WO2011108264A1 - 水素生成装置および燃料電池発電システム - Google Patents

水素生成装置および燃料電池発電システム Download PDF

Info

Publication number
WO2011108264A1
WO2011108264A1 PCT/JP2011/001216 JP2011001216W WO2011108264A1 WO 2011108264 A1 WO2011108264 A1 WO 2011108264A1 JP 2011001216 W JP2011001216 W JP 2011001216W WO 2011108264 A1 WO2011108264 A1 WO 2011108264A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporation
carbon monoxide
unit
evaporation section
water
Prior art date
Application number
PCT/JP2011/001216
Other languages
English (en)
French (fr)
Inventor
前西 晃
向井 裕二
洋史 川口
尾関 正高
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012503016A priority Critical patent/JP5123442B2/ja
Priority to US13/580,310 priority patent/US9240604B2/en
Priority to KR1020127025589A priority patent/KR20130004320A/ko
Priority to CN2011800124329A priority patent/CN102781820A/zh
Priority to EP11750377A priority patent/EP2543627A1/en
Priority to RU2012142177/05A priority patent/RU2012142177A/ru
Publication of WO2011108264A1 publication Critical patent/WO2011108264A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0461Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds
    • B01J8/0469Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0492Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00203Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • B01J2208/00221Plates; Jackets; Cylinders comprising baffles for guiding the flow of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrogen generator and a fuel cell power generation system.
  • the component includes a hydrogen generator, and further improvement in the reliability of the hydrogen generator is also required.
  • Patent Document 1 Even the conventional techniques including the above-mentioned Patent Document 1 are still improved from the viewpoint of ensuring further improvement in reliability (more stable hydrogen generation and further suppression of carbon monoxide generation). The inventors have found that there is room.
  • the present invention provides a highly reliable hydrogen generator capable of generating hydrogen more stably and more reliably reducing carbon monoxide generation, and a fuel cell having excellent reliability provided with the same.
  • the purpose is to provide a power generation system.
  • the conventional hydrogen generator typically has, as represented by Patent Document 1, a material for the reforming reaction, upstream of a so-called reforming reaction region (reforming reaction region). An area for evaporating water (water evaporation area) is provided. Further, on the downstream side of the reforming reaction region, there are provided a region for causing a so-called shift reaction (a shift reaction region) and a region for allowing a so-called selective oxidation reaction (a selective oxidation reaction region).
  • FIG. 7 is a characteristic diagram showing the catalytic characteristics of a general shift catalyst with respect to the catalyst temperature.
  • a gas assumed after passing through the reforming catalyst having a carbon monoxide concentration of 10% was used, and the carbon monoxide concentration in the gas after passing through the shift catalyst was measured by a gas chromatograph.
  • the characteristics deteriorate even when the temperature is low or high.
  • the temperature distribution in the entire catalyst needs to be as uniform and suitable as possible.
  • the catalyst temperature is in the range of 160 ° C. to 250 ° C.
  • the carbon monoxide concentration is 0.5% or less.
  • the catalyst temperature range is further narrowed down to 170 ° C. to 230 ° C.
  • the carbon monoxide concentration is 0.3% or less. Therefore, better catalyst characteristics can be obtained and the catalyst performance can be stabilized.
  • selective oxidation catalysts also have low oxidation activity at low temperatures, so carbon monoxide cannot be removed sufficiently. At high temperatures, they are also oxidized due to side reactions such as reduced selectivity and reverse shift reactions. Carbon cannot be removed sufficiently.
  • the conventional hydrogen generator is configured such that, for example, the water evaporation region and the selective oxidation reaction region can exchange heat.
  • heat in the selective oxidation reaction region is taken away by water evaporation in the water evaporation region. If heat is deprived from the selective oxidation reaction region beyond the design range, the temperature of the selective oxidation reaction region may not be maintained within a range suitable for allowing the selective oxidation reaction to proceed sufficiently.
  • the shift reaction region and the water evaporation region may be configured to exchange heat, and in this case, as in the selective oxidation reaction region, the temperature of the shift reaction region can be maintained within an appropriate range. There is a risk of disappearing.
  • the evaporation unit By configuring the evaporation unit so that the heat exchange amount of the portion corresponding to the carbon monoxide reduction unit is smaller than the heat exchange amount of the portion not corresponding to the carbon monoxide reduction unit, the water in the evaporation unit The heat taken away from the carbon monoxide reduction part by evaporation is reduced, and the temperature of the carbon monoxide reduction part is easily maintained in an appropriate range.
  • the hydrogen generator of the present invention is an evaporation section having a configuration in which the water in a fluid containing a raw material gas that is a hydrogen raw material and water is evaporated to change into water vapor. And a reformer that is connected to the downstream side of the evaporation section and that advances a reforming reaction between the source gas and the steam of the fluid containing the source gas and the steam supplied from the evaporation section.
  • a reforming reaction section including a reaction catalyst, a shift reaction section provided downstream of the reforming reaction section, including a shift reaction catalyst that promotes a shift reaction between carbon monoxide and water, and carbon monoxide;
  • a carbon monoxide reduction part having at least one of selective oxidation reaction parts for causing a selective oxidation reaction with oxygen, and is disposed between the reforming reaction part and the carbon monoxide reduction part,
  • the gas that has passed through the reforming reaction section A gas introduction section that leads to the carbon monoxide reduction section, and the evaporation section and the carbon monoxide reduction section are arranged adjacent to each other so that heat exchange is possible at least in a part of each.
  • the heat exchange amount of the portion corresponding to the carbon monoxide reduction portion of the evaporation portion is configured to be smaller than the heat exchange amount of the portion not corresponding to the carbon monoxide reduction portion.
  • the fuel cell power generation system of the present invention includes the hydrogen generator and a fuel cell. With such a configuration, a fuel cell power generation system having excellent reliability can be provided.
  • a highly reliable hydrogen generator and fuel cell power generation system that generates hydrogen more stably and more reliably reduces carbon monoxide generation. Can be provided.
  • FIG. 1 is a conceptual diagram showing an example of a schematic configuration of the hydrogen generator of the first embodiment.
  • FIG. 2 is a schematic diagram illustrating an example of a schematic configuration of the hydrogen generator of the second embodiment.
  • FIG. 3 is a schematic diagram illustrating an example of a schematic configuration of a hydrogen generator in a first modification of the second embodiment.
  • FIG. 4 is a schematic diagram illustrating an example of a schematic configuration of a hydrogen generator in a second modification of the second embodiment.
  • FIG. 5 is a cross-sectional view illustrating an example of a schematic configuration of a water flow path in a hydrogen generator of a modification of the second embodiment, in which FIG. 5A is a third modification, and FIG. 5B is a fourth. A modification is shown.
  • FIG. 6 is a schematic diagram illustrating an example of a schematic configuration of the fuel cell power generation system of the third embodiment.
  • FIG. 7 is a characteristic diagram showing the catalytic characteristics of a general shift catalyst with respect to the catalyst temperature.
  • a hydrogen generator is connected to an evaporation section having a configuration for evaporating water of a fluid containing a raw material gas serving as a hydrogen source and water to change to water vapor, and to a downstream side of the evaporation section.
  • a reforming reaction section including a reforming reaction catalyst for proceeding a reforming reaction between the source gas and the steam of the fluid containing the source gas and the steam supplied from the evaporation section, and downstream of the reforming reaction section.
  • At least one of a shift reaction unit including a shift reaction catalyst that advances a shift reaction of carbon monoxide and water, and a selective oxidation reaction unit that advances a selective oxidation reaction of carbon monoxide and oxygen.
  • a carbon monoxide reduction section having a gas, a gas introduction section that is disposed between the reforming reaction section and the carbon monoxide reduction section, and that guides the gas that has passed through the reforming reaction section to the carbon monoxide reduction section,
  • the evaporation section and the carbon monoxide reduction section At least a part of each of them is placed adjacent to each other so that heat exchange is possible, and the amount of heat exchange corresponding to the carbon monoxide reduction part in the evaporation part corresponds to the carbon monoxide reduction part. It is comprised so that it may become less than the heat exchange amount of the part which does not.
  • the hydrogen generator of the second invention in particular, in the hydrogen generator of the first invention, a first cylinder having a first bottom surface at one end, a second cylinder formed outside the first cylinder, A raw material supply that supplies a raw material gas to a first space that is a space between a third tube that is formed outside the second tube and has a third bottom surface, and a side wall of the first tube and a side wall of the second tube A water supply section that supplies water to the first space, a burner that is formed in the first cylinder and that is supplied with combustion gas and combustion air and burns, and is formed inside the first cylinder, A combustion exhaust gas flow path through which the combustion exhaust gas flows, and the evaporation section is formed in the first space and is configured to absorb water from the combustion exhaust gas to turn water into steam,
  • the carbon monoxide reduction unit is disposed in the first space downstream of the evaporation unit, and the carbon monoxide reduction unit is a second between the side wall of the second cylinder and the side wall of the third cylinder.
  • the gas introduction unit is arranged between the first bottom surface and the third bottom surface so as to supply the reformed gas to the second space from the first space.
  • the part corresponding to the reduction part is a first evaporation part formed between the carbon monoxide reduction part and the first cylinder, and the heat exchange amount is between the evaporation part and the water supplied from the water supply part. The amount of heat exchange.
  • the hydrogen generator of the third invention is the hydrogen generator of the second invention, particularly in the hydrogen generator of the second invention, wherein the evaporation section has a water channel formed by being partitioned by the channel member, and the channel members adjacent to each other The distance is larger in the first evaporator than in the portion other than the first evaporator.
  • the hydrogen generator of the fourth invention is the hydrogen generator of the second invention, particularly in the hydrogen generator of the second invention, wherein the evaporation section has a water channel formed by partitioning with a channel member, and the channel cross-sectional area of the water channel Is larger in the first evaporator than in the parts other than the first evaporator.
  • the hydrogen generator of the fifth invention is the hydrogen generator of any one of the second to fourth inventions, wherein the evaporator is a first evaporator and a second evaporator formed upstream from the first evaporator. And a third evaporator formed downstream from the first evaporator, and the heat exchange amount is configured to decrease in the order of the second evaporator, the third evaporator, and the first evaporator. ing.
  • the hydrogen generator of the sixth aspect of the present invention is the hydrogen generator of the fifth aspect of the present invention, wherein the evaporation section has a water flow path formed by being partitioned by the flow path member, and the flow path members adjacent to each other. The distance is larger in the order of the second evaporator, the third evaporator, and the first evaporator.
  • the carbon monoxide reduction portion is formed on the downstream side with the shift catalyst layer formed on the upstream side.
  • a selective oxidation catalyst layer, and a first evaporation section is formed between the selective oxidation catalyst layer and the first cylinder, and between the shift catalyst layer and the first cylinder.
  • a sixth evaporator, and a fifth evaporator formed between the upstream evaporator and the downstream evaporator, and the amount of heat exchange is higher than that of the fifth evaporator.
  • the part and the sixth evaporation part are configured to be smaller.
  • the hydrogen generator of the eighth invention is the hydrogen generator of the seventh invention, particularly in the hydrogen generator of the seventh invention, wherein the evaporation section has a water channel formed by partitioning with a channel member, and between the channel members adjacent to each other. Is greater in the fourth and sixth evaporators than in the fifth evaporator.
  • the hydrogen generator of the ninth aspect of the invention is the hydrogen generator of the seventh or eighth aspect of the invention, in which the evaporating part is a first evaporating part and a second evaporating part formed upstream from the first evaporating part. And a third evaporator formed downstream from the first evaporator, and the heat exchange amounts are the second evaporator, the third evaporator, the fifth evaporator, the fourth evaporator, and the sixth evaporator. It is comprised so that it may become small in order of an evaporation part.
  • a hydrogen generation device is the hydrogen generation device according to any one of the second to seventh aspects of the invention, in which the evaporation section has a water flow path formed by partitioning with a flow path member. A flow path member is not disposed in the evaporation section.
  • the hydrogen generator of the eleventh aspect of the invention is particularly the hydrogen generator of any of the third, fourth, sixth, eighth, and tenth aspects of the invention, wherein the flow path member is sandwiched between the first cylinder and the second cylinder, and It is a rod-shaped member configured in a spiral shape.
  • the hydrogen generator of the twelfth aspect of the invention is particularly the hydrogen generator of any of the third, fourth, sixth, eighth, tenth and eleventh aspects of the invention, wherein the flow path member is made of metal and has a circular cross section. .
