WO2020071299A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置

Info

Publication number
WO2020071299A1
WO2020071299A1 PCT/JP2019/038451 JP2019038451W WO2020071299A1 WO 2020071299 A1 WO2020071299 A1 WO 2020071299A1 JP 2019038451 W JP2019038451 W JP 2019038451W WO 2020071299 A1 WO2020071299 A1 WO 2020071299A1
Authority
WO
WIPO (PCT)
Prior art keywords
main
sub
refrigerant
heat exchanger
side heat
Prior art date
Application number
PCT/JP2019/038451
Other languages
English (en)
French (fr)
Inventor
熊倉 英二
岩田 育弘
古庄 和宏
竜介 藤吉
松岡 弘宗
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US17/282,143 priority Critical patent/US20210356177A1/en
Priority to EP19869333.5A priority patent/EP3862655A4/en
Priority to JP2020550412A priority patent/JP7096511B2/ja
Publication of WO2020071299A1 publication Critical patent/WO2020071299A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/009Compression machines, plants or systems with reversible cycle not otherwise provided for indoor unit in circulation with outdoor unit in first operation mode, indoor unit in circulation with an other heat exchanger in second operation mode or outdoor unit in circulation with an other heat exchanger in third operation mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0252Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the refrigerant flowing between the heat source side heat exchanger and the use side heat exchanger is branched into a refrigerant circuit having a compressor, a heat source side heat exchanger, a use side heat exchanger, and a flow path switching mechanism, and sent to the compressor.
  • a refrigeration cycle apparatus provided with an injection pipe, and an economizer heat exchanger that cools a refrigerant flowing between a heat source side heat exchanger and a use side heat exchanger by heat exchange with a refrigerant flowing through the injection pipe.
  • a refrigeration cycle device including a refrigerant circuit having a compressor, a heat source side heat exchanger, a use side heat exchanger, and a flow path switching mechanism.
  • a refrigerant flowing between a heat source side heat exchanger and a use side heat exchanger is branched into a refrigerant circuit.
  • the flow path is switched to the cooling operation state in which the use-side heat exchanger circulates the refrigerant so as to function as the refrigerant evaporator.
  • the switching mechanism is switched for operation (cooling operation)
  • the refrigerant flowing between the heat source side heat exchanger and the use side heat exchanger can be cooled in the economizer heat exchanger.
  • the heat source side heat exchanger is injected through the injection pipe.
  • a part of the refrigerant flowing between the heat exchanger and the use-side heat exchanger is sent to the compressor, and the flow rate of the refrigerant discharged from the compressor can be increased by that amount.
  • the flow rate of the refrigerant sent to the use-side heat exchanger increases, and the heat exchange capacity (radiation capacity of the use-side heat exchanger) obtained by radiating the refrigerant in the use-side heat exchanger can be increased.
  • the heat radiation capability of the refrigerant in the heat source side heat exchanger may be reduced depending on the operating conditions, and accordingly, the cooling capability of the refrigerant in the economizer heat exchanger is insufficient, thereby causing It tends to be difficult to increase the evaporation capacity of the heat exchanger.
  • the refrigerant flowing between the heat source side heat exchanger and the use side heat exchanger is cooled in the economizer heat exchanger according to the flow rate of the refrigerant sent to the compressor through the injection pipe.
  • the enthalpy of the refrigerant sent to the heat source side heat exchanger decreases, whereby the amount of heat exchange required for evaporating the refrigerant in the heat source side heat exchanger tends to increase.
  • the evaporating capacity of the use-side heat exchanger during operation in which the use-side heat exchanger functions as a refrigerant evaporator is desirable to make it possible to reduce the amount of heat exchange required for evaporating the refrigerant in the heat source side heat exchanger during the operation in which the use side heat exchanger functions as a refrigerant radiator. It is.
  • the refrigeration cycle device has a main refrigerant circuit and a sub refrigerant circuit.
  • the main refrigerant circuit includes a main compressor, a main heat source side heat exchanger, a main use side heat exchanger, an injection pipe, an economizer heat exchanger, and a main flow path switching mechanism.
  • the main compressor is a compressor that compresses a main refrigerant.
  • the main heat source side heat exchanger is a heat exchanger that functions as a radiator or an evaporator for the main refrigerant.
  • the main use side heat exchanger is a heat exchanger that functions as an evaporator or a radiator of the main refrigerant.
  • the injection pipe is a refrigerant pipe that branches the main refrigerant flowing between the main heat source side heat exchanger and the main use side heat exchanger and sends the branched refrigerant to the main compressor.
  • the economizer heat exchanger is a heat exchanger that cools a main refrigerant flowing between a main heat source side heat exchanger and a main use side heat exchanger by heat exchange with a main refrigerant flowing through an injection pipe.
  • the main flow path switching mechanism has a main cooling operation state in which the main refrigerant circulates so that the main use side heat exchanger functions as an evaporator of the main refrigerant, and the main use side heat exchanger functions as a radiator of the main refrigerant.
  • the main refrigerant circuit has a sub-use-side heat exchanger that functions as a cooler or a heater of the main refrigerant cooled in the economizer heat exchanger.
  • the sub refrigerant circuit includes a sub compressor, a sub heat source side heat exchanger, a sub use side heat exchanger, and a sub flow switching mechanism.
  • the sub-compressor is a compressor that compresses a sub-refrigerant.
  • the sub heat source side heat exchanger is a heat exchanger that functions as a radiator or an evaporator for the sub refrigerant.
  • the sub-use-side heat exchanger functions as a sub-refrigerant evaporator and cools the main refrigerant cooled in the economizer heat exchanger, or functions as a sub-refrigerant radiator and is cooled in the economizer heat exchanger. This is a heat exchanger that heats the main refrigerant.
  • the sub flow path switching mechanism is a sub-cooling operation state in which the sub-use side heat exchanger circulates the sub-refrigerant so as to function as a sub-refrigerant evaporator, and the sub-use side heat exchanger functions as a sub-refrigerant radiator. And a sub-heating operation state in which the sub-refrigerant is circulated as described above.
  • the main refrigerant circuit in which the main refrigerant circulates provided with the same injection pipe and economizer heat exchanger as in the related art, but also a sub-refrigerant circuit in which a sub-refrigerant separate from the main refrigerant circuit is circulated.
  • the sub-refrigerant circuit is provided for switching the main flow path switching mechanism to a cooling operation state in which the main refrigerant is circulated so that the main use side heat exchanger functions as an evaporator for the main refrigerant (cooling operation).
  • the sub-use-side heat exchanger provided is provided in the main refrigerant circuit so as to function as a sub-refrigerant evaporator for cooling the main refrigerant cooled in the economizer heat exchanger. For this reason, here, the enthalpy of the main refrigerant sent to the main use side heat exchanger is further reduced, and the heat exchange capacity obtained by evaporation of the main refrigerant in the main use side heat exchanger (evaporation capacity of the use side heat exchanger) ) Can be increased.
  • the sub-refrigerant circuit is provided.
  • the sub-use-side heat exchanger is provided in the main refrigerant circuit so as to function as a sub-refrigerant radiator and function as a sub-refrigerant radiator for heating the main refrigerant cooled in the economizer heat exchanger. Therefore, here, the enthalpy of the main refrigerant sent to the main heat source side heat exchanger increases, and the amount of heat exchange required for evaporating the main refrigerant in the main heat source side heat exchanger can be reduced.
  • the operation of the usage-side heat exchanger as a refrigerant evaporator during the operation of the usage-side heat exchanger It is possible to reduce the amount of heat exchange required for evaporating the refrigerant in the heat source side heat exchanger during operation in which the use side heat exchanger functions as a refrigerant radiator. it can.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect, wherein the main compressor includes a low-stage compression element for compressing the main refrigerant, and a main refrigerant discharged from the low-stage compression element. And a high-stage compression element for compressing.
  • the main refrigerant circuit has an intermediate heat exchanger.
  • the intermediate heat exchanger functions as a cooler for the main refrigerant flowing between the low-stage compression element and the high-stage compression element when the main flow switching mechanism is in the main cooling operation state.
  • the intermediate heat exchanger functions as an evaporator for the main refrigerant heated in the sub-use-side heat exchanger when the main flow switching mechanism is in the main heating operation state.
  • the intermediate pressure of the intermediate pressure flowing between the low-stage compression element and the high-stage compression element in the intermediate heat exchanger is changed. Since the refrigerant can be cooled, the temperature of the high-pressure main refrigerant discharged from the main compressor can be kept low. Moreover, here, as described above, when the main flow path switching mechanism is in the main heating operation state, the main refrigerant heated in the sub-use side heat exchanger can be evaporated in the intermediate heat exchanger. Therefore, the evaporation capacity can be increased as compared with the case where the main refrigerant heated in the sub-use-side heat exchanger is evaporated only by the main heat source-side heat exchanger.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect, wherein the main compressor includes a compression element having an intermediate injection port for introducing a main refrigerant from the outside during the compression stroke. .
  • the injection pipe is connected to the intermediate injection port.
  • the main refrigerant flowing through the injection pipe can be sent to an intermediate portion (intermediate injection port) of the compression stroke of the main compressor, which is a single-stage compressor, so that the main compressor is compressed to the intermediate pressure in the refrigeration cycle.
  • the temperature of the main refrigerant can be reduced.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first or second aspect, wherein the main compressor discharges the low-stage compression element for compressing the main refrigerant and the low-stage compression element. And a high-stage compression element for compressing the main refrigerant.
  • the injection pipe is connected to the suction side of the high-stage compression element.
  • the main refrigerant flowing through the injection pipe can be sent to an intermediate portion (between the low-stage compression element and the high-stage compression element) of the compression process of the main compressor which is a multi-stage compressor.
  • the temperature of the main refrigerant compressed to the intermediate pressure in the refrigeration cycle in the machine can be reduced.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first to fourth aspects, wherein the main refrigerant circuit has a main expansion circuit between the economizer heat exchanger and the sub-use side heat exchanger. Has a mechanism.
  • the main refrigerant before being depressurized by the main expansion mechanism can flow through the economizer heat exchanger, so that the main refrigerant in the economizer heat exchanger can be used. Cooling capacity can be increased.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the fifth aspect, further including a control unit that controls components of a main refrigerant circuit and a sub-refrigerant circuit.
  • the control unit controls components of the main refrigerant circuit and the sub refrigerant circuit so that the main refrigerant circuit and the sub refrigerant circuit are linked.
  • the sub-refrigerant circuit When the sub-refrigerant circuit is controlled independently of the main refrigerant circuit, when performing the cooling operation, the cooling heat amount of the main refrigerant in the economizer heat exchanger and the cooling heat amount of the main refrigerant in the sub-use-side heat exchanger The balance may be lost. Further, when performing the heating operation, the balance between the flow rate of the main refrigerant flowing through the injection pipe and the heating heat of the main refrigerant in the sub-use-side heat exchanger may be lost.
  • the economizer heat exchange is performed.
  • the balance between the cooling heat of the main refrigerant in the heat exchanger and the cooling heat of the main refrigerant in the sub-use-side heat exchanger is appropriate, and when performing the heating operation, the flow rate of the main refrigerant flowing through the injection pipe and the sub-use-side heat.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the sixth aspect, wherein the injection pipe has an injection expansion mechanism.
  • the control unit controls the components of the injection expansion mechanism and the sub refrigerant circuit based on the coefficient of performance of the main refrigerant circuit.
  • the components of the injection expansion mechanism and the sub refrigerant circuit are controlled based on the coefficient of performance of the main refrigerant circuit. Therefore, here, when performing the cooling operation, the cooling heat amount of the main refrigerant in the economizer heat exchanger and the cooling heat amount of the main refrigerant in the sub-use-side heat exchanger are balanced based on the coefficient of performance of the main refrigerant circuit.
  • the flow rate of the main refrigerant flowing through the injection pipe and the heating heat amount of the main refrigerant in the sub-use-side heat exchanger can be balanced based on the coefficient of performance of the main refrigerant circuit. it can.
  • the refrigeration cycle apparatus is the refrigeration cycle apparatus according to the seventh aspect, wherein the control unit sets the main flow path switching mechanism in the main cooling operation state and sets the sub flow path switching mechanism in the sub cooling operation state.
  • the opening degree of the injection expansion mechanism is controlled such that the temperature of the main refrigerant at the inlet of the main expansion mechanism becomes the first main refrigerant target temperature
  • the sub refrigerant is set based on the coefficient of performance of the main refrigerant circuit. Controls the components of the circuit.
  • the injection expansion mechanism when controlling the components of the injection expansion mechanism and the sub-refrigeration circuit based on the coefficient of performance of the main refrigerant circuit when performing the cooling operation, the injection expansion mechanism based on the temperature of the main refrigerant at the inlet of the main expansion mechanism is controlled.
  • the control it is possible to balance the cooling heat amount of the main refrigerant in the sub-use-side heat exchanger while securing the cooling heat amount of the main refrigerant in the economizer heat exchanger.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the seventh aspect, wherein the control unit sets the main flow path switching mechanism in the main cooling operation state and sets the sub flow path switching mechanism in the sub cooling operation state.
  • the opening degree of the injection expansion mechanism is controlled so that the superheat degree of the main refrigerant flowing through the injection pipe at the outlet of the economizer heat exchanger becomes the first main refrigerant target superheat degree
  • the main refrigerant circuit The components of the sub refrigerant circuit are controlled based on the coefficient of performance.
  • the degree of superheat of the main refrigerant flowing through the injection pipe at the outlet of the economizer heat exchanger is controlled.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the eighth or ninth aspect, wherein the control unit is configured to control the temperature of the main refrigerant at the inlet of the main expansion mechanism, the coefficient of performance of the main refrigerant circuit,
  • a first sub-refrigerant target temperature which is a target value of the temperature of the sub-refrigerant at the outlet of the sub-use-side heat exchanger, is set according to the correlation with the temperature of the sub-refrigerant at the outlet of the heat exchanger.
  • the components of the sub refrigerant circuit are controlled so that the temperature of the sub refrigerant at the outlet of the exchanger becomes the first sub refrigerant target temperature.
  • the cooling operation in controlling the components of the sub-refrigerant circuit based on the coefficient of performance of the main refrigerant circuit, the temperature of the sub-refrigerant at the outlet of the sub-use-side heat exchanger is changed to the inlet of the main expansion mechanism.
  • the cooling heat amount of the main refrigerant in the sub-use heat exchanger is balanced. Can be done.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the seventh to tenth aspects, wherein the control unit sets the main flow path switching mechanism to the main heating operation state, and switches the sub flow path.
  • the control unit sets the main flow path switching mechanism to the main heating operation state, and switches the sub flow path.
  • the performance of the main refrigerant circuit is controlled in a state where the opening degree of the injection expansion mechanism is controlled so that the temperature of the main refrigerant at the inlet of the main expansion mechanism becomes the second main refrigerant target temperature.
  • the components of the sub refrigerant circuit are controlled based on the coefficient.
  • the injection expansion mechanism when performing the heating operation, in controlling the components of the injection expansion mechanism and the sub-refrigerant circuit based on the coefficient of performance of the main refrigerant circuit, the injection expansion mechanism based on the temperature of the main refrigerant at the inlet of the main expansion mechanism is controlled. By the control, it is possible to balance the heating heat of the main refrigerant in the sub-use-side heat exchanger while securing the flow rate of the main refrigerant flowing through the injection pipe.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the seventh to tenth aspects, wherein the control unit sets the main flow path switching mechanism to the main heating operation state, and switches the sub flow path.
  • the degree of superheat of the main refrigerant flowing through the injection pipe at the outlet of the economizer heat exchanger is controlled.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the eleventh or twelfth aspect, wherein the control unit is configured to control the temperature of the main refrigerant at the inlet of the main expansion mechanism, the coefficient of performance of the main refrigerant circuit, A second sub-refrigerant target temperature, which is a target value of the sub-refrigerant temperature at the outlet of the sub-use-side heat exchanger, is set according to the correlation with the temperature of the sub-refrigerant at the outlet of the heat exchanger, and the sub-use-side heat is set.
  • the components of the sub refrigerant circuit are controlled so that the temperature of the sub refrigerant at the outlet of the exchanger becomes the second sub refrigerant target temperature.
  • the heating operation when the heating operation is performed, in controlling the components of the sub-refrigerant circuit based on the coefficient of performance of the main refrigerant circuit, the temperature of the sub-refrigerant at the outlet of the sub-use-side heat exchanger is changed to the inlet of the main expansion mechanism.
  • the heating heat amount of the main refrigerant in the sub-use heat exchanger is balanced Can be done.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the first to thirteenth aspects, wherein the main refrigerant is carbon dioxide, and the sub-refrigerant is an HFC refrigerant or GFO having a GWP of 750 or less. It is a refrigerant or a mixed refrigerant of an HFC refrigerant and an HFO refrigerant.
  • the environmental load such as global warming can be reduced.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any of the first to thirteenth aspects, wherein the main refrigerant is carbon dioxide, and the sub-refrigerant has a higher coefficient of performance than carbon dioxide. It is a refrigerant.
  • the natural refrigerant having a higher coefficient of performance than carbon dioxide is used as the sub-refrigerant, the environmental load such as global warming can be reduced.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle device according to an embodiment of the present disclosure. It is a figure showing a flow of a refrigerant in a refrigeration cycle device at the time of cooling operation.
  • FIG. 4 is a pressure-enthalpy diagram illustrating a refrigeration cycle during a cooling operation. It is a figure showing a flow of a refrigerant in a refrigeration cycle device at the time of heating operation.
  • FIG. 3 is a pressure-enthalpy diagram illustrating a refrigeration cycle during a heating operation. It is a flowchart which shows the interlocking control of a main refrigerant circuit and a sub refrigerant circuit.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle device 1 according to an embodiment of the present disclosure.
  • the refrigeration cycle device 1 includes a main refrigerant circuit 20 in which a main refrigerant circulates, and a sub-refrigerant circuit 80 in which a sub-refrigerant circulates, and is a device that performs indoor air conditioning (here, cooling and heating). .
  • the main refrigerant circuit 20 mainly includes the main compressors 21 and 22, the main heat source side heat exchanger 25, the main use side heat exchangers 72a and 72b, the injection pipe 31, the economizer heat exchanger 32, and the sub use It has a side heat exchanger 85 and a first main channel switching mechanism 23.
  • the main refrigerant circuit 20 includes an intermediate refrigerant pipe 61, a second main flow path switching mechanism 24, an intermediate heat exchanger 26, an intermediate heat exchange bypass pipe 63, a bridge circuit 40, and an upstream main expansion mechanism 27. And main use side expansion mechanisms 71a and 71b. Then, carbon dioxide is sealed in the main refrigerant circuit 20 as a main refrigerant.
  • the main compressors 21 and 22 are devices that compress the main refrigerant.
  • the first main compressor 21 is a compressor that drives a low-stage compression element 21a such as a rotary or scroll by a drive mechanism such as a motor or an engine.
  • the second main compressor 22 is a compressor that drives a high-stage compression element 22a such as a rotary or scroll by a drive mechanism such as a motor or an engine.
  • the main compressors 21 and 22 compress the main refrigerant in the low-stage first main compressor 21 and then discharge the main refrigerant, and discharge the main refrigerant discharged from the first main compressor 21 to the high-stage second main compressor 21.
  • a multi-stage (here, two-stage) compressor configured to be compressed by the compressor 22 is configured.
  • an intermediate refrigerant pipe 61 connects between the discharge side of the first main compressor 21 (low-stage compression element 21a) and the suction side of the second main compressor 22 (high-stage compression element 22a). ing.
  • the first main flow path switching mechanism 23 is a mechanism for switching the direction of the flow of the main refrigerant in the main refrigerant circuit 20.
  • the first main flow path switching mechanism 23 includes a main cooling operation state in which the main refrigerant is circulated so that the main use side heat exchangers 72a and 72b function as an evaporator of the main refrigerant, and a main use side heat exchanger 72a and 72b. Is a switching mechanism for switching between a main heating operation state in which the main refrigerant is circulated so as to function as a radiator of the main refrigerant.
  • the first main flow path switching mechanism 23 is a four-way switching valve, and the suction side of the main compressors 21 and 22 (here, the suction side of the first main compressor 21), the main compressor 21 , 22 (here, the discharge side of the second main compressor 22), one end of the main heat source side heat exchanger 25, and the other end of the main use side heat exchangers 72a, 72b.
  • the first main flow path switching mechanism 23 connects the discharge side of the second main compressor 22 to one end of the main heat source side heat exchanger 25, and Is connected to the other end of the main use side heat exchangers 72a, 72b (see the solid line of the first main flow path switching mechanism 23 in FIG. 1).
  • the first main flow path switching mechanism 23 connects the discharge side of the second main compressor 22 to the other ends of the main use side heat exchangers 72a and 72b, and The suction side of the compressor 21 and one end of the main heat source side heat exchanger 25 are connected (see the broken line of the first main flow path switching mechanism 23 in FIG. 1).
  • the first main flow path switching mechanism 23 is not limited to the four-way switching valve. For example, by combining a plurality of two-way valves or three-way valves, the same main refrigerant flow direction as described above can be used. It may be configured to have a switching function.
  • the main heat source side heat exchanger 25 is a device for exchanging heat between the main refrigerant and the outdoor air, and here is a heat exchanger functioning as a radiator or an evaporator for the main refrigerant.
  • One end of the main heat source side heat exchanger 25 is connected to the first main flow path switching mechanism 23, and the other end is connected to the bridge circuit 40.
  • the main heat source side heat exchanger 25 functions as a radiator for the main refrigerant, and operates the first main flow path switching mechanism 23 with the main heating. When in the operating state, it functions as an evaporator for the main refrigerant.
  • the bridge circuit 40 is provided between the main heat source side heat exchanger 25 and the main use side heat exchangers 72a and 72b.
  • the main refrigerant circulating in the main refrigerant circuit 20 is supplied to the economizer heat exchanger 32 (the first economizer flow path) regardless of whether the first main flow path switching mechanism 23 is in the main cooling operation state or the main heating operation state. 32a), a circuit for rectifying the upstream main expansion mechanism 27 and the sub-use side heat exchanger 85 (second sub-flow path 85b) so that they flow in this order.
  • the bridge circuit 40 has three check mechanisms 41, 42, 43 and a downstream main expansion mechanism 44.
  • the inlet check mechanism 41 is a check valve that allows only the flow of the main refrigerant from the main heat source side heat exchanger 25 to the economizer heat exchanger 32 and the upstream side main expansion mechanism 27.
  • the inlet check mechanism 42 is a check valve that allows only the flow of the main refrigerant from the main use side heat exchangers 72 a and 72 b to the economizer heat exchanger 32 and the upstream main expansion mechanism 27.
  • the outlet check mechanism 43 is a check valve that allows only the flow of the main refrigerant from the sub use side heat exchanger 85 to the main use side heat exchangers 72a and 72b.
  • the downstream main expansion mechanism 44 is a device for reducing the pressure of the main refrigerant.
  • the downstream main expansion mechanism 44 is, for example, an electric expansion valve.
  • the injection pipe 31 is a refrigerant pipe through which the main refrigerant flows.
  • the main refrigerant flowing between the main heat source side heat exchanger 25 and the main use side heat exchangers 72a and 72b is branched to form a main compressor 21, 22 is a refrigerant pipe to be sent to 22.
  • the injection pipe 31 branches the main refrigerant flowing between the inlet non-return mechanisms 41 and 42 of the bridge circuit 40 and the upstream main expansion mechanism 27 and sends it to the suction side of the second main compressor 22.
  • It is a refrigerant pipe and has a first injection pipe 31a and a second injection pipe 31b.
  • One end of the first injection pipe 31a is connected between the inlet check mechanisms 41, 42 of the bridge circuit 40 and the economizer heat exchanger 32 (one end of the first economizer flow path 32a), and the other end is connected to the economizer heat. It is connected to the exchanger 32 (one end of the second economizer flow path 32b).
  • One end of the second injection pipe 31b is connected to the economizer heat exchanger 32 (the other end of the second economizer flow path 32b), and the other end is connected to the outlet of the intermediate heat exchanger 26 and the suction of the second main compressor 22. Connected between the side.
  • the injection pipe 31 has an injection expansion mechanism 33.
  • the injection expansion mechanism 33 is provided in the first injection pipe 31a.
  • the injection expansion mechanism 33 is a device that decompresses the main refrigerant, and here is an expansion mechanism that depressurizes the main refrigerant flowing through the injection pipe 31.
  • the injection expansion mechanism 33 is, for example, an electric expansion valve.
  • the economizer heat exchanger 32 is a device for exchanging heat between main refrigerants.
  • the main refrigerant flowing between the main heat source side heat exchanger 25 and the main use side heat exchangers 72a and 72b is passed through the injection pipe 31.
  • This is a heat exchanger that cools by heat exchange with the flowing main refrigerant.
  • the economizer heat exchanger 32 exchanges the main refrigerant flowing between the inlet check mechanisms 41 and 42 of the bridge circuit 40 and the upstream main expansion mechanism 27 with the main refrigerant flowing through the injection pipe 31. It is a heat exchanger for cooling.
  • the economizer heat exchanger 32 includes a first economizer flow path 32 a through which main refrigerant flows between the inlet check mechanisms 41 and 42 of the bridge circuit 40 and the upstream main expansion mechanism 27, and a main refrigerant flowing through the injection pipe 31. And a second economizer flow path 32b for flowing.
