WO2005052203A1 - 高強度高靭性マグネシウム合金及びその製造方法 - Google Patents

高強度高靭性マグネシウム合金及びその製造方法 Download PDF

Info

Publication number
WO2005052203A1
WO2005052203A1 PCT/JP2004/017616 JP2004017616W WO2005052203A1 WO 2005052203 A1 WO2005052203 A1 WO 2005052203A1 JP 2004017616 W JP2004017616 W JP 2004017616W WO 2005052203 A1 WO2005052203 A1 WO 2005052203A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
strength
toughness
atomic
phase
Prior art date
Application number
PCT/JP2004/017616
Other languages
English (en)
French (fr)
Inventor
Yoshihito Kawamura
Michiaki Yamasaki
Original Assignee
Yoshihito Kawamura
Michiaki Yamasaki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshihito Kawamura, Michiaki Yamasaki filed Critical Yoshihito Kawamura
Priority to US10/580,236 priority Critical patent/US20070125464A1/en
Priority to EP04819458.3A priority patent/EP1688509B1/en
Priority to JP2005515823A priority patent/JP3905115B2/ja
Priority to ES04819458.3T priority patent/ES2458559T3/es
Priority to KR1020067010104A priority patent/KR101245203B1/ko
Priority to CN2004800346907A priority patent/CN1886529B/zh
Publication of WO2005052203A1 publication Critical patent/WO2005052203A1/ja
Priority to US14/449,430 priority patent/US10184165B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49988Metal casting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49988Metal casting
    • Y10T29/49991Combined with rolling

Definitions

  • the present invention relates to a high-strength high-toughness magnesium alloy and a method for producing the same, and more particularly, to a high-strength high-toughness magnesium alloy and a high-strength high-toughness magnesium alloy having high strength and high toughness by containing a specific rare earth element in a specific ratio. It relates to a manufacturing method.
  • Magnesium alloys have the recyclability and, in the end, have housings for mobile phones and notebook PCs! /, Which are rapidly spreading as automotive parts.
  • Magnesium alloys are required to have high strength and high toughness for use in these applications.
  • Various studies have been made on the production of high-strength, high-toughness magnesium alloys in terms of materials and manufacturing methods.
  • the rapid solidification powder metallurgy (RS-PZM) method was developed to promote nanocrystallization, and a magnesium alloy with a strength of about 400MPa, which is about twice as large as that of the forging material, has been obtained.
  • magnesium alloys there are Mg—A1 system, Mg—A1—Zn system, Mg—Th—Zn system, Mg—Th—Zn—Zr system, Mg—Zn—Zr system, and Mg—Zn—Zr—RE. (Rare earth element) based alloys are known! Sufficient strength cannot be obtained even when magnesium alloys having these compositions are manufactured by a forging method. When the magnesium alloy having the above composition is manufactured by the RS-PZM method, the strength is higher than when manufactured by the sintering method, but the strength is still insufficient, and even if the strength is sufficient, the toughness (ductility) is insufficient. It is difficult to use in applications that require high strength and high toughness.
  • Patent Documents 1, 2, and 3 As a magnesium alloy having such high strength and high toughness, an Mg-Zn-RE (rare earth element) alloy has been proposed (for example, Patent Documents 1, 2, and 3).
  • Patent Document 4 discloses Mg-1 atomic% Zn-2 atomic% Y alloy and Mg-1 atomic% 211-3 atomic% Y alloy produced by a liquid quenching method. This alloy achieves high strength by refining crystal grains by rapid cooling.
  • Non-Patent Document 1 discloses a magnesium alloy obtained by extruding a structure of Mg—1 at.% Zn—2 at.% Y alloy at an extrusion ratio of 4, at a temperature of 420 ° C., and performing an ECAE force cycle 16 times. It has been disclosed.
  • This magnesium alloy is an extension of the idea of the invention disclosed in Patent Document 4, which achieves high strength by refining crystal grains by rapid cooling. Therefore, we aim to refine crystal grains by performing the ECAE process 16 times.
  • Patent Document 1 Japanese Patent No. 3238516 (FIG. 1)
  • Patent Document 2 Japanese Patent No. 2807374
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-256370 (Claims, Examples)
  • Patent Document 4 WO02Z066696 (PCT / JP01 / 00533)
  • Non-Patent Document 1 Material Transactions, Vol.44, No.4 (2003) 463-467
  • an amorphous alloy material is heat-treated and finely crystallized to obtain a high-strength magnesium alloy.
  • magnesium alloys containing relatively large amounts of zinc and rare earth elements have been used. I have.
  • Patent Documents 1 and 2 state that high strength and high toughness are obtained, but almost no alloy has practically reached both practical levels in strength and toughness. Further, at present, applications of magnesium alloys are expanding, and conventional strength and toughness are insufficient, and magnesium alloys having higher strength and toughness are demanded.
  • Non-Patent Document 1 has a drawback that the production cost increases because the ECAE force is extruded 16 times after extrusion at an extrusion ratio of 4. In addition, even if the total strain is applied to 16 or more with a gap between the hands of performing 16 ECAE cycles, the yield strength remains in the 200MPa range, and the strength is insufficient.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a high-strength high-toughness magnesium alloy having a strength and toughness that are practically applicable to an expanded use of a magnesium alloy.
  • An object of the present invention is to provide an alloy and a manufacturing method thereof. Means for solving the problem
  • a high-strength and high-toughness magnesium alloy according to the present invention contains a atomic% of Zn, contains b atomic% of Y, and the balance consists of Mg. (1) It is characterized by satisfying (1) (3).
  • the high-strength high-toughness magnesium alloy has a hep-structured magnesium phase, and is a plastic katen product obtained by performing plastic katening on a magnesium alloy structure.
  • the high-strength and high-toughness magnesium alloy according to the present invention contains a atomic% of Zn, b atomic% of Y, and the balance of Mg, and a and b are represented by the following formulas (1)-(3) After the magnesium alloy ⁇ ⁇ ⁇ ⁇ which satisfies the above conditions is formed and the magnesium alloy ⁇ ⁇ is plastically worked, the plastic work is brought to room temperature! It has a hep structure magnesium phase and a long period laminated structure phase.
  • the high-strength, high-toughness magnesium alloy according to the present invention contains a atomic% of Zn, b atomic% of Y, and the balance of Mg, and a and b are represented by the following formulas (1)-(3)
  • a magnesium alloy structure that satisfies the above conditions, a plastic work is performed on the magnesium alloy structure by performing plastic working, and the plastic case after heat treatment is performed on the plastic case is a hep structure at room temperature. It has a magnesium phase and a long-period laminated structure phase.
  • the average particle size of the hep structure magnesium phase is 2 m or more. Further, the average particle size of the long-period laminated structure phase is 0.2 m or more, and multiple grains are contained in the crystal grains of the long-period laminated structure phase. Preferably, there are a number of random grain boundaries, and the average grain size of the crystal grains defined by the random grain boundaries is 0.05 ⁇ m or more.
  • the dislocation density of the long-period laminated structure phase is at least one order of magnitude lower than the dislocation density of the hep structure magnesium phase.
  • the volume fraction of crystal grains of the long-period laminated structural phase is preferably 5% or more.
  • the plastic workpiece is
  • Precipitate group force consisting of a compound of Mg and a rare earth element, a compound of Mg and Zn, a compound of Zn and a rare earth element, and a compound of a compound of Mg and Zn and a rare earth element, having at least one type of precipitate selected. Is also possible.
  • the total volume fraction of the at least one kind of precipitate may be more than 0% and 40% or less.
  • the plastic working includes rolling, extrusion, ECAE, drawing force, forging, pressing, rolling, bending, FSW processing, and a repetition of these. It is preferable to perform at least one.
  • the total strain amount when the plastic working is performed is 15 or less.
  • a total strain amount when the plastic working is performed is 10 or less.
  • C can also satisfy the following equations (4) and (5).
  • the high-strength and high-toughness magnesium alloy according to the present invention at least one element selected from the group consisting of La, Ce, Pr, Eu, Mm and Gd is added to Mg.
  • Atomic%, c can satisfy the following formulas (4) and (5) or (5) and (6) Noh.
  • the Mg contains at least one element selected from the group consisting of Yb, Tb, Sm and Nd in a total of c atom%.
  • La, Ce, Pr, Eu, Mm and Gd, at least one element selected from the group consisting of d atomic% in total, and c and d satisfy the following formulas (4)-(6) It is also possible to satisfy (6) and (7).
  • the high-strength high-toughness magnesium alloy according to the present invention contains a atomic% of Zn, b atomic% of Y, and the balance of Mg, and a and b are represented by the following formulas (1)-(3) Is satisfied.
  • the high-strength high-toughness magnesium alloy has a hep-structure magnesium phase, and is a plastic katen product obtained by cutting a magnesium alloy structure and then performing plastic kneading.
  • the high-strength high-toughness magnesium alloy according to the present invention contains a atomic% of Zn, b atomic% of Y, and the balance of Mg, and a and b are represented by the following formulas (1)-(3)
  • a magnesium alloy structure that satisfies the following conditions, a chip-shaped structure is formed by cutting the magnesium alloy structure, and the plastic structure obtained by solidifying the structure by plastic working is a magnesium alloy having a heP structure magnesium phase and length at room temperature. It is characterized by having a periodic laminated structural phase.
