WO2005052214A2 - Verfahren und vorrichtung zur herstellung eines oder mehrerer gase - Google Patents

Verfahren und vorrichtung zur herstellung eines oder mehrerer gase Download PDF

Info

Publication number
WO2005052214A2
WO2005052214A2 PCT/EP2004/013452 EP2004013452W WO2005052214A2 WO 2005052214 A2 WO2005052214 A2 WO 2005052214A2 EP 2004013452 W EP2004013452 W EP 2004013452W WO 2005052214 A2 WO2005052214 A2 WO 2005052214A2
Authority
WO
WIPO (PCT)
Prior art keywords
gas
ion exchanger
produced
substance
adheres
Prior art date
Application number
PCT/EP2004/013452
Other languages
English (en)
French (fr)
Other versions
WO2005052214A3 (de
Inventor
Franz Roiner
Original Assignee
Roiner, Maria
Gensch, Henning
Gensch, Barbara
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10359509A external-priority patent/DE10359509B4/de
Application filed by Roiner, Maria, Gensch, Henning, Gensch, Barbara filed Critical Roiner, Maria
Priority to US10/581,009 priority Critical patent/US8197666B2/en
Priority to KR1020067009723A priority patent/KR101218952B1/ko
Priority to CA2547295A priority patent/CA2547295C/en
Priority to AU2004293566A priority patent/AU2004293566B2/en
Priority to JP2006540400A priority patent/JP5094122B2/ja
Priority to EP04819229.8A priority patent/EP1704268B1/de
Publication of WO2005052214A2 publication Critical patent/WO2005052214A2/de
Publication of WO2005052214A3 publication Critical patent/WO2005052214A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to a method for producing one or more gases and a device for carrying out such a method.
  • a liquid containing the gas to be produced is treated electrolytically.
  • One or more gases are formed by the electrolysis.
  • the method serves to produce hydrogen or hydrogen and oxygen, the latter in particular as a mixture (detonating gas).
  • a device for the electrolytic production of hydrogen and oxygen which has an anode chamber and a cathode chamber, in which electrically conductive ultramicroelectrode particles are present, which are in contact with the cathode and the anode and which are used for Improve conductivity and minimize overvoltages.
  • DE 100 16 591 C2 discloses a process for the production of hydrogen, in which a first electrolyte is provided in the interior of a micro hollow fiber and a second electrolyte is provided outside the micro hollow fiber.
  • the micro hollow fiber carries anode and cathode separately on its wall surfaces.
  • US 2001/0050234 A1 discloses an electrolysis cell with a first electrode and a second electrode, between which an electrolyte membrane is arranged.
  • An electron exchange resin can be used for the electrolyte membrane.
  • the object of the invention is to propose an improved method of the type specified at the outset.
  • a substance is present in the liquid, to which the or one of the gases to be produced by the electrolysis adheres. This gas preferably adheres to this substance in an ionic bond.
  • the gas to be produced is preferably hydrogen.
  • the gases to be produced can be hydrogen and oxygen. It is possible to produce hydrogen and oxygen separately. However, it is also possible to produce hydrogen and oxygen in a mixture (detonating gas).
  • the native production of oxyhydrogen is particularly advantageous. According to the method according to the invention, the oxyhydrogen gas can be mixed in the correct be created. It can be used in this form, especially for power generation.
  • the liquid containing the gas or a gas to be produced is preferably water.
  • a further advantageous development is characterized in that the substance to which the gas or a gas to be produced adheres is an ion exchanger.
  • this substance can be an ion exchange resin.
  • the ion exchanger is preferably an acidic, in particular a strongly acidic, ion exchanger.
  • the substance to which the gas or a gas to be produced adheres or the ion exchanger can be in the form of a gel.
  • the ion exchanger has or consists of a matrix, anchor groups and ions to be exchanged.
  • the matrix can in particular be a cross-linked plastic, in particular cross-linked polystyrene.
  • the anchor groups are preferably sulfonic acid groups (SO 3 ).
  • the ions to be exchanged are preferably hydrogen ions (H).
  • the ion exchanger can have the general chemical formula R-SO 3 -H.
  • a further advantageous development is characterized in that the substance to which the gas or a gas to be produced adheres, or the ion exchanger, in particular the ion exchanger base material, contains catalytically active substances.
  • the catalytically active substances can be, in particular, current-conducting substances, in particular current-conducting foils.
  • the catalytically active substances can be mixed with the substance or the ion exchanger or the ion exchanger base material.
  • the substance to which the gas or a gas to be produced adheres or the ion exchanger or the ion exchanger base material contains enzymes which act catalytically and / or gas. Organic acids, in particular tartaric acid, are preferably used as such enzymes.
  • the enzymes can be added to the substance or the ion exchanger or the ion exchange resin or the ion exchanger base material.
  • a device according to the invention for carrying out the method according to the invention is characterized by the features of claim 15. It comprises a container with a liquid and a positive electrode and a negative electrode which can be connected or are connected to a power source. A substance is present in the liquid to which the or one of the gases to be produced during electrolysis adheres.
  • An electrode is preferably of tubular design.
  • a filling material can be present in the liquid which contains the gas to be produced and a substance to which the gas to be produced adheres, in particular within the tubular electrode.
  • This material is preferably cotton.
  • An acid is preferably present in the filler material. This material is preferably wetted with an acid.
  • the acid is preferably hydrochloric acid.
  • the invention makes it possible to use a substance to which the gas or a gas to be produced adheres, in particular an ion exchanger, in which the marginal groups adhering to it by ion binding and / or by Van der Waals forces are released during electrolysis ,
  • the device shown in the single figure comprises a container 1 which is designed to be rotationally symmetrical about the central axis 2 and which consists of a tubular housing 3 which is closed off by an upper cover 4 and a lower cover 5.
  • the entire device is preferably longer than shown.
  • An annular outer electrode 6 is provided on the inner wall of the housing 3. Inside the housing 3 there is a tubular inner electrode 7. The container 1 is filled with water 9 up to the water level 8.
  • An ion exchanger 10 is present between the electrodes 6 and 7 and is present in gel form up to the height 11.
  • the outer electrode 6 is connected via a switch 12 to the positive pole of a current source 13, for example a 12V car battery.