  • a fuel cell power generation system includes the hydrogen generator according to any one of the first to twelfth aspects and a fuel cell.
  • FIG. 1 is a conceptual diagram showing an example of a schematic configuration of the hydrogen generator of the first embodiment.
  • the hydrogen generator 200 is provided with an evaporation unit 7, a reforming reaction unit 9 ⁇ / b> A connected to the downstream side of the evaporation unit 7, and a downstream of the reforming reaction unit 9 ⁇ / b> A.
  • the carbon monoxide reduction unit 20 and the gas introduction unit 21 disposed between the reforming reaction unit 9A and the carbon monoxide reduction unit 20 are provided.
  • the evaporation unit 7 and the carbon monoxide reduction unit 20 The heat exchange amount of the portion 7A corresponding to the carbon monoxide reduction portion of the evaporation portion 7 is arranged so as to allow heat exchange in at least a part of each, and the carbon monoxide reduction portion It is comprised so that it may become smaller than the heat exchange amount of the part 7B which does not respond
  • the evaporating unit 7 evaporates water in a fluid containing a raw material gas that is a raw material of hydrogen and water and changes the water into water vapor.
  • the reforming reaction unit 9A includes a reforming reaction catalyst that advances the reforming reaction between the source gas and the steam in the fluid containing the source gas and the steam supplied from the evaporation unit 7.
  • a hydrogen-containing gas is generated by the reforming reaction.
  • This hydrogen-containing gas contains carbon monoxide.
  • the carbon monoxide reduction unit 20 includes a shift reaction unit including a shift reaction catalyst that advances a shift reaction between carbon monoxide and water, and a selective oxidation reaction unit that advances a selective oxidation reaction between carbon monoxide and oxygen. At least one of the following.
  • the carbon monoxide reducing unit 20 reduces the carbon monoxide concentration in the hydrogen-containing gas.
  • the modification reaction is an exothermic reaction represented by CO + H 2 O ⁇ CO 2 + H 2 .
  • the shift reaction catalyst for example, a CU—Zn-based catalyst, an Fe—Cr-based catalyst, or a Pt-based catalyst can be used. There is no need for one shift reaction section, and a plurality of shift reaction sections may be provided.
  • the selective oxidation reaction is an exothermic reaction represented by 2CO + O 2 ⁇ 2CO 2 .
  • a noble metal catalyst such as Pt or Ru can be used.
  • the number of selective oxidation reaction parts is not necessarily one, and a plurality of selective oxidation reaction parts may be provided.
  • the gas introduction unit 21 guides the gas that has passed through the reforming reaction unit to the carbon monoxide reduction unit.
  • the evaporation unit 7 and the carbon monoxide reduction unit 20 are separated by a partition wall 22.
  • the evaporating unit 7 evaporates water using heat supplied from the surroundings.
  • the heat is supplied, for example, through a partition wall 23 by a burner located above the hydrogen generator 200 and from the carbon monoxide reduction unit 20 through a partition wall 22.
  • the carbon monoxide reduction unit 20 is heated by the gas discharged from the reforming reaction unit 9A.
  • the gas is heated via the partition wall 23 by a burner located above the hydrogen generator 200, for example. In this case, the burner heats the evaporation unit 7 directly via the partition wall 23, and indirectly heats the evaporation unit 7 via the carbon monoxide reduction unit 20 and the partition wall 22 using the gas as a heat medium. That's right.
  • the portion 7A corresponding to the carbon monoxide reduction portion is adjacent to the carbon monoxide reduction portion 20 via the partition wall 22, and the portion 7A corresponding to the carbon monoxide reduction portion and the carbon monoxide reduction portion 20 can exchange heat. It is configured.
  • the amount of heat exchange in the portion 7A corresponding to the carbon monoxide reducing portion is smaller than the amount of heat exchange in the portion 7B not corresponding to the carbon monoxide reducing portion” is compared with the conventional configuration.
  • the carbon monoxide reduction unit 20 is difficult to be cooled by the evaporation unit 7.
  • the amount by which water that passes through the portion 7B that does not correspond to the carbon monoxide reduction unit of the evaporation unit 7 is heated is the amount by which the water that passes through the portion 7A that corresponds to the carbon monoxide reduction unit of the evaporation unit 7 is heated.
  • the aspect which is larger than it is mentioned. More specifically, for example, the flow rate of water in the horizontal direction in FIG.
  • the partition wall 22 of the portion 7A corresponding to the carbon monoxide reducing portion is thicker than the portion 7B not corresponding to the carbon monoxide reducing portion, and the channel from the downstream side of the reforming reaction portion 9A is changed to the carbon monoxide reducing portion. Examples include a configuration in which the amount of heat transported to the non-corresponding portion 7B through the partition wall 22 is smaller in the portion 7A corresponding to the carbon monoxide reducing portion than in the portion 7B not corresponding to the carbon monoxide reducing portion.
  • FIG. 2 is a schematic diagram illustrating an example of a schematic configuration of the hydrogen generator of the second embodiment.
  • the vertical direction (vertical direction) is the x axis
  • the horizontal direction is the y axis
  • the direction perpendicular to the paper surface is the z axis.
  • the main axis of the cylinder 100 is parallel to the x axis.
  • the “outside” refers to an outside centered on the main axis of the cylinder 100.
  • the “lower part” refers to the lower side in the vertical direction.
  • “Upper part” means the upper side in the vertical direction.
  • the hydrogen generator 300 of the second embodiment includes an evaporation unit 7 having a configuration in which water in a fluid containing a raw material gas that is a raw material of hydrogen and water is evaporated to change into water vapor.
  • the reforming unit is connected to the downstream side of the evaporation unit 7 and includes a reforming reaction catalyst that promotes a reforming reaction between the source gas and the steam of the fluid containing the source gas and the steam supplied from the evaporation unit 7.
  • Catalyst catalyst layer 9 (reforming reaction section) and a conversion catalyst layer 10 (transformation reaction section) that is provided downstream of the reforming catalyst layer 9 and includes a shift reaction catalyst that advances a shift reaction between carbon monoxide and water.
  • a carbon monoxide reduction unit 20 having at least one of a selective oxidation catalyst layer 11 (selective oxidation reaction unit) that promotes a selective oxidation reaction between carbon monoxide and oxygen, and a reforming catalyst layer 9 It is arranged between the carbon monoxide reduction unit 20 and the reforming catalyst.
  • a gas introduction unit 21 that guides the gas that has passed through the layer 9 to the carbon monoxide reduction unit 20, and the evaporation unit 7 and the carbon monoxide reduction unit 20 can exchange heat at least in part.
  • the heat exchange amount of the portion corresponding to the carbon monoxide reduction unit 20 in the evaporation unit 7 is less than the heat exchange amount of the portion not corresponding to the carbon monoxide reduction unit 20. It is comprised so that it may become.
  • the hydrogen generator 300 of the second embodiment includes a cylinder 100 (first cylinder) having a first bottom surface 50 at one end, a cylinder 101 (second cylinder) formed outside the cylinder 100, and a cylinder.
  • a raw material gas is supplied to a first space which is a space between a casing 102 (third cylinder) formed on the outer side of 101 and having a third bottom surface 51, and a side wall of the cylinder 100 and a side wall of the cylinder 101.
  • a raw material gas supply unit 5 (raw material supply unit), a water supply unit 6 for supplying water to the first space, a burner 4 formed in the cylinder 100 and supplied with combustion gas and combustion air for combustion, And a flue gas passage 16 formed inside the cylinder 100 and through which the flue gas of the burner 4 flows.
  • the evaporation unit 7 is formed in the first space and is configured to convert water into water vapor by absorbing the heat of the combustion exhaust gas.
  • the reforming catalyst layer 9 (reforming reaction section) is disposed in the first space downstream from the evaporation section 7.
  • the carbon monoxide reduction unit 20 (the shift catalyst layer 10 and the selective oxidation catalyst layer 11) is disposed in the second space between the side wall of the cylinder 101 and the side wall of the housing 102.
  • the gas introduction unit 103 is configured to return from the first space between the first bottom surface 50 and the third bottom surface 51 to supply the reformed gas to the second space.
  • the portion corresponding to the carbon monoxide reduction unit 20 in the evaporation unit 7 is a first evaporation unit 7 ⁇ / b> A ′ formed between the carbon monoxide reduction unit 20 and the cylinder 100.
  • the heat exchange amount is a heat exchange amount between the evaporation unit and the water supplied from the water supply unit.
  • the cylinder 100, the cylinder 101, and the casing 102 are all concentric circular in cross section cut in parallel to the YZ plane, but the cross section may be another shape such as an ellipse, a rectangle, or a polygon.
  • the first bottom surface 50 completely seals one end (lower end) of the cylinder 100, and the gas inside the cylinder 100 does not leak through the gap between the first bottom surface 50 and the cylinder 100.
  • the third bottom surface 51 completely seals one end (lower end) of the housing 102, and the gas inside the housing 102 does not leak through the gap between the third bottom surface 51 and the housing 102. .
  • the first bottom surface 50 and the third bottom surface 51 form a parallel plane. In the cylinder 101, one end (lower end) facing the third bottom surface 51 is open.
  • the hydrogen generator 300 mixes the fuel gas supplied from the fuel gas supply unit 1 and the air supplied from the air fan 3 and sent through the air flow path 2 to form a flame. It has a burner 4. The flue gas generated in the burner 4 flows through the flue gas passage 16 inside the cylinder 100 and is exhausted from the exhaust port 13 to the outside of the apparatus.
  • an evaporation section 7 that uses water supplied from the water supply section 6 as water vapor.
  • the evaporation section 7 forms a space (water flow path) between the round bars by sandwiching a metal round bar 8 (flow path member), which is a partition made of a spiral rod-shaped member, between the cylinder 100 and the cylinder 101. Water is distributed along the round bar 8 in the space.
  • the source gas from the source gas supply unit 5 is also supplied to the evaporation unit 7. Therefore, the space of the evaporating unit 7 is partitioned by a spiral round bar 8 and formed as a spiral channel that goes from top to bottom while circling along the outer periphery of the cylinder 100. That is, the evaporation section 7 has a metal round bar 8 of a flow path member that forms a flow path through which the source gas and water flow outside the combustion exhaust gas flow path 16.
  • the round bar 8 is preferably made of metal and has a circular cross section.
  • the interval between the spiral pitches of the round bars 8 is such that the upstream part (second evaporation part 7B ′) and the downstream part (third evaporation part 7C ′) of the evaporation part 7 It is configured to be smaller than the midstream portion corresponding to the carbon monoxide reduction portion 20 (location other than the upstream portion and the downstream portion: the first evaporation portion 7A ′). That is, one round bar or a plurality of round bars so that the upstream part and the downstream part of the evaporation part 7 have a dense spiral pitch of the round bar 8 and the middle part other than the upstream part and the downstream part is sparse. Are arranged continuously.
  • the mixed gas of the raw material and water vapor sent from the evaporation unit 7 is supplied to the reforming catalyst layer 9 located outside the combustion exhaust gas channel 16 and below the evaporation unit 7.
  • upstream, middle stream, and downstream mean upstream, middle stream, and downstream along the gas flow.
  • the cross-sectional area of the water channel (the area of the portion surrounded by the adjacent round bar 8, cylinder 100, and cylinder 101 in FIG. 2) is first from the second evaporator 7B ′ and the third evaporator 7C ′.
  • the evaporator 7A ′ is configured to be larger.
  • the heat exchange amount is configured to decrease in the order of the second evaporator 7B ', the third evaporator 7C', and the first evaporator 7A '.
  • the adjustment of the heat exchange amount can be realized by using, for example, a helical pitch (the heat exchange amount decreases as the value increases), a cross-sectional area of the water flow path (a heat exchange amount decreases as the value increases).
  • the distance between the channel members adjacent to each other increases in the order of the second evaporator 7B ', the third evaporator 7C', and the first evaporator 7A '.
  • the second evaporator 7B ′ and the third evaporator 7C ′ do not overlap with the carbon monoxide reducing unit 20 in the YZ plane direction, but the second evaporator 7B ′ and the third evaporator A configuration in which a part of 7C ′ overlaps with the carbon monoxide reduction unit 20 may be employed.
  • the raw material supplied from the raw material gas supply unit 5 and the water supplied from the water supply unit 6 flow vertically downward between the cylinder 100 and the cylinder 101.
  • the gas discharged from the reforming catalyst layer 9 collides with the third bottom surface 51 through the opening at the lower end of the cylinder 101, flows outward from the main axis of the cylinder 101, and moves vertically between the cylinder 101 and the casing 102. It flows upward.
  • the raw material gas from the raw material gas supply unit 5 is not supplied to the evaporation unit 7 as described above and flows in the evaporation unit 7 together with water to form a mixed gas.
  • a configuration may be employed in which gas is supplied and supplied to the reforming catalyst layer 9 as a mixed gas.
  • the entire device may be covered with the heat insulating material 17.
  • the reformed gas sent from the reforming catalyst layer 9 is supplied to the shift catalyst layer 10 disposed outside the evaporation section 7. Further, the shift gas sent from the shift catalyst layer 10 is mixed with the air from the selective oxidation air supply unit 14 and then supplied to the selective oxidation catalyst layer 11 located outside the evaporation unit 7 and above the shift catalyst layer 10. Is done.
  • the product gas that has exited the selective oxidation catalyst layer 11 is sent from the product gas outlet 12 as a product gas having a carbon monoxide concentration of 10 ppm or less and a high hydrogen concentration from the hydrogen generator 300.