  • the high-strength and high-toughness magnesium alloy according to the present invention contains a atomic% of Zn, b atomic% of Y, and the balance of Mg, and a and b are represented by the following formulas (1)-(3)
  • a magnesium alloy structure that satisfies the following conditions is formed, a chip-shaped structure is formed by cutting the magnesium alloy structure, a plastic work is obtained by solidifying the structure by plastic working, and heat treatment is performed on the plastic caroate.
  • the plastic material is characterized by having a magnesium phase of a hep structure and a long-period laminated structure phase at room temperature.
  • the hep-structured magnesium phase preferably has an average particle size of 0.1 m or more.
  • the grain size of the solidified chip material is finer than the material.
  • the dislocation density of the long-period laminated structure phase is at least one order of magnitude smaller than the dislocation density of the hep structure magnesium phase.
  • the volume fraction of crystal grains of the long-period laminated structural phase is 5% or more.
  • the plastic workpiece is
  • Precipitate group force consisting of a compound of Mg and a rare earth element, a compound of Mg and Zn, a compound of Zn and a rare earth element, and a compound of a compound of Mg and Zn and a rare earth element, having at least one type of precipitate selected. Is also possible.
  • the total volume fraction of the at least one kind of precipitate is preferably more than 0% and 40% or less.
  • the plastic working includes rolling, extrusion, ECAE, drawing force, forging, pressing, rolling, bending, FSW processing, and a repetition of these. It is preferable to perform at least one.
  • the plastic working is performed on the high-strength and high-toughness magnesium alloy according to the present invention. It is preferable that the total strain amount at the time of bending is 15 or less.
  • the total strain amount when the plastic working is performed is 10 or less.
  • the Mg contains at least one element selected from the group consisting of Yb, Tb, Sm and Nd in a total of c atom%.
  • C can also satisfy the following equations (4) and (5).
  • At least one element selected from the group consisting of La, Ce, Pr, Eu, Mm and Gd is added to Mg. Atomic% is contained, and c can also satisfy the following formulas (4) and (5).
  • the Mg contains at least one element selected from the group consisting of Yb, Tb, Sm and Nd in a total of c atomic%.
  • the Mg may be Al, Th, Ca, Si, Mn, Zr, Ti, Hf, Nb, Ag, Sr, Sc, B, C , Sn, Au, Ba, Ge, Bi, Ga, In, Ir, Li, Pd, Sb, and at least one element selected from the group force of V. More than 0 atomic% and 2.5 atomic% or less in total It can also be contained.
  • the method for producing a high-strength, high-toughness magnesium alloy according to the present invention comprises the following: (a) contains Zn at%, Y contains (b) atomic%, and the balance consists of Mg. (3) a step of producing a magnet alloy product satisfying (3);
  • the magnesium alloy structure has a hep structure magnesium phase and a long-period laminated structure phase.
  • the hardness and the yield strength of the plastically worked product after the plastic working are reduced by performing plastic working on the magnesium alloy structure. It can be improved compared to the structure before plastic working.
  • the method may further include: May be added.
  • the heat treatment conditions at this time are preferably a temperature of 400 ° C. to 550 ° C. and a processing time of 1 minute to 1500 minutes.
  • a step of performing a heat treatment on the plastic workpiece may be added after the step of producing the plastic workpiece.
  • the heat treatment conditions at this time are preferably a temperature of 150 ° C. to 450 ° C. and a processing time of 1 minute to 1500 minutes.
  • the Mg may include at least one element selected from the group consisting of Yb, Tb, Sm and Nd.
  • And c may satisfy the following formulas (4) and (5).
  • the Mg may be at least one element selected from the group consisting of La, Ce, Pr, Eu, Mm and Gd. May be contained in a total of c atomic%, and c may satisfy the following formulas (4) and (5), or satisfy (5) and (6). (4) 0 ⁇ c ⁇ 2.0
  • the Mg may be at least one element selected from the group consisting of Yb, Tb, Sm and Nd. And contains at least one element selected from the group consisting of La, Ce, Pr, Eu, Mm and Gd in a total of d atom%, and c and d are represented by the following formula (4) It is also possible to satisfy 6) or to satisfy (6) and (7).
  • the method for producing a high-strength, high-toughness magnesium alloy according to the present invention includes: a) containing a atom% of Zn, containing b atom% of Y, and the balance being Mg; (3) a step of producing a magnet alloy product satisfying (3);
  • the magnesium alloy structure has a hep structure magnesium phase and a long-period laminated structure phase.
  • the Mg includes a total of at least one element selected from the group consisting of Yb, Tb, Sm and Nd.
  • And c may satisfy the following formulas (4) and (5).
  • the Mg may be at least one element selected from the group consisting of La, Ce, Pr, Eu, Mm and Gd. Is contained in a total of c atom%, and c can satisfy the following formulas (4) and (5).
  • the Mg includes a total of at least one element selected from the group consisting of Yb, Tb, Sm and Nd. And contains at least one element selected from the group consisting of La, Ce, Pr, Eu, Mm and Gd in a total of d atom%, and c and d are represented by the following formula (4) It is also possible to satisfy 6).
  • Al, Th, Ca, Si ⁇ Mn, Zr, Ti, Hf, Nb, Ag, Sr, Sc At least one element selected from the group consisting of, B, C, Sn, Au, Ba, Ge, Bi, Ga, In, Ir, Li, Pd, Sb, and V in total exceeding 0 atomic% 2.5 Atomic% or less can be contained.
  • the plastic karoe is rolled, extruded, ECAE, drawn out, forged, pressed, rolled, bent, FSW It is preferable to carry out at least one of processing and repetition of these processes. That is, the plastic working can be performed alone or in combination of rolling, extrusion, ECAE, drawing, forging, pressing, rolling, bending, and FSW.
  • the total amount of strain at the time of performing the plastic force kneading is preferably 15 or less, and more preferably.
  • the total distortion is 10 or less.
  • the amount of strain per one time when performing the above-mentioned plastic force be 0.0002 or more and 4.6 or less.
  • the total strain means a total strain that is not canceled by heat treatment such as annealing.
  • the chip material After solidification, rolling, extrusion, ECAE, drawing, forging, pressing, rolling, bending, FSW, etc. may be applied. Further, before the final solidification and molding, the chip material can be subjected to various kinds of plastic kneading, such as ball milling, repeated forging, and stamping mill.
  • the method for producing a high-strength and high-toughness magnesium alloy according to the present invention may further include a step of performing a heat treatment on the plastic workpiece after the step of producing the plastic workpiece. It is. Thereby, the hardness and the yield strength of the plastic workpiece after the heat treatment can be further improved as compared with those before the heat treatment.
  • the heat treatment is preferably performed at a temperature of 200 ° C or more and less than 500 ° C for 10 minutes or more and less than 24 hours. Better.
  • the transition density of the hep structure magnesium phase in the magnesium alloy after performing the plastic force kneading is as follows. Is preferably one digit or more larger than the dislocation density.
  • the present inventor has returned to the basics, and has begun to use a binary magnesium alloy carp for the strength and toughness of the alloy. Investigation of the properties and further extended the study to multi-element magnesium alloys. As a result, a magnesium alloy having both high strength and toughness at a high ⁇ level is based on Mg-Zn-Y, and unlike the conventional technology, the zinc content is 5.0 atomic% or less and the Y content is 5. It has been found that, when the content of V is 0 atomic% or less and the content of V is low, high strength and high toughness can be obtained.
  • the strength of a wrought alloy in which a long-period laminated structural phase is formed is high strength, high ductility, and high toughness when subjected to heat treatment after or after plastic working. .
  • a chip-shaped structure is formed by cutting a structure alloy in which a long-period laminated structure is formed, and the structure is subjected to plastic working, or is subjected to a heat treatment after the plastic working to form a chip-shaped structure.
  • an alloy composition that forms a long-period laminated structure is cut into a chip shape, and provides high strength, high ductility, and high toughness after plastic working or plastic working heat treatment.
  • the curved or bent long-period laminated structure phase contains random grain boundaries. It is considered that the strength of the magnesium alloy is increased by the random grain boundaries, and grain boundary slip at high temperatures is suppressed, and high strength is obtained at high temperatures.
  • the magnesium alloy having a high density of dislocations in the hep structure magnesium phase enhances the strength of the magnesium alloy, and the low dislocation density of the long-period stacking structure phase improves the ductility and the strength of the magnesium alloy. It is thought to be done.
  • the dislocation density of the long-period stacked structure phase is preferably at least one order of magnitude smaller than the dislocation density of the hep structure magnesium phase.
  • the magnesium alloy according to Embodiment 1 of the present invention is basically a ternary or higher alloy containing Mg, Zn and Y.
  • the composition range of the Mg-Zn-Y alloy according to the present embodiment is a range surrounded by a line of H-ICD-E-H shown in FIG. That is, when the content of zinc is a atomic% and Y is b atomic%, a and b satisfy the following formulas (1)-(3).
  • composition range of the Mg—Zn—Y alloy according to the present embodiment is preferably a range surrounded by a line of F—G—C—D— ⁇ —F shown in FIG. That is, when the content of zinc is a atomic% and Y is b atomic%, a and b satisfy the following formulas (1)-(4).
