WO2005052467A1 - 冷凍装置及び空気調和装置 - Google Patents

冷凍装置及び空気調和装置 Download PDF

Info

Publication number
WO2005052467A1
WO2005052467A1 PCT/JP2004/017458 JP2004017458W WO2005052467A1 WO 2005052467 A1 WO2005052467 A1 WO 2005052467A1 JP 2004017458 W JP2004017458 W JP 2004017458W WO 2005052467 A1 WO2005052467 A1 WO 2005052467A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
control valve
compressor
temperature
flow control
Prior art date
Application number
PCT/JP2004/017458
Other languages
English (en)
French (fr)
Inventor
Shinichi Wakamoto
Toshihide Kouda
Masahiro Sugihara
Fumitake Unezaki
Masayuki Kakuta
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to CN2004800351623A priority Critical patent/CN1886625B/zh
Priority to JP2005515784A priority patent/JP4753719B2/ja
Priority to US10/579,100 priority patent/US7526924B2/en
Priority to ES04819388.2T priority patent/ES2652023T3/es
Priority to EP04819388.2A priority patent/EP1701112B1/en
Publication of WO2005052467A1 publication Critical patent/WO2005052467A1/ja
Priority to US12/391,378 priority patent/US7752857B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/072Intercoolers therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the present invention relates to a refrigerating apparatus used in a freezer, a refrigerator, an ice machine, a water cooling device, an air conditioner capable of cooling, and an air conditioner performing cooling and heating.
  • a refrigeration apparatus and a cooling apparatus in which a compressor, a radiator, a flow control valve, and an evaporator are connected by a refrigerant pipe, and a fluoridated carbon (abbreviated as HFC) -based refrigerant is circulated.
  • HFC fluoridated carbon
  • Refrigeration systems using propane and other carbon-based refrigerants (abbreviated as HC), ammonia and carbon dioxide, such as propane, which have a lower global warming coefficient than chlorofluorocarbons, and air conditioners for cooling and heating have been developed. It is getting.
  • HC-based refrigerant / ammonia it is necessary to take measures to prevent ignition because these refrigerants are flammable, and their use is restricted by law.
  • carbon dioxide is nonflammable, there is a problem that the coefficient of performance COP is low.
  • Air conditioners have rating conditions for cooling and heating that specify the air temperature.
  • the outdoor dry bulb temperature is 35 ° C
  • the indoor dry bulb temperature is 27 ° C
  • the wet bulb temperature is 19 ° C.
  • the heating operation the dry-bulb temperature is 7 ° C
  • the wet-bulb temperature is 6 ° C
  • the indoor dry-bulb temperature is 20 ° C.
  • the outdoor dry-bulb temperature is 35 ° C
  • the refrigerant at the outdoor heat exchange outlet is 35 ° C or more.
  • the specific heat is large between about 10-60 ° C! /, And there is a region, but when the outdoor dry bulb temperature is 35 ° C, the specific heat is You can use all of the large area Energy efficiency is reduced.
  • HFC-based or HC-based refrigerants can perform heat exchange in which all refrigerant vapors are converted into refrigerant liquid under the rated cooling conditions, and have a higher COP than CO2.
  • a conventional air conditioner using carbon dioxide as a refrigerant is provided with a refrigerant cooling means including a cooling heat exchanger that cools the refrigerant using a low-temperature heat source such as water, ice water, or seawater.
  • a refrigerant cooling means including a cooling heat exchanger that cools the refrigerant using a low-temperature heat source such as water, ice water, or seawater.
  • Some radiators, refrigerant cooling means, flow control valves, and evaporators are sequentially connected by refrigerant piping to circulate the refrigerant. This is to improve the coefficient of performance COP by lowering the temperature of the refrigerant at the inlet of the flow control valve using the refrigerant cooling means. (For example, see Patent Document 1).
  • Power is not required as cooling means for cooling the refrigerant at the inlet of the flow control valve. If water, seawater, or the like cannot be used, the cooling means requires power. This power increases according to the cooling capacity of the cooling means. Therefore, considering the sum of the power required for the compressor of the air conditioner and the power required for the cooling means, if the cooling means excessively cools, the power required for the cooling means increases, resulting in a COP of COP. Decreases. If the cooling is not sufficient, the power required for the compressor of the air conditioner increases and the COP decreases as a result.
  • Patent Document 1 JP-A-10-54617
  • the present invention relates to a refrigeration apparatus that uses a non-flammable refrigerant having a higher global warming potential than chlorofluorocarbon such as dioxide carbon, and includes cooling means for cooling the refrigerant at the inlet of the flow control valve using energy.
  • the objective is to improve the coefficient of performance COP in air conditioning equipment that performs cooling and heating.
  • a refrigeration apparatus includes a compressor that compresses a refrigerant, a radiator that releases heat of the refrigerant, a refrigerant cooling unit that cools the refrigerant, a flow control valve that adjusts a flow rate of the refrigerant, cold An evaporator that evaporates the medium; and a heat exchange amount control unit that controls the amount of heat exchange in the refrigerant cooling unit.
  • the compressor, the radiator, the refrigerant cooling unit, the flow control valve, and the evaporator The refrigerant is circulated in the following order.
  • An air conditioner provides a compressor that compresses a refrigerant, a four-way valve that switches a direction in which the refrigerant discharged from the compressor flows, and an outdoor heat exchanger that exchanges heat between the refrigerant and the outside air.
  • An exchanger refrigerant cooling / heating means for cooling or heating the refrigerant, a flow control valve for adjusting the flow rate of the refrigerant, indoor heat exchange for exchanging heat between the refrigerant and indoor air, and Heat exchange amount control means for controlling an amount of heat exchange in the medium cooling and heating means, wherein during the cooling operation, the compressor, the outdoor heat exchanger, the refrigerant cooling and heating means, the flow control valve, the indoor heat exchange In the heating operation, the refrigerant is circulated in the order of the compressor, the indoor heat exchanger, the flow control valve, the refrigerant cooling / heating means, and the outdoor heat exchanger. It is assumed that.
  • a refrigeration apparatus includes a compressor that compresses a refrigerant, a radiator that releases heat of the refrigerant, a refrigerant cooling unit that cools the refrigerant, a flow control valve that adjusts a flow rate of the refrigerant, An evaporator for evaporating the refrigerant; and a heat exchange amount control unit for controlling an amount of heat exchange in the refrigerant cooling unit, wherein the compressor, the radiator, the refrigerant cooling unit, the flow control valve, the evaporator, Since the refrigerant is circulated in the order of the vessels, the efficiency can be improved appropriately.
  • An air conditioner according to the present invention is a compressor that compresses a refrigerant, a four-way valve that switches a direction in which the refrigerant discharged from the compressor flows, and an outdoor heat that exchanges heat between the refrigerant and the outside air.
  • An exchanger refrigerant cooling / heating means for cooling or heating the refrigerant, a flow control valve for adjusting the flow rate of the refrigerant, indoor heat exchange for exchanging heat between the refrigerant and indoor air, and Heat exchange amount control means for controlling an amount of heat exchange in the medium cooling and heating means, wherein during the cooling operation, the compressor, the outdoor heat exchanger, the refrigerant cooling and heating means, the flow control valve, the indoor heat exchange In the heating operation, the refrigerant is circulated in the order of the compressor, the indoor heat exchanger, the flow control valve, the refrigerant cooling / heating means, and the outdoor heat exchanger. So that efficiency can be improved appropriately. it can.
  • FIG. 1 is a refrigerant circuit diagram illustrating a configuration of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a pressure enthalpy diagram illustrating a change in state of the refrigerant in the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram for explaining positions in a refrigerant circuit diagram corresponding to states of the refrigerant in the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing a result of a calculation of a simulation result of an improvement ratio of a coefficient of performance COP under a cooling rated condition with respect to a refrigerant temperature at an inlet of a flow control valve in the air-conditioning apparatus according to Embodiment 1 of the present invention. It is.
  • FIG. 9 is a diagram showing the results of calculating the improvement ratio of the coefficient of performance COP under a cooling rating condition for a certain dryness ratio by simulation.
  • FIG. 6 is a refrigerant circuit diagram illustrating a configuration of an air conditioner according to Embodiment 2 of the present invention.
  • FIG. 7 is a refrigerant circuit diagram illustrating a configuration of an air-conditioning apparatus according to Embodiment 3 of the present invention.
  • FIG. 8 is a pressure enthalpy diagram illustrating a change in refrigerant state during a heating operation in the air-conditioning apparatus according to Embodiment 3 of the present invention.
  • FIG. 9 is a refrigerant circuit diagram illustrating a configuration of an air conditioner according to Embodiment 4 of the present invention.
  • FIG. 10 is a refrigerant circuit diagram illustrating a configuration of an air conditioner according to Embodiment 5 of the present invention.
  • FIG. 11 is a diagram illustrating variables used in the process of estimating the dryness ratio according to the fifth embodiment of the present invention.
  • FIG. 13 is a refrigerant circuit diagram illustrating a configuration of an air conditioner according to Embodiment 7 of the present invention.
  • FIG. 14 is a refrigerant circuit diagram illustrating a configuration of an air conditioner according to Embodiment 8 of the present invention.
  • FIG. 15 is a refrigerant circuit diagram illustrating a configuration of an air conditioner according to Embodiment 9 of the present invention.
  • FIG. 16 is a pressure enthalpy diagram for describing an improvement in efficiency due to a configuration of an air conditioner according to Embodiment 9 of the present invention.
  • FIG. 17 is a refrigerant circuit diagram illustrating a configuration of an air conditioner according to Embodiment 10 of the present invention.
  • FIG. 18 is a refrigerant circuit diagram illustrating a configuration of an air conditioner according to Embodiment 11 of the present invention.
  • FIG. 19 is a pressure enthalpy diagram for describing an improvement in efficiency due to a configuration of an air-conditioning apparatus according to Embodiment 11 of the present invention.
  • FIG. 20 is a refrigerant circuit diagram illustrating a configuration of an air conditioner according to Embodiment 12 of the present invention.
  • FIG. 21 is a refrigerant circuit diagram illustrating a configuration of an air conditioner according to Embodiment 13 of the present invention.
  • FIG. 22 is a refrigerant circuit diagram illustrating a configuration of an air conditioner according to Embodiment 14 of the present invention.
  • FIG. 23 is a refrigerant circuit diagram illustrating a configuration of an air conditioner according to Embodiment 15 of the present invention.
  • FIG. 24 is a refrigerant circuit diagram illustrating a configuration of an air conditioner according to Embodiment 16 of the present invention.
  • FIG. 25 is a refrigerant circuit diagram illustrating a configuration of an air conditioner according to Embodiment 17 of the present invention.
  • Refrigerant cooling unit (refrigerant cooling means)
  • Heat exchange amount control unit Heating exchange amount control means
  • Dryness ratio control range determination unit (Dryness ratio control range determination means)
  • Refrigerant cooling and heating unit (refrigerant cooling and heating means)
  • P2 Pressure gauge (second pressure measuring means)
  • T2 Thermometer (second temperature measuring means)
  • T3 Thermometer (third temperature measuring means)
  • T5 Thermometer (fifth temperature measuring means)
  • FIG. 1 is a refrigerant circuit diagram illustrating a configuration of an air conditioner dedicated to cooling in the first embodiment.
  • FIG. 2 is a pressure enthalpy diagram for explaining a change in the state of the refrigerant.
  • FIG. 3 is a diagram for explaining positions in the refrigerant circuit diagram corresponding to states of the refrigerant.
  • FIG. 4 is a diagram showing the results of a simulation that calculates the improvement ratio of the coefficient of performance COP under the cooling rated condition with respect to the refrigerant temperature at the inlet of the flow control valve 4.
  • the air conditioner 1 includes a compressor 2 for compressing a refrigerant, a radiator 3 for releasing heat of the refrigerant, a refrigerant cooling unit 15 as a refrigerant cooling unit for cooling the refrigerant, and a flow rate of the refrigerant.
  • the flow rate control valve 4 to be adjusted and the evaporator 5 for evaporating the refrigerant are connected in order by a refrigerant pipe 6, so that the carbon dioxide is circulated as the refrigerant.
  • the flow of the refrigerant is represented by arrows.
  • a heat exchange amount control unit 16 which is a heat exchange amount control unit for controlling the heat exchange amount in the refrigerant cooling unit 15 is also provided.
  • the refrigerant that circulates through the vapor compression refrigeration plant composed of the compressor 2 and the like is also referred to as a first refrigerant.
  • the refrigerant cooling unit 15 operates in a vapor compression refrigeration cycle in which a port pan, which is a second refrigerant having higher energy consumption efficiency than carbon dioxide, circulates.
  • the refrigerant cooling unit 15 includes a second compressor 10 for compressing the second refrigerant, a condenser 11 for releasing heat of the second refrigerant, a second flow rate control valve 12 for adjusting a flow rate of the second refrigerant, and a flow rate of the refrigerant circuit.
  • a second evaporator 13 for evaporating the second refrigerant by the heat of the refrigerant at the inlet of the control valve 4 is connected in order by a second refrigerant pipe 14.
  • the flow of the second refrigerant is also represented by arrows.
  • the cooling capacity of the refrigerant cooling unit 15 by the refrigeration cycle using the second refrigerant is about 1/10 to 1/5 of the cooling capacity of the refrigeration cycle using the first refrigerant.
  • the evaporator 5 is installed in the room where the air is to be cooled, the other devices are installed outdoors, and the refrigerant pipe 6 is piped so as to circulate the refrigerant between the devices.
  • the evaporator 3 is installed outdoors, such as at a station platform. Except for the devices that need to exchange heat with the radiator 3, evaporator 5, condenser 11 and V, and air, conduct necessary and sufficient heat insulation so that the efficiency will not decrease due to the thermal power S. .
  • the refrigerant When the refrigerant is compressed by the compressor 2, it becomes a high-temperature and high-pressure supercritical fluid indicated by point B. Is discharged.
  • the refrigerant is sent to the radiator 3, where it exchanges heat with air or the like, and its temperature is reduced to a state of a high-pressure supercritical fluid indicated by point C.
  • the refrigerant is further cooled by the refrigerant cooling unit 15 whose cooling capacity is controlled by the heat exchange amount control unit 16, and the temperature is reduced. Further, it flows into the flow control valve 4 and is decompressed, and changes to a low-temperature low-pressure gas-liquid two-phase state indicated by a point E.
  • the refrigerant is sent to the evaporator 5, where it exchanges heat with air or the like and evaporates, turns into low-temperature low-pressure refrigerant vapor indicated by point A, and returns to the compressor.
  • the refrigerant cooling unit 15 When the refrigerant cooling unit 15 does not cool the refrigerant, the refrigerant indicated by the point C in FIG. 2 flows into the flow control valve 4 and is decompressed, and the refrigerant enters the low-temperature low-pressure gas-liquid two-phase state indicated by the point F. Change.
  • the trajectory of the refrigerant when the refrigerant cooling unit 15 does not cool the refrigerant is indicated by a dotted line.
  • the locus A—B—CD—E—A when the refrigerant cooling unit 15 cools the refrigerant is compared with the locus A B—CF—A when the refrigerant is not cooled, as follows.
  • the mechanical input at the compressor is the enthalpy difference HI on trajectory AB, which is the same in both cases.
  • the cooling capacity is the enthalpy difference H2A of the locus EA when the refrigerant cooling unit 15 cools the refrigerant, and is the enthalpy difference H2B of the locus FA when not cooling.
  • H2A> H2B and if the mechanical input in the refrigerant cooling unit 15 is not considered, the more the refrigerant is cooled, the higher the coefficient of performance COP.
  • the value of the ratio between the improvement in the cooling capacity by cooling the refrigerant in the refrigerant cooling unit 15 and the mechanical input to the refrigerant cooling unit 15 In the range larger than the coefficient of performance COP, the coefficient of performance COP increases with cooling, and decreases when the ratio value becomes smaller than the coefficient of performance COP.
  • the amount of heat exchange that is, the amount of cooling in the refrigerant cooling unit 15 has an optimum value that maximizes the coefficient of performance COP.
  • FIG. 4 is a diagram showing the results of calculating the improvement ratio of the coefficient of performance COP under the cooling rated condition with respect to the refrigerant temperature at the inlet of the flow control valve 4 by simulation.
  • Fig. 5 shows the dryness ratio, which is the ratio of the dryness of the refrigerant at the inlet of the evaporator 5 to the dryness when the refrigerant at the outlet of the radiator 3 is depressurized to the evaporation temperature, on the horizontal axis.
  • the numerator of the dryness ratio is the dryness at point E in FIG. 2, and the denominator is the dryness at point F in FIG.
  • the dryness is the ratio of refrigerant vapor to refrigerant in a gas-liquid two-phase state. The dryness is 1.0 if there is only refrigerant vapor, and 0.0 if there is no refrigerant vapor.
  • the refrigerant is carbon dioxide
  • the efficiency of the compressor 2 is 70%
  • the superheat degree of the suction vapor of the compressor 2 is 0 ° C
  • the temperature difference between the refrigerant and the air at the outlet of the radiator 3 is 3 ° C
  • the second refrigerant used in the refrigerant cooling unit 15 is a cap
  • the efficiency of the second compressor 10 is 70%
  • the condensation temperature in the condenser 11 is 40 ° C.
  • the coefficient of performance COP is satisfied under predetermined operating conditions.
  • the amount of heat exchange in the refrigerant cooling means is controlled by the heat exchange amount control means so that the performance coefficient COP has a small difference between the maximum force and the predetermined value, and the refrigerant temperature at the inlet of the flow control valve 4 is controlled. Is appropriately controlled.
  • the heat exchange amount control means it is possible to prevent the coefficient of performance COP from being degraded due to a sufficient or excessive heat exchange amount in the refrigerant cooling means. That is, there is an effect that the COP can be surely improved.
  • the improved coefficient of performance COP can be a value close to the value obtained when propane or the like used as the second refrigerant is used as the refrigerant.
  • the second refrigerant is flammable or has a lower global warming coefficient than the first refrigerant. There is also an effect that the amount of use of the second refrigerant can be reduced.
  • the refrigerant circuit of the second refrigerant is configured as a closed loop outside the room, so that leakage of the second refrigerant into the room can be avoided.
  • Pd and Te may change slightly when the amount of heat exchange in the cooling medium cooling means is plotted while Pd and Te are kept constant. Even in such a case, there is an amount of heat exchange in the refrigerant cooling unit that maximizes the coefficient of performance COP with respect to the change in the amount of heat exchange in the refrigerant cooling unit. If the amount of heat exchange in the refrigerant cooling means is controlled so as to fall within the range, the coefficient of performance COP can be surely improved.
  • the refrigerant has a smaller global warming coefficient than CFCs and is nonflammable, other than dioxide carbon is used. You may. Although propane was used as the second refrigerant, any refrigerant having higher energy consumption efficiency than the first refrigerant may have flammability or a higher global warming potential than the first refrigerant. As the second refrigerant, it is conceivable to use an HFC-based refrigerant, an HC-based refrigerant, ammonia, or the like.
  • the vapor compression refrigeration cycle using the second refrigerant is used as the refrigerant cooling means
  • an absorption refrigeration cycle, a Peltier effect, or the like may be used. If a low-temperature heat source consisting of water, ice water, or seawater is available, use a cooling method that uses the low-temperature heat source and then uses the energy-consuming means to cool the insufficient amount of cooling. .
  • the number of compressors is one, it can also be applied when two or more compressors are used.
  • the number of the second compressor is one, it can also be applied when two or more compressors are used.
  • the refrigeration apparatus is used as an air conditioner dedicated to cooling, it may be used in an air conditioner capable of cooling and heating, a freezer, a refrigerator, an ice machine, a water cooling apparatus, and the like.
  • a freezing device or a refrigerator means a mechanical device for producing low temperature, and does not mean only a mechanical device for freezing food and storing at low temperature.
  • An air conditioner capable of cooling and heating is also included in the refrigeration system during cooling operation.
  • FIG. 6 shows a refrigerant circuit diagram illustrating a configuration of an air conditioner capable of cooling and heating according to Embodiment 2 of the present invention.
  • the flow of the refrigerant during cooling is indicated by solid arrows
  • the flow of the refrigerant during heating is indicated by dotted arrows.
  • a four-way valve 20 for switching the direction in which the refrigerant discharged from the compressor 2 flows is added so that both the cooling operation and the heating operation can be performed. Since the radiator 3 and the evaporator 5 operate alternately in the heating operation and the cooling operation, the radiator 3 is replaced by the outdoor heat exchanger 21 that exchanges heat between the refrigerant and the outside air. The evaporator 5 is replaced by an indoor heat exchanger 22 that performs heat exchange between the refrigerant and indoor air. During the cooling operation, the outdoor heat exchanger 21 operates in the same manner as the radiator 3, and the indoor heat exchanger 22 operates in the same manner as the evaporator 5.
  • the four-way valve 20 circulates the refrigerant in the order of the compressor 2, the outdoor heat exchanger 21, the refrigerant cooling unit 15, the flow control valve 4, and the indoor heat exchanger 22.
  • the refrigerant is circulated in order of the compressor 2, the indoor heat exchanger 22, the flow control valve 4, the refrigerant cooling unit 15, and the outdoor heat exchanger 21.
  • the configuration is the same as that of the first embodiment.
  • the operation will be described.
  • the operation during the cooling operation is the same as that of the first embodiment, except that the radiator 3 is replaced by the outdoor heat exchanger 21 and the evaporator 5 is replaced by the indoor heat exchange 22.
  • the pressure enthalpy diagram for explaining the change in the state of the refrigerant is as shown in FIG.
  • the operation during the heating operation will be described.
  • the low-temperature and low-pressure refrigerant vapor in the refrigerant pipe 6 on the suction side of the compressor 2 is located at a point ⁇ in FIG. 2 where the refrigerant is all vapor and the superheat has a predetermined value close to zero.
  • the compressor 2 It is compressed by the compressor 2 and discharged as a high-temperature and high-pressure supercritical fluid indicated by a point B.
  • the discharged refrigerant is sent to the indoor heat exchanger 22 as a radiator through the four-way valve 20, where the heat is exchanged so as to warm the indoor air, and the temperature is reduced.
  • the refrigerant flows into the flow control valve 4 and is decompressed, and changes to a low-temperature low-pressure gas-liquid two-phase state indicated by a point F. Since the refrigerant cooling unit 15 is not operated during the heating operation, the state of the refrigerant hardly changes even when the refrigerant passes through the second evaporator 13 of the refrigerant cooling unit 15. Strictly speaking, there is a possibility that heat is exchanged between the refrigerant and the second refrigerant in the second evaporator 13, but the heat exchange amount is negligibly small. The reason is that the second compressor 10 is stopped, the second refrigerant is not circulating, and the refrigerant pipe is narrow. The whole is insulated and there is no need to radiate or receive heat. If at least one refrigerant does not flow in other heat exchangers, no heat exchange shall be performed.
  • the refrigerant is sent to the outdoor heat exchanger 21 as an evaporator, where it exchanges heat with air or the like and evaporates, and becomes low-temperature low-pressure refrigerant vapor indicated by point A. Then, it returns to the compressor 1 through the four-way valve 20.
  • the locus of refrigerant state change during the heating operation is the locus A-B-C-F-A in Fig. 2.
  • the refrigerant cooling unit 15 is stopped, so that the performance coefficient COP is the same as in the case where the refrigerant cooling unit 15 is not provided.
  • the refrigerant cooling operation is performed by the heat exchange amount control means during the cooling operation.
  • the amount of heat exchange in the stage appropriately, there is an effect that the COP can be surely improved. Even if the amount of the second refrigerant, which is flammable or has a lower global warming potential than the first refrigerant, is reduced, the COP equivalent to that of the second refrigerant alone can be achieved.
  • the refrigerant circuit of the second refrigerant is configured as a closed loop outside the room, so that leakage of the second refrigerant into the room can be avoided.
  • FIG. 7 is a refrigerant circuit diagram illustrating the configuration of the air-conditioning apparatus according to Embodiment 3.