  • the shift catalyst layer 10 is supplied with the reformed gas, and reduces carbon monoxide in the reformed gas by the shift reaction of the shift catalyst.
  • the selective oxidation catalyst layer 11 receives the shift gas from the shift catalyst layer 10 and further receives the supply of air as an oxidizing agent, and reduces the carbon monoxide in the shift gas by the selective oxidation catalyst.
  • the shift catalyst layer 10 and the selective oxidation catalyst layer 11 are referred to as a carbon monoxide reduction unit 20, but the carbon monoxide reduction unit 20 has only one of the conversion catalyst layer 10 and the selective oxidation catalyst layer 11. You may do it.
  • the fuel gas and air supplied to the burner 4, the raw material gas and water supplied to the evaporation unit 7, and the selectively oxidized air supplied to the shift gas from the shift catalyst layer 10 are the fuel gas supply unit 1, the air fan 3,
  • the source gas supply unit 5, the water supply unit 6 and the selective oxidation air supply unit 14 can be controlled by a signal from the control unit 15.
  • the fuel gas supply unit 1, the air fan 3, the raw material gas supply unit 5, the water supply unit 6, and the selective oxidation air supply unit 14 are each supplied with a combustible gas such as fuel gas, raw material gas, water, or off gas. Or air) is adjustable.
  • the configuration for adjusting the flow rate may be a supply pump (driving means) capable of changing the discharge flow rate of the supply, and the flow rate of the supply provided in the supply source and the downstream flow path.
  • a fluid control mechanism combined with an adjustment valve may be used.
  • the fuel gas and air are mixed, and a high voltage discharge is performed on the mixed gas (a configuration is not shown) to form a flame, thereby producing a high-temperature combustion exhaust gas and a combustion exhaust gas flow path. 16 is supplied.
  • the evaporation section 7 supplied with water and raw materials is mainly composed of combustion heat supplied directly or indirectly from the combustion exhaust gas in the combustion exhaust gas passage 16 flowing inside the evaporation section 7 and reaction heat supplied from the catalyst. Evaporation is performed, and at the same time, mixing with the raw material gas flowing in the same flow path of the evaporation unit 7 is performed, and the mixed gas is supplied to the reforming catalyst layer 9.
  • the reforming catalyst layer 9 is heated to a high temperature (generally 600 to 700 ° C.) by a high-temperature combustion exhaust gas flowing inside, and is supplied with a mixed gas of a raw material gas and steam so A reformed gas containing carbon oxide, carbon dioxide, etc. is generated.
  • the shift catalyst layer 10 is maintained at an optimum temperature (150 to 300 ° C.) for the shift reaction by heat exchange with the evaporation section 7 adjacent to the inside through the side wall of the cylinder 101, and high concentration of monoxide in the reformed gas. By changing carbon (10-15%) to carbon dioxide, the concentration of carbon monoxide is reduced (around 0.5%).
  • the selective oxidation catalyst layer 11 is also maintained at an optimum temperature (around 150 ° C.) for the selective oxidation reaction by heat exchange with the evaporation unit 7 adjacent to the inside through the side wall of the cylinder 101, and the selective oxidation air supply unit 14 is supplied to the shift gas. By mixing the air from, carbon monoxide in the shift gas is brought to an extremely low concentration of 10 ppm or less by a selective oxidation reaction.
  • the control unit 15 when the operation load (the amount of hydrogen to be generated) of the hydrogen generator 300 changes, the supply condition is changed by the control unit 15 in order to cope with the operation load. For example, when a command is received to change from a condition (TDR50) that generates 50% of the rated condition (50% output) to a condition (TDR100) that generates the rated condition (100% output), the control unit The source gas supply unit 5, the water supply unit 6, and the selective oxidation air supply unit 14 are controlled by a signal from 15 to increase the source gas amount, the water supply amount, and the selective oxidation air amount.
  • the evaporation unit 7 increases the amount of water necessary for the TDR 100 from the condition where the water necessary for the TDR 50 is supplied.
  • the amount of water required for TDR 100 (for example, 10 g / min) is about twice the amount of water required for TDR 50 (for example, 5 g / min), and thus the evaporation completion point in the evaporation unit 7 moves downstream.
  • water at room temperature (about 20 ° C.) supplied from the water supply unit 6 enters the evaporation unit 7 and then flows through the combustion exhaust gas flow channel 16 and heat of the selective oxidation catalyst layer 11 and further changes.
  • the temperature of the catalyst layer 10 is increased by receiving heat, and the evaporation is completely completed at the midstream portion of the sixth evaporation section 7F ′ corresponding to the shift catalyst layer 10 to become steam at 100 ° C. or higher.
  • the evaporation of water is not completed in the midstream portion of the sixth evaporation section 7F ′ corresponding to the shift catalyst layer 10 and is in a gas-liquid two-layer state at 100 ° C. It further flows downstream and receives heat from the shift catalyst layer and the combustion exhaust gas, whereby evaporation is completed at the downstream portion of the sixth evaporator 7F ′ and further downstream thereof.
  • the reforming catalyst layer 9 In the upstream portion, the temperature is 400 ° C. From this state, the temperature becomes TDR100, and the temperature of the catalyst is locally lowered from 400 ° C. to 100 ° C., or when the temperature of the surrounding catalyst is lowered due to the local temperature drop, the temperature of the entire catalyst layer is lowered. If the reaction is not sufficiently performed, the amount of hydrogen produced decreases, or the amount of hydrogen produced becomes unstable. In addition, the reforming catalyst layer may locally heat shrink due to a local temperature decrease and may crack.
  • the higher the efficiency of the hydrogen generator the higher the value as equipment because hydrogen can be generated with less energy.
  • One of the heat losses is a heat loss due to heat generated from the generated gas or combustion exhaust gas sent from the hydrogen generator.
  • the hydrogen generating device itself becomes large, so that not only the heat radiation from the surface of the device increases but the efficiency may decrease, and the size also increases. As a result, the amount of material used at the time of manufacture increases, leading to an increase in cost and the value as equipment.
  • the pitch of the spiral round bar 8 at the part and the downstream part is made smaller than that of the part other than the upstream part and the downstream part of the evaporation part 7. By making it small, the movement time of the water flowing through the spiral round bar 8 in the upstream part and the downstream part of the evaporation part 7 is gained.
  • the movement time (stay time) of the water that passes through the upstream part and the downstream part of the evaporation part 7 is increased by increasing the length of the spiral flow path in the upstream part and the downstream part of the evaporation part 7.
  • the part (the flow path in the downstream of the carbon monoxide reduction part 20, or the combustion exhaust gas flow path 16) corresponding to (adjacent to) the upstream part inside and outside the evaporation part 7 The amount of heat exchange increases.
  • the amount of heat exchange with the parts corresponding to the downstream part inside and outside of the evaporation part 7 (the flow path upstream of the carbon monoxide reduction part 20 and the combustion exhaust gas flow path 16). Will increase.
  • By increasing these heat exchange amounts it is possible to recover the heat of the generated gas and combustion exhaust gas discharged from the hydrogen generator 300 and discharge it after the temperature of the gas is lowered.
  • the supply of droplets to the reforming catalyst layer 9 is prevented by completely evaporating water in the evaporation unit 7.
  • the evaporation unit 7 exchanges heat with many portions of the catalyst layer of the carbon monoxide reduction unit 20 adjacent to the outside through the side wall of the cylinder 101, but the carbon monoxide reduction unit 20.
  • the pitch of the spiral round bars 8 of the evaporation unit 7 is increased so that the temperature gradient is not applied to the catalyst layer as much as possible.
  • the time (stay time) of the water which passes the middle stream part of the evaporation part 7 becomes short, the amount of heat exchange with the shift catalyst layer 10 and the selective oxidation catalyst layer 11 which is a carbon monoxide reduction part becomes small, The amount of heat deprived from the gas during the flow of the gas through the catalyst layer is reduced to suppress a temperature drop, and the entire catalyst layer is made as uniform as possible so that good catalyst characteristics can be obtained.
  • the temperature state of the catalyst is uniformly stabilized, and the amount of heat that can be used in the hydrogen generator 300 increases, thereby improving the efficiency of the apparatus and stabilizing the performance. Can do.
  • the positional relationship between the upstream portion and the downstream portion where the pitch of the spiral round bar 8 of the evaporation portion 7 is small and the carbon monoxide reduction portion disposed outside the evaporation portion 7 is determined by the selective oxidation catalyst layer 11 (monoxide).
  • the shift catalyst layer 10 is disposed adjacent to the midstream portion between the upstream portion and the downstream portion of the evaporation portion 7. In this case, heat exchange can be performed without affecting the temperature of the catalyst layer most.
  • the temperature of the product gas (gas flowing downstream of the reforming catalyst layer 9) and the combustion exhaust gas is lower than the dew point of water vapor contained in the gas. May be.
  • water vapor in the generated gas or the combustion exhaust gas is condensed in the flow path.
  • the condensed water flows down and reaches the high temperature portion in the flow path, and re-evaporates.
  • heat is taken away from the surroundings, and the temperature state in the hydrogen generator 300 is disturbed, which may disturb the performance of the apparatus. Therefore, it is preferable to adopt a heat exchange configuration (pitch of the spiral-shaped round bar 8) that exchanges as much heat as possible within a range where condensation does not occur.
  • the heat exchange amount as used in this embodiment means the heat exchange amount per unit area. More specifically, the side wall between the cylinder 101 and water (water flowing between the cylinder 101 and the cylinder 100 along the flow path formed by the round bar 8) through the surface of the side wall of the cylinder 101. It can be considered that the amount of heat exchange per unit area.
  • FIG. 3 is a schematic diagram illustrating an example of a schematic configuration of a hydrogen generator in a first modification of the second embodiment.
  • the hydrogen generator 300A of the present modification has the same configuration as that described above for the second embodiment except for the configuration of the evaporation unit, and therefore, common elements are denoted by the same reference numerals and names. Omitted.
  • the carbon monoxide reduction unit 20 includes a shift catalyst layer 10 formed on the upstream side and a selective oxidation catalyst layer 11 formed on the downstream side.
  • the first evaporator 7A ′ includes a fourth evaporator 7D ′ formed between the selective oxidation catalyst layer 11 and the cylinder 100, and a sixth evaporator 7F formed between the shift catalyst layer 10 and the cylinder 100.
  • a fifth evaporator 7E ′ formed between the fourth evaporator 7D ′ and the sixth evaporator 7F ′, and the heat exchange amount is higher than that of the fifth evaporator 7E ′.
  • the fourth evaporator 7D ′ and the sixth evaporator 7F ′ are configured to be smaller.
  • the distance between the flow path members adjacent to each other is larger in the fourth evaporator 7D ′ and the sixth evaporator 7F ′ than in the fifth evaporator 7E ′. Is preferred.
  • the heat exchange amount decreases in the order of the second evaporator 7B ′, the third evaporator 7C ′, the fifth evaporator 7E ′, the fourth evaporator 7D ′, and the sixth evaporator 7F ′. It is preferable to be configured as described above.
  • the adjustment of the heat exchange amount can be realized by using, for example, a spiral pitch (when the value is increased, the heat exchange amount is decreased), a cross-sectional area of the water channel (when the value is increased, the heat exchange amount is decreased), and the like.
  • FIG. 4 is a schematic diagram illustrating an example of a schematic configuration of a hydrogen generator in a second modification of the second embodiment.
  • the hydrogen generator 300B of the present modification has the same configuration as that described above for the second embodiment except for the configuration of the evaporation unit, and therefore, common elements are denoted by the same reference numerals and names. Omitted.
  • the round bar 8 (flow path member) is not disposed in the first evaporator 7A '.
  • FIG. 5 is a cross-sectional view illustrating an example of a schematic configuration of a water flow path in a hydrogen generator of a modification of the second embodiment, in which FIG. 5A is a third modification, and FIG. 5B is a fourth. A modification is shown.
  • the flow path member 8A is configured by the side wall of the cylinder 100 projecting in a spiral ridge shape toward the cylinder 101 side.
  • the flow path member 8B is configured by the side wall of the cylinder 101 projecting in a spiral ridge shape toward the cylinder 100 side.
  • the fuel cell power generation system of the third embodiment uses the hydrogen generator according to the first embodiment or the second embodiment and the modifications thereof, and the generated gas (hydrogen-containing gas) discharged from the hydrogen generator. And a fuel cell for generating electricity.
  • FIG. 6 is a schematic diagram showing an example of a schematic configuration of the fuel cell power generation system of the third embodiment.
  • a fuel cell power generation system 400 illustrated in FIG. 6 is obtained by adding a fuel cell 60 to the hydrogen generator 300 (FIG. 2) of the second embodiment, and the other configuration is the same as that of the hydrogen generator 300. Therefore, the same reference numerals and names are assigned to components common to FIGS. 2 and 6 and description thereof is omitted.
  • the fuel cell 60 generates power using the generated gas (hydrogen-containing gas) discharged from the hydrogen generator 300.
  • Examples of the fuel cell 60 include a polymer electrolyte fuel cell (PEFC) and a solid oxide fuel cell (SOFC).
  • the anode (fuel electrode) of the fuel cell is connected to the product gas outlet 12, and the hydrogen-containing gas discharged from the product gas outlet 12 is supplied to the anode of the fuel cell.
  • a highly reliable hydrogen generator and fuel cell power generation system that generates hydrogen more stably and more reliably reduces carbon monoxide generation. Can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

