係るガス混合器 202の動作を更に分かり易く 説明するための解説図である。尚、図 10は、図 9に示すガス混合器 202の中心軸 C 上に視点を置いて 360° 回転視した場合に観察される状態を模式的に示す解説図 である。又、図 10では、ガス混合器 202の中心軸 C上の視点から直接的に視認可能 な内側流路規定部材 62a— 62dを実線により示しており、又、ガス混合器 202の中心 軸 C上の視点から直接的に視認不可能な外側流路規定部材 63a— 63dを破線によ り示している。又、ガス混合器 202の円周を 90° 毎に 4分割した位置を、 0° 一 270 ° として示す破線により図示している。
[0099] 図 10に示すように、本実施の形態に係るガス混合器 202では、混合用同心円筒 6 1の内側を流れる改質ガス 65はガス混合器 202の内部を左方向に 90° 旋回され、 混合用同心円筒 61の外側を流れる改質ガス 66はガス混合器 202の内部を右方向 に 90° 旋回されて各々ガス混合器 202の上方カゝら排出され、その後、ガス混合器 2 02の出口部において混合する。この場合、例えば、図 10に示す 90° の出口位置 I 力 排出される改質ガスは、図 10に示す 0° の位置と 180° の位置とから流入する 改質ガスの半量が混合した改質ガスであることは明白である。又、その他の出口位置 J一 Lから排出される流体についても、出口位置 Iから排出される流体の場合と同様に して、 180° 離れた位置カゝら流入する各々の改質ガスの半量が混合した改質ガスで あることは、図 10から明らかである。即ち、本実施の形態に係るガス混合器 202によ れば、内側流路規定部材 62a— 62d及び外側流路規定部材 63a— 63dによって 18 0° 離れた位置力 流入する各々の混合ガスの半量を混合することができるので、同 心円筒 26及び 27で構成される円環状流路の 180° 対向する反対位置を流れる混 合ガス同士を効果的に混合することが可能になる。換言すれば、実施の形態 1の場 合と同様、互いに離れた位置に存在する 2種類の混合ガスの接触する接触場が多く なるので、空間的な濃度分布の偏りを均一化することが可能になる。
[0100] 又、本実施の形態に係るガス混合器 202によれば、ガス混合器 202における内側 流路規定部材 62a— 62d及び外側流路規定部材 63a— 63dが横壁で構成されてい るので、熱容量が小さぐ起動や負荷変動に対応するために要する待機時間を短縮 化することが可能になる。又、本実施の形態に係るガス混合器 202は優れた混合性 能を有しているので、従来の水素生成装置 300で必要であった 2段の混合層 35, 36 及び選択酸化触媒層 37, 38を、 1段のガス混合層 202及び選択酸化触媒層 37〖こ 簡略ィ匕することができる。そのため、水素生成装置 200の熱容量を更に低下させるこ とが可能となり、しかも、選択酸ィ匕反応用の空気の供給量を必要最小限に抑えること ができるため、生成した水素の選択酸ィ匕用の空気による無駄な消費を抑制すること ができ、高効率な水素生成装置 200を得ることが可能になる。
[0101] ここで、本実施の形態では、ガス混合器 202が混合用同心円筒 61の両側に 4枚の 内側流路規定部材 62a— 62dと 4枚の外側流路規定部材 63a— 63dとを備える形態 について説明している力 このような形態に限定されることはなぐ例えば、図 11に示 すように、混合用同心円筒 61の両側に 45° の等間隔で配設された 8枚の内側流路 規定部材 67a— 67hと、 45° の等間隔で配設された 8枚の外側流路規定部材 68a 一 68hとを備える形態としてもよい。この場合、内側流路規定部材 67a— 67h及び外 側流路規定部材 68a— 68hの各々は、図 8に示す改質ガス 65及び 66の各々の流れ を互いに逆方向に 45° 旋回させることができる。従って、力かる構成とすることにより 、図 11において 2つの矢印で改質ガスの流れを示すように、ガス混合器 203の入口 において円周方向に 90° 離れた位置に存在する改質ガス同士を効果的に混合す ることが可能になる。
[0102] 又、上述したように、本実施の形態では、ガス混合器 202が混合用同心円筒 61の 両側に 4枚の内側流路規定部材 62a— 62dと 4枚の外側流路規定部材 63a— 63dと を備える形態について説明しているが、このような形態に限定されることはなぐ例え ば、図 12に示すように、混合用同心円筒 61の両側に 90° の等間隔で配設された 8 枚の内側流路規定部材 67a— 67hと、 90° の等間隔で配設された 8枚の外側流路 規定部材 68a— 68hとを備える形態としてもよい。この場合、内側流路規定部材 67a 一 67h及び外側流路規定部材 68a— 68hの各々は、図 8に示す改質ガス 65及び 66 の各々の流れを互いに逆方向に 90° 旋回させることができる。従って、かかる構成と することにより、図 12において 2つの矢印で流体の流れを示すように、ガス混合器 20 4の入口において円周方向に 180° 離れた位置に存在する改質ガス同士をより一層 効果的に混合することが可能になる。