  • the refrigerant cooling unit 15 in the second embodiment is changed to a refrigerant cooling and heating unit 25 that is a refrigerant cooling and heating unit that cools or heats the refrigerant.
  • a second four-way valve 40 for switching the direction in which the second refrigerant discharged from the second compressor flows is added, and the condenser 11 performs heat exchange between the second refrigerant and outside air. 1 is replaced by a heat exchanger 41, and the second evaporator 13 is replaced by a second heat exchanger 42 that exchanges heat with a second refrigerant so as to cool or heat the refrigerant.
  • the first heat exchanger 41 operates in the same manner as the condenser 11, and the second heat exchanger 42 operates in the same manner as the second evaporator 13.
  • the refrigerant circulates in the order of the second compressor 10, the first heat exchanger 41, the second flow control valve 12, and the second heat exchanger 42 by the second four-way valve 40.
  • the refrigerant is circulated in the order of the compressor 2, the second heat exchanger 42, the second flow control valve 12, and the first heat exchanger 41.Other points are the same as in the case of the second embodiment. is there.
  • FIG. 8 is a pressure enthalpy diagram illustrating a change in state of the refrigerant during the heating operation in the air-conditioning apparatus according to Embodiment 3 of the present invention. Solid line force is the case of the third embodiment, and the dotted line is the case of the second embodiment.
  • the operation during the heating operation is as follows. First, the refrigerant pipe 6 on the suction side of the compressor 2 The low-temperature and low-pressure refrigerant vapor is located at a point A2 in FIG. 8 where the refrigerant is all vapor and the superheat has a predetermined value close to zero. The reason will be explained later.
  • the pressure is slightly higher than at point A in the case of Embodiment 2, and the enthalpy is slightly smaller. It is compressed by the compressor 2 and discharged as a high-temperature and high-pressure supercritical fluid indicated by a point B2.
  • the pressures at points B2 and B are the same, and the enthalpy of point B2 is smaller than that of point B.
  • the discharged refrigerant is sent to the indoor heat exchange as a radiator through the four-way valve 20, where the heat is exchanged to warm the indoor air and the temperature is reduced to a high-pressure supercritical fluid indicated by point C.
  • point C Since heat exchange with indoor air, which is a predetermined condition, is performed in the indoor heat exchanger 22, the point C is located at almost the same position as in the second embodiment.
  • the refrigerant flows into the flow control valve 4, is decompressed, and changes to a low-temperature low-pressure gas-liquid two-phase state indicated by a point F2.
  • Point F2 has the same pressure as point A2, and is slightly higher than point F.
  • the refrigerant is heated by the second heat exchanger 41 of the refrigerant cooling and heating unit 25, and the refrigerant vapor is increased to the state shown by the point G in the gas-liquid two-phase state.
  • the refrigerant is sent to an outdoor heat exchanger 21 as an evaporator, where it exchanges heat with air or the like to evaporate, becomes low-temperature low-pressure refrigerant vapor, and returns to the compressor through the four-way valve 20.
  • the reason why the pressure of the refrigerant exiting the flow control valve 4 becomes higher by heating the refrigerant by the second heat exchanger 41 of the refrigerant cooling and heating unit 25 than when not heating the refrigerant is described. .
  • the amount of heat to be absorbed by the outdoor heat exchanger 21 is reduced, and the capacity of the outdoor heat exchanger 21 is relatively increased.
  • the capacity of the outdoor heat exchanger 21 increases, the temperature difference of the refrigerant vapor with respect to a predetermined outside air temperature decreases, that is, the evaporation temperature increases. As the evaporation temperature increases, the pressure of the refrigerant vapor also increases.
  • the coefficient of performance when the refrigerant is not heated is COP1
  • the coefficient of performance when the refrigerant is heated is COP2.
  • the enthalpy difference between point B and point A be ⁇ HI
  • the enthalpy difference between point B2 and point A2 be ⁇ 2.
  • the enthalpy difference between points A and C is ⁇ ⁇ 3
  • the enthalpy difference between points ⁇ 2 and C is ⁇ ⁇ 4.
  • ⁇ HI is a mechanical input of the compressor 2 when the refrigerant is not heated by the refrigerant cooling / heating unit 25
  • ⁇ 2 is a mechanical input of the compressor 2 when the refrigerant is heated.
  • indoor heat exchange When the efficiency in the heat exchanger 22 is 100%, ⁇ 1 + ⁇ 3 is the heat quantity obtained in the indoor heat exchanger 21 when the refrigerant is not heated, and ⁇ 2 + ⁇ 4 is the heat quantity obtained in the indoor heat exchanger when the refrigerant is heated. Heat quantity. Therefore, the following holds for the defining power of the variables.
  • the temperature difference between the outside air and the refrigerant vapor is originally several degrees Celsius, and there is an upper limit to the effect of reducing the temperature difference by increasing the amount of heating in the second heat exchanger 41 of the refrigerant cooling and heating unit 25.
  • the mechanical input required to increase the amount of heating in the second heat exchanger 41 of the refrigerant cooling / heating unit 25 increases in a linear or higher relationship with the amount of heating. Therefore, the coefficient of performance COP decreases as the heating amount increases.
  • the coefficient of performance in the case of heating The COP improvement effect is smaller than in the case of cooling.
  • the capacity of the refrigeration cycle using the second refrigerant is about 1/10 to 1/5 of the refrigeration cycle of the first refrigerant, and the capacity of the refrigeration cycle using the second refrigerant is Under operating conditions where the vehicle operates efficiently, the coefficient of performance COP approaches the maximum value.
  • the refrigerant cooling capacity is controlled by the heat exchange amount control means during the cooling operation.
  • the amount of heat exchange by the heat means there is an effect that the coefficient of performance COP can be surely improved.
  • the refrigerant circuit of the second refrigerant is configured as a closed loop outside the room, so that leakage of the second refrigerant into the room can be avoided.
  • FIG. 9 is a refrigerant circuit diagram illustrating a configuration of an air-conditioning apparatus according to Embodiment 4.
  • Embodiment 4 is a modification of Embodiment 1 so that the flow rate of the refrigerant vapor flowing into evaporator 5 is reduced. Only different points from FIG. 1 in the first embodiment will be described.
  • a gas-liquid separator 45 and a third flow control valve 46 are provided on the path from the flow control valve 4 to the evaporator 5, and a part or all of the refrigerant vapor separated by the gas-liquid separator 45 is There is provided a bypass pipe 47 for injecting into the tub.
  • the compressor 2 has an intermediate pressure suction port 2A for sucking a refrigerant during compression.
  • the configuration is the same as that of the first embodiment.
  • the refrigerant in the gas-liquid two-phase state is partially or entirely separated by the gas-liquid separator 45, passes through the refrigerant circuit formed by the bypass piping 47, and passes through the compressor.
  • the refrigerant is sucked into the intermediate pressure suction port 2A and mixed with the refrigerant in the compressor 2.
  • Other refrigerant flows are the same as in the first embodiment.
  • the coefficient of performance COP can be surely improved by appropriately controlling the heat exchange amount in the refrigerant cooling unit by the heat exchange amount control unit.
  • the change in the coefficient of performance COP with respect to changes in the flow control valve inlet temperature, dryness ratio, etc. has the same tendency, but the configuration of the refrigerant circuit is different, so it is different from that shown in Fig. 4 or 5. Typical numbers are different. This also applies to other embodiments in which the configuration of the refrigerant circuit is different.
  • the refrigerant circuit of the second refrigerant is configured as a closed loop outside the room, so that leakage of the second refrigerant into the room can be avoided.
  • the efficiency of the air conditioner using the first refrigerant can be further improved.
  • bypass pipe 47 may be connected to the refrigerant pipe 6 that enters the suction port of the high-pressure compressor.
  • FIG. 10 is a refrigerant circuit diagram illustrating a configuration of an air-conditioning apparatus according to Embodiment 5.
  • the fifth embodiment is a modification of the first embodiment so that the heat exchange amount control unit 16 includes specific means for controlling the dryness ratio. Only differences from FIG. 1, which is the case of the first embodiment, will be described.
  • a pressure gauge Pl as first pressure measuring means provided at the outlet of the flow control valve 4
  • a pressure gauge P2 as second pressure measuring means provided at the inlet of the flow control valve 4
  • a flow control valve A thermometer T2 which is a second temperature measuring means provided at the inlet of 4
  • a thermometer 3 which is a third temperature measuring means provided at the outlet of the radiator 3, are added.
  • the heat exchange amount control unit 16 is a dryness ratio estimating means for estimating the dryness ratio by using the measured values of the pressure gauge Pl, the pressure gauge ⁇ 2, the thermometer ⁇ 2, and the thermometer ⁇ 3 as inputs.
  • a certain dryness ratio estimator 16 ⁇ a dryness ratio control range deciding means that finds a control range of the dryness ratio where the difference from the maximum value of the COP within the changed dryness ratio is within a predetermined range It is composed of a certain dryness ratio control range determination unit 16B and a refrigerant flow control unit 16C that is a control means that controls the flow rate of the refrigerant so that the dryness ratio falls within the control range obtained by the dryness ratio control range determination unit 16B. Being done.
  • the quantity control unit 16C can control the operating frequency of the second compressor 10 and the command value to the second flow control valve 12.
  • the dryness ratio estimating unit 16A estimates the dryness ratio from the measured values of the pressure gauge Pl, the pressure gauge P2, the thermometer T2, and the thermometer T3 as follows.
  • FIG. 11 is a diagram illustrating variables used in the process of estimating the dryness ratio.
  • Td Refrigerant temperature at the outlet of the radiator 3. Measured by thermometer T3.
  • Tf Refrigerant temperature at the inlet of the flow control valve 4. Measured by thermometer T2.
  • Te evaporation temperature. Calculated from the saturated vapor pressure characteristics of Pe and refrigerant.
  • hf Enthalpy of the refrigerant at the inlet of the flow control valve 4.
  • heG Saturated vapor enthalpy of the refrigerant at pressure Pe.
  • Xd Dryness when the refrigerant at the radiator 3 outlet is depressurized to Pe.
  • the calculation for estimating the dryness ratio is performed in the following procedure.
  • the dryness ratio control range determining unit 16B is configured to change Pd and Te at predetermined intervals within the condition range of the heat radiation pressure Pd and the evaporation temperature Te at which the air conditioner may operate.
  • the control range of the dryness ratio is determined from the optimal operation dryness ratio data as follows.
  • a predetermined range such as a difference between Xmax forces within 0.1, is set as a control range.
  • the width of the predetermined range is such that the coefficient of performance COP does not change much with changes in the dryness ratio.
  • 19-0.39 is the control range of the dryness ratio. As shown in Fig. 5 (b), within this control range, the coefficient of performance COP fluctuates below the maximum power of 0.02.
  • the refrigerant flow rate control unit 16C checks whether the dryness ratio estimated by the dryness ratio estimation unit 16A is within the control range obtained by the dryness ratio control range determination unit 16B, and if the dryness ratio is not within the control range. Controls one or both of the operating frequency of the second compressor 10 and the command value of the flow rate to the second flow rate control valve 12 so as to fall within the control range. In control, appropriate PID control shall be performed.
  • the estimated dryness ratio is high, the amount of cooling in the refrigerant cooling unit 15 is increased to lower the dryness ratio, and when the estimated dryness ratio is low, the amount of cooling in the refrigerant cooling unit 15 is reduced to dry the unit. Increase the ratio.
  • the operating frequency of the second compressor 10 is increased As the temperature increases, the cooling amount increases, and when the command value of the flow rate to the second flow control valve 12 is increased, the cooling amount increases.
  • the coefficient of performance COP can be surely improved. Even if the amount of the second refrigerant, which is flammable or has a lower global warming potential than the first refrigerant, is reduced, the COP equivalent to that of the second refrigerant alone can be achieved. Further, the refrigerant circuit of the second refrigerant is configured as a closed loop outside the room, so that leakage of the second refrigerant into the room can be avoided.
  • the dryness ratio is estimated using the dryness ratio prediction means and the amount of heat exchange in the refrigerant cooling means is controlled so that the coefficient of performance COP becomes a range close to the maximum value, it is ensured. Coefficient of performance The effect is that COP can be improved.
  • the pressure gauge P 1 as the first pressure measuring means is provided at the outlet of the flow control valve 4. It can be placed anywhere. However, when there is a device that changes the pressure of the refrigerant, such as a compressor or another flow control valve, between the outlet force of the flow control valve 4 and the inlet of the evaporator 5, the pressure shall be up to the inlet of the device.
  • the pressure gauge P2 as the second pressure measuring means may be anywhere between the outlet of the compressor and the inlet of the flow control valve 4. If there are two or more compressors, the compressor on the highest pressure side is targeted.
  • the pressure Pe at the outlet of the flow control valve 4 may be measured and used by the pressure gauge P1, and the temperature Te at the outlet of the flow control valve 4 may be measured and used. This is because the outlet of the flow control valve 4 is in a gas-liquid two-phase state, and if one of the temperature and the pressure is determined, the other is also determined.
  • the control range may be determined in consideration of Pe instead of the force Te in which the dryness ratio control range determination unit 16B determines the control range in consideration of Pd and Te.
  • the dryness ratio control range determination unit 16B determines the maximum value of the power performance coefficient COP using the optimal operation dryness ratio data, which is the data of the dryness ratio that maximizes the performance coefficient COP by the combination of Pd and Te. May have a predetermined range of data. For Pd and Te, the optimum dryness ratio was obtained by interpolation, but the value at the closest point without interpolation was used. May be.
  • the width of the control range is fixed in obtaining the control range from the optimum dryness ratio
  • the width of the control range may be variable, for example, the difference from the maximum value of the coefficient of performance COP is within a predetermined value.
  • the control range does not necessarily need to include the optimal dryness ratio, but may be a predetermined range that is larger than the optimal dryness ratio.
  • Pd or Te may be fixed.
  • the control range of the dryness ratio may be determined such that the difference in the power is within a predetermined value.
  • a control range of the dryness ratio is determined in advance so that the difference from the maximum value of the coefficient of performance COP is within a predetermined value, and this is calculated. It may be output.
  • the dryness ratio control range determination unit 16B may be any unit that determines the dryness ratio control range in which the difference from the maximum value of the coefficient of performance COP falls within a predetermined range.
  • the refrigerant flow control unit 16C performs PID control to keep the dryness ratio within the control range, but controls the amount of cooling by the refrigerant cooling means so that the dryness ratio becomes a specified value. You may do it. Since there is a control error, even if an attempt is made to control to a specified value, the control is eventually performed close to the specified value and within a predetermined range. The value to be specified may be determined in consideration of the magnitude of the control error so that the dryness ratio does not exceed the control range even if there is a control error. It is not necessary to specify the dryness ratio that maximizes the COP. Even when controlling within the control range, control other than PID control may be performed.
  • the fifth embodiment has been described with reference to the case where the present invention is applied to the configuration of the first embodiment, any of the configurations of the second to fourth embodiments and the features of these configurations are described. Similar effects can be obtained when applied to any of the configurations having features simultaneously. Even when the refrigerant cooling means does not use a vapor compression refrigeration cycle using the second refrigerant, the cooling ratio is controlled so that the dryness ratio is estimated and the dryness ratio falls within a predetermined control range. Even so, the same effect can be obtained.
  • control may be performed using the flow control valve inlet temperature, which is the refrigerant temperature at the inlet of the flow control valve 4, as an index.
  • flow control valve inlet temperature which is the refrigerant temperature at the inlet of the flow control valve 4, as an index.
  • FIG. 12 is a refrigerant circuit diagram illustrating a configuration of an air-conditioning apparatus according to Embodiment 6.
  • Embodiment 6 does not use a pressure gauge to estimate the dryness ratio! This is a modification of the fifth embodiment. Only differences from FIG. 10 in the case of Embodiment 5 will be described.
  • a thermometer Tl as the first temperature measuring means provided at the outlet of the flow control valve 4 and a thermometer as the fourth temperature measuring means provided at the outlet of the radiator 3 ⁇ 4
  • a thermometer # 5 which is a fifth temperature measuring means provided at the inlet of the radiator 3.
  • the dryness ratio estimating unit 16A receives the measured values of the thermometer Tl, thermometer ⁇ 2, thermometer ⁇ 3, thermometer ⁇ 4, and thermometer ⁇ 5 as predetermined sensors.
  • the flow of the refrigerant is the same as in the fifth embodiment.
  • the operation of the heat exchange amount control unit 16 is almost the same as in the case of the fifth embodiment.
  • the procedure for estimating the dryness ratio in the dryness ratio estimating unit 16A is different from that in the fifth embodiment. If the heat radiation pressure Pd and the evaporation pressure Pe can be estimated, the dryness ratio can be estimated in the same manner as in the fifth embodiment. Therefore, a method of estimating the heat radiation pressure Pd and the evaporation pressure Pe will be described. For this purpose, the following variables indicating the state of the refrigerant are additionally defined. Note that Te is directly measured by the thermometer T1.
  • Tc Refrigerant temperature at the outlet of radiator 3. Measured by thermometer T4.
  • Tb Refrigerant temperature at the inlet of radiator 3. Measured by thermometer T5.
  • Tx Superheat degree of refrigerant sucked into compressor 3.
  • the method of estimating the radiation pressure Pd and the evaporation pressure Pe is as follows.
  • the coefficient of performance COP can be surely improved by appropriately controlling the heat exchange amount in the refrigerant cooling unit by the heat exchange amount control unit.
  • the amount of the second refrigerant which is flammable or has a lower global warming potential than the first refrigerant, is reduced, the COP equivalent to that of the second refrigerant alone can be achieved.
  • the refrigerant circuit of the second refrigerant is configured as a closed loop outside the room, so that leakage of the second refrigerant into the room can be avoided. Since control is performed while estimating the dryness ratio using the dryness ratio prediction means, there is an effect that the COP can be surely improved.
  • thermosensor thermometer
  • accuracy may be lower than in the case of the fifth embodiment.
  • the pressure is fixed between the flow control valve 4 and the compressor 3, but pressure loss occurs in a heat exchanger or the like, so it is necessary to more strictly measure the pressure measurement points.
  • the type and number of sensors are determined in consideration of the balance between accuracy and cost. This is applicable to other embodiments.
  • FIG. 13 is a refrigerant circuit diagram illustrating a configuration of an air-conditioning apparatus according to Embodiment 7.
  • the seventh embodiment is a modification of the first embodiment in which the flow rate control valve inlet temperature is measured and controlled instead of the dryness ratio. Only different points from FIG. 1 in the first embodiment will be described.
  • thermometer T2 which is the second temperature measuring means provided at the inlet of the flow control valve 4, is added. Further, the heat exchange amount control unit 16 determines the range of the inlet temperature of the flow control valve in which the difference from the maximum value of the coefficient of performance COP when the inlet temperature of the flow control valve changes is within a predetermined range.
  • the flow rate of the refrigerant is adjusted so that the flow control valve inlet temperature falls within the control range determined by the flow control valve inlet temperature control range determining unit 16D and the flow control valve inlet temperature control range determining unit 16D, which is the inlet temperature control range determining means. It is composed of a coolant flow controller 16C, which is a control means for controlling.
  • the refrigerant flow controller 16C can control the operation frequency of the second compressor 10 and the command value to the second flow control valve 12.
  • thermometer T2 The temperature at the inlet of the flow control valve is measured by a thermometer T2 and expressed by a variable Tf.
  • the flow control valve inlet temperature control range determining unit 16D outputs the control range of the flow control valve inlet temperature obtained in advance.
  • the control range of the inlet temperature of the flow control valve obtained in advance means that the radiation pressure Pd and the evaporation temperature Te operate at a predetermined design value, and Pd and Te are the maximum values of the coefficient of performance COP at the predetermined value.
  • the refrigerant flow control unit 16C checks whether the flow control valve inlet temperature measured by the thermometer T2 is within the optimum range determined by the flow control valve inlet temperature control range determination unit 16D, that is, within the control range. If it is not within the control range, either or both of the operation frequency of the second compressor 10 and the command value of the flow rate to the second flow control valve 12 are controlled so as to enter the control range. In controlling, appropriate PID control shall be performed. If the estimated measured flow control valve inlet temperature is high !, increase the cooling amount in the refrigerant cooling unit 15 to lower the flow control valve inlet temperature, and if the estimated flow control valve inlet temperature is low! Decrease the amount of cooling in the refrigerant cooling section 15 to increase the flow control valve inlet temperature.
  • the configuration of the seventh embodiment also has the effect that the coefficient of performance COP can be reliably improved by appropriately controlling the heat exchange amount in the refrigerant cooling unit by the heat exchange amount control unit. Even if the amount of the second refrigerant, which is flammable or has a lower global warming potential than the first refrigerant, is reduced, the COP equivalent to that of the second refrigerant alone can be achieved. Further, the refrigerant circuit of the second refrigerant is configured as a closed loop outside the room, so that leakage of the second refrigerant into the room can be avoided.
  • the inlet temperature of the flow control valve is measured, and the amount of heat exchange in the refrigerant cooling means is controlled so that the coefficient of performance COP is close to the maximum value. There is an effect that it can be improved.
  • dryness ratio control range determining unit 16B The matter described regarding the dryness ratio control range determining unit 16B is based on the assumption that the dryness ratio is determined by the flow control valve. By reading the term “inlet temperature”, this also applies to the flow rate control valve inlet temperature control range determining unit 16D. The same applies to the refrigerant flow controller 16C. This also applies to other embodiments in which control is performed using the flow control valve inlet temperature.
  • FIG. 14 is a refrigerant circuit diagram illustrating a configuration of an air-conditioning apparatus according to Embodiment 8.
  • the refrigerant temperature at the inlet of the refrigerant cooling unit 15 is measured, and the refrigerant temperature (flow control valve inlet temperature) at the outlet of the refrigerant cooling unit 15, that is, at the inlet of the flow control valve 4 is calculated.
  • Embodiment 7 is a modification of Embodiment 7 in which the amount of heat exchange in refrigerant cooling unit 15 is controlled so that COP becomes a maximum value. Only different points from FIG. 13 in the case of the seventh embodiment will be described.
  • thermometer T3 instead of the thermometer T2, there is a thermometer T3 which is a third temperature measuring means provided at the outlet of the radiator 3. Outlet force of second heat exchanger 13 Pressure gauge P2 as second pressure measuring means provided between inlet of flow control valve 4 and temperature as first temperature measuring means provided at outlet of flow control valve 4. Add a total of T1.
  • the flow control valve inlet temperature control range determining unit 16D is also a flow control valve inlet temperature estimating means.
  • the flow control valve inlet temperature control range determination unit 16D is based on the point that Pd and Te are changed at predetermined intervals within the condition range of the radiation pressure Pd and the evaporation temperature Te where the air conditioner may operate. It has data on the inlet temperature of the flow control valve that maximizes the COP (called the optimal operating flow control valve inlet temperature data).