 蒸発部7と、蒸発部の下流側に接続された改質反応部9Aと、改質反応部の下流に設けられた一酸化炭素低減部20と、改質反応部と一酸化炭素低減部との間に配置されており、改質反応部を通過したガスを一酸化炭素低減部へ導くガス導入部21と、を備えており、蒸発部と一酸化炭素低減部とは、少なくともそれぞれの一部で熱交換が可能なように隣接して互いに配置されており、蒸発部のうち、一酸化炭素低減部に対応する部分の熱交換量が、一酸化炭素低減部に対応しない部分の熱交換量よりも少なくなるように構成されている、水素生成装置200。

Description

水素生成装置および燃料電池発電システム
 本発明は、水素生成装置および燃料電池発電システムに関するものである。
 近年、家庭用の燃料電池発電システムは、その普及拡大と事業確立に向けて研究開発がますます加速されている。
 その実現のための課題のひとつに、燃料電池発電システムやその構成要素の信頼性の更なる向上が求められている。例えば、その構成要素には水素生成装置があり、当該水素生成装置の信頼性の更なる向上も求められている。
 例えば、下記特許文献1に記載の水素生成装置には、流路圧損に大きな変動が生じず、水供給器からの安定した水供給を可能とすることで安定した水素生成を可能とすることを意図した構成が開示されている。(特許文献1の図1を参照)。
特開2006-063193号公報
 しかしながら、上記特許文献1をはじめとする従来技術であっても、更なる信頼性の向上(より安定した水素生成、一酸化炭素発生の一層の抑制)を確保するという観点からは、いまだ改善の余地があることを本発明者らは見出した。
 そこで、本発明は、より安定して水素を生成し、より確実に一酸化炭素発生を低減することのできる優れた信頼性を有する水素生成装置およびこれを備えた優れた信頼性を有する燃料電池発電システムを提供することを目的とする。
 上記従来技術の課題を鑑みて本発明者らが鋭意検討をした結果、本発明者らは、更なる信頼性の向上の観点から、上記特許文献1をはじめとする従来の水素生成装置には以下の課題があることを見出した。
 すなわち、従来の水素生成装置は、典型的には、上記特許文献1に代表されるように、いわゆる改質反応を進行させる領域(改質反応領域)の上流側に、当該改質反応の原料である水を蒸発させるための領域(水蒸発領域)が設けられている。また、改質反応領域の下流側には、いわゆる変成反応を進行させる領域(変成反応領域)と、いわゆる選択酸化反応を進行させる領域(選択酸化反応領域)が設けられている。
 図7は、一般的な変成触媒の触媒温度に対する触媒特性を示す特性図である。測定方法としては、一酸化炭素濃度が10%である改質触媒通過後を想定したガスを用い、変成触媒を通過した後のガス中の一酸化炭素濃度をガスクロマトグラフで測定した。図7からわかるように、温度が低くても高くても特性が悪くなる。触媒特性が最も高くなるようにするには、触媒全体における温度分布ができるだけ均一かつ好適な温度範囲に入る必要がある。図7の例では、触媒温度が160℃~250℃の範囲にあれば一酸化炭素濃度は0.5%以下となるが、触媒温度の範囲をさらに絞って、170℃~230℃と小さくすると、一酸化炭素濃度が0.3%以下となる。よって、より良好な触媒特性を得ることができ、触媒性能を安定化させることができる。
 選択酸化触媒も一般に、低温域では、酸化活性が低いため一酸化炭素を十分に除去することができず、高温域では、選択性の低下や逆シフト反応などの副反応の影響でやはり一酸化炭素を十分に除去できない。
 ここで、特許文献1の図1に示されているように、従来の水素生成装置は、例えば、水蒸発領域と、選択酸化反応領域とが熱交換できる構成とされている。このような構成とすると、水蒸発領域での水の蒸発により選択酸化反応領域の熱が奪われる。設計の範囲を超えて選択酸化反応領域から熱が奪われると、選択酸化反応領域の温度を、選択酸化反応を十分に進行させるのに適切な範囲を維持できなくなるおそれがある。
 特に、燃料電池発電システムに高い発電出力を要求された場合には、大量の水素を生成するために、大量の水が供給されるため、上述の選択酸化反応領域の温度範囲を維持できなくなる危険性が高くなる。
 また、変成反応領域と水蒸発領域とが熱交換できる構成とされている場合もあり、この場合にも選択酸化反応領域の場合と同様に、変成反応領域の温度を、適切な範囲に維持できなくなるおそれがある。
 蒸発部のうち、一酸化炭素低減部に対応する部分の熱交換量が、一酸化炭素低減部に対応しない部分の熱交換量よりも少なくなるように構成することで、蒸発部での水の蒸発により一酸化炭素低減部から奪われる熱が低減され、一酸化炭素低減部の温度を適切な範囲に維持しやすくなる。
 すなわち前記従来の課題を解決するために、本発明の水素生成装置は、水素の原料となる原料ガスと水とを含む流体のうちの前記水を蒸発させて水蒸気に変化させる構成を有する蒸発部と、前記蒸発部の下流側に接続されており、前記蒸発部から供給される前記原料ガスと前記水蒸気とを含む流体のうちの前記原料ガスと前記水蒸気との改質反応を進行させる改質反応触媒を含む改質反応部と、前記改質反応部の下流に設けられており、一酸化炭素と水との変成反応を進行させる変成反応触媒を含む変成反応部、及び、一酸化炭素と酸素との選択酸化反応を進行させる選択酸化反応部のうちの少なくとも一つを有する一酸化炭素低減部と、前記改質反応部と前記一酸化炭素低減部との間に配置されており、前記改質反応部を通過したガスを前記一酸化炭素低減部へ導くガス導入部と、を備えており、前記蒸発部と前記一酸化炭素低減部とは、少なくともそれぞれの一部で熱交換が可能なように隣接して互いに配置されており、前記蒸発部のうち、前記一酸化炭素低減部に対応する部分の熱交換量が、前記一酸化炭素低減部に対応しない部分の熱交換量よりも少なくなるように構成されている。
 かかる構成では、蒸発部での水の蒸発により一酸化炭素低減部から奪われる熱を低減することができる。よって、より安定して水素を生成し、より確実に一酸化炭素発生を低減する、優れた信頼性を有する水素生成装置を提供することができる。
 また本発明の燃料電池発電システムは、上記水素生成装置と、燃料電池とを備える。かかる構成では、優れた信頼性を有する燃料電池発電システムを提供することができる。
 本発明の水素生成装置および燃料電池発電システムによれば、より安定して水素を生成し、より確実に一酸化炭素発生を低減する、優れた信頼性を有する水素生成装置および燃料電池発電システムを提供することができる。
図1は、第1実施形態の水素生成装置の概略構成の一例を示す概念図である。 図2は、第2実施形態の水素生成装置の概略構成の一例を示す模式図である。 図3は、第2実施形態の第1変形例における水素生成装置の概略構成の一例を示す模式図である。 図4は、第2実施形態の第2変形例における水素生成装置の概略構成の一例を示す模式図である。 図5は、第2実施形態の変形例の水素生成装置における水流路の概略構成の一例を示す断面図であって、図5(a)は第3変形例、図5(b)は第4変形例を示す。 図6は、第3実施形態の燃料電池発電システムの概略構成の一例を示す模式図である。 図7は、一般的な変成触媒の触媒温度に対する触媒特性を示す特性図である。
 第1発明の水素生成装置は、水素の原料となる原料ガスと水とを含む流体のうちの水を蒸発させて水蒸気に変化させる構成を有する蒸発部と、蒸発部の下流側に接続されており、蒸発部から供給される原料ガスと水蒸気とを含む流体のうちの原料ガスと水蒸気との改質反応を進行させる改質反応触媒を含む改質反応部と、改質反応部の下流に設けられており、一酸化炭素と水との変成反応を進行させる変成反応触媒を含む変成反応部、及び、一酸化炭素と酸素との選択酸化反応を進行させる選択酸化反応部のうちの少なくとも一つを有する一酸化炭素低減部と、改質反応部と一酸化炭素低減部との間に配置されており、改質反応部を通過したガスを一酸化炭素低減部へ導くガス導入部と、を備えており、蒸発部と一酸化炭素低減部とは、少なくともそれぞれの一部で熱交換が可能なように隣接して互いに配置されており、蒸発部のうち、一酸化炭素低減部に対応する部分の熱交換量が、一酸化炭素低減部に対応しない部分の熱交換量よりも少なくなるように構成されている。
 かかる構成では、より安定して水素を生成し、より確実に一酸化炭素発生を低減する、優れた信頼性を有する水素生成装置を提供することができる。
 第2発明の水素生成装置は、特に、第1発明の水素生成装置において、第1底面を一端に有している第1筒と、第1筒の外側に形成されている第2筒と、第2筒の外側に形成され第3底面を有している第3筒と、第1筒の側壁と第2筒の側壁との間の空間である第1空間に原料ガスを供給する原料供給部と、第1空間に水を供給する水供給部と、第1筒内に形成され、燃焼ガス及び燃焼用空気が供給されて燃焼を行うバーナと、第1筒の内側に形成され、バーナの燃焼排ガスが流れる燃焼排ガス流路と、を備え、蒸発部は、第1空間に形成され、燃焼排ガスの熱を吸収することにより水を水蒸気にするように構成され、改質反応部は、蒸発部より下流の第1空間に配置され、一酸化炭素低減部は、第2筒の側壁と第3筒の側壁との間の第2空間に配置され、ガス導入部は、第1空間から第1底面と第3底面との間で折り返して改質ガスを第2空間に供給するように構成され、蒸発部のうち、一酸化炭素低減部に対応する部分が、一酸化炭素低減部と第1筒との間に形成されている第1蒸発部であり、熱交換量は、蒸発部と水供給部から供給された水との熱交換量である。
 第3発明の水素生成装置は、特に、第2発明の水素生成装置において、蒸発部が、流路部材に仕切られることにより形成される水流路を有しており、互いに隣接する流路部材の距離は、第1蒸発部以外の部分よりも第1蒸発部の方が大きい。
 第4発明の水素生成装置は、特に、第2発明の水素生成装置において、蒸発部が、流路部材に仕切られることにより形成される水流路を有しており、水流路の流路断面積は、第1蒸発部以外の部分よりも第1蒸発部の方が大きい。