  • the negative pole of the current source 13 is connected to the inner electrode 7.
  • the polarity can also be reversed.
  • the water level 8 lies above the height 11 of the gel-shaped ion exchanger 10 and above the tube of the inner electrode 7, which is open at the top.
  • the electrode 7 can also be designed to be closed. Another possibility is that the electrode 7 projects above the water level 8.
  • the height 11 of the gel-shaped ion exchanger 10 is just below the upper end of the outer electrode 6.
  • the device can also be designed such that this height 11 is above the upper end of the electrode 6.
  • the inner electrode 7 can be closed or open at the bottom. It can also be open at its lower end or can be sealingly connected to the lower cover 5.
  • the ion exchanger 10 is a strongly acidic, gel-like ion exchanger with sulfonic acid groups as anchor groups.
  • the ion exchanger has the general chemical formula R - SO 3 - H, where R denotes a matrix, in particular a crosslinked polystyrene matrix, SO 3 a sulfonic acid anchor group and H hydrogen.
  • the ion exchanger 10 is preferably kept in motion. This is preferably done in such a way that the ion exchanger 10 does not sink.
  • the ion exchange shear can be kept in motion by a fluidized bed process. If the ion exchanger is kept in motion, gas formation and electron flow are improved.
  • the ion exchanger is kept in suspension in the liquid. This is preferably done in that the ion exchanger or the ion exchanger base material is produced in such a way that they remain in suspension in the liquid, that is to say in the water 9.
  • the process can be carried out continuously.
  • the ion exchanger 10 can be continuously supplied and removed (not shown in the drawing).
  • the removed ion exchanger can be regenerated and fed again.
  • the process can also be carried out in several stages.
  • the gas that forms can be drawn off from the space 14. For this purpose it is possible to create a vacuum in this space 14. In this way it can also be achieved that the gas withdrawing upwards entrains the ion exchanger 10 and in this way brings about a mixing and distribution of the ion exchanger 10.
  • the pressure and temperature can be adjusted so that the process works with optimal efficiency.
  • Example 1 The following measured values were determined in practical tests: Example 1 :
  • Experiment No. 1 is a comparative experiment which was carried out in water without an ion exchanger. A small amount of ion exchanger was used in Experiment No. 2. Experiment No. 3 was carried out with a large amount of ion exchangers. In experiment No. 4, a small amount of hydrochloric acid was also added.
  • the addition of the ion exchanger increases the current depending on the amount added, from 3.0 to 7.5 A, while the voltage drops accordingly from 9.2 V to 6.5 V.
  • the amount of oxyhydrogen produced increases over 40 ml / min to 100 ml / min.
  • the efficiency increases over 0.260 to 0.370.
  • the experimental arrangement shown in the single figure was used, but the polarity was reversed.
  • the housing 3 forming the minus electrode is designed as a tube with a length of 116 mm, an inner diameter of 26 mm and an outer diameter of 28 mm.
  • the inner electrode 7 forming the plus electrode is designed as a tube with a length of 116 mm, an inner diameter of 14 mm and an outer diameter of 16 mm.
  • a battery charger is used as the current source 13, which emits direct current with a voltage of 12V.
  • Amberlit styrene DVB which is in the form of dark amber balls, was used as the ion exchanger. The functional group of this ion exchanger is formed by sulfonic acid.
  • the inside of the inner electrode 7 was filled with cotton wool (without any further additive).
  • the electrode arrangement is filled with 50 ml of drinking water, which corresponds to a quantity of 2.75 mol.
  • the entire arrangement is completely "submerged" so that a liquid exchange can take place between the interior of the inner electrode 7 and the annular space between the inner electrode 7 and the housing 3, both via the upper end of the inner electrode 7 and over the lower end, ie the space between the lower end of the inner electrode 7 and the lower cover 5.
  • the drinking water has a pH of 7.0, an electrical conductivity of 266 ⁇ S / cm (at 25 ° C) and a Water hardness of 5.4 dH °
  • the following values for the current, the voltage, the power and the mass of detonating gas (KG) formed per time result, which is given as the standard volume , using the ion exchanger already described:
  • Oxygen gas was generated at 5.0 ml / min. This amount is already doubled by adding 1 ml of ion exchanger. The amount of oxyhydrogen produced per minute increases with the increase in the amount of ion exchanger.
  • the process according to the invention can be carried out in such a way that a substance to which the gas to be produced adheres, in particular in ionic bonding, for example an acidic cation exchanger, is added as a catalyst and donor in the electrolysis of a liquid, in particular water, so that the decomposition of the decomposing substance, for example water, is accelerated many times over, the added substance being no acid and no base and no ion exchange membrane.
  • a substance to which the gas to be produced adheres in particular in ionic bonding, for example an acidic cation exchanger
  • an ion exchanger for example in the electrolysis of water for the production of hydrogen and oxygen or oxyhydrogen, is added to the electrolysis process known per se, which serves as a catalyst for increasing the current flow and at the same time as hydrogen - And / or oxygen donor can contribute to the implementation of the method.
  • efficiencies of 0.6 to 0.85 can be achieved at a current of 3900 C / min, for example.
  • a corresponding device can produce oxyhydrogen in an amount of 14.6 l / h.
  • the device for manufacturing position of the oxyhydrogen can be part of an engine and natively generate the oxyhydrogen required for the engine. In this way, liquefaction and storage of the oxyhydrogen gas can be made superfluous, since it can be generated continuously in the required amount.
  • a filling material in particular cotton wool, can be present in the interior of the tubular electrode 7.
  • This material or the cotton wool can be wetted with acid, preferably hydrochloric acid.
  • acid preferably hydrochloric acid.
  • the electrolytically treated liquid can be water. However, other liquids are also possible which contain the gas to be produced, e.g. Hydrogen or another substance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Ein Verfahren dient zur Herstellung eines oder mehrere Gase, insbesondere von Knallgas. Bei dem Verfahren wird eine Flüssigkeit, vorzugsweise Wasser (9) elektrolytisch behandelt. Um den Wirkungsgrad eines derartigen Verfahrens zu verbessern, ist in der Flüssigkeit (9) ein Stoff vorhanden, dem das oder eines der herzustellenden Gase anhaftet, insbesondere ein Ionenaustauscher (10).