  • the inlet temperature of the flow control valve at which the coefficient of performance COP shown in Fig. 5 becomes the maximum is shown. Is the optimum operating flow rate control valve inlet temperature data.
  • the refrigerant flow control unit 16C determines the flow rate of the second refrigerant as described below, and controls the operating frequency of the second compressor 10 so as to achieve the flow rate. Due to control errors, etc., it is not always possible to operate in a state where the COP is maximized, but it can be guaranteed that operation can be performed with the COP near the maximum.
  • the amount of heat exchange in the refrigerant cooling unit 15 is determined from Td and Tfm.
  • the flow rate of the second refrigerant is determined in consideration of various conditions such as the efficiency of the second heat exchange and the temperature of the second refrigerant entering the second heat exchange.
  • the configuration of the eighth embodiment also has the effect that the coefficient of performance COP can be reliably improved by appropriately controlling the heat exchange amount in the refrigerant cooling unit by the heat exchange amount control unit. Even if the amount of the second refrigerant, which is flammable or has a lower global warming potential than the first refrigerant, is reduced, the COP equivalent to that of the second refrigerant alone can be achieved. Further, the refrigerant circuit of the second refrigerant is configured as a closed loop outside the room, so that leakage of the second refrigerant into the room can be avoided.
  • the temperature Td of the refrigerant entering the refrigerant cooling means, the radiation pressure Pd, and the evaporation temperature Te are measured, and the target flow control valve inlet temperature at which the coefficient of performance COP reaches the maximum value under the measured conditions is determined. Since the amount of heat exchange in the refrigerant cooling means, that is, the flow rate of the second refrigerant, is controlled so as to reach the inlet temperature, there is an effect that the coefficient of performance COP can be reliably set to a value close to the maximum value.
  • the flow control valve inlet temperature estimating means is connected to the flow control valve inlet temperature control range determining unit 16D.
  • the flow control valve inlet temperature control range determination unit 16D may perform PID control or the like on the result estimated by the flow control valve inlet temperature estimating means. In PID control, another control method may be used.
  • FIG. 15 shows a refrigerant circuit diagram illustrating a configuration of an air conditioner dedicated to cooling according to Embodiment 9 of the present invention.
  • Embodiment 9 is a modification of Embodiment 1 in which there are two compressors and a radiator for releasing the heat of the refrigerant is added between the compressors. Only the points different from FIG. 1 of the first embodiment will be described.
  • a third radiator 50 for releasing the heat of the refrigerant compressed by the compressor 2 and a third compressor 51 for further compressing the refrigerant flowing out of the third radiator 50 are added and discharged from the third compressor 51.
  • the refrigerant enters the radiator 3.
  • the two compressors are compressed to the same pressure as in the first embodiment.
  • FIG. 16 is a pressure enthalpy diagram for explaining a change in state of the refrigerant in the air-conditioning apparatus according to Embodiment 9 of the present invention.
  • the solid line is the case of the ninth embodiment, and the dotted line is the case where the third radiator 50 is not provided.
  • the refrigerant on the suction side of the compressor 2 is low-temperature low-pressure steam indicated by a point A in FIG.
  • the refrigerant discharged from the compressor 2 is steam at an intermediate pressure and an intermediate temperature indicated by a point J in the middle of the line segment AB.
  • the refrigerant exchanges heat with air or the like in the third radiator 50, and becomes lower in temperature at the same pressure as the point J indicated by the point K. It is further compressed by the third compressor 51 to be in a state of a high-pressure supercritical fluid indicated by a point M.
  • the state of the refrigerant at point M is the same pressure as point B and the temperature is low.
  • the locus of the state change of the refrigerant from entering the radiator 3 to passing through the refrigerant cooling unit 15 and the flow control valve 4 and entering the compressor 2 is the same locus as in the first embodiment. Becomes A
  • the heat exchange amount in the refrigerant cooling unit is controlled by the heat exchange amount control unit.
  • the amount of the second refrigerant which is flammable or has a lower global warming potential than the first refrigerant, is reduced, the COP equivalent to that of the second refrigerant alone can be achieved.
  • the refrigerant circuit of the second refrigerant is configured as a closed loop outside the room, so that leakage of the second refrigerant into the room can be avoided.
  • the coefficient of performance COP can be improved as compared with the case where the third radiator 50 is not provided. This will be described below.
  • the amount of heat exchange in the evaporator 5 is the same regardless of the presence or absence of the third radiator 50. Since the mechanical input is smaller when the third radiator 50 is provided, the coefficient of performance COP is improved.
  • the mechanical input when there is no third radiator 50 is Wl
  • the mechanical input when there is the third radiator 50 is W2. Wl, W2 and the difference are as follows.
  • W1-W2 Hb-Ha- (Hj-Ha + Hm-Hk)
  • FIG. 17 shows a refrigerant circuit diagram illustrating a configuration of an air conditioner capable of cooling and heating according to Embodiment 10 of the present invention.
  • Embodiment 10 is a modification of Embodiment 3 in which two compressors are provided, and a radiator for releasing heat of the refrigerant is added between the compressors. Only the points different from FIG. 7 in the third embodiment will be described.
  • a third radiator 50 for releasing the heat of the refrigerant compressed by the compressor 2 a third compressor 51 for further compressing the refrigerant flowing out of the third radiator 50, and a third radiator 50 for transferring the refrigerant during the heating operation.
  • a flow path switching valve 52 which is means for changing the flow path directly into the third compressor 51, is added to the flow path! /, And the refrigerant discharged from the third compressor 51 enters the four-way valve 20.
  • the two compressors are compressed to the same pressure as in the third embodiment.
  • the flow path switching valve 52 is provided between the compressor 2 and the third radiator 50.
  • the refrigerant is supplied to one of the refrigerant pipe 6A entering the third radiator 50 and the refrigerant pipe 6B connected to the refrigerant pipe 6 connecting the third radiator 50 and the third compressor 51. Can be shed.
  • the flow path switching valve 52 allows the refrigerant to flow through the refrigerant pipe 6A, that is, the third radiator 50, and operates in the same manner as in the ninth embodiment.
  • the flow path switching valve 52 flows the refrigerant through the refrigerant pipe 6B and does not flow the refrigerant through the third radiator 50, and thus operates in the same manner as in the third embodiment.
  • the refrigerant is compressed by one compressor 2, but the only difference is that the refrigerant is compressed by the compressor 2 and the third compressor 51.
  • the coefficient of performance COP can be reliably improved by appropriately controlling the amount of heat exchange in the refrigerant cooling and heating means by the heat exchange amount control means during the cooling operation. . Even if the amount of the second refrigerant, which is flammable or has a lower global warming potential than the first refrigerant, is reduced, the COP equivalent to that of the second refrigerant alone can be achieved.
  • the refrigerant circuit of the second refrigerant is configured as a closed loop outside the room, so that leakage of the second refrigerant into the room can be avoided.
  • the coefficient of performance COP can be improved even during the heating operation. Furthermore, by providing the third radiator 50, the coefficient of performance COP can be improved as compared with the case where the third radiator 50 is not provided.
  • the flow path switching valve 52 may be provided between the third radiator 50 and the third compressor 51. Further, flow path switching valves 52 may be provided on both sides of the third heat radiator 50.
  • the flow path switching valve 52 may be of any type as long as it allows a refrigerant to flow to a predetermined device only during the cooling operation. These are also applicable to other embodiments having the flow path switching valve 52.
  • FIG. 18 shows a refrigerant circuit diagram illustrating a configuration of an air conditioner dedicated to cooling according to Embodiment 11 of the present invention.
  • Embodiment 11 is a modification of Embodiment 9 in which a heat exchanger that cools the refrigerant with the second refrigerant is added between the third radiator 50 and the third compressor 51. Only points different from FIG. 16 of the ninth embodiment will be described.
  • a third heat exchange between the third radiator 50 and the third compressor 51 in which heat is exchanged between the second refrigerant from the second heat exchange 13 and the refrigerant from the third radiator 50, Container 60 is added.
  • the refrigerant exiting the third heat exchanger 60 enters the third compressor 51, and the second refrigerant exiting the third heat exchanger 60 enters the second compressor 10.
  • FIG. 19 shows a pressure enthalpy diagram for explaining a change in the state of the refrigerant in the air-conditioning apparatus according to Embodiment 11 of the present invention.
  • Solid line force This is the case of Embodiment 11 and the dotted line is the case where the third heat exchanger 60 is not provided.
  • the trajectory of the state of the refrigerant until the force is drawn into the compressor 2 and the force also exits the third heat exchange is the same trajectory A—JK as in the ninth embodiment.
  • the refrigerant is further cooled by the second refrigerant, and the temperature becomes lower at the same pressure as the point K indicated by the point N. It is further compressed by the third compressor 51 and becomes a high-pressure supercritical fluid state indicated by a point O.
  • the state of the refrigerant at point O is the same pressure as point M and the temperature is low.
  • the trajectory of the state change of the refrigerant from entering the radiator 3 to entering the compressor 2 is the same trajectory M-CD-E-A as in the first embodiment.
  • the coefficient of performance COP can be surely improved by appropriately controlling the heat exchange amount in the refrigerant cooling unit by the heat exchange amount control unit. Even if the amount of the second refrigerant that is flammable or has a lower global warming potential than the first refrigerant is reduced, a COP equivalent to the case of using only the second refrigerant can be realized.
  • the refrigerant circuit of the second refrigerant is configured as a closed loop outside the room, and leakage of the second refrigerant into the room Can be avoided.
  • the third radiator 50 there is an effect that the coefficient of performance COP can be improved as compared with the case where the third radiator 50 is not provided.
  • the provision of the third heat exchange 60 has an effect that the coefficient of performance COP can be improved as compared with the case where the third heat exchanger 60 is not provided.
  • the reason why the COP is improved by the provision of the third heat exchanger 60 is that the enthalpy of the refrigerant entering the third compressor 51 is reduced as in the case of the provision of the third radiator 50. This is the force that reduces mechanical input.
  • the second refrigerant flowing through the third heat exchanger 60 exchanges heat with the refrigerant in the second heat exchanger 13 to increase the temperature.
  • the second refrigerant exchanges heat by the third heat exchange to produce the second refrigerant.
  • the mechanical input of the refrigerant refrigeration cycle hardly increases in calories.
  • the amount of heat exchange in the second heat exchange is controlled so as to improve the COP, the amount of heat exchange in the third heat exchange ⁇ 60 cannot be determined independently.
  • a refrigerant circuit of the second refrigerant flowing through the third heat exchanger 60 may be separated from a refrigerant circuit of the second refrigerant flowing through the second heat exchanger 13 by adding a compressor and a radiator. In that case, the refrigerant flowing through the third heat exchanger 60 may be different from the second refrigerant.
  • the third radiator 50 may not be provided.
  • the presence of the third radiator 50 can further improve the coefficient of performance COP. The reason is that it is not possible to cool with the outside air! / Since only the part needs to be cooled by the third radiator 50, the amount of heat exchange in the third radiator 50 becomes smaller, This is because mechanical input is reduced.
  • FIG. 20 shows a refrigerant circuit diagram illustrating a configuration of an air conditioner dedicated to cooling according to Embodiment 12 of the present invention.
  • the twelfth embodiment is a modification of the eleventh embodiment such that the refrigerant flows in the third heat exchanger 60 and the second heat exchanger 13 in parallel.
  • Embodiment 1 Only the differences from FIG. 18 of 1 will be described.
  • the twelfth embodiment is also based on the ninth embodiment, and is different from the eleventh embodiment.
  • a second bypass pipe 70 for flowing the second refrigerant to the third heat exchanger 60 and a fourth flow control valve 71 for adjusting the flow rate of the second refrigerant flowing to the third heat exchanger 60 are added.
  • the fourth flow control valve 71 and the second flow control valve 12 are both installed so that the refrigerant flowing out of the condenser 11 flows in parallel.
  • the second refrigerant flows in the order of the fourth flow control valve 71, the second bypass pipe 70, the third heat exchanger 60, and the second compressor 10.
  • the state change of the refrigerant in the air-conditioning apparatus according to Embodiment 12 of the present invention is as shown in FIG. 19 as in the case of Embodiment 11.
  • the twelfth embodiment has the same effect as the eleventh embodiment. Furthermore, since the fourth flow control valve 71 is provided, the flow rate of the second refrigerant flowing through the third heat exchanger can be controlled independently of the flow rate of the second refrigerant flowing through the second heat exchanger 13, and the performance coefficient COP There is an effect that it is easy to realize the operating condition that maximizes.
  • FIG. 21 shows a refrigerant circuit diagram illustrating a configuration of an air conditioner capable of performing cooling and heating according to Embodiment 13 of the present invention.
  • Embodiment 13 is a modification of Embodiment 2 in which two compressors are used, and a third heat exchange for exchanging heat between the refrigerant and the second refrigerant is added between the compressors. It is. Only the points different from FIG. 6 in the second embodiment will be described.
  • the third heat exchange 60 and the third compressor 51 are added between the compressor 2 and the four-way valve 20.
  • the refrigerant flowing out of the compressor 2 flows in the order of the third heat exchanger 60 and the third compressor 51, and enters the four-way valve 20.
  • the state change of the refrigerant during the cooling operation in the air-conditioning apparatus according to Embodiment 12 of the present invention is substantially the same as that in FIG. 16 in the case of Embodiment 9.
  • the change in the state of the refrigerant on the locus JK is caused by the third heat exchange 60, not the third radiator 50.
  • the trajectory of the state change of the refrigerant during the heating operation is the same as the trajectory A—B—C— in FIG. F—A.
  • the coefficient of performance COP can be surely improved by appropriately controlling the heat exchange amount in the refrigerant cooling unit by the heat exchange amount control unit during the cooling operation. Even if the amount of the second refrigerant, which is flammable or has a lower global warming potential than the first refrigerant, is reduced, the COP equivalent to that of the second refrigerant alone can be achieved.
  • the refrigerant circuit of the second refrigerant is configured as a closed loop outside the room, so that leakage of the second refrigerant into the room can be avoided.
  • the third heat exchange 60 there is an effect that the coefficient of performance COP during the cooling operation can be improved as compared with the case where the third heat exchange 60 is not provided.
  • FIG. 22 shows a refrigerant circuit diagram illustrating a configuration of an air conditioner capable of performing cooling and heating according to Embodiment 14 of the present invention.
  • the fourteenth embodiment is a modification of the thirteenth embodiment such that the refrigerant flows through the third heat exchanger 60 and the second heat exchanger 13 in parallel. Only points different from FIG. 21 of the thirteenth embodiment will be described.
  • a second bypass pipe 70 for flowing the second refrigerant to the third heat exchanger 60 and a fourth flow control valve 71 for adjusting the flow rate of the second refrigerant flowing to the third heat exchanger 60 are added.
  • the fourth flow control valve 71 and the second flow control valve 12 are both installed so that the refrigerant flowing out of the condenser 11 flows in parallel.
  • the second refrigerant flows in the order of the fourth flow control valve 71, the second bypass pipe 70, the third heat exchanger 60, and the second compressor 10.
  • the state change of the refrigerant during the cooling operation in the air-conditioning apparatus according to Embodiment 14 of the present invention is the same as that in Embodiment 13 as in Embodiment 13. It is almost the same as Fig. 16 of The point that the state change of the refrigerant on the locus JK is caused by the third heat exchange instead of the third radiator 50 is different from FIG. 16, which is the same as in the case of the thirteenth embodiment.
  • the fourteenth embodiment Since the state change of the refrigerant in the fourteenth embodiment is the same as that in the thirteenth embodiment, the fourteenth embodiment has the same effect as that of the thirteenth embodiment.
  • the fourth flow control valve 71 since the fourth flow control valve 71 is provided, the flow rate of the second refrigerant flowing through the third heat exchanger 60 can be controlled independently of the flow rate of the second refrigerant flowing through the second heat exchanger 13, and the coefficient of performance It is easy to realize the operating condition that maximizes COP!
  • FIG. 23 shows a refrigerant circuit diagram illustrating a configuration of an air conditioner capable of cooling and heating according to Embodiment 15 of the present invention.
  • the number of the compressors is two, and the third heat exchanger 60 that performs heat exchange between the refrigerant and the second refrigerant during the cooling operation is added between the compressors. 3 is modified. Only points different from FIG. 7 in the third embodiment will be described.
  • the third heat exchanger 60 and the third compressor 51 exchange refrigerant with the third heat exchanger during the heating operation.
  • the flow path switching valve 52 is provided between the compressor 2 and the third heat exchanger 60.
  • the refrigerant pipe 6A that enters the third heat exchanger 60 and the refrigerant pipe 6B that is connected to the refrigerant pipe 6 that connects the third heat exchanger 60 and the third compressor 51 Can flow.
  • the flow path switching valve 52 allows the refrigerant to flow through the refrigerant pipe 6A, that is, the third heat exchanger 60, and operates in the same manner as in the thirteenth embodiment.
  • the flow path switching valve 52 flows the refrigerant through the refrigerant pipe 6B and does not flow the refrigerant through the third heat exchanger 60, and thus operates in the same manner as in the third embodiment.
  • the reason that the refrigerant does not flow through the third heat exchanger 60 during the heating operation is to prevent the coefficient of performance COP from lowering.
  • the enthalpy of the refrigerant entering the third compressor 51 increases, and the mechanical input in the third compressor 51 increases.
  • the amount of heat released by the indoor heat exchanger 22 also increases, but the coefficient of performance COP is 1 when only the increase in the amount of heat that is almost equal to the increase in mechanical input in the third compressor 51 is seen. . Since the coefficient of performance COP when the refrigerant is not flown in the third heat exchange is greater than 1, if the coefficient of performance COP is only 1 for the increase, the coefficient of performance COP decreases.
  • the superheat degree of the refrigerant sucked into the compressor 2 during the heating operation needs to be a predetermined value, and only when the superheat degree needs to be the predetermined value, the third heat exchange during the heating operation is performed. You may let the refrigerant flow to 60! ⁇ .
  • the coefficient of performance COP can be reliably improved by appropriately controlling the amount of heat exchange in the refrigerant cooling / heating means by the heat exchange amount control means during the cooling operation.
  • the amount of the second refrigerant which is flammable or has a lower global warming potential than the first refrigerant, is reduced, the COP equivalent to that of the second refrigerant alone can be achieved.
  • the refrigerant circuit of the second refrigerant is configured as a closed loop outside the room, so that leakage of the second refrigerant into the room can be avoided. This has the effect of improving the coefficient of performance COP even during heating operation.
  • the third radiator 50 is also provided, the one with the third radiator 50 has a lower coefficient of performance COP. This has the effect of being able to improve more.
  • the third radiator 50 is also provided, it is added between the third heat exchange 60 and the flow path switching valve 52 so that the refrigerant does not flow into the third radiator 50 during the heating operation.
  • FIG. 24 shows a refrigerant circuit diagram illustrating a configuration of an air conditioner capable of cooling and heating according to Embodiment 16 of the present invention.
  • the sixteenth embodiment is a modification of the fifteenth embodiment such that the refrigerant flows in the third heat exchanger 60 and the second heat exchanger 13 in parallel. Only points different from FIG. 23 of the fifteenth embodiment will be described.
  • a second bypass pipe 70 for flowing the second refrigerant to the third heat exchange 60 and a fourth flow control valve 71 for adjusting the flow rate of the second refrigerant flowing to the third heat exchanger 60 are added.
  • the fourth flow control valve 71 and the second flow control valve 12 are both installed so that the refrigerant flowing out of the condenser 11 flows in parallel.
  • the second refrigerant flows in the order of the fourth flow control valve 71, the second bypass pipe 70, the third heat exchanger 60, and the second compressor 10.
  • the flow path switching valve 52 for flowing the refrigerant to the third heat exchanger 60 only during the cooling operation is eliminated.
  • Other configurations are the same as those in the fifteenth embodiment.
  • Embodiment 16 of the present invention The state change of the refrigerant during the cooling operation in the air-conditioning apparatus according to Embodiment 16 of the present invention is almost the same as that in Embodiment 15 and FIG. 16 in Embodiment 9.
  • the fourth flow control valve 71 is controlled so that the second refrigerant does not flow through the third heat exchanger 60, and the second flow control valve 12 is controlled in the same manner as in the third embodiment.
  • the change in the state of the refrigerant during the heating operation is the same as that in the fifteenth embodiment, and is the same as that in FIG. 8 in the third embodiment.
  • the sixteenth embodiment has the same effect as the fifteenth embodiment.
  • the fourth flow control valve 71 since the fourth flow control valve 71 is provided, the flow rate of the second refrigerant flowing through the third heat exchanger 60 can be controlled independently of the flow rate of the second refrigerant flowing through the second heat exchanger 13, and the coefficient of performance This has the effect of easily realizing operating conditions that maximize COP. Further, since the fourth flow control valve 71 does not allow the second refrigerant to flow in the third heat exchange during the heating operation, the amount of heat exchange in the third heat exchange can be made zero, which is necessary in the case of Embodiment 15. When the flow path switching valve 52 is not required, there is an effect.
  • the third radiator 50 is also provided, the one with the third radiator 50 has a lower coefficient of performance COP. Can be improved There is an effect that.
  • the third radiator 50 is also provided, it is added together with the flow path switching valve 52 that prevents the refrigerant from flowing to the third radiator 50 during the heating operation.
  • FIG. 25 is a refrigerant circuit diagram illustrating a configuration of an air conditioner capable of performing cooling and heating according to Embodiment 17 of the present invention.
  • the seventeenth embodiment is a modification of the sixteenth embodiment in which a third radiator 50 is provided. Only differences from FIG. 24 of the sixteenth embodiment will be described.
  • a third radiator 50 and a flow path switching valve 52 which is a flow path changing means for flowing the refrigerant into the third heat exchanger 60 without flowing the refrigerant to the third radiator 50 during the heating operation are added. .
  • the flow path switching valve 52 is provided between the compressor 2 and the third radiator 50.
  • the refrigerant is supplied to one of the refrigerant pipe 6A that enters the third radiator 50 and the refrigerant pipe 6B that is connected to the refrigerant pipe 6 that connects the third radiator 50 and the third heat exchange 60. Can be shed.
  • the fourth flow control valve 71 is controlled so that the second refrigerant does not flow through the third heat exchanger 60, and the second flow control valve 12 is controlled in the same manner as in the third embodiment.
  • the change in the state of the refrigerant during the heating operation is the same as in FIG. 8 in the third embodiment, which is the same as in the sixteenth embodiment.
  • the same effect can be obtained even when the refrigerant is forced to flow through the third heat exchange during the heating operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