  • One end (inlet) of the first economizer flow path 32 a is connected to the inlet check mechanisms 41 and 42 of the bridge circuit 40, and the other end (outlet) is connected to the inlet of the upstream main expansion mechanism 27.
  • One end (inlet) of the second economizer flow path 32b is connected to the other end of the first injection pipe 31a, and the other end (outlet) is connected to one end of the second injection pipe 31b.
  • the upstream main expansion mechanism 27 is a device for decompressing the main refrigerant, and here, depressurizes the main refrigerant flowing between the economizer heat exchanger 32 and the sub-use side heat exchanger 85 (second sub flow path 85b). Expansion mechanism (main expansion mechanism). Specifically, the upstream-side main expansion mechanism 27 is provided between the inlet check mechanisms 41 and 42 of the bridge circuit 40 and the sub-use-side heat exchanger 85 (the second sub-flow path 85b). The upstream side main expansion mechanism 27 is, for example, an electric expansion valve. Note that the upstream main expansion mechanism 27 may be an expander that generates power by reducing the pressure of the main refrigerant.
  • the sub-use-side heat exchanger 85 is a device that exchanges heat between the main refrigerant and the sub-refrigerant.
  • the sub-use-side heat exchanger 85 is a heat exchanger that functions as a cooler or a heater of the main refrigerant cooled in the economizer heat exchanger 31. is there. That is, when the first main flow path switching mechanism 23 is in the main cooling operation state, the sub-use side heat exchanger 85 functions as a cooler for the main refrigerant cooled in the economizer heat exchanger 31, When the main flow path switching mechanism 23 is in the main heating operation state, it functions as a heater for the main refrigerant cooled in the economizer heat exchanger 31. Specifically, the sub-use-side heat exchanger 85 cools or heats the main refrigerant flowing between the upstream main expansion mechanism 27 and the third check mechanism 43 and the downstream main expansion mechanism 44 of the bridge circuit 40. It is a heat exchanger.
  • the main use side expansion mechanisms 71a and 71b are devices for reducing the pressure of the main refrigerant.
  • the main use side expansion mechanisms 71a and 71b are connected to the sub use side heat exchanger 85 and the main use side heat exchangers 72a and 72b.
  • the main refrigerant flowing between the first and second main flow switching mechanisms 23a and 72b and the upstream main expansion mechanism 27 are depressurized. This is an expansion mechanism for reducing the pressure of the main refrigerant.
  • the main use side expansion mechanisms 71a and 71b are provided between the inlet check mechanism 42 and the outlet check mechanism 43 of the bridge circuit 40 and one end of the main use side heat exchangers 72a and 72b. .
  • the main use side expansion mechanisms 71a and 71b are, for example, electric expansion valves.
  • the main use side heat exchangers 72a and 72b are devices for exchanging heat between the main refrigerant and the indoor air, and here are heat exchangers that function as evaporators or radiators of the main refrigerant.
  • One end of each of the main use side heat exchangers 72a and 72b is connected to the main use side expansion mechanisms 71a and 71b, and the other end is connected to the suction side of the first compressor 21.
  • the intermediate heat exchanger 26 is a device for exchanging heat between the main refrigerant and the outdoor air.
  • the intermediate heat exchanger 26 when the first main flow path switching mechanism 23 is in the main cooling operation state, the intermediate heat exchanger 26 is connected to the first main compressor 21.
  • the heat exchanger functions as a cooler for the main refrigerant flowing between the second main compressor 22.
  • the intermediate heat exchanger 26 when the first main flow path switching mechanism 23 is in the main heating operation state, the intermediate heat exchanger 26 is configured to supply the main refrigerant heated in the sub use side heat exchanger 85 (the second sub flow path 85b). It is a heat exchanger that functions as an evaporator.
  • the intermediate heat exchanger 26 is provided in the intermediate refrigerant pipe 61.
  • the intermediate refrigerant pipe 61 has a first intermediate refrigerant pipe 61a, a second intermediate refrigerant pipe 61b, and a third intermediate refrigerant pipe 61c.
  • One end of the first intermediate refrigerant pipe 61a is connected to the discharge side of the first main compressor 21 (low-stage compression element 21a), and the other end is connected to the second main flow path switching mechanism 24.
  • the second intermediate refrigerant pipe 61 b has one end connected to the second main flow path switching mechanism 24 and the other end connected to one end of the intermediate heat exchanger 26.
  • One end of the third intermediate refrigerant pipe 61c is connected to the other end of the intermediate heat exchanger 26, and the other end is connected to the suction side of the second main compressor 22 (high-stage compression element 22a).
  • the other end of the second intermediate injection pipe 31b is connected to the third intermediate refrigerant pipe 61c.
  • the intermediate heat exchange bypass pipe 63 transfers the main refrigerant discharged from the first main compressor 21 (lower stage compression element 21a) to the intermediate state.
  • This is a refrigerant pipe that bypasses the heat exchanger 26 and sends it to the second main compressor 22 (high-stage compression element 22a).
  • One end of the intermediate heat exchange bypass pipe 63 is connected to the second main flow path switching mechanism 24, and the other end is suction of the third intermediate refrigerant pipe 61 c and the second main compressor 22 (the high-stage side compression element 22 a). Connected to the part between the sides.
  • the second main flow path switching mechanism 24 is a mechanism for switching the direction of the flow of the main refrigerant in the main refrigerant circuit 20.
  • the second main flow path switching mechanism 24 includes an intermediate heat exchange / radiation state in which the main refrigerant discharged from the first main compressor 21 is passed through the intermediate heat exchanger 26 and then sent to the second main compressor 22.
  • the second main flow path switching mechanism 24 is a four-way switching valve, and includes a discharge side of the first main compressor 21, one end of the second intermediate refrigerant pipe 61 b, and an intermediate heat exchange bypass pipe 63.
  • the second main flow path switching mechanism 24 connects the discharge side of the first main compressor 21 and the suction side of the second main compressor 22 through the intermediate heat exchanger 26 in the intermediate heat exchange / radiation state. (See the solid line of the second main flow path switching mechanism 24 in FIG. 1). In the intermediate heat exchange bypass state, the discharge side of the first main compressor 21 and the suction side of the second main compressor 22 are connected through the intermediate heat exchange bypass pipe 64 (the second main flow path switching mechanism in FIG. 1). 24 dashed line).
  • the second main flow path switching mechanism 24 is not limited to the four-way switching valve, and for example, by combining a plurality of two-way valves or three-way valves, or the like, changes the flow direction of the main refrigerant as described above. It may be configured to have a switching function.
  • the first main compressor After the main refrigerant discharged from 21 is cooled in the intermediate heat exchanger 26, it can be caused to flow so as to be sucked into the second main compressor 22.
  • the first main compressor when the first main flow path switching mechanism 23 is in the main heating operation state and the second main flow path switching mechanism 24 is in the intermediate heat exchange bypass state, the first main compressor The main refrigerant discharged from 21 can be caused to flow so as to be sucked into the second main compressor 22 by bypassing the intermediate heat exchanger 26 through the intermediate heat exchange bypass pipe 63.
  • the sub refrigerant circuit 80 mainly includes a sub compressor 81, a sub heat source side heat exchanger 83, a sub use side heat exchanger 85, and a sub flow path switching mechanism 82.
  • the sub refrigerant circuit 80 has a sub expansion mechanism 84.
  • an HFC refrigerant (R32 or the like) having a GWP (global warming potential) of 750 or less, an HFO refrigerant (R1234yf or R1234ze or the like), or a mixed refrigerant of the HFC refrigerant and the HFO refrigerant (R452B etc.) are enclosed.
  • the sub-refrigerant is not limited to these, and may be a natural refrigerant (propane, ammonia, or the like) having a higher coefficient of performance than carbon dioxide.
  • the sub compressor 81 is a device that compresses the sub refrigerant.
  • the sub-compressor 81 is a compressor that drives a compression element 81a such as a rotary or scroll by a drive mechanism such as a motor or an engine.
  • the sub flow path switching mechanism 82 is a mechanism for switching the direction of the flow of the sub refrigerant in the sub refrigerant circuit 80.
  • the sub passage switching mechanism 82 includes a sub-cooling operation state in which the sub-use side heat exchanger 85 circulates the sub-refrigerant so as to function as an evaporator for the sub-refrigerant.
  • the sub flow path switching mechanism 82 is a four-way switching valve, and includes a suction side of the sub compressor 81, a discharge side of the sub compressor 81, one end of the sub heat source side heat exchanger 83, and It is connected to the other end of the side heat exchanger 85 (first sub flow path 85a).
  • the sub flow path switching mechanism 82 connects the discharge side of the sub compressor 81 to one end of the sub heat source side heat exchanger 83, and connects the sub compressor 81 to the suction side.
  • the other end of the side heat exchanger 85 (first sub flow path 85a) is connected (see the solid line of the sub flow path switching mechanism 82 in FIG. 1).
  • the sub flow path switching mechanism 82 connects the discharge side of the sub compressor 81 to the other end of the sub use side heat exchanger 85 (first sub flow path 85a), and The suction side of the compressor 81 and one end of the sub heat source side heat exchanger 83 are connected (see the broken line of the sub flow path switching mechanism 82 in FIG. 1).
  • the sub-channel switching mechanism 82 is not limited to a four-way switching valve, and is capable of switching the flow direction of the sub-refrigerant as described above, for example, by combining a plurality of two-way or three-way valves. May be provided.
  • the sub heat source side heat exchanger 83 is a device for exchanging heat between the sub refrigerant and the outdoor air, and here is a heat exchanger that functions as a radiator or an evaporator for the sub refrigerant.
  • One end of the sub heat source side heat exchanger 83 is connected to the sub flow path switching mechanism 82, and the other end is connected to the sub expansion mechanism 84.
  • the sub-heat-source-side heat exchanger 83 functions as a radiator for the sub-refrigerant, and sets the sub-flow path switching mechanism 82 to the sub-heating operation state. , It functions as an evaporator for the sub-refrigerant.
  • the sub-expansion mechanism 84 is a device that decompresses the sub-refrigerant.
  • the sub-expansion mechanism 84 is an expansion mechanism that decompresses the sub-refrigerant flowing between the sub-heat-source-side heat exchanger 83 and the sub-use-side heat exchanger 85.
  • the sub expansion mechanism 84 is provided between the other end of the sub heat source side heat exchanger 83 and the sub use side heat exchanger 85 (one end of the first sub flow path 85a).
  • the sub-expansion mechanism 84 is, for example, an electric expansion valve.
  • the sub-use-side heat exchanger 85 is a device that exchanges heat between the main refrigerant and the sub-refrigerant.
  • the sub-use-side heat exchanger 85 functions as an evaporator for the sub-refrigerant and is cooled in the economizer heat exchanger 32.
  • the heat exchanger cools the main refrigerant or functions as a radiator of the sub-refrigerant and heats the main refrigerant cooled in the economizer heat exchanger 32.
  • the sub-use-side heat exchanger 85 converts the main refrigerant flowing between the upstream main expansion mechanism 27 and the third check mechanism 43 and the first downstream main expansion mechanism 44 of the bridge circuit 40 into a sub-refrigerant.
  • the heat exchanger is cooled or heated by the refrigerant flowing through the circuit 80.
  • the sub-use-side heat exchanger 85 includes a first sub-flow path 85 a through which a sub-refrigerant flowing between the sub-expansion mechanism 84 and the sub-flow path switching mechanism 82 flows, and a third reverse flow path of the gas-liquid separator 51 and the bridge circuit 40.
  • a second sub flow path 85b through which the main refrigerant flows between the stop mechanism 43 and the first downstream main expansion mechanism 44.
  • One end of the first sub flow path 85 a is connected to the sub expansion mechanism 84, and the other end is connected to the sub flow path switching mechanism 82.
  • One end (inlet) of the second sub flow path 85b is connected to the upstream main expansion mechanism 27, and the other end (outlet) is connected to the third check mechanism 43 and the first downstream main expansion mechanism 44 of the bridge circuit 40. It is connected to the.
  • the components of the main refrigerant circuit 20 and the sub-refrigerant circuit 80 are provided in the heat source unit 2, the plurality of use units 7a and 7b, and the sub-unit 8.
  • the use units 7a and 7b are provided corresponding to the main use side heat exchangers 72a and 72b, respectively.
  • the heat source unit 2 is arranged outdoors.
  • the heat source unit 2 is provided with the main refrigerant circuit 20 excluding the sub use side heat exchanger 85, the main use side expansion mechanisms 71a and 71b, and the main use side heat exchangers 72a and 72b.
  • the heat source unit 2 is provided with a heat source side fan 28 for sending outdoor air to the main heat source side heat exchanger 25 and the intermediate heat exchanger 26.
  • the heat source side fan 28 is a fan that drives a blowing element such as a propeller fan by a driving mechanism such as a motor.
  • the heat source unit 2 is provided with various sensors. Specifically, a pressure sensor 91 and a temperature sensor 92 for detecting the pressure and temperature of the main refrigerant on the suction side of the first main compressor 21 are provided. A pressure sensor 93 that detects the pressure of the main refrigerant on the discharge side of the first main compressor 21 is provided. A pressure sensor 94 and a temperature sensor 95 for detecting the pressure and temperature of the main refrigerant on the discharge side of the second main compressor 21 are provided. A temperature sensor 96 for detecting the temperature of the main refrigerant at the other end of the main heat source side heat exchanger 25 is provided.
  • a temperature sensor 34 for detecting the temperature of the main refrigerant at the other end of the economizer heat exchanger 32 (the other end of the first economizer flow path 32a) is provided.
  • a temperature sensor 35 for detecting the temperature of the main refrigerant in the second injection pipe 31b is provided.
  • a pressure sensor 97 and a temperature sensor 98 for detecting the pressure and temperature of the main refrigerant between the upstream main expansion mechanism 27 and the sub-use side heat exchanger 85 are provided.
  • a temperature sensor 105 for detecting the temperature of the main refrigerant at the other end of the sub-use side heat exchanger 85 (the other end of the second sub flow path 85b) is provided.
  • a temperature sensor 99 for detecting the temperature of the outdoor air (outside air temperature) is provided.
  • the use units 7a and 7b are arranged indoors.
  • the main use side expansion mechanisms 71a, 71b and the main use side heat exchangers 72a, 72b of the main refrigerant circuit 20 are provided in the use units 7a, 7b.
  • the use units 7a and 7b are provided with use side fans 73a and 73b for sending room air to the main use side heat exchangers 72a and 72b.
  • the usage-side fans 73a and 73b are fans that drive a blowing element such as a centrifugal fan or a multi-blade fan by a drive mechanism such as a motor.
  • various sensors are provided in the use units 7a and 7b. Specifically, temperature sensors 74a, 74b for detecting the temperature of the main refrigerant at one end of the main use side heat exchangers 72a, 72b, and the temperature of the main refrigerant at the other end of the main use side heat exchangers 72a, 72b Temperature sensors 75a and 75b for detecting
  • the subunit 8 is arranged outside the room.
  • the sub-refrigerant circuit 80 and a part of a refrigerant pipe constituting the main refrigerant circuit 20 are provided in the sub-unit 8. I have.
  • the sub unit 8 is provided with a sub fan 86 for sending outdoor air to the sub heat source side heat exchanger 83.
  • the sub-side fan 86 is a fan that drives a blowing element such as a propeller fan by a driving mechanism such as a motor.
  • the sub-unit 8 is provided adjacent to the heat source unit 2, and the sub-unit 8 and the heat source unit 2 are substantially integrated.
  • the subunit 8 may be provided separately from the heat source unit 2, or all the components of the subunit 8 may be provided in the heat source unit 2 and the subunit 8 may be omitted.
  • the subunit 8 is provided with various sensors. Specifically, a pressure sensor 101 and a temperature sensor 102 for detecting the pressure and temperature of the sub refrigerant on the suction side of the sub compressor 81 are provided. A pressure sensor 103 and a temperature sensor 104 for detecting the pressure and temperature of the sub-refrigerant on the discharge side of the sub-compressor 81 are provided. A temperature sensor 106 for detecting the temperature of the outdoor air (outside air temperature) is provided. A temperature sensor 107 for detecting the temperature of the sub-refrigerant at one end of the sub-use-side heat exchanger 85 (one end of the first sub-flow path 85a) is provided.
  • the heat source unit 2 and the use units 7a and 7b are connected by main refrigerant communication pipes 11 and 12 that constitute a part of the main refrigerant circuit 20.
  • the first main refrigerant communication pipe 11 is a part of a pipe that connects the inlet check mechanism 42 and the outlet check mechanism 43 of the bridge circuit 40 with the main use-side expansion mechanisms 71a and 71b.
  • the second main refrigerant communication pipe 12 is a part of a pipe connecting between the other ends of the main use side heat exchangers 72a and 72b and the first main flow path switching mechanism 23.
  • the control unit 9 controls the components of the heat source unit 2 including the components of the main refrigerant circuit 20 and the sub-refrigerant circuit 80, the units 7a and 7b, and the sub-unit 8.
  • the control unit 9 is configured such that control boards and the like provided in the heat source unit 2, the use units 7a and 7b, and the subunit 8 are connected by communication, and various sensors 34, 35, 74a, 74b, 75a, and 75b , 91 to 99, 101 to 107, and the like.
  • the control unit 9 is illustrated at a position apart from the heat source unit 2, the use units 7a and 7b, the subunit 8, and the like.
  • control unit 9 controls the components 21 to 24 of the refrigeration cycle apparatus 1 based on the detection signals of the various sensors 34, 35, 74a, 74b, 75a, 75b, 91 to 99, 101 to 107, and the like. Control of 27, 28, 33, 44, 71a, 71b, 73a, 73b, 81, 82, 84, 86, that is, operation control of the entire refrigeration cycle apparatus 1 is performed.
  • FIG. 2 is a diagram illustrating the flow of the refrigerant in the refrigeration cycle apparatus 1 during the cooling operation.
  • FIG. 3 is a pressure-enthalpy diagram illustrating a refrigeration cycle during the cooling operation.
  • FIG. 4 is a diagram illustrating the flow of the refrigerant in the refrigeration cycle apparatus 1 during the heating operation.
  • FIG. 5 is a pressure-enthalpy diagram illustrating a refrigeration cycle during a heating operation.
  • FIG. 6 is a flowchart showing the interlocking control of the main refrigerant circuit 20 and the sub refrigerant circuit 80.
  • FIG. 7 is a diagram showing changes in the coefficient of performance of the main refrigerant circuit 20 depending on the temperature Th1 of the main refrigerant at the inlet of the main expansion mechanism 27 and the temperature Ts1 of the sub-refrigerant at the outlet of the sub-use-side heat exchanger 85 during the cooling operation. is there.
  • the refrigeration cycle apparatus 1 includes, as indoor air conditioning, a cooling operation (cooling operation) in which the main use side heat exchangers 72a and 72b function as an evaporator of the main refrigerant to cool the indoor air, and a main use side heat exchanger 72a. , 72b function as a radiator of the main refrigerant to heat the room air (heating operation). Also, here, a sub-refrigerant circuit cooling operation for cooling the main refrigerant using the sub-refrigerant circuit 80 during the cooling operation, and a sub-refrigerant circuit for heating the main refrigerant using the sub-refrigerant circuit 80 during the heating operation A heating operation can be performed. The operation of the cooling operation with the sub refrigerant circuit cooling operation and the heating operation with the sub refrigerant circuit heating operation are performed by the control unit 9.
  • the first main flow path switching mechanism 23 is switched to the main cooling operation state shown by the solid line in FIG. 2, and the second main flow path switching mechanism 24 is switched to the intermediate heat exchange state shown by the solid line in FIG. The state can be switched to the heat radiation state. Further, since the first main channel switching mechanism 23 is switched to the main cooling operation state, the first downstream main expansion mechanism 44 is closed. In the cooling operation, the sub flow path switching mechanism 82 is switched to the sub cooling operation state shown by the solid line in FIG. 2 to perform the sub refrigerant circuit cooling operation.
  • the low-pressure (LPh) main refrigerant in the refrigeration cycle (see point A in FIGS. 2 and 3) is sucked into the first main compressor 21, and the first main compressor 21 It is compressed to the intermediate pressure (MPh1) in the refrigeration cycle and discharged (see point B in FIGS. 2 and 3).
  • the intermediate-pressure main refrigerant discharged from the first main compressor 21 is sent to the intermediate heat exchanger 26 through the second main flow path switching mechanism 24, and is sent to the intermediate heat exchanger 26 by the heat source side fan 28. It is cooled by performing heat exchange with outdoor air (see point C in FIGS. 2 and 3).
  • the intermediate-pressure main refrigerant cooled in the intermediate heat exchanger 26 joins with the intermediate-pressure main refrigerant sent from the intermediate injection pipe 31 (second intermediate injection pipe 31b) to the suction side of the second main compressor 22. (See point D in FIGS. 2 and 3).
  • the intermediate-pressure main refrigerant into which the main refrigerant has been injected from the intermediate injection pipe 31 is sucked into the second main compressor 22, and compressed and discharged to the high pressure (HPh) in the refrigeration cycle in the second main compressor 22. (See point E in FIGS. 2 and 3).
  • the high-pressure main refrigerant discharged from the second main compressor 22 has a pressure exceeding the critical pressure of the main refrigerant.
  • the high-pressure main refrigerant discharged from the second main compressor 22 is sent to the main heat source side heat exchanger 25, and exchanges heat with the outdoor air sent by the heat source side fan 28 in the main heat source side heat exchanger 25. And cooled (see point F in FIGS. 2 and 3).
  • a part of the high-pressure main refrigerant cooled in the main heat source side heat exchanger 25 partially passes through the intermediate injection pipe 31 according to the opening degree of the intermediate injection expansion mechanism 33.
  • the remainder is sent to the economizer heat exchanger 32 (first economizer flow path 32a).
  • the high-pressure main refrigerant branched into the intermediate injection pipe 31 is reduced in pressure to the intermediate pressure (MPh1) in the intermediate injection expansion mechanism 33 to be in a gas-liquid two-phase state (see point K in FIGS. 2 and 3), and the economizer heat is generated. It is sent to the exchanger 32 (second economizer flow path 32b).
  • the high-pressure main refrigerant flowing through the first economizer flow path 32a is cooled by performing heat exchange with the intermediate-pressure two-phase main refrigerant flowing through the second economizer flow path 32b ( (See point G in FIGS. 2 and 3).
  • the main refrigerant in the gas-liquid two-phase state at the intermediate pressure flowing through the second economizer flow path 32b is heated by heat exchange with the high-pressure main refrigerant flowing through the first economizer flow path 32a (see FIGS. 2 and 3).
  • Point L merges with the intermediate-pressure main refrigerant cooled in the intermediate heat exchanger 26, and is sent to the suction side of the second main compressor 22.
  • the high-pressure main refrigerant cooled in the economizer heat exchanger 32 is sent to the upstream main expansion mechanism 27, where the main refrigerant is reduced in pressure to the intermediate pressure (MPh2) in the refrigeration cycle, and is gas-liquid two-phase. State (see point H in FIGS. 2 and 3).
  • the intermediate-pressure main refrigerant depressurized in the upstream-side main expansion mechanism 27 is sent to the sub-use-side heat exchanger 85 (the second sub-flow path 85b).
  • the low-pressure (LPs) sub-refrigerant (see point R in FIGS. 2 and 3) in the refrigeration cycle is sucked into the sub-compressor 81, and (HPs) and discharged (see point S in FIGS. 2 and 3).
  • the high-pressure sub-refrigerant discharged from the sub-compressor 81 is sent to the sub-heat-source-side heat exchanger 83 through the sub-flow-path switching mechanism 82, where the outdoor air is sent by the sub-side fan 86 in the sub-heat-source-side heat exchanger 83. It is cooled by exchanging heat with air (see point T in FIGS. 2 and 3).
  • the high-pressure sub-refrigerant cooled in the sub-heat-source-side heat exchanger 83 is sent to the sub-expansion mechanism 84, where it is decompressed to a low pressure and enters a gas-liquid two-phase state (FIGS. 2 and 3). Point U).
  • the intermediate-pressure main refrigerant flowing through the second sub-flow path 85b exchanges heat with the low-pressure gas-liquid two-phase sub-refrigerant flowing through the first sub-flow path 85a. It is cooled (see point I in FIGS. 2 and 3). Conversely, the low-pressure gas-liquid two-phase sub-refrigerant flowing through the first sub-flow path 85a exchanges heat with the intermediate-pressure main refrigerant flowing through the second sub-flow path 85b and is heated (see FIGS. 2 and 5). (Refer to the point R in FIG. 3), and is again sucked into the suction side of the sub-compressor 81 through the sub-channel switching mechanism 82.
  • the intermediate-pressure main refrigerant cooled in the sub-use-side heat exchanger 85 is sent to the main use-side expansion mechanisms 71a and 71b through the outlet check mechanism 43 of the bridge circuit 40 and the first main refrigerant communication pipe 11, and In the use-side expansion mechanisms 71a and 71b, the pressure is reduced to a low pressure (LPh) to be in a gas-liquid two-phase state (see point J in FIGS. 2 and 3).
  • LPh low pressure
  • the low-pressure main refrigerant decompressed in the main use side expansion mechanisms 71a, 71b is sent to the main use side heat exchangers 72a, 72b, and sent by the use side fans 73a, 73b in the main use side heat exchangers 72a, 72b. It heats and evaporates by performing heat exchange with the room air to be produced (see point A in FIGS. 2 and 3). Conversely, the indoor air is cooled by performing heat exchange with the low-pressure two-phase main refrigerant flowing through the main use side heat exchangers 72a and 72b, thereby cooling the room.
  • the low-pressure main refrigerant evaporated in the main use side heat exchangers 72a and 72b is sent to the suction side of the first main compressor 21 through the second main refrigerant communication pipe 12 and the first main flow path switching mechanism 23, and again. Is sucked into the first main compressor 21. In this way, the cooling operation with the sub-refrigerant circuit cooling operation is performed.
  • the first main flow path switching mechanism 23 is switched to the main heating operation state shown by the broken line in FIG. 4, and the second main flow path switching mechanism 24 is switched to the intermediate heat exchange state shown by the broken line in FIG. The state is switched to the bypass state. Further, since the first main channel switching mechanism 23 is switched to the main heating operation state, the first downstream main expansion mechanism 44 is opened. Further, during the heating operation, the sub-flow path switching mechanism 82 is switched to the sub-heating operation state indicated by the broken line in FIG. 4 to perform the sub-refrigerant circuit heating operation.
  • the low-pressure (LPh) main refrigerant in the refrigeration cycle (see point A in FIGS. 4 and 5) is sucked into the first main compressor 21, and It is compressed and discharged to the intermediate pressure (MPh1) in the refrigeration cycle (see point B in FIGS. 4 and 5).
  • the intermediate-pressure main refrigerant discharged from the first main compressor 21 does not radiate heat in the intermediate heat exchanger 26 through the second main flow path switching mechanism 24 and the intermediate heat exchange bypass pipe 63, and the second main compressor 22 is sent to the suction side.
  • the intermediate-pressure main refrigerant bypassing the intermediate heat exchanger 26 joins with the intermediate-pressure main refrigerant sent from the intermediate injection pipe 31 (second intermediate injection pipe 31b) to the suction side of the second main compressor 22. It is cooled (see point D in FIGS. 4 and 5).
  • the intermediate-pressure main refrigerant into which the main refrigerant has been injected from the intermediate injection pipe 31 is sucked into the second main compressor 22, and compressed and discharged to the high pressure (HPh) in the refrigeration cycle in the second main compressor 22. (See point E in FIGS. 4 and 5).
  • the high-pressure main refrigerant discharged from the second main compressor 22 has a pressure exceeding the critical pressure of the main refrigerant.