Description

Verfahren und Vorrichtung zur Herstellung eines oder mehrerer Gase
Die Erfindung betrifft ein Verfahren zur Herstellung eines oder mehrerer Gase und eine Vorrichtung zur Durchführung eines derartigen Verfahrens.
Bei dem Verfahren wird eine Flüssigkeit, die das herzustellende Gas enthält, elektrolytisch behandelt. Durch die Elektrolyse werden eines oder mehrere Gase gebildet. Insbesondere dient das Verfahren dazu, Wasserstoff oder Wasserstoff und Sauerstoff, letzteres insbesondere als Mischung (Knallgas), herzustellen.
Verfahren zur Herstellung von Wasserstoff oder von Wasserstoff und Sauerstoff oder von Knallgas sind bereits bekannt. Bei dem üblichen elektrolytischen Verfahren wird dafür Wasser verwendet. Die Wassermoleküle enthalten Wasserstoff und Sauerstoff. Allerdings sind der Wirkungsgrad und die Reaktionsgeschwindigkeit des vorbekannten Verfahrens verbesserungsbedürftig.
Aus der US-A 5 879 522 ist eine Vorrichtung zur elektrolytischen Herstellung von Wasserstoff und Sauerstoff bekannt, die eine Anodenkammer und eine Kathodenkammer aufweist, in denen elektrisch leitende Ultramikroelektrodenpartikel vorhanden sind, die mit der Kathode und der Anode jeweils in Kontakt stehen und die zur Verbesserung der Leitfähigkeit und zur Minimierung von Überspannungen dienen.
Aus der JP 2002-322584 A ist ein Verfahren zur Elektrolyse von Wasser bekannt, bei dem die Reaktion durch ein feines Juwelenpulver oder Steinpulver oder durch ein feines Pulver verschiedener Arten von Mineralen oder Metallen unterstützt wird. Die feinen Pulver sollen die Leitfähigkeit verbessern. Die DE 100 16 591 C2 offenbart ein Verfahren zur Gewinnung von Wasserstoff, bei dem ein erster Elektrolyt im Innenraum einer Mikrohohlfaser und ein zweiter Elektrolyt außerhalb der Mikrohohlfaser bereitgestellt wird. Die Mikrohohlfaser trägt auf ihren Wandoberflächen getrennt Anode und Kathode.
Die US 2001/0050234 A1 offenbart eine Elektrolysezelle mit einer ersten Elektrode und einer zweiten Elektrode, zwischen denen eine Elektrolyt-Membran angeordnet ist. Für die Elektrolyt-Membran kann ein Elektronenaustauscherharz verwendet werden.
Aufgabe der Erfindung ist es, ein verbessertes Verfahren der eingangs angegebenen Art vorzuschlagen.
Erfindungsgemäß wird diese Aufgabe durch die Merkmale des Anspruchs 1 gelöst. In der Flüssigkeit ist ein Stoff, dem das oder eines der durch die Elektrolyse herzustellenden Gase anhaftet, vorhanden. Vorzugsweise haftet dieses Gas diesem Stoff in lonenbindung an.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen beschrieben.
Vorteilhaft ist es, wenn dem in der Flüssigkeit vorhandenen Stoff Wasserstoff , vorzugsweise in lonenbindung, anhaftet.
Vorzugsweise ist das herzustellende Gas Wasserstoff.
Die herzustellenden Gase können Wasserstoff und Sauerstoff sein. Dabei ist es möglich, Wasserstoff und Sauerstoff getrennt herzustellen. Es ist allerdings auch möglich, Wasserstoff und Sauerstoff in einer Mischung (Knallgas) herzustellen. Besonders vorteilhaft ist die native Herstellung von Knallgas. Nach dem erfindungsgemäßen Verfahren kann das Knallgas im richtigen (stöchiometrischen) Mi- schungsverhältnis hergestellt werden. Es kann in dieser Form verwendet werden, insbesondere zur Energieerzeugung.
Die Flüssigkeit, die das oder ein herzustellendes Gas enthält, ist vorzugsweise Wasser.
Eine weitere vorteilhafte Weiterbildung ist dadurch gekennzeichnet, daß der Stoff, dem das oder ein herzustellendes Gas anhaftet, ein Ionenaustauscher ist. Insbesondere kann dieser Stoff ein lonenaustauscherharz sein.
Vorzugsweise ist der Ionenaustauscher ein saurer, insbesondere ein stark saurer, Ionenaustauscher.
Der Stoff, dem das oder ein herzustellendes Gas anhaftet, bzw. der Ionenaustauscher kann gelförmig sein.
Vorteilhaft ist es, wenn der Ionenaustauscher eine Matrix, Ankergruppen und auszutauschende Ionen aufweist bzw. daraus besteht. Bei der Matrix kann es sich insbesondere um einen vernetzten Kunststoff, insbesondere vernetztes Polystyrol, handeln. Die Ankergruppen sind vorzugsweise Sulfonsäuregruppen (SO3). Die auszutauschenden Ionen sind vorzugsweise Wasserstoffionen (H). Insbesondere kann der Ionenaustauscher die allgemeine chemische Formel R - SO3 - H aufweisen.
Eine weitere vorteilhafte Weiterbildung ist dadurch gekennzeichnet, daß der Stoff, dem das oder ein herzustellendes Gas anhaftet, bzw. der Ionenaustauscher, insbesondere das lonenaustauscher-Grundmaterial, katalytisch wirkende Stoffe enthält. Bei den katalytisch wirkenden Stoffen kann es sich insbesondere um stromleitende Stoffe, insbesondere stromleitende Folien, handeln. Die katalytisch wirkenden Stoffe können dem Stoff bzw. dem Ionenaustauscher bzw. dem lonenaustauscher- Grundmaterial beigemischt sein. Nach einer weiteren vorteilhaften Weiterbildung enthält der Stoff, dem das oder ein herzustellendes Gas anhaftet, bzw. der Ionenaustauscher bzw. das lonenaustauscher-Grundmaterial katalytisch wirkende und/ oder gasliefernde Enzyme. Als derartige Enzyme werden vorzugsweise organischen Säuren, insbesondere Weinsäure verwendet. Die Enzyme können dem Stoff bzw. dem Ionenaustauscher bzw. dem lonenaustauscherharz bzw. dem lonenaustauscher-Grundmaterial beigefügt sein.