  • a more preferable composition range of the Mg-Zn-Y alloy according to the present embodiment is a range surrounded by a line of ⁇ - ⁇ -CD- ⁇ - ⁇ shown in FIG. That is, when the content of zinc is a atomic% and Y is b atomic%, a and b satisfy the following formulas (1)-(3).
  • the toughness (or ductility) is particularly low. Also, when the total content of Y is 5 atomic% or more, the toughness (or ductility) tends to be particularly reduced.
  • the lower limit of the zinc content is set to 0.5 atomic%
  • the lower limit of the Y content is set to 1.0 atomic%.
  • the increase in strength and toughness is remarkable when zinc is 0.5 to 1.5 atomic%.
  • the strength tends to decrease as the rare earth element content decreases, but even in this range, it exhibits higher strength and higher toughness than conventional ones. Therefore,
  • the range of the content of zinc in the magnesium alloy according to the embodiment is the widest range from 0.5 atomic% to 5.0 atomic%.
  • magnesium having a content in the above-described range other than zinc and the rare-earth element is magnesium, but is not significantly affected by the alloy characteristics. May contain impurities.
  • the magnesium alloy according to Embodiment 2 of the present invention basically includes Mg, Zn and Y.
  • the fourth element is selected from the group consisting of Yb, Tb, Sm and Nd
  • One or more elements are One or more elements.
  • composition range of the magnesium alloy according to the present embodiment is such that the content of Zn is a atomic%
  • the composition range of the magnesium alloy according to the present embodiment is such that the content of Zn is a atom%, the content of Y is b atom%, and the total content of one or more fourth elements is 4%. If the amount is c atomic%, a, b and c satisfy the following formulas (1)-(6).
  • the composition range of the magnesium alloy is such that the content of Zn is a atom%, the content of Y is b atom%, and the total of one or more fourth elements is Content Is c atomic%, a, b and c satisfy the following formulas (1)-(5).
  • the reason for setting it to 0 atomic% or more is the same as in the first embodiment.
  • the reason why the upper limit of the content of the fourth element is set to 3.0 atomic% is that the solid solubility limit of the fourth element is low.
  • the reason for including the fourth element is that the fourth element has an effect of making crystal grains fine and has an effect of precipitating an intermetallic compound.
  • the Mg-Zn-Y-based magnesium alloy of the present embodiment may also contain a certain amount of impurities without affecting alloy properties.
  • the magnesium alloy according to the third embodiment of the present invention is basically a quaternary or more alloy containing Mg, Zn and Y, and the fourth element is a group force composed of La, Ce, Pr, Eu, Mm and Gd.
  • Mm molecular metal
  • Ore power is a residue after fine removal of useful rare earth elements such as Sm and Nd. And its composition depends on the composition of the ore before refining.
  • composition range of the magnesium alloy according to the present embodiment is such that the content of Zn is a atom%, the content of Y is b atom%, and the content of one or more fourth elements is c Assuming atomic%, a, b and c satisfy the following formulas (1)-(5) or (1)-(3), (5) and (6).
  • the composition range of the magnesium alloy according to the present embodiment is such that the content of Zn is a atomic%, the content of Y is b atomic%, and the content of one or more fourth elements is Is a total of c atomic%, a, b and c satisfy the following formulas (1)-(6) or (1)-(4), (6) and (7).
  • a more preferable composition range of the magnesium alloy according to the present embodiment is that the content of Zn is a atom%, the content of Y is b atom%, and the content of one or more fourth elements is a total.
  • a, b and c satisfy the following formulas (1)-(5) or satisfy (1)-(3), (5) and (6).
  • the reason why the total content of the class elements is 1.0 atomic% or more is the same as in the first embodiment.
  • the main reason for setting the upper limit of the content of the fourth element to 2.0 atomic% is that there is almost no solid solubility limit of the fourth element. Further, the reason for including the fourth element is that it has an effect of refining crystal grains and an effect of precipitating an intermetallic compound.
  • the Mg-Zn-Y-based magnesium alloy of the present embodiment may also contain a certain amount of impurities without affecting alloy properties.
  • the magnesium alloy according to Embodiment 4 of the present invention is basically a five-element or more alloy containing Mg, Zn and Y, and the fourth element is selected from the group consisting of Yb, Tb, Sm and Nd. Or at least two elements, and the fifth element is one or more elements selected from the group consisting of La, Ce, Pr, Eu, Mm, and Gd.
  • composition range of the magnesium alloy according to the present embodiment is such that the content of Zn is a atom%, the content of Y is b atom%, and the content of one or more fourth elements is c in total.
  • A, b, c and d satisfy the following formulas (1)-(6), or (1) (3), (6) and (7) shall be satisfied.
  • the composition range of the magnesium alloy according to the present embodiment is such that the content of Zn is a atomic%, the content of Y is b atomic%, and the content of one or more fourth elements is Is a total of c atomic%, and a content of one or more fifth elements is a total of d atomic%, a, b, c and d satisfy the following formula (1)-(7), or (1) It satisfies item (3), (7) and (8).
  • the composition range of the magnesium alloy is such that the content of Zn is a atomic%, the content of Y is b atomic%, and the content of one or more fourth elements is If the total amount is c atomic% and the content of one or more fifth elements is d atomic% in total, a, b, c and d satisfy the following formula (1)-(6) Or (1) fulfills (3), (6) and (7).
  • the reason that the total content of Zn, Y, the fourth element and the fifth element is 6.0 atomic% or less is that if the total content exceeds 6%, the weight increases, the raw material cost increases, and the toughness further decreases. It is.
  • the reason why the content of Zn is 0.5 atomic% or more and the total content of Y, the fourth element and the fifth element is 1.0 atomic% or more is that the strength becomes insufficient at a lower concentration. It is. Further, the reason why the fourth element and the fifth element are contained is that they have an effect of refining crystal grains and an effect of precipitating an intermetallic compound.
  • the alloy properties are affected. However, it may contain some impurities.
  • the magnesium alloy according to the fifth embodiment of the present invention includes a magnesium alloy obtained by adding Me to the composition of the first to fourth embodiments.
  • Me is Al, Th, Ca, Si, Mn, Zr, Ti, Hf, Nb, Ag, Sr, Sc, B, C, Sn, Au, Ba, Ge, Bi, Ga, In, Ir, Li , Pd, Sb and V forces are also at least one element selected.
  • the content of this Me should be more than 0 atomic% and 2.5 atomic% or less.
  • Me is added, other properties can be improved while maintaining high strength and toughness. For example, it is effective for corrosion resistance and crystal grain refinement.
  • Embodiment 11 A magnesium alloy having a composition of any one of Embodiments 5 to 5 is melted to produce a magnesium alloy structure.
  • the cooling rate during fabrication is 1000 KZ seconds or less, more preferably 100 KZ seconds or less.
  • Various processes can be used as the manufacturing process, for example, high-pressure manufacturing, roll casting, inclined plate manufacturing, continuous manufacturing, thixo molding, die casting, and the like can be used.
  • a magnesium alloy structure cut into a predetermined shape may be used.
  • the magnesium alloy product may be subjected to a homogenizing heat treatment.
  • the heat treatment conditions at this time are preferably a temperature of 400 ° C. to 550 ° C. and a treatment time of 1 minute to 1500 minutes (or 24 hours).
  • the magnesium alloy structure is subjected to plastic kneading.
  • plastic kneading examples include extrusion, ECAE (equatorial angular-extrusion) processing, rolling, drawing calorie, forging, pressing, rolling, bending, and FSW (friction stir welding). ) Processing and repetition of these methods.
  • the extrusion temperature be 250 ° C or more and 500 ° C or less, and the cross-sectional reduction rate by extrusion be 5% or more.
  • the ECAE processing method is a method of rotating the sample longitudinal direction by 90 ° for each pass in order to introduce uniform strain into the sample. Specifically, an L-shaped forming hole is formed in the cross section
  • the magnesium alloy structure which is a molding material, is forced into the forming hole of the formed forming die, and stress is applied to the magnesium alloy structure, particularly at a portion of the L-shaped forming hole bent at 90 °. This is a method for obtaining a molded article having excellent strength and toughness.
  • the number of ECAE passes is preferably 1 to 8 passes. More preferably, 3-5 passes.
  • the temperature at the time of ECAE calorie is preferably 250 ° C or more and 500 ° C or less.
  • the rolling temperature is 250 ° C or more and 500 ° C or less and the rolling reduction is 5% or more.
  • the temperature at which the drawing kneading is performed is 250 ° C or more and 500 ° C or less, and the cross-sectional reduction rate of the drawing kneading is 5% or more. It is preferable that
  • the temperature at the time of performing the forging kneading is 250 ° C. or more and 500 ° C. or less, and the processing rate of the forging kneading is 5% or more.
  • the amount of strain in a single plastic kneading performed on the magnesium alloy structure is 0.002 or more and 4.6 or less, and the total strain is 15 or less.
  • the amount of strain per operation is 0.002 or more and 4.6 or less and the total amount of strain is 10 or less.
  • the reason why the preferable total strain amount is 15 or less and the more preferable total strain amount is 10 or less is that increasing the total strain amount does not increase the strength of the magnesium alloy in accordance with the total strain amount. This is because the more the number is, the higher the manufacturing cost becomes.