  • the high-pressure main refrigerant discharged from the second main compressor 22 is sent to the main use side heat exchangers 72 a and 72 b through the first main flow path switching mechanism 23 and the second main refrigerant communication pipe 12, and In the heat exchangers 72a and 72b, heat is exchanged with room air sent by the use side fans 73a and 73b to radiate heat (see point J in FIGS. 4 and 5). Conversely, the indoor air is heated by exchanging heat with the high-pressure main refrigerant flowing through the main-use-side heat exchangers 72a and 72b, thereby heating the room.
  • the high-pressure main refrigerant radiated in the main use side heat exchangers 72a and 72b passes through the main use side expansion mechanisms 71a and 71b, the first main refrigerant communication pipe 11, and the inlet check mechanism 42 of the bridge circuit 40, and then the A part is branched into the intermediate injection pipe 31 according to the opening degree of the intermediate injection expansion mechanism 33, and the remainder is sent to the economizer heat exchanger 32 (first economizer flow path 32a).
  • the high-pressure main refrigerant branched into the intermediate injection pipe 31 is reduced in pressure to the intermediate pressure (MPh1) in the intermediate injection expansion mechanism 33 to be in a gas-liquid two-phase state (see point K in FIGS. 4 and 5), and the economizer heat is generated.
  • the exchanger 32 (second economizer flow path 32b).
  • the high-pressure main refrigerant flowing through the first economizer flow path 32a is cooled by performing heat exchange with the intermediate-pressure two-phase main refrigerant flowing through the second economizer flow path 32b ( (See point G in FIGS. 4 and 5).
  • the main refrigerant in the gas-liquid two-phase state at the intermediate pressure flowing through the second economizer flow path 32b is heated by heat exchange with the high-pressure main refrigerant flowing through the first economizer flow path 32a (see FIGS. 4 and 5).
  • Point L merges with the intermediate-pressure main refrigerant bypassing the intermediate heat exchanger 26, and is sent to the suction side of the second main compressor 22.
  • the high-pressure main refrigerant cooled in the economizer heat exchanger 32 is sent to the upstream main expansion mechanism 27, where the main refrigerant is reduced in pressure to the intermediate pressure (MPh2) in the refrigeration cycle, and is gas-liquid two-phase. State (see point H in FIGS. 4 and 5).
  • the intermediate-pressure main refrigerant depressurized in the upstream-side main expansion mechanism 27 is sent to the sub-use-side heat exchanger 85 (the second sub-flow path 85b).
  • the low-pressure (LPs) sub-refrigerant (see point R in FIGS. 4 and 5) in the refrigeration cycle is sucked into the sub-compressor 81, and (HPs) and discharged (see point S in FIGS. 4 and 5).
  • the high-pressure sub-refrigerant discharged from the sub-compressor 81 is sent to the sub-heat-source-side heat exchanger 83 through the sub-channel switching mechanism 82.
  • the intermediate-pressure main refrigerant flowing through the second sub-flow path 85b exchanges heat with the high-pressure sub-refrigerant flowing through the first sub-flow path 85a and is heated (FIG. 4). And point I in FIG. 5).
  • the high-pressure sub-refrigerant flowing through the first sub-flow path 85a is cooled by performing heat exchange with the intermediate-pressure main refrigerant flowing through the second sub-flow path 85b (see point U in FIGS. 4 and 5). .
  • the high-pressure sub-refrigerant cooled in the sub-use-side heat exchanger 85 is sent to the sub-expansion mechanism 84, where it is decompressed to a low pressure and enters a gas-liquid two-phase state (FIGS. 4 and 5). Point T).
  • the low-pressure sub-refrigerant that has been decompressed in the sub-expansion mechanism 84 is sent to the sub-heat-source-side heat exchanger 83, where the sub-heat-source-side heat exchanger 83 exchanges heat with outdoor air sent by the sub-side fan 86 to heat. Then, it is sucked into the suction side of the sub-compressor 81 again through the sub-channel switching mechanism 82 (see point R in FIGS. 4 and 5).
  • the intermediate-pressure main refrigerant heated in the sub-use-side heat exchanger 85 is decompressed to a low pressure in the first downstream main expansion mechanism 44 of the bridge circuit 40 (see point F in FIGS. 4 and 5), and The refrigerant is sent to the main heat source side heat exchanger 25 functioning as a refrigerant evaporator.
  • the low-pressure main refrigerant sent to the main heat source side heat exchanger 25 evaporates by performing heat exchange with outdoor air supplied by the heat source side fan 28 in the main heat source side heat exchanger 25. Then, the low-pressure main refrigerant evaporated in the main heat source side heat exchanger 25 is sent to the suction side of the first main compressor 21 through the first main flow path switching mechanism 23, and is again sent to the first main compressor 21. Inhaled. Thus, the heating operation with the sub refrigerant circuit heating operation is performed.
  • the sub refrigerant circuit 80 when the sub refrigerant circuit 80 is controlled independently of the main refrigerant circuit 20, when performing the cooling operation, the cooling heat amount of the main refrigerant in the economizer heat exchanger 32 (see points F and G in FIG. 3). ) And the amount of cooling heat of the main refrigerant in the sub-use-side heat exchanger 85 (see points H and I in FIG. 3) may be lost. Further, when performing the heating operation, the balance between the flow rate of the main refrigerant flowing through the injection pipe 31 and the heating heat amount of the main refrigerant in the sub-use-side heat exchanger 85 (points H and I in FIG. 5) may be lost. is there.
  • the components of the main refrigerant circuit 20 and the sub-refrigerant circuit 80 are controlled so that the main refrigerant circuit 20 and the sub-refrigerant circuit 80 are linked as described below. Accordingly, when performing the cooling operation, the balance between the cooling heat amount of the main refrigerant in the economizer heat exchanger 32 and the cooling heat amount of the main refrigerant in the sub-use-side heat exchanger 85 is appropriately set, and the heating operation is performed. Therefore, the balance between the flow rate of the main refrigerant flowing through the injection pipe 31 and the amount of heating heat of the main refrigerant in the sub-use-side heat exchanger 85 is appropriately set.
  • step ST1 Interlocking control during cooling operation with sub refrigerant circuit cooling operation-
  • the control unit 9 starts the cooling operation with the sub refrigerant circuit cooling operation in step ST11.
  • the injection expansion mechanism 33 is set to a predetermined opening, and in the sub refrigerant circuit 80, the sub compressor 81 is set to a predetermined capacity, and the sub expansion mechanism 84 is set to a predetermined opening.
  • step ST12 the control unit 9 controls the opening degree of the injection expansion mechanism 33 based on the superheat degree SHh1 of the main refrigerant flowing through the injection pipe 31 at the outlet of the economizer heat exchanger 32.
  • the control unit 9 controls the opening degree of the injection expansion mechanism 33 so that the superheat degree SHh1 becomes the first main refrigerant target superheat degree SHh1t.
  • the superheat degree SHh1 is obtained by converting the pressure (MPh1) of the main refrigerant detected by the pressure sensor 93 into a saturation temperature, and subtracting this saturation temperature from the temperature of the main refrigerant detected by the temperature sensor 35.
  • the first main refrigerant target superheat degree SHh1t is determined by operating conditions of the main refrigerant circuit 20 (the outside air temperature Ta, the high pressure HPh of the main refrigerant, the low pressure LPh of the main refrigerant, the temperature Th2 of the main refrigerant in the main heat source side heat exchanger 25). And the like (one or more of the state quantities relating to the various main refrigerant circuits 20).
  • the outside air temperature Ta is detected by the temperature sensor 99 or the temperature sensor 106
  • the temperature Th1 is detected by the temperature sensor 96
  • the high pressure HPh is detected by the pressure sensor 94
  • the low pressure LPh is detected by the pressure sensor 91.
  • step ST13 the control unit 9 sets the coefficient of performance COP of the main refrigerant circuit 20 in a state where the opening degree of the injection expansion mechanism 33 is controlled such that the superheat degree SHh1 becomes the first main refrigerant target superheat degree SHh1t. Based on this, the components of the sub-refrigerant circuit 20 are controlled.
  • the coefficient of performance COP of the main refrigerant circuit 20 during the cooling operation is determined by the temperature Th1 of the main refrigerant at the inlet of the main expansion mechanism 27 (the outlet of the economizer heat exchanger 32) and the temperature of the sub-refrigerant at the outlet of the sub-use-side heat exchanger 85.
  • Ts1 has a correlation as shown in FIG. This correlation indicates a balance between the cooling heat of the main refrigerant in the economizer heat exchanger 32 and the cooling heat of the main refrigerant in the sub-use-side heat exchanger 85. For example, when the temperature Th1 of the main refrigerant is 40 ° C. In this case, when the temperature Ts1 of the sub-refrigerant is 25 ° C., the coefficient of performance COP of the main refrigerant circuit 20 becomes maximum.
  • the evaporating capacity Qe of the use-side heat exchangers 72a and 72b during the cooling operation increases as the amount of cooling heat of the main refrigerant in the sub-use-side heat exchanger 85 increases by the sub-refrigerant circuit cooling operation.
  • increasing the cooling heat amount of the main refrigerant by the sub-refrigerant circuit cooling operation means increasing the power consumption Ws of the sub-refrigerant circuit 80 (mainly, the power consumption of the sub-compressor 81).
  • the coefficient of performance COP of the main refrigerant circuit 20 is obtained by calculating the evaporation capacity Qe between the power consumption Wh of the main refrigerant circuit 20 (mainly the power consumption of the main compressors 21 and 22) and the power consumption Ws of the sub refrigerant circuit 80. It is expressed by the value divided by the total value, that is, Qe / (Wh + Ws).
  • the control unit 9 has this correlation in the form of a data table or a function, and according to the correlation, determines the temperature of the sub-refrigerant Ts1 at the outlet of the sub-use-side heat exchanger 85.
  • a first sub-refrigerant target temperature Ts1t that is a target value is set.
  • the control unit 9 obtains the temperature of the sub-refrigerant at which the coefficient of performance COP of the main refrigerant circuit 20 becomes maximum from the temperature Th1 of the main refrigerant, and sets this temperature value to the first sub-refrigerant target temperature Ts1t.
  • the control unit 9 controls the components of the sub-refrigerant circuit 20 so that the sub-refrigerant temperature Ts1 becomes the first sub-refrigerant target temperature Ts1t. Specifically, the control unit 9 controls the opening degree of the sub-expansion mechanism 84 and the operating capacity of the sub-compressor 81 such that the sub-refrigerant temperature Ts1 becomes the first sub-refrigerant target temperature Ts1t. Here, the control unit 9 controls the opening degree of the sub expansion mechanism 84 based on the superheat degree SHs1 of the sub refrigerant at the outlet of the sub use side heat exchanger 85 on the sub refrigerant circuit 80 side.
  • the control unit 9 controls the opening of the sub-expansion mechanism 84 so that the superheat degree SHs1 becomes the target value SHs1t.
  • the superheat degree SHs1 is obtained by converting the sub-refrigerant pressure (LPs) detected by the pressure sensor 101 into a saturation temperature, and subtracting this saturation temperature from the sub-refrigerant temperature Ts1 detected by the temperature sensor 102. .
  • the control unit 9 controls the opening degree of the sub-expansion mechanism 84 based on the superheat degree SHs1 of the sub-refrigerant, and sets the sub-compressor 81 so that the sub-refrigerant temperature Ts1 becomes the first sub-refrigerant target temperature Ts1t. Control the operating capacity (operating frequency and rotational speed) of the
  • the control unit 9 sets the components of the injection expansion mechanism 33 and the sub-refrigerant circuit 80 (the sub-compressor 81 and the sub-compressor 81) based on the coefficient of performance COP of the main refrigerant circuit 20.
  • the sub-expansion mechanism 84 is controlled.
  • the opening of the sub-expansion mechanism 84 is controlled so that the sub-refrigerant temperature Ts1 becomes the first sub-refrigerant target temperature Ts1t. The degree may be controlled.
  • step ST1 Interlocking control during heating operation with sub refrigerant circuit heating operation-
  • the control unit 9 starts the heating operation with the sub-refrigerant circuit heating operation in step ST12.
  • the injection expansion mechanism 33 is set to a predetermined opening, and in the sub refrigerant circuit 80, the sub compressor 81 is set to a predetermined capacity, and the sub expansion mechanism 84 is set to a predetermined opening.
  • step ST22 the control unit 9 controls the opening degree of the injection expansion mechanism 33 based on the superheat degree SHh1 of the main refrigerant flowing through the injection pipe 31 at the outlet of the economizer heat exchanger 32, as in the cooling operation. I do. However, in consideration of the heating operation, the control unit 9 determines here that the superheat degree SHh1 is different from the second main refrigerant target superheat degree SHh2t (the first main refrigerant target superheat degree SHh1t during the cooling operation). ), The opening of the injection expansion mechanism 33 is controlled.
  • step ST23 the control unit 9 sets the coefficient of performance COP of the main refrigerant circuit 20 in a state where the opening degree of the injection expansion mechanism 33 is controlled such that the superheat degree SHh1 becomes the second main refrigerant target superheat degree SHh2t. Based on this, the components of the sub-refrigerant circuit 20 are controlled.
  • the coefficient of performance COP of the main refrigerant circuit 20 during the heating operation is the same as that during the cooling operation (see FIG. 7), as in the case of the cooling operation (see FIG. 7).
  • a temperature Ts2 of the sub-refrigerant at the outlet of the sub-use-side heat exchanger 85 since the temperature Th1 of the main refrigerant at the inlet of the main expansion mechanism 27 (the outlet of the economizer heat exchanger 32) is equivalent to the flow rate of the main refrigerant flowing through the injection pipe 31, this correlation is obtained by using the injection pipe 31. This can be said to indicate a balance relationship between the flow rate of the flowing main refrigerant and the amount of heating heat of the main refrigerant in the sub-use-side heat exchanger 85.
  • the heat radiating capacity Qr of the use-side heat exchangers 72a and 72b during the heating operation increases as the heating amount of the main refrigerant in the sub-use-side heat exchanger 85 increases by the sub-refrigerant circuit heating operation.
  • increasing the amount of heating heat of the main refrigerant by the sub refrigerant circuit heating operation means increasing the power consumption Ws of the sub refrigerant circuit 80 (mainly, the power consumption of the sub compressor 81).
  • the coefficient of performance COP of the main refrigerant circuit 20 is obtained by calculating the heat dissipation capacity Qr between the power consumption Wh of the main refrigerant circuit 20 (mainly the power consumption of the main compressors 21 and 22) and the power consumption Ws of the sub refrigerant circuit 80. It is expressed by the value divided by the total value, that is, Qr / (Wh + Ws). For this reason, if the heating power of the main refrigerant by the sub-refrigerant circuit heating operation is increased with respect to the flow rate of the main refrigerant flowing through the injection pipe 31, the performance of the main refrigerant circuit 20 is reduced in a range where the power consumption Ws of the sub-refrigerant circuit 80 is small.
  • the coefficient COP of the main refrigerant circuit 20 tends to decrease in a range where the power consumption Ws of the sub refrigerant circuit 80 is large. That is, the coefficient of performance COP of the main refrigerant circuit 20 changes according to the balance between the flow rate of the main refrigerant flowing through the injection pipe 31 and the amount of heating heat of the main refrigerant in the sub-use-side heat exchanger 85, and there is an optimum point.
  • the control unit 9 has this correlation in the form of a data table or a function, and according to the correlation, determines the temperature of the sub-refrigerant Ts2 at the outlet of the sub-use-side heat exchanger 85.
  • a second sub-refrigerant target temperature Ts2t which is a target value is set.
  • the control unit 9 obtains the temperature of the sub-refrigerant at which the coefficient of performance COP of the main refrigerant circuit 20 becomes maximum from the temperature Th1 of the main refrigerant, and sets this temperature value to the second sub-refrigerant target temperature Ts2t.
  • the control unit 9 controls the components of the sub-refrigerant circuit 20 so that the sub-refrigerant temperature Ts2 becomes the second sub-refrigerant target temperature Ts2t. Specifically, the control unit 9 controls the opening degree of the sub-expansion mechanism 84 and the operating capacity of the sub-compressor 81 so that the sub-refrigerant temperature Ts2 becomes the second sub-refrigerant target temperature Ts2t. Here, the control unit 9 controls the opening degree of the sub-expansion mechanism 84 based on the sub-cooling degree SCs1 of the sub-refrigerant at the outlet of the sub-use-side heat exchanger 85 on the sub-refrigerant circuit 80 side.
  • the control unit 9 controls the opening degree of the sub-expansion mechanism 84 so that the subcooling degree SCs1 becomes the target value SCs1t.
  • the subcooling degree SCs1 is obtained by converting the sub-refrigerant pressure (HPs) detected by the pressure sensor 103 into a saturation temperature and subtracting the sub-refrigerant temperature Ts2 detected by the temperature sensor 107 from the saturation temperature.
  • the control unit 9 controls the opening degree of the sub-expansion mechanism 84 based on the sub-cooling degree SCs1 of the sub-refrigerant and sets the sub-compressor so that the sub-refrigerant temperature Ts2 becomes the second sub-refrigerant target temperature Ts2t.
  • the operating capacity (operating frequency and rotation speed) of the control unit 81 is controlled.
  • the control unit 9 controls the components of the injection expansion mechanism 33 and the sub refrigerant circuit 80 (the sub compressor 81 and the sub compressor 81) based on the coefficient of performance COP of the main refrigerant circuit 20.
  • the sub-expansion mechanism 84 is controlled.
  • the opening of the sub-expansion mechanism 84 is controlled so that the sub-refrigerant temperature Ts2 becomes the second sub-refrigerant target temperature Ts2t. The degree may be controlled.
  • the operation is performed.
  • the sub-use-side heat exchanger 85 provided in the sub-refrigerant circuit 80 is provided in the main refrigerant circuit 20 so as to function as a sub-refrigerant evaporator that cools the main refrigerant cooled in the economizer heat exchanger 32. I have. Therefore, here, the enthalpy of the main refrigerant sent to the main use side heat exchangers 72a, 72b further decreases (see points H and I in FIG.
  • the heat exchange capacity obtained by evaporation (evaporation capacity of the use-side heat exchangers 72a and 72b) can be increased (see points J and A in FIG. 3).
  • the sub-use-side heat exchanger 85 provided in the sub-refrigerant circuit 80 functions as a sub-refrigerant radiator and functions as a sub-refrigerant radiator that heats the main refrigerant cooled in the economizer heat exchanger 32.
  • the enthalpy of the main refrigerant sent to the main heat source side heat exchanger 25 increases (see points H and I in FIG.
  • the main heat source side heat exchanger 25 it is necessary for the main heat source side heat exchanger 25 to evaporate the main refrigerant.
  • the amount of heat exchange can be reduced (see points F and A in FIG. 5).
  • the heat exchange efficiency of the main heat source side heat exchanger 25 increases, and the low pressure (LPh) of the main refrigerant increases, so that the power consumption of the main compressors 21 and 22 can be reduced.
  • the low pressure of the main refrigerant increases during the heating operation, frost formation in the main heat source side heat exchanger 25 is suppressed, so that the frequency of performing the defrost operation can be reduced.
  • the evaporation capacity of the use side heat exchangers 72a and 72b can be increased.
  • the amount of heat exchange required for evaporating the refrigerant in the heat-source-side heat exchanger 25 can be reduced.
  • the evaporation capacity of the main use side heat exchangers 72a and 72b can be increased during the cooling operation using the sub refrigerant circuit 80, and the main heat source can be increased during the heating operation. Since the amount of heat exchange required for evaporating the refrigerant in the side heat exchanger 25 can be reduced, desired performance can be obtained even though carbon dioxide is used as the main refrigerant.
  • the main refrigerant flowing through the injection pipe 31 is supplied to the middle part of the compression stroke of the main compressors 21 and 22 (between the low-stage compression element 21a and the high-stage compression element 22a). Therefore, the temperature of the main refrigerant compressed to the intermediate pressure (MPh1) in the refrigeration cycle in the main compressors 21 and 22 can be reduced.
  • the first main compressor 21 lower-stage Since the intermediate-pressure main refrigerant flowing between the side compression element 21a
  • the second main compressor 22 high-stage compression element 22a
  • the temperature of the high-pressure main refrigerant discharged from the compressor 22 can be kept low (see point E in FIG. 3).
  • the heating in the intermediate heat exchanger 26 and the sub-use side heat exchanger 85 is performed.
  • the evaporated main refrigerant can be evaporated.
  • the main refrigerant before being depressurized by the main expansion mechanism 27 can flow through the economizer heat exchanger 32 in both the cooling operation and the heating operation. Therefore, the cooling capacity of the main refrigerant in the economizer heat exchanger 32 can be increased.
  • control unit 9 controls the components of the main refrigerant circuit 20 and the sub refrigerant circuit 80 so that the main refrigerant circuit 20 and the sub refrigerant circuit 80 work together. Accordingly, when performing the cooling operation, the balance between the cooling heat amount of the main refrigerant in the economizer heat exchanger 32 and the cooling heat amount of the main refrigerant in the sub-use-side heat exchanger 85 is appropriately set, and the heating operation is performed. Thus, the balance between the flow rate of the main refrigerant flowing through the injection pipe 31 and the heating heat of the main refrigerant in the sub-use-side heat exchanger 85 can be made appropriate.
  • the cooling heat amount of the main refrigerant in the economizer heat exchanger 32 and the cooling of the main refrigerant in the sub-use side heat exchanger 85 are determined based on the coefficient of performance COP of the main refrigerant circuit 20.
  • the amount of heat can be balanced, and when performing the heating operation, the flow rate of the main refrigerant flowing through the injection pipe 31 and the flow rate of the main refrigerant in the sub-use-side heat exchanger 85 are determined based on the coefficient of performance COP of the main refrigerant circuit 20.
  • the amount of heat to be heated can be balanced.
  • the economizer heat exchanger 32 when controlling the components of the injection expansion mechanism 33 and the sub-refrigerant circuit 80 based on the coefficient of performance COP of the main refrigerant circuit 20 during the cooling operation, the economizer heat exchanger 32 is used.
  • the injection expansion mechanism 33 is controlled based on the degree of superheat SHh1 of the main refrigerant flowing through the injection pipe 31 at the outlet of.
  • the sub-refrigerant circuit 80 when performing the cooling operation, in controlling the components of the sub-refrigerant circuit 80 based on the coefficient of performance COP of the main refrigerant circuit 20, at the outlet of the sub-use-side heat exchanger 85
  • the sub-refrigerant circuit 80 is controlled such that the sub-refrigerant temperature Ts1 becomes the first sub-refrigerant target temperature Ts1t obtained based on the main refrigerant temperature Th1 at the inlet of the main expansion mechanism 27 and the coefficient of performance COP of the main refrigerant circuit 20. doing.
  • the outlet of the sub-use-side heat exchanger 85 is controlled.
  • the sub-refrigerant circuit 80 is controlled such that the sub-refrigerant temperature Ts2 becomes the second sub-refrigerant target temperature Ts2t obtained based on the main refrigerant temperature Th1 at the inlet of the main expansion mechanism 27 and the coefficient of performance COP of the main refrigerant circuit 20. doing.
  • control unit 9 controls the opening degree of the injection expansion mechanism 33 based on the superheat degree SHh1 of the main refrigerant flowing through the injection pipe 31 at the outlet of the economizer heat exchanger 32.
  • the present invention is not limited to this.
  • the control unit 9 sets target values Th1t and Th2t of the main refrigerant temperature Th1 at the entrance of the main expansion mechanism 27 (exit of the economizer heat exchanger 32), and the main refrigerant temperature Th1 is set.
  • the opening degree of the injection expansion mechanism 33 may be controlled so as to be the target values Th1t and Th2t.
  • the target value Th1t is a first main refrigerant target temperature as a target value of the main refrigerant temperature Th1 during the cooling operation
  • the target Th2t is a first main refrigerant temperature Th1 as the target value of the main refrigerant temperature Th1 during the heating operation. 2 This is the main refrigerant target temperature.
  • the components of the injection expansion mechanism 33 and the sub-refrigerant circuit 80 can be controlled based on the coefficient of performance COP of the main refrigerant circuit 20.
  • the gas-liquid separator 51 is a device that separates the main refrigerant into gas and liquid.
  • the gas-liquid separator 51 is a container that separates the main refrigerant that has been depressurized in the upstream main expansion mechanism 27 into gas and liquid.
  • the gas-liquid separator 51 it is preferable to further provide a gas vent pipe 52 for extracting the main refrigerant in a gaseous state from the gas-liquid separator 51 and sending it to the suction sides of the main compressors 21 and 22.
  • the degassing pipe 52 is a refrigerant pipe that sends the gaseous main refrigerant extracted from the gas-liquid separator 51 to the suction side of the first main compressor 21.
  • the gas vent pipe 52 is connected to communicate with the upper space of the gas-liquid separator 51, and the other end is connected to the suction side of the first main compressor 21. Further, the gas vent tube 52 has a gas vent expansion mechanism 53.
  • the degassing expansion mechanism 53 is a device that depressurizes the main refrigerant, and here is an expansion mechanism that depressurizes the main refrigerant flowing through the degassing pipe 52.
  • the gas release expansion mechanism 53 is, for example, an electric expansion valve.
  • the cooling operation with the sub-refrigerant circuit cooling operation and the heating operation with the sub-refrigerant circuit heating operation can be performed.
  • the main refrigerant in the liquid state from which the main refrigerant in the gas state has been removed in the gas-liquid separator 51 can be sent to the sub-use-side heat exchanger 85.
  • the temperature of the main refrigerant can be further reduced.
  • the flow rate of the main refrigerant sent to the sub-use-side heat exchanger 85, the main heat source-side heat exchanger 25, and the intermediate heat exchanger 26 is reduced to reduce the pressure loss. LPh) can be further increased.
  • the multi-stage compressor is configured by the plurality of main compressors 21 and 22.
  • the present invention is not limited to this, and one unit having the compression elements 21a and 21b is provided.
  • a multi-stage compressor may be constituted by the main compressor.
  • the multi-stage compressor may not be used as the main compressor.
  • the main compressor 121 a single-stage compressor including a compression element 121a having an intermediate injection port 121b for introducing a main refrigerant from the outside in the middle of a compression stroke is adopted, and the intermediate injection port 121b is used. May be connected to the injection pipe 31.
  • the main refrigerant flowing through the injection pipe 31 can be sent to a middle part (intermediate injection port 121b) of the compression stroke of the main compressor 121 which is a single-stage compressor, the above-described embodiment and Modification 1 As in the cases 4 to 4, the temperature of the main refrigerant compressed to the intermediate pressure (MPh1) in the refrigeration cycle in the main compressor 121 can be reduced.
  • the injection pipe 31 is provided in the middle of the compression stroke of the main compressors 21 and 22 and the main compressor 121 (between the low-stage compression element 21a and the high-stage compression element 22a, and so on).
  • the main refrigerant is connected to the intermediate injection port 121b) so as to send the main refrigerant thereto.
  • the present invention is not limited to this, and the suction side of the first main compressor 21 located at the lowest stage of the multi-stage compressor, the single refrigerant, and the like. It may be connected so as to send the main refrigerant to the suction side of the main compressor 121 composed of a stage compressor.
  • the present disclosure branches a refrigerant flowing between a heat source side heat exchanger and a use side heat exchanger into a refrigerant circuit having a compressor, a heat source side heat exchanger, a use side heat exchanger, and a flow path switching mechanism.
  • Refrigeration provided with an injection pipe for sending to the compressor, and an economizer heat exchanger for cooling the refrigerant flowing between the heat source side heat exchanger and the use side heat exchanger by heat exchange with the refrigerant flowing through the injection pipe. It is widely applicable to cycle devices.