[0103] つまり、本実施の形態では、ガス混合器 202における内側流路規定部材及び外側 流路規定部材の個数を、改質ガスの種類や要求される混合状態に応じて増減するこ とにより、より一層優れた効果を得ることが可能である。又、それらの内側流路規定部 材及び外側流路規定部材の形状も、図 8— 12に図示したような曲線状の形状に限 定されることはなく、圧力損失の低減やより効果的な混合を目的として、直線状の形 状や、直線状の形状と曲線状の形状とを組み合わせた形状としてもよい。
[0104] 図 13は、本実施の形態に係るガス混合器 201における第 1の流体 (例えば、原料) と第 2の流体 (例えば、水蒸気)との混合ガスの混合角度と、ガス混合器 201を通過し た混合ガスを用いた場合の改質触媒層における改質反応転化率との関係を模式的 に示す相関図である。ここで、図 13における曲線 aは、混合ガスの旋回角度と改質反 応転化率との相関関係を示している。尚、図 13では、縦軸は改質触媒層における改 質反応転化率 (%)を示しており、横軸は第 1の流体と第 2の流体との混合ガスの混 合角度 (° )を示している。
[0105] 図 13に示すように、改質触媒層 31の上流の位置にガス混合器 201を設けることに より、水蒸気改質反応における反応転化率を向上させることができ、改質器効率の向 上を図ることができることが分かる。特に、図 13に示すように、混合ガスの旋回角度が 90° である場合に、最も高い転ィ匕率を得ることが可能である。しかし、混合ガスの旋 回角度が 45° よりも小さい場合では、転ィ匕率の向上は得られるものの、その向上効 果は比較的小さい。そこで、本実施の形態に係るガス混合器 201においては、内側 流路規定部材及び外側流路規定部材による混合ガスの旋回角度を、 45° 以上 90 ° 以下とすることが効果的である。
[0106] 尚、本実施の形態では、内側流路規定部材及び外側流路規定部材の各々を横壁 によって構成する形態を例示している力 この場合には横壁の 3次元的な成型が必 要になるので、ガス混合器の製造コストが高コストィ匕する可能性がある。そこで、内側 流路規定部材及び外側流路規定部材の各々を横壁によって構成する形態に代えて 、内側流路規定部材及び外側流路規定部材の各々を丸棒や角棒等の棒材を用い て構成する形態としてもよい。力かる構成とすることにより、丸棒や角棒等の棒材の 3 次元的な成型は比較的容易であるので、ガス混合器の製造コストが高コストィ匕するこ とを回避することが可能になる。
[0107] 又、本実施の形態では、ガス混合器 202の構成及び動作にっ 、て詳細に説明した 力 ガス混合器 201の構成及び動作はガス混合器 202の構成及び動作と同様であ る。又、本実施の形態では、改質触媒層 31に供給される原料と水蒸気との混合のた めにガス混合器 201を配設すると共に、選択酸化触媒層 37に供給される改質ガスと 空気との混合のためにガス混合器 202をも配設する形態を例示しているが、このよう な形態に限定されることはなぐ要求される水素生成装置の性能に応じて、何れか一 方にのみガス混合器を配設する形態としてもよ ヽ。
[0108] (実施の形態 3)
本発明の実施の形態 3では、実施の形態 2において示した水素生成装置 200の構 成と比べて、ガス混合器の内部構成のみが異なっている。そのため、本発明の実施 の形態 3では、ガス混合器の内部構成についてのみ説明する。
[0109] 図 14は、本発明の実施の形態 3に係るガス混合器 205の内部構成を模式的に示 す構成図であって、図 14 (a)はガス混合器 205の上面図であり、図 14 (b)はガス混 合器 205の側面図である。尚、図 14 (a)及び図 14 (b)では、リング状の形状を有する ガス混合器 205を説明のために平面状に展開した場合の状態を模式的に示して!/ヽ る。又、図 14 (a)では、同心円筒 26、同心円筒 27、及び混合用同心円筒 61の目視 可能な部分を実線により示しており、同心円筒 26、同心円筒 27、及び混合用同心円 筒 61の目視不可能な部分を破線により示している。又、図 14 (b)では、紙面手前側 の内側流路規定部材 62a— 62dを実線により示しており、紙面後側の外側流路規定 部材 63a— 63dを破線により示している。又、図 14では、図 8に示したガス混合器 20 2と同一の構成要素には、同一の符号を付している。又、図 14を用いる説明では、都 巿ガス等の原料と水蒸気との混合ガス、若しくは、改質ガスと空気とが混合した改質 ガス等の流体力 図 14の下方から上方に向けて流動するものと仮定する。
[0110] 本実施の形態で示すガス混合器 205は、基本的には、図 8に示したガス混合器 20 2の内部構成と概ね同様の内部構成を有している。つまり、本実施の形態に係るガス 混合器 205は、図 14 (a)及び図 14 (b)に示すように、分割隔壁 61の両面に、 4枚の 内側流路規定部材 62a— 62dと、 4枚の外側流路規定部材 63a— 63dとを備えてい る。