  • the distortion amount of the extrusion force was 0.92Z times when the extrusion ratio was 2.5, 1.39Z times when the extrusion ratio was S4, and 2. when the extrusion ratio was 10.
  • the extrusion ratio is S20, the extrusion ratio is 2.995Z times, when the extrusion ratio is 50, it is 3.91Z times, and when the extrusion ratio is 100, the extrusion ratio is 4.61 / times. 6. 90Z times when the value is 1000.
  • the plastic kamune product obtained by subjecting the magnesium alloy structure to plastic kamage has a crystal structure of a hep structure magnesium phase and a long-period lamination structure phase at room temperature,
  • the volume fraction of the crystal grains having the periodic laminated structure is 5% or more (more preferably, 10% or more)
  • the average particle size of the hep structure magnesium phase is 2 m or more
  • the average particle size of the phase is above 0.
  • the transition density of the hep-structured magnesium phase is at least one order of magnitude higher than the dislocation density of portions other than the random grain boundaries in the long-period stacked structure phase.
  • the plastic force is selected from a compound of Mg and a rare earth element, a compound of Mg and Zn, a compound of Zn and a rare earth element, and a precipitate group force which is also a compound force of Mg, Zn and a rare earth element. It may have at least one kind of precipitate.
  • the total volume fraction of the precipitate is preferably more than 0% and 40% or less. Both the Vickers hardness and the yield strength of the plastic kamen after the plastic kaen are higher than those of the structure before the plastic working.
  • the plastic worked product may be subjected to a heat treatment.
  • the heat treatment is preferably performed at a temperature of 200 ° C. or more and less than 500 ° C., and a heat treatment time of 10 minutes to 1500 minutes (or 24 hours).
  • the reason why the heat treatment temperature is lower than 500 ° C is that if the heat treatment temperature is higher than 500 ° C, the amount of strain applied by the plastic casing is canceled.
  • both the Vickers hardness and the yield strength of the plastic workpiece after the heat treatment are higher than those of the plastic workpiece before the heat treatment.
  • the plastic workpiece after heat treatment has the crystal structure of the hep structure magnesium phase and the long-period laminated structure phase at room temperature, as before the heat treatment, and the volume fraction of the crystal grains having this long-period laminated structure is 5% or more (more preferably 10% or more), the average particle size of the hep structure magnesium phase is 2 m or more, and the average particle size of the long-period laminated structure phase is 0.2 m or more.
  • the dislocation density is large at the random grain boundaries, the dislocation density of the parts other than the random grain boundaries in the long-period stacked structure phase is small. Therefore, the dislocation density of the hep structure magnesium phase is at least one order of magnitude higher than the dislocation density of parts other than the random grain boundaries in the long-period stacking structure phase.
  • At least a part of the long-period laminated structural phase is curved or bent.
  • the plastic force is selected from a compound of Mg and a rare earth element, a compound of Mg and Zn, a compound of Zn and a rare earth element, and a precipitate group force which is also a compound force of Mg and Zn and a rare earth element. It may have at least one kind of precipitate.
  • the total volume fraction of the precipitate is preferably more than 0% and 40% or less.
  • Embodiment 1-16 for magnesium alloys in expanded applications, for example, as high-tech alloys that require high performance in both strength and toughness, both strength and toughness are practically used.
  • the present invention can provide a high-strength and high-toughness magnesium alloy at a level to be provided and a method for producing the same.
  • the magnesium alloy according to Embodiment 7 of the present invention is applied to a plurality of chip-shaped products having a size of several mm square or less made by cutting a product, and basically includes Mg, Zn, and Y. It is an alloy of three or more elements.
  • the composition range of the Mg-Zn-Y alloy according to the present embodiment is a range surrounded by the line AB-CD-E shown in FIG. That is, when the content of zinc is a atomic% and the content of Y is b atomic%, a and b satisfy the following formulas (1)-(3).
  • the toughness (or ductility) is particularly low. Also, if the Y content is 5 atomic% or more, the toughness (or ductility) tends to decrease particularly.
  • the lower limit of the zinc content is set to 0.25 atomic%, and the lower limit of the total content of rare earth elements is set to 0.5 atomic%.
  • the lower limit of each of the zinc content and the Y content can be reduced to half of that in the first embodiment by the force applied to the chip-shaped structure.
  • the increase in strength and toughness is remarkable at 0.5 to 1.5 atomic% of zinc. Contains zinc When the content is about 0.5 atomic% and the rare earth element content is low, the strength tends to decrease, but even in this range, the strength and toughness are higher than in the past. Therefore, the range of zinc content in the magnesium alloy of the present embodiment is the widest 0.25 atom.
  • the components other than the zinc and the rare earth element having the contents in the above-described range are magnesium, but a small amount of impurities that do not affect the alloy properties. May be contained.
  • the magnesium alloy according to the eighth embodiment of the present invention is applied to a plurality of chip-shaped products having a size of several mm square or less made by cutting a product, and is basically applied.
  • It is a quaternary or more alloy containing Mg, Zn and Y, and the fourth element is one or more elements selected from the group consisting of Yb, Tb, Sm and Nd.
  • composition range of the magnesium alloy according to the present embodiment is as follows.
  • the reason why the content of Y is set to 0.5 atomic% or more is the same as in the seventh embodiment.
  • the reason why the upper limit of the content of the fourth element is set to 3.0 atomic% is that the solid solubility limit of the fourth element is low. Further, the reason for including the fourth element is that it has an effect of making crystal grains fine and an effect of precipitating an intermetallic compound.
  • the Mg-Zn-RE-based magnesium alloy of the present embodiment may also contain a certain amount of impurities without affecting alloy properties. (Embodiment 9)
  • the magnesium alloy according to the ninth embodiment of the present invention is applied to a plurality of chip-shaped products having a size of several mm or less and formed by cutting a product, and basically includes Mg, Zn, and Y.
  • the alloy is a quaternary or quinary alloy, and the fourth element is one or more elements selected from La, Ce, Pr, Eu, Mm, and Gd.
  • composition range of the magnesium alloy according to the present embodiment is such that the content of Zn is a atom%, the content of Y is b atom%, and the content of one or more fourth elements is c Assuming atomic%, a, b and c satisfy the following equations (1)-(5).
  • the reason why the content of Y is set to 0.5 atomic% or more is the same as in the seventh embodiment.
  • the reason why the upper limit of the content of the fourth element is set to 2.0 atomic% is that there is almost no solid solubility limit of the fourth element. Further, the reason for containing the fourth element is that it has an effect of refining crystal grains and an effect of precipitating an intermetallic compound.
  • the Mg-Zn-RE-based magnesium alloy of the present embodiment may contain a certain amount of impurities without affecting alloy properties.
  • the magnesium alloy according to Embodiment 10 of the present invention is applied to a plurality of chip-shaped products having a size of several mm or less and formed by cutting a product, and basically includes Mg, Zn, and Y.
  • a fourth element is one or more elements selected from the group consisting of Yb, Tb, Sm, Nd and Gd, and the fifth element is La, Ce, Pr, Eu and Mm forces One or more elements selected.
  • composition range of the magnesium alloy according to the present embodiment is such that the content of Zn is a atomic%, Assuming that the content of Y is b atomic%, the content of one or more fourth elements is c atomic%, and the content of one or more fifth elements is d atomic%, a , B, c and d satisfy the following equations (1)-(6).
  • the Mg-Zn-RE-based magnesium alloy of the present embodiment may contain a certain amount of impurities without affecting alloy properties.
  • the magnesium alloy according to Embodiment 11 of the present invention includes a magnesium alloy obtained by adding Me to the composition of Embodiments 7-10.
  • Me is Al, Th, Ca, Si, Mn, Zr, Ti, Hf, Nb, Ag, Sr, Sc, B, C, Sn, Au, Ba, Ge, Bi, Ga, In, Ir, Li, Group power consisting of Pd, Sb and V At least one element selected.
  • the content of Me should be more than 0 atomic% and not more than 2.5 atomic%.
  • Me By adding Me, other properties can be improved while maintaining high strength and toughness. For example, it is effective for corrosion resistance and crystal grain refinement.
  • a method for manufacturing a magnesium alloy according to Embodiment 12 of the present invention will be described.
  • a magnesium alloy having a compositional power according to Embodiments 7-11 is melted to produce a magnesium alloy structure.
  • the cooling rate during fabrication is 1000 KZ seconds or less, more preferably 100 KZ seconds or less.
  • As the magnesium alloy product a product cut into a predetermined shape from an ingot is used.
  • the magnesium alloy product may be subjected to a homogenizing heat treatment.
  • the heat treatment conditions at this time are preferably a temperature of 400 ° C. to 550 ° C. and a treatment time of 1 minute to 1500 minutes (or 24 hours).
  • the chip-shaped structure may be preformed using a compression or plastic working method and subjected to a uniform heat treatment.
  • the heat treatment conditions at this time are preferably a temperature of 400 ° C. to 550 ° C. and a processing time of 1 minute to 1500 minutes (or 24 hours).
  • the preformed product may be subjected to a heat treatment at a temperature of 150 ° C. to 450 ° C. for 1 minute to 1500 minutes (or 24 hours).