 第5発明の水素生成装置は、特に、第2~4発明のいずれかの水素生成装置において、蒸発部が、第1蒸発部と、第1蒸発部より上流に形成されている第2蒸発部と、第1蒸発部より下流に形成されている第3蒸発部と、を有し、熱交換量が、第2蒸発部、第3蒸発部、第1蒸発部の順に小さくなるように構成されている。
 第6発明の水素生成装置は、特に、第5発明の水素生成装置において、蒸発部が、流路部材に仕切られることにより形成される水流路を有しており、互いに隣接する流路部材の距離は、第2蒸発部、第3蒸発部、第1蒸発部の順に大きい。
 第7発明の水素生成装置は、特に、第2~6発明のいずれかの水素生成装置において、一酸化炭素低減部が、上流側に形成されている変成触媒層と下流側に形成されている選択酸化触媒層とを有しており、第1蒸発部が、選択酸化触媒層および第1筒の間に形成されている第4蒸発部と、変成触媒層および第1筒の間に形成されている第6蒸発部と、上流蒸発部と下流蒸発部との間に形成されている第5蒸発部と、を有しており、熱交換量が、第5蒸発部よりも、第4蒸発部及び第6蒸発部の方が小さくなるように構成されている。
 第8発明の水素生成装置は、特に、第7発明の水素生成装置において、蒸発部が、流路部材に仕切られることにより形成される水流路を有しており、互いに隣接する流路部材間の距離は、第5蒸発部より第4蒸発部及び第6蒸発部の方が大きい。
 第9発明の水素生成装置は、特に、第7発明または第8発明の水素生成装置において、蒸発部が、第1蒸発部と、第1蒸発部より上流に形成されている第2蒸発部と、第1蒸発部より下流に形成されている第3蒸発部と、を有し、熱交換量が、第2蒸発部、第3蒸発部、第5蒸発部、第4蒸発部、及び第6蒸発部の順に小さくなるように構成されている。
 第10発明の水素生成装置は、特に、第2~7発明のいずれかの水素生成装置において、蒸発部が、流路部材に仕切られることにより形成される水流路を有しており、第1蒸発部には、流路部材が配置されていない。
 第11発明の水素生成装置は、特に、第3、4、6、8、10発明のいずれかの水素生成装置において、流路部材が、第1筒と第2筒とに挟まれ、かつ、螺旋形状に構成されている棒状部材である。
 第12発明の水素生成装置は、特に、第3、4、6、8、10、11発明のいずれかの水素生成装置において、流路部材が、金属で構成され、かつ、断面が円形である。
 第13発明の燃料電池発電システムは、第1~第12発明のいずれかの水素生成装置と、燃料電池とを備える。
 かかる構成では、より安定して水素を生成し、より確実に一酸化炭素発生を低減する、優れた信頼性を有する燃料電池発電システムを提供することができる。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。符号は実施形態と発明との対応関係を例示するために付されており、発明の構成が実施形態およびその図面に限定されるものではない。
 (第1実施形態)
 図1は、第1実施形態の水素生成装置の概略構成の一例を示す概念図である。
 図1に示すように、本実施形態の水素生成装置200は、蒸発部7と、蒸発部7の下流側に接続された改質反応部9Aと、改質反応部9Aの下流に設けられた一酸化炭素低減部20と、改質反応部9Aと一酸化炭素低減部20との間に配置されたガス導入部21と、を備えており、蒸発部7と一酸化炭素低減部20とは、少なくともそれぞれの一部で熱交換が可能なように隣接して互いに配置されており、蒸発部7のうち、一酸化炭素低減部に対応する部分7Aの熱交換量が、一酸化炭素低減部に対応しない部分7Bの熱交換量よりも少なくなるように構成されている。
 蒸発部7は、水素の原料となる原料ガスと水とを含む流体のうちの水を蒸発させて水蒸気に変化させる。
 改質反応部9Aは、蒸発部7から供給される原料ガスと水蒸気とを含む流体のうちの原料ガスと水蒸気との改質反応を進行させる改質反応触媒を含む。改質反応により、水素含有ガスが生成される。この水素含有ガスには、一酸化炭素が含まれる。改質反応のためには改質反応触媒を高温(例えば、摂氏600~700度)に保つ必要がある。この熱は、例えば、水素生成装置200の上方あるいは下方にあるバーナにより供給されうる。
 一酸化炭素低減部20は、一酸化炭素と水との変成反応を進行させる変成反応触媒を含む変成反応部、及び、一酸化炭素と酸素との選択酸化反応を進行させる選択酸化反応部のうちの少なくとも一つを有する。一酸化炭素低減部20により、水素含有ガス中の一酸化炭素濃度が低減される。
 変成反応は、CO+HO→CO+Hで表される発熱反応である。変成反応触媒は、例えば、CU-Zn系触媒やFe-Cr系触媒、またはPt系触媒などが利用可能である。変成反応部は1個である必要はなく、複数が設けられていてもよい。
 選択酸化反応は、2CO+O→2COで表される発熱反応である。選択酸化触媒は、PtやRu等の貴金属触媒が利用可能である。選択酸化反応部は1個である必要はなく、複数が設けられていてもよい。
 ガス導入部21は、改質反応部を通過したガスを一酸化炭素低減部へ導く。
 蒸発部7と一酸化炭素低減部20とは隔壁22によって仕切られている。蒸発部7は、周囲から供給される熱を利用して、水を蒸発させる。該熱は、例えば、水素生成装置200の上方にあるバーナにより隔壁23を介して、また、一酸化炭素低減部20より隔壁22を介して、供給される。一酸化炭素低減部20は、改質反応部9Aから排出されるガスにより加熱される。該ガスは、例えば、水素生成装置200の上方にあるバーナにより隔壁23を介して加熱される。この場合、バーナは、隔壁23を介して直接的に蒸発部7を加熱すると共に、上記ガスを熱媒体とし、一酸化炭素低減部20と隔壁22とを介して間接的に蒸発部7を加熱するといえる。
 一酸化炭素低減部に対応する部分7Aは、隔壁22を介して、一酸化炭素低減部20に隣接し、一酸化炭素低減部に対応する部分7Aと一酸化炭素低減部20とが熱交換可能に構成されている。
 本実施形態において、「一酸化炭素低減部に対応する部分7Aの熱交換量が、一酸化炭素低減部に対応しない部分7Bの熱交換量よりも少なくなる」とは、従来の構成と比較して、一酸化炭素低減部20が蒸発部7によって冷却されにくくなっていることをいう。例えば、蒸発部7の一酸化炭素低減部に対応しない部分7Bを通過する水が加熱される量が、蒸発部7の一酸化炭素低減部に対応する部分7Aを通過する水が加熱される量よりも大きくなっている態様が挙げられる。より具体的には、例えば、図1における水平方向の水の流速が、一酸化炭素低減部に対応する部分7Aの方が一酸化炭素低減部に対応しない部分7Bよりも速くなっている構成や、一酸化炭素低減部に対応する部分7Aの隔壁22が一酸化炭素低減部に対応しない部分7Bよりも厚くなっており、改質反応部9Aの下流側の流路から一酸化炭素低減部に対応しない部分7Bへの隔壁22を介した熱の輸送量が一酸化炭素低減部に対応しない部分7Bよりも一酸化炭素低減部に対応する部分7Aの方が少ない構成などが挙げられる。
 かかる構成では、例えば、水素生成装置200における水素生成量が変動し、これに伴って水の流量が変動しても、一酸化炭素低減部20の熱が水に奪われにくくなり、一酸化炭素低減部20の温度が安定化される。より安定して水素を生成し、より確実に一酸化炭素発生を低減する、優れた信頼性を有する水素生成装置を提供することができる。
 (第2実施形態)
 図2は、第2実施形態の水素生成装置の概略構成の一例を示す模式図である。図2において、上下方向(鉛直方向)をx軸、左右方向をy軸、紙面に垂直な方向をz軸とする。円筒100の主軸はx軸と平行である。以下、「外側」とは、円筒100の主軸を中心とした外側をいう。また、「下部」とは、鉛直方向に向かって下側をいう。「上部」とは、鉛直方向に向かって上側をいう。
 図2に示すように、第2実施形態の水素生成装置300は、水素の原料となる原料ガスと水とを含む流体のうちの水を蒸発させて水蒸気に変化させる構成を有する蒸発部7と、蒸発部7の下流側に接続されており、蒸発部7から供給される原料ガスと水蒸気とを含む流体のうちの原料ガスと水蒸気との改質反応を進行させる改質反応触媒を含む改質触媒層9(改質反応部)と、改質触媒層9の下流に設けられており、一酸化炭素と水との変成反応を進行させる変成反応触媒を含む変成触媒層10(変成反応部)、及び、一酸化炭素と酸素との選択酸化反応を進行させる選択酸化触媒層11(選択酸化反応部)のうちの少なくとも一つを有する一酸化炭素低減部20と、改質触媒層9と一酸化炭素低減部20との間に配置されており、改質触媒層9を通過したガスを一酸化炭素低減部20へ導くガス導入部21と、を備えており、蒸発部7と一酸化炭素低減部20とは、少なくともそれぞれの一部で熱交換が可能なように隣接して互いに配置されており、蒸発部7のうち、一酸化炭素低減部20に対応する部分の熱交換量が、一酸化炭素低減部20に対応しない部分の熱交換量よりも少なくなるように構成されている。
 第2実施形態の水素生成装置300は、第1底面50を一端に有している円筒100(第1筒)と、円筒100の外側に形成されている円筒101(第2筒)と、円筒101の外側に形成され第3底面51を有している筐体102(第3筒)と、円筒100の側壁と円筒101の側壁との間の空間である第1空間に原料ガスを供給する原料ガス供給部5(原料供給部)と、第1空間に水を供給する水供給部6と、円筒100内に形成され、燃焼ガス及び燃焼用空気が供給されて燃焼を行うバーナ4と、円筒100の内側に形成され、バーナ4の燃焼排ガスが流れる燃焼排ガス流路16と、を備えている。
 蒸発部7は、第1空間に形成され、燃焼排ガスの熱を吸収することにより水を水蒸気にするように構成されている。
 改質触媒層9(改質反応部)は、蒸発部7より下流の第1空間に配置されている。
 一酸化炭素低減部20(変成触媒層10および選択酸化触媒層11)は、円筒101の側壁と筐体102の側壁との間の第2空間に配置されている。
 ガス導入部103は、第1空間から第1底面50と第3底面51との間で折り返して改質ガスを第2空間に供給するように構成されている。