[0111] し力しながら、本実施の形態に係るガス混合器 205では、図 14 (a)及び図 14 (b)に 示すように、内側流路規定部材 62a— 62dによって規定される混合ガス等の流体の 各出口部 69と、外側流路規定部材 63a— 63dによって規定される混合ガス等の流体 の各出口部 70との各々の略半分力 矩形状の形状を有する邪魔板 71によって各々 閉鎖されて 、る点にぉ 、て、実施の形態 2で示したガス混合器 202の構成と異なつ ている。つまり、本実施の形態に係るガス混合器 205では、ガス混合器 205の上述し た各出口部 69, 70に邪魔板 71を設けることにより、各出口部 69, 70の開口面積を 狭めて 、る点にぉ 、て、実施の形態 2で示したガス混合器 202の構成と異なって 、る 。尚、その他の点については、実施の形態 2で示したガス混合器 202の構成と同様 である。
[0112] 本実施の形態で示すガス混合器 205では、上述したように、例えば、図 14 (b)に示 す内側流路規定部材 62c及び 62dによって規定される混合ガス等の流体の出口部 6 9が邪魔板 71によって部分的に閉鎖されており、これにより、出口部 69の開口面積 が略半分にまで狭められている。このように、出口部 69、及びそれに相当する他の出 口部の開口面積を略半分にまで狭める構成とすることにより、ガス混合器 205から排 出される流体の流速を速めることが可能になる。そして、力かる構成とすることにより、 ガス混合器 205から排出される、混合用同心円筒 61の内側を流れる流体と外側を流 れる流体との双方の流速が速まるので、混合ガス等の流体の混合状態をより一層改 善することが可能になる。
[0113] 尚、本実施の形態では、邪魔板 71の大きさを、例えば出口部 69の面積の略半分 を閉鎖可能な大きさとする形態について説明しているが、このような形態に限定され ることはなく、要求される混合ガス等の流体の混合状態に応じて、邪魔板 71の大きさ を任意に設定するこが可能である。
[0114] (実施の形態 4)
本発明の実施の形態 4でも、実施の形態 2において示した水素生成装置 200の構 成と比べて、ガス混合器の内部構成のみが異なっている。そのため、本発明の実施 の形態 4では、実施の形態 3の場合と同様、ガス混合器の内部構成についてのみ説 明する。
[0115] 図 15は、本発明の実施の形態 4に係るガス混合器 206の内部構成を模式的に示 す構成図であって、図 15 (a)はガス混合器 206の上面図であり、図 15 (b)はガス混 合器 206の側面図である。尚、図 15 (a)及び図 15 (b)でも、実施の形態 3の場合と同 様、リング状の形状を有するガス混合器を説明のために平面状に展開した場合の状 態を模式的に示している。又、図 15 (a)では、同心円筒 26、同心円筒 27、及び混合 用同心円筒 61の目視可能な部分を実線により示しており、同心円筒 26、同心円筒 2 7、及び混合用同心円筒 61の目視不可能な部分を破線により示している。又、図 15 (b)では、紙面手前側の内側流路規定部材 62a— 62dを実線により示しており、紙面 後側の外側流路規定部材 63a— 63dを破線により示している。又、図 15では、図 8に 示したガス混合器 202と同一の構成要素には、同一の符号を付している。
[0116] 本実施の形態で示すガス混合器 206は、基本的に、実施の形態 3で示すガス混合 器 205の内部構成と同様の内部構成を有している。つまり、本実施の形態に係るガ ス混合器 206は、図 15 (a)及び図 15 (b)に示すように、混合用同心円筒 61の両面 に、 4枚の内側流路規定部材 62a— 62dと、 4枚の外側流路規定部材 63a— 63dとを 備えている。
[0117] し力しながら、本実施の形態に係るガス混合器 206では、図 15 (a)及び図 15 (b)に 示すように、ガス混合器 206における混合ガスゃ改質ガス等の流体が排出される出 口部に、混合用同心円筒 61の内側(つまり、内側流路規定部材 62a— 62dが配設さ れて ヽる側)の流路若しくは外側(つまり、外側流路規定部材 63a— 63dが配設され ている側)の流路のみに開口する開口部 72若しくは開口部 73を有する邪魔板 74が 配設されていると共に、混合用同心円筒 61における上述した出口部近傍の所定位 置に開口部 75が設けられている点において、実施の形態 3で示したガス混合器 205 の構成と異なっている。ここで、図 15 (a)に示すように、邪魔板 74における開口部 72 及び 73は、同心円筒 26側と同心円筒 27側とにおいて邪魔板 74の長手方向に交互 に形成されている。又、開口部 72及び 73の各々の開口面積は、実施の形態 3の場 合と同様、例えば内側流路規定部材 62aと 62bとで規定される流路の出口部にける 開口面積の約半分の面積とされている。又、図 15 (b)に示すように、開口部 75は、 混合用同心円筒 61における上述した出口部側の端部の開口部 72及び 73に対応す る位置に、略矩形状に形成されている。つまり、本実施の形態に係るガス混合器 206 では、ガス混合器 206の上述した出口部に邪魔板 74が配設されており、この邪魔板 74に開口部 72及び 73が形成されており、混合用同心円筒 61に開口部 75が形成さ れて 、る点にぉ 、て、実施の形態 3で示したガス混合器 205の構成と異なって 、る。 尚、その他の点については、実施の形態 3で示したガス混合器 205の構成と同様で ある。