  • the chip-shaped structure is generally used, for example, as a raw material for a thixotropic mold. Note that a mixture of the chip-shaped structure and ceramic particles is preformed by compression or plastic working. Then, a homogenizing heat treatment may be performed. Further, before the chip-shaped structure is preformed, additional strong strain processing may be performed.
  • the chip-shaped structure is subjected to plastic working to solidify and form the chip-shaped structure.
  • plastic working various methods can be used as in the case of the sixth embodiment.
  • a mechanical caring such as a ball mill, a stamp mill, a high-energy ball mill or a bulk mechanical processing such as a bulk mechanical carving may be added.
  • the plastic mash may be further mashed.
  • the magnesium alloy structure may be combined with intermetallic compound particles, ceramic particles, fibers, or the like, or the above-described cut material may be mixed with ceramic particles, fibers, or the like.
  • the plastic kamune product subjected to the plastic kamage as described above has a crystal structure of a hep structure magnesium phase and a long-period laminated structure phase at room temperature. At least a part of the long-period laminated structural phase is curved or bent. Both the Vickers hardness and the yield strength of the plastic katen after the plastic kaen are increased as compared to the structure before the plastic working.
  • the total amount of strain when performing plastic working on the chip-shaped structure is preferably 15 or less, and more preferably the total amount of strain is 10 or less. Further, it is preferable that the amount of strain per one time in performing the plastic working is 0.002 or more and 4.6 or less.
  • the total strain here is a total strain which is not canceled by heat treatment such as annealing, and means a total strain when plastic working is performed after preforming a chip-shaped structure.
  • the strain canceled by the heat treatment during the manufacturing process is not counted in the total strain, and the strain before the chip shape or the preform is not counted in the total strain! /.
  • the plastic processed product may be subjected to a heat treatment.
  • the heat treatment is preferably performed at a temperature of 200 ° C. or more and less than 500 ° C., and a heat treatment time of 10 minutes to 1500 minutes (or 24 hours).
  • the reason why the heat treatment temperature is lower than 500 ° C. is that if the heat treatment temperature is 500 ° C. or more, the amount of strain obtained by the plastic kneading is canceled.
  • the plastic processed product after the heat treatment has the crystal structure of the hep structure magnesium phase and the long-period laminated structure phase at room temperature, as in the case before the heat treatment. At least a part of the long-period laminated structural phase is curved or bent.
  • the structure is refined by cutting the structure to produce a chip-shaped structure, so that the strength is higher and the ductility is higher than in the sixth embodiment. It becomes possible to produce a high-toughness plastic work product or the like. Further, the magnesium alloy according to the present embodiment can obtain high strength and high toughness characteristics even with a lower concentration of zinc and rare earth elements as compared with the magnesium alloy according to Embodiments 16 to 16. .
  • the magnesium alloys are used in expanded applications, for example, as high-tech alloys that require high performance in both strength and toughness, and are suitable for practical use in both strength and toughness. And a method for producing the same.
  • Example 1 a ternary magnesium alloy of 97 at% Mg—1 at% Zn—2 at% Y is used.
  • Example 2 a quaternary magnesium alloy of 96.5 at% Mg—1 at% ⁇ —1 at% ⁇ — 1.5 at% Gd is used.
  • Example 2 A magnesium alloy is a composite of a rare-earth element forming a long-period stack structure and a rare-earth element not forming a long-period stack structure.
  • Example 3 a quaternary magnesium alloy of 97.5 atomic% Mg—1 atomic% Zn—2 atomic% Y—0.5 atomic% La is used.
  • Example 4 a quaternary magnesium alloy of 97.5 atomic% Mg-0.5 atomic% Zn-1.5 atomic% Y-0.5 atomic% Yb is used.
  • Each of the magnesium alloys of Examples 3 and 4 is a composite of a rare-earth element that forms a long-period stack structure and a rare-earth element that does not form a long-period stack structure.
  • Example 5 a quaternary magnesium alloy of 96.5 at% Mg—1 at% Zn—1.5 at% Y—1 at% Gd is used.
  • a ternary magnesium alloy of 96 atomic% Mg-1 atomic% Zn-3 atomic% Y is used.
  • Comparative Example 1 a ternary magnesium alloy of 97 atomic% Mg—1 atomic% ⁇ —2 atomic% La is used.
  • Comparative Example 2 a ternary magnesium alloy of 97 at% Mg—1 at% Zn—2 at% Yb is used.
  • Comparative Example 3 a ternary magnesium alloy of 97 at% Mg—1 at% Zn—2 at% Ce is used.
  • Comparative Example 4 a ternary magnesium alloy of 97 at% Mg—1 at% Zn—2 at% Pr is used.
  • Comparative Example 5 a ternary magnesium alloy of 97 atomic% Mg—1 atomic% Zn—2 atomic% Nd is used. In Comparative Example 6, a ternary magnesium alloy of 97 at% Mg—1 at% Zn—2 at% Sm is used.
  • a binary magnesium alloy of 98 at% Mg—2 at% Y is used.
  • ingots having the compositions of Example 16 and Comparative Example 119 and Reference Example were prepared by high-frequency melting in an Ar gas atmosphere, and cut into a shape of ⁇ 10 ⁇ 60 mm from these ingots.
  • the structure of the cut-out ⁇ material was observed by SEM and XRD.
  • Figures 1 to 7 show photographs of these crystal structures.
  • FIG. 1 shows photographs of the crystal structures of Example 1 and Comparative Examples 1 and 2.
  • FIG. 3 shows a photograph of the crystal structure of Example 2.
  • FIG. 4 shows photographs of the crystal structures of Examples 3 and 4.
  • FIG. 5 shows a photograph of the crystal structure of Example 5.
  • FIG. 6 shows a photograph of the crystal structure of Comparative Example 3-9.
  • FIG. 7 shows a photograph of the crystal structure of the reference example.
  • FIG. 10 shows a photograph of the crystal structure of Example 6.
  • the magnesium alloy of Example 16 had a long-period laminated crystal structure.
  • the magnesium alloys of Comparative Example 19 and Reference Example 19 did not have a long-period laminated crystal structure.
  • Example 16 and Comparative Example 119 were confirmed as follows.
  • a long-period laminated structure is formed when RE is Y, while long-period layers are formed when RE is La, Ce, Pr, Nd, Sm, Eu, Gd, and Yb.
  • Periodic laminated structure is not formed. Gd has slightly different behavior from La, Ce, Pr, Nd, Sm, Eu, and Yb.
  • the long-period stacking structure is not formed by adding d alone (Zn is essential), but the long-period stacking structure is formed even at 2.5 atomic% when combined with Y, which is an element that forms the long-period stacking structure ( Examples 2 and 5).
  • Mg—Zn—Y when Yb, Tb, Sm, Nd and Gd are added to Mg—Zn—Y at a content of 5.0 atomic% or less, they do not prevent the formation of a long-period laminated structure.
  • La, Ce, Pr, Eu, and Mm are added to Mg—Zn—Y, if they are 5.0 atomic% or less, they do not prevent the formation of a long-period laminated structure.
  • the crystal grain size of the composite material of Comparative Example 1 was about 10 to 30 ⁇ m, and the crystal grain size of the composite material of Comparative Example 2 was about 30 to 100 m.
  • the crystal grain size was 20-60 m, and in each case, a large amount of crystallization was observed at the grain boundaries.
  • fine precipitates were present in the grains.
  • Example 1 The forged materials of Example 1, Comparative Example 1 and Comparative Example 2 were evaluated by Vickers hardness test.
  • the Vickers hardness of the composite material of Comparative Example 1 was 75 Hv
  • the Vickers hardness of the composite material of Comparative Example 2 was 69 Hv
  • the Vickers hardness of the composite material of Example 1 was 79 Hv.
  • Example 1 and Comparative Examples 1 and 2 were subjected to ECAE force treatment at 400 ° C.
  • the number of passes was 4 and 8 using a method in which the longitudinal direction of the sample was rotated by 90 ° for each pass in order to introduce uniform strain into the sample.
  • the jerk speed at this time is constant at 2 mmZ seconds.
  • the sample subjected to ECAE was evaluated by the Pickers hardness test.
  • the Vickers hardness of the sample after the four ECAE treatments was 82 Hv for the sample of Comparative Example 1, 76 Hv for the sample of Comparative Example 2, and 96 Hv for the sample of Example 1.
  • a 10-20% improvement in hardness was observed.
  • the sample that had been subjected to eight ECAE processes showed almost no change in hardness as compared with the sample that had been subjected to four ECAE processes.
  • the sample subjected to ECAE processing was evaluated by a tensile test. Tensile tests were performed in parallel for the extrusion direction under the conditions of an initial strain rate 5 X 10- 4 Z seconds. Regarding the tensile properties of the samples subjected to ECAE processing four times, the samples of Comparative Examples 1 and 2 show a yield stress of 200 MPa or less and an elongation of 2-3%, while the sample of Example 1 shows a yield stress of 260 MPa. It showed yield stress and 15% elongation. This is a characteristic far superior to that of the reinforced material, which is 0.2% resistance to 100 MPa and elongation of 4%.
  • Fig. 12 shows the number of passes of ECAE, the yield strength (a y), and the tensile strength ( ⁇ ) when the sample of Example 1 was subjected to ECAE processing at a temperature of 375 ° C.