 流量制御弁の入口の冷媒を冷却する冷媒冷却手段を有する冷凍装置では、冷媒冷却手段での冷却量が少なすぎる場合も多すぎる場合も、成績係数が低下していた。冷媒を圧縮する圧縮機(2)と、冷媒の熱を放出させる放熱器(3)と、冷媒を冷却する冷媒冷却手段(15)と、冷媒の流量を調整する流量制御弁(4)と、冷媒を蒸発させる蒸発器(5)と、冷媒冷却手段(15)における熱交換量を制御する熱交換量制御手段(16)とを備え、圧縮機(2)、放熱器(3)、冷媒冷却手段(15)、流量制御弁(4)、蒸発器(5)の順番に冷媒を循環させる。

Description

明 細 書
冷凍装置及び空気調和装置
技術分野
[0001] この発明は、冷凍庫、冷蔵庫、製氷機、水冷却装置、冷房ができる空気調和装置 などで使用される冷凍装置及び冷房と暖房を行う空気調和装置に関するものである 背景技術
[0002] 従来技術における、圧縮機、放熱器、流量制御弁、蒸発器を冷媒配管で接続しノ、 イド口フルォロカーボン (HFCと略す)系冷媒が循環するように構成した冷凍装置及 び冷房と暖房を行う空気調和装置にぉ 、ては、 HFC系冷媒の地球温暖化係数が大 きぐ HFC系冷媒が地球温暖化の原因になる弊害が有る。
[0003] フロンよりも地球温暖ィ匕係数が小さいプロパンなどのノ、イド口カーボン (HCと略す) 系冷媒、アンモニア、二酸化炭素を用いた冷凍装置及び冷房と暖房を行う空気調和 装置が開発されつつある。 HC系冷媒ゃアンモニアを使用する場合には、これらの冷 媒が可燃性を持っため発火しないための対策が必要であり、法令によりその使用量 が制限されている。二酸ィ匕炭素は不燃性であるが、成績係数 COPが低くなるという 課題が有る。
[0004] 二酸化炭素を冷媒として使用する冷凍装置の例として空気調和装置の場合で、二 酸化炭素を冷媒として使用すると成績係数 COPが低くなる理由を説明する。空気調 和装置では、空気温度を規定した冷房と暖房の定格条件が有る。冷房運転では、室 外の乾球温度が 35°Cで、室内では乾球温度が 27°C、湿球温度が 19°Cである。暖 房運転では、室外で乾球温度が 7°C、湿球温度が 6°Cであり、室内の乾球温度が 20 °Cである。冷媒として二酸化炭素を使用する場合は、室外の温度が高い冷房定格条 件での成績係数 COPが特に低くなる。これは、室外の乾球温度が 35°Cであるため、 室外に有る熱交 出口での冷媒は 35°C以上になるからである。二酸化炭素は超 臨界状態から膨張する場合に、 10— 60°Cぐら!/、の間に比熱が大き!/、領域が有るが 、室外の乾球温度が 35°Cの条件では、比熱が大きい領域すベてを使用することがで きないために、エネルギー消費効率が低くなる。これに対して、 HFC系冷媒または H C系冷媒では、冷房定格条件ですベての冷媒蒸気を冷媒液に変化させる熱交換が 可能であり、二酸ィ匕炭素よりも成績係数 COPがよくなる。
[0005] 従来の二酸化炭素を冷媒として用いる空気調和装置においては、水や氷水や海 水からなる低温熱源を用いて冷媒を冷却する冷却用熱交換器からなる冷媒冷却手 段を備え、圧縮機、放熱器、冷媒冷却手段、流量制御弁、蒸発器を冷媒配管で順に 接続して冷媒を循環させるものが有る。これは、冷媒冷却手段を用いて流量制御弁 の入口における冷媒の温度を下げて、成績係数 COPの向上を図るものである。(例 えば、特許文献 1参照)。
[0006] 流量制御弁の入口の冷媒を冷却する冷却手段として、動力を必要としな!、水や海 水などを利用できない場合には冷却手段に動力が必要である。この動力は、冷却手 段での冷却能力に応じて大きくなる。したがって、空気調和装置の圧縮機に必要な 動力と冷却手段に必要な動力の総和を考えた場合には、冷却手段で冷却しすぎると 、冷却手段に要する動力が増カロし結果として成績係数 COPが低下する。冷却が十 分でない場合は、空気調和装置の圧縮機に要する動力が増カロして結果として成績 係数 COPが低下する。
[0007] 特許文献 1 :特開平 10— 54617号公報
発明の開示
発明が解決しょうとする課題
[0008] 冷凍装置を空気調和装置に適用した場合で説明したが、冷凍庫、冷蔵庫、製氷機 、水冷却装置などで使用する冷凍装置の場合でも同様である。
この発明は、二酸ィ匕炭素などのフロンよりも地球温暖化係数力 、さい不燃性の冷 媒を用い、エネルギーを用いて流量制御弁の入口の冷媒を冷却する冷却手段を備 える冷凍装置及び冷房と暖房を行う空気調和装置において、成績係数 COPを向上 させることを目的とするものである。
課題を解決するための手段
[0009] この発明に係る冷凍装置は、冷媒を圧縮する圧縮機と、冷媒の熱を放出させる放 熱器と、冷媒を冷却する冷媒冷却手段と、冷媒の流量を調整する流量制御弁と、冷 媒を蒸発させる蒸発器と、前記冷媒冷却手段における熱交換量を制御する熱交換 量制御手段とを備え、前記圧縮機、前記放熱器、前記冷媒冷却手段、前記流量制 御弁、前記蒸発器の順番に冷媒を循環させることを特徴とするものである。
[0010] この発明に係る空気調和装置は、冷媒を圧縮する圧縮機と、該圧縮機から吐出さ れる冷媒が流れる方向を切替える四方弁と、冷媒と外気との間で熱交換を行う室外 熱交換器と、冷媒を冷却または加熱する冷媒冷却加熱手段と、冷媒の流量を調整す る流量制御弁と、冷媒と室内の空気との間で熱交換を行う室内熱交^^と、前記冷 媒冷却加熱手段における熱交換量を制御する熱交換量制御手段とを備え、冷房運 転時に、前記圧縮機、前記室外熱交換器、前記冷媒冷却加熱手段、前記流量制御 弁、前記室内熱交換器の順番に冷媒を循環させ、暖房運転時に、前記圧縮機、前 記室内熱交換器、前記流量制御弁、前記冷媒冷却加熱手段、前記室外熱交換器の 順番に冷媒を循環させることを特徴とするものである。
発明の効果
[0011] この発明に係る冷凍装置は、冷媒を圧縮する圧縮機と、冷媒の熱を放出させる放 熱器と、冷媒を冷却する冷媒冷却手段と、冷媒の流量を調整する流量制御弁と、冷 媒を蒸発させる蒸発器と、前記冷媒冷却手段における熱交換量を制御する熱交換 量制御手段とを備え、前記圧縮機、前記放熱器、前記冷媒冷却手段、前記流量制 御弁、前記蒸発器の順番に冷媒を循環させることを特徴とするものなので、効率を適 切に向上することができる。
[0012] この発明に係る空気調和装置は、冷媒を圧縮する圧縮機と、該圧縮機から吐出さ れる冷媒が流れる方向を切替える四方弁と、冷媒と外気との間で熱交換を行う室外 熱交換器と、冷媒を冷却または加熱する冷媒冷却加熱手段と、冷媒の流量を調整す る流量制御弁と、冷媒と室内の空気との間で熱交換を行う室内熱交^^と、前記冷 媒冷却加熱手段における熱交換量を制御する熱交換量制御手段とを備え、冷房運 転時に、前記圧縮機、前記室外熱交換器、前記冷媒冷却加熱手段、前記流量制御 弁、前記室内熱交換器の順番に冷媒を循環させ、暖房運転時に、前記圧縮機、前 記室内熱交換器、前記流量制御弁、前記冷媒冷却加熱手段、前記室外熱交換器の 順番に冷媒を循環させることを特徴とするものなので、効率を適切に向上することが できる。
図面の簡単な説明
圆 1]この発明の実施の形態 1での空気調和装置の構成を説明する冷媒回路図であ る。
圆 2]この発明の実施の形態 1での空気調和装置における冷媒の状態変化を説明す る圧力ェンタルピ図である。
圆 3]この発明の実施の形態 1での空気調和装置における冷媒の状態と対応する冷 媒回路図における位置を説明する図である。
[図 4]この発明の実施の形態 1での空気調和装置における流量制御弁の入口におけ る冷媒温度に対する冷房定格条件での成績係数 COPの向上比率をシミュレーショ ンで計算した結果を示す図である。
圆 5]この発明の実施の形態 1での空気調和装置における蒸発器の入口での冷媒の 乾き度と放熱器の出口での冷媒を蒸発温度まで減圧した場合の乾き度との比の値で ある乾き度比に対する冷房定格条件での成績係数 COPの向上比率をシミュレーショ ンで計算した結果を示す図である。
圆 6]この発明の実施の形態 2での空気調和装置の構成を説明する冷媒回路図であ る。
圆 7]この発明の実施の形態 3での空気調和装置の構成を説明する冷媒回路図であ る。
圆 8]この発明の実施の形態 3での空気調和装置における暖房運転時の冷媒の状態 変化を説明する圧力ェンタルピ図である。
圆 9]この発明の実施の形態 4での空気調和装置の構成を説明する冷媒回路図であ る。
圆 10]この発明の実施の形態 5での空気調和装置の構成を説明する冷媒回路図で ある。
圆 11]この発明の実施の形態 5での乾き度比を推定する過程で使用する変数を説明 する図である。
圆 12]この発明の実施の形態 6での空気調和装置の構成を説明する冷媒回路図で ある。
[図 13]この発明の実施の形態 7での空気調和装置の構成を説明する冷媒回路図で ある。
[図 14]この発明の実施の形態 8での空気調和装置の構成を説明する冷媒回路図で ある。
[図 15]この発明の実施の形態 9での空気調和装置の構成を説明する冷媒回路図で ある。
[図 16]この発明の実施の形態 9での空気調和装置の構成による効率向上を説明する ための圧力ェンタルピ図である。
[図 17]この発明の実施の形態 10での空気調和装置の構成を説明する冷媒回路図で ある。
[図 18]この発明の実施の形態 11での空気調和装置の構成を説明する冷媒回路図で ある。
[図 19]この発明の実施の形態 11での空気調和装置の構成による効率向上を説明す るための圧力ェンタルピ図である。
[図 20]この発明の実施の形態 12での空気調和装置の構成を説明する冷媒回路図で ある。
[図 21]この発明の実施の形態 13での空気調和装置の構成を説明する冷媒回路図で ある。
[図 22]この発明の実施の形態 14での空気調和装置の構成を説明する冷媒回路図で ある。
[図 23]この発明の実施の形態 15での空気調和装置の構成を説明する冷媒回路図で ある。
[図 24]この発明の実施の形態 16での空気調和装置の構成を説明する冷媒回路図で ある。
[図 25]この発明の実施の形態 17での空気調和装置の構成を説明する冷媒回路図で ある。
符号の説明 1 :空気調和装置
2 :圧縮機
2A:中間圧吸入口
3 :放熱器
4 :流量制御弁
5 :蒸発器
6 :冷媒配管
6A:冷媒配管
6B:冷媒配管
10 :第 2圧縮機
11 :凝縮器
12 :第 2流量制御弁
13 :第 2蒸発器
14 :第 2冷媒配管
15 :冷媒冷却部 (冷媒冷却手段)
16 :熱交換量制御部 (熱交換量制御手段)
16A:乾き度比推定部 (乾き度比推定手段)
16B:乾き度比制御範囲決定部 (乾き度比制御範囲決定手段)
16C:冷媒流量制御部 (制御手段)
16D:流量制御弁入口温度制御範囲決定部(流量制御弁入口温度推定手段、 制御弁入口温度制御範囲決定手段)
20 :四方弁
21 :室外熱交換器
22 :室内熱交換器
23 :第 1熱交換器
24 :第 2熱交換器
25 :冷媒冷却加熱部 (冷媒冷却加熱手段)
40 :第 2四方弁 41 :第 1熱交換器
42 :第 2熱交換器
45 :気液分離器
46 :第 3流量制御弁
47 :バイパス配管
50 :第 3放熱器
51 :第 3圧縮機
52 :流路切替弁 (流路変更手段)
60 :第 3熱交換器
70 :第 2バイパス配管
71 :第 4流量制御弁
PI :圧力計 (第 1圧力計測手段)
P2 :圧力計 (第 2圧力計測手段)
Tl :温度計 (第 1温度計測手段)
T2 :温度計 (第 2温度計測手段)
T3 :温度計 (第 3温度計測手段)
T4 :温度計 (第 4温度計測手段)
T5 :温度計 (第 5温度計測手段)
発明を実施するための最良の形態
実施の形態 1.
この発明による実施の形態 1を、図 1一図 5により説明する。図 1は実施の形態 1に おける、冷房専用の空気調和装置の構成を説明する冷媒回路図である。図 2は、冷 媒の状態変化を説明する圧力ェンタルピ図である。冷媒の状態と対応する冷媒回路 図における位置を説明する図を、図 3に示す。図 4は、流量制御弁 4の入口における 冷媒温度に対する冷房定格条件での成績係数 COPの向上比率をシミュレーション で計算した結果を示す図である。図 5は、蒸発器 5の入口での冷媒の乾き度と放熱器 3の出口での冷媒を蒸発温度まで減圧した場合の乾き度との比の値である乾き度比 に対する冷房定格条件での成績係数 COPの向上比率をシミュレーションで計算した 結果を示す図である。
[0016] 図 1において、空気調和装置 1は、冷媒を圧縮する圧縮機 2、冷媒の熱を放出させ る放熱器 3、冷媒を冷却する冷媒冷却手段である冷媒冷却部 15、冷媒の流量を調 整する流量制御弁 4、冷媒を蒸発させる蒸発器 5を冷媒配管 6で順に接続し、冷媒と して二酸ィ匕炭素が循環するように構成されている。図において、冷媒の流れを矢印 により表現する。冷媒冷却部 15における熱交換量を制御する熱交換量制御手段で ある熱交換量制御部 16も備えている。圧縮機 2などで構成される蒸気圧縮式冷凍サ イタルを循環する冷媒を第 1冷媒とも呼ぶ。
[0017] 冷媒冷却部 15は、二酸ィ匕炭素よりもエネルギー消費効率がよい第 2冷媒であるプ 口パンが循環する蒸気圧縮式冷凍サイクルで動作するものである。冷媒冷却部 15は 、第 2冷媒を圧縮する第 2圧縮機 10、第 2冷媒の熱を放出させる凝縮器 11、第 2冷媒 の流量を調整する第 2流量制御弁 12、冷媒循環路の流量制御弁 4入口での冷媒の 熱により第 2冷媒を蒸発させる第 2蒸発器 13を第 2冷媒配管 14で順に接続している。 図において、第 2冷媒の流れも矢印により表現する。
第 2冷媒を使用する冷凍サイクルによる冷媒冷却部 15の冷却能力は、第 1冷媒を 使用する冷凍サイクルの冷却能力の 10分の 1から 5分の 1程度とする。
[0018] 蒸発器 5が空気を冷却する対象の室内に設置され、その他の装置は屋外に設置さ れ、冷媒配管 6が機器の間に冷媒を循環させるように配管される。なお、駅のホーム などの屋外に蒸発器 3が設置される場合も有る。放熱器 3、蒸発器 5及び凝縮器 11と V、う空気と熱交換を行う必要が有る装置以外は、熱力 Sもれて効率が下がることが無 、 ように、必要十分な断熱を実施する。
[0019] 次に、冷媒 (厳密には第 1冷媒)の状態の変化を図 2によって説明する。図において 点 Cなどの軌跡の角に無い冷媒の状態を示す点は、黒丸により点の位置を示す。ま ず、圧縮機 2の吸入側の冷媒配管 6での低温低圧の冷媒蒸気は、図 2における点 A の位置に有る。圧縮機の入口では冷媒はすべて蒸気である必要が有るが、冷媒蒸 気の温度が高いと圧縮機でより多くの機械的入力が必要になるので、点 Aでの過熱 度はゼロに近 、所定値とする。
冷媒が圧縮機 2によって圧縮されると、点 Bで示される高温高圧の超臨界流体とな つて吐出される。冷媒は放熱器 3に送られ、そこで空気などと熱交換して温度が低下 して点 Cで示される高圧の超臨界流体の状態になる。
冷媒は熱交換量制御部 16により冷却能力が制御される冷媒冷却部 15によってさ らに冷却されて温度が低下し、点 Dで示される状態となる。さらに、流量制御弁 4に流 入し減圧され、点 Eで示される低温低圧の気液二相状態に変化する。冷媒は蒸発器 5に送られ、そこで空気などと熱交換して蒸発し、点 Aで示される低温低圧の冷媒蒸 気になり、圧縮機に戻る。
[0020] 冷媒冷却部 15が冷媒を冷却しない場合には、図 2において点 Cで示される冷媒が 流量制御弁 4に流入し減圧され、点 Fで示される低温低圧の気液二相状態に変化す る。冷媒冷却部 15が冷媒を冷却しない場合の冷媒の軌跡を点線で示す。冷媒冷却 部 15が冷媒を冷却する場合の軌跡 A— B— C D— E— Aと、冷却しな 、場合の軌跡 A B— C F— Aを比較すると、以下のようになる。圧縮機での機械的入力は軌跡 A— B でのェンタルピ差 HIであり、どちらの場合でも同じである。冷却能力は、冷媒冷却部 15が冷媒を冷却する場合は軌跡 E— Aのェンタルピ差 H2Aであり、冷却しな 、場合 は軌跡 F— Aのェンタルピ差 H2Bである。図 2より明らカなように H2A > H2Bであり、 冷媒冷却部 15での機械的入力を考慮しなければ、冷媒を冷却するほど成績係数 C OPが向上する。
[0021] 実際は、冷媒冷却部 15でも機械的入力を必要とするので、冷媒冷却部 15で冷媒 を冷却することによる冷却能力の向上分と冷媒冷却部 15への機械的入力の比の値 力 成績係数 COPよりも大きい範囲では、冷却するほど成績係数 COPが向上し、比 の値が成績係数 COPよりも小さくなると成績係数 COPが低下する。これより、冷媒冷 却部 15での熱交換量すなわち冷却量には、成績係数 COPを最もよくする最適値が 存在することになる。
[0022] このことをより定量的に説明する。図 4は、流量制御弁 4の入口における冷媒温度に 対する冷房定格条件での成績係数 COPの向上比率をシミュレーションで計算した結 果を示す図である。図 5は、蒸発器 5の入口での冷媒の乾き度と放熱器 3の出口での 冷媒を蒸発温度まで減圧した場合の乾き度との比の値である乾き度比を横軸にとつ て、冷房定格条件での成績係数 COPの向上比率をシミュレーションで計算した結果 を示す図である。乾き度比の分子は、図 2の点 Eにおける乾き度であり、分母は図 2の 点 Fにおける乾き度である。なお、乾き度とは気液 2相状態での冷媒の冷媒蒸気の比 率である。冷媒蒸気だけであれば乾き度は 1. 0で有り、冷媒蒸気がなければ乾き度 は 0. 0である。
[0023] シミュレーションの細かな条件は以下である。冷房定格条件において、冷媒がニ酸 化炭素で、圧縮機 2の効率が 70%、圧縮機 2の吸入蒸気過熱度が 0°C、放熱器 3の 出口における冷媒と空気との温度差が 3°C、冷媒冷却部 15で使用する第 2冷媒がプ 口パン、第 2圧縮機 10の効率が 70%、凝縮器 11における凝縮温度が 40°Cである。 図 4では、圧縮機 2による圧縮後の冷媒の圧力 Pdを Pd= 9MPa, lOMPa, 11MP aの何れかとし、蒸発器 5の入口での冷媒の温度 Teを Te = 15°C, 10°C, 5°C, 0°C の何れかとし、流量制御弁 4の入口での冷媒の温度 Tfを変化させた場合の成績係 数 COPを、 Te = 0°Cとして冷媒冷却部 15で冷媒を冷却しな 、場合すなわち Tf = 38 °Cの場合での成績係数 COPで割った値である COP改善比を示す。
図 5では、 Pd、 Teを図 4と同様に設定した各場合に対して、乾き度比(変数 Xで表 現する)を変化させた場合成績係数 COPを、 Te = 0°Cとして冷媒冷却部 15で冷媒を 冷却しな!、場合すなわち X= 1. 0の場合での成績係数 COPで割った値である COP 改善比を示す。
[0024] 図 4と図 5から、流量制御弁 4の入口での冷媒の温度 Tfを適切に制御すると、全く 冷却しない場合に対して成績係数 COPが 1. 3— 1. 4倍程度改善することが分かる。 また、図 4から Te= 15°Cまたは 10°Cの場合は、 Pd = 9MPa, lOMPa, l lMPaの 何れの場合でも Tf = 20°C— 30°Cの範囲で、成績係数 COPは最大値を含み変動の 幅は 0. 1未満である。 Te = 5°Cまたは 0°Cの場合は、 Pd= 9MPa, lOMPa, 11MP aの何れの場合でも Tf = 15°C— 25°Cの範囲で、成績係数 COPは最大値を含み変 動の幅は 0. 1未満である。図 5からは、 Pd= l lPa、 Te = 15°Cの場合を除き、乾き 度比 X=0. 2-0. 5の範囲で、成績係数 COPは最大値を含み変動の幅は 0. 1未 満である。ことが分かる。 Pd= l lPa、 Te = 15°Cの場合は、 X 0. 1で成績係数 CO Pが最大になる力 X=0. 2-0. 5の範囲でも最大値との差は 0. 02程度である。
[0025] この発明による実施の形態 1では、成績係数 COPが所定の動作条件において成 績係数 COPが最大値力もの差が小さ 、所定の範囲内になるように、冷媒冷却手段 での熱交換量を熱交換量制御手段により制御して、流量制御弁 4の入口の冷媒温 度を適切に制御するものである。熱交換量制御手段が有ることにより、冷媒冷却手段 での熱交換量が十分でな力つたり過剰であったりして成績係数 COPを悪ィ匕させるこ とを避けることができる。すなわち確実に成績係数 COPを改善できるという効果が有 る。また、改善した成績係数 COPは、第 2冷媒として使用したプロパンなどを冷媒とし て用いた場合の値に近い値とすることができる。第 2冷媒は、可燃性が有るか地球温 暖化係数が第 1冷媒よりも悪い冷媒である。そのような第 2冷媒の使用量を低減でき るという効果も有る。また、第 2冷媒の冷媒回路は室外にて閉ループで構成し、室内 への第 2冷媒の漏洩を回避できる。
[0026] なお、図 4と図 5では、 Pdと Teを一定としてグラフを書いている力 冷媒冷却手段で の熱交換量を変化させると、 Pdや Teが僅かに変化する場合もある。そのような場合 でも、冷媒冷却手段での熱交換量の変化に対して成績係数 COPが最大になる冷媒 冷却手段での熱交換量は存在しており、成績係数 COPが最大値に近 、所定の範囲 内になるように冷媒冷却手段での熱交換量を制御してやれば、確実に成績係数 CO Pを向上できる。
[0027] この実施の形態 1では、第 1冷媒として二酸ィ匕炭素を使用したが、フロンより地球温 暖化係数が小さく不燃性の冷媒であれば、二酸ィ匕炭素以外を使用してもよい。第 2 冷媒としてプロパンを使用したが、第 1冷媒よりもエネルギー消費効率がよい冷媒で あれば、可燃性があったり地球温暖化係数が第 1冷媒より大き力 たりしてもよい。第 2冷媒としては、 HFC系冷媒、 HC系冷媒、アンモニアなどを使用することが考えられ る。
冷媒冷却手段として第 2冷媒による蒸気圧縮式冷凍サイクルを使用したが、吸収式 冷凍サイクル、ペルチェ効果などを利用するものであってもよい。水や氷水や海水か らなる低温熱源が利用可能な場合は、低温熱源を用いて冷却した上で不足する冷 却量を、エネルギーを消費する手段により冷却する冷媒冷却手段を用いるようにして ちょい。
第 2冷媒による蒸気圧縮式冷凍サイクルを使用しない場合は、第 1冷媒として HFC 系冷媒、 HC系冷媒、アンモニアなどを使用する場合でも、冷媒冷却手段での熱交 換量を熱交換量制御手段により制御して、成績係数 COPを確実に向上できるという 効果は得られる。
圧縮機を 1台としたが、 2台以上の圧縮機を使用する場合にも適用できる。第 2圧縮 機を 1台としたが、 2台以上の圧縮機を使用する場合にも適用できる。
[0028] 冷房専用の空気調和装置に冷凍装置を使用する場合で説明したが、冷房と暖房 ができる空気調和装置、冷凍庫、冷蔵庫、製氷機、水冷却装置などで使用するように してもよい。なお、蛇足であるが、冷凍装置または冷凍機とは低温をつくる機械装置 を意味しており、食品などを凍結させて低温で保存する機械装置だけを意味するも のではない。また、冷房と暖房ができる空気調和装置も、冷房運転時は冷凍装置に 含まれる。
以上のことは、他の実施の形態でもあてはまる。
[0029] 実施の形態 2.
図 6に、この発明による実施の形態 2における冷房と暖房ができる空気調和装置の 構成を説明する冷媒回路図を示す。図において、冷房時の冷媒の流れを実線の矢 印で示し、暖房時の冷媒の流れを点線の矢印で示す。
冷房専用の場合である実施の形態 1の図 1と異なる点だけを説明する。冷房運転と 暖房運転の両方ができるように、圧縮機 2から吐出する冷媒が流れる方向を切替える 四方弁 20を追加して 、る。放熱器 3と蒸発器 5は暖房運転で冷房運転の場合と互 ヽ に役割が入れ替わって運転するので、放熱器 3は冷媒と外気の間で熱交換を行う室 外熱交換器 21に置き換わり、蒸発器 5は冷媒と室内の空気の間で熱交換を行う室内 熱交換器 22に置き換わっている。なお、冷房運転時には、室外熱交換器 21は放熱 器 3と同様に動作し、室内熱交換器 22は蒸発器 5と同様に動作する。
四方弁 20により、冷房運転時には冷媒が、圧縮機 2、室外熱交換器 21、冷媒冷却 部 15、流量制御弁 4、室内熱交換器 22の順番に循環する。暖房運転時には、圧縮 機 2、室内熱交換器 22、流量制御弁 4、冷媒冷却部 15、室外熱交換器 21の順番に 冷媒を循環させる。
その他の点では、実施の形態 1の場合と同様な構成である。 [0030] 次に動作を説明する。まず、冷房運転時の動作は、放熱器 3が室外熱交換器 21に 蒸発器 5が室内熱交 22にそれぞれ置き換わっているが、実施の形態 1の場合と 同様である。冷媒の状態変化を説明する圧力ェンタルピ図も、図 2のようになる。 次に、暖房運転時の動作を説明する。まず、圧縮機 2の吸入側の冷媒配管 6での 低温低圧の冷媒蒸気は、冷媒がすべて蒸気であり過熱度がゼロに近い所定値にな る図 2における点 Αの位置に有る。圧縮機 2で圧縮されて、点 Bで示される高温高圧 の超臨界流体となって吐出される。吐出された冷媒は、四方弁 20を通って放熱器と しての室内熱交換器 22に送られ、室内の空気を暖めるように熱交換して温度が低下 して点 Cで示される高圧の超臨界流体になる。なお厳密には、暖房運転での点じの 位置は冷房運転の場合よりもェンタルビが小さい位置に有る。その理由は、暖房定 格運転の室内温度は 20°Cであり、冷房定格運転の室外温度の 35°Cよりも低いから である。
[0031] 冷媒は流量制御弁 4に流入し減圧され、点 Fで示される低温低圧の気液二相状態 に変化する。暖房運転時は冷媒冷却部 15を動作させないので、冷媒冷却部 15の第 2蒸発器 13を通過しても、冷媒の状態はほとんど変化しない。厳密には、第 2蒸発器 13において冷媒と第 2冷媒の間で熱交換がなされる可能性は有るが、その熱交換量 は無視できるほど小さい。その理由は、第 2圧縮機 10が停止しており、第 2冷媒が循 環しておらず、冷媒配管は細いので、冷媒配管中の細くて長い冷媒を熱量が伝わり にくぐ冷媒冷却部 15全体が断熱されており熱量を発散または受容することが無 ヽ 力もである。他の熱交換器でも、少なくとも一方の冷媒が流れない場合は、熱交換が 行われないものとする。
冷媒は、蒸発器としての室外熱交換器 21に送られ、そこで空気などと熱交換して 蒸発し、点 Aで示される低温低圧の冷媒蒸気になる。そして、四方弁 20を通り圧縮 機 1に戻る。以上をまとめると、暖房運転時での冷媒の状態変化の軌跡は、図 2にお ける軌跡 A— B—C— F— Aになる。
暖房運転時は冷媒冷却部 15が停止して 、るので、冷媒冷却部 15が無 、場合と成 績係数 COPが同じになる。
[0032] この実施の形態 2の構成でも、冷房運転時に熱交換量制御手段により冷媒冷却手 段での熱交換量を適切に制御することにより、成績係数 COPを確実に向上できると いう効果が有る。可燃性が有るか地球温暖化係数が第 1冷媒よりも悪い第 2冷媒の使 用量を少なくしても、第 2冷媒だけの場合と同等な成績係数 COPを実現できるという 効果も有る。また、第 2冷媒の冷媒回路は室外にて閉ループで構成し、室内への第 2 冷媒の漏洩を回避できる。
[0033] 実施の形態 3.
図 7は、実施の形態 3における空気調和装置の構成を示す冷媒回路図である。実 施の形態 3では、実施の形態 2における冷媒冷却部 15を、冷媒を冷却または加熱す る冷媒冷却加熱手段である冷媒冷却加熱部 25に変更している。
実施の形態 2と異なる点だけを説明する。冷媒冷却加熱部 25において、第 2圧縮 機から吐出する第 2冷媒が流れる方向を切替える第 2四方弁 40が追加されており、 凝縮器 11が第 2冷媒と外気の間で熱交換を行う第 1熱交換器 41に置き換わり、第 2 蒸発器 13が冷媒を冷却または加熱するように第 2冷媒との間で熱交換を行う第 2熱 交換器 42に置き換わっている。なお、冷房運転時は、第 1熱交換器 41は凝縮器 11 と同様に動作し、第 2熱交換器 42は第 2蒸発器 13と同様に動作する。