[0118] 本実施の形態で示すガス混合器 206では、例えば、内側流路規定部材 62a及び 6 2bにより規定される流路を通過した流体は開口部 75からのみ排出され、この際、外 側流路規定部材 63d及び 63aにより規定される流路を通過した流体と混合され、そし て、開口部 73からガス混合器 206の外部に排出される。つまり、本実施の形態に係 るガス混合器 206によれば、混合用同心円筒 61の内側及び外側を通過した流体が 開口部 72及び開口部 73及び 75を通過する際に強制的に混合されるため、混合ガ ス等の流体の混合状態をより一層改善することが可能になる。
[0119] 尚、本実施の形態では、開口部 72及び 73の開口面積を、例えば、内側流路規定 部材 62b及び 62cにより規定される流路の出口部の約半分の開口面積とする形態に ついて説明しているが、このような形態に限定されることはなぐ要求される混合ガス 等の流体の混合状態に応じて、開口部 72及び 73の開口面積を任意に設定するこが 可能である。又、開口部 75の開口面積や形状も、要求される混合ガス等の流体の混 合状態に応じて、任意に設定することが可能である。
[0120] ところで、実施の形態 2— 4において示すガス混合器 201, 202—ガス混合器 206 は、非常にコンパクトであるため、複数のガス混合器を直列に配置してガス混合器集 合体を構成しても、水素生成装置 200の内部に配設することが可能である。この場合 、ガス混合器が直列に集合されるので、混合ガス等の流体の混合状態を更により一 層改善することが可能になる。
[0121] 図 16は、本発明の実施の形態 2及び 4に係るガス混合器 203及びガス混合器 206 を直列に集合した第 1のガス混合器集合体 207の内部構成を模式的に示す構成図 である。尚、図 16でも、実施の形態 3の場合と同様、リング状の形状を有する第 1のガ ス混合器集合体を説明のために平面状に展開した場合の状態を模式的に示してい る。
[0122] 図 16に示す第 1のガス混合器集合体 207では、実施の形態 4に示すガス混合器 2 06が混合ガス等の流体の上流側に配置されて 、ると共に、図 11に示すガス混合器 203が下流側に配置されて ヽる。これらのガス混合器 203及びガス混合器 206の各 々の構成等については、実施の形態 2及び 4に記載の通りである。このように、複数 のガス混合器 203及び 206を直列に配置することにより、個々のガス混合器 203及 び 206が有する混合性能が加算されるので、混合ガス等の流体の混合状態を更によ り一層改善することが可能になる。
[0123] 又、図 17は、本発明の実施の形態 2及び 4に係るガス混合器 203及びガス混合器 206を直列に集合した第 2のガス混合器集合体 208の内部構成を模式的に示す構 成図である。
[0124] 図 17に示す第 2のガス混合器集合体 208では、上述した第 1のガス混合器集合体 207ではガス混合器 203の混合用同心円筒 61とガス混合器 206の混合用同心円筒 61とが各々独立して配設されているのに対して、ガス混合器 203とガス混合器 206と 力 枚の混合用同心円筒 76を共有している点で、上述した第 1のガス混合器集合体 207の場合と異なっている。カゝかる構成とすることにより、ガス混合器集合体 207の構 成を簡素化することが可能になる。
[0125] 以上、本発明の実施の形態 1一 4によれば、ガス混合器の全体をステンレス等の薄 板で構成することができるので、その重量を例えば 300g以下とすることが可能になる と共に、その熱容量も例えば 0. 5kjZkg'°C程度とすることが可能になる。そのため、 ガス混合器の加熱に要する熱量を例えば 26kJ程度とすることができるので、水素生 成装置の起動時間の遅れを例えば 1Z5以下にまで短縮ィ匕することが可能になる。 又、ガス混合器の加熱に要する熱量を例えば 26kJ程度とすることができるので、燃 料電池システムの運転エネルギーを省電力化することが可能になる。
[0126] 又、本発明の実施の形態 1一 4によれば、ガス混合器の熱容量をセラミック球等が 充填されたガス混合器の熱容量の 1Z5以下にまで低下することができるので、ガス 混合器の表面において水蒸気が冷却により凝縮することを効果的に防止することが 可能になる。これにより、水素生成装置の起動時において SZC比が低下することを 効果的に防止することが可能になる。又、改質触媒の触媒性能を長期間に渡って安 定して維持することが可能になる。
[0127] 更に、本発明の実施の形態 1一 4によれば、改質触媒層に供給される都市ガスと水 蒸気との混合ガスや選択酸化触媒層に供給される空気が混合された改質ガス等の 流体の混合状態がガス混合器によって飛躍的に改善されるので、改質触媒層にお いて効率よく改質ガスが生成されると共に、選択酸ィ匕触媒の量も最小限とすることが 可能になる。そのため、改質触媒層や選択酸化触媒層を小型化することが可能にな る。又、選択酸ィ匕触媒層において改質ガス中の水素を無駄に燃焼することを防止で きるので、高効率な水素生成装置を提供することが可能になる。 産業上の利用可能性