Eine erfindungsgemäße Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens ist durch die Merkmale des Anspruchs 15 gekennzeichnet. Sie umfaßt einen Behälter mit einer Flüssigkeit und eine positive Elektrode und eine negative Elektrode, die an eine Stromquelle anschließbar oder angeschlossen sind. In der Flüssigkeit ist ein Stoff vorhanden, dem das oder eines der bei der Elektrolyse herzustellenden Gase anhaftet.
Vorzugsweise ist eine Elektrode rohrförmig ausgestaltet.
In der Flüssigkeit, die das herzustellende Gas und einen Stoff, dem das herzustellende Gas anhaftet, enthält, insbesondere innerhalb der röhrförmigen Elektrode, kann ein Füllmaterial vorhanden sein. Bei diesem Material handelt es sich vorzugsweise um Watte.
In dem Füllmaterial ist vorzugsweise eine Säure vorhanden. Dieses Material ist vorzugsweise mit einer Säure benetzt. Bei der Säure handelt es sich vorzugsweise um Salzsäure.
Im Unterschied zur US 2001/0050234 A1 ist nach der Erfindung keine protonenleitende Membran erforderlich. Bei der Erfindung ist es möglich, den Stoff, dem das oder ein herzustellendes Gas anhaftet, insbesondere einen Ionenaustauscher, nicht in eine Membran einzubinden. Es ist möglich diesen Stoff bzw. Ionenaustauscher derart anzuordnen, daß er sowohl mit der Anode als auch mit der Kathode als auch mit der Flüssigkeit in Verbindung steht. Ferner ist es möglich, einen elektrisch nicht leitenden Stoff, dem das oder ein herzustellendes Gas anhaftet, insbesondere einen elektrisch nicht leitenden Ionenaustauscher, zu verwenden. Durch die Erfindung wird es ermöglicht, einen Stoff, dem das oder ein herzustellendes Gas anhaftet, insbesondere einen Ionenaustauscher, zu verwenden, bei dem die daran durch lonenbindung und/oder durch Van-der-Waals'sche Kräfte anhaftenden Randgruppen bei der Elektrolyse freigesetzt werden.
Ein Ausführungsbeispiel der Erfindung wird nachstehend anhand der beigefügten Zeichnung im einzelnen erläutert. In der Zeichnung zeigt die einzige Figur eine Vorrichtung zur Herstellung von Knallgas in einer schematischen Ansicht.
Die in der einzigen Figur gezeigte Vorrichtung umfaßt einen Behälter 1 , der um die Mittenachse 2 rotationssymmetrisch ausgestaltet ist und der aus einem rohrförmi- gen Gehäuse 3 besteht, das durch einen oberen Deckel 4 und einen unteren Dek- kel 5 abgeschlossen ist. Die gesamte Vorrichtung ist vorzugsweise länger als dargestellt ausgeführt.
An der Innenwand des Gehäuses 3 ist eine ringförmige äußere Elektrode 6 vorgesehen. Im Inneren des Gehäuses 3 befindet sich eine rohrförmige innere Elektrode 7. Der Behälter 1 ist bis zum Wasserspiegel 8 mit Wasser 9 gefüllt.
Zwischen den Elektroden 6 und 7 ist ein Ionenaustauscher 10 vorhanden, der bis zur Höhe 11 gelförmig vorliegt.
Die äußere Elektrode 6 ist über einen Schalter 12 mit dem Pluspol einer Stromquelle 13, beispielsweise einer 12V-Autobatterie, verbunden. Der Minuspol der Stromquelle 13 ist mit der inneren Elektrode 7 verbunden. Die Polarität kann allerdings auch umgedreht werden. Bei der dargestellten Ausführungsform liegt der Wasserspiegel 8 über der Höhe 11 des gelförmigen Ionenaustauschers 10 und über dem oben offenen Rohr der inneren Elektrode 7. Die Elektrode 7 kann allerdings auch geschlossen ausgebildet sein. Eine andere Möglichkeit besteht darin, daß die Elektrode 7 den Wasserspiegel 8 überragt. Ferner liegt in der dargestellten Ausführungsform die Höhe 11 des gelförmigen Ionenaustauschers 10 knapp unterhalb des oberen Endes der äußeren Elektrode 6. Die Vorrichtung kann allerdings auch derart ausgestaltet sein, daß diese Höhe 11 über dem oberen Ende der Elektrode 6 liegt. Die innere Elektrode 7 kann unten geschlossen oder offen sein. Sie kann ferner an ihrem unteren Ende offen sein oder dichtend mit dem unteren Deckel 5 verbunden sein.
Wenn der Schalter 12 geschlossen wird, findet in dem Behälter 1 eine elektrolytische Reaktion statt, bei der von der positiven äußeren Elektrode 6 negativ geladene Elektronen und Ionen angezogen werden. Positive Ionen wandern zur negativen inneren Elektrode 7. Auf diese Weise entsteht in dem Raum 14 zwischen dem Wasserspiegel 8 und dem oberen Deckel 4 Knallgas, wobei es sich um eine native Erzeugung von Knallgas handelt. Diese Reaktion wird durch den Ionenaustauscher 10 erheblich beschleunigt. Das Knallgas liegt im stöchiometrischen Verhältnis vor. Es kann aus dem Raum 14 abgezogen werden (in der Zeichnung nicht dargestellt). Dies kann diskontinuierlich (Batch-Betrieb) oder kontinuierlich erfolgen. Es ist ferner möglich, durch eine entsprechende Ausgestaltung des Behälters 1 den entstehenden Wasserstoff und den entstehenden Sauerstoff getrennt aufzufangen und abzuleiten.
Bei dem Ionenaustauscher 10 handelt es sich um einen stark sauren, gelförmigen Ionenaustauscher mit Sulfonsäuregruppen als Ankergruppen. Der Ionenaustauscher hat die allgemeine chemische Formel R - SO3 - H, wobei R eine Matrix, insbesondere eine vernetzte Polystyrol-Matrix bezeichnet, SO3 eine Sulfonsäure- Ankergruppe und H Wasserstoff.
Vorzugsweise wird der Ionenaustauscher 10 in Bewegung gehalten. Dies geschieht vorzugsweise derart, daß der Ionenaustauscher 10 nicht absinkt. Der lonenaustau- scher kann durch ein Wirbelbett-Verfahren in Bewegung gehalten werden. Wenn der Ionenaustauscher in Bewegung gehalten wird, werden die Gasbildung und der Elektronenfluß verbessert.