第 2四方弁 40により、冷房運転時には冷媒が、第 2圧縮機 10、第 1熱交換器 41、 第 2流量制御弁 12、第 2熱交換器 42の順番に循環する。暖房運転時には、圧縮機 2 、第 2熱交換器 42、第 2流量制御弁 12、第 1熱交換器 41の順番に冷媒を循環させる 上記以外の点は、実施の形態 2の場合と同様である。
[0034] 次に動作を説明する。冷房運転時の動作は、実施の形態 1及び実施の形態 2の場 合と同様である。
暖房運転時に、実施の形態 2では冷媒冷却部 15が停止していたが、この実施の形 態 3では冷媒冷却加熱部 25が冷媒を加熱するように動作する。この発明の実施の形 態 3での空気調和装置における暖房運転時の冷媒の状態変化を説明する圧力ェン タルピ図を、図 8に示す。実線力この実施の形態 3の場合であり、点線が実施の形態 2の場合である。
[0035] 暖房運転時の動作は、以下のようになる。まず、圧縮機 2の吸入側の冷媒配管 6で の低温低圧の冷媒蒸気は、冷媒がすべて蒸気であり過熱度がゼロに近い所定値に なる図 8における点 A2の位置に有る。理由は後で説明する力 点 A2は実施の形態 2の場合での点 Aよりも圧力が少し高くェンタルピは少し小さ ヽ。圧縮機 2で圧縮され て、点 B2で示される高温高圧の超臨界流体となって吐出される。点 B2と点 Bの圧力 は同じで、点 B2のェンタルピ方が点 Bよりも小さい。
吐出された冷媒は、四方弁 20を通って放熱器としての室内熱交 に送られ、 室内の空気を暖めるように熱交換して温度が低下して点 Cで示される高圧の超臨界 流体になる。室内熱交換器 22において所定の条件である室内の空気と熱交換する ので、点 Cは実施の形態 2の場合とほぼ同じ位置に有る。
冷媒は流量制御弁 4に流入し減圧され、点 F2で示される低温低圧の気液二相状 態に変化する。点 F2も点 A2と同じ圧力であり、点 Fよりも少し圧力が高い。冷媒冷却 加熱部 25の第 2熱交換器 41により加熱されて、冷媒蒸気が増加した気液二相状態 の点 Gで示される状態になる。冷媒が蒸発器としての室外熱交換器 21へ送られ、そ こで空気などと熱交換して蒸発し、低温低圧の冷媒蒸気になり、四方弁 20を通り圧 縮機に戻る。
[0036] さて、冷媒冷却加熱部 25の第 2熱交換器 41により冷媒を加熱することにより、冷媒 を加熱しない場合よりも、流量制御弁 4を出た冷媒の圧力が高くなる理由を説明する 。冷媒を加熱することにより室外熱交換器 21で吸収すべき熱量が小さくなり、相対的 に室外熱交換器 21の能力が大きくなつたことになる。室外熱交換器 21の能力が大き くなると、所定の外気温に対して冷媒蒸気の温度差が小さくすなわち蒸発温度が高く なる。蒸発温度が高くなると、冷媒蒸気の圧力も高くなる。
[0037] 次に、冷媒冷却加熱部 25の第 2熱交換器 41により冷媒を加熱することにより、成績 係数 COPが向上することを説明する。冷媒を加熱しない場合の成績係数を COP1と し、冷媒を加熱する場合の成績係数を COP2とする。また、点 Bと点 Aとの間のェンタ ルビ差を Δ HIとし、点 B2と点 A2との間のェンタルピ差を Δ Η2とする。点 Aと点じの 間のェンタルピ差を Δ Η3、点 Α2と点 Cの間のェンタルピ差を Δ Η4とする。ここで、 Δ HIは冷媒冷却加熱部 25で冷媒を加熱しな ヽ場合の圧縮機 2の機械的入力であ り、 Δ Η2は冷媒を加熱する場合の圧縮機 2の機械的入力である。また、室内熱交換 器 22での効率を 100%とした場合には、 ΔΗ1+ ΔΗ3が冷媒を加熱しない場合に 室内熱交換器 21で得られる熱量になり、 ΔΗ2+ ΔΗ4が冷媒を加熱する場合に室 内熱交 で得られる熱量になる。よって、変数の定義力も以下が成立する。
ΟΟΡ1=(ΔΗ1+ ΔΗ3)/ΔΗ1 (式 1)
ΟΟΡ2=(ΔΗ2+ ΔΗ4)/ΔΗ2 (式 2)
COP2-COPl=(AH2+ ΔΗ4)/ΔΗ2—(ΔΗ1+ ΔΗ3)/ΔΗ1
= ΔΗ4/ΔΗ2— ΔΗ3/ΔΗ1 (式 3)
図 8から分かるように、 ΔΗ3 ΔΗ4である。これを式 3に代入して、以下となる。
COP2— COP1 (ΔΗ3Χ(ΔΗ1— ΔΗ2》/(ΔΗ1Χ ΔΗ2) (式 4)
[0038] 図 8から分力るように Δ HI >ΔΗ2なので、(式 4)の右辺は必ず正になり、冷媒を 加熱することにより成績係数 COPが向上することが分かる。 ΔΗ1> ΔΗ2となる理由 を説明する。まず、点 Αを圧縮して点 Α2と同じ圧力になった点を点 A3とする。 ΔΗ1 を、点 A力も点 A3まで圧縮するのに要する機械的入力( Δ HI Aとする)と点 A3から 点 Bまで圧縮するのに要する機械的入力( ΔΗ1Βとする)とに分割する。変数の定義 力 、 ΔΗ1= ΔΗ1Α+ ΔΗ1Βである。一般的に、圧縮前後の圧力が同じでも圧縮 前のェンタルビが大きいほど、冷媒を圧縮するのに要する機械的入力が大きくなる。 ここで、点 A3でのェンタルピは点 Α2よりも大きい。よって、 ΔΗ1Β> ΔΗ2である。さ らに、 ΔΗ1Α>0であるから、 ΔΗ1>ΔΗ2である。
[0039] 外気と冷媒蒸気の温度差はもともと数 °Cであり、冷媒冷却加熱部 25の第 2熱交換 器 41での加熱量を増やすことによる温度差を減少させる効果には上限が有る。冷媒 冷却加熱部 25の第 2熱交換器 41での加熱量を増やすのに必要な機械的入力は、 加熱量に対して線形以上の関係で増加する。そのため、加熱量を大きくすると成績 係数 COPが低下すること〖こなる。暖房の場合での成績係数 COPの向上効果は、冷 房の場合よりも小さい。定量的なデータは示さないが、第 2冷媒を使用する冷凍サイ クルの容量は、第 1冷媒の冷凍サイクルの 10分の 1から 5分の 1程度であり、第 2冷媒 を使用する冷凍サイクルが効率よく運転する動作条件では、成績係数 COPが最大 値に近くなる。
[0040] この実施の形態 3の構成でも、冷房運転時に熱交換量制御手段により冷媒冷却加 熱手段での熱交換量を適切に制御することにより、成績係数 COPを確実に向上でき るという効果がある。可燃性が有るか地球温暖化係数が第 1冷媒よりも悪い第 2冷媒 の使用量を少なくしても、第 2冷媒だけの場合と同等な成績係数 COPを実現できると いう効果も有る。また、第 2冷媒の冷媒回路は室外にて閉ループで構成し、室内への 第 2冷媒の漏洩を回避できる。
さらに、暖房運転時にも成績係数 COPを向上できるという効果が有る。
[0041] 実施の形態 4.
図 9は、実施の形態 4における空気調和装置の構成を示す冷媒回路図である。この 実施の形態 4は、蒸発器 5に流入する冷媒蒸気の流量を少なくするように実施の形 態 1を変更したものである。実施の形態 1の場合での図 1と比較して、異なる点だけを 説明する。
図 9において、流量制御弁 4から蒸発器 5に至る経路に気液分離器 45と第 3流量 制御弁 46を備え、気液分離器 45で分離した冷媒蒸気の一部または全部を圧縮機 2 に注入するためのバイパス配管 47を設けている。圧縮機 2は、圧縮途中に冷媒を吸 入する中間圧吸入口 2Aを有する。
その他の点では、実施の形態 1の場合と同様な構成である。
[0042] 次に、冷媒の流れを図 9によって説明する。流量制御弁 4で減圧された気液二相状 態の冷媒は、気液分離器 45で冷媒蒸気の一部または全部が分離され、バイパス配 管 47で構成された冷媒回路を通り、圧縮機 2の中間圧吸入口 2Aに吸入されて、圧 縮機 2内の冷媒と混合する。その他の冷媒の流れについては、実施形態 1と同様で ある。
[0043] この実施の形態 4の構成でも、熱交換量制御手段により冷媒冷却手段での熱交換 量を適切に制御することにより、成績係数 COPを確実に向上できるという効果が有る 。なお、流量制御弁入口温度や乾き度比などの変化に対する成績係数 COPの変化 は、その傾向は同じであるが、冷媒回路の構成が異なるので、図 4または図 5に示し たものとは具体的な数値は異なる。これは、冷媒回路の構成が異なる他の実施の形 態でもあてはまる。
可燃性が有るか地球温暖化係数が第 1冷媒よりも悪い第 2冷媒の使用量を少なくし ても、第 2冷媒だけの場合と同等な成績係数 COPを実現できるという効果も有る。ま た、第 2冷媒の冷媒回路は室外にて閉ループで構成し、室内への第 2冷媒の漏洩を 回避できる。
[0044] この構成によれば、圧縮機 2の内部の冷媒を冷却できるため、圧縮に要する動力を 低減できる。また、蒸発器 5に流れる冷媒蒸気の流量が少ないため、蒸発器における 冷媒の圧力損失を小さくできる。これらにより、第 1冷媒を利用する空気調和装置に おいてさらに効率を向上させることができる。
中間圧吸入口 2Aを有する圧縮機 2の替わりに 2台の圧縮機を直列に接続して、高 圧側の圧縮機の吸入口に入る冷媒配管 6にバイパス配管 47を接続するようにしても よい。
[0045] なお、この実施の形態 4では、実施の形態 1の構成に適用した場合について説明し たが、実施の形態 2または実施の形態 3に適用した場合においても同様の効果が得 られる。
[0046] 実施の形態 5.
図 10は、実施の形態 5における空気調和装置の構成を示す冷媒回路図である。こ の実施の形態 5は、熱交換量制御部 16において乾き度比を制御する具体的手段を 備えるように、実施の形態 1を変更したものである。実施の形態 1の場合である図 1と 比較して、異なる点だけを説明する。
[0047] 図 10において、流量制御弁 4の出口に設けた第 1圧力計測手段である圧力計 Pl、 流量制御弁 4の入口に設けた第 2圧力計測手段である圧力計 P2、流量制御弁 4の 入口に設けた第 2温度計測手段である温度計 T2、放熱器 3の出口に設けた第 3温 度計測手段である温度計 Τ3が追加されている。さらに、熱交換量制御部 16は、所定 のセンサとして、圧力計 Pl、圧力計 Ρ2、温度計 Τ2及び温度計 Τ3の計測値を入力と して乾き度比を推定する乾き度比推定手段である乾き度比推定部 16Α、乾き度比を 変化させた中での成績係数 COPの最大値との差が所定の範囲になる乾き度比の制 御範囲を求める乾き度比制御範囲決定手段である乾き度比制御範囲決定部 16B及 び乾き度比制御範囲決定部 16Bで求めた制御範囲内に乾き度比が入るように冷媒 の流量を制御する制御手段である冷媒流量制御部 16Cで構成されて 、る。冷媒流 量制御部 16Cは、第 2圧縮機 10の運転周波数と第 2流量制御弁 12への指令値を制 御可能とする。
その他の構成は、実施の形態 1の場合と同じである。
[0048] 次に動作を説明する。冷媒の流れは実施の形態 1の場合と同じである。ここでは、 熱交換量制御部 16の動作について説明する。乾き度比推定部 16Aは、圧力計 Pl、 圧力計 P2、温度計 T2及び温度計 T3の各計測値から、以下のようにして乾き度比を 推定する。乾き度比を推定する過程で使用する変数を説明する図を、図 11に示す。
[0049] 既に定義済のものも含めて、冷媒の状態を説明する変数の定義を以下に示す。
(冷媒の状態を説明する変数の定義)
Pd :放熱圧力。圧力計 P2により計測される。
Td :放熱器 3の出口での冷媒温度。温度計 T3により計測される。
Tf :流量制御弁 4の入口での冷媒温度。温度計 T2により計測される。
Pe :流量制御弁 4の出口での冷媒の圧力。圧力計 P1により計測される。
Te :蒸発温度。 Peと冷媒の飽和蒸気圧特性から求める。
hd :放熱器 3の出口での冷媒のェンタルピ。
hf :流量制御弁 4の入口での冷媒のェンタルピ。
heL:圧力 Peでの冷媒の飽和液ェンタルピ。
heG:圧力 Peでの冷媒の飽和蒸気ェンタルピ。
Xd :放熱器 3出口の冷媒を Peまで減圧した場合の乾き度。
Xe :流量制御弁 4の出口での冷媒の乾き度。
X :乾き度比。 X=XeZXd
[0050] 乾き度比を推定する計算は、以下の手順で行う。
(乾き度比を推定する計算手順)
(1) Pdと Td力も hd (放熱器 3の出口での冷媒のェンタルピ)を計算する。
(2) Pdと Tf力も M (流量制御弁 4の入口での冷媒のェンタルピ。 )を計算する。
(3) Peと冷媒の飽和蒸気圧特性から heL (飽和液ェンタルピ)、 heG (飽和蒸気ェン タノレビ)を求める。
(4)冷媒を断熱膨張させて減圧しても冷媒のェンタルピは変化しな ヽので、 Xd (放熱 器 3出口の冷媒を Peまで減圧した場合の乾き度)、 Xe (流量制御弁 4の出口での冷 媒の乾き度)、乾き度比 Xを以下のように計算する。なお、乾き度の計算において、負 になる場合は 0とし、 1以上になる場合は 1とする。
Xd= (hd-heL) / (heG-heL) (式 5)
Xe = (hf-heL) / (heG-heL) (式 6)
X= (hf-heL) / (hd-heL) (式 7)
[0051] 乾き度比制御範囲決定部 16Bは、空気調和装置が動作する可能性が有る放熱圧 力 Pdと蒸発温度 Teの条件範囲内において、 Pdと Teを所定の刻み幅で変化させた 点での成績係数 COPが最大となる乾き度比のデータ (最適運転乾き度比データと呼 ぶ)を持つ。例えば、 Pd= 9— l lMPaで刻み幅を IMPaとし、 Te = 0— 15°Cで刻み 幅を 5°Cとすると、図 5で示した COPが最大になる乾き度比のデータが最適運転乾き 度比データとなる。以下のようにして、最適運転乾き度比データから乾き度比の制御 範囲を決定する。
(1)現在の運転状態での Pdと Teの値に対して、最適運転乾き度比デーを補間して 成績係数 COPが最大になる乾き度比(最適乾き度比 Xmaxと呼ぶ)を求める。
(2)最適乾き度比 Xmax力もの差が 0. 1以内などの所定の範囲を、制御範囲とする。 所定の範囲の幅は、乾き度比の変化に対して成績係数 COPがあまり変化しない幅と する。
[0052] 例えば、 Pd= 10MPa、 Te= 10°Cの動作状態であれば、 Xmax=0. 29であり、 0.
19-0. 39が乾き度比の制御範囲になる。図 5 (b)から分力るように、この制御範囲 であれば、成績係数 COPは最大値力 0. 02未満の変動である。
冷媒流量制御部 16Cは、乾き度比推定部 16Aが推定した乾き度比が、乾き度比 制御範囲決定部 16Bが求めた制御範囲内に有るかどうかチ ックし、制御範囲内に 無い場合は制御範囲に入るように第 2圧縮機 10の運転周波数または第 2流量制御 弁 12への流量の指令値の何れかまたは両方を制御する。制御にあたっては、適切 な PID制御を行うものとする。推定した乾き度比が高い場合は冷媒冷却部 15での冷 却量を増加させて乾き度比を下げ、推定した乾き度比が低い場合は冷媒冷却部 15 での冷却量を減少させて乾き度比を上げる。なお、第 2圧縮機 10の運転周波数を上 げると冷却量が増大し、第 2流量制御弁 12への流量の指令値を上げると冷却量が増 大する。
[0053] この実施の形態 5の構成でも、熱交換量制御手段により冷媒冷却手段での熱交換 量を適切に制御することにより、成績係数 COPを確実に向上できるという効果が有る 。可燃性が有るか地球温暖化係数が第 1冷媒よりも悪い第 2冷媒の使用量を少なくし ても、第 2冷媒だけの場合と同等な成績係数 COPを実現できるという効果も有る。ま た、第 2冷媒の冷媒回路は室外にて閉ループで構成し、室内への第 2冷媒の漏洩を 回避できる。
さらに、乾き度比予測手段を備えて乾き度比を推定し、成績係数 COPが最大値に 近い範囲になる乾き度比となるように冷媒冷却手段での熱交換量を制御するので、 確実に成績係数 COPを向上できるという効果が有る。
[0054] この実施の形態 5では、第 1圧力計測手段である圧力計 P1を流量制御弁 4の出口 に設けたが、流量制御弁 4の出口力 蒸発器 5の入口までの間であればどこに設置 してもよい。ただし、流量制御弁 4の出口力も蒸発器 5の入口までの間に圧縮機や別 の流量制御弁など冷媒の圧力を変化させる機器が有る場合は、その機器の入口ま でとする。第 2圧力計測手段である圧力計 P2は、圧縮機の出口から流量制御弁 4の 入口までの間であればどこでもよい。なお、圧縮機が 2台以上有る場合は、最も高圧 側の圧縮機を対象とする。
乾き度比推定部 16Aでは、流量制御弁 4の出口での圧力 Peを圧力計 P1で計測し て利用した力 流量制御弁 4の出口での温度 Teを計測して利用してもよい。その理 由は、流量制御弁 4の出口では気液二相状態にあり、温度または圧力の一方が決ま れば他方も決まるからである。また、乾き度比制御範囲決定部 16Bで Pdと Teを考慮 して制御範囲を求めるとした力 Teではなく Peを考慮して制御範囲を求めるようにし てもよい。
[0055] 乾き度比制御範囲決定部 16Bでは、 Pd、 Teの組合せで成績係数 COPが最大に なる乾き度比のデータである最適運転乾き度比データを用いた力 成績係数 COPの 最大値との差が所定の範囲のデータを持たせるようにしてもよい。 Pd、 Teに対して、 補間して最適乾き度比を求めたが、補間しな 、で最も近 、点での値を用いるようにし てもよい。
最適乾き度比から制御範囲を求める上で範囲の幅を固定としたが、成績係数 COP の最大値との差が所定値以内とするなど、制御範囲の幅を可変にしてもよい。また、 制御範囲は必ずしも最適乾き度比を含む必要はなぐ最適乾き度比よりも大きい所 定の範囲などとしてもょ 、。 Pdと Teの両方を変化させた最適運転乾き度比データを 用意したが、 Pdまたは Teを固定にしてもよい。 Pdと Teの組に対して異なる制御範囲 を求めるのではなぐ Pdまたは Teの何れかだけを指定して、指定しな力つた方が想 定する変化範囲内であれば、成績係数 COPを最大値力 の差が所定値以内とする ような乾き度比の制御範囲を求めるようにしてもよい。さらには、 Pdと Teの両方に関し て想定する変化範囲内であれば、成績係数 COPを最大値からの差が所定値以内と するような乾き度比の制御範囲を予め求めておき、それを出力するものでもよい。 乾き度比制御範囲決定部 16Bは、成績係数 COPの最大値との差が所定の範囲内 になる乾き度比の制御範囲を決定するものであれば、どのようなものでもよ 、。
[0056] 冷媒流量制御部 16Cは、乾き度比を制御範囲内に保つような PID制御をするとし たが、乾き度比が指定された値になるように冷媒冷却手段での冷却量を制御するも のであってもよい。制御誤差が有るため、指定した値に制御しょうとしても、結果的に は指定した値に近 、所定の範囲で制御されることになる。指定する値は制御誤差の 大きさを考慮して、制御誤差があっても乾き度比が制御範囲を越えな 、ように決めれ ばよい。必ずしも成績係数 COPが最大になる乾き度比を指定する必要は無い。制御 範囲内に制御する場合でも、 PID制御以外の制御を行ってもよい。
[0057] なお、この実施の形態 5では、実施の形態 1の構成に適用した場合について説明し たが、実施の形態 2から実施の形態 4までの何れかの構成、及びこれらの構成の特 徴を同時に持つ何れかの構成に適用した場合においても同様の効果が得られる。 また、冷媒冷却手段が第 2冷媒による蒸気圧縮式冷凍サイクルを使用するものでな い場合でも、乾き度比を推定して乾き度比が所定の制御範囲になるように冷却量を 制御するようにしても同様の効果が得られる。
乾き度比ではなく、流量制御弁 4の入口での冷媒温度である流量制御弁入口温度 を指標として制御するようにしてもょ 、。 以上の点は、他の実施の形態でもあてはまる。
[0058] 実施の形態 6.
図 12は、実施の形態 6における空気調和装置の構成を示す冷媒回路図である。こ の実施の形態 6は、乾き度比を推定するために圧力計を使用しな!、ように実施の形 態 5を変更したものである。実施の形態 5の場合での図 10と比較して、異なる点だけ を説明する。圧力計 P1と圧力計 P2がなぐその替わりに流量制御弁 4の出口に設け た第 1温度計測手段である温度計 Tl、放熱器 3の出口に設けた第 4温度計測手段 である温度計 Τ4及び放熱器 3の入口に設けた第 5温度計測手段である温度計 Τ5が 有る。乾き度比推定部 16Aは、所定のセンサとして、温度計 Tl、温度計 Τ2、温度計 Τ3、温度計 Τ4、及び温度計 Τ5の計測値を入力とする。
その他の構成は、実施の形態 5の場合と同じである。
[0059] 冷媒の流れは実施の形態 5の場合と同じである。熱交換量制御部 16の動作も、実 施の形態 5の場合とほぼ同様である。乾き度比推定部 16Aでの乾き度比の推定の手 順が、実施の形態 5の場合とは異なる。放熱圧力 Pdと蒸発圧力 Peが推定できれば、 実施の形態 5の場合と同様にして乾き度比を推定できるので、放熱圧力 Pdと蒸発圧 力 Peが推定方法を説明する。そのために、冷媒の状態を示す以下の変数を追加で 定義する。なお、 Teは温度計 T1により直接計測される。
(冷媒の状態を説明する変数の定義)
Tc :放熱器 3の出口での冷媒温度。温度計 T4により計測される。
Tb:放熱器 3の入口での冷媒温度。温度計 T5により計測される。
Tx:圧縮機 3に吸入される冷媒の過熱度。
[0060] 放熱圧力 Pdと蒸発圧力 Peの推定方法は、以下のようになる。
(放熱圧力 Pdと蒸発圧力 Peの推定方法)
(1) Teと冷媒の飽和蒸気圧特性から Peを求める。
(2) Tcと Tdから過熱度 Txを求める。
(3) Peと Tx、圧縮機の効率、 Tbから、 Pdを計算する。
[0061] この実施の形態 6の構成でも、熱交換量制御手段により冷媒冷却手段での熱交換 量を適切に制御することにより、成績係数 COPを確実に向上できるという効果が有る 。可燃性が有るか地球温暖化係数が第 1冷媒よりも悪い第 2冷媒の使用量を少なくし ても、第 2冷媒だけの場合と同等な成績係数 COPを実現できるという効果も有る。ま た、第 2冷媒の冷媒回路は室外にて閉ループで構成し、室内への第 2冷媒の漏洩を 回避できる。乾き度比予測手段を備えて乾き度比を推定しながら制御を行うので、確 実に成績係数 COPを向上できるという効果が有る。
さらに、乾き度比予測手段のために安価な温度センサ (温度計)だけでょ 、と 、う効 果が有る。ただし、圧力を実測しないので、実施の形態 5の場合よりも精度が低くなる 可能性が有る。ここでは、流量制御弁 4と圧縮機 3の間では圧力は一定としたが、熱 交換器などでは圧力損失が発生するので、より厳密には圧力を計測する箇所を増や す必要が有る。精度とコストの兼ね合いを考慮して、センサの種類と数を決定する。こ のことは、他の実施の形態でもあてはまる。
[0062] なお、この実施の形態 6では、実施の形態 1の構成に適用した場合について説明し たが、実施の形態 2から実施の形態 4までの何れかの構成、及びこれらの構成の特 徴を同時に持つ何れかの構成に適用した場合においても同様の効果が得られる。
[0063] 実施の形態 7.
図 13は、実施の形態 7における空気調和装置の構成を示す冷媒回路図である。こ の実施の形態 7は、乾き度比ではなく流量制御弁入口温度を計測して制御するよう に実施の形態 1を変更したものである。実施の形態 1の場合での図 1と比較して、異 なる点だけを説明する。
図 13では、流量制御弁 4の入口に設けた第 2温度計測手段である温度計 T2が追 カロされている。さらに、熱交換量制御部 16は、流量制御弁入口温度を変化させた中 での成績係数 COPの最大値との差が所定の範囲になる流量制御弁入口温度の範 囲を求める流量制御弁入口温度制御範囲決定手段である流量制御弁入口温度制 御範囲決定部 16D及び流量制御弁入口温度制御範囲決定部 16Dで求めた制御範 囲内に流量制御弁入口温度が入るように冷媒の流量を制御する制御手段である冷 媒流量制御部 16Cで構成されている。冷媒流量制御部 16Cは、第 2圧縮機 10の運 転周波数と第 2流量制御弁 12への指令値を制御可能とする。
その他の構成は、実施の形態 1の場合と同じである。 [0064] 次に動作を説明する。冷媒の流れは実施の形態 1の場合と同じである。ここでは、 熱交換量制御部 16の動作について説明する。なお、流量制御弁入口温度は温度 計 T2で計測され、変数 Tfで表現される。
流量制御弁入口温度制御範囲決定部 16Dは、予め求めた流量制御弁入口温度 の制御範囲を出力するものである。ここで、予め求めた流量制御弁入口温度の制御 範囲とは、放熱圧力 Pdと蒸発温度 Teは所定の設計値で動作するものとし、 Pdと Te がその所定の値での成績係数 COPの最大値との差が所定の範囲内になる流量制 御弁入口温度の範囲(最適範囲と呼ぶ)である。例えば、 Pd= 10MPa、 Te= 10°C で、図 4 (b)における COP比が最大値力も 0. 05以内の範囲とすると、最適範囲は Tf = 15— 27°Cの範囲となる。
[0065] 冷媒流量制御部 16Cは、温度計 T2で計測される流量制御弁入口温度が、流量制 御弁入口温度制御範囲決定部 16Dが求めた最適範囲すなわち制御範囲内に有る 力どうかチヱックし、制御範囲内に無い場合は制御範囲に入るように第 2圧縮機 10の 運転周波数または第 2流量制御弁 12への流量の指令値の何れかまたは両方を制御 する。制御にあたっては、適切な PID制御を行うものとする。推定した計測された流 量制御弁入口温度が高!、場合は冷媒冷却部 15での冷却量を増加させて流量制御 弁入口温度を下げ、推定した流量制御弁入口温度が低!、場合は冷媒冷却部 15で の冷却量を減少させて流量制御弁入口温度を上げる。
[0066] この実施の形態 7の構成でも、熱交換量制御手段により冷媒冷却手段での熱交換 量を適切に制御することにより、成績係数 COPを確実に向上できるという効果が有る 。可燃性が有るか地球温暖化係数が第 1冷媒よりも悪い第 2冷媒の使用量を少なくし ても、第 2冷媒だけの場合と同等な成績係数 COPを実現できるという効果も有る。ま た、第 2冷媒の冷媒回路は室外にて閉ループで構成し、室内への第 2冷媒の漏洩を 回避できる。
さらに、流量制御弁入口温度を測定し、成績係数 COPが最大値に近い範囲になる 流量制御弁入口温度となるように冷媒冷却手段での熱交換量を制御するので、確実 に成績係数 COPを向上できるという効果が有る。
[0067] 乾き度比制御範囲決定部 16Bに関して説明した事項は、乾き度比を流量制御弁 入口温度に読み替えることにより、流量制御弁入口温度制御範囲決定部 16Dに関し てもあてはまる。冷媒流量制御部 16Cに関しても同様である。このことは、流量制御 弁入口温度を用いて制御する他の実施の形態でもあてはまる。
[0068] なお、この実施の形態 7では、実施の形態 1の構成に適用した場合について説明し たが、実施の形態 2から実施の形態 4までの何れかの構成、及びこれらの構成の特 徴を同時に持つ何れかの構成に適用した場合においても同様の効果が得られる。
[0069] 実施の形態 8.
図 14は、実施の形態 8における空気調和装置の構成を示す冷媒回路図である。こ の実施の形態 8は、冷媒冷却部 15の入口での冷媒温度を計測して、冷媒冷却部 15 の出口すなわち流量制御弁 4の入口での冷媒温度 (流量制御弁入口温度)を成績 係数 COPが最大値になるように冷媒冷却部 15での熱交換量を制御するように、実 施の形態 7を変更したものである。実施の形態 7の場合での図 13と比較して、異なる 点だけを説明する。
図 14では、温度計 T2の替わりに放熱器 3の出口に設けた第 3温度計測手段である 温度計 T3が有る。第 2熱交換器 13の出口力 流量制御弁 4の入口までの間に設け た第 2圧力計測手段である圧力計 P2と、流量制御弁 4の出口に設けた第 1温度計測 手段である温度計 T1を追加して 、る。流量制御弁入口温度制御範囲決定部 16Dは 、流量制御弁入口温度推定手段でもある。
その他の構成は、実施の形態 7の場合と同じである。