[0128] 本発明に係る水素生成装置は、軽量でありかつ熱容量が小さ!/、高性能のガス混合 器を備えた、水素生成効率及び応答性に優れる水素生成装置として有用である。
[0129] 又、本発明によれば、改質触媒層に供給する原料と水蒸気との混合ガス等の流体 における時間的及び空間的な濃度の不均一性を解消することが可能である。そして 、その結果、改質ガスの濃度の時間的及び空間的な均一性を確保することができる ので、改質触媒層やその下流側に配設される変成反応器等の一酸化炭素除去触媒 層を有効に使用することが可能となり、各触媒量の低減や水素生成装置の小型化に 大きく貢献することが可能になる。

Claims

請求の範囲
[1] 2以上の成分を含有する混合ガスが流通する混合ガス流路と、
各々の始端が前記混合ガス流路から分岐し各々の終端が互いに合流する第 1の流 路及び第 2の流路と、
前記第 1の流路に設けられ該第 1の流路を流れる混合ガスを第 1の方向に旋回させ る第 1の旋回手段と、
前記第 2の流路に設けられ該第 2の流路を流れる混合ガスを第 1の方向と反対の第 2の方向に旋回させる第 2の旋回手段と、
前記合流した第 1の流路及び第 2の流路の終端から流出する前記混合ガスを化学 反応させて水素を生成する水素生成部と、
を備えた、水素生成装置。
[2] 前記第 1の流路及び前記第 2の流路は、前記混合ガスが、前記第 1の流路の終端 及び第 2の流路の終端からの混合ガスの流出方向に垂直な平面内を流れながら、そ れぞれ、前記第 1の方向の旋回及び前記第 2の方向の旋回を行うように形成されて いる、請求項 1記載の水素生成装置。
[3] 前記第 1の流路及び前記第 2の流路が、それぞれ、互いに一致する中心軸を有し、 外周面が開放され、かつ中心に円形の開口を有する中空状に形成され、前記外周 面が始端たる入口を構成するとともに前記開口が終端たる出口を構成しており、 前記第 1の旋回手段が前記第 1の流路の内部空間を前記中心軸に沿う方向に仕 切りかつ該内部空間の外周から内方へ終端が始端に対して半径方向から前記第 1 の方向にずれるように延びる複数の隔壁で構成され、
前記第 2の旋回手段が前記第 2の流路の内部空間を前記中心軸に沿う方向に仕 切りかつ該内部空間の外周から内方へ終端が始端に対して半径方向から前記第 2 の方向にずれるように延びる複数の隔壁で構成されて 、る、請求項 2記載の水素生 成装置。
[4] 前記隔壁の始端に対する終端のずれが、前記中心軸の周りの回転角度において、
45° — 90° の範囲の回転角度である、請求項 3記載の水素生成装置。
[5] 前記第 1の流路及び前記第 2の流路と、前記第 1の旋回手段及び前記第 2の旋回 手段とが、前記中心軸に沿って、それぞれ複数形成されている、請求項 2記載の水 素生成装置。
[6] 前記第 1の流路及び前記第 2の流路は、前記混合ガスが、前記第 1の流路の終端 及び第 2の流路の終端からの混合ガスの流出方向に平行な筒状の面内を流れなが ら、それぞれ、前記第 1の方向の旋回及び前記第 2の方向の旋回を行うように形成さ れている、請求項 1記載の水素生成装置。
[7] 前記第 1の流路及び前記第 2の流路が、それぞれ、前記中心軸を中心軸として共 有しかつ環状の断面を有する筒状に形成され、一方の側の各々の端面が始端たる 入口を構成するとともに他方の側の各々の端面が終端たる出口を構成しており、 前記第 1の旋回手段が前記第 1の流路の筒状の内部空間を前記第 1の方向に旋 回するようにして螺旋状に仕切る複数の隔壁で構成され、
前記第 2の旋回手段が前記第 1の流路の筒状の内部空間を前記第 2の方向に旋 回するようにして螺旋状に仕切る複数の隔壁で構成されて ヽる、請求項 6記載の水 素生成装置。
[8] 前記隔壁の始端カも終端までの旋回角度が 45° — 90° の範囲の旋回角度であ る、請求項 7記載の水素生成装置。
[9] 前記隔壁で区画された旋回流路の出口がー部閉鎖されている、請求項 8記載の水 素生成装置。
[10] 前記第 1の流路と前記第 2の流路とが円筒状の分割隔壁で隔てられるようにして形 成され、前記第 1の流路及び前記第 2の流路のいずれかの前旋回流路の出口が閉 鎖され、前記分割隔壁の該閉鎖された出口の近傍部分に開口が形成されている、請 求項 9記載の水素生成装置。
[11] 前記第 1の流路及び前記第 2の流路が、前記中心軸に沿って、それぞれ、複数形 成され、前記混合ガスの流れにお!、て上流側に位置する前記第 1の流路及び前記 第 2の流路の終端が下流側に位置する前記第 1の流路及び前記第 2の流路の始端 に接続されている、請求項 6記載の水素生成装置。
[12] 前記混合ガスが少なくとも炭素及び水素を有する有機化合物と水とが混合した混 合ガスであり、前記化学反応が前記有機化合物と水とが混合した混合ガスカゝら水素 を生成する水蒸気改質反応であり、前記水素生成部が前記水蒸気改質反応により 水素を豊富に含有する改質ガスを生成する改質反応部であって、
前記第 1の旋回手段及び前記第 2の旋回手段が前記改質反応部の上流に配設さ れ、
前記合流した第 1の流路及び第 2の流路の終端から流出する前記混合ガスが前記 改質反応部に供給されて水素を生成する、請求項 1記載の水素生成装置。