  • Figure 13 shows the number of passes of ECAE, yield strength (a y), and tensile strength ( ⁇ ) when the sample of Example 1 was subjected to ECAE processing at a temperature of 400 ° C.
  • Example 6 (Extrusion of the forged alloy of Example 6)
  • the forged alloy of Example 6 is a ternary magnesium alloy having a long-period laminated structure of 96 atomic% Mg-l atomic% Zn-3 atomic%. This forged alloy was extruded under the conditions of a temperature of 300 ° C, a cross-sectional reduction rate of 90%, and an extrusion speed of 2.5 mmZ seconds. The extruded magnesium alloy exhibited a tensile yield strength of 420 MPa and an elongation of 2% at room temperature.
  • a magnesium alloy alloy having the composition shown in Table 1 was prepared, and the magnesium alloy was extruded at the extrusion temperature and extrusion ratio shown in Table 1.
  • the extruded material after the extrusion was subjected to a tensile test at a test temperature shown in Table 1 to measure 0.2% power resistance (yield strength), tensile strength, and elongation. Table 1 shows the results of these measurements.
  • Table 1 shows the room temperature after extruding various Mg-Zn-Y alloys with different addition amounts of Zn and Y at an extrusion speed of 2.5 mmZ seconds at the extrusion temperature and extrusion ratio shown in the table.
  • I show the results of the I-Zhang test.
  • FIG. 11 shows the crystal structure of the magnesium alloy preform having the composition of Example 30.
  • composition range of the Mg—Zn—Y alloy that satisfies the above formulas (1) and (2) is the range surrounded by the line of KLC—D—E—F—G—H—K shown in FIG. G-H-KLCD-E-F
  • the preferable composition range of the Mg—Zn—Y alloy satisfying the above formulas (1) and (2) is a range surrounded by a line of IJC—D—E—F—G—H—I shown in FIG. , G—H—IJCD—E—F.
  • the more preferable composition range of the Mg—Zn—Y alloy satisfying the above formulas (1) and (2) is a range surrounded by a line of A—B—CD—E—F—G—H—A shown in FIG. And not including the line G-H-A-B-C-DE-F! /
  • point I shown in FIG. 2 is 1 atomic% of Zn and 0.75 atomic% of Y
  • point K is 1 atomic% of Zn
  • Y is 0.5 atomic%
  • point K is Zn is 1 atomic%
  • Y is 0.5 atomic%
  • point L is Zn 5 Z 3 atomic%
  • Y is 0.5 atomic%
  • point J is Zn 2 atomic%
  • 0.75
  • point C Zn is 5 atomic% and Y is 3 atomic%
  • point D is Zn 5 atomic%
  • Y is 5 atomic%
  • point E is Zn 2.5 atomic%
  • Y is 5 atom%
  • point F is Zn atom 0.5 atom%
  • Y is 3.5 atom%
  • point G is Zn force 0.5 atom%
  • Y is 2 atom%
  • point H is point Zn is 1 atomic% and Y force is atomic%.
  • a Mg-Zn-Y alloy ingot having the composition shown in Table 2 is melted in an Ar gas atmosphere using a high-frequency melting furnace, and the ingot is cut to produce a chip-shaped structure.
  • the chip was sealed by heating and degassing at 150 ° C.
  • the chip material filled in the can was subjected to an extruding force at an extrusion temperature and an extrusion ratio shown in Table 2 for each can.
  • the extruded material after the extruding was subjected to a tensile test at a test temperature shown in Table 2 to measure 0.2% power (yield strength), tensile strength, and elongation.
  • the hardness of the extruded material was also measured. Table 2 shows the results of these measurements.
  • Table 2 shows that chip materials produced by cutting Mg-Zn-Y alloys with different amounts of Zn and Y were pressed at various extrusion temperatures and extrusion ratios at an extrusion speed of 2.5 mm / sec. 4 shows the results of a tensile test and a hardness test at room temperature of an extruded and solidified sample.
  • FIG. 1 is a photograph showing the crystal structures of the structural materials of Example 1, Comparative Example 1 and Comparative Example 2.
  • FIG. 2 is a view showing a composition range of a magnesium alloy which is preferable in view of practical use.
  • FIG. 3 is a photograph showing a crystal structure of each of the fabricated materials of Examples 2-4.
  • FIG. 4 is a photograph showing a crystal structure of a fabricated material of each of Examples 5 and 6.
  • FIG. 5 is a photograph showing a crystal structure of an artificial material of each of Examples 7-9.
  • FIG. 6 is a photograph showing the crystal structure of each of the fabricated materials of Comparative Examples 3-9.
  • FIG. 7 is a photograph showing a crystal structure of a fabricated material of a reference example.
  • FIG. 8 is a diagram showing a composition range of a magnesium alloy according to Embodiment 1 of the present invention.
  • FIG. 9 is a diagram showing a composition range of a magnesium alloy according to a seventh embodiment of the present invention.
  • FIG. 10 is a photograph showing a crystal structure of an artificial material of Example 10.
  • FIG. 11 is a photograph showing a crystal structure of an artificial material of Example 26.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Forging (AREA)
  • Powder Metallurgy (AREA)
  • Extrusion Of Metal (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Continuous Casting (AREA)