Abstract

冷凍サイクル装置(1)では、メイン冷媒回路(20)に、インジェクション管(31)及びエコノマイザ熱交換器(32)が設けられている。また、冷凍サイクル装置(1)では、サブ利用側熱交換器(85)を有するサブ冷媒回路(80)が設けられている。冷凍サイクル装置(1)では、サブ利用側熱交換器(85)をサブ冷媒の蒸発器として機能させてエコノマイザ熱交換器(32)において冷却されたメイン冷媒を冷却する、又は、サブ冷媒の放熱器として機能させてエコノマイザ熱交換器(32)において冷却されたメイン冷媒を加熱する。

Description

冷凍サイクル装置
 圧縮機、熱源側熱交換器、利用側熱交換器及び流路切換機構を有する冷媒回路に、熱源側熱交換器と利用側熱交換器との間を流れる冷媒を分岐して圧縮機に送るインジェクション管、及び、熱源側熱交換器と利用側熱交換器との間を流れる冷媒をインジェクション管を流れる冷媒との熱交換によって冷却するエコノマイザ熱交換器、が設けられている冷凍サイクル装置
 従来より、圧縮機、熱源側熱交換器、利用側熱交換器及び流路切換機構を有する冷媒回路を含む冷凍サイクル装置がある。このような冷凍サイクル装置として、特許文献1(特開2013-139938号公報)に示すように、冷媒回路に、熱源側熱交換器と利用側熱交換器との間を流れる冷媒を分岐して圧縮機に送るインジェクション管、及び、熱源側熱交換器と利用側熱交換器との間を流れる冷媒をインジェクション管を流れる冷媒との熱交換によって冷却するエコノマイザ熱交換器、が設けられているものがある。
 上記従来の冷凍サイクル装置では、冷媒回路にインジェクション管及びエコノマイザ熱交換器が設けられているため、利用側熱交換器が冷媒の蒸発器として機能するように冷媒を循環させる冷却運転状態に流路切換機構を切り換えて運転(冷却運転)する際に、熱源側熱交換器と利用側熱交換器との間を流れる冷媒をエコノマイザ熱交換器において冷却することができる。これにより、利用側熱交換器に送られる冷媒のエンタルピが低下し、利用側熱交換器における冷媒の蒸発によって得られる熱交換能力(利用側熱交換器の蒸発能力)を大きくすることができる。また、利用側熱交換器が冷媒の放熱器として機能するように冷媒を循環させる加熱運転状態に流路切換機構を切り換えて運転(加熱運転)する際には、インジェクション管を通じて熱源側熱交換器と利用側熱交換器との間を流れる冷媒の一部を圧縮機に送り、その分だけ、圧縮機から吐出される冷媒の流量を増加させることができる。これにより、利用側熱交換器に送られる冷媒の流量が増加し、利用側熱交換器における冷媒の放熱によって得られる熱交換能力(利用側熱交換器の放熱能力)を大きくすることができる。
 しかし、冷却運転では、運転条件によっては、熱源側熱交換器における冷媒の放熱能力が低下することがあり、これに伴い、エコノマイザ熱交換器における冷媒の冷却能力が不足し、これにより、利用側熱交換器の蒸発能力を大きくすることが難しくなる傾向にある。また、加熱運転では、インジェクション管を通じて圧縮機に送られる冷媒の流量に応じて、熱源側熱交換器と利用側熱交換器との間を流れる冷媒がエコノマイザ熱交換器において冷却されるため、これに伴い、熱源側熱交換器に送られる冷媒のエンタルピが低下し、これにより、熱源側熱交換器において冷媒を蒸発させるために必要な熱交換量が大きくなる傾向にある。
 このため、冷媒回路にインジェクション管及びエコノマイザ熱交換器が設けられている冷凍サイクル装置においては、利用側熱交換器を冷媒の蒸発器として機能させる運転の際に、利用側熱交換器の蒸発能力を大きくできるようにし、利用側熱交換器を冷媒の放熱器として機能させる運転の際に、熱源側熱交換器において冷媒を蒸発させるために必要な熱交換量を小さくできるようにすることが望まれる。
 第1の観点にかかる冷凍サイクル装置は、メイン冷媒回路と、サブ冷媒回路と、を有している。メイン冷媒回路は、メイン圧縮機と、メイン熱源側熱交換器と、メイン利用側熱交換器と、インジェクション管と、エコノマイザ熱交換器と、メイン流路切換機構と、を有している。メイン圧縮機は、メイン冷媒を圧縮する圧縮機である。メイン熱源側熱交換器は、メイン冷媒の放熱器又は蒸発器として機能する熱交換器である。メイン利用側熱交換器は、メイン冷媒の蒸発器又は放熱器として機能する熱交換器である。インジェクション管は、メイン熱源側熱交換器とメイン利用側熱交換器との間を流れるメイン冷媒を分岐してメイン圧縮機に送る冷媒管である。エコノマイザ熱交換器は、メイン熱源側熱交換器とメイン利用側熱交換器との間を流れるメイン冷媒をインジェクション管を流れるメイン冷媒との熱交換によって冷却する熱交換器である。メイン流路切換機構は、メイン利用側熱交換器がメイン冷媒の蒸発器として機能するようにメイン冷媒を循環させるメイン冷却運転状態と、メイン利用側熱交換器がメイン冷媒の放熱器として機能するようにメイン冷媒を循環させるメイン加熱運転状態と、を切り換える切換機構である。また、メイン冷媒回路は、エコノマイザ熱交換器において冷却されたメイン冷媒の冷却器又は加熱器として機能するサブ利用側熱交換器を有している。サブ冷媒回路は、サブ圧縮機と、サブ熱源側熱交換器と、サブ利用側熱交換器と、サブ流路切換機構と、を有している。サブ圧縮機は、サブ冷媒を圧縮する圧縮機である。サブ熱源側熱交換器は、サブ冷媒の放熱器又は蒸発器として機能する熱交換器である。サブ利用側熱交換器は、サブ冷媒の蒸発器として機能してエコノマイザ熱交換器において冷却されたメイン冷媒を冷却する、又は、サブ冷媒の放熱器として機能してエコノマイザ熱交換器において冷却されたメイン冷媒を加熱する熱交換器である。サブ流路切換機構は、サブ利用側熱交換器がサブ冷媒の蒸発器として機能するようにサブ冷媒を循環させるサブ冷却運転状態と、サブ利用側熱交換器がサブ冷媒の放熱器として機能するようにサブ冷媒を循環させるサブ加熱運転状態と、を切り換える切換機構である。
 ここでは、上記のように、メイン冷媒が循環するメイン冷媒回路に従来と同様のインジェクション管及びエコノマイザ熱交換器を設けるだけでなく、メイン冷媒回路とは別のサブ冷媒が循環するサブ冷媒回路を設けている。そして、メイン利用側熱交換器がメイン冷媒の蒸発器として機能するようにメイン冷媒を循環させる冷却運転状態にメイン流路切換機構を切り換えて運転(冷却運転)する際に、サブ冷媒回路に設けられたサブ利用側熱交換器を、エコノマイザ熱交換器において冷却されたメイン冷媒を冷却するサブ冷媒の蒸発器として機能するように、メイン冷媒回路に設けている。このため、ここでは、メイン利用側熱交換器に送られるメイン冷媒のエンタルピがさらに低下し、メイン利用側熱交換器におけるメイン冷媒の蒸発によって得られる熱交換能力(利用側熱交換器の蒸発能力)を大きくすることができる。また、メイン利用側熱交換器が冷媒の放熱器として機能するようにメイン冷媒を循環させる加熱運転状態にメイン流路切換機構を切り換えて運転(加熱運転)する際に、サブ冷媒回路に設けられたサブ利用側熱交換器を、サブ冷媒の放熱器として機能してエコノマイザ熱交換器において冷却されたメイン冷媒を加熱するサブ冷媒の放熱器として機能するように、メイン冷媒回路に設けている。このため、ここでは、メイン熱源側熱交換器に送られるメイン冷媒のエンタルピが増加し、メイン熱源側熱交換器においてメイン冷媒を蒸発させるために必要な熱交換量を小さくすることができる。
 このように、ここでは、冷媒回路にインジェクション管及びエコノマイザ熱交換器が設けられている冷凍サイクル装置において、利用側熱交換器を冷媒の蒸発器として機能させる運転の際に、利用側熱交換器の蒸発能力を大きくすることができ、利用側熱交換器を冷媒の放熱器として機能させる運転の際に、熱源側熱交換器において冷媒を蒸発させるために必要な熱交換量を小さくすることができる。
 第2の観点にかかる冷凍サイクル装置は、第1の観点にかかる冷凍サイクル装置において、メイン圧縮機は、メイン冷媒を圧縮する低段側圧縮要素と、低段側圧縮要素から吐出されたメイン冷媒を圧縮する高段側圧縮要素と、を含んでいる。メイン冷媒回路は、中間熱交換器を有している。中間熱交換器は、メイン流路切換機構をメイン冷却運転状態にしている場合に、低段側圧縮要素と高段側圧縮要素との間を流れるメイン冷媒の冷却器として機能する。中間熱交換器は、メイン流路切換機構をメイン加熱運転状態にしている場合に、サブ利用側熱交換器において加熱されたメイン冷媒の蒸発器として機能する。
 ここでは、上記のように、メイン流路切換機構をメイン冷却運転状態にしている場合に、中間熱交換器において、低段側圧縮要素と高段側圧縮要素との間を流れる中間圧のメイン冷媒を冷却することができるため、メイン圧縮機から吐出される高圧のメイン冷媒の温度を低く抑えることができる。しかも、ここでは、上記のように、メイン流路切換機構をメイン加熱運転状態にしている場合に、中間熱交換器において、サブ利用側熱交換器において加熱されたメイン冷媒を蒸発させることができるため、メイン熱源側熱交換器だけでサブ利用側熱交換器において加熱されたメイン冷媒を蒸発させる場合に比べて、蒸発能力を大きくすることができる。
 第3の観点にかかる冷凍サイクル装置は、第1の観点にかかる冷凍サイクル装置において、メイン圧縮機が、圧縮行程の途中で外部からメイン冷媒を導入する中間インジェクションポートを有する圧縮要素を含んでいる。インジェクション管は、中間インジェクションポートに接続されている。
 ここでは、インジェクション管を流れるメイン冷媒を、単段圧縮機であるメイン圧縮機の圧縮行程の途中部分(中間インジェクションポート)に送ることができるため、メイン圧縮機において冷凍サイクルにおける中間圧まで圧縮されたメイン冷媒の温度を低下させることができる。
 第4の観点にかかる冷凍サイクル装置は、第1又は第2の観点にかかる冷凍サイクル装置において、メイン圧縮機が、メイン冷媒を圧縮する低段側圧縮要素と、低段側圧縮要素から吐出されたメイン冷媒を圧縮する高段側圧縮要素と、を含んでいる。インジェクション管は、高段側圧縮要素の吸入側に接続されている。
 ここでは、インジェクション管を流れるメイン冷媒を、多段圧縮機であるメイン圧縮機の圧縮行程の途中部分(低段側圧縮要素と高段側圧縮要素との間)に送ることができるため、メイン圧縮機において冷凍サイクルにおける中間圧まで圧縮されたメイン冷媒の温度を低下させることができる。
 第5の観点にかかる冷凍サイクル装置は、第1~第4の観点のいずれかにかかる冷凍サイクル装置において、メイン冷媒回路が、エコノマイザ熱交換器とサブ利用側熱交換器との間にメイン膨張機構を有している。
 ここでは、冷却運転を行う際及び加熱運転を行う際のいずれにおいても、エコノマイザ熱交換器に、メイン膨張機構で減圧される前のメイン冷媒を流すことができるため、エコノマイザ熱交換器におけるメイン冷媒の冷却能力を大きくすることができる。
 第6の観点にかかる冷凍サイクル装置は、第5の観点にかかる冷凍サイクル装置において、メイン冷媒回路及びサブ冷媒回路の構成機器を制御する制御部をさらに備えている。制御部は、メイン冷媒回路とサブ冷媒回路とが連動するようにメイン冷媒回路及びサブ冷媒回路の構成機器を制御する。
 サブ冷媒回路がメイン冷媒回路から独立して制御がなされると、冷却運転を行う際には、エコノマイザ熱交換器におけるメイン冷媒の冷却熱量とサブ利用側熱交換器におけるメイン冷媒の冷却熱量とのバランスが損なわれるおそれがある。また、加熱運転を行う際には、インジェクション管を流れるメイン冷媒の流量とサブ利用側熱交換器におけるメイン冷媒の加熱熱量とのバランスが損なわれることがある。
 そこで、ここでは、上記のように、メイン冷媒回路とサブ冷媒回路とが連動するようにメイン冷媒回路及びサブ冷媒回路の構成機器を制御することによって、冷却運転を行う際には、エコノマイザ熱交換器におけるメイン冷媒の冷却熱量とサブ利用側熱交換器におけるメイン冷媒の冷却熱量とのバランスを適切なものとし、加熱運転を行う際には、インジェクション管を流れるメイン冷媒の流量とサブ利用側熱交換器におけるメイン冷媒の加熱熱量とのバランスを適切なものとすることができる。
 第7の観点にかかる冷凍サイクル装置は、第6の観点にかかる冷凍サイクル装置において、インジェクション管が、インジェクション膨張機構を有している。制御部は、メイン冷媒回路の成績係数に基づいてインジェクション膨張機構及びサブ冷媒回路の構成機器を制御する。
 ここでは、上記のように、メイン冷媒回路とサブ冷媒回路とを連動させる制御を行うにあたり、メイン冷媒回路の成績係数に基づいてインジェクション膨張機構及びサブ冷媒回路の構成機器を制御している。このため、ここでは、冷却運転を行う際には、メイン冷媒回路の成績係数に基づいて、エコノマイザ熱交換器におけるメイン冷媒の冷却熱量とサブ利用側熱交換器におけるメイン冷媒の冷却熱量とをバランスさせることができ、加熱運転を行う際には、メイン冷媒回路の成績係数に基づいて、インジェクション管を流れるメイン冷媒の流量とサブ利用側熱交換器におけるメイン冷媒の加熱熱量とをバランスさせることができる。
 第8の観点にかかる冷凍サイクル装置は、第7の観点にかかる冷凍サイクル装置において、制御部が、メイン流路切換機構をメイン冷却運転状態にし、かつ、サブ流路切換機構をサブ冷却運転状態にしている場合に、メイン膨張機構の入口におけるメイン冷媒の温度が第1メイン冷媒目標温度になるようにインジェクション膨張機構の開度を制御した状態で、メイン冷媒回路の成績係数に基づいてサブ冷媒回路の構成機器を制御する。
 ここでは、冷却運転を行う際に、メイン冷媒回路の成績係数に基づいてインジェクション膨張機構及びサブ冷媒回路の構成機器を制御するにあたり、メイン膨張機構の入口におけるメイン冷媒の温度に基づくインジェクション膨張機構の制御によって、エコノマイザ熱交換器におけるメイン冷媒の冷却熱量を確保しつつ、サブ利用側熱交換器におけるメイン冷媒の冷却熱量をバランスさせることができる。
 第9の観点にかかる冷凍サイクル装置は、第7の観点にかかる冷凍サイクル装置において、制御部が、メイン流路切換機構をメイン冷却運転状態にし、かつ、サブ流路切換機構をサブ冷却運転状態にしている場合に、エコノマイザ熱交換器の出口におけるインジェクション管を流れるメイン冷媒の過熱度が第1メイン冷媒目標過熱度になるようにインジェクション膨張機構の開度を制御した状態で、メイン冷媒回路の成績係数に基づいてサブ冷媒回路の構成機器を制御する。
 ここでは、冷却運転を行う際に、メイン冷媒回路の成績係数に基づいてインジェクション膨張機構及びサブ冷媒回路の構成機器を制御するにあたり、エコノマイザ熱交換器の出口におけるインジェクション管を流れるメイン冷媒の過熱度に基づくインジェクション膨張機構の制御によって、エコノマイザ熱交換器におけるメイン冷媒の冷却熱量を確保しつつ、サブ利用側熱交換器におけるメイン冷媒の冷却熱量をバランスさせることができる。
 第10の観点にかかる冷凍サイクル装置は、第8又は第9の観点にかかる冷凍サイクル装置において、制御部が、メイン膨張機構の入口におけるメイン冷媒の温度とメイン冷媒回路の成績係数とサブ利用側熱交換器の出口におけるサブ冷媒の温度との相関関係に応じて、サブ利用側熱交換器の出口におけるサブ冷媒の温度の目標値である第1サブ冷媒目標温度を設定し、サブ利用側熱交換器の出口におけるサブ冷媒の温度が第1サブ冷媒目標温度になるようにサブ冷媒回路の構成機器を制御する。
 ここでは、冷却運転を行う際に、メイン冷媒回路の成績係数に基づいてサブ冷媒回路の構成機器を制御するにあたり、サブ利用側熱交換器の出口におけるサブ冷媒の温度を、メイン膨張機構の入口におけるメイン冷媒の温度及びメイン冷媒回路の成績係数に基づいて得られる第1サブ冷媒目標温度になるようにサブ冷媒回路を制御することによって、サブ利用側熱交換器におけるメイン冷媒の冷却熱量をバランスさせることができる。
 第11の観点にかかる冷凍サイクル装置は、第7~第10の観点のいずれかにかかる冷凍サイクル装置において、制御部が、メイン流路切換機構をメイン加熱運転状態にし、かつ、サブ流路切換機構をサブ加熱運転状態にしている場合に、メイン膨張機構の入口におけるメイン冷媒の温度が第2メイン冷媒目標温度になるようにインジェクション膨張機構の開度を制御した状態で、メイン冷媒回路の成績係数に基づいてサブ冷媒回路の構成機器を制御する。
 ここでは、加熱運転を行う際に、メイン冷媒回路の成績係数に基づいてインジェクション膨張機構及びサブ冷媒回路の構成機器を制御するにあたり、メイン膨張機構の入口におけるメイン冷媒の温度に基づくインジェクション膨張機構の制御によって、インジェクション管を流れるメイン冷媒の流量を確保しつつ、サブ利用側熱交換器におけるメイン冷媒の加熱熱量をバランスさせることができる。
 第12の観点にかかる冷凍サイクル装置は、第7~第10の観点のいずれかにかかる冷凍サイクル装置において、制御部が、メイン流路切換機構をメイン加熱運転状態にし、かつ、サブ流路切換機構をサブ加熱運転状態にしている場合に、エコノマイザ熱交換器の出口におけるインジェクション管を流れるメイン冷媒の過熱度が第2メイン冷媒目標過熱度になるようにインジェクション膨張機構の開度を制御した状態で、メイン冷媒回路の成績係数に基づいてサブ冷媒回路の構成機器を制御する。
 ここでは、加熱運転を行う際に、メイン冷媒回路の成績係数に基づいてインジェクション膨張機構及びサブ冷媒回路の構成機器を制御するにあたり、エコノマイザ熱交換器の出口におけるインジェクション管を流れるメイン冷媒の過熱度に基づくインジェクション膨張機構の制御によって、インジェクション管を流れるメイン冷媒の流量を確保しつつ、サブ利用側熱交換器におけるメイン冷媒の加熱熱量をバランスさせることができる。
 第13の観点にかかる冷凍サイクル装置は、第11又は第12の観点にかかる冷凍サイクル装置において、制御部が、メイン膨張機構の入口におけるメイン冷媒の温度とメイン冷媒回路の成績係数とサブ利用側熱交換器の出口におけるサブ冷媒の温度との相関関係に応じて、サブ利用側熱交換器の出口におけるサブ冷媒の温度の目標値である第2サブ冷媒目標温度を設定し、サブ利用側熱交換器の出口におけるサブ冷媒の温度が第2サブ冷媒目標温度になるようにサブ冷媒回路の構成機器を制御する。
 ここでは、加熱運転を行う際に、メイン冷媒回路の成績係数に基づいてサブ冷媒回路の構成機器を制御するにあたり、サブ利用側熱交換器の出口におけるサブ冷媒の温度を、メイン膨張機構の入口におけるメイン冷媒の温度及びメイン冷媒回路の成績係数に基づいて得られる第2サブ冷媒目標温度になるようにサブ冷媒回路を制御することによって、サブ利用側熱交換器におけるメイン冷媒の加熱熱量をバランスさせることができる。
 第14の観点にかかる冷凍サイクル装置は、第1~第13の観点のいずれかにかかる冷凍サイクル装置において、メイン冷媒が、二酸化炭素であり、サブ冷媒が、GWPが750以下のHFC冷媒、HFO冷媒、又は、HFC冷媒とHFO冷媒との混合冷媒である。
 ここでは、上記のように、メイン冷媒及びサブ冷媒とともに、低GWPの冷媒を使用しているため、地球温暖化等の環境負荷を低減することができる。
 第15の観点にかかる冷凍サイクル装置は、第1~第13の観点のいずれかにかかる冷凍サイクル装置において、メイン冷媒が、二酸化炭素であり、サブ冷媒が、二酸化炭素よりも成績係数が高い自然冷媒である。
 ここでは、上記のように、サブ冷媒として二酸化炭素よりも成績係数が高い自然冷媒を使用しているため、地球温暖化等の環境負荷を低減することができる。
本開示の一実施形態にかかる冷凍サイクル装置の概略構成図である。 冷房運転時における冷凍サイクル装置内の冷媒の流れを示す図である。 冷房運転時の冷凍サイクルが図示された圧力-エンタルピ線図である。 暖房運転時における冷凍サイクル装置内の冷媒の流れを示す図である。 暖房運転時の冷凍サイクルが図示された圧力-エンタルピ線図である。 メイン冷媒回路とサブ冷媒回路との連動制御を示すフローチャートである。 冷房運転時のメイン膨張機構の入口におけるメイン冷媒の温度及びサブ利用側熱交換器の出口におけるサブ冷媒の温度によるメイン冷媒回路の成績係数の変化を示す図である。 変形例2の冷凍サイクル装置の概略構成図である。 変形例5の冷凍サイクル装置の概略構成図である。
 以下、冷凍サイクル装置について、図面に基づいて説明する。
 (1)構成
 図1は、本開示の一実施形態にかかる冷凍サイクル装置1の概略構成図である。
 <回路構成>
 冷凍サイクル装置1は、メイン冷媒が循環するメイン冷媒回路20と、サブ冷媒が循環するサブ冷媒回路80と、を有しており、室内の空調(ここでは、冷房及び暖房)を行う装置である。
 -メイン冷媒回路-
 メイン冷媒回路20は、主として、メイン圧縮機21、22と、メイン熱源側熱交換器25と、メイン利用側熱交換器72a、72bと、インジェクション管31と、エコノマイザ熱交換器32と、サブ利用側熱交換器85と、第1メイン流路切換機構23と、を有している。また、メイン冷媒回路20は、中間冷媒管61と、第2メイン流路切換機構24と、中間熱交換器26と、中間熱交バイパス管63と、ブリッジ回路40と、上流側メイン膨張機構27と、メイン利用側膨張機構71a、71bと、を有している。そして、メイン冷媒回路20には、メイン冷媒として、二酸化炭素が封入されている。
 メイン圧縮機21、22は、メイン冷媒を圧縮する機器である。第1メイン圧縮機21は、ロータリやスクロール等の低段側圧縮要素21aをモータやエンジン等の駆動機構によって駆動する圧縮機である。第2メイン圧縮機22は、ロータリやスクロール等の高段側圧縮要素22aをモータやエンジン等の駆動機構によって駆動する圧縮機である。メイン圧縮機21、22は、低段側の第1メイン圧縮機21においてメイン冷媒を圧縮した後に吐出し、そして、第1メイン圧縮機21から吐出されたメイン冷媒を高段側の第2メイン圧縮機22で圧縮する多段(ここでは、2段)圧縮機を構成している。ここで、第1メイン圧縮機21(低段側圧縮要素21a)の吐出側と第2メイン圧縮機22(高段側圧縮要素22a)の吸入側との間は、中間冷媒管61によって接続されている。