Nach einerweiteren vorteilhaften Weiterbildung wird der Ionenaustauscher in der Flüssigkeit in der Schwebe gehalten. Dies erfolgt vorzugsweise dadurch, daß der Ionenaustauscher bzw. das lonenaustauscher-Grundmaterial derart hergestellt sind, daß sie von sich aus in der Flüssigkeit, also in dem Wasser 9, in Schwebe bleiben.
Das Verfahren kann kontinuierlich durchgeführt werden. Hierzu kann der Ionenaustauscher 10 laufend zugeführt und abgeführt werde (in der Zeichnung nicht dargestellt). Der abgeführte Ionenaustauscher kann regeneriert und erneut zugeführt werden.
Das Verfahren kann auch mehrstufig durchgeführt werden.
Das sich bildende Gas kann aus dem Raum 14 abgesaugt werden. Zu diesem Zweck ist es möglich, in diesem Raum 14 ein Vakuum zu erzeugen. Hierdurch kann ferner erreicht werden, daß das nach oben abziehende Gas den Ionenaustauscher 10 mitreißt und auf diese Weise eine Durchmischung und Verteilung des Ionenaustauschers 10 bewirkt.
Der Druck und die Temperatur können so eingestellt werden, daß das Verfahren mit optimalem Wirkungsgrad arbeitet.
Bei praktischen Versuchen wurden die nachfolgend wiedergegebenen Meßwerte ermittelt: Beispiel 1 :
Figure imgf000009_0001
Der Versuch Nr. 1 ist ein Vergleichsversuch, der ohne Ionenaustauscher in Wasser durchgeführt wurde. Bei dem Versuch Nr. 2 wurde eine geringe Menge Ionenaustauscher verwendet. Der Versuch Nr. 3 wurde mit einer großen Menge Ionenaustauscher durchgeführt. Bei Versuch Nr. 4 wurde zusätzlich eine geringe Menge Salzsäure zugegeben.
Bei dem Versuch Nr. 1 wird ein Strom von 1 ,0 A bei einer Spannung von 10,2 V zugeführt, so daß die zugeführte elektrische Leistung 10,2 W beträgt. Dabei werden 10 ml/min Knallgas erzeugt, was einen Energieinhalt pro Zeit in Höhe von 1 ,8 W entpsricht. Daraus ergibt sich ein Wirkungsgrad von (1 ,8 : 10,2 =) 0,176.
Durch die Zugabe des Ionenaustauschers steigt die Stromstärke je nach zugegebener Menge über 3,0 auf 7,5 A, während die Spannung entsprechend über 9,2 V auf 6,5 V fällt. Die Menge des erzeugten Knallgases steigt über 40 ml/min auf 100 ml/min. Der Wirkungsgrad steigt über 0,260 auf 0,370.
Durch die Zugabe einer geringen Menge Salzsäure im Versuch Nr. 4 steigt die Stromstärke weiter auf 8,1 A, und die Spannung fällt weiter auf 5,7 V. Die Menge erzeugten Knallgases steigt weiter auf 1 15 ml/min, wodurch der Wirkungsgrad auf 0,448 ansteigt. Beispiel 2:
Es wurde die in der einzigen Figur gezeigte Versuchsanordnung verwendet, wobei allerdings die Polung umgedreht wurde. Das die Minus-Elektrode bildende Gehäuse 3 ist als Rohr mit einer Länge von 116 mm, einem Innendurchmesser von 26 mm und einem Außendurchmesser von 28 mm ausgestaltet. Die die Plus-Elektrode bildende innere Elektrode 7 ist als Rohr mit einer Länge von 116 mm, einem Innendurchmesser von 14 mm und einem Außendurchmesser von 16 mm ausgestaltet. Als Stromquelle 13 wird ein Batterieladegerät verwendet, das Gleichstrom mit einer Spannung von 12V abgibt. Als Ionenaustauscher wurde Styrol-DVB der Firma Am- berlit verwendet, der in Form von dunklen bernsteinfarbenen Kugeln vorliegt. Die funktioneile Gruppe dieses Ionenaustauschers wird von Sulfonsäure gebildet. Das Innere der inneren Elektrode 7 wurde mit Watte (ohne einen weiteren Zusatz) gefüllt.
Zur Durchführung der Versuche wird die Elektrodenanordnung mit 50 ml Trinkwasser gefüllt, was einer Stoffmenge von 2,75 mol entspricht. Die gesamte Anordnung wird vollständig „unter Wasser" gesetzt, so dass ein Flüssigkeitsaustausch zwischen dem Inneren der inneren Elektrode 7 und dem Ringraum zwischen der inneren Elektrode 7 und dem Gehäuse 3 stattfinden kann, und zwar sowohl über das obere Ende der inneren Elektrode 7 als auch über deren unteres Ende, also den Zwischenraum zwischen dem unteren Ende der inneren Elektrode 7 und dem unteren Deckel 5. Das Trinkwasser hat einen pH-Wert von 7,0, eine elektrische Leitfähigkeit von 266 μS/cm (bei 25°C) und eine Wasserhärte von 5,4 dH°. Bei Anlegen der Gleichspannung ergeben sich in Abhängigkeit der zugegebenen Menge des Ionenaustauschers die nachfolgend wiedergegebenen Werte für die Stromstärke, die Spannung, die Leistung und die pro Zeit gebildete Masse Knallgas (KG), die als Normvolumen angegeben ist, wobei der bereits beschriebene Ionenaustauscher verwendet wurde:
Figure imgf000011_0001
Im ersten Versuch wurde kein Ionenaustauscher zugegeben. Es wurden 5,0 ml/min Knallgas erzeugt. Diese Menge wird durch die Zugabe von 1 ml Ionenaustauscher bereits verdoppelt. Die pro Minute erzeugte Menge Knallgas steigt mit der Erhöhung der Menge des Ionenaustauschers an.
Beispiel 3:
Es wurde dieselbe Versuchsanordnung wie im Beispiel 2 verwendet, wobei allerdings die Länge des Gehäuses 3 und der inneren Elektrode 7 von 116 mm auf 270 mm vergrößert wurde. Ansonsten ist die Versuchsanordnung nicht geändert worden. Dabei ergaben sich folgende Meßwerte:
Figure imgf000012_0001