Abstract

【課題】 マグネシウム合金の拡大した用途に対して強度及び靭性ともに実用に供するレベルにある高強度高靭性マグネシウム合金及びその製造方法を提供する。 【解決手段】 本発明に係る高強度高靭性マグネシウム合金は、Znをa原子%含有し、Yをb原子%含有し、残部がMgから成り、aとbは下記式(1)~(3)を満たすマグネシウム合金鋳造物を作り、前記マグネシウム合金鋳造物に塑性加工を行って塑性加工物を作り、前記塑性加工物に熱処理を行った後の塑性加工物は、常温においてhcp構造マグネシウム相及び長周期積層構造相を有することを特徴とする。  (1)0.5≦a<5.0  (2)0.5<b<5.0  (3)2/3a−5/6≦b

Description

明 細 書
高強度高靭性マグネシウム合金及びその製造方法
技術分野
[0001] 本発明は、高強度高靭性マグネシウム合金及びその製造方法に関し、より詳細に は特定の希土類元素を特定割合で含有することにより高強度高靭性を達成した高強 度高靭性マグネシウム合金及びその製造方法に関する。
背景技術
[0002] マグネシウム合金は、そのリサイクル性とぁ 、まって、携帯電話やノート型パソコンの 筐体ある!/、は自動車用部品として急速に普及し始めて 、る。
これらの用途に使用するためにはマグネシウム合金に高強度と高靭性が要求され る。高強度高靭性マグネシウム合金の製造のために従来から材料面及び製法面から 種々検討されている。
製法面では、ナノ結晶化の促進のために、急冷凝固粉末冶金 (RS - PZM)法が 開発され、铸造材の約 2倍の 400MPa程度の強度のマグネシウム合金が得られるよ うになつた。
[0003] マグネシウム合金として、 Mg— A1系、 Mg— A1— Zn系、 Mg— Th— Zn系、 Mg— Th— Z n— Zr系、 Mg— Zn— Zr系、 Mg— Zn— Zr— RE (希土類元素)系等の成分系の合金が 知られて!/ヽる。これらの組成を有するマグネシウム合金を铸造法で製造しても十分な 強度が得られな ヽ。前記組成を有するマグネシウム合金を前記 RS— PZM法で製造 すると铸造法で製造する場合より高強度にはなるが依然として強度が不十分であつ たり、強度が十分でも靭性 (延性)が不十分で、高強度及び高靭性を要求される用途 には使用し難 、と 、う欠点があった。
これらの高強度及び高靭性を有するマグネシウム合金として、 Mg-Zn-RE (希土 類元素)系合金が提案されている (例えば特許文献 1、 2及び 3)。
[0004] また、液体急冷法によって作製された Mg— 1原子%Zn— 2原子%Y合金、 Mg— 1原 子%211— 3原子%Y合金が特許文献 4に開示されている。この合金は、急冷によって 結晶粒を微細化することで高強度化を達成している。 [0005] また、 Mg— 1原子%Zn— 2原子%Y合金の铸造物を押出し比 4、温度 420°Cで押出 し、 ECAE力卩ェを 16回行ったマグネシウム合金が非特許文献 1に開示されている。こ のマグネシウム合金は、急冷によって結晶粒を微細化することで高強度化を達成す る特許文献 4に開示された発明の思想の延長にあるものである。そのため、 ECAE加 ェを 16回行うことで結晶粒の微細化を目指している。
[0006] 特許文献 1 :特許 3238516号公報(図 1)
特許文献 2:特許 2807374号公報
特許文献 3:特開 2002— 256370号公報 (特許請求の範囲、実施例)
特許文献 4 :WO02Z066696 (PCT/JP01/00533)
非特許文献 1 : Material Transactions, Vol.44, No.4(2003)463— 467頁
発明の開示
発明が解決しょうとする課題
[0007] しかしながら、従来の Mg— Zn— RE系合金では、例えばアモルファス状の合金材料 を熱処理し、微細結晶化して高強度のマグネシウム合金を得ている。そして前記ァモ ルファス状の合金材料を得るためには相当量の亜鉛と希土類元素が必要であると ヽ う先入観があり、亜鉛と希土類元素を比較的多量に含有するマグネシウム合金が使 用されている。
[0008] 特許文献 1及び 2では高強度及び高靭性が得られたと記載されているが、実際に 強度及び靭性ともに実用に供するレベルに達している合金は殆ど無い。更に現在で はマグネシウム合金の用途が拡大して、従来の強度及び靭性では不十分で、より以 上の強度及び靭性を有するマグネシウム合金が要請されている。
[0009] また、非特許文献 1では、押出し比 4で押出した後、 16回の ECAE力卩ェを行ってい るため、製造コストが増大するという欠点がある。また、 16回の ECAE力卩ェを行うとい う手間隙をかけて総歪量を 16以上も加えても、降伏強度が 200MPa台に留まってお り、強度が不十分である。
[0010] 本発明は上記のような事情を考慮してなされたものであり、その目的は、マグネシゥ ム合金の拡大した用途に対して強度及び靭性ともに実用に供するレベルにある高強 度高靭性マグネシウム合金及びその製造方法を提供することにある。 課題を解決するための手段
[0011] 上記課題を解決するため、本発明に係る高強度高靭性マグネシウム合金は、 Znを a原子%含有し、 Yを b原子%含有し、残部が Mgから成り、 aと bは下記式(1)一(3) を満たすことを特徴とする。
(1) 0. 5≤a< 5. 0
(2) 0. 5< b< 5. 0
(3) 2/3a-5/6≤b
[0012] また、前記高強度高靭性マグネシウム合金は、 hep構造マグネシウム相を有し、マ グネシゥム合金铸造物に塑性カ卩ェを行った塑性カ卩ェ物であることが好ましい。
[0013] 本発明に係る高強度高靭性マグネシウム合金は、 Znを a原子%含有し、 Yを b原子 %含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たすマグネシウム合金 铸造物を作り、前記マグネシウム合金铸造物に塑性加工を行った後の塑性加工物は 、常温にお!ヽて hep構造マグネシウム相及び長周期積層構造相を有することを特徴 とする。
(1) 0. 5≤a< 5. 0
(2) 0. 5< b< 5. 0
(3) 2/3a-5/6≤b
[0014] 本発明に係る高強度高靭性マグネシウム合金は、 Znを a原子%含有し、 Yを b原子 %含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たすマグネシウム合金 铸造物を作り、前記マグネシウム合金铸造物に塑性加工を行って塑性加工物を作り 、前記塑性カ卩ェ物に熱処理を行った後の塑性カ卩ェ物は、常温において hep構造マ グネシゥム相及び長周期積層構造相を有することを特徴とする。
(1) 0. 5≤a< 5. 0
(2) 0. 5< b< 5. 0
(3) 2/3a-5/6≤b
[0015] また、本発明に係る高強度高靭性マグネシウム合金にぉ 、て、前記 hep構造マグ ネシゥム相の平均粒径は 2 m以上であることが好ましい。また、前記長周期積層構 造相の平均粒径は 0. 2 m以上であり、前記長周期積層構造相の結晶粒内には複 数のランダム粒界が存在し、前記ランダム粒界で規定される結晶粒の平均粒径は 0. 05 μ m以上であることが好ましい。
また、本発明に係る高強度高靭性マグネシウム合金において、前記 hep構造マグ ネシゥム相の転位密度に比べて前記長周期積層構造相の転位密度が少なくとも 1桁 小さいことが好ましい。
[0016] また、本発明に係る高強度高靭性マグネシウム合金において、前記長周期積層構 造相の結晶粒の体積分率が 5%以上であることが好ましい。
また、本発明に係る高強度高靭性マグネシウム合金において、前記塑性加工物は
Mgと希土類元素の化合物、 Mgと Znの化合物、 Znと希土類元素の化合物及び Mg と Znと希土類元素の化合物力 なる析出物群力 選択される少なくとも 1種類の析出 物を有して 、ることも可能である。
[0017] また、本発明に係る高強度高靭性マグネシウム合金において、前記少なくとも 1種 類の析出物の合計体積分率は 0%超 40%以下であることも可能である。
また、本発明に係る高強度高靭性マグネシウム合金において、前記塑性加工は、 圧延、押出し、 ECAE、引抜力卩ェ、鍛造、プレス、転造、曲げ、 FSW加工及びこれら の繰り返しカ卩ェのうち少なくとも一つを行うものであることが好ましい。
[0018] また、本発明に係る高強度高靭性マグネシウム合金にぉ 、て、前記塑性加工を行 つた際の総歪量は 15以下であることが好ましい。
また、本発明に係る高強度高靭性マグネシウム合金において、前記塑性加工を行 つた際の総歪量は 10以下であることが好ましい。
[0019] また、本発明に係る高強度高靭性マグネシウム合金にぉ 、て、前記 Mgに Yb、 Tb
、 Sm及び Ndからなる群力 選択される少なくとも 1種の元素を合計で c原子%含有し
、 cは下記式 (4)及び(5)を満たすことも可能である。
(4) 0≤c≤3. 0
(5) 0. 2≤b + c≤6. 0
[0020] また、本発明に係る高強度高靭性マグネシウム合金にぉ 、て、前記 Mgに La、 Ce、 Pr、 Eu、 Mm及び Gdからなる群力 選択される少なくとも 1種の元素を合計で c原子 %含有し、 cは下記式 (4)及び (5)を満たすこと、又は(5)及び (6)を満たすことも可 能である。
(4) 0≤c< 2. 0
(5) 0. 2≤b + c≤6. 0
(6) c/b≤l . 5
[0021] また、本発明に係る高強度高靭性マグネシウム合金にぉ 、て、前記 Mgに Yb、 Tb 、 Sm及び Ndからなる群力 選択される少なくとも 1種の元素を合計で c原子%含有し 、 La、 Ce、 Pr、 Eu、 Mm及び Gdからなる群から選択される少なくとも 1種の元素を合 計で d原子%含有し、 c及び dは下記式 (4)一 (6)を満たすこと、又は(6)及び(7)を 満たすことも可能である。
(4) 0≤c≤3. 0
(5) 0≤d< 2. 0
(6) 0. 2≤b + c + d≤6. 0
(7) d/b≤l . 5
[0022] 本発明に係る高強度高靭性マグネシウム合金は、 Znを a原子%含有し、 Yを b原子 %含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たすことを特徴とする。
(1) 0. 25≤a≤5. 0
(2) 0. 5≤b≤5. 0
(3) 0. 5a≤b
また、前記高強度高靭性マグネシウム合金は、 hep構造マグネシウム相を有し、マ グネシゥム合金铸造物を切削した後に塑性カ卩ェを行った塑性カ卩ェ物であることが好 ましい。
[0023] 本発明に係る高強度高靭性マグネシウム合金は、 Znを a原子%含有し、 Yを b原子 %含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たすマグネシウム合金 铸造物を作り、前記マグネシウム合金铸造物を切削することによってチップ形状の铸 造物を作り、前記铸造物を塑性加工により固化した塑性加工物は、常温において he P構造マグネシウム相及び長周期積層構造相を有することを特徴とする。
(1) 0. 25≤a≤5. 0
(2) 0. 5≤b≤5. 0 (3) 0. 5a≤b