 第1メイン流路切換機構23は、メイン冷媒回路20内におけるメイン冷媒の流れの方向を切り換えるための機構である。第1メイン流路切換機構23は、メイン利用側熱交換器72a、72bがメイン冷媒の蒸発器として機能するようにメイン冷媒を循環させるメイン冷却運転状態と、メイン利用側熱交換器72a、72bがメイン冷媒の放熱器として機能するようにメイン冷媒を循環させるメイン加熱運転状態と、を切り換える切換機構である。具体的には、第1メイン流路切換機構23は、四路切換弁であり、メイン圧縮機21、22の吸入側(ここでは、第1メイン圧縮機21の吸入側)、メイン圧縮機21、22の吐出側(ここでは、第2メイン圧縮機22の吐出側)、メイン熱源側熱交換器25の一端、及び、メイン利用側熱交換器72a、72bの他端に接続されている。そして、第1メイン流路切換機構23は、メイン冷却運転状態において、第2メイン圧縮機22の吐出側とメイン熱源側熱交換器25の一端とを接続し、かつ、第1メイン圧縮機21の吸入側とメイン利用側熱交換器72a、72bの他端とを接続する(図1の第1メイン流路切換機構23の実線を参照)。また、第1メイン流路切換機構23は、メイン加熱運転状態において、第2メイン圧縮機22の吐出側とメイン利用側熱交換器72a、72bの他端とを接続し、かつ、第1メイン圧縮機21の吸入側とメイン熱源側熱交換器25の一端とを接続する(図1の第1メイン流路切換機構23の破線を参照)。尚、第1メイン流路切換機構23は、四路切換弁に限定されるものではなく、例えば、複数の二方弁や三方弁を組み合わせる等によって、上記と同様のメイン冷媒の流れの方向を切り換える機能を有するように構成したものであってもよい。
 メイン熱源側熱交換器25は、メイン冷媒と室外空気とを熱交換させる機器であり、ここでは、メイン冷媒の放熱器又は蒸発器として機能する熱交換器である。メイン熱源側熱交換器25は、一端が第1メイン流路切換機構23に接続されており、他端がブリッジ回路40に接続されている。そして、メイン熱源側熱交換器25は、第1メイン流路切換機構23をメイン冷却運転状態にしている場合に、メイン冷媒の放熱器として機能し、第1メイン流路切換機構23をメイン加熱運転状態にしている場合に、メイン冷媒の蒸発器として機能するようになっている。
 ブリッジ回路40は、メイン熱源側熱交換器25とメイン利用側熱交換器72a、72bとの間に設けられている。ブリッジ回路40は、第1メイン流路切換機構23がメイン冷却運転状態及びメイン加熱運転状態のいずれにおいても、メイン冷媒回路20を循環するメイン冷媒が、エコノマイザ熱交換器32(第1エコノマイザ流路32a)、上流側メイン膨張機構27、サブ利用側熱交換器85(第2サブ流路85b)の順に流れるように整流する回路である。ブリッジ回路40は、ここでは、3つの逆止機構41、42、43と、下流側メイン膨張機構44と、を有している。ここで、入口逆止機構41は、メイン熱源側熱交換器25からエコノマイザ熱交換器32や上流側メイン膨張機構27へのメイン冷媒の流通のみを許容する逆止弁である。入口逆止機構42は、メイン利用側熱交換器72a、72bからエコノマイザ熱交換器32や上流側メイン膨張機構27へのメイン冷媒の流通のみを許容する逆止弁である。出口逆止機構43は、サブ利用側熱交換器85からメイン利用側熱交換器72a、72bへのメイン冷媒の流通のみを許容する逆止弁である。下流側メイン膨張機構44は、メイン冷媒を減圧する機器であり、ここでは、第1メイン流路切換機構23をメイン冷却運転状態にしている場合に、全閉され、第1メイン流路切換機構23をメイン加熱運転状態にしている場合に、サブ利用側熱交換器85からメイン熱源側熱交換器25に送られるメイン冷媒を減圧する膨張機構である。下流側メイン膨張機構44は、例えば、電動膨張弁である。
 インジェクション管31は、メイン冷媒が流れる冷媒管であり、ここでは、メイン熱源側熱交換器25とメイン利用側熱交換器72a、72bとの間を流れるメイン冷媒を分岐してメイン圧縮機21、22に送る冷媒管である。具体的には、インジェクション管31は、ブリッジ回路40の入口逆止機構41、42と上流側メイン膨張機構27との間を流れるメイン冷媒を分岐して第2メイン圧縮機22の吸入側に送る冷媒管であり、第1インジェクション管31aと第2インジェクション管31bとを有している。第1インジェクション管31aは、一端がブリッジ回路40の入口逆止機構41、42とエコノマイザ熱交換器32(第1エコノマイザ流路32aの一端)との間に接続されており、他端がエコノマイザ熱交換器32(第2エコノマイザ流路32bの一端)に接続されている。第2インジェクション管31bは、一端がエコノマイザ熱交換器32(第2エコノマイザ流路32bの他端)に接続されており、他端が中間熱交換器26の出口と第2メイン圧縮機22の吸入側との間に接続されている。
 また、インジェクション管31は、インジェクション膨張機構33を有している。インジェクション膨張機構33は、第1インジェクション管31aに設けられている。インジェクション膨張機構33は、メイン冷媒を減圧する機器であり、ここでは、インジェクション管31を流れるメイン冷媒を減圧する膨張機構である。インジェクション膨張機構33は、例えば、電動膨張弁である。
 エコノマイザ熱交換器32は、メイン冷媒同士を熱交換させる機器であり、ここでは、メイン熱源側熱交換器25とメイン利用側熱交換器72a、72bとの間を流れるメイン冷媒をインジェクション管31を流れるメイン冷媒との熱交換によって冷却する熱交換器である。具体的には、エコノマイザ熱交換器32は、ブリッジ回路40の入口逆止機構41、42と上流側メイン膨張機構27との間を流れるメイン冷媒をインジェクション管31を流れるメイン冷媒との熱交換によって冷却する熱交換器である。エコノマイザ熱交換器32は、ブリッジ回路40の入口逆止機構41、42と上流側メイン膨張機構27との間を流れるメイン冷媒を流す第1エコノマイザ流路32aと、インジェクション管31を流れるメイン冷媒を流す第2エコノマイザ流路32bと、を有している。第1エコノマイザ流路32aは、一端(入口)がブリッジ回路40の入口逆止機構41、42に接続されており、他端(出口)が上流側メイン膨張機構27の入口に接続されている。第2エコノマイザ流路32bは、一端(入口)が第1インジェクション管31aの他端に接続されており、他端(出口)が第2インジェクション管31bの一端に接続されている。
 上流側メイン膨張機構27は、メイン冷媒を減圧する機器であり、ここでは、エコノマイザ熱交換器32とサブ利用側熱交換器85(第2サブ流路85b)との間を流れるメイン冷媒を減圧する膨張機構(メイン膨張機構)である。具体的には、上流側メイン膨張機構27は、ブリッジ回路40の入口逆止機構41、42とサブ利用側熱交換器85(第2サブ流路85b)との間に設けられている。上流側メイン膨張機構27は、例えば、電動膨張弁である。尚、上流側メイン膨張機構27は、メイン冷媒を減圧して動力を発生させる膨張機でもよい。
 サブ利用側熱交換器85は、メイン冷媒とサブ冷媒とを熱交換させる機器であり、ここでは、エコノマイザ熱交換器31において冷却されたメイン冷媒の冷却器又は加熱器として機能する熱交換器である。すなわち、サブ利用側熱交換器85は、第1メイン流路切換機構23をメイン冷却運転状態にしている場合に、エコノマイザ熱交換器31において冷却されたメイン冷媒の冷却器として機能し、第1メイン流路切換機構23をメイン加熱運転状態にしている場合に、エコノマイザ熱交換器31において冷却されたメイン冷媒の加熱器として機能するようになっている。具体的には、サブ利用側熱交換器85は、上流側メイン膨張機構27とブリッジ回路40の第3逆止機構43及び下流側メイン膨張機構44との間を流れるメイン冷媒を冷却又は加熱する熱交換器である。
 メイン利用側膨張機構71a、71bは、メイン冷媒を減圧する機器である。ここで、メイン利用側膨張機構71a、71bは、第1メイン流路切換機構23をメイン冷却運転状態にしている場合に、サブ利用側熱交換器85とメイン利用側熱交換器72a、72bとの間を流れるメイン冷媒を減圧し、第1メイン流路切換機構23をメイン加熱運転状態にしている場合に、メイン利用側熱交換器72a、72bと上流側メイン膨張機構27との間を流れるメイン冷媒を減圧する膨張機構である。具体的には、メイン利用側膨張機構71a、71bは、ブリッジ回路40の入口逆止機構42及び出口逆止機構43とメイン利用側熱交換器72a、72bの一端との間に設けられている。メイン利用側膨張機構71a、71bは、例えば、電動膨張弁である。
 メイン利用側熱交換器72a、72bは、メイン冷媒と室内空気とを熱交換させる機器であり、ここでは、メイン冷媒の蒸発器又は放熱器として機能する熱交換器である。メイン利用側熱交換器72a、72bは、一端がメイン利用側膨張機構71a、71bに接続されており、他端が第1圧縮機21の吸入側に接続されている。
 中間熱交換器26は、メイン冷媒と室外空気とを熱交換させる機器であり、ここでは、第1メイン流路切換機構23をメイン冷却運転状態にしている場合に、第1メイン圧縮機21と第2メイン圧縮機22との間を流れるメイン冷媒の冷却器として機能する熱交換器である。また、中間熱交換器26は、第1メイン流路切換機構23をメイン加熱運転状態にしている場合に、サブ利用側熱交換器85(第2サブ流路85b)において加熱されたメイン冷媒の蒸発器として機能する熱交換器である。中間熱交換器26は、中間冷媒管61に設けられている。
 中間冷媒管61は、第1中間冷媒管61aと第2中間冷媒管61bと第3中間冷媒管61cとを有している。第1中間冷媒管61aは、一端が第1メイン圧縮機21(低段側圧縮要素21a)の吐出側に接続されており、他端が第2メイン流路切換機構24に接続されている。第2中間冷媒管61bは、一端が第2メイン流路切換機構24に接続されており、他端が中間熱交換器26の一端に接続されている。第3中間冷媒管61cは、一端が中間熱交換器26の他端に接続されており、他端が第2メイン圧縮機22(高段側圧縮要素22a)の吸入側に接続されている。また、第3中間冷媒管61cには、第2中間インジェクション管31bの他端が接続されている。
 中間熱交バイパス管63は、第1メイン流路切換機構23をメイン加熱運転状態にしている場合に、第1メイン圧縮機21(低段側圧縮要素21a)から吐出されたメイン冷媒を、中間熱交換器26をバイパスして第2メイン圧縮機22(高段側圧縮要素22a)に送る冷媒管である。中間熱交バイパス管63は、一端が第2メイン流路切換機構24に接続されており、他端が第3中間冷媒管61cと第2メイン圧縮機22(高段側圧縮要素22a)の吸入側との間の部分に接続されている。
 第2メイン流路切換機構24は、メイン冷媒回路20内におけるメイン冷媒の流れの方向を切り換えるための機構である。第2メイン流路切換機構24は、第1メイン圧縮機21から吐出されたメイン冷媒を中間熱交換器26を通過させた後に第2メイン圧縮機22に送る中間熱交放熱状態と、第1メイン圧縮機21から吐出されたメイン冷媒を中間熱交換器26を通過させずに第2メイン圧縮機22に送る中間熱交バイパス状態と、を切り換える切換機構である。具体的には、第2メイン流路切換機構24は、四路切換弁であり、第1メイン圧縮機21の吐出側、第2中間冷媒管61bの一端、及び、中間熱交バイパス管63の一端に接続されている。そして、第2メイン流路切換機構24は、中間熱交放熱状態において、第1メイン圧縮機21の吐出側と第2メイン圧縮機22の吸入側との間を中間熱交換器26を通じて接続し(図1の第2メイン流路切換機構24の実線を参照)。中間熱交バイパス状態において、第1メイン圧縮機21の吐出側と第2メイン圧縮機22の吸入側との間を中間熱交バイパス管64を通じて接続する(図1の第2メイン流路切換機構24の破線を参照)。尚、第2メイン流路切換機構24は、四路切換弁に限定されるものではなく、例えば、複数の二方弁や三方弁を組み合わせる等によって、上記と同様のメイン冷媒の流れの方向を切り換える機能を有するように構成したものであってもよい。
 そして、メイン冷媒回路20では、第1メイン流路切換機構23をメイン冷却運転状態にし、かつ、第2メイン流路切換機構24を中間熱交放熱状態にしている場合に、第1メイン圧縮機21から吐出されたメイン冷媒を、中間熱交換器26において冷却した後に、第2メイン圧縮機22に吸入させるように流すことができる。また、メイン冷媒回路20では、第1メイン流路切換機構23をメイン加熱運転状態にし、かつ、第2メイン流路切換機構24を中間熱交バイパス状態にしている場合に、第1メイン圧縮機21から吐出されたメイン冷媒を、中間熱交バイパス管63を通じて中間熱交換器26をバイパスして、第2メイン圧縮機22に吸入させるように流すことができる。
 -サブ冷媒回路-
 サブ冷媒回路80は、主として、サブ圧縮機81と、サブ熱源側熱交換器83と、サブ利用側熱交換器85と、サブ流路切換機構82と、を有している。また、サブ冷媒回路80は、サブ膨張機構84を有している。そして、サブ冷媒回路80には、サブ冷媒として、GWP(温暖化係数)が750以下のHFC冷媒(R32等)、HFO冷媒(R1234yfやR1234ze等)、又は、HFC冷媒とHFO冷媒との混合冷媒(R452B等)が封入されている。尚、サブ冷媒は、これらに限定されるものではなく、二酸化炭素よりも成績係数が高い自然冷媒(プロパンやアンモニア等)であってもよい。
 サブ圧縮機81は、サブ冷媒を圧縮する機器である。サブ圧縮機81は、ロータリやスクロール等の圧縮要素81aをモータやエンジン等の駆動機構によって駆動する圧縮機である。
 サブ流路切換機構82は、サブ冷媒回路80内におけるサブ冷媒の流れの方向を切り換えるための機構である。サブ流路切換機構82は、サブ利用側熱交換器85がサブ冷媒の蒸発器として機能するようにサブ冷媒を循環させるサブ冷却運転状態と、サブ利用側熱交換器85がサブ冷媒の放熱器として機能するようにサブ冷媒を循環させるサブ加熱運転状態と、を切り換える切換機構である。具体的には、サブ流路切換機構82は、四路切換弁であり、サブ圧縮機81の吸入側、サブ圧縮機81の吐出側、サブ熱源側熱交換器83の一端、及び、サブ利用側熱交換器85(第1サブ流路85a)の他端に接続されている。そして、サブ流路切換機構82は、サブ冷却運転状態において、サブ圧縮機81の吐出側とサブ熱源側熱交換器83の一端とを接続し、かつ、サブ圧縮機81の吸入側とサブ利用側熱交換器85(第1サブ流路85a)の他端とを接続する(図1のサブ流路切換機構82の実線を参照)。また、サブ流路切換機構82は、サブ加熱運転状態において、サブ圧縮機81の吐出側とサブ利用側熱交換器85(第1サブ流路85a)の他端とを接続し、かつ、サブ圧縮機81の吸入側とサブ熱源側熱交換器83の一端とを接続する(図1のサブ流路切換機構82の破線を参照)。尚、サブ流路切換機構82は、四路切換弁に限定されるものではなく、例えば、複数の二方弁や三方弁を組み合わせる等によって、上記と同様のサブ冷媒の流れの方向を切り換える機能を有するように構成したものであってもよい。
 サブ熱源側熱交換器83は、サブ冷媒と室外空気とを熱交換させる機器であり、ここでは、サブ冷媒の放熱器と又は蒸発器して機能する熱交換器である。サブ熱源側熱交換器83は、一端がサブ流路切換機構82に接続されており、他端がサブ膨張機構84に接続されている。そして、サブ熱源側熱交換器83は、サブ流路切換機構82をサブ冷却運転状態にしている場合に、サブ冷媒の放熱器として機能し、サブ流路切換機構82をサブ加熱運転状態にしている場合に、サブ冷媒の蒸発器として機能するようになっている。
 サブ膨張機構84は、サブ冷媒を減圧する機器であり、ここでは、サブ熱源側熱交換器83とサブ利用側熱交換器85との間を流れるサブ冷媒を減圧する膨張機構である。具体的には、サブ膨張機構84は、サブ熱源側熱交換器83の他端とサブ利用側熱交換器85(第1サブ流路85aの一端)との間に設けられている。サブ膨張機構84は、例えば、電動膨張弁である。
 サブ利用側熱交換器85は、上記のように、メイン冷媒とサブ冷媒とを熱交換させる機器であり、ここでは、サブ冷媒の蒸発器として機能して、エコノマイザ熱交換器32において冷却されたメイン冷媒を冷却する、又は、サブ冷媒の放熱器として機能して、エコノマイザ熱交換器32において冷却されたメイン冷媒を加熱する熱交換器である。具体的には、サブ利用側熱交換器85は、上流側メイン膨張機構27とブリッジ回路40の第3逆止機構43及び第1下流側メイン膨張機構44との間を流れるメイン冷媒をサブ冷媒回路80を流れる冷媒によって冷却又は加熱する熱交換器である。サブ利用側熱交換器85は、サブ膨張機構84とサブ流路切換機構82との間を流れるサブ冷媒を流す第1サブ流路85aと、気液分離器51とブリッジ回路40の第3逆止機構43及び第1下流側メイン膨張機構44との間を流れるメイン冷媒を流す第2サブ流路85bと、を有している。第1サブ流路85aは、一端がサブ膨張機構84に接続されており、他端がサブ流路切換機構82に接続されている。第2サブ流路85bは、一端(入口)が上流側メイン膨張機構27に接続されており、他端(出口)がブリッジ回路40の第3逆止機構43及び第1下流側メイン膨張機構44に接続されている。
 <ユニット構成>
 上記のメイン冷媒回路20及びサブ冷媒回路80の構成機器は、熱源ユニット2と、複数の利用ユニット7a、7bと、サブユニット8と、に設けられている。利用ユニット7a、7bはそれぞれ、メイン利用側熱交換器72a、72bに対応して設けられている。
 -熱源ユニット-
 熱源ユニット2は、室外に配置されている。サブ利用側熱交換器85、メイン利用側膨張機構71a、71b及びメイン利用側熱交換器72a、72bを除くメイン冷媒回路20が、熱源ユニット2に設けられている。
 また、熱源ユニット2には、メイン熱源側熱交換器25及び中間熱交換器26に室外空気を送るための熱源側ファン28が設けられている。熱源側ファン28は、プロペラファン等の送風要素をモータ等の駆動機構によって駆動するファンである。
 また、熱源ユニット2には、各種のセンサが設けられている。具体的には、第1メイン圧縮機21の吸入側におけるメイン冷媒の圧力及び温度を検出する圧力センサ91及び温度センサ92が設けられている。第1メイン圧縮機21の吐出側におけるメイン冷媒の圧力を検出する圧力センサ93が設けられている。第2メイン圧縮機21の吐出側におけるメイン冷媒の圧力及び温度を検出する圧力センサ94及び温度センサ95が設けられている。メイン熱源側熱交換器25の他端側におけるメイン冷媒の温度を検出する温度センサ96が設けられている。エコノマイザ熱交換器32の他端(第1エコノマイザ流路32aの他端)側におけるメイン冷媒の温度を検出する温度センサ34が設けられている。第2インジェクション管31bにおけるメイン冷媒の温度を検出する温度センサ35が設けられている。上流側メイン膨張機構27とサブ利用側熱交換器85との間におけるメイン冷媒の圧力及び温度を検出する圧力センサ97及び温度センサ98が設けられている。サブ利用側熱交換器85の他端(第2サブ流路85bの他端)側におけるメイン冷媒の温度を検出する温度センサ105が設けられている。室外空気の温度(外気温度)を検出する温度センサ99が設けられている。
 -利用ユニット-
 利用ユニット7a、7bは、室内に配置されている。メイン冷媒回路20のメイン利用側膨張機構71a、71b及びメイン利用側熱交換器72a、72bが利用ユニット7a、7bに設けられている。
 また、利用ユニット7a、7bには、メイン利用側熱交換器72a、72bに室内空気を送るための利用側ファン73a、73bが設けられている。利用側ファン73a、73bは、遠心ファンや多翼ファン等の送風要素をモータ等の駆動機構によって駆動するファンである。
 また、利用ユニット7a、7bには、各種のセンサが設けられている。具体的には、メイン利用側熱交換器72a、72bの一端側におけるメイン冷媒の温度を検出する温度センサ74a、74bと、メイン利用側熱交換器72a、72bの他端側におけるメイン冷媒の温度を検出する温度センサ75a、75bと、が設けられている。
 -サブユニット-
 サブユニット8は、室外に配置されている。サブ冷媒回路80、及び、メイン冷媒回路20を構成する冷媒管の一部(サブ利用側熱交換器85に接続されるメイン冷媒が流れる冷媒管の一部)が、サブユニット8に設けられている。
 また、サブユニット8には、サブ熱源側熱交換器83に室外空気を送るためのサブ側ファン86が設けられている。サブ側ファン86は、プロペラファン等の送風要素をモータ等の駆動機構によって駆動するファンである。
 ここでは、サブユニット8が熱源ユニット2に隣接して設けられており、実質的にサブユニット8と熱源ユニット2とが一体化した構成になっているが、これに限定されるものではなく、サブユニット8を熱源ユニット2から離して設けてもよいし、また、サブユニット8の構成機器をすべて熱源ユニット2に設けて、サブユニット8を省略してもよい。
 また、サブユニット8には、各種のセンサが設けられている。具体的には、サブ圧縮機81の吸入側におけるサブ冷媒の圧力及び温度を検出する圧力センサ101及び温度センサ102が設けられている。サブ圧縮機81の吐出側におけるサブ冷媒の圧力及び温度を検出する圧力センサ103及び温度センサ104が設けられている。室外空気の温度(外気温度)を検出する温度センサ106が設けられている。サブ利用側熱交換器85の一端(第1サブ流路85aの一端)側におけるサブ冷媒の温度を検出する温度センサ107が設けられている。