Das erfindungsgemäße Verfahren kann in der Weise durchgeführt werden, daß ein Stoff, dem das herzustellende Gas insbesondere in lonenbindung anhaftet, z.B. ein saurer Kationentauscher, als Katalysator und Donator bei der Elektrolyse einer Flüssigkeit, insbesondere Wasser, zugegeben wird, so daß die Zerlegung des zu zerlegenden Stoffes, z.B. Wasser, um ein Vielfaches beschleunigt wird, wobei der zugegebene Stoff keine Säure und keine Base und keine lonentauschermembran ist. In einer besonderen Ausgestaltung wird z.B. bei der Elektrolyse von Wasser zur Herstellung von Wasserstoff und Sauerstoff oder Knallgas dem an sich bekannten Elektrolysevorgang ein Ionenaustauscher, insbesondere ein Kationenaustauscherharz und/oder ein Anionenaustauscherharz, zugegeben, das als Katalysator zur Erhöhung des Stromflusses dient und zugleich als Wasserstoff- und/oder Sau- erstoffdonator zur Durchführung des Verfahrens beitragen kann. Auf diese Weise können bei einer Stromstärke von beispielsweise 3900 C/min je nach Ausgestaltung Wirkungsgrade von 0,6 bis 0,85 erreicht werden. Eine entsprechende Vorrichtung kann Knallgas in einer Menge von 14,6 l/h erzeugen. Die Vorrichtung zur Her- stellung des Knallgases kann Bestandteil eines Motors sein und das für den Motor benötigte Knallgas nativ erzeugen. Auf diese Weise kann eine Verflüssigung und Lagerung des Knallgases überflüssig gemacht werden, da es laufend in der erforderlichen Menge erzeugt werden kann. Es ist allerdings auch möglich, Wasserstoff und Sauerstoff getrennt herzustellen und zu nutzen.
Im Inneren der rohrförmigen Elektrode 7 kann ein Füllmaterial vorhanden sein, insbesondere Watte. Dieses Material bzw. die Watte kann mit Säure, vorzugsweise Salzsäure, benetzt sein. Hierdurch läßt sich die Ausbeute erheblich steigern, wie im Beispiel 1 , Versuch Nr. 4 angegeben.
Die elektrolytisch behandelte Flüssigkeit kann Wasser sein. Es sind aber auch andere Flüssigkeiten möglich, die das herzustellende Gas, z.B. Wasserstoff oder einen anderen Stoff, enthalten.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines oder mehrerer Gase, bei dem eine Flüssigkeit (9) elektrolytisch behandelt wird, dadurch gekennzeichnet, daß in der Flüssigkeit (9) ein Stoff (10) vorhanden ist, dem das oder eines der herzustellenden Gase anhaftet.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß das herzustellende Gas Wasserstoff ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die herzustellenden Gase Wasserstoff und Sauerstoff sind.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Flüssigkeit (9), die das oder ein herzustellendes Gas enthält, Wasser ist.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Stoff (10), dem das oder ein herzustellendes Gas anhaftet, ein Ionenaustauscher ist.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der Ionenaustauscher (10) ein saurer Ionenaustauscher ist.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Stoff, dem das oder ein herzustellendes Gas anhaftet, bzw. der Ionenaustauscher (10) gelförmig ist.
8. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß der Ionenaustauscher (10) eine Matrix, Ankergruppen und auszutauschende Ionen aufweist.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Stoff, dem das oder ein herzustellendes Gas anhaftet, bzw. der Ionenaustauscher (10) katalytisch wirkende Stoffe enthält.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Stoff, dem das oder ein herzustellendes Gas anhaftet, bzw. der Ionenaustauscher (10) katalytisch wirkende und/oder gasliefernde Enzyme enthält.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Stoff, dem das oder ein herzustellendes Gas anhaftet, bzw. der Ionenaustauscher (10) in Bewegung gehalten wird.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Stoff, dem das oder ein herzustellendes Gas anhaftet, bzw. der Ionenaustauscher (10) in der Flüssigkeit (9) in der Schwebe gehalten wird.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Stoff, dem das oder ein herzustellendes Gas anhaftet, bzw. der Ionenaustauscher (10) laufend zugeführt wird.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Verfahren mehrstufig durchgeführt wird.
15. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 14, gekennzeichnet durch einen Behälter (1) mit einer Flüssigkeit (9), in der ein Stoff (10) vorhanden ist, dem das oder eines der herzustellenden Gase anhaftet, und eine positive Elektrode (6) und eine negative Elektrode (7), die an eine Stromquelle (13) anschließbar oder angeschlossen sind.
16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß eine Elektrode (7) rohrförmig ausgestaltet ist.
17. Vorrichtung nach Anspruch 15 oder 16, dadurch gekennzeichnet, daß in der Flüssigkeit (9), die das oder ein herzustellendes Gas und einen Stoff (10), dem das oder eines der herzustellenden Gase anhaftet, enthält, insbesondere innerhalb der rohrförmigen Elektrode (7), ein Füllmaterial vorhanden ist.
18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, daß in dem Füllmaterial eine Säure vorhanden ist.
PCT/EP2004/013452 2003-11-28 2004-11-26 Verfahren und vorrichtung zur herstellung eines oder mehrerer gase WO2005052214A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/581,009 US8197666B2 (en) 2003-11-28 2004-11-26 Method and apparatus for the manufacture of one or more gases
KR1020067009723A KR101218952B1 (ko) 2003-11-28 2004-11-26 하나 이상의 가스 생산 방법 및 장치
CA2547295A CA2547295C (en) 2003-11-28 2004-11-26 A method and an apparatus for the manufacture of one or more gases
AU2004293566A AU2004293566B2 (en) 2003-11-28 2004-11-26 Method and device for producing one or several gases
JP2006540400A JP5094122B2 (ja) 2003-11-28 2004-11-26 1種以上のガスを生成する方法および装置
EP04819229.8A EP1704268B1 (de) 2003-11-28 2004-11-26 Verfahren und vorrichtung zur herstellung eines gases oder mehrerer gase