[0070] 次に動作を説明する。冷媒の流れは実施の形態 1の場合と同じである。ここでは、 熱交換量制御部 16の動作について説明する。流量制御弁入口温度制御範囲決定 部 16Dは、空気調和装置が動作する可能性が有る放熱圧力 Pdと蒸発温度 Teの条 件範囲内において、 Pdと Teを所定の刻み幅で変化させた点での成績係数 COPが 最大となる流量制御弁入口温度のデータ (最適運転流量制御弁入口温度データと 呼ぶ)を持つ。例えば、 Pd= 9— l lMPaで刻み幅を IMPaとし、 Te = 0— 15°Cで刻 み幅を 5°Cとすると、図 5で示した成績係数 COPが最大になる流量制御弁入口温度 のデータが最適運転流量制御弁入口温度データとなる。
[0071] この実施の形態 8では、次のようにして最適運転流量制御弁入口温度データから 流量制御弁入口温度の目標値を決定する。現在の運転状態での Pdと Teの値に対 して、最も近い位置に有る最適運転流量制御弁入口温度データを取得する。 Pd= l 0. 2MPa、Te = 8. 5°Cであれば、 Pd= 10MPa、 Te= 10°Cでの最適運転流量制 御弁入口温度データを取得する。取得した流量制御弁入口温度を、目標流量制御 弁入口温度 Tfmと呼ぶ。なお、最も近いものが複数有る場合は、流量制御弁入口温 度が高!、ものを選択するなど、何らかの基準で 1個を選択する。
[0072] 冷媒流量制御部 16Cは、以下のようにして第 2冷媒の流量を決めて、その流量にな るように第 2圧縮機 10の運転周波数を制御する。制御誤差などが有るため、必ず成 績係数 COPが最大になる運転状態にできる訳ではないが、成績係数 COPが最大に 近 、状態で運転できることは保証できる。
( 1) Tdと Tf mから、冷媒冷却部 15での熱交換量を決定する。
(2)熱交換量力 第 2熱交 の効率、第 2熱交 に入る第 2冷媒の温度な どの諸条件を考慮して第 2冷媒の流量を決める。
(3)第 2圧縮機 10の特性、第 2流量制御弁 12の状態などを考慮して、(2)で計算し た流量になるような第 2圧縮機 10の運転周波数を決めて、第 2圧縮機 10がその運転 周波数になるように制御する。
[0073] この実施の形態 8の構成でも、熱交換量制御手段により冷媒冷却手段での熱交換 量を適切に制御することにより、成績係数 COPを確実に向上できるという効果が有る 。可燃性が有るか地球温暖化係数が第 1冷媒よりも悪い第 2冷媒の使用量を少なくし ても、第 2冷媒だけの場合と同等な成績係数 COPを実現できるという効果も有る。ま た、第 2冷媒の冷媒回路は室外にて閉ループで構成し、室内への第 2冷媒の漏洩を 回避できる。
さらに、冷媒冷却手段に入る冷媒の温度 Td、放熱圧力 Pd、蒸発温度 Teを計測し て、計測した条件で成績係数 COPが最大値になる目標流量制御弁入口温度を求め 、その目標流量制御弁入口温度となるように冷媒冷却手段での熱交換量すなわち第 2冷媒の流量を制御するので、確実に成績係数 COPを最大値に近い値にできるとい う効果が有る。
[0074] 流量制御弁入口温度推定手段を流量制御弁入口温度制御範囲決定部 16Dとは 別に備え、流量制御弁入口温度制御範囲決定部 16Dは、流量制御弁入口温度推 定手段で推定した結果に対して PID制御などを行うようにしてもょ 、。 PID制御では なぐ別の制御方式でもよい。
なお、この実施の形態 8では、実施の形態 1の構成に適用した場合について説明し たが、実施の形態 2から実施の形態 4までの何れかの構成、及びこれらの構成の特 徴を同時に持つ何れかの構成に適用した場合においても同様の効果が得られる。
[0075] 実施の形態 9.
図 15に、この発明による実施の形態 9における冷房専用の空気調和装置の構成を 説明する冷媒回路図を示す。実施の形態 9は、圧縮機を 2台にして、圧縮機の間に 冷媒の熱を放出させる放熱器を追加するように、実施の形態 1を変更したものである 。実施の形態 1の図 1と異なる点だけを説明する。圧縮機 2で圧縮された冷媒の熱を 放出させる第 3放熱器 50と、第 3放熱器 50から出る冷媒をさらに圧縮する第 3圧縮機 51を追加し、第 3圧縮機 51から吐出される冷媒は放熱器 3に入る。 2台の圧縮機で 実施の形態 1の場合と同じ圧力まで圧縮する。
その他の構成は、実施の形態 1と同じである。
[0076] 次に動作を説明する。この発明の実施の形態 9での空気調和装置における冷媒の 状態変化を説明する圧力ェンタルピ図を、図 16に示す。実線がこの実施の形態 9の 場合であり、点線が第 3放熱器 50を備えない場合である。
圧縮機 2の吸入側での冷媒は、図 16における点 Aで示される低温低圧の蒸気であ る。圧縮機 2から吐出される冷媒は、線分 ABの途中に有る点 Jで示される中間圧力か つ中間温度の蒸気である。冷媒は第 3放熱器 50で空気などと熱交換して、点 Kで示 される点 Jと同じ圧力でより低温の状態になる。第 3圧縮機 51によりさらに圧縮されて 、点 Mで示される高圧の超臨界流体の状態になる。点 Mでの冷媒の状態は、点 Bと 同じ圧力で温度は低い。
放熱器 3に入ってから、冷媒冷却部 15と流量制御弁 4とを通り圧縮機 2に入るまで の冷媒の状態変化の軌跡は、実施の形態 1の場合と同じ軌跡 M— C D— E— Aとなる
[0077] この実施の形態 9の構成でも、熱交換量制御手段により冷媒冷却手段での熱交換 量を適切に制御することにより、成績係数 COPを確実に向上できるという効果が有る 。可燃性が有るか地球温暖化係数が第 1冷媒よりも悪い第 2冷媒の使用量を少なくし ても、第 2冷媒だけの場合と同等な成績係数 COPを実現できるという効果も有る。ま た、第 2冷媒の冷媒回路は室外にて閉ループで構成し、室内への第 2冷媒の漏洩を 回避できる。
[0078] さらに、第 3放熱器 50を備えることにより、第 3放熱器 50が無い場合よりも成績係数 COPを改善できるという効果が有る。そのことを以下で説明する。第 3放熱器 50の有 無によらず蒸発器 5での熱交換量は同じである。機械的入力は第 3放熱器 50を備え る場合の方が小さくなるので、成績係数 COPが向上することになる。点 A、点 B、点 J 、点 K及び点 Mのェンタルピをそれぞれ、 Ha、 Hb、 Hj、 Hk、 Hmとする。また、第 3 放熱器 50が無い場合の機械的入力を Wlとし、第 3放熱器 50が有る場合の機械的 入力を W2とする。 Wl、 W2とその差は以下のようになる。
Wl =Hb-Ha (式 8)
W2 = Hj-Ha + Hm-Hk (式 9)
W1-W2 = Hb-Ha- (Hj-Ha + Hm-Hk)
= (Hb-Hj ) - (Hm-Hk) (式 10)
[0079] 前にも説明したが、圧縮前後の圧力が同じでも圧縮前のェンタルビが大きいほど、 冷媒を圧縮するのに要する機械的入力が大きくなる。今の場合だと、点 Jの方が点 K よりもェンタルビが大きいので、線分 JBと線分 KMでは、線分 KMのェンタルピ差の 方が大きくなり、(式 10)は必ず正になる。
なお、この実施の形態 9では、実施の形態 1の構成に適用した場合について説明し たが、実施の形態 4から実施の形態 8までの何れかの構成、及びこれらの構成の特 徴を同時に持つ何れかの構成に適用した場合においても同様の効果が得られる。
[0080] 実施の形態 10.
図 17に、この発明による実施の形態 10における冷房と暖房ができる空気調和装置 の構成を説明する冷媒回路図を示す。実施の形態 10は、圧縮機を 2台にして、圧縮 機の間に冷媒の熱を放出させる放熱器を追加するように、実施の形態 3を変更したも のである。実施の形態 3の場合での図 7と異なる点だけを説明する。 圧縮機 2で圧縮された冷媒の熱を放出させる第 3放熱器 50と、第 3放熱器 50から 出る冷媒をさらに圧縮する第 3圧縮機 51と、暖房運転時に冷媒を第 3放熱器 50に流 さな!/、で直に第 3圧縮機 51に入れる流路変更手段である流路切替弁 52とを追加し、 第 3圧縮機 51から吐出される冷媒は四方弁 20に入る。 2台の圧縮機で実施の形態 3 の場合と同じ圧力まで圧縮する。
流路切替弁 52は、圧縮機 2と第 3放熱器 50の間に設ける。流路切替弁 52では、第 3放熱器 50に入る冷媒配管 6Aと、第 3放熱器 50と第 3圧縮機 51とをつなぐ冷媒配 管 6に接続される冷媒配管 6Bの何れかに冷媒を流すことができる。
その他の構成は、実施の形態 3と同じである。
[0081] 次に動作を説明する。冷房運転時には、流路切替弁 52が冷媒配管 6Aすなわち第 3放熱器 50に冷媒を流し、実施の形態 9の場合と同様に動作する。
暖房運転時は、流路切替弁 52が冷媒配管 6Bに冷媒を流し、第 3放熱器 50に冷媒 を流さないので、実施の形態 3と同様に動作する。実施の形態 3では 1台の圧縮機 2 で冷媒を圧縮していたのが、圧縮機 2と第 3圧縮機 51とで圧縮する点だけが異なる。
[0082] この実施の形態 10の構成でも、冷房運転時に熱交換量制御手段により冷媒冷却 加熱手段での熱交換量を適切に制御することにより、成績係数 COPを確実に向上 できるという効果が有る。可燃性が有るか地球温暖化係数が第 1冷媒よりも悪い第 2 冷媒の使用量を少なくしても、第 2冷媒だけの場合と同等な成績係数 COPを実現で きるという効果も有る。また、第 2冷媒の冷媒回路は室外にて閉ループで構成し、室 内への第 2冷媒の漏洩を回避できる。
さらに、暖房運転時にも成績係数 COPを向上できるという効果が有る。 さらにまた、第 3放熱器 50を備えることにより、第 3放熱器 50が無い場合よりも成績 係数 COPを改善できると 、う効果が有る。
[0083] 流路切替弁 52は、第 3放熱器 50と第 3圧縮機 51の間に設けてもよい。また、第 3放 熱器 50の両側に流路切替弁 52を設けてもよい。流路切替弁 52は冷房運転時にだ け所定の機器に冷媒を流すことができるものであればどのようなものでもよ 、。これら のことは、流路切替弁 52を有する他の実施の形態でもあてはまる。
[0084] なお、この実施の形態 10では、実施の形態 3の構成に適用した場合について説明 したが、実施の形態 2、実施の形態 4から実施の形態 8までの構成の特徴を加えた実 施の形態 2または実施の形態 3の何れかに適用した場合においても同様の効果が得 られる。
[0085] 実施の形態 11.
図 18に、この発明による実施の形態 11における冷房専用の空気調和装置の構成 を説明する冷媒回路図を示す。実施の形態 11は、第 3放熱器 50と第 3圧縮機 51の 間に、第 2冷媒により冷媒を冷却する熱交換器を追加するように、実施の形態 9を変 更したものである。実施の形態 9の図 16と異なる点だけを説明する。
図 18では、第 3放熱器 50と第 3圧縮機 51の間に、第 2熱交翻 13からの第 2冷媒 と第 3放熱器 50からの冷媒の間で熱交換を行う第 3熱交換器 60を追加している。第 3熱交換器 60を出た冷媒は第 3圧縮機 51に入り、第 3熱交換器 60を出た第 2冷媒は 第 2圧縮機 10に入る。
その他の構成は、実施の形態 9の場合と同じである。
[0086] 次に動作を説明する。この発明の実施の形態 11での空気調和装置における冷媒 の状態変化を説明する圧力ェンタルピ図を、図 19に示す。実線力この実施の形態 1 1の場合であり、点線が第 3熱交換器 60を備えない場合である。
圧縮機 2に吸入されて力も第 3熱交 を出るまでの冷媒の状態の軌跡は、実 施の形態 9の場合と同じ軌跡 A— J Kとなる。第 3熱交 で第 2冷媒によりさらに 冷媒が冷却されて、点 Nで示される点 Kと同じ圧力でより低温の状態になる。第 3圧 縮機 51によりさらに圧縮されて、点 Oで示される高圧の超臨界流体の状態になる。点 Oでの冷媒の状態は、点 Mと同じ圧力で温度は低い。放熱器 3に入ってから圧縮機 2に入るまでの冷媒の状態変化の軌跡は、実施の形態 1の場合と同じ軌跡 M— C D — E— Aとなる。
[0087] この実施の形態 11の構成でも、熱交換量制御手段により冷媒冷却手段での熱交 換量を適切に制御することにより、成績係数 COPを確実に向上できるという効果が有 る。可燃性が有るか地球温暖化係数が第 1冷媒よりも悪い第 2冷媒の使用量を少なく しても、第 2冷媒だけの場合と同等な成績係数 COPを実現できると 、う効果も有る。 また、第 2冷媒の冷媒回路は室外にて閉ループで構成し、室内への第 2冷媒の漏洩 を回避できる。
さらに、第 3放熱器 50を備えることにより、第 3放熱器 50が無い場合よりも成績係数 COPを改善できるという効果が有る。また、第 3熱交翻60を備えることにより、第 3 熱交換器 60が無い場合よりも成績係数 COPを改善できるという効果が有る。第 3熱 交 60を備えることにより成績係数 COPが改善する理由は、第 3放熱器 50を備え る場合と同じぐ第 3圧縮機 51に入る冷媒のェンタルピを下げると第 3圧縮機 51での 機械的入力が少なくなる力 である。
[0088] 第 3熱交換器 60を流れる第 2冷媒は第 2熱交換器 13で冷媒と熱交換して温度が上 昇したものであり、第 3熱交 で熱交換させることにより、第 2冷媒の冷凍サイク ルの機械的入力はほとんど増カロしない。ただし、第 2熱交 での熱交換量は成 績係数 COPを向上させることができるように制御するので、第 3熱交^^ 60での熱 交換量を独立に決めることができない。
第 2熱交 と第 3熱交 とで第 2冷媒を直列に流したが、並列に流しても よ!ヽ。圧縮機や放熱器を追加して第 3熱交換器 60を流れる第 2冷媒の冷媒回路と、 第 2熱交翻 13を流れる第 2冷媒の冷媒回路とを分離してもよい。その場合には、第 3熱交換器 60を流れる冷媒を第 2冷媒とは異なる冷媒としてもよい。
[0089] 第 3放熱器 50はなくてもよい。圧縮機 2から出る冷媒の温度が外気よりも高い場合 は、第 3放熱器 50が有る方が成績係数 COPをより改善できる。その理由は、外気で 冷却しきれな!/、部分だけを第 3放熱器 50で冷却すればよ 、ので、第 3放熱器 50での 熱交換量が小さくなり、第 2圧縮機 10での機械的入力が少なくなるからである。
[0090] なお、この実施の形態 11では、実施の形態 9の構成に適用した場合について説明 したが、実施の形態 1、実施の形態 2、実施の形態 4一実施の形態 8の何れかの構成 、及びこれらの構成の特徴を同時に持つ何れかの構成に適用した場合においても同 様の効果が得られる。
[0091] 実施の形態 12.
図 20に、この発明による実施の形態 12における冷房専用の空気調和装置の構成 を説明する冷媒回路図を示す。実施の形態 12は、第 3熱交換器 60と第 2熱交換器 1 3に並列に冷媒が流れるように、実施の形態 11を変更したものである。実施の形態 1 1の図 18と異なる点だけを説明する。なお、実施の形態 12も実施の形態 9を元にして おり、実施の形態 11とは異なる変更を行ったものである。
図 20では、第 3熱交翻 60に第 2冷媒を流す第 2バイパス配管 70と、第 3熱交換 器 60に流れる第 2冷媒の流量を調整する第 4流量制御弁 71とを追加している。第 4 流量制御弁 71と第 2流量制御弁 12は、どちらも凝縮器 11から出る冷媒を並列に流 すように設置されている。第 4流量制御弁 71、第 2バイパス配管 70、第 3熱交換器 60 、第 2圧縮機 10の順番に、第 2冷媒が流れる。
その他の構成は、実施の形態 11の場合と同じである。
[0092] 次に動作を説明する。この発明の実施の形態 12での空気調和装置における冷媒 の状態変化は、実施の形態 11の場合と同じ図 19になる。
[0093] 冷媒の状態変化が同じなので、この実施の形態 12でも、実施の形態 11の場合と同 じ効果が有る。さらに、第 4流量制御弁 71が有るので、第 3熱交 に流れる第 2 冷媒の流量を、第 2熱交換器 13に流れる第 2冷媒の流量とは独立して制御でき、成 績係数 COPが最大になる動作条件を実現しやすいという効果が有る。
[0094] なお、この実施の形態 12では、実施の形態 9の構成に適用した場合について説明 したが、実施の形態 1一実施の形態 8、実施の形態 10の何れかの構成、及びこれら の構成の特徴を同時に持つ何れかの構成に適用した場合においても同様の効果が 得られる。
[0095] 実施の形態 13.
図 21に、この発明による実施の形態 13における冷房と暖房ができる空気調和装置 の構成を説明する冷媒回路図を示す。実施の形態 13は、圧縮機を 2台にして、圧縮 機の間に冷媒と第 2冷媒の間で熱交換を行う第 3熱交 を追加するように、実 施の形態 2を変更したものである。実施の形態 2の場合での図 6と異なる点だけを説 明する。
図 21では、第 3熱交翻 60と第 3圧縮機 51とを圧縮機 2と四方弁 20の間に追加し ている。圧縮機 2を出た冷媒は、第 3熱交換器 60、第 3圧縮機 51の順番に流れ、四 方弁 20に入る。
その他の構成は、実施の形態 2の場合と同じである。 [0096] 次に動作を説明する。この発明の実施の形態 12での空気調和装置における冷房 運転時の冷媒の状態変化は、実施の形態 9の場合での図 16とほぼ同じになる。ただ し、軌跡 J-Kの冷媒の状態変化は、第 3放熱器 50ではなく第 3熱交翻60によりも たらされる。
暖房運転時には実施の形態 2と同様に冷媒冷却部 15を動作させないので、暖房 運転時での冷媒の状態変化の軌跡は、実施の形態 2の場合と同じ図 2における軌跡 A— B— C— F— Aになる。
[0097] この実施の形態 13の構成でも、冷房運転時に熱交換量制御手段により冷媒冷却 手段での熱交換量を適切に制御することにより、成績係数 COPを確実に向上できる という効果が有る。可燃性が有るか地球温暖化係数が第 1冷媒よりも悪い第 2冷媒の 使用量を少なくしても、第 2冷媒だけの場合と同等な成績係数 COPを実現できるとい う効果も有る。また、第 2冷媒の冷媒回路は室外にて閉ループで構成し、室内への第 2冷媒の漏洩を回避できる。
さらに、第 3熱交 60を備えることにより、第 3熱交 60が無い場合よりも冷房 運転時の成績係数 COPを改善できるという効果が有る。
[0098] 実施の形態 14.
図 22に、この発明による実施の形態 14における冷房と暖房ができる空気調和装置 の構成を説明する冷媒回路図を示す。実施の形態 14は、第 3熱交換器 60と第 2熱 交換器 13に並列に冷媒が流れるように、実施の形態 13を変更したものである。実施 の形態 13の図 21と異なる点だけを説明する。
図 22では、第 3熱交翻 60に第 2冷媒を流す第 2バイパス配管 70と、第 3熱交換 器 60に流れる第 2冷媒の流量を調整する第 4流量制御弁 71とを追加している。第 4 流量制御弁 71と第 2流量制御弁 12は、どちらも凝縮器 11から出る冷媒を並列に流 すように設置されている。第 4流量制御弁 71、第 2バイパス配管 70、第 3熱交換器 60 、第 2圧縮機 10の順番に、第 2冷媒が流れる。
その他の構成は、実施の形態 13の場合と同じである。
[0099] 次に動作を説明する。この発明の実施の形態 14での空気調和装置における冷房 運転時の冷媒の状態変化は、実施の形態 13の場合と同じぐ実施の形態 9の場合で の図 16とほぼ同じになる。軌跡 J Kの冷媒の状態変化は、第 3放熱器 50ではなく第 3熱交 によりもたらされる点が図 16とは相違するのも、実施の形態 13の場合 と同じである。
[0100] 実施の形態 14での冷媒の状態変化は実施の形態 13でのものと同じなので、この 実施の形態 14でも、実施の形態 13の場合と同じ効果が有る。
さらに、第 4流量制御弁 71が有るので、第 3熱交換器 60に流れる第 2冷媒の流量 を、第 2熱交換器 13に流れる第 2冷媒の流量とは独立して制御でき、成績係数 COP が最大になる動作条件を実現しやす!、と 、う効果が有る。
[0101] 実施の形態 15.
図 23に、この発明による実施の形態 15における冷房と暖房ができる空気調和装置 の構成を説明する冷媒回路図を示す。実施の形態 15は、圧縮機を 2台にして、圧縮 機の間に冷媒と第 2冷媒の間で冷房運転時に熱交換を行う第 3熱交換器 60を追カロ するように、実施の形態 3を変更したものである。実施の形態 3の場合での図 7と異な る点だけを説明する。
図 23では、第 3熱交換器 60及び第 3圧縮機 51と、暖房運転時に冷媒を第 3熱交
Figure imgf000037_0001
2とを、圧縮機 2と四方弁 20の間に追加している。圧縮機 2を出た冷媒は、第 3熱交 換器 60、第 3圧縮機 51の順番に流れ、四方弁 20に入る。 2台の圧縮機で実施の形 態 3の場合と同じ圧力まで圧縮する。
流路切替弁 52は、圧縮機 2と第 3熱交換器 60の間に設ける。流路切替弁 52では、 第 3熱交換器 60に入る冷媒配管 6Aと、第 3熱交換器 60と第 3圧縮機 51とをつなぐ 冷媒配管 6に接続される冷媒配管 6Bの何れかに冷媒を流すことができる。
その他の構成は、実施の形態 3の場合と同じである。
[0102] 次に動作を説明する。冷房運転時には、流路切替弁 52が冷媒配管 6Aすなわち第 3熱交換器 60に冷媒を流し、実施の形態 13の場合と同様に動作する。
暖房運転時は、流路切替弁 52が冷媒配管 6Bに冷媒を流し、第 3熱交換器 60に冷 媒を流さないので、実施の形態 3と同様に動作する。暖房運転時に第 3熱交換器 60 に冷媒を流さない理由は、成績係数 COPを低下させないためである。暖房運転時に 第 3熱交換器 60に冷媒を流すと第 3圧縮機 51に入る冷媒のェンタルビが増大し、第 3圧縮機 51での機械的入力が増大する。室内熱交換器 22で放出する熱量も増加す るが、増加する熱量は第 3圧縮機 51での機械的入力の増加分とほぼ等しぐ増加分 だけを見ると成績係数 COPは 1である。第 3熱交 に冷媒を流さない場合の成 績係数 COPは 1より大きいので、増加分だけの成績係数 COPが 1では、成績係数 C OPが低下する。
[0103] なお、暖房運転時に高温が必要で圧縮機 2に吸入される冷媒の過熱度を所定の値 にする必要が有る場合は、圧縮機 2に吸入される冷媒の過熱度をゼロにして、暖房 運転時に第 3熱交換器 60に冷媒を流して過熱度分を加熱するようにすると、成績係 数 COPを向上させることができる。
暖房運転時に圧縮機 2に吸入される冷媒の過熱度が所定値にする必要が有るかど うかを判断して、過熱度が所定値にする必要が有る場合だけ、暖房運転時に第 3熱 交翻 60に冷媒を流すようにしてもよ!ヽ。
[0104] この実施の形態 15の構成でも、冷房運転時に熱交換量制御手段により冷媒冷却 加熱手段での熱交換量を適切に制御することにより、成績係数 COPを確実に向上 できるという効果が有る。可燃性が有るか地球温暖化係数が第 1冷媒よりも悪い第 2 冷媒の使用量を少なくしても、第 2冷媒だけの場合と同等な成績係数 COPを実現で きるという効果も有る。また、第 2冷媒の冷媒回路は室外にて閉ループで構成し、室 内への第 2冷媒の漏洩を回避できる。暖房運転時にも成績係数 COPを向上できると いう効果が有る。
さらに、暖房運転時にも成績係数 COPを向上できるという効果が有る。 さらにまた、第 3熱交 を備えることにより、第 3熱交 が無い場合よりも 冷房運転時の成績係数 COPを改善できるという効果が有る。
[0105] 第 3放熱器 50も備えれば、実施の形態 11と同様に、圧縮機 2から出る冷媒の温度 が外気よりも高い場合は、第 3放熱器 50が有る方が成績係数 COPをより改善できる という効果が有る。第 3放熱器 50も備える場合は、暖房運転時には冷媒が第 3放熱 器 50に流れないように、第 3熱交翻60と流路切替弁 52との間に追加する。
[0106] 実施の形態 16. 図 24に、この発明による実施の形態 16における冷房と暖房ができる空気調和装置 の構成を説明する冷媒回路図を示す。実施の形態 16は、第 3熱交換器 60と第 2熱 交換器 13に並列に冷媒が流れるように、実施の形態 15を変更したものである。実施 の形態 15の図 23と異なる点だけを説明する。
図 24では、第 3熱交翻 60に第 2冷媒を流す第 2バイパス配管 70と、第 3熱交換 器 60に流れる第 2冷媒の流量を調整する第 4流量制御弁 71とを追加している。第 4 流量制御弁 71と第 2流量制御弁 12は、ともに凝縮器 11から出る冷媒を並列に流す ように設置されている。第 4流量制御弁 71、第 2バイパス配管 70、第 3熱交換器 60、 第 2圧縮機 10の順番に、第 2冷媒が流れる。
冷房運転時にだけ第 3熱交換器 60に冷媒を流す流路切替弁 52がなくなつている。 その他の構成は、実施の形態 15の場合と同じである。
[0107] 次に動作を説明する。この発明の実施の形態 16での空気調和装置における冷房 運転時の冷媒の状態変化は、実施の形態 15の場合と同じぐ実施の形態 9の場合で の図 16とほぼ同じになる。
暖房運転時は、第 4流量制御弁 71が第 3熱交換器 60に第 2冷媒を流さないよう〖こ 制御され、第 2流量制御弁 12は実施の形態 3と同様に制御される。暖房運転時の冷 媒の状態変化は、実施の形態 15の場合と同じぐ実施の形態 3の場合での図 8と同 じになる。
[0108] 冷媒の状態変化が同じなので、この実施の形態 16でも、実施の形態 15と同じ効果 が有る。
さらに、第 4流量制御弁 71が有るので、第 3熱交換器 60に流れる第 2冷媒の流量 を、第 2熱交換器 13に流れる第 2冷媒の流量とは独立して制御でき、成績係数 COP が最大になる動作条件を実現しやすいという効果が有る。また、第 4流量制御弁 71 により暖房運転時に第 3熱交 に第 2冷媒を流さないことにより第 3熱交 での熱交換量をゼロにできるので、実施の形態 15の場合に必要であった流路切替 弁 52が不要であると 、う効果が有る。
[0109] 第 3放熱器 50も備えれば、実施の形態 11と同様に、圧縮機 2から出る冷媒の温度 が外気よりも高い場合は、第 3放熱器 50が有る方が成績係数 COPをより改善できる という効果が有る。第 3放熱器 50も備える場合は、暖房運転時には冷媒が第 3放熱 器 50に流れなくする流路切替弁 52とともに追加する。
[0110] 実施の形態 17.
図 25に、この発明による実施の形態 17における冷房と暖房ができる空気調和装置 の構成を説明する冷媒回路図を示す。実施の形態 17は、第 3放熱器 50を備えるよう に実施の形態 16を変更したものである。実施の形態 16の図 24と異なる点だけを説 明する。
図 25では、第 3放熱器 50と、暖房運転時に冷媒を第 3放熱器 50に流さないで第 3 熱交換器 60に入れる流路変更手段である流路切替弁 52とを追加している。
流路切替弁 52は、圧縮機 2と第 3放熱器 50の間に設ける。流路切替弁 52では、第 3放熱器 50に入る冷媒配管 6Aと、第 3放熱器 50と第 3熱交翻 60とをつなぐ冷媒 配管 6に接続される冷媒配管 6Bの何れかに冷媒を流すことができる。
その他の構成は、実施の形態 16の場合と同じである。
[0111] 次に動作を説明する。この発明の実施の形態 17での空気調和装置における冷房 運転時の冷媒の状態変化は、実施の形態 11の場合での図 18と同じになる。
暖房運転時は、第 4流量制御弁 71が第 3熱交換器 60に第 2冷媒を流さないよう〖こ 制御され、第 2流量制御弁 12は実施の形態 3と同様に制御される。暖房運転時の冷 媒の状態変化は、実施の形態 16の場合と同じぐ実施の形態 3の場合での図 8と同 じになる。
[0112] この実施の形態 17では、実施の形態 16の効果に加えて、第 3放熱器 50を備えるこ とにより、第 3放熱器 50が無い場合よりも成績係数 COPを改善できるという効果が有 る。
この実施の形態 17では、暖房運転時に第 3熱交 に冷媒を流した力 流さな V、ようにしても同じ効果が有る。