 -メイン冷媒連絡管-
 熱源ユニット2と利用ユニット7a、7bとは、メイン冷媒回路20の一部を構成するメイン冷媒連絡管11、12によって接続されている。
 第1メイン冷媒連絡管11は、ブリッジ回路40の入口逆止機構42及び出口逆止機構43とメイン利用側膨張機構71a、71bとの間を接続する配管の一部である。
 第2メイン冷媒連絡管12は、メイン利用側熱交換器72a、72bの他端と第1メイン流路切換機構23との間を接続する配管の一部である。
 -制御部-
 そして、上記のメイン冷媒回路20及びサブ冷媒回路80の構成機器を含めた熱源ユニット2、利用ユニット7a、7b及びサブユニット8の構成機器は、制御部9によって制御されるようになっている。制御部9は、熱源ユニット2、利用ユニット7a、7b及びサブユニット8に設けられた制御基板等が通信接続されることによって構成されており、各種センサ34、35、74a、74b、75a、75b、91~99、101~107の検出信号等を受けることができるように構成されている。尚、図1においては、便宜上、熱源ユニット2、利用ユニット7a、7b及びサブユニット8等とは離れた位置に制御部9を図示している。このように、制御部9は、各種センサ34、35、74a、74b、75a、75b、91~99、101~107等の検出信号等に基づいて、冷凍サイクル装置1の構成機器21~24、27、28、33、44、71a、71b、73a、73b、81、82、84、86の制御、すなわち、冷凍サイクル装置1全体の運転制御を行うようになっている。
 (2)動作
 次に、冷凍サイクル装置1の動作について、図2~図7を用いて説明する。ここで、図2は、冷房運転時における冷凍サイクル装置1内の冷媒の流れを示す図である。図3は、冷房運転時の冷凍サイクルが図示された圧力-エンタルピ線図である。図4は、暖房運転時における冷凍サイクル装置1内の冷媒の流れを示す図である。図5は、暖房運転時の冷凍サイクルが図示された圧力-エンタルピ線図である。図6は、メイン冷媒回路20とサブ冷媒回路80との連動制御を示すフローチャートである。図7は、冷房運転時のメイン膨張機構27の入口におけるメイン冷媒の温度Th1及びサブ利用側熱交換器85の出口におけるサブ冷媒の温度Ts1によるメイン冷媒回路20の成績係数の変化を示す図である。
 冷凍サイクル装置1は、室内の空調として、メイン利用側熱交換器72a、72bがメイン冷媒の蒸発器として機能して室内空気を冷却する冷房運転(冷却運転)と、メイン利用側熱交換器72a、72bがメイン冷媒の放熱器として機能して室内空気を加熱する暖房運転(加熱運転)と、を行うことができる。また、ここでは、冷房運転時には、サブ冷媒回路80を使用してメイン冷媒を冷却するサブ冷媒回路冷却動作を行い、暖房運転時には、サブ冷媒回路80を使用してメイン冷媒を加熱するサブ冷媒回路加熱動作を行うことができる。尚、サブ冷媒回路冷却動作を伴う冷房運転やサブ冷媒回路加熱動作を伴う暖房運転の動作は、制御部9によって行われる。
 <サブ冷媒回路冷却動作を伴う冷房運転>
 冷房運転時は、第1メイン流路切換機構23が図2の実線で示されるメイン冷却運転状態に切り換えられ、かつ、第2メイン流路切換機構24が図2の実線で示される中間熱交放熱状態に切り換えられる。また、第1メイン流路切換機構23がメイン冷却運転状態に切り換えられるため、第1下流側メイン膨張機構44が閉じられる。また、冷房運転時は、サブ冷媒回路冷却動作を行うため、サブ流路切換機構82が図2の実線で示されるサブ冷却運転状態に切り換えられる。
 このメイン冷媒回路20の状態において、冷凍サイクルにおける低圧(LPh)のメイン冷媒(図2及び図3の点A参照)は、第1メイン圧縮機21に吸入され、第1メイン圧縮機21において、冷凍サイクルにおける中間圧(MPh1)まで圧縮されて吐出される(図2及び図3の点B参照)。
 第1メイン圧縮機21から吐出された中間圧のメイン冷媒は、第2メイン流路切換機構24を通じて、中間熱交換器26に送られ、中間熱交換器26において、熱源側ファン28によって送られる室外空気と熱交換を行って冷却される(図2及び図3の点C参照)。
 中間熱交換器26において冷却された中間圧のメイン冷媒は、中間インジェクション管31(第2中間インジェクション管31b)から第2メイン圧縮機22の吸入側に送られる中間圧のメイン冷媒と合流することでさらに冷却される(図2及び図3の点D参照)。
 中間インジェクション管31からメイン冷媒のインジェクションがなされた中間圧のメイン冷媒は、第2メイン圧縮機22に吸入され、第2メイン圧縮機22において、冷凍サイクルにおける高圧(HPh)まで圧縮されて吐出される(図2及び図3の点E参照)。ここで、第2メイン圧縮機22から吐出された高圧のメイン冷媒は、メイン冷媒の臨界圧を超える圧力になっている。
 第2メイン圧縮機22から吐出された高圧のメイン冷媒は、メイン熱源側熱交換器25に送られ、メイン熱源側熱交換器25において、熱源側ファン28によって送られる室外空気と熱交換を行って冷却される(図2及び図3の点F参照)。
 メイン熱源側熱交換器25において冷却された高圧のメイン冷媒は、ブリッジ回路40の入口逆止機構41を通過した後に、その一部が中間インジェクション膨張機構33の開度に応じて中間インジェクション管31に分岐され、残りがエコノマイザ熱交換器32(第1エコノマイザ流路32a)に送られる。中間インジェクション管31に分岐された高圧のメイン冷媒は、中間インジェクション膨張機構33において中間圧(MPh1)まで減圧されて気液二相状態になり(図2及び図3の点K参照)、エコノマイザ熱交換器32(第2エコノマイザ流路32b)に送られる。エコノマイザ熱交換器32において、第1エコノマイザ流路32aを流れる高圧のメイン冷媒は、第2エコノマイザ流路32bを流れる中間圧の気液二相状態のメイン冷媒と熱交換を行って冷却される(図2及び図3の点G参照)。逆に、第2エコノマイザ流路32bを流れる中間圧の気液二相状態のメイン冷媒は、第1エコノマイザ流路32aを流れる高圧のメイン冷媒との熱交換によって加熱されて(図2及び図3の点L参照)、上記のように、中間熱交換器26において冷却された中間圧のメイン冷媒と合流して、第2メイン圧縮機22の吸入側に送られる。
 エコノマイザ熱交換器32において冷却された高圧のメイン冷媒は、上流側メイン膨張機構27に送られ、上流側メイン膨張機構27において、冷凍サイクルにおける中間圧(MPh2)まで減圧されて、気液二相状態になる(図2及び図3の点H参照)。
 上流側メイン膨張機構27において減圧された中間圧のメイン冷媒は、サブ利用側熱交換器85(第2サブ流路85b)に送られる。
 一方、サブ冷媒回路80においては、冷凍サイクルにおける低圧(LPs)のサブ冷媒(図2及び図3の点R参照)は、サブ圧縮機81に吸入され、サブ圧縮機81において、冷凍サイクルにおける高圧(HPs)まで圧縮されて吐出される(図2及び図3の点S参照)。
 サブ圧縮機81から吐出された高圧のサブ冷媒は、サブ流路切換機構82を通じて、サブ熱源側熱交換器83に送られ、サブ熱源側熱交換器83において、サブ側ファン86によって送られる室外空気と熱交換を行って冷却される(図2及び図3の点T参照)。
 サブ熱源側熱交換器83において冷却された高圧のサブ冷媒は、サブ膨張機構84に送られ、サブ膨張機構84において、低圧まで減圧されて、気液二相状態になる(図2及び図3の点U参照)。
 そして、サブ利用側熱交換器85において、第2サブ流路85bを流れる中間圧のメイン冷媒は、第1サブ流路85aを流れる低圧の気液二相状態のサブ冷媒と熱交換を行って冷却される(図2及び図3の点I参照)。逆に、第1サブ流路85aを流れる低圧の気液二相状態のサブ冷媒は、第2サブ流路85bを流れる中間圧のメイン冷媒と熱交換を行って加熱されて(図2及び図3の点R参照)、サブ流路切換機構82を通じて、再び、サブ圧縮機81の吸入側に吸入される。
 サブ利用側熱交換器85において冷却された中間圧のメイン冷媒は、ブリッジ回路40の出口逆止機構43及び第1メイン冷媒連絡管11を通じて、メイン利用側膨張機構71a、71bに送られ、メイン利用側膨張機構71a、71bにおいて、低圧(LPh)まで減圧されて、気液二相状態になる(図2及び図3の点J参照)。
 メイン利用側膨張機構71a、71bにおいて減圧された低圧のメイン冷媒は、メイン利用側熱交換器72a、72bに送られ、メイン利用側熱交換器72a、72bにおいて、利用側ファン73a、73bによって送られる室内空気と熱交換を行って加熱されて、蒸発する(図2及び図3の点A参照)。逆に、室内空気は、メイン利用側熱交換器72a、72bを流れる低圧の気液二相状態のメイン冷媒と熱交換を行って冷却されて、これにより、室内の冷房が行われる。
 メイン利用側熱交換器72a、72bにおいて蒸発した低圧のメイン冷媒は、第2メイン冷媒連絡管12及び第1メイン流路切換機構23を通じて、第1メイン圧縮機21の吸入側に送られ、再び、第1メイン圧縮機21に吸入される。このようにして、サブ冷媒回路冷却動作を伴う冷房運転が行われる。
 <サブ冷媒回路加熱動作を伴う暖房運転>
 暖房運転時は、第1メイン流路切換機構23が図4の破線で示されるメイン加熱運転状態に切り換えられ、かつ、第2メイン流路切換機構24が図4の破線で示される中間熱交バイパス状態に切り換えられる。また、第1メイン流路切換機構23がメイン加熱運転状態に切り換えられるため、第1下流側メイン膨張機構44が開けられる。また、暖房運転時は、サブ冷媒回路加熱動作を行うため、サブ流路切換機構82が図4の破線で示されるサブ加熱運転状態に切り換えられる。
 このメイン冷媒回路20の状態において、冷凍サイクルにおける低圧(LPh)のメイン冷媒(図4及び図5の点A参照)は、第1メイン圧縮機21に吸入され、第1メイン圧縮機21において、冷凍サイクルにおける中間圧(MPh1)まで圧縮されて吐出される(図4及び図5の点B参照)。
 第1メイン圧縮機21から吐出された中間圧のメイン冷媒は、第2メイン流路切換機構24及び中間熱交バイパス管63を通じて、中間熱交換器26において放熱することなく、第2メイン圧縮機22の吸入側に送られる。
 中間熱交換器26をバイパスした中間圧のメイン冷媒は、中間インジェクション管31(第2中間インジェクション管31b)から第2メイン圧縮機22の吸入側に送られる中間圧のメイン冷媒と合流することで冷却される(図4及び図5の点D参照)。
 中間インジェクション管31からメイン冷媒のインジェクションがなされた中間圧のメイン冷媒は、第2メイン圧縮機22に吸入され、第2メイン圧縮機22において、冷凍サイクルにおける高圧(HPh)まで圧縮されて吐出される(図4及び図5の点E参照)。ここで、第2メイン圧縮機22から吐出された高圧のメイン冷媒は、メイン冷媒の臨界圧を超える圧力になっている。
 第2メイン圧縮機22から吐出された高圧のメイン冷媒は、第1メイン流路切換機構23及び第2メイン冷媒連絡管12を通じて、メイン利用側熱交換器72a、72bに送られ、メイン利用側熱交換器72a、72bにおいて、利用側ファン73a、73bによって送られる室内空気と熱交換を行って放熱する(図4及び図5の点J参照)。逆に、室内空気は、メイン利用側熱交換器72a、72bを流れる高圧のメイン冷媒と熱交換を行って加熱されて、これにより、室内の暖房が行われる。
 メイン利用側熱交換器72a、72bにおいて放熱した高圧のメイン冷媒は、メイン利用側膨張機構71a、71b、第1メイン冷媒連絡管11及びブリッジ回路40の入口逆止機構42を通過した後に、その一部が中間インジェクション膨張機構33の開度に応じて中間インジェクション管31に分岐され、残りがエコノマイザ熱交換器32(第1エコノマイザ流路32a)に送られる。中間インジェクション管31に分岐された高圧のメイン冷媒は、中間インジェクション膨張機構33において中間圧(MPh1)まで減圧されて気液二相状態になり(図4及び図5の点K参照)、エコノマイザ熱交換器32(第2エコノマイザ流路32b)に送られる。エコノマイザ熱交換器32において、第1エコノマイザ流路32aを流れる高圧のメイン冷媒は、第2エコノマイザ流路32bを流れる中間圧の気液二相状態のメイン冷媒と熱交換を行って冷却される(図4及び図5の点G参照)。逆に、第2エコノマイザ流路32bを流れる中間圧の気液二相状態のメイン冷媒は、第1エコノマイザ流路32aを流れる高圧のメイン冷媒との熱交換によって加熱されて(図4及び図5の点L参照)、上記のように、中間熱交換器26をバイパスした中間圧のメイン冷媒と合流して、第2メイン圧縮機22の吸入側に送られる。
 エコノマイザ熱交換器32において冷却された高圧のメイン冷媒は、上流側メイン膨張機構27に送られ、上流側メイン膨張機構27において、冷凍サイクルにおける中間圧(MPh2)まで減圧されて、気液二相状態になる(図4及び図5の点H参照)。
 上流側メイン膨張機構27において減圧された中間圧のメイン冷媒は、サブ利用側熱交換器85(第2サブ流路85b)に送られる。
 一方、サブ冷媒回路80においては、冷凍サイクルにおける低圧(LPs)のサブ冷媒(図4及び図5の点R参照)は、サブ圧縮機81に吸入され、サブ圧縮機81において、冷凍サイクルにおける高圧(HPs)まで圧縮されて吐出される(図4及び図5の点S参照)。
 サブ圧縮機81から吐出された高圧のサブ冷媒は、サブ流路切換機構82を通じて、サブ熱源側熱交換器83に送られる。
 そして、サブ利用側熱交換器85において、第2サブ流路85bを流れる中間圧のメイン冷媒は、第1サブ流路85aを流れる高圧のサブ冷媒と熱交換を行って加熱される(図4及び図5の点I参照)。逆に、第1サブ流路85aを流れる高圧のサブ冷媒は、第2サブ流路85bを流れる中間圧のメイン冷媒と熱交換を行って冷却される(図4及び図5の点U参照)。
 サブ利用側熱交換器85において冷却された高圧のサブ冷媒は、サブ膨張機構84に送られ、サブ膨張機構84において、低圧まで減圧されて、気液二相状態になる(図4及び図5の点T参照)。
 サブ膨張機構84において減圧された低圧のサブ冷媒は、サブ熱源側熱交換器83に送られ、サブ熱源側熱交換器83において、サブ側ファン86によって送られる室外空気と熱交換を行って加熱されて(図4及び図5の点R参照)、サブ流路切換機構82を通じて、再び、サブ圧縮機81の吸入側に吸入される。
 サブ利用側熱交換器85において加熱された中間圧のメイン冷媒は、ブリッジ回路40の第1下流側メイン膨張機構44において、低圧まで減圧されて(図4及び図5の点F参照)、メイン冷媒の蒸発器として機能するメイン熱源側熱交換器25に送られる。
 メイン熱源側熱交換器25に送られた低圧のメイン冷媒は、メイン熱源側熱交換器25において、熱源側ファン28によって供給される室外空気と熱交換を行うことによって蒸発する。そして、メイン熱源側熱交換器25において蒸発した低圧のメイン冷媒は、第1メイン流路切換機構23を通じて、第1メイン圧縮機21の吸入側に送られ、再び、第1メイン圧縮機21に吸入される。このようにして、サブ冷媒回路加熱動作を伴う暖房運転が行われる。
 <メイン冷媒回路とサブ冷媒回路との連動制御>
 次に、上記のサブ冷媒回路冷却動作を伴う冷房運転時及びサブ冷媒回路加熱動作を伴う暖房運転時におけるメイン冷媒回路20とサブ冷媒回路80との連動制御について説明する。
 ここで、サブ冷媒回路80がメイン冷媒回路20から独立して制御がなされると、冷房運転を行う際には、エコノマイザ熱交換器32におけるメイン冷媒の冷却熱量(図3の点F、G参照)とサブ利用側熱交換器85におけるメイン冷媒の冷却熱量(図3の点H、I参照)とのバランスが損なわれるおそれがある。また、暖房運転を行う際には、インジェクション管31を流れるメイン冷媒の流量とサブ利用側熱交換器85におけるメイン冷媒の加熱熱量(図5の点H、I)とのバランスが損なわれることがある。
 そこで、ここでは、下記のように、メイン冷媒回路20とサブ冷媒回路80とが連動するようにメイン冷媒回路20及びサブ冷媒回路80の構成機器を制御している。これにより、冷房運転を行う際には、エコノマイザ熱交換器32におけるメイン冷媒の冷却熱量とサブ利用側熱交換器85におけるメイン冷媒の冷却熱量とのバランスを適切なものとし、暖房運転を行う際には、インジェクション管31を流れるメイン冷媒の流量とサブ利用側熱交換器85におけるメイン冷媒の加熱熱量とのバランスを適切なものとしている。
 -サブ冷媒回路冷却動作を伴う冷房運転時の連動制御-
 図6に示すように、制御部9は、ステップST1において、冷房運転が選択されると、ステップST11において、サブ冷媒回路冷却動作を伴う冷房運転が開始されるが、このとき、メイン冷媒回路20においては、インジェクション膨張機構33が所定開度に設定され、サブ冷媒回路80においては、サブ圧縮機81が所定容量、かつ、サブ膨張機構84が所定開度に設定される。
 次に、ステップST12において、制御部9は、エコノマイザ熱交換器32の出口におけるインジェクション管31を流れるメイン冷媒の過熱度SHh1に基づいてインジェクション膨張機構33の開度を制御する。ここでは、制御部9が、過熱度SHh1が第1メイン冷媒目標過熱度SHh1tになるように、インジェクション膨張機構33の開度を制御する。尚、過熱度SHh1は、圧力センサ93により検出されるメイン冷媒の圧力(MPh1)を飽和温度に換算し、温度センサ35により検出されるメイン冷媒の温度からこの飽和温度を差し引くことによって得られる。ここで、第1メイン冷媒目標過熱度SHh1tは、メイン冷媒回路20の運転条件(外気温度Taやメイン冷媒の高圧HPh、メイン冷媒の低圧LPh、メイン熱源側熱交換器25におけるメイン冷媒の温度Th2等の種々のメイン冷媒回路20に関する状態量のうちの1つ又は複数)に応じて設定される。尚、外気温度Taは、温度センサ99又は温度センサ106により検出され、温度Th1は、温度センサ96により検出され、高圧HPhは、圧力センサ94により検出され、低圧LPhは、圧力センサ91により検出される。
 次に、ステップST13において、制御部9は、過熱度SHh1が第1メイン冷媒目標過熱度SHh1tになるようにインジェクション膨張機構33の開度を制御した状態で、メイン冷媒回路20の成績係数COPに基づいて、サブ冷媒回路20の構成機器を制御する。
 冷房運転時におけるメイン冷媒回路20の成績係数COPは、メイン膨張機構27の入口(エコノマイザ熱交換器32の出口)におけるメイン冷媒の温度Th1及びサブ利用側熱交換器85の出口におけるサブ冷媒の温度Ts1との間に図7に示すような相関関係を有している。この相関関係は、エコノマイザ熱交換器32におけるメイン冷媒の冷却熱量とサブ利用側熱交換器85におけるメイン冷媒の冷却熱量とのバランス関係を示しており、例えば、メイン冷媒の温度Th1が40℃の場合には、サブ冷媒の温度Ts1が25℃において、メイン冷媒回路20の成績係数COPが最大になる。
 詳しく説明すると、冷房運転時における利用側熱交換器72a、72bの蒸発能力Qeは、サブ冷媒回路冷却動作によってサブ利用側熱交換器85におけるメイン冷媒の冷却熱量を大きくするほど大きくなります。しかし、サブ冷媒回路冷却動作によるメイン冷媒の冷却熱量を大きくすることは、サブ冷媒回路80の消費動力Ws(主に、サブ圧縮機81の消費動力)を増加させることを意味します。ここで、メイン冷媒回路20の成績係数COPは、蒸発能力Qeをメイン冷媒回路20の消費動力Wh(主に、メイン圧縮機21、22の消費動力)とサブ冷媒回路80の消費動力Wsとの合計値によって除した値、すなわち、Qe/(Wh+Ws)で表されます。このため、エコノマイザ熱交換器32におけるメイン冷媒の冷却熱量に対して、サブ冷媒回路冷却動作によるメイン冷媒の冷却熱量を大きくすると、サブ冷媒回路80の消費動力Wsが小さい範囲では、メイン冷媒回路20の成績係数COPが増加しますが、サブ冷媒回路80の消費動力Wsが大きい範囲では、メイン冷媒回路20の成績係数COPが低下する傾向になります。すなわち、図7は、この傾向を示すものであって、エコノマイザ熱交換器32におけるメイン冷媒の冷却熱量とサブ利用側熱交換器85におけるメイン冷媒の冷却熱量とのバランスに応じてメイン冷媒回路20の成績係数COPが変化し、その最適点があることを意味します。
 このため、ここでは、制御部9が、この相関関係をデータテーブルや関数の形で有しておき、この相関関係に応じて、サブ利用側熱交換器85の出口におけるサブ冷媒の温度Ts1の目標値である第1サブ冷媒目標温度Ts1tを設定する。例えば、制御部9が、メイン冷媒の温度Th1からメイン冷媒回路20の成績係数COPが最大になるサブ冷媒の温度を得て、この温度値を第1サブ冷媒目標温度Ts1tに設定する。
 そして、制御部9は、サブ冷媒の温度Ts1が第1サブ冷媒目標温度Ts1tになるように、サブ冷媒回路20の構成機器を制御する。具体的には、制御部9が、サブ冷媒の温度Ts1が第1サブ冷媒目標温度Ts1tになるように、サブ膨張機構84の開度及びサブ圧縮機81の運転容量を制御する。ここでは、制御部9が、サブ利用側熱交換器85のサブ冷媒回路80側の出口におけるサブ冷媒の過熱度SHs1に基づいて、サブ膨張機構84の開度を制御する。例えば、制御部9が、過熱度SHs1が目標値SHs1tになるように、サブ膨張機構84の開度を制御する。尚、過熱度SHs1は、圧力センサ101により検出されるサブ冷媒の圧力(LPs)を飽和温度に換算し、温度センサ102により検出されるサブ冷媒の温度Ts1からこの飽和温度を差し引くことによって得られる。そして、制御部9は、サブ膨張機構84の開度をサブ冷媒の過熱度SHs1に基づいて制御しつつ、サブ冷媒の温度Ts1が第1サブ冷媒目標温度Ts1tになるように、サブ圧縮機81の運転容量(運転周波数や回転数)を制御する。