前記混合ガスが前記改質ガスと酸素とが混合した混合ガスであり、酸素を用いて一 酸化炭素を二酸化炭素に変換する選択酸化反応により前記改質ガス中の一酸化炭 素を低減する選択酸化反応部を前記水素生成部に代えて備え、
前記第 1の旋回手段及び前記第 2の旋回手段が前記選択酸化反応部の上流に配 設され、
前記合流した第 1の流路及び第 2の流路の終端から流出する前記混合ガスが前記 選択酸化反応部に供給されて前記改質ガス中の一酸化炭素を低減する、請求項 1 記載の水素生成装置。
PCT/JP2004/018411 2003-12-09 2004-12-09 水素生成装置 WO2005056468A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/581,967 US7465326B2 (en) 2003-12-09 2004-12-09 Hydrogen generating apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003410014 2003-12-09
JP2003-410014 2003-12-09
JP2004091440 2004-03-26
JP2004-091440 2004-03-26

Publications (1)

Publication Number Publication Date
WO2005056468A1 true WO2005056468A1 (ja) 2005-06-23

Family

ID=34680613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018411 WO2005056468A1 (ja) 2003-12-09 2004-12-09 水素生成装置

Country Status (2)

Country Link
US (1) US7465326B2 (ja)
WO (1) WO2005056468A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1856443B1 (en) * 2005-03-10 2015-08-12 Shell Internationale Research Maatschappij B.V. A multi-tube heat transfer system for the combustion of a fuel and heating of a process fluid and the use thereof
AU2006223449A1 (en) 2005-03-10 2006-09-21 Shell Internationale Research Maatschappij B.V. Method of starting up a direct heating system for the flameless combustion of fuel and direct heating of a process fluid
RU2007137495A (ru) * 2005-03-10 2009-04-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. (NL) Система теплопередачи для сгорания топлива и нагревания технологической текучей среды и способ ее использования
EP1860064B8 (en) * 2005-03-18 2010-02-03 Honda Motor Co., Ltd. Fuel modification apparatus
US8257668B2 (en) * 2006-09-05 2012-09-04 Panasonic Corporation Hydrogen generator and fuel cell system
ATE511062T1 (de) * 2007-07-20 2011-06-15 Shell Int Research Heizvorrichtung zur flammenlosen verbrennung
AR067578A1 (es) * 2007-07-20 2009-10-14 Shell Int Research Un calentador de combustion no inflamable, sistema calentador, un metodo para iniciar el sistema calentador y metodo para controlar la temperatura del sistema calentador.
WO2011075490A2 (en) * 2009-12-14 2011-06-23 Intelligent Energy, Inc. Hydrogen generation utilizing integrated co2 removal with steam reforming
WO2011108264A1 (ja) 2010-03-04 2011-09-09 パナソニック株式会社 水素生成装置および燃料電池発電システム