[0024] 本発明に係る高強度高靭性マグネシウム合金は、 Znを a原子%含有し、 Yを b原子 %含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たすマグネシウム合金 铸造物を作り、前記マグネシウム合金铸造物を切削することによってチップ形状の铸 造物を作り、前記铸造物を塑性加工により固化した塑性加工物を作り、前記塑性カロ ェ物に熱処理を行った後の塑性カ卩ェ物は、常温にお!、て hep構造マグネシウム相 及び長周期積層構造相を有することを特徴とする。
(1) 0. 25≤a≤5. 0
(2) 0. 5≤b≤5. 0
(3) 0. 5a≤b
[0025] また、本発明に係る高強度高靭性マグネシウム合金にぉ 、て、前記 hep構造マグ ネシゥム相の平均粒径は 0. 1 m以上であることが好ましい。チップ固化成形材の 結晶粒径は铸造材より細か ヽ。
また、本発明に係る高強度高靭性マグネシウム合金において、前記 hep構造マグ ネシゥム相の転位密度に比べて前記長周期積層構造相の転位密度が少なくとも 1桁 小さいことがことが好ましい。
[0026] また、本発明に係る高強度高靭性マグネシウム合金において、前記長周期積層構 造相の結晶粒の体積分率が 5%以上であることが好ましい。
また、本発明に係る高強度高靭性マグネシウム合金において、前記塑性加工物は
Mgと希土類元素の化合物、 Mgと Znの化合物、 Znと希土類元素の化合物及び Mg と Znと希土類元素の化合物力 なる析出物群力 選択される少なくとも 1種類の析出 物を有して 、ることも可能である。
[0027] また、本発明に係る高強度高靭性マグネシウム合金において、前記少なくとも 1種 類の析出物の合計体積分率は 0%超 40%以下であることが好ましい。
また、本発明に係る高強度高靭性マグネシウム合金において、前記塑性加工は、 圧延、押出し、 ECAE、引抜力卩ェ、鍛造、プレス、転造、曲げ、 FSW加工及びこれら の繰り返しカ卩ェのうち少なくとも一つを行うものであることが好ましい。
[0028] また、本発明に係る高強度高靭性マグネシウム合金にぉ 、て、前記塑性加工を行 つた際の総歪量は 15以下であることが好ましい。
また、本発明に係る高強度高靭性マグネシウム合金において、前記塑性加工を行 つた際の総歪量は 10以下であることがより好ましい。
[0029] また、本発明に係る高強度高靭性マグネシウム合金にぉ 、て、前記 Mgに Yb、 Tb 、 Sm及び Ndからなる群力 選択される少なくとも 1種の元素を合計で c原子%含有し 、 cは下記式 (4)及び(5)を満たすことも可能である。
(4) 0≤c≤3. 0
(5) 0. l≤b + c≤6. 0
[0030] また、本発明に係る高強度高靭性マグネシウム合金にぉ 、て、前記 Mgに La、 Ce、 Pr、 Eu、 Mm及び Gdからなる群力 選択される少なくとも 1種の元素を合計で c原子 %含有し、 cは下記式 (4)及び(5)を満たすことも可能である。
(4) 0≤c≤3. 0
(5) 0. l≤b + c≤6. 0
[0031] また、本発明に係る高強度高靭性マグネシウム合金にぉ 、て、前記 Mgに Yb、 Tb 、 Sm及び Ndからなる群力 選択される少なくとも 1種の元素を合計で c原子%含有し 、 La、 Ce、 Pr、 Eu、 Mm及び Gdからなる群から選択される少なくとも 1種の元素を合 計で d原子%含有し、 c及び dは下記式 (4)一 (6)を満たすことも可能である。
(4) 0≤c≤3. 0
(5) 0≤d≤3. 0
(6) 0. l≤b + c + d≤6. 0
[0032] また、本発明に係る高強度高靭性マグネシウム合金にぉ 、て、前記 Mgに Al、 Th、 Ca、 Si、 Mn、 Zr、 Ti、 Hf、 Nb、 Ag、 Sr、 Sc、 B、 C、 Sn、 Au、 Ba、 Ge、 Bi、 Ga、 In 、 Ir、 Li、 Pd、 Sb及び V力もなる群力も選択される少なくとも 1種の元素を合計で 0原 子%超 2. 5原子%以下含有することも可能である。
[0033] 本発明に係る高強度高靭性マグネシウム合金の製造方法は、 Znを a原子%含有し 、 Yを b原子%含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たすマグネ シゥム合金铸造物を作る工程と、
前記マグネシウム合金铸造物に塑性カ卩ェを行うことにより塑性カ卩ェ物を作る工程と を具備することを特徴とする。
(1) 0. 5≤a< 5. 0
(2) 0. 5<b< 5. 0
(3) 2/3a-5/6≤b
また、本発明に係る高強度高靭性マグネシウム合金の製造方法において、前記マ グネシゥム合金铸造物は hep構造マグネシウム相及び長周期積層構造相を有するこ とが好ましい。
[0034] 上記の本発明に係る高強度高靭性マグネシウム合金の製造方法によれば、マグネ シゥム合金铸造物に塑性加工を行うことにより、塑性加工後の塑性加工物の硬さ及 び降伏強度を塑性加工前の铸造物に比べて向上させることができる。
また、本発明に係る高強度高靭性マグネシウム合金の製造方法においては、前記 マグネシウム合金铸造物を作る工程と前記塑性カ卩ェ物を作る工程の間に、前記マグ ネシゥム合金铸造物に均質化熱処理を施す工程を追加しても良い。この際の熱処理 条件は、温度が 400°C— 550°C、処理時間が 1分一 1500分であることが好ましい。 また、本発明に係る高強度高靭性マグネシウム合金の製造方法においては、前記 塑性加工物を作る工程の後に、前記塑性加工物に熱処理を施す工程を追加しても 良い。この際の熱処理条件は、温度が 150°C— 450°C、処理時間が 1分一 1500分 であることが好ましい。
[0035] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記 M gに Yb、 Tb、 Sm及び Ndからなる群カゝら選択される少なくとも 1種の元素を合計で c 原子%含有し、 cは下記式 (4)及び(5)を満たすことも可能である。
(4) 0≤c≤3. 0
(5) 0. 2≤b + c≤6. 0
[0036] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記 M gに La、 Ce、 Pr、 Eu、 Mm及び Gdからなる群から選択される少なくとも 1種の元素を 合計で c原子%含有し、 cは下記式 (4)及び (5)を満たすこと、又は(5)及び (6)を満 たすことも可能である。 (4) 0≤c< 2. 0
(5) 0. 2≤b + c≤6. 0
(6) c/b≤l . 5
[0037] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記 M gに Yb、 Tb、 Sm及び Ndからなる群カゝら選択される少なくとも 1種の元素を合計で c 原子%含有し、 La、 Ce、 Pr、 Eu、 Mm及び Gdからなる群から選択される少なくとも 1 種の元素を合計で d原子%含有し、 c及び dは下記式 (4)一 (6)を満たすこと、又は( 6)及び (7)を満たすことも可能である。
(4) 0≤c≤3. 0
(5) 0≤d< 2. 0
(6) 0. 2≤b + c + d≤6. 0
(7) d/b≤l . 5
[0038] 本発明に係る高強度高靭性マグネシウム合金の製造方法は、 Znを a原子%含有し 、 Yを b原子%含有し、残部が Mgから成り、 aと bは下記式(1)一(3)を満たすマグネ シゥム合金铸造物を作る工程と、
前記マグネシウム合金を切削することによってチップ形状の切削物を作る工程と、 前記切削物に塑性加工による固化を行うことにより塑性加工物を作る工程と、 を具備することを特徴とする。
(1) 0. 25≤a≤5. 0
(2) 0. 5≤b≤5. 0
(3) 0. 5a≤b
また、本発明に係る高強度高靭性マグネシウム合金の製造方法において、前記マ グネシゥム合金铸造物は hep構造マグネシウム相及び長周期積層構造相を有するこ とが好ましい。
[0039] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記 M gに Yb、 Tb、 Sm及び Ndからなる群カゝら選択される少なくとも 1種の元素を合計で c 原子%含有し、 cは下記式 (4)及び(5)を満たすことも可能である。
(4) 0≤c≤3. 0 (5) 0. l≤b + c≤6. 0
[0040] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記 M gに La、 Ce、 Pr、 Eu、 Mm及び Gdからなる群から選択される少なくとも 1種の元素を 合計で c原子%含有し、 cは下記式 (4)及び (5)を満たすことも可能である。
(4) 0≤c≤3. 0
(5) 0. l≤b + c≤6. 0
[0041] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記 M gに Yb、 Tb、 Sm及び Ndからなる群カゝら選択される少なくとも 1種の元素を合計で c 原子%含有し、 La、 Ce、 Pr、 Eu、 Mm及び Gdからなる群から選択される少なくとも 1 種の元素を合計で d原子%含有し、 c及び dは下記式 (4)一 (6)を満たすことも可能 である。
(4) 0≤c≤3. 0
(5) 0≤d≤3. 0
(6) 0. l≤b + c + d≤6. 0
[0042] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記 M gに Al、 Th、 Ca、 Siゝ Mn、 Zr、 Ti、 Hf、 Nb、 Ag、 Sr、 Sc、 B、 C、 Sn、 Au、 Ba、 Ge 、 Bi、 Ga、 In、 Ir、 Li、 Pd、 Sb及び Vからなる群から選択される少なくとも 1種の元素 を合計で 0原子%超 2. 5原子%以下含有することも可能である。
[0043] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記塑 性カロェは、圧延、押出し、 ECAE、引抜力卩ェ、鍛造、プレス、転造、曲げ、 FSW加工 及びこれらの繰り返しカ卩ェのうち少なくとも一つを行うものであることが好ましい。つま り、前記塑性加工は、圧延、押出し、 ECAE、引抜加工、鍛造、プレス、転造、曲げ、 FSW加工のうち単独でも組み合わせでも可能である。
[0044] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記塑 性力卩ェを行う際の総歪量は 15以下であることが好ましぐまた、より好ましい総歪量は 10以下である。また、前記塑'性力卩ェを行う際の 1回あたりの歪量は 0. 002以上 4. 6 以下であることが好ましい。
[0045] 尚、総歪量とは、焼鈍しなどの熱処理によってキャンセルされない総歪量を意味す る。つまり、製造工程の途中で熱処理を行ってキャンセルされた歪については総歪量 にカウントされない。
[0046] 但し、チップ形状の切削物を作る工程を行う高強度高靭性マグネシウム合金の場 合は、最終的に固化成形に供するものを作った後に塑性加工を行った際の総歪量 を意味する。つまり、最終的に固化成形に供するものを作るまでの歪量については 総歪量にカウントされない。前記最終的に固化成形に供するものとは、チップ材の接 合性が悪ぐ引張強度が 200MPa以下のものを指す。また、チップ材の固化成形は、 押出、圧延、鍛造、プレス、 ECAEなどを用いたものである。固化成形後には、圧延、 押出、 ECAE、引き抜き、鍛造、プレス、転造、曲げ、 FSWなどを適用しても良い。ま た、最終的な固化成形前に、チップ材をボールミル、繰