 このように、サブ冷媒回路冷却動作を伴う冷房運転時において、制御部9は、メイン冷媒回路20の成績係数COPに基づいてインジェクション膨張機構33及びサブ冷媒回路80の構成機器(サブ圧縮機81及びサブ膨張機構84)を制御している。尚、サブ圧縮機81が運転容量(運転周波数や回転数)一定の圧縮機である場合には、サブ冷媒の温度Ts1が第1サブ冷媒目標温度Ts1tになるように、サブ膨張機構84の開度を制御してもよい。
 -サブ冷媒回路加熱動作を伴う暖房運転時の連動制御-
 図6に示すように、制御部9は、ステップST1において、冷房運転が選択されると、ステップST12において、サブ冷媒回路加熱動作を伴う暖房運転が開始されるが、このとき、メイン冷媒回路20においては、インジェクション膨張機構33が所定開度に設定され、サブ冷媒回路80においては、サブ圧縮機81が所定容量、かつ、サブ膨張機構84が所定開度に設定される。
 次に、ステップST22において、制御部9は、冷房運転時と同様に、エコノマイザ熱交換器32の出口におけるインジェクション管31を流れるメイン冷媒の過熱度SHh1に基づいてインジェクション膨張機構33の開度を制御する。但し、暖房運転であることを考慮して、ここでは、制御部9が、過熱度SHh1が、第2メイン冷媒目標過熱度SHh2t(冷房運転時の第1メイン冷媒目標過熱度SHh1tとは異なる値)になるように、インジェクション膨張機構33の開度を制御する。
 次に、ステップST23において、制御部9は、過熱度SHh1が第2メイン冷媒目標過熱度SHh2tになるようにインジェクション膨張機構33の開度を制御した状態で、メイン冷媒回路20の成績係数COPに基づいて、サブ冷媒回路20の構成機器を制御する。
 暖房運転時におけるメイン冷媒回路20の成績係数COPは、ここでは図示しないが、冷房運転時(図7参照)と同様に、メイン膨張機構27の入口(エコノマイザ熱交換器32の出口)におけるメイン冷媒の温度Th1及びサブ利用側熱交換器85の出口におけるサブ冷媒の温度Ts2との間に相関関係を有している。ここで、メイン膨張機構27の入口(エコノマイザ熱交換器32の出口)におけるメイン冷媒の温度Th1は、インジェクション管31を流れるメイン冷媒の流量と等価であるため、この相関関係は、インジェクション管31を流れるメイン冷媒の流量とサブ利用側熱交換器85におけるメイン冷媒の加熱熱量とのバランス関係を示すものと言える。
 詳しく説明すると、暖房運転時における利用側熱交換器72a、72bの放熱能力Qrは、サブ冷媒回路加熱動作によってサブ利用側熱交換器85におけるメイン冷媒の加熱熱量を大きくするほど大きくなります。しかし、サブ冷媒回路加熱動作によるメイン冷媒の加熱熱量を大きくすることは、サブ冷媒回路80の消費動力Ws(主に、サブ圧縮機81の消費動力)を増加させることを意味します。ここで、メイン冷媒回路20の成績係数COPは、放熱能力Qrをメイン冷媒回路20の消費動力Wh(主に、メイン圧縮機21、22の消費動力)とサブ冷媒回路80の消費動力Wsとの合計値によって除した値、すなわち、Qr/(Wh+Ws)で表されます。このため、インジェクション管31を流れるメイン冷媒の流量に対して、サブ冷媒回路加熱動作によるメイン冷媒の加熱熱量を大きくすると、サブ冷媒回路80の消費動力Wsが小さい範囲では、メイン冷媒回路20の成績係数COPが増加しますが、サブ冷媒回路80の消費動力Wsが大きい範囲では、メイン冷媒回路20の成績係数COPが低下する傾向になります。すなわち、インジェクション管31を流れるメイン冷媒の流量とサブ利用側熱交換器85におけるメイン冷媒の加熱熱量とのバランスに応じてメイン冷媒回路20の成績係数COPが変化し、その最適点があることを意味します。
 このため、ここでは、制御部9が、この相関関係をデータテーブルや関数の形で有しておき、この相関関係に応じて、サブ利用側熱交換器85の出口におけるサブ冷媒の温度Ts2の目標値である第2サブ冷媒目標温度Ts2tを設定する。例えば、制御部9が、メイン冷媒の温度Th1からメイン冷媒回路20の成績係数COPが最大になるサブ冷媒の温度を得て、この温度値を第2サブ冷媒目標温度Ts2tに設定する。
 そして、制御部9は、サブ冷媒の温度Ts2が第2サブ冷媒目標温度Ts2tになるように、サブ冷媒回路20の構成機器を制御する。具体的には、制御部9が、サブ冷媒の温度Ts2が第2サブ冷媒目標温度Ts2tになるように、サブ膨張機構84の開度及びサブ圧縮機81の運転容量を制御する。ここでは、制御部9が、サブ利用側熱交換器85のサブ冷媒回路80側の出口におけるサブ冷媒の過冷却度SCs1に基づいて、サブ膨張機構84の開度を制御する。例えば、制御部9が、過冷却度SCs1が目標値SCs1tになるように、サブ膨張機構84の開度を制御する。尚、過冷却度SCs1は、圧力センサ103により検出されるサブ冷媒の圧力(HPs)を飽和温度に換算し、この飽和温度から温度センサ107により検出されるサブ冷媒の温度Ts2を差し引くことによって得られる。そして、制御部9は、サブ膨張機構84の開度をサブ冷媒の過冷却度SCs1に基づいて制御しつつ、サブ冷媒の温度Ts2が第2サブ冷媒目標温度Ts2tになるように、サブ圧縮機81の運転容量(運転周波数や回転数)を制御する。
 このように、サブ冷媒回路加熱動作を伴う暖房運転時において、制御部9は、メイン冷媒回路20の成績係数COPに基づいてインジェクション膨張機構33及びサブ冷媒回路80の構成機器(サブ圧縮機81及びサブ膨張機構84)を制御している。尚、サブ圧縮機81が運転容量(運転周波数や回転数)一定の圧縮機である場合には、サブ冷媒の温度Ts2が第2サブ冷媒目標温度Ts2tになるように、サブ膨張機構84の開度を制御してもよい。
 (3)特徴
 次に、冷凍サイクル装置1の特徴について説明する。
 <A>
 ここでは、上記のように、メイン冷媒が循環するメイン冷媒回路20に従来と同様のインジェクション管31及びエコノマイザ熱交換器32を設けるだけでなく、メイン冷媒回路20とは別のサブ冷媒が循環するサブ冷媒回路80を設けている。
 そして、メイン利用側熱交換器72a、72bがメイン冷媒の蒸発器として機能するようにメイン冷媒を循環させる冷却運転状態に第1メイン流路切換機構23を切り換えて運転(冷却運転)する際に、サブ冷媒回路80に設けられたサブ利用側熱交換器85を、エコノマイザ熱交換器32において冷却されたメイン冷媒を冷却するサブ冷媒の蒸発器として機能するように、メイン冷媒回路20に設けている。このため、ここでは、メイン利用側熱交換器72a、72bに送られるメイン冷媒のエンタルピがさらに低下し(図3の点H、I参照)、メイン利用側熱交換器72a、72bにおけるメイン冷媒の蒸発によって得られる熱交換能力(利用側熱交換器72a、72bの蒸発能力)を大きくすることができる(図3の点J、A参照)。
 また、メイン利用側熱交換器72a、72bが冷媒の放熱器として機能するようにメイン冷媒を循環させる加熱運転状態に第1メイン流路切換機構23を切り換えて運転(加熱運転)する際に、サブ冷媒回路80に設けられたサブ利用側熱交換器85を、サブ冷媒の放熱器として機能してエコノマイザ熱交換器32において冷却されたメイン冷媒を加熱するサブ冷媒の放熱器として機能するように、メイン冷媒回路20に設けている。このため、ここでは、メイン熱源側熱交換器25に送られるメイン冷媒のエンタルピが増加し(図5の点H、I参照)、メイン熱源側熱交換器25においてメイン冷媒を蒸発させるために必要な熱交換量を小さくすることができる(図5の点F、A参照)。そして、これにより、メイン熱源側熱交換器25における熱交換効率が高くなり、メイン冷媒の低圧(LPh)が上昇するため、メイン圧縮機21、22の消費動力を低減することができる。また、加熱運転時にメイン冷媒の低圧が上昇すると、メイン熱源側熱交換器25における着霜が抑えられるため、除霜運転を行う頻度を少なくすることができる。
 このように、ここでは、冷媒回路20にインジェクション管31及びエコノマイザ熱交換器32が設けられている冷凍サイクル装置1において、利用側熱交換器72a、72bを冷媒の蒸発器として機能させる運転の際に、利用側熱交換器72a、72bの蒸発能力を大きくすることができる。また、利用側熱交換器72a、72bを冷媒の放熱器として機能させる運転の際に、熱源側熱交換器25において冷媒を蒸発させるために必要な熱交換量を小さくすることができる。
 特に、ここでは、HFC冷媒等に比べて成績係数が低い二酸化炭素をメイン冷媒として使用しているため、冷却運転では、メイン熱源側熱交換器25における冷媒の放熱能力が低下しやすく、これにより、メイン利用側熱交換器72a、72bの蒸発能力を大きくすることが難しくなる傾向が顕著である。また、加熱運転においても、メイン熱源側熱交換器25において冷媒を蒸発させるために必要な熱交換量が大きくなる傾向が顕著である。しかし、ここでは、上記のように、サブ冷媒回路80を利用して、冷却運転時には、メイン利用側熱交換器72a、72bの蒸発能力を大きくすることができ、また、加熱運転時には、メイン熱源側熱交換器25において冷媒を蒸発させるために必要な熱交換量を小さくすることができるため、二酸化炭素をメイン冷媒として使用しているにもかかわらず、所望の能力を得ることができる。
 <B>
 また、ここでは、インジェクション管31を流れるメイン冷媒を、多段圧縮機であるメイン圧縮機21、22の圧縮行程の途中部分(低段側圧縮要素21aと高段側圧縮要素22aとの間)に送ることができるため、メイン圧縮機21、22において冷凍サイクルにおける中間圧(MPh1)まで圧縮されたメイン冷媒の温度を低下させることができる。
 さらに、ここでは、上記のように、第1メイン流路切換機構23をメイン冷却運転状態にしている場合(冷却運転時)に、中間熱交換器26において、第1メイン圧縮機21(低段側圧縮要素21a)と第2メイン圧縮機22(高段側圧縮要素22a)との間を流れる中間圧のメイン冷媒を冷却することができるため(図3の点C参照)、第2メイン圧縮機22から吐出される高圧のメイン冷媒の温度を低く抑えることができる(図3の点E参照)。しかも、ここでは、上記のように、第1メイン流路切換機構23をメイン加熱運転状態にしている場合(加熱運転時)に、中間熱交換器26において、サブ利用側熱交換器85において加熱されたメイン冷媒を蒸発させることができる。
 <C>
 また、ここでは、上記のように、冷却運転を行う際及び加熱運転を行う際のいずれにおいても、エコノマイザ熱交換器32に、メイン膨張機構27で減圧される前のメイン冷媒を流すことができるため、エコノマイザ熱交換器32におけるメイン冷媒の冷却能力を大きくすることができる。
 <D>
 サブ冷媒回路80がメイン冷媒回路20から独立して制御がなされると、冷房運転を行う際には、エコノマイザ熱交換器32におけるメイン冷媒の冷却熱量(図3の点F、G参照)とサブ利用側熱交換器85におけるメイン冷媒の冷却熱量(図3の点H、I参照)とのバランスが損なわれるおそれがある。また、暖房運転を行う際には、インジェクション管31を流れるメイン冷媒の流量とサブ利用側熱交換器85におけるメイン冷媒の加熱熱量(図5の点H、I)とのバランスが損なわれることがある。
 しかし、ここでは、上記のように、制御部9が、メイン冷媒回路20とサブ冷媒回路80とが連動するようにメイン冷媒回路20及びサブ冷媒回路80の構成機器を制御している。これにより、冷房運転を行う際には、エコノマイザ熱交換器32におけるメイン冷媒の冷却熱量とサブ利用側熱交換器85におけるメイン冷媒の冷却熱量とのバランスを適切なものとし、暖房運転を行う際には、インジェクション管31を流れるメイン冷媒の流量とサブ利用側熱交換器85におけるメイン冷媒の加熱熱量とのバランスを適切なものとすることができる。
 <E>
 また、ここでは、上記のように、メイン冷媒回路20とサブ冷媒回路80とを連動させる制御を行うにあたり、メイン冷媒回路20の成績係数COPに基づいてインジェクション膨張機構33及びサブ冷媒回路80の構成機器を制御している。
 このため、ここでは、冷却運転を行う際には、メイン冷媒回路20の成績係数COPに基づいて、エコノマイザ熱交換器32におけるメイン冷媒の冷却熱量とサブ利用側熱交換器85におけるメイン冷媒の冷却熱量とをバランスさせることができ、加熱運転を行う際には、メイン冷媒回路20の成績係数COPに基づいて、インジェクション管31を流れるメイン冷媒の流量とサブ利用側熱交換器85におけるメイン冷媒の加熱熱量とをバランスさせることができる。
 <F>
 また、ここでは、上記のように、冷却運転を行う際に、メイン冷媒回路20の成績係数COPに基づいてインジェクション膨張機構33及びサブ冷媒回路80の構成機器を制御するにあたり、エコノマイザ熱交換器32の出口におけるインジェクション管31を流れるメイン冷媒の過熱度SHh1に基づいてインジェクション膨張機構33を制御している。
 また、ここでは、上記のように、冷却運転を行う際に、メイン冷媒回路20の成績係数COPに基づいてサブ冷媒回路80の構成機器を制御するにあたり、サブ利用側熱交換器85の出口におけるサブ冷媒の温度Ts1を、メイン膨張機構27の入口におけるメイン冷媒の温度Th1及びメイン冷媒回路20の成績係数COPに基づいて得られる第1サブ冷媒目標温度Ts1tになるようにサブ冷媒回路80を制御している。
 このため、ここでは、エコノマイザ熱交換器32におけるメイン冷媒の冷却熱量を確保しつつ、サブ利用側熱交換器85におけるメイン冷媒の冷却熱量をバランスさせることができる。
 <G>
 また、ここでは、上記のように、加熱運転を行う際に、メイン冷媒回路20の成績係数COPに基づいてインジェクション膨張機構33及びサブ冷媒回路80の構成機器を制御するにあたり、エコノマイザ熱交換器85の出口におけるインジェクション管31を流れるメイン冷媒の過熱度SHh1に基づいてインジェクション膨張機構33を制御している。
 また、ここでは、上記のように、加熱運転を行う際に、メイン冷媒回路20の成績係数COPに基づいてサブ冷媒回路80の構成機器を制御するにあたり、サブ利用側熱交換器85の出口におけるサブ冷媒の温度Ts2を、メイン膨張機構27の入口におけるメイン冷媒の温度Th1及びメイン冷媒回路20の成績係数COPに基づいて得られる第2サブ冷媒目標温度Ts2tになるようにサブ冷媒回路80を制御している。
 このため、ここでは、インジェクション管31を流れるメイン冷媒の流量を確保しつつ、サブ利用側熱交換器85におけるメイン冷媒の加熱熱量をバランスさせることができる。
 <H>
 また、ここでは、上記のように、メイン冷媒として二酸化炭素を使用し、サブ冷媒として低GWPの冷媒や二酸化炭素よりも成績係数が高い自然冷媒を使用しているため、地球温暖化等の環境負荷を低減することができる。
 (4)変形例
 <変形例1>
 上記実施形態では、ステップST12、ST22において、制御部9が、エコノマイザ熱交換器32の出口におけるインジェクション管31を流れるメイン冷媒の過熱度SHh1に基づいてインジェクション膨張機構33の開度を制御しているが、これに限定されるものではない。
 例えば、ステップST12、ST22において、制御部9が、メイン膨張機構27の入口(エコノマイザ熱交換器32の出口)におけるメイン冷媒の温度Th1の目標値Th1t、Th2tを設定し、メイン冷媒の温度Th1が目標値Th1t、Th2tになるように、インジェクション膨張機構33の開度を制御してもよい。ここで、目標値Th1tは、冷房運転時におけるメイン冷媒の温度Th1の目標値としての第1メイン冷媒目標温度であり、目標Th2tは、暖房運転時におけるメイン冷媒の温度Th1の目標値としての第2メイン冷媒目標温度である。
 この場合においても、冷房運転及び暖房運転を行う際に、メイン冷媒回路20の成績係数COPに基づいてインジェクション膨張機構33及びサブ冷媒回路80の構成機器を制御するができる。
 <変形例2>
 上記実施形態及び変形例1では、上流側メイン膨張機構27において減圧されたメイン冷媒をサブ利用側熱交換器85(第2サブ流路85b)に直接送る構成を採用しているが、これに限定されるものではなく、図8に示すように、上流側メイン膨張機構27とサブ利用側熱交換器85との間に気液分離器51を設けてもよい。
 気液分離器51は、メイン冷媒を気液分離する機器であり、ここでは、上流側メイン膨張機構27において減圧されたメイン冷媒を気液分離する容器である。また、気液分離器51を設ける場合には、気液分離器51からガス状態のメイン冷媒を抜き出してメイン圧縮機21、22の吸入側に送るガス抜き管52をさらに設けることが好ましい。ここで、ガス抜き管52は、気液分離器51から抜き出したガス状態のメイン冷媒を第1メイン圧縮機21の吸入側に送る冷媒管である。ガス抜き管52は、一端が気液分離器51の上部空間に連通するように接続されており、他端が第1メイン圧縮機21の吸入側に接続されている。また、ガス抜き管52は、ガス抜き膨張機構53を有している。ガス抜き膨張機構53は、メイン冷媒を減圧する機器であり、ここでは、ガス抜き管52を流れるメイン冷媒を減圧する膨張機構である。ガス抜き膨張機構53は、例えば、電動膨張弁である。
 この場合においても、上記実施形態及び変形例1と同様に、サブ冷媒回路冷却動作を伴う冷房運転及びサブ冷媒回路加熱動作を伴う暖房運転を行うことができる。
 しかも、ここでは、気液分離器51においてガス状態のメイン冷媒が除かれた液状態のメイン冷媒をサブ利用側熱交換器85に送ることができるため、冷房運転時には、サブ利用側熱交換器85において、メイン冷媒の温度をさらに低下させることができる。また、暖房運転時には、サブ利用側熱交換器85、メイン熱源側熱交換器25及び中間熱交換器26に送るメイン冷媒の流量を減らして圧力損失を低減し、これにより、メイン冷媒の低圧(LPh)をさらに上昇させることができる。
 <変形例3>
 上記実施形態及び変形例1、2では、複数のメイン圧縮機21、22によって、多段圧縮機を構成しているが、これに限定されるものではなく、圧縮要素21a、21bを有する1台のメイン圧縮機によって多段圧縮機を構成してもよい。
 <変形例4>
 上記実施形態及び変形例1~3では、第1メイン圧縮機21と第2メイン圧縮機22との間にメイン冷媒を冷却する中間熱交換器26が設けられた構成を採用しているが、これに限定されるものではなく、中間熱交換器26が設けられていなくてもよい。
 <変形例5>
 上記変形例4のように中間熱交換器26を有しない構成を採用する場合には、多段圧縮機をメイン圧縮機として採用しなくてもよい。例えば、図9に示すように、メイン圧縮機121として、圧縮行程の途中で外部からメイン冷媒を導入する中間インジェクションポート121bを有する圧縮要素121aを含む単段圧縮機を採用し、中間インジェクションポート121bにインジェクション管31を接続してもよい。
 この場合においても、インジェクション管31を流れるメイン冷媒を、単段圧縮機であるメイン圧縮機121の圧縮行程の途中部分(中間インジェクションポート121b)に送ることができるため、上記実施形態及び変形例1~4と同様に、メイン圧縮機121において冷凍サイクルにおける中間圧(MPh1)まで圧縮されたメイン冷媒の温度を低下させることができる。
 <変形例6>
 上記実施形態及び変形例1~5では、インジェクション管31がメイン圧縮機21、22やメイン圧縮機121の圧縮行程の途中部分(低段側圧縮要素21aと高段側圧縮要素22aとの間や中間インジェクションポート121b)にメイン冷媒を送るように接続されているが、これに限定されるものではなく、多段圧縮機の最も低段側に位置する第1メイン圧縮機21の吸入側や、単段圧縮機からなるメイン圧縮機121の吸入側にメイン冷媒を送るように接続されていてもよい。
 以上、本開示の実施形態を説明したが、請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能であることが理解されるであろう。
 本開示は、圧縮機、熱源側熱交換器、利用側熱交換器及び流路切換機構を有する冷媒回路に、熱源側熱交換器と利用側熱交換器との間を流れる冷媒を分岐して圧縮機に送るインジェクション管、及び、熱源側熱交換器と利用側熱交換器との間を流れる冷媒をインジェクション管を流れる冷媒との熱交換によって冷却するエコノマイザ熱交換器、が設けられている冷凍サイクル装置に対して、広く適用可能である。
 1         冷凍サイクル装置
 9         制御部
 20        メイン冷媒回路
 21、22、121 メイン圧縮機
 21a       低段側圧縮要素
 22a       高段側圧縮要素
 121a      圧縮要素
 121b      中間インジェクションポート
 23        第1メイン流路切換機構
 25        メイン熱源側熱交換器
 26        中間熱交換器
 27        上流側メイン膨張機構
 31        インジェクション管
 32        エコノマイザ熱交換器
 33        インジェクション膨張機構
 72a、72b   メイン利用側熱交換器
 80        サブ冷媒回路
 81        サブ圧縮機
 82        サブ流路切換機構
 83        サブ熱源側熱交換器
 85        サブ利用側熱交換器
特開2013-139938号公報