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10355592.7 2003-11-28
DE10355592 2003-11-28
DE10359509A DE10359509B4 (de) 2003-11-28 2003-12-18 Verfahren zur Herstellung eines oder mehrerer Gase
DE10359509.0 2003-12-18

Publications (2)

Publication Number Publication Date
WO2005052214A2 true WO2005052214A2 (de) 2005-06-09
WO2005052214A3 WO2005052214A3 (de) 2005-09-15

Family

ID=34635114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/013452 WO2005052214A2 (de) 2003-11-28 2004-11-26 Verfahren und vorrichtung zur herstellung eines oder mehrerer gase

Country Status (8)

Country Link
US (1) US8197666B2 (de)
EP (1) EP1704268B1 (de)
JP (1) JP5094122B2 (de)
KR (1) KR101218952B1 (de)
AU (1) AU2004293566B2 (de)
CA (1) CA2547295C (de)
RU (1) RU2385363C2 (de)
WO (1) WO2005052214A2 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006128527A2 (de) * 2005-05-30 2006-12-07 Roiner, Maria Vorrichtung zur durchführung eines verfahrens zur herstellung eines oder mehrerer gase
JP2008510691A (ja) * 2004-08-20 2008-04-10 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Plkインヒビターとしてのピリミジン化合物
WO2011031763A1 (en) 2009-09-11 2011-03-17 Geo Firewall Sarl Regulating a hydrocarbon combustion process using a set of data indicative of hydrocarbon fuel consumed corresponding to a monitored engine operating characteristic
WO2011031797A1 (en) * 2009-09-11 2011-03-17 Geo Firewall Sàrl System for regulating a hydrocarbon combustion process using a substantially stoichiometric mix of hydrogen and oxygen
DE202012012463U1 (de) 2012-11-12 2013-02-25 Jakob Propp Elektrolyseeinrichtung zur Erzeugung mindestens eines Reaktionsprodukts und einer Anlage zum Bereitstellen des erzeugten Reaktionsproduktes für einen Verbraucher

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925750B1 (ko) * 2007-09-20 2009-11-11 삼성전기주식회사 수소 발생 장치용 전해질 용액 및 이를 포함하는 수소 발생장치
FI121928B (fi) * 2008-10-08 2011-06-15 Teknillinen Korkeakoulu Sähköntuottojärjestelmä
US9040012B2 (en) 2009-02-17 2015-05-26 Mcalister Technologies, Llc System and method for renewable resource production, for example, hydrogen production by microbial electrolysis, fermentation, and/or photosynthesis
MY187664A (en) 2009-02-17 2021-10-08 Mcalister Tech Llc Apparatus and method for gas capture during electrolysis
RU2484182C2 (ru) 2009-02-17 2013-06-10 МАКЭЛИСТЭР ТЕКНОЛОДЖИЗ, ЭлЭлСи Электролитическая ячейка и способ ее применения
US8075750B2 (en) 2009-02-17 2011-12-13 Mcalister Technologies, Llc Electrolytic cell and method of use thereof
WO2010096504A1 (en) 2009-02-17 2010-08-26 Mcalister Technologies, Llc Apparatus and method for controlling nucleation during electrolysis
US20110233069A1 (en) * 2010-03-24 2011-09-29 Rasirc Method and system for electrochemical hydrogen generation
KR20130081578A (ko) * 2012-01-09 2013-07-17 삼성전자주식회사 전기 재생 연수 장치 및 이의 운전방법
US9127244B2 (en) 2013-03-14 2015-09-08 Mcalister Technologies, Llc Digester assembly for providing renewable resources and associated systems, apparatuses, and methods
US10390494B2 (en) * 2016-01-20 2019-08-27 Nano Evaporative Technologies, Inc. Hydroponic electroculture system and methods of use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990015659A1 (en) * 1989-06-16 1990-12-27 Olin Corporation Process for removing ionizable impurities from non-aqueous fluids
US5348683A (en) * 1990-02-06 1994-09-20 Olin Corporation Chloric acid - alkali metal chlorate mixtures and chlorine dioxide generation
US5401371A (en) * 1992-07-16 1995-03-28 Aisin Seiki Kabushiki Kaisha Hydrogen generator
EP0650929A1 (de) * 1993-10-27 1995-05-03 Halox Technologies Corporation Elektrolytisches Verfahren und Vorrichting zur kontrollierten Oxydation oder Reduktion von Stoffen in wässriger Lösung
JP2000265290A (ja) * 1999-03-18 2000-09-26 Matsushita Refrig Co Ltd 水電解装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3062824D1 (en) * 1979-08-07 1983-05-26 Agfa Gevaert Nv Rotary cross-cutting apparatus for cutting continuously moving webs
DE3118750C1 (de) * 1981-05-12 1987-02-12 Horst Ing.(grad.) 8459 Hirschbach Linn Schmelztiegel zur Aufnahme kleiner Mengen
JPS5992028A (ja) * 1982-11-18 1984-05-28 Nippon Paint Co Ltd イオン交換処理法
FR2595679B1 (fr) * 1986-03-14 1988-05-13 Atochem Procede de fabrication conjointe de peroxyde d'hydrogene et d'isobutene
JP3095441B2 (ja) * 1990-12-26 2000-10-03 ユニチカ株式会社 電解槽およびその操作方法
JP2001123288A (ja) * 1999-10-27 2001-05-08 Tsukishima Kikai Co Ltd 電解装置
JP2002155387A (ja) * 2000-05-30 2002-05-31 Mcl Engineering:Kk 混合ガス発生装置及びその混合ガスを使用するボイラ装置
JP2002066563A (ja) 2000-08-31 2002-03-05 Tokyo Yogyo Co Ltd 活性水素吸蔵浄水器
NZ532402A (en) * 2001-10-31 2005-11-25 Transcutaneous Tech Inc Iontophoresis device
US6652719B1 (en) * 2002-06-03 2003-11-25 Skydon Corp. Electrolysis system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990015659A1 (en) * 1989-06-16 1990-12-27 Olin Corporation Process for removing ionizable impurities from non-aqueous fluids
US5348683A (en) * 1990-02-06 1994-09-20 Olin Corporation Chloric acid - alkali metal chlorate mixtures and chlorine dioxide generation
US5401371A (en) * 1992-07-16 1995-03-28 Aisin Seiki Kabushiki Kaisha Hydrogen generator
EP0650929A1 (de) * 1993-10-27 1995-05-03 Halox Technologies Corporation Elektrolytisches Verfahren und Vorrichting zur kontrollierten Oxydation oder Reduktion von Stoffen in wässriger Lösung
JP2000265290A (ja) * 1999-03-18 2000-09-26 Matsushita Refrig Co Ltd 水電解装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN Bd. 008, Nr. 205 (C-243), 19. September 1984 (1984-09-19) & JP 59 092028 A (NIPPON PAINT KK), 28. Mai 1984 (1984-05-28) *
PATENT ABSTRACTS OF JAPAN Bd. 2000, Nr. 12, 3. Januar 2001 (2001-01-03) & JP 2000 265290 A (MATSUSHITA REFRIG CO LTD), 26. September 2000 (2000-09-26) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510691A (ja) * 2004-08-20 2008-04-10 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Plkインヒビターとしてのピリミジン化合物
WO2006128527A2 (de) * 2005-05-30 2006-12-07 Roiner, Maria Vorrichtung zur durchführung eines verfahrens zur herstellung eines oder mehrerer gase
WO2006128527A3 (de) * 2005-05-30 2007-03-15 Roiner Maria Vorrichtung zur durchführung eines verfahrens zur herstellung eines oder mehrerer gase
WO2011031763A1 (en) 2009-09-11 2011-03-17 Geo Firewall Sarl Regulating a hydrocarbon combustion process using a set of data indicative of hydrocarbon fuel consumed corresponding to a monitored engine operating characteristic
WO2011031797A1 (en) * 2009-09-11 2011-03-17 Geo Firewall Sàrl System for regulating a hydrocarbon combustion process using a substantially stoichiometric mix of hydrogen and oxygen
DE202012012463U1 (de) 2012-11-12 2013-02-25 Jakob Propp Elektrolyseeinrichtung zur Erzeugung mindestens eines Reaktionsprodukts und einer Anlage zum Bereitstellen des erzeugten Reaktionsproduktes für einen Verbraucher