US8603203B2 (en) * 2010-04-12 2013-12-10 Samsung Sdi Co., Ltd. Burner nozzle assembly and fuel reformer having the same
US9093681B2 (en) 2010-12-15 2015-07-28 Intelligent Energy Inc. Hydrogen generation having CO2 removal with steam reforming
CN104203397A (zh) * 2011-12-06 2014-12-10 Hy9公司 催化剂容纳反应器系统以及相关方法
JP5958721B2 (ja) * 2012-02-09 2016-08-02 パナソニックIpマネジメント株式会社 燃料処理装置
US8992850B2 (en) * 2012-05-31 2015-03-31 Dana Canada Corporation Floating catalyst/regenerator
JP5815476B2 (ja) * 2012-06-12 2015-11-17 本田技研工業株式会社 燃料電池モジュール
JP5848197B2 (ja) * 2012-06-12 2016-01-27 本田技研工業株式会社 燃料電池モジュール
EP2707326B1 (en) 2012-06-25 2017-04-05 Panasonic Intellectual Property Management Co., Ltd. Fuel processor
JP6051063B2 (ja) * 2013-01-30 2016-12-21 本田技研工業株式会社 燃料電池モジュール
US20230288031A1 (en) * 2020-05-29 2023-09-14 Omb Saleri S.P.A. - Societa' Benefit Cylinder assembly for a hydrogen fuel cells autotraction system
CN113457444B (zh) * 2021-07-19 2023-02-28 重庆朗福环保科技有限公司 一种一氧化碳脱除系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930128B2 (ja) * 1977-11-08 1984-07-25 バンキ,デビッド・レオン 酸素リホ−ミング反応器における反応ガスを混合するための装置
JPH049198B2 (ja) * 1984-01-30 1992-02-19
JPH04180826A (ja) * 1990-11-13 1992-06-29 Noritake Co Ltd スタティックミキサ内蔵反応管
JPH0525538B2 (ja) * 1985-12-30 1993-04-13 Ansuchi* Furanse Deyu Petorooru
JPH0733402A (ja) * 1993-07-27 1995-02-03 Hitachi Ltd 改質器
JP2002078703A (ja) * 2000-06-22 2002-03-19 Toshiba Medical System Co Ltd X線ct装置
JP2003080047A (ja) * 2001-09-13 2003-03-18 Artha:Kk 水素溶存装置および水素溶存装置用部品
JP2003176104A (ja) * 2001-12-07 2003-06-24 Toyota Motor Corp 改質用混合気生成装置
JP2003226501A (ja) * 2002-02-07 2003-08-12 Ebara Corp 水素製造システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930128A (ja) 1982-08-09 1984-02-17 Hitachi Ltd 漢字入力装置における漢字入力方法
JPH0649119B2 (ja) 1990-04-27 1994-06-29 株式会社トーカイ 方形状布類の縁出し装置
JP3109146B2 (ja) 1991-07-17 2000-11-13 大同特殊鋼株式会社 低歪高強度部材の製造方法
AU774857B2 (en) * 1999-04-20 2004-07-08 Tokyo Gas Company Limited Single-pipe cylindrical reformer and operation method therefor
JP3709772B2 (ja) 2000-09-12 2005-10-26 日産自動車株式会社 燃料改質器用空気混合装置
CA2357960C (en) * 2000-10-10 2007-01-30 Tokyo Gas Co., Ltd. Single-pipe cylinder type reformer
US6793698B1 (en) * 2001-03-09 2004-09-21 Uop Llc Fuel processor reactor with integrated pre-reforming zone
US7182921B2 (en) * 2001-06-04 2007-02-27 Tokyo Gas Co., Ltd. Cylindrical steam reforming unit