Claims (15)

  1.  メイン冷媒を圧縮するメイン圧縮機(21、22、121)と、
     前記メイン冷媒の放熱器又は蒸発器として機能するメイン熱源側熱交換器(25)と、
     前記メイン冷媒の蒸発器又は放熱器として機能するメイン利用側熱交換器(72a、72b)と、
     前記メイン熱源側熱交換器と前記メイン利用側熱交換器との間を流れる前記メイン冷媒を分岐して前記メイン圧縮機に送るインジェクション管(31)と、
     前記メイン熱源側熱交換器と前記メイン利用側熱交換器との間を流れる前記メイン冷媒を前記インジェクション管を流れる前記メイン冷媒との熱交換によって冷却するエコノマイザ熱交換器(32)と、
     前記メイン利用側熱交換器が前記メイン冷媒の蒸発器として機能するように前記メイン冷媒を循環させるメイン冷却運転状態と、前記メイン利用側熱交換器が前記メイン冷媒の放熱器として機能するように前記メイン冷媒を循環させるメイン加熱運転状態と、を切り換えるメイン流路切換機構(23)と、
    を有する、メイン冷媒回路(20)を備えており、
     前記メイン冷媒回路は、前記エコノマイザ熱交換器において冷却された前記メイン冷媒の冷却器又は加熱器として機能するサブ利用側熱交換器(85)を有しており、
     サブ冷媒を圧縮するサブ圧縮機(81)と、
     前記サブ冷媒の放熱器又は蒸発器として機能するサブ熱源側熱交換器(83)と、
     前記サブ冷媒の蒸発器として機能して前記エコノマイザ熱交換器において冷却された前記メイン冷媒を冷却する、又は、前記サブ冷媒の放熱器として機能して前記エコノマイザ熱交換器において冷却された前記メイン冷媒を加熱する、前記サブ利用側熱交換器と、
     前記サブ利用側熱交換器が前記サブ冷媒の蒸発器として機能するように前記サブ冷媒を循環させるサブ冷却運転状態と、前記サブ利用側熱交換器が前記サブ冷媒の放熱器として機能するように前記サブ冷媒を循環させるサブ加熱運転状態と、を切り換えるサブ流路切換機構(82)と、
    を有する、サブ冷媒回路(80)を備えている、
    冷凍サイクル装置(1)。
  2.  前記メイン圧縮機は、前記メイン冷媒を圧縮する低段側圧縮要素(21a)と、前記低段側圧縮要素から吐出された前記メイン冷媒を圧縮する高段側圧縮要素(22a)と、を含んでおり、
     前記メイン冷媒回路は、中間熱交換器(26)を有しており、
     前記中間熱交換器は、前記メイン流路切換機構を前記メイン冷却運転状態にしている場合に、前記低段側圧縮要素と前記高段側圧縮要素との間を流れる前記メイン冷媒の冷却器として機能し、前記メイン流路切換機構を前記メイン加熱運転状態にしている場合に、前記サブ利用側熱交換器において加熱された前記メイン冷媒の蒸発器として機能する、
    請求項1に記載の冷凍サイクル装置。
  3.  前記メイン圧縮機は、前記圧縮行程の途中で外部から前記メイン冷媒を導入する中間インジェクションポート(121b)を有する圧縮要素(121a)を含んでおり、
     前記インジェクション管は、前記中間インジェクションポートに接続されている、
    請求項1に記載の冷凍サイクル装置。
  4.  前記メイン圧縮機は、前記メイン冷媒を圧縮する低段側圧縮要素(21a)と、前記低段側圧縮要素から吐出された前記メイン冷媒を圧縮する高段側圧縮要素(22a)と、を含んでおり、
     前記インジェクション管は、前記高段側圧縮要素の吸入側に接続されている、
    請求項1又は2に記載の冷凍サイクル装置。
  5.  前記メイン冷媒回路は、前記エコノマイザ熱交換器と前記サブ利用側熱交換器との間にメイン膨張機構(27)を有している、
    請求項1~4のいずれか1項に記載の冷凍サイクル装置。
  6.  前記メイン冷媒回路及び前記サブ冷媒回路の構成機器を制御する制御部(9)をさらに備えており、
     前記制御部は、前記メイン冷媒回路と前記サブ冷媒回路とが連動するように前記メイン冷媒回路及び前記サブ冷媒回路の構成機器を制御する、
    請求項5に記載の冷凍サイクル装置。
  7.  前記インジェクション管は、インジェクション膨張機構(33)を有しており、
     前記制御部は、前記メイン冷媒回路の成績係数に基づいて前記インジェクション膨張機構及び前記サブ冷媒回路の構成機器を制御する、
    請求項6に記載の冷凍サイクル装置。
  8.  前記制御部は、前記メイン流路切換機構を前記メイン冷却運転状態にし、かつ、前記サブ流路切換機構を前記サブ冷却運転状態にしている場合に、前記メイン膨張機構の入口における前記メイン冷媒の温度が第1メイン冷媒目標温度になるように前記インジェクション膨張機構の開度を制御した状態で、前記メイン冷媒回路の成績係数に基づいて前記サブ冷媒回路の構成機器を制御する、
    請求項7に記載の冷凍サイクル装置。
  9.  前記制御部は、前記メイン流路切換機構を前記メイン冷却運転状態にし、かつ、前記サブ流路切換機構を前記サブ冷却運転状態にしている場合に、前記エコノマイザ熱交換器の出口における前記インジェクション管を流れる前記メイン冷媒の過熱度が第1メイン冷媒目標過熱度になるように前記インジェクション膨張機構の開度を制御した状態で、前記メイン冷媒回路の成績係数に基づいて前記サブ冷媒回路の構成機器を制御する、
    請求項7に記載の冷凍サイクル装置。
  10.  前記制御部は、前記メイン膨張機構の入口における前記メイン冷媒の温度と前記メイン冷媒回路の成績係数と前記サブ利用側熱交換器の出口における前記サブ冷媒の温度との相関関係に応じて、前記サブ利用側熱交換器の出口における前記サブ冷媒の温度の目標値である第1サブ冷媒目標温度を設定し、前記サブ利用側熱交換器の出口における前記サブ冷媒の温度が前記第1サブ冷媒目標温度になるように前記サブ冷媒回路の構成機器を制御する、
    請求項8又は9に記載の冷凍サイクル装置。
  11.  前記制御部は、前記メイン流路切換機構を前記メイン加熱運転状態にし、かつ、前記サブ流路切換機構を前記サブ加熱運転状態にしている場合に、前記メイン膨張機構の入口における前記メイン冷媒の温度が第2メイン冷媒目標温度になるように前記インジェクション膨張機構の開度を制御した状態で、前記メイン冷媒回路の成績係数に基づいて前記サブ冷媒回路の構成機器を制御する、
    請求項7~10のいずれか1項に記載の冷凍サイクル装置。
  12.  前記制御部は、前記メイン流路切換機構を前記メイン加熱運転状態にし、かつ、前記サブ流路切換機構を前記サブ加熱運転状態にしている場合に、前記エコノマイザ熱交換器の出口における前記インジェクション管を流れる前記メイン冷媒の過熱度が第2メイン冷媒目標過熱度になるように前記インジェクション膨張機構の開度を制御した状態で、前記メイン冷媒回路の成績係数に基づいて前記サブ冷媒回路の構成機器を制御する、
    請求項7~10のいずれか1項に記載の冷凍サイクル装置。
  13.  前記制御部は、前記メイン膨張機構の入口における前記メイン冷媒の温度と前記メイン冷媒回路の成績係数と前記サブ利用側熱交換器の出口における前記サブ冷媒の温度との相関関係に応じて、前記サブ利用側熱交換器の出口における前記サブ冷媒の温度の目標値である第2サブ冷媒目標温度を設定し、前記サブ利用側熱交換器の出口における前記サブ冷媒の温度が前記第2サブ冷媒目標温度になるように前記サブ冷媒回路の構成機器を制御する、
    請求項11又は12に記載の冷凍サイクル装置。
  14.  前記メイン冷媒は、二酸化炭素であり、
     前記サブ冷媒は、GWPが750以下のHFC冷媒、HFO冷媒、又は、HFC冷媒とHFO冷媒との混合冷媒である、
    請求項1~13のいずれか1項に記載の冷凍サイクル装置。
  15.  前記メイン冷媒は、二酸化炭素であり、
     前記サブ冷媒は、二酸化炭素よりも成績係数が高い自然冷媒である、
    請求項1~13のいずれか1項に記載の冷凍サイクル装置。
PCT/JP2019/038451 2018-10-02 2019-09-30 冷凍サイクル装置 WO2020071299A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/282,143 US20210356177A1 (en) 2018-10-02 2019-09-30 Refrigeration cycle device
EP19869333.5A EP3862655A4 (en) 2018-10-02 2019-09-30 REFRIGERATION CIRCUIT DEVICE
JP2020550412A JP7096511B2 (ja) 2018-10-02 2019-09-30 冷凍サイクル装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-187367 2018-10-02
JP2018187365 2018-10-02
JP2018187367 2018-10-02
JP2018-187365 2018-10-02

Publications (1)

Publication Number Publication Date
WO2020071299A1 true WO2020071299A1 (ja) 2020-04-09

Family

ID=70055099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038451 WO2020071299A1 (ja) 2018-10-02 2019-09-30 冷凍サイクル装置

Country Status (4)

Country Link
US (1) US20210356177A1 (ja)
EP (1) EP3862655A4 (ja)
JP (1) JP7096511B2 (ja)
WO (1) WO2020071299A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3922925A1 (de) * 2020-06-09 2021-12-15 Stiebel Eltron GmbH & Co. KG Verfahren zum betrieb einer kompressionskälteanlage und kompressionskälteanlage
EP3992552A1 (en) * 2020-10-30 2022-05-04 Panasonic Intellectual Property Management Co., Ltd. Refrigeration cycle device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3862656A4 (en) * 2018-10-02 2021-11-24 Daikin Industries, Ltd. COOLING CYCLE DEVICE
AU2019439816B2 (en) * 2019-04-01 2023-03-23 Samsung Heavy Ind. Co., Ltd. Cooling system
CN111998569A (zh) * 2020-09-10 2020-11-27 上海海洋大学 可用于箱门防冻的冷藏集装箱制冷系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005052467A1 (ja) * 2003-11-28 2005-06-09 Mitsubishi Denki Kabushiki Kaisha 冷凍装置及び空気調和装置
JP2012189258A (ja) * 2011-03-10 2012-10-04 Fujitsu General Ltd 冷凍サイクル装置
JP2013130358A (ja) * 2011-12-22 2013-07-04 Sanyo Electric Co Ltd 冷凍装置
JP2013139938A (ja) 2011-12-28 2013-07-18 Daikin Industries Ltd 冷凍装置
JP2013210155A (ja) * 2012-03-30 2013-10-10 Daikin Industries Ltd 冷凍装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4804396B2 (ja) * 2007-03-29 2011-11-02 三菱電機株式会社 冷凍空調装置
JP5003439B2 (ja) * 2007-11-30 2012-08-15 ダイキン工業株式会社 冷凍装置
JP2009036508A (ja) * 2008-09-29 2009-02-19 Sanyo Electric Co Ltd 過冷却装置
US8011191B2 (en) * 2009-09-30 2011-09-06 Thermo Fisher Scientific (Asheville) Llc Refrigeration system having a variable speed compressor
JP5570364B2 (ja) * 2010-09-23 2014-08-13 東芝キヤリア株式会社 2元冷凍サイクル装置
JP2013210158A (ja) * 2012-03-30 2013-10-10 Daikin Industries Ltd 冷凍装置
CN203964427U (zh) * 2014-06-25 2014-11-26 广东芬尼克兹节能设备有限公司 一种复叠式高温热泵的智能保护系统
US20160265814A1 (en) * 2015-03-11 2016-09-15 Heatcraft Refrigeration Products Llc Water Cooled Microchannel Condenser
JP6160725B1 (ja) * 2016-02-29 2017-07-12 ダイキン工業株式会社 冷凍装置
US20180195794A1 (en) * 2017-01-12 2018-07-12 Emerson Climate Technologies, Inc. Diagnostics And Control For Micro Booster Supermarket Refrigeration System

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005052467A1 (ja) * 2003-11-28 2005-06-09 Mitsubishi Denki Kabushiki Kaisha 冷凍装置及び空気調和装置
JP2012189258A (ja) * 2011-03-10 2012-10-04 Fujitsu General Ltd 冷凍サイクル装置
JP2013130358A (ja) * 2011-12-22 2013-07-04 Sanyo Electric Co Ltd 冷凍装置
JP2013139938A (ja) 2011-12-28 2013-07-18 Daikin Industries Ltd 冷凍装置
JP2013210155A (ja) * 2012-03-30 2013-10-10 Daikin Industries Ltd 冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3862655A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3922925A1 (de) * 2020-06-09 2021-12-15 Stiebel Eltron GmbH & Co. KG Verfahren zum betrieb einer kompressionskälteanlage und kompressionskälteanlage
EP3992552A1 (en) * 2020-10-30 2022-05-04 Panasonic Intellectual Property Management Co., Ltd. Refrigeration cycle device

Also Published As

Publication number Publication date
US20210356177A1 (en) 2021-11-18
EP3862655A1 (en) 2021-08-11
JPWO2020071299A1 (ja) 2021-09-02
JP7096511B2 (ja) 2022-07-06
EP3862655A4 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
WO2020071299A1 (ja) 冷凍サイクル装置
JP5239824B2 (ja) 冷凍装置
JP5003440B2 (ja) 冷凍装置
JP5332604B2 (ja) 冷暖同時運転型空気調和装置
WO2013146870A1 (ja) 冷凍装置
JP5003439B2 (ja) 冷凍装置
JP5018724B2 (ja) エジェクタ式冷凍サイクル
JP5186949B2 (ja) 冷凍装置
JP7193706B2 (ja) 冷凍サイクル装置
JP2009257706A (ja) 冷凍装置
JP2011089736A (ja) 冷凍サイクル装置,空気調和機
JP2008267653A (ja) 冷凍装置
JP4901916B2 (ja) 冷凍空調装置
JP4468887B2 (ja) 過冷却装置及び過冷却装置を備える空気調和装置
WO2020071293A1 (ja) 冷凍サイクル装置
JP2009257704A (ja) 冷凍装置
JP7201912B2 (ja) 冷凍サイクル装置
JP5895662B2 (ja) 冷凍装置
JP2013210155A (ja) 冷凍装置
WO2020071300A1 (ja) 冷凍サイクル装置
US11959667B2 (en) Refrigeration cycle device
JP2020056537A (ja) 冷凍サイクル装置
JP2010112618A (ja) 空気調和装置
JP5141364B2 (ja) 冷凍装置
JP2009204243A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550412

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2101001892

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019869333

Country of ref document: EP

Effective date: 20210503