Also Published As

Publication number Publication date
AU2004293566A1 (en) 2005-06-09
US20070108065A1 (en) 2007-05-17
US8197666B2 (en) 2012-06-12
RU2006122945A (ru) 2008-01-10
EP1704268B1 (de) 2018-05-02
AU2004293566B2 (en) 2011-04-21
EP1704268A2 (de) 2006-09-27
CA2547295A1 (en) 2005-06-09
CA2547295C (en) 2013-08-20
JP2007512435A (ja) 2007-05-17
RU2385363C2 (ru) 2010-03-27
KR20060114334A (ko) 2006-11-06
KR101218952B1 (ko) 2013-01-14
WO2005052214A3 (de) 2005-09-15
JP5094122B2 (ja) 2012-12-12

Similar Documents

Publication Publication Date Title
EP1704268B1 (de) Verfahren und vorrichtung zur herstellung eines gases oder mehrerer gase
EP0115845B1 (de) Verfahren zur Herstellung einer katalytisch wirksamen Sauerstoffverzehr-Elektrode
EP0095997B1 (de) Verfahren zur elektrolytischen Erzeugung von Wasserstoffperoxyd und dessen Verwendung
DE1557065B2 (de) Verfahren zum Reinigen eines Wasserstoff oder Sauerstoff enthaltenden Gases
DE2629506A1 (de) Elektrolysezelle fuer die herstellung von alkalimetallhydroxiden und halogenen
DE60002036T2 (de) Verfahren zur durchführung elektrochemischer reaktionen mit einem elektrokatalysator
DE2129470A1 (de) Gemisch aus Polytetrafluoraethylen und feinteiligen anorganischen Feststoffen
WO2018162156A1 (de) Elektroden umfassend in festkörperelektrolyten eingebrachtes metall
DE2438831B2 (de)
EP1769551A1 (de) SILBER-GASDIFFUSIONSELEKTRODE FÜR DEN EINSATZ IN CO<sb>2</sb>-HALTIGER LUFT SOWIE VERFAHREN ZUR HERSTELLUNG
DE102006056017B4 (de) Verfahren zur Rückgewinnung von Edelmetallen
DE10359509B4 (de) Verfahren zur Herstellung eines oder mehrerer Gase
DE1162433B (de) Verfahren zum Betrieb von Brennstoffelementen und ein dafuer geeignetes Brennstoffelement
DE102005024619B4 (de) Verfahren zur Herstellung von Wasserstoff
DE69824598T2 (de) Elektrochemische darstellung von kobalt-oxyhydroxid
DE102013021353B3 (de) Verfahren und Vorrichtung zum autarken Betrieb einer Brennstoffzelle
DE2706310A1 (de) Elektrochemische zelle
DE102006007272B4 (de) Verfahren und Vorrichtung zur Herstellung eines oder mehrerer Gase und/oder zur Speicherung von elektrischer Energie
DD208996A5 (de) Umhuellungskathoden der elektrolysezelle mit diaphragma oder membran
DE1964661A1 (de) Verfahren und Vorrichtung zur Herstellung eines aluminiumhaltigen Koagulierungsmittels
DE102019207718A1 (de) Elektrolyseanlage und Verfahren für die elektrolytische Reduzierung von Kohlendioxid
WO2020053063A1 (de) Vorrichtung und verfahren zur reinigung von abwasser
WO2012034549A2 (de) Verfahren zur erzeugung von wasserstoff und/oder silan
DE1215789B (de) Verfahren zur Herstellung eines gasdicht verschlossenen alkalischen Sekundaerelementes
DE2947454B1 (de) Verfahren zur Trennung der bei einer Schmelzflusselektrolyse entwickelten Gase und Schmelzflusselektrolysevorrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 793/KOLNP/2006

Country of ref document: IN

Ref document number: 00793/KOLNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2004293566

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2004293566

Country of ref document: AU

Date of ref document: 20041126

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004293566

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020067009723

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006540400

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2547295

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004819229

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007108065

Country of ref document: US

Ref document number: 10581009

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2006122945

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2004819229

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067009723

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10581009

Country of ref document: US