Claims

請求の範囲
[1] 冷媒を圧縮する圧縮機と、冷媒の熱を放出させる放熱器と、冷媒を冷却する冷媒冷 却手段と、冷媒の流量を調整する流量制御弁と、冷媒を蒸発させる蒸発器と、前記 冷媒冷却手段における熱交換量を制御する熱交換量制御手段とを備え、前記圧縮 機、前記放熱器、前記冷媒冷却手段、前記流量制御弁、前記蒸発器の順番に冷媒 を循環させることを特徴とする冷凍装置。
[2] 地球温暖化係数がフロンよりも小さい不燃性の冷媒を用い、前記冷媒冷却手段が、 冷媒よりもエネルギー消費効率がよい第 2冷媒を圧縮する第 2圧縮機と、第 2冷媒の 熱を放出させる凝縮器と、第 2冷媒の流量を調整する第 2流量制御弁と、冷媒の熱に より第 2冷媒を蒸発させる第 2蒸発器とを有し、前記第 2圧縮機、前記凝縮器、前記 第 2流量制御弁、前記第 2蒸発器の順番に第 2冷媒を循環させることを特徴とする請 求項 1に記載の冷凍装置。
[3] 前記圧縮機が圧縮途中に冷媒を吸入する中間圧吸入口を有し、前記流量制御弁か ら出る冷媒を気体と液体に分離する気液分離器と、該気液分離器で分離された気体 の冷媒の一部または全部を前記中間圧吸入口に入れるバイパス配管と、前記気液 分離器力 出て前記蒸発器に入る冷媒の流量を調整する第 3流量制御弁とを備えた ことを特徴とする請求項 1に記載の冷凍装置。
[4] 前記圧縮機で圧縮された冷媒を圧縮する第 3圧縮機と、前記流量制御弁から出る冷 媒を気体と液体に分離する気液分離器と、該気液分離器で分離された気体の冷媒 の一部または全部を前記第 3圧縮機に入れるバイパス配管と、前記気液分離器から 出て前記蒸発器に入る冷媒の流量を調整する第 3流量制御弁とを備え、前記第 3圧 縮機力 吐出された冷媒が前記放熱器に入ることを特徴とする請求項 1に記載の冷 凍装置。
[5] 前記圧縮機から吐出される冷媒の熱を放出させる第 3放熱器と、該第 3放熱器で熱 を放出させられた冷媒を圧縮する第 3圧縮機とを備え、前記圧縮機から吐出された 冷媒が前記第 3放熱器、前記第 3圧縮機、前記放熱器の順番に流れることを特徴と する請求項 1に記載の冷凍装置。
[6] 前記圧縮機で圧縮された冷媒を圧縮する第 3圧縮機と、冷媒と第 2冷媒との間で熱 交換を行う第 3熱交換器とを備え、前記圧縮機から吐出された冷媒が前記第 3熱交 前記第 3圧縮機、前記放熱器の順番に流れ、前記第 2蒸発器を出た第 2冷媒 が前記第 3熱交換器、前記第 2圧縮機の順番に流れることを特徴とする請求項 2に記 載の冷凍装置。
[7] 前記圧縮機で圧縮された冷媒を圧縮する第 3圧縮機と、冷媒と第 2冷媒との間で熱 交換を行う第 3熱交換器と、該第 3熱交換器を流れる第 2冷媒の流量を調整する第 4 流量制御弁とを備え、前記圧縮機から吐出された冷媒が前記第 3熱交換器、前記第 3圧縮機、前記放熱器の順番に流れ、前記凝縮器を出た第 2冷媒の一部が前記第 4 流量制御弁、前記第 3熱交換器、前記第 2圧縮機の順番に流れることを特徴とする 請求項 2に記載の冷凍装置。
[8] 前記熱交換量制御手段が、前記流量制御弁の出口における冷媒の乾き度と前記放 熱器出口の冷媒を蒸発温度まで減圧した場合の乾き度との比の値である乾き度比を 所定のセンサの計測値を用いて推定する乾き度比推定手段と、所定の動作条件に おいて前記乾き度比を変化させた中での最大値との差が所定の範囲内である成績 係数が得られる前記乾き度比の制御範囲を決定する乾き度比制御範囲決定手段と 、前記乾き度比推定手段が推定した前記乾き度比が前記制御範囲に入るように前記 冷媒冷却手段での熱交換量を制御する制御手段とを有することを特徴とする請求項 1に記載の冷凍装置。
[9] 前記熱交換量制御手段が、前記流量制御弁の出口における冷媒の乾き度と前記放 熱器出口の冷媒を蒸発温度まで減圧した場合の乾き度との比の値である乾き度比を 所定のセンサの計測値を用いて推定する乾き度比推定手段と、所定の動作条件に おいて前記乾き度比を変化させた中での最大値との差が所定の範囲内である成績 係数が得られる前記乾き度比の制御範囲を決定する乾き度比制御範囲決定手段と 、前記乾き度比推定手段が推定した前記乾き度比が前記制御範囲に入るように前記 冷媒冷却手段に流れる第 2冷媒の流量を制御する制御手段とを有することを特徴と する請求項 2に記載の冷凍装置。
[10] 前記所定のセンサとして、前記流量制御弁の出口から前記蒸発器の入口までの間 での冷媒の圧力を計測する第 1圧力計測手段または前記流量制御弁の出口におけ る冷媒の温度を計測する第 1温度計測手段の何れ力少なくとも一と、前記圧縮機か ら前記流量制御弁までの間での冷媒の圧力を計測する第 2圧力計測手段と、前記流 量制御弁の入口における冷媒の温度を計測する第 2温度計測手段と、前記放熱器 の出口における冷媒の温度を計測する第 3温度計測手段とを備えることを特徴とする 請求項 8または請求項 9に記載の冷凍装置。
[11] 前記所定のセンサとして、前記流量制御弁の出口における冷媒の温度を計測する第 1温度計測手段と、前記流量制御弁の入口における冷媒の温度を計測する第 2温度 計測手段と、前記放熱器の出口における冷媒の温度を計測する第 3温度計測手段と 、前記放熱器の入口における冷媒の温度を計測する第 4温度計測手段と、前記圧縮 機の入口における冷媒の温度を計測する第 5温度計測手段とを備えることを特徴と する請求項 8または請求項 9に記載の冷凍装置。
[12] 前記流量制御弁の入口における冷媒の温度である流量制御弁入口温度を計測する 第 2温度計測手段を備え、前記熱交換量制御手段が、所定の動作条件において前 記流量制御弁入口温度を変化させた中での最大値との差が所定の範囲内である成 績係数が得られる前記流量制御弁入口温度の制御範囲を決定する流量制御弁入 口温度制御範囲決定手段と、前記第 2温度計測手段により計測した冷媒の温度が前 記制御範囲に入るように前記冷媒冷却手段での熱交換量を制御する制御手段を有 することを特徴とする請求項 1に記載の冷凍装置。
[13] 前記流量制御弁の入口における冷媒の温度である流量制御弁入口温度を計測する 第 2温度計測手段を備え、前記熱交換量制御手段が、所定の動作条件において前 記流量制御弁入口温度を変化させた中での最大値との差が所定の範囲内である成 績係数が得られる前記流量制御弁入口温度の制御範囲を決定する流量制御弁入 口温度制御範囲決定手段と、前記第 2温度計測手段により計測した冷媒の温度が前 記制御範囲に入るように前記冷媒冷却手段に流れる第 2冷媒の流量を制御する制 御手段を有することを特徴とする請求項 2に記載の冷凍装置。
[14] 前記放熱器の出口における冷媒の温度を計測する第 3温度計測手段を備え、前記 熱交換量制御手段が、前記第 3温度計測手段で計測した温度と前記冷媒冷却手段 での熱交換量とから前記流量制御弁の入口における冷媒の温度である流量制御弁 入口温度を推定する流量制御弁入口温度推定手段と、所定の動作条件にお!、て前 記流量制御弁入口温度を変化させた中での最大値との差が所定の範囲内である成 績係数が得られる前記流量制御弁入口温度の制御範囲を決定する流量制御弁入 口温度制御範囲決定手段と、前記流量制御弁入口温度推定手段が推定した前記 流量制御弁入口温度が前記制御範囲に入るように前記冷媒冷却手段での熱交換量 を制御する制御手段を有することを特徴とする請求項 1に記載の冷凍装置。
[15] 前記放熱器の出口における冷媒の温度を計測する第 3温度計測手段を備え、前記 熱交換量制御手段が、前記第 3温度計測手段で計測した温度と前記冷媒冷却手段 での熱交換量とから前記流量制御弁の入口における冷媒の温度である流量制御弁 入口温度を推定する流量制御弁入口温度推定手段と、所定の動作条件にお!、て前 記流量制御弁入口温度を変化させた中での最大値との差が所定の範囲内である成 績係数が得られる前記流量制御弁入口温度の制御範囲を決定する流量制御弁入 口温度制御範囲決定手段と、流量制御弁入口温度推定手段が推定した前記流量 制御弁入口温度が前記制御範囲に入るように前記冷媒冷却手段に流れる第 2冷媒 の流量を制御する制御手段を有することを特徴とする請求項 2に記載の冷凍装置。
[16] 前記流量制御弁の出口力 前記蒸発器の入口までの間での冷媒の圧力を計測する 第 1圧力計測手段または前記流量制御弁の出口における冷媒の温度を計測する第 1温度計測手段の何れか少なくとも一を備え、前記第 1圧力計測手段で計測した冷 媒の圧力または前記第 1温度計測手段で計測した冷媒の温度を用いて前記乾き度 比制御範囲決定手段が前記乾き度比の制御範囲を決定することを特徴とする請求 項 8または請求項 9に記載の冷凍装置。
[17] 前記放熱器の出口力 前記流量制御弁の入口までの間での冷媒の圧力を計測する 第 2圧力計測手段を備え、前記第 2圧力計測手段で計測した冷媒の圧力を用いて前 記乾き度比制御範囲決定手段が前記乾き度比の制御範囲を決定することを特徴と する請求項 8または請求項 9に記載の冷凍装置。
[18] 前記流量制御弁の出口力 前記蒸発器の入口までの間での冷媒の圧力を計測する 第 1圧力計測手段または前記流量制御弁の出口における冷媒の温度を計測する第 1温度計測手段の何れか少なくとも一を備え、前記第 1圧力計測手段で計測した冷 媒の圧力または前記第 1温度計測手段で計測した冷媒の温度を用いて前記流量制 御弁入口温度制御範囲決定手段が前記流量制御弁入口温度の制御範囲を決定す ることを特徴とする請求項 14一請求項 17の何れか一に記載の冷凍装置。
[19] 前記放熱器の出口力 前記流量制御弁の入口までの間での冷媒の圧力を計測する 第 2圧力計測手段を備え、前記第 2圧力計測手段で計測した冷媒の圧力を用いて前 記流量制御弁入口温度制御範囲決定手段が前記流量制御弁入口温度の制御範囲 を決定することを特徴とする請求項 14一請求項 17の何れか一に記載の冷凍装置。
[20] 冷媒を圧縮する圧縮機と、該圧縮機から吐出される冷媒が流れる方向を切替える四 方弁と、冷媒と外気との間で熱交換を行う室外熱交換器と、冷媒を冷却または加熱 する冷媒冷却加熱手段と、冷媒の流量を調整する流量制御弁と、冷媒と室内の空気 との間で熱交換を行う室内熱交換器と、前記冷媒冷却加熱手段における熱交換量を 制御する熱交換量制御手段とを備え、冷房運転時に、前記圧縮機、前記室外熱交 、前記冷媒冷却加熱手段、前記流量制御弁、前記室内熱交換器の順番に冷媒 を循環させ、暖房運転時に、前記圧縮機、前記室内熱交換器、前記流量制御弁、前 記冷媒冷却加熱手段、前記室外熱交換器の順番に冷媒を循環させることを特徴と する空気調和装置。
[21] 地球温暖化係数がフロンよりも小さい不燃性の冷媒を用い、前記冷媒冷却過熱手段 力 冷媒よりもエネルギー消費効率がよい第 2冷媒を圧縮する第 2圧縮機と、該第 2 圧縮機から吐出される第 2冷媒が流れる方向を切替える第 2四方弁と、第 2冷媒と外 気の間で熱交換を行う第 1熱交換器と、第 2冷媒の流量を調整する第 2流量制御弁と 、冷媒と第 2冷媒の間で熱交換を行う第 2熱交換器とを有し、冷房運転時に、前記第 2圧縮機、前記第 1熱交換器、前記第 2流量制御弁、前記第 2熱交換器の順番に第 2冷媒を循環させ、暖房運転時に、前記第 2圧縮機、前記第 2熱交換器、前記第 2流 量制御弁、前記第 1熱交^^の順番に第 2冷媒を循環させることを特徴とする請求 項 20に記載の空気調和装置。
[22] 前記圧縮機が圧縮途中に冷媒を吸入する中間圧吸入口を有し、前記室内熱交換器 に出入りする冷媒の流量を調整する第 3流量制御弁と、冷媒を気体と液体に分離す る気液分離器と、該気液分離器で分離された気体の冷媒の一部または全部を前記 中間圧吸入口に入れるバイパス配管とを備え、冷房運転時に、前記流量制御弁、前 記気液分離器、前記第 3流量制御弁、前記室内熱交換器の順番に冷媒を流し、暖 房運転時に前記室内熱交換器、前記第 3流量制御弁、前記気液分離器、前記流量 制御弁の順番に冷媒を流すことを特徴とする請求項 20に記載の空気調和装置。
[23] 前記圧縮機で圧縮された冷媒を圧縮する第 3圧縮機と、前記室内熱交換器に出入り する冷媒の流量を調整する第 3流量制御弁と、冷媒を気体と液体に分離する気液分 離器と、該気液分離器で分離された気体の冷媒の一部または全部を前記第 3圧縮 機に入れるバイパス配管とを備え、前記第 3圧縮機から吐出された冷媒が前四方弁 に入り、冷房運転時に、前記流量制御弁、前記気液分離器、前記第 3流量制御弁、 前記室内熱交換器の順番に冷媒を流し、暖房運転時に前記室内熱交換器、前記第 3流量制御弁、前記気液分離器、前記流量制御弁の順番に冷媒を流すことを特徴と する請求項 20に記載の空気調和装置。
[24] 前記圧縮機から吐出される冷媒の熱を放出させる第 3放熱器と、該第 3放熱器で熱 を放出させられた冷媒を圧縮する第 3圧縮機と、前記圧縮機から吐出される冷媒を、 冷房運転時に前記第 3放熱器に入れ、暖房運転時に前記第 3圧縮機に入れる流路 変更手段とを備えたことを特徴とする請求項 20に記載の空気調和装置。
[25] 前記圧縮機で圧縮された冷媒を圧縮する第 3圧縮機と、冷媒と第 2冷媒の間で熱交 換を行う第 3熱交^^と、冷房運転時に前記圧縮機カゝら吐出された冷媒を前記第 3 熱交換器、前記第 3圧縮機の順番に流し、暖房運転時に前記圧縮機から吐出された 冷媒を前記第 3圧縮機に流す流路変更手段とを備え、前記第 3圧縮機から吐出され た冷媒が前記四方弁に入り、前記第 2熱交換器を出た第 2冷媒が前記第 3熱交換器 、前記第 2圧縮機の順番に流れることを特徴とする請求項 21に記載の空気調和装置
[26] 前記圧縮機で圧縮された冷媒を圧縮する第 3圧縮機と、冷媒と第 2冷媒の間で熱交 換を行う第 3熱交換器と、該第 3熱交換器を流れる第 2冷媒の流量を調整する第 4流 量制御弁とを備え、前記圧縮機から吐出された冷媒が前記第 3熱交換器、前記第 3 圧縮機、前記四方弁の順番に流れ、前記第 1熱交換器を出た第 2冷媒の一部が前 記第 4流量制御弁、前記第 3熱交^^、前記第 2圧縮機の順番に流れることを特徴と する請求項 21に記載の空気調和装置。
PCT/JP2004/017458 2003-11-28 2004-11-25 冷凍装置及び空気調和装置 WO2005052467A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2004800351623A CN1886625B (zh) 2003-11-28 2004-11-25 冷冻装置和空调装置
JP2005515784A JP4753719B2 (ja) 2003-11-28 2004-11-25 冷凍装置及び空気調和装置
US10/579,100 US7526924B2 (en) 2003-11-28 2004-11-25 Refrigerator and air conditioner
ES04819388.2T ES2652023T3 (es) 2003-11-28 2004-11-25 Congelador y acondicionador de aire
EP04819388.2A EP1701112B1 (en) 2003-11-28 2004-11-25 Freezer and air conditioner
US12/391,378 US7752857B2 (en) 2003-11-28 2009-02-24 Refrigerator and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-398271 2003-11-28
JP2003398271 2003-11-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/579,100 A-371-Of-International US7526924B2 (en) 2003-11-28 2004-11-25 Refrigerator and air conditioner
US12/391,378 Division US7752857B2 (en) 2003-11-28 2009-02-24 Refrigerator and air conditioner