JP4189212B2 (ja) 2001-12-25 2008-12-03 パナソニック株式会社 水素生成装置とそれを備える燃料電池システム
JP4213895B2 (ja) 2002-01-31 2009-01-21 アイシン精機株式会社 燃料改質装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930128B2 (ja) * 1977-11-08 1984-07-25 バンキ,デビッド・レオン 酸素リホ−ミング反応器における反応ガスを混合するための装置
JPH049198B2 (ja) * 1984-01-30 1992-02-19
JPH0525538B2 (ja) * 1985-12-30 1993-04-13 Ansuchi* Furanse Deyu Petorooru
JPH04180826A (ja) * 1990-11-13 1992-06-29 Noritake Co Ltd スタティックミキサ内蔵反応管
JPH0733402A (ja) * 1993-07-27 1995-02-03 Hitachi Ltd 改質器
JP2002078703A (ja) * 2000-06-22 2002-03-19 Toshiba Medical System Co Ltd X線ct装置
JP2003080047A (ja) * 2001-09-13 2003-03-18 Artha:Kk 水素溶存装置および水素溶存装置用部品
JP2003176104A (ja) * 2001-12-07 2003-06-24 Toyota Motor Corp 改質用混合気生成装置
JP2003226501A (ja) * 2002-02-07 2003-08-12 Ebara Corp 水素製造システム

Also Published As

Publication number Publication date
US7465326B2 (en) 2008-12-16
US20070151152A1 (en) 2007-07-05

Similar Documents

Publication Publication Date Title
WO2005056468A1 (ja) 水素生成装置
US6936238B2 (en) Compact partial oxidation/steam reactor with integrated air preheater, fuel and water vaporizer
CA2612961C (en) Compact reforming reactor
US7037472B2 (en) Single-pipe cylinder-type reformer
JP4505184B2 (ja) 小型燃料気体改質器組立物
US7670394B2 (en) Compact reforming reactor
JP2002187705A (ja) 単管円筒式改質器
AU2006250359B2 (en) Fuel cell system
JP2008524817A (ja) 燃料電池改質器
JP2007504635A (ja) 迅速始動燃料改質システム及び技術
JPWO2010010718A1 (ja) 水素生成装置及びこれを備える燃料電池システム
JP3861077B2 (ja) 燃料改質装置
US7497881B2 (en) Heat exchanger mechanization to transfer reformate energy to steam and air
US20020182457A1 (en) Heat transfer optimization in multi shelled reformers
US7638213B2 (en) Multi-stage rapid vaporization apparatus and method
JP2005306717A (ja) 水素生成装置
US9988267B2 (en) Mixing device for a fuel reformer for converting hydrocarbon fuels into hydrogen rich gas
CN111346590B (zh) 整体型反应器
CN100395012C (zh) 氢生成装置
JP2000063103A (ja) 燃料改質装置
JP2009091181A (ja) 改質装置及び燃料電池システム
CN221492431U (zh) 一种重整器及燃料电池系统
JP2003267702A (ja) 水素製造装置
CN116395636A (zh) 一种螺旋加热管式二甲醚重整制氢反应器及其应用
JP2005063847A (ja) 燃料改質器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480033375.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10581967

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10581967

Country of ref document: US