 蒸発部7のうち、一酸化炭素低減部20に対応する部分が、一酸化炭素低減部20と円筒100との間に形成されている第1蒸発部7A’である。熱交換量は、蒸発部と水供給部から供給された水との熱交換量である。
 円筒100と円筒101と筐体102とは、いずれもYZ平面に平行に切った断面は同心の円形であるが、該断面は楕円や矩形、多角形など他の形状であってもよい。第1底面50は円筒100の一端(下端)を完全に封止しており、円筒100の内部のガスが第1底面50と円筒100との間の隙間を通って漏れることはない。第3底面51は筐体102の一端(下端)を完全に封止しており、筐体102の内部のガスが第3底面51と筐体102との間の隙間を通って漏れることはない。第1底面50と第3底面51とは平行な平面をなす。円筒101において、第3底面51に対向する一端(下端)は開放されている。
 図2において、水素生成装置300は、燃料ガス供給部1より供給された燃料ガスと、空気ファン3から供給されて空気流路2を介して送られてきた空気とを混合して火炎を形成するバーナ4を有している。バーナ4で生じた燃焼排ガスは、円筒100の内側の燃焼排ガス流路16を流れ、排気口13より装置外に排気される。
 燃焼排ガス流路16の外側には、水供給部6からの供給された水を水蒸気とする蒸発部7が設けられている。蒸発部7は、螺旋形状の棒状部材からなる仕切り部である金属の丸棒8(流路部材)を円筒100と円筒101とで挟み込むことで丸棒間に空間(水流路)を形成し、その空間に丸棒8に沿って水を流通する構成となっている。また蒸発部7には原料ガス供給部5からの原料ガスも供給される。従って、蒸発部7の空間は螺旋形状の丸棒8で仕切られ、円筒100の外周に沿って周回しながら上から下に向う螺旋状流路として形成されている。つまり、蒸発部7は燃焼排ガス流路16の外側に原料ガスと水が流れる流路を形成する流路部材の金属の丸棒8を有している。丸棒8は、金属で構成され、かつ、断面が円形であるのが好ましい。
 ここで、丸棒8の螺旋ピッチの間隔(隣接する流路部材間の距離)は、蒸発部7の上流部(第2蒸発部7B’)と下流部(第3蒸発部7C’)が、一酸化炭素低減部20に対応する中流部(上流部と下流部以外の箇所:第1蒸発部7A’)に比べて小さくなるように構成している。つまり、蒸発部7の上流部と下流部は丸棒8の螺旋のピッチが密であり、上流部と下流部以外の中流部は疎となるように一本の丸棒、もしくは複数の丸棒を連続的に配置した構成としている。蒸発部7から送出される原料と水蒸気の混合ガスは、燃焼排ガス流路16の外側かつ蒸発部7の下部に位置する改質触媒層9に供給される。
 なお、上流、中流、下流とは、ガスの流れに沿った上流、中流、下流をいう。
 また、水流路の断面積(図2において、隣接する丸棒8と円筒100と円筒101とで囲まれた部分の面積)は、第2蒸発部7B’および第3蒸発部7C’より第1蒸発部7A’の方が大きくなるように構成されている。
 熱交換量は、第2蒸発部7B’、第3蒸発部7C’、第1蒸発部7A’の順に小さくなるように構成されているのが好ましい。熱交換量の調整は、例えば、螺旋ピッチ(大きくすれば熱交換量が下がる)や水流路の断面積(大きくすれば熱交換量が下がる)などを用いて実現されうる。
 互いに隣接する流路部材の距離(丸棒8の螺旋ピッチ)は、第2蒸発部7B’、第3蒸発部7C’、第1蒸発部7A’の順に大きくなっているのが好ましい。
 なお、図1ではYZ平面方向において、第2蒸発部7B’および第3蒸発部7C’が一酸化炭素低減部20と重ならない構成であったが、第2蒸発部7B’および第3蒸発部7C’の一部が一酸化炭素低減部20と重なる構成であってもよい。
 原料ガス供給部5から供給される原料と、水供給部6から供給される水とは、円筒100と円筒101との間を鉛直下向きに流れる。改質触媒層9から排出されたガスは、円筒101の下端の開口を通って第3底面51に衝突し、円筒101の主軸から外向きに流れて円筒101と筐体102との間を鉛直上向きに流れていく。
 なお、原料ガス供給部5からの原料ガスは、上記のように蒸発部7に供給して蒸発部7内を水と共に流して混合ガスとするのではなく、蒸発部7から送出した水蒸気に原料ガスを供給して混合ガスとして改質触媒層9に供給する構成などとしてもよい。
 また、バーナ4の燃焼熱や触媒での反応熱を機器内で有効に利用するため、機器全体は断熱材17で覆われていてもよい。
 改質触媒層9から送出される改質ガスは、蒸発部7の外側に配置した変成触媒層10に供給される。さらに変成触媒層10から送出される変成ガスは、蒸発部7の外側かつ変成触媒層10の上部に位置する選択酸化触媒層11に選択酸化空気供給部14からの空気と混合された後、供給される。選択酸化触媒層11を出た生成ガスは生成ガス出口12より水素生成装置300から一酸化炭素の濃度が10ppm以下であり、かつ水素濃度の高い生成ガスとして送出される。変成触媒層10は、改質ガスが供給され、変成触媒のシフト反応により改質ガス中の一酸化炭素を低減する。選択酸化触媒層11は、変成触媒層10からの変成ガスが流入し、さらに酸化剤である空気の供給を受けて、選択酸化触媒により変成ガス中の一酸化炭素を低減する。この変成触媒層10と選択酸化触媒層11とを有して一酸化炭素低減部20と称するが、一酸化炭素低減部20は変成触媒層10および選択酸化触媒層11のいずれか一方のみを有していてもよい。
 ここで、バーナ4に供給する燃料ガスや空気、蒸発部7に供給する原料ガスや水、変成触媒層10からの変成ガスに供給する選択酸化空気は、燃料ガス供給部1や空気ファン3、原料ガス供給部5、水供給部6や選択酸化空気供給部14において制御部15からの信号によりコントロールすることができるようになっている。
 なお、燃料ガス供給部1や空気ファン3、原料ガス供給部5、水供給部6や選択酸化空気供給部14は、各々の供給物(燃料ガス、原料ガス、水、オフガスなどの可燃性ガスや空気)の流量が調整可能に構成されている。流量調整のための構成としては、供給物の吐出流量を変更可能な供給ポンプ(駆動手段)であっても良く、また供給物の供給源と下流側の流路に設けられた供給物の流量調整用バルブとを組み合わせた流体制御機構であってもよい。
 次に、上記構成において水素生成装置300の各部動作を説明する。
 バーナ4では、燃料ガスと空気との混合が行われ、その混合ガスに高電圧の放電を行う(構成を図示せず)ことで火炎を形成し、高温の燃焼排ガスをつくり出して燃焼排ガス流路16に供給している。
 水と原料が供給された蒸発部7は、主として蒸発部7の内側を流れる燃焼排ガス流路16内の燃焼排ガスから直接または間接に供給される燃焼熱および触媒から供給される反応熱により水の蒸発が行われ、同時に蒸発部7の同じ流路内を流れる原料ガスとの混合が行われ、混合ガスとして改質触媒層9に供給される。改質触媒層9は内側を流れる高温の燃焼排ガスにより高温化(一般に600~700℃)されており、原料ガスと水蒸気との混合ガスが供給されることで、水蒸気改質反応により水素や一酸化炭素、二酸化炭素などを含んだ改質ガスを生成する。
 変成触媒層10は円筒101の側壁を介して内側に隣接する蒸発部7との熱交換によりシフト反応に最適な温度(150~300℃)に維持され、改質ガス中の高濃度の一酸化炭素(10~15%)を二酸化炭素に変えることで一酸化炭素の低濃度(0.5%前後)化を行っている。選択酸化触媒層11も円筒101の側壁を介して内側に隣接する蒸発部7との熱交換により選択酸化反応に最適な温度(150℃前後)に維持され、変成ガスに選択酸化空気供給部14からの空気を混合することで、選択酸化反応により、変成ガス中の一酸化炭素を10ppm以下の極低濃度とする。
 ここで、水素生成装置300の運転負荷(生成する水素量)が変わると、その運転負荷に対応するために制御部15で供給条件を変化させる。例えば、定格条件の5割(出力50%)の水素量を生成する条件(TDR50)から定格条件(出力100%)の水素量を生成する条件(TDR100)に変化させる指令がくると、制御部15からの信号により、原料ガス供給部5や水供給部6、選択酸化空気供給部14を制御し、原料ガス量や水供給量、選択酸化空気量を増加させる。
 この時、蒸発部7では、TDR50に必要な水が供給された条件からTDR100に必要な水量に増加する。一般的に、TDR100で必要な水量(例えば10g/min)はTDR50で必要な水量(例えば5g/min)の約2倍となるため、蒸発部7での蒸発完了ポイントが下流側に移動する。
 つまり、TDR50の時には、水供給部6から供給された室温(約20℃)の水は蒸発部7に入った後に燃焼排ガス流路16を流れる排ガスや選択酸化触媒層11の熱、さらには変成触媒層10の熱を受けて昇温し、変成触媒層10に対応する第6蒸発部7F’の中流部分では完全に蒸発が完了して100℃以上の水蒸気となる。
 しかし、水量が2倍のTDR100となると、変成触媒層10に対応する第6蒸発部7F’の中流部分では水の蒸発は完了しておらず100℃の気液二層状態となっており、さらに下流に流れていき、変成触媒層や燃焼排ガスから熱を受けることで第6蒸発部7F’の下流部分やさらにその下流側で蒸発が完了する。
 この時、蒸発部7の下流には改質触媒層9があるため、蒸発完了ポイントが下流側にずれ蒸発部7から出ると改質触媒層9内で蒸発が完了することになる。この時改質触媒層9には100℃の液状態の水が供給され、蒸発時には潜熱が必要であるため周囲の触媒から大きな熱を奪い触媒が100℃の温度となる可能性がある。特にTDR50時のように第6蒸発部7F’の中流部分に蒸発完了ポイントがあるときには、水が既に水蒸気になっており、その下流では水蒸気の温度が容易に上昇するため、改質触媒層9の上流部では400℃の高温状態となっている。この状態からTDR100となり触媒が400℃から100℃へと局所的に温度が低下したり、その局所的な温度低下により周囲の触媒温度が低下して触媒層全体の温度が下がると、触媒での反応が充分行われずに水素の生成量が少なくなったり、水素の生成量が安定しなくなったりする。また、局所的な温度低下により、改質触媒層が局所的に熱収縮してひび割れを起こす場合もある。
 また、水素生成装置の効率は高い方が少ないエネルギーで水素を生成することができるので、機器としての価値が高いものとなる。効率の高い水素生成装置とするためには、装置からの熱ロスをできるだけ少なくする必要がある。熱ロスのひとつには、水素生成装置から送出される生成ガスや燃焼排ガスが熱を持ち出すことによる熱ロスがある。
 図7を参照しつつ上述したように、触媒の熱交換量を少なくし、触媒温度の範囲を絞ることで、より良好な触媒特性を得ることができ、触媒性能を安定化させることができる。しかしながら、この熱交換量を抑えた水蒸発部構成で一酸化炭素低減部からの生成ガスや燃焼排ガスと熱交換を行うと、生成ガスや燃焼排ガスから熱交換量があまり得られず熱量の多いガス状態で水素生成装置から送出することになる。つまり、多くの熱量を装置外へ放出することになるため、水素生成装置は送出ガスによる熱ロスの多い、効率の悪い装置となってしまう。一方、熱交換量を多くするために熱交換部を長く設けると水素生成装置自体が大きくなるため、装置表面からの放熱が多くなり効率が低下する可能性が生じるだけでなく、サイズが大きくなることで製造時に使用する材料量が多くなりコストアップにつながり機器としての価値が低下してしまう。
 本実施形態では、このような性能の不安定化防止と効率向上実現に向けて蒸発部7の上流部と下流部の伝熱を促進するため、図2に示す例において、蒸発部7の上流部と下流部の螺旋形状の丸棒8のピッチを蒸発部7の上流部と下流部以外の箇所に比べて小さくしている。小さくすることで、蒸発部7の上流部と下流部における螺旋形状の丸棒8をつたって流れる水の移動時間をかせいでいる。
 つまり、蒸発部7の上流部と下流部における螺旋状流路が長くなることで、蒸発部7の上流部や下流部を通過する水の移動時間(滞在時間)が長くなる。そして、蒸発部7の上流部では、蒸発部7の内側および外側においてこの上流部に対応(隣接)する部位(一酸化炭素低減部20の下流側の流路や燃焼排ガス流路16)との熱交換量が多くなる。また、蒸発部7の下流部では、蒸発部7の内側および外側においてこの下流部に対応する部位(一酸化炭素低減部20の上流側の流路や燃焼排ガス流路16)との熱交換量が多くなる。これらの熱交換量が多くなることにより、水素生成装置300から排出される、生成ガスや燃焼排ガスの熱を回収して、該ガスの温度を低下させた後で排出することができる。同時に、蒸発部7内で水を完全に蒸発させることで改質触媒層9への液滴供給が防止される。
 蒸発部7の中流部では、蒸発部7が円筒101の側壁を介して外側に隣接する一酸化炭素低減部20の触媒層の多くの部分と熱交換が行われるが、一酸化炭素低減部20の触媒層に温度勾配をできるだけつけないように、蒸発部7の螺旋形状の丸棒8のピッチを大きくしている。大きくすることで蒸発部7の中流部を通過する水の時間(滞在時間)が短くなり、一酸化炭素低減部である変成触媒層10や選択酸化触媒層11との熱交換量が小さくなり、触媒層をガスが流れる間にガスから奪われる熱量を少なくして温度低下を抑え、触媒層全体をできるだけ均一な温度となるようにして良好な触媒特性が得られるようにしている。
 一般に、水は、丸棒8と円筒100と円筒101とで形成される水流路の全部に充填されているのではない。よって、丸棒8のピッチが大きくなると、蒸発部7の内部において液体の水以外の空隙が大きくなり、単位体積当たりに液体の水が占める割合は小さくなる。よって、液体の水が蒸発する際に吸収する熱の量も少なくなる。このことも、丸棒8のピッチが大きくなることで熱交換量が小さくなる理由の一つといえる。
 これらにより、簡素な水蒸発部構成において、触媒の温度状態を均一に安定化させた上で、水素生成装置300内で使用できる熱量が多くなり、装置の効率向上と性能の安定化を図ることができる。
 なお、蒸発部7の螺旋形状の丸棒8のピッチが小さい上流部および下流部と、蒸発部7の外側に配置した一酸化炭素低減部との位置関係は、選択酸化触媒層11(一酸化炭素低減部が変成触媒層10だけで構成されている場合は変成触媒層10)が蒸発部7の上流部と下流部の間の中流部に隣接するように配置するのが好適である。この場合、最も触媒層の温度に影響を与えることなく熱交換を行うことができる。
 また、蒸発部7の上流部での熱交換量が多すぎると、生成ガス(改質触媒層9の下流側を流れるガス)や燃焼排ガスの温度が、当該ガスに含まれる水蒸気の露点より低くなることがある。この場合、生成ガスや燃焼排ガス中の水蒸気が流路内で結露することになる。結露するとその結露水が流れ落ちて流路内の高温部に至り再蒸発することになる。その時に熱が周囲より奪われ、水素生成装置300内の温度状態が乱れ、装置の性能を乱す可能性がある。従って、結露しない範囲でなるべく多くの熱量を熱交換する熱交換構成(螺旋形状の丸棒8のピッチ)とするのが好適である。
 なお、本実施形態でいう熱交換量は単位面積当たりの熱交換量の意味である。より詳細には、円筒101の側壁の表面を介した、円筒101と水(円筒101と円筒100との間を、丸棒8がなす流路に沿って流れる水)との間の、該側壁の単位面積当たりの熱交換量と考えることができる。
 [変形例]
 図3は、第2実施形態の第1変形例における水素生成装置の概略構成の一例を示す模式図である。本変形例の水素生成装置300Aでは、蒸発部の構成を除いては第2実施形態について上述したのと同様の構成であるので、共通する要素については同一の符号および名称を付して説明を省略する。第1変形例において、一酸化炭素低減部20は、上流側に形成されている変成触媒層10と下流側に形成されている選択酸化触媒層11とを有している。第1蒸発部7A’は、選択酸化触媒層11および円筒100の間に形成されている第4蒸発部7D’と、変成触媒層10および円筒100の間に形成されている第6蒸発部7F’と、第4蒸発部7D’と第6蒸発部7F’との間に形成されている第5蒸発部7E’と、を有しており、熱交換量が、第5蒸発部7E’よりも、第4蒸発部7D’及び第6蒸発部7F’の方が小さくなるように構成されている。
 第1変形例において、互いに隣接する流路部材間の距離(丸棒8の螺旋ピッチ)は、第5蒸発部7E’より第4蒸発部7D’及び第6蒸発部7F’の方が大きいのが好ましい。
 第1変形例において、熱交換量が、第2蒸発部7B’、第3蒸発部7C’、第5蒸発部7E’、第4蒸発部7D’、及び第6蒸発部7F’の順に小さくなるように構成されているのが好ましい。熱交換量の調整は、例えば、螺旋ピッチ(大きくすれば熱交換量が下がる)や水流路の断面積(大きくすれば熱交換量が下がる)などを用いて実現されうる。
 図4は、第2実施形態の第2変形例における水素生成装置の概略構成の一例を示す模式図である。本変形例の水素生成装置300Bでは、蒸発部の構成を除いては第2実施形態について上述したのと同様の構成であるので、共通する要素については同一の符号および名称を付して説明を省略する。本変形例において、第1蒸発部7A’には、丸棒8(流路部材)が配置されていない。
 流路部材は丸棒8である必要は必ずしもなく、例えば、円筒100の側壁や円筒101の側壁を螺旋をなす峰状に突出することで流路部材を構成してもよい。図5は、第2実施形態の変形例の水素生成装置における水流路の概略構成の一例を示す断面図であって、図5(a)は第3変形例、図5(b)は第4変形例を示す。
 図5(a)に示す第3変形例では、円筒100の側壁が円筒101側へ、螺旋をなす峰状に突出することで流路部材8Aを構成している。図5(b)に示す第4変形例では、円筒101の側壁が円筒100側へ、螺旋をなす峰状に突出することで流路部材8Bを構成している。
 (第3実施形態)
 第3実施形態の燃料電池発電システムは、第1実施形態または第2実施形態およびそれらの変形例にかかる水素生成装置と、該水素生成装置から排出される生成ガス(水素含有ガス)を利用して発電する燃料電池とを備える。
 図6は、第3実施形態の燃料電池発電システムの概略構成の一例を示す模式図である。図6に例示する燃料電池発電システム400は、第2実施形態の水素生成装置300(図2)に、燃料電池60を付加したものであり、その他の構成は水素生成装置300と同様である。よって、図2と図6とで共通する構成要素には同一の符号および名称を付して説明を省略する。
 燃料電池60は、水素生成装置300から排出される生成ガス(水素含有ガス)を利用して発電する。燃料電池60としては、高分子電解質形燃料電池(PEFC)、固体酸化物形燃料電池(SOFC)などが例示される。
 燃料電池のアノード(燃料極)は、生成ガス出口12に接続され、生成ガス出口12から排出された水素含有ガスが燃料電池のアノードに供給される。
 本発明の水素生成装置および燃料電池発電システムによれば、より安定して水素を生成し、より確実に一酸化炭素発生を低減する、優れた信頼性を有する水素生成装置および燃料電池発電システムを提供することができる。
 1 燃料ガス供給部
 2 空気流路
 3 空気ファン
 4 バーナ
 5 原料ガス供給部
 6 水供給部
 7 蒸発部
 7A 一酸化炭素低減部に対応する部分
 7B 一酸化炭素低減部に対応しない部分
 7A’ 第1蒸発部
 7B’ 第2蒸発部
 7C’ 第3蒸発部
 7D’ 第4蒸発部
 7E’ 第5蒸発部
 7F’ 第6蒸発部
 8 丸棒
 8A 流路部材
 8B 流路部材
 9 改質触媒層
 9A 改質反応部
 10 変成触媒層
 11 選択酸化触媒層
 12 生成ガス出口
 13 排気口
 14 選択酸化空気供給部
 15 制御部
 16 燃焼排ガス流路
 17 断熱材
 20 一酸化炭素低減部
 21 ガス導入部
 22 隔壁
 23 隔壁
 50 第1底面
 51 第3底面
 60 燃料電池
 100 円筒
 101 円筒
 102 筐体
 103 ガス導入部
 200 水素生成装置
 300 水素生成装置
 400 燃料電池発電システム

Claims (13)

  1.  水素の原料となる原料ガスと水とを含む流体のうちの前記水を蒸発させて水蒸気に変化させる構成を有する蒸発部と、
     前記蒸発部の下流側に接続されており、前記蒸発部から供給される前記原料ガスと前記水蒸気とを含む流体のうちの前記原料ガスと前記水蒸気との改質反応を進行させる改質反応触媒を含む改質反応部と、
     前記改質反応部の下流に設けられており、一酸化炭素と水との変成反応を進行させる変成反応触媒を含む変成反応部、及び、一酸化炭素と酸素との選択酸化反応を進行させる選択酸化反応部のうちの少なくとも一つを有する一酸化炭素低減部と、
     前記改質反応部と前記一酸化炭素低減部との間に配置されており、前記改質反応部を通過したガスを前記一酸化炭素低減部へ導くガス導入部と、
    を備えており、
     前記蒸発部と前記一酸化炭素低減部とは、少なくともそれぞれの一部で熱交換が可能なように隣接して互いに配置されており、
     前記蒸発部のうち、前記一酸化炭素低減部に対応する部分の熱交換量が、前記一酸化炭素低減部に対応しない部分の熱交換量よりも少なくなるように構成されている、
     水素生成装置。
  2.  第1底面を一端に有している第1筒と、
     前記第1筒の外側に形成されている第2筒と、
     前記第2筒の外側に形成され第3底面を有している第3筒と、
     前記第1筒の側壁と前記第2筒の側壁との間の空間である第1空間に前記原料ガスを供給する原料供給部と、
     前記第1空間に前記水を供給する水供給部と、
     前記第1筒内に形成され、燃焼ガス及び燃焼用空気が供給されて燃焼を行うバーナと、
     前記第1筒の内側に形成され、前記バーナの燃焼排ガスが流れる燃焼排ガス流路と、
    を備え、
     前記蒸発部は、前記第1空間に形成され、前記燃焼排ガスの熱を吸収することにより前記水を水蒸気にするように構成され、
     前記改質反応部は、前記蒸発部より下流の前記第1空間に配置され、
     前記一酸化炭素低減部は、前記第2筒の側壁と前記第3筒の側壁との間の第2空間に配置され、
     前記ガス導入部は、前記第1空間から前記第1底面と前記第3底面との間で折り返して前記改質ガスを前記第2空間に供給するように構成され、
     前記蒸発部のうち、前記一酸化炭素低減部に対応する部分が、前記一酸化炭素低減部と前記第1筒との間に形成されている第1蒸発部であり、
     前記熱交換量は、前記蒸発部と前記前記水供給部から供給された水との熱交換量である、
     請求項1に記載の水素生成装置。
  3.  前記蒸発部は、流路部材に仕切られることにより形成される水流路を有しており、
     互いに隣接する前記流路部材の距離は、前記第1蒸発部以外の部分よりも前記第1蒸発部の方が大きい、
     請求項2に記載の水素生成装置。
  4.  前記蒸発部は、流路部材に仕切られることにより形成される水流路を有しており、
     前記水流路の流路断面積は、前記第1蒸発部以外の部分よりも前記第1蒸発部の方が大きい、
     請求項2に記載の水素生成装置。
  5.  前記蒸発部は、前記第1蒸発部と、前記第1蒸発部より上流に形成されている第2蒸発部と、前記第1蒸発部より下流に形成されている第3蒸発部と、を有し、
     前記熱交換量が、前記第2蒸発部、前記第3蒸発部、前記第1蒸発部の順に小さくなるように構成されている、
     請求項2~4のいずれか1項に記載の水素生成装置。
  6.  前記蒸発部は、流路部材に仕切られることにより形成される水流路を有しており、
     互いに隣接する前記流路部材の距離は、前記第2蒸発部、前記第3蒸発部、前記第1蒸発部の順に大きい、
     請求項5に記載の水素生成装置。
  7.  前記一酸化炭素低減部は、上流側に形成されている変成触媒層と下流側に形成されている選択酸化触媒層とを有しており、
     前記第1蒸発部は、前記選択酸化触媒層および前記第1筒の間に形成されている第4蒸発部と、前記変成触媒層および前記第1筒の間に形成されている第6蒸発部と、前記上流蒸発部と前記下流蒸発部との間に形成されている第5蒸発部と、を有しており、
     前記熱交換量が、前記第5蒸発部よりも、前記第4蒸発部及び前記第6蒸発部の方が小さくなるように構成されている、請求項2~6のいずれか1項に記載の水素生成装置。
  8.  前記蒸発部は、流路部材に仕切られることにより形成される水流路を有しており、
     互いに隣接する前記流路部材間の距離は、前記第5蒸発部より前記第4蒸発部及び前記第6蒸発部の方が大きい、
     請求項7に記載の水素生成装置。
  9.  前記蒸発部は、前記第1蒸発部と、前記第1蒸発部より上流に形成されている第2蒸発部と、前記第1蒸発部より下流に形成されている第3蒸発部と、を有し、
     前記熱交換量が、前記第2蒸発部、前記第3蒸発部、前記第5蒸発部、前記第4蒸発部、及び前記第6蒸発部の順に小さくなるように構成されている、請求項7または8に記載の水素生成装置。
  10.  前記蒸発部は、流路部材に仕切られることにより形成される水流路を有しており、
     前記第1蒸発部には、前記流路部材が配置されていない、請求項2~7のいずれか1項に記載の水素生成装置。
  11.  前記流路部材は、前記第1筒と前記第2筒とに挟まれ、かつ、螺旋形状に構成されている棒状部材である、請求項3、4、6、8、10のいずれか1項に記載の水素生成装置。
  12.  前記流路部材は、金属で構成され、かつ、断面が円形である、請求項3、4、6、8、10、11のいずれか1項に記載の水素生成装置。
  13.  請求項1~12のいずれか1項に記載の水素生成装置と、燃料電池と、を備える、燃料電池発電システム。
PCT/JP2011/001216 2010-03-04 2011-03-02 水素生成装置および燃料電池発電システム WO2011108264A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012503016A JP5123442B2 (ja) 2010-03-04 2011-03-02 水素生成装置および燃料電池発電システム
US13/580,310 US9240604B2 (en) 2010-03-04 2011-03-02 Hydrogen generation apparatus and fuel cell power generation system
KR1020127025589A KR20130004320A (ko) 2010-03-04 2011-03-02 수소 생성 장치 및 연료 전지 발전 시스템
CN2011800124329A CN102781820A (zh) 2010-03-04 2011-03-02 氢生成装置以及燃料电池发电系统
EP11750377A EP2543627A1 (en) 2010-03-04 2011-03-02 Hydrogen generator and fuel cell power generation system
RU2012142177/05A RU2012142177A (ru) 2010-03-04 2011-03-02 Устройство для производства водорода и система производства энергии на основе топливного элемента

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-047453 2010-03-04
JP2010047453 2010-03-04

Publications (1)

Publication Number Publication Date
WO2011108264A1 true WO2011108264A1 (ja) 2011-09-09

Family

ID=44541934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001216 WO2011108264A1 (ja) 2010-03-04 2011-03-02 水素生成装置および燃料電池発電システム

Country Status (7)

Country Link
US (1) US9240604B2 (ja)
EP (1) EP2543627A1 (ja)
JP (1) JP5123442B2 (ja)
KR (1) KR20130004320A (ja)
CN (1) CN102781820A (ja)
RU (1) RU2012142177A (ja)
WO (1) WO2011108264A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002009A (ja) * 2013-06-13 2015-01-05 日産自動車株式会社 パージ弁

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101771303B1 (ko) * 2015-02-16 2017-08-24 한국가스공사 연료처리장치
KR102328007B1 (ko) * 2015-04-17 2021-11-17 주식회사 미코파워 수증기 발생 장치 및 이를 포함하는 연료전지 시스템
WO2017217434A1 (ja) * 2016-06-16 2017-12-21 京セラ株式会社 改質器、セルスタック装置、燃料電池モジュールおよび燃料電池装置
MY193298A (en) 2016-11-09 2022-10-03 8 Rivers Capital Llc Systems and methods for power production with integrated production of hydrogen
KR101898788B1 (ko) * 2016-12-30 2018-09-13 주식회사 두산 연료처리장치
AU2020292848A1 (en) 2019-06-13 2022-02-03 8 Rivers Capital, Llc Power production with cogeneration of further products
US11691874B2 (en) 2021-11-18 2023-07-04 8 Rivers Capital, Llc Apparatuses and methods for hydrogen production

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040115494A1 (en) * 2002-10-10 2004-06-17 Yoshio Tamura Hydrogen generator and fuel cell system comprising the same
JP2005306717A (ja) * 2003-12-09 2005-11-04 Matsushita Electric Ind Co Ltd 水素生成装置
JP2006063193A (ja) 2004-08-26 2006-03-09 Matsushita Electric Works Ltd 半導体封止用エポキシ樹脂組成物
JP2008019159A (ja) * 2006-06-12 2008-01-31 Matsushita Electric Ind Co Ltd 水素生成装置及びそれを備える燃料電池システム
JP2008063171A (ja) * 2006-09-06 2008-03-21 Matsushita Electric Works Ltd 水素製造装置及び燃料電池発電装置
JP4145785B2 (ja) * 2001-06-04 2008-09-03 東京瓦斯株式会社 円筒式水蒸気改質器
WO2009139159A1 (ja) * 2008-05-15 2009-11-19 パナソニック株式会社 水素発生装置及び燃料電池発電装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69730608T2 (de) * 1996-06-28 2005-09-15 Matsushita Electric Works, Ltd., Kadoma Reformierungsvorrichtung zum Erzeugen eines Spaltgases mit verringertem CO-Gehalt.
US6126908A (en) * 1996-08-26 2000-10-03 Arthur D. Little, Inc. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
DE10196651B3 (de) * 2000-09-20 2015-04-02 Kabushiki Kaisha Toshiba Brennstoff-Reformierungsanlage für eine Polymerelektrolytmembran-Brennstoffzelle
CA2357960C (en) * 2000-10-10 2007-01-30 Tokyo Gas Co., Ltd. Single-pipe cylinder type reformer
US7182921B2 (en) 2001-06-04 2007-02-27 Tokyo Gas Co., Ltd. Cylindrical steam reforming unit
WO2005056468A1 (ja) 2003-12-09 2005-06-23 Matsushita Electric Industrial Co., Ltd. 水素生成装置
JP4870491B2 (ja) * 2005-07-27 2012-02-08 富士電機株式会社 燃料改質装置
CN101466635B (zh) 2006-06-12 2011-07-20 松下电器产业株式会社 氢生成装置以及具备该氢生成装置的燃料电池系统
JP2008063193A (ja) 2006-09-08 2008-03-21 Matsushita Electric Ind Co Ltd 水素生成装置及び燃料電池システム
US9079771B2 (en) * 2007-07-18 2015-07-14 Panasonic Corporation Hydrogen generation system, fuel cell system, and method for operation of hydrogen generation system
US8178062B2 (en) * 2007-09-27 2012-05-15 Sanyo Electric Co., Ltd. Reforming apparatus for fuel cell
ES2618606T3 (es) * 2009-11-17 2017-06-21 Fritz Schäfer GmbH Contenedor de almacenamiento y transporte, fabricado de plástico

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4145785B2 (ja) * 2001-06-04 2008-09-03 東京瓦斯株式会社 円筒式水蒸気改質器
US20040115494A1 (en) * 2002-10-10 2004-06-17 Yoshio Tamura Hydrogen generator and fuel cell system comprising the same
JP2005306717A (ja) * 2003-12-09 2005-11-04 Matsushita Electric Ind Co Ltd 水素生成装置
JP2006063193A (ja) 2004-08-26 2006-03-09 Matsushita Electric Works Ltd 半導体封止用エポキシ樹脂組成物
JP2008019159A (ja) * 2006-06-12 2008-01-31 Matsushita Electric Ind Co Ltd 水素生成装置及びそれを備える燃料電池システム
JP2008063171A (ja) * 2006-09-06 2008-03-21 Matsushita Electric Works Ltd 水素製造装置及び燃料電池発電装置
WO2009139159A1 (ja) * 2008-05-15 2009-11-19 パナソニック株式会社 水素発生装置及び燃料電池発電装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002009A (ja) * 2013-06-13 2015-01-05 日産自動車株式会社 パージ弁

Also Published As

Publication number Publication date
EP2543627A1 (en) 2013-01-09
CN102781820A (zh) 2012-11-14
US20120321971A1 (en) 2012-12-20
KR20130004320A (ko) 2013-01-09
US9240604B2 (en) 2016-01-19
JPWO2011108264A1 (ja) 2013-06-20
JP5123442B2 (ja) 2013-01-23
RU2012142177A (ru) 2014-04-10

Similar Documents

Publication Publication Date Title
JP5123442B2 (ja) 水素生成装置および燃料電池発電システム
JP4870491B2 (ja) 燃料改質装置
EP1840997A1 (en) Method of starting solid oxide fuel cell system
JP5154272B2 (ja) 燃料電池用改質装置
WO2010010718A1 (ja) 水素生成装置及びこれを備える燃料電池システム
JP2009099437A (ja) 燃料電池モジュール
JP4870499B2 (ja) 水素製造装置及び燃料電池発電装置
EP2287112B1 (en) Hydrogen generator and fuel cell power generator
JP2009227526A (ja) 改質装置
KR101421355B1 (ko) 연료 가습기
JP4486832B2 (ja) 水蒸気改質システム
JP2009274915A (ja) 水素発生装置および燃料電池発電装置
JP2006059549A (ja) 燃料電池発電装置
JP2004175637A (ja) Co除去器及び水素製造装置
JP5140361B2 (ja) 燃料電池用改質装置
EP3291348B1 (en) Fuel cell module
JP2008280209A (ja) 一酸化炭素除去器および水素製造装置
JP2005255458A (ja) 水素生成装置及び燃料電池システム
JP2005089210A (ja) 改質器とその運転方法ならびに燃料電池システム
JP5538025B2 (ja) 水素製造装置及び燃料電池システム
JP2009084077A (ja) 燃料電池用改質装置
JP5461880B2 (ja) 燃料電池用改質装置
JP2005216499A (ja) 水素生成器
JP2003081610A (ja) 改質装置
JP2009067641A (ja) 水素生成装置、およびその起動方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012432.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750377

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012503016

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13580310

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127025589

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012142177

Country of ref document: RU

Ref document number: 2011750377

Country of ref document: EP