Publications (1)

Publication Number Publication Date
WO2005052467A1 true WO2005052467A1 (ja) 2005-06-09

Family

ID=34631562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017458 WO2005052467A1 (ja) 2003-11-28 2004-11-25 冷凍装置及び空気調和装置

Country Status (7)

Country Link
US (2) US7526924B2 (ja)
EP (1) EP1701112B1 (ja)
JP (1) JP4753719B2 (ja)
KR (3) KR100854206B1 (ja)
CN (1) CN1886625B (ja)
ES (1) ES2652023T3 (ja)
WO (1) WO2005052467A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232245A (ja) * 2006-02-28 2007-09-13 Mitsubishi Electric Corp 冷凍システムおよび冷凍システムの運転方法
JP2007271138A (ja) * 2006-03-30 2007-10-18 Toshiba Corp 冷凍機
US20090000329A1 (en) * 2006-02-03 2009-01-01 Airbus Deutschland Gmbh Cooling System
JP2009299909A (ja) * 2008-06-10 2009-12-24 Hitachi Appliances Inc 冷凍サイクル装置
JP2010096490A (ja) * 2008-09-16 2010-04-30 Sanyo Electric Co Ltd 冷凍装置
JP2010236796A (ja) * 2009-03-31 2010-10-21 Fujitsu General Ltd 冷凍サイクル装置
WO2011052031A1 (ja) * 2009-10-27 2011-05-05 三菱電機株式会社 ヒートポンプ
US8087258B2 (en) * 2005-10-25 2012-01-03 Mitsubishi Electric Corporation Air conditioner, refrigerant filling method of air conditioner, method for judging refrigerant filling state of air conditioner as well as refrigerant filling and pipe cleaning method of air conditioner
JP2012088022A (ja) * 2010-10-22 2012-05-10 Daikin Industries Ltd 給湯装置
JP2012189258A (ja) * 2011-03-10 2012-10-04 Fujitsu General Ltd 冷凍サイクル装置
KR20160091107A (ko) * 2015-01-23 2016-08-02 엘지전자 주식회사 냉장고용 냉각사이클장치
JPWO2015140873A1 (ja) * 2014-03-17 2017-04-06 三菱電機株式会社 冷凍装置、及び、冷凍装置の制御方法
JPWO2018096580A1 (ja) * 2016-11-22 2019-06-24 三菱電機株式会社 冷凍サイクル装置
JP2020056536A (ja) * 2018-10-02 2020-04-09 ダイキン工業株式会社 冷凍サイクル装置
WO2020071299A1 (ja) * 2018-10-02 2020-04-09 ダイキン工業株式会社 冷凍サイクル装置
JP2020056567A (ja) * 2019-09-30 2020-04-09 ダイキン工業株式会社 冷凍サイクル装置
WO2020071300A1 (ja) * 2018-10-02 2020-04-09 ダイキン工業株式会社 冷凍サイクル装置
WO2020188756A1 (ja) * 2019-03-19 2020-09-24 日立ジョンソンコントロールズ空調株式会社 空気調和機
WO2021065944A1 (ja) * 2019-09-30 2021-04-08 ダイキン工業株式会社 空気調和装置
WO2022209739A1 (ja) * 2021-03-30 2022-10-06 ダイキン工業株式会社 熱源ユニットおよび冷凍装置
JP2022155464A (ja) * 2021-03-30 2022-10-13 ダイキン工業株式会社 熱源ユニットおよび冷凍装置

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100565257B1 (ko) * 2004-10-05 2006-03-30 엘지전자 주식회사 압축기를 이용한 이차냉매사이클 및 이를 구비한 공기조화기
US7908881B2 (en) * 2005-03-14 2011-03-22 York International Corporation HVAC system with powered subcooler
EP1747822A1 (en) * 2005-07-28 2007-01-31 Linde Aktiengesellschaft Cooling / heating system for CO2 cleaning machine
JP3864989B1 (ja) * 2005-07-29 2007-01-10 ダイキン工業株式会社 冷凍装置
DE602007001038D1 (de) 2006-01-31 2009-06-18 Sanyo Electric Co Klimaanlage
EP2087296A4 (en) * 2006-11-08 2012-04-25 Carrier Corp HEAT PUMP WITH INTERCOOLER
WO2008083220A1 (en) * 2006-12-27 2008-07-10 Johnson Controls Technology Company Condenser refrigerant distribution
WO2008130412A1 (en) * 2007-04-23 2008-10-30 Carrier Corporation Co2 refrigerant system with booster circuit
EP2162686A4 (en) * 2007-06-04 2013-05-22 Carrier Corp REFRIGERANT SYSTEM WITH CASCADE CIRCUITS AND PERFORMANCE IMPROVEMENT FEATURES
US9003828B2 (en) * 2007-07-09 2015-04-14 Lng Technology Pty Ltd Method and system for production of liquid natural gas
US8166776B2 (en) 2007-07-27 2012-05-01 Johnson Controls Technology Company Multichannel heat exchanger
ES2608404T3 (es) * 2007-11-13 2017-04-10 Carrier Corporation Sistema de refrigeración y método para refrigerar
CN103216964B (zh) * 2007-11-13 2016-01-20 开利公司 制冷系统以及用于制冷的方法
JP5306708B2 (ja) * 2008-05-28 2013-10-02 大陽日酸株式会社 冷媒冷却装置
FR2937410A1 (fr) * 2008-10-17 2010-04-23 Orhan Togrul Pompe a chaleur
US8881548B2 (en) 2009-05-08 2014-11-11 Mitsubishi Electric Corporation Air-conditioning apparatus
KR101639814B1 (ko) * 2009-11-20 2016-07-22 엘지전자 주식회사 냉장 및 냉동 복합 공조시스템
KR101146783B1 (ko) * 2009-12-24 2012-05-21 엘지전자 주식회사 냉매시스템
JP5636871B2 (ja) * 2010-03-01 2014-12-10 ダイキン工業株式会社 冷凍装置
JP5054180B2 (ja) * 2010-11-04 2012-10-24 サンデン株式会社 ヒートポンプ式暖房装置
CN103229006B (zh) * 2010-12-22 2015-11-25 三菱电机株式会社 供热水空调复合装置
EP2669598B1 (en) * 2011-01-26 2019-05-22 Mitsubishi Electric Corporation Air conditioner device
EP2492615A1 (en) * 2011-02-22 2012-08-29 Thermocold Costruzioni SrL Refrigerating machine optimized for carrying out cascade refrigerating cycles
US20120227429A1 (en) * 2011-03-10 2012-09-13 Timothy Louvar Cooling system
JP2012197978A (ja) * 2011-03-22 2012-10-18 Toyota Industries Corp ヒートポンプシステム
JP5501282B2 (ja) * 2011-04-07 2014-05-21 三菱電機株式会社 ヒートポンプシステム及びヒートポンプシステムの制御方法
WO2012172605A1 (ja) * 2011-06-16 2012-12-20 三菱電機株式会社 空気調和装置
EP2741028B1 (en) * 2011-08-04 2020-03-11 Mitsubishi Electric Corporation Refrigeration device
JP5738116B2 (ja) * 2011-08-04 2015-06-17 三菱重工業株式会社 ターボ冷凍機の性能評価装置およびその方法
ES2930639T3 (es) * 2011-09-30 2022-12-20 Carrier Corp Sistema de refrigeración de alta eficiencia
WO2013061377A1 (ja) * 2011-10-28 2013-05-02 三菱電機株式会社 冷凍空調装置及び調湿装置
US20130239603A1 (en) * 2012-03-15 2013-09-19 Luther D. Albertson Heat pump with independent subcooler circuit
JP5575191B2 (ja) * 2012-08-06 2014-08-20 三菱電機株式会社 二元冷凍装置
CN102829572B (zh) * 2012-09-06 2015-05-27 苏州贝茵医疗器械有限公司 节能型超低温保存箱
CN102817822B (zh) * 2012-09-06 2015-10-14 浙江鸿森机械有限公司 制冷设备用数字式压力控制器
US20150321539A1 (en) * 2012-11-26 2015-11-12 Thermo King Corporation Auxiliary subcooling circuit for a transport refrigeration system
FR3001794B1 (fr) * 2013-02-04 2019-08-09 Jean-Luc Maire Sous-refroidisseur actif pour systeme de climatisation
GB2514530B (en) * 2013-02-20 2018-07-04 Arctic Circle Ltd Apparatus for providing refrigeration and utilising operation converter means
US20140250925A1 (en) * 2013-03-06 2014-09-11 Esco Technologies (Asia) Pte Ltd Predictive Failure Algorithm For Refrigeration Systems
CN103604237A (zh) * 2013-11-15 2014-02-26 Tcl空调器(中山)有限公司 空调器及其控制方法
DK2874039T3 (en) * 2013-11-19 2017-07-17 Grundfos Holding As Method of controlling a heat transfer system as well as such a heat transfer system
JP6015636B2 (ja) * 2013-11-25 2016-10-26 株式会社デンソー ヒートポンプシステム
CN103615824B (zh) * 2013-12-06 2016-08-17 东南大学常州研究院 一种基于膨胀功回收驱动的多温区冷量获取方法及装置
US9537686B2 (en) * 2014-04-03 2017-01-03 Redline Communications Inc. Systems and methods for increasing the effectiveness of digital pre-distortion in electronic communications
KR102264725B1 (ko) * 2014-05-22 2021-06-11 엘지전자 주식회사 히트 펌프
EP3023712A1 (en) * 2014-11-19 2016-05-25 Danfoss A/S A method for controlling a vapour compression system with a receiver
CN104676933A (zh) * 2015-01-19 2015-06-03 合肥华凌股份有限公司 制冷设备
CN105299955A (zh) * 2015-11-30 2016-02-03 王全龄 一种压缩机蒸发温度自动优化的热泵系统
DE112016005606T5 (de) 2015-12-08 2018-09-13 Trane International Inc. Verwenden von Wärme, die aus einer Wärmequelle gewonnen wurde, um Heisswasser zu erhalten
CN105402976A (zh) * 2015-12-09 2016-03-16 加西贝拉压缩机有限公司 一种集成制冷冰箱
EP3187796A1 (en) * 2015-12-28 2017-07-05 Thermo King Corporation Cascade heat transfer system
JP6493370B2 (ja) * 2016-01-25 2019-04-03 株式会社デンソー ヒートポンプシステム
DE102016213680A1 (de) * 2016-07-26 2018-02-01 Efficient Energy Gmbh Wärmepumpensystem mit CO2 als erstem Wärmepumpenmedium und Wasser als zweitem Wärmepumpenmedium
DE102016213679A1 (de) 2016-07-26 2018-02-01 Efficient Energy Gmbh Wärmepumpensystem mit eingangsseitig und ausgangsseitig gekoppelten Wärmepumpenanordnungen
US11839062B2 (en) 2016-08-02 2023-12-05 Munters Corporation Active/passive cooling system
ES2805204T3 (es) * 2016-11-01 2021-02-11 Weiss Umwelttechnik Gmbh Cámara de ensayo
CN107228455B (zh) * 2017-06-09 2019-12-31 青岛海尔空调器有限总公司 一种空调器及控制方法
CN109974318B (zh) * 2017-12-27 2021-03-12 杭州三花研究院有限公司 一种热管理系统
CN107986363A (zh) * 2018-01-15 2018-05-04 江苏永昇空调有限公司 耦合海水淡化的电子设备散热系统及方法
PL3628942T3 (pl) 2018-09-25 2021-10-04 Danfoss A/S Sposób sterowania układem sprężania pary przy zmniejszonym ciśnieniu ssania
EP3628940B1 (en) 2018-09-25 2022-04-20 Danfoss A/S A method for controlling a vapour compression system based on estimated flow
KR20200114031A (ko) * 2019-03-27 2020-10-07 엘지전자 주식회사 공기조화 장치
US11137185B2 (en) * 2019-06-04 2021-10-05 Farrar Scientific Corporation System and method of hot gas defrost control for multistage cascade refrigeration system
EP3985328A4 (en) * 2019-06-12 2022-07-27 Daikin Industries, Ltd. REFRIGERATION CIRCUIT SYSTEM
JP2020201011A (ja) * 2019-06-12 2020-12-17 ダイキン工業株式会社 空調機
CN111121360A (zh) * 2019-12-30 2020-05-08 海信容声(广东)冷柜有限公司 一种冷柜以及控制方法
DE102020201349A1 (de) * 2020-02-04 2021-08-05 Volkswagen Aktiengesellschaft Kältemittelkreislaufanordnung und Verfahren zum Betrieb einer Kältemittelkreislaufanordnung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55174571U (ja) * 1979-06-02 1980-12-15
JPS59120876U (ja) * 1983-02-04 1984-08-15 三洋電機株式会社 冷凍装置
JPH01144770U (ja) * 1988-03-30 1989-10-04
JP2001056157A (ja) * 1999-08-16 2001-02-27 Daikin Ind Ltd 冷凍装置
JP2001091074A (ja) * 1999-09-24 2001-04-06 Sanyo Electric Co Ltd カスケード式冷凍装置
JP2001317820A (ja) * 2000-05-08 2001-11-16 Hitachi Ltd 冷凍サイクル装置
JP2002107044A (ja) * 2000-09-29 2002-04-10 Sanyo Electric Co Ltd 冷蔵庫

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4149389A (en) * 1978-03-06 1979-04-17 The Trane Company Heat pump system selectively operable in a cascade mode and method of operation
US4157649A (en) * 1978-03-24 1979-06-12 Carrier Corporation Multiple compressor heat pump with coordinated defrost
JPS5923486Y2 (ja) 1978-07-21 1984-07-12 三菱電機株式会社 蓄熱形温室
JPS5620960A (en) 1979-07-31 1981-02-27 Mitsubishi Heavy Ind Ltd Steam compression type refrigerating plant
JPS57198965A (en) 1981-05-29 1982-12-06 Mitsubishi Electric Corp Cold heat system
US4391104A (en) * 1982-01-15 1983-07-05 The Trane Company Cascade heat pump for heating water and for cooling or heating a comfort zone
JP2514914B2 (ja) 1987-11-30 1996-07-10 プラス株式会社 情報読み取り装置
JPH01196468A (ja) * 1988-02-01 1989-08-08 Yazaki Corp 冷暖負荷駆動方法およびその装置
JPH1054617A (ja) 1996-08-07 1998-02-24 Toshiba Corp 空気調和装置
JPH11193967A (ja) * 1997-12-26 1999-07-21 Zexel:Kk 冷凍サイクル
JP3094997B2 (ja) * 1998-09-30 2000-10-03 ダイキン工業株式会社 冷凍装置
JP2001235340A (ja) 2000-02-22 2001-08-31 Kenwood Corp ナビゲーション装置および経路探索サービス装置
JP2001235240A (ja) * 2000-02-23 2001-08-31 Seiko Seiki Co Ltd 超臨界蒸気圧縮サイクル装置
EP1139041B1 (en) * 2000-03-31 2013-06-19 Panasonic Healthcare Co., Ltd. Repository and monitoring system therefor
JP4538892B2 (ja) * 2000-04-19 2010-09-08 ダイキン工業株式会社 Co2冷媒を用いた空気調和機
US6327865B1 (en) * 2000-08-25 2001-12-11 Praxair Technology, Inc. Refrigeration system with coupling fluid stabilizing circuit
JP2002286310A (ja) 2001-03-28 2002-10-03 Tokyo Gas Co Ltd 圧縮式冷凍機
US6557361B1 (en) * 2002-03-26 2003-05-06 Praxair Technology Inc. Method for operating a cascade refrigeration system
US6796139B2 (en) * 2003-02-27 2004-09-28 Layne Christensen Company Method and apparatus for artificial ground freezing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55174571U (ja) * 1979-06-02 1980-12-15
JPS59120876U (ja) * 1983-02-04 1984-08-15 三洋電機株式会社 冷凍装置
JPH01144770U (ja) * 1988-03-30 1989-10-04
JP2001056157A (ja) * 1999-08-16 2001-02-27 Daikin Ind Ltd 冷凍装置
JP2001091074A (ja) * 1999-09-24 2001-04-06 Sanyo Electric Co Ltd カスケード式冷凍装置
JP2001317820A (ja) * 2000-05-08 2001-11-16 Hitachi Ltd 冷凍サイクル装置
JP2002107044A (ja) * 2000-09-29 2002-04-10 Sanyo Electric Co Ltd 冷蔵庫

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8087258B2 (en) * 2005-10-25 2012-01-03 Mitsubishi Electric Corporation Air conditioner, refrigerant filling method of air conditioner, method for judging refrigerant filling state of air conditioner as well as refrigerant filling and pipe cleaning method of air conditioner
US9103574B2 (en) 2005-10-25 2015-08-11 Mitsubishi Electric Corporation Air conditioner, refrigerant filling method of air conditioner, method for judging refrigerant filling state of air conditioner as well as refrigerant filling and pipe cleaning method of air conditioner
US20090000329A1 (en) * 2006-02-03 2009-01-01 Airbus Deutschland Gmbh Cooling System
US10214292B2 (en) * 2006-02-03 2019-02-26 Airbus Operations Gmbh Cooling system using chiller and thermally coupled cooling circuit
JP2007232245A (ja) * 2006-02-28 2007-09-13 Mitsubishi Electric Corp 冷凍システムおよび冷凍システムの運転方法
JP4660412B2 (ja) * 2006-03-30 2011-03-30 株式会社東芝 冷凍機
JP2007271138A (ja) * 2006-03-30 2007-10-18 Toshiba Corp 冷凍機
JP2009299909A (ja) * 2008-06-10 2009-12-24 Hitachi Appliances Inc 冷凍サイクル装置
JP2010096490A (ja) * 2008-09-16 2010-04-30 Sanyo Electric Co Ltd 冷凍装置
JP2010236796A (ja) * 2009-03-31 2010-10-21 Fujitsu General Ltd 冷凍サイクル装置
US9593872B2 (en) 2009-10-27 2017-03-14 Mitsubishi Electric Corporation Heat pump
WO2011052031A1 (ja) * 2009-10-27 2011-05-05 三菱電機株式会社 ヒートポンプ
CN102597658A (zh) * 2009-10-27 2012-07-18 三菱电机株式会社 热泵
JP5496217B2 (ja) * 2009-10-27 2014-05-21 三菱電機株式会社 ヒートポンプ
CN102597658B (zh) * 2009-10-27 2014-10-22 三菱电机株式会社 热泵
JP2012088022A (ja) * 2010-10-22 2012-05-10 Daikin Industries Ltd 給湯装置
JP2012189258A (ja) * 2011-03-10 2012-10-04 Fujitsu General Ltd 冷凍サイクル装置
JPWO2015140873A1 (ja) * 2014-03-17 2017-04-06 三菱電機株式会社 冷凍装置、及び、冷凍装置の制御方法
KR20160091107A (ko) * 2015-01-23 2016-08-02 엘지전자 주식회사 냉장고용 냉각사이클장치
KR102262722B1 (ko) 2015-01-23 2021-06-09 엘지전자 주식회사 냉장고용 냉각사이클장치
JPWO2018096580A1 (ja) * 2016-11-22 2019-06-24 三菱電機株式会社 冷凍サイクル装置
US11976851B2 (en) 2018-10-02 2024-05-07 Daikin Industries, Ltd. Refrigeration cycle device
JP7096511B2 (ja) 2018-10-02 2022-07-06 ダイキン工業株式会社 冷凍サイクル装置
WO2020071300A1 (ja) * 2018-10-02 2020-04-09 ダイキン工業株式会社 冷凍サイクル装置
JP7189423B2 (ja) 2018-10-02 2022-12-14 ダイキン工業株式会社 冷凍サイクル装置
WO2020071299A1 (ja) * 2018-10-02 2020-04-09 ダイキン工業株式会社 冷凍サイクル装置
JP2020056536A (ja) * 2018-10-02 2020-04-09 ダイキン工業株式会社 冷凍サイクル装置
JPWO2020071299A1 (ja) * 2018-10-02 2021-09-02 ダイキン工業株式会社 冷凍サイクル装置
WO2020188756A1 (ja) * 2019-03-19 2020-09-24 日立ジョンソンコントロールズ空調株式会社 空気調和機
JPWO2020188756A1 (ja) * 2019-03-19 2021-04-30 日立ジョンソンコントロールズ空調株式会社 ルームエアコン
JPWO2021065944A1 (ja) * 2019-09-30 2021-04-08
WO2021065944A1 (ja) * 2019-09-30 2021-04-08 ダイキン工業株式会社 空気調和装置
JP7201912B2 (ja) 2019-09-30 2023-01-11 ダイキン工業株式会社 冷凍サイクル装置
JP2020056567A (ja) * 2019-09-30 2020-04-09 ダイキン工業株式会社 冷凍サイクル装置
WO2022209739A1 (ja) * 2021-03-30 2022-10-06 ダイキン工業株式会社 熱源ユニットおよび冷凍装置
JP2022155464A (ja) * 2021-03-30 2022-10-13 ダイキン工業株式会社 熱源ユニットおよび冷凍装置
JP7168894B2 (ja) 2021-03-30 2022-11-10 ダイキン工業株式会社 熱源ユニットおよび冷凍装置
EP4317854A4 (en) * 2021-03-30 2024-04-17 Daikin Ind Ltd HEAT SOURCE UNIT AND REFRIGERATION DEVICE

Also Published As

Publication number Publication date
US7752857B2 (en) 2010-07-13
CN1886625A (zh) 2006-12-27
US7526924B2 (en) 2009-05-05
JPWO2005052467A1 (ja) 2007-12-06
CN1886625B (zh) 2010-12-01
EP1701112B1 (en) 2017-11-15
EP1701112A1 (en) 2006-09-13
US20090158761A1 (en) 2009-06-25
KR100854206B1 (ko) 2008-08-26
JP4753719B2 (ja) 2011-08-24
KR20080007281A (ko) 2008-01-17
KR20070106043A (ko) 2007-10-31
EP1701112A4 (en) 2009-07-15
ES2652023T3 (es) 2018-01-31
KR20060123206A (ko) 2006-12-01
US20070271936A1 (en) 2007-11-29

Similar Documents

Publication Publication Date Title
JP4753719B2 (ja) 冷凍装置及び空気調和装置
JP6320568B2 (ja) 冷凍サイクル装置
JP6351848B2 (ja) 冷凍サイクル装置
JP6022058B2 (ja) 熱源側ユニット及び冷凍サイクル装置
CN105247302B (zh) 空调装置
CN111201410B (zh) 空气调节装置
WO2015059945A1 (ja) 空気調和装置
JP4975076B2 (ja) 除霜装置及び除霜方法
CN103733002A (zh) 空气调节装置
JP5474024B2 (ja) 冷凍サイクル装置
CN103733005B (zh) 空调装置
CN103890501B (zh) 空气调节装置
JPWO2019082372A1 (ja) 冷凍サイクル装置
JP6479181B2 (ja) 空気調和装置
WO2020174618A1 (ja) 空気調和装置
JP2009002564A (ja) 冷媒冷却回路
KR101173736B1 (ko) 냉장 및 냉동 복합 공조시스템
JP6042037B2 (ja) 冷凍サイクル装置
KR20100116891A (ko) 공기조화기의 제상운전방법
KR20100088378A (ko) 공기조화기 및 공기조화기의 제상운전방법
JP2016151372A (ja) 空気調和装置
Quinn et al. Experimental investigation and performance comparison of a transcritical CO2 unit operating with flash gas by-pass and mechanical sub-cooler
Jakobsen et al. Development of CO2 vending machine for heating and cooling of beverage
Barnes et al. Minimizing TEWI in a Compact Chiller for Unitary Applications.
CN105466065A (zh) 空气调节装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480035162.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515784

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2004819388

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004819388

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067010312

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004819388

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067010312

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10579100

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10579100

Country of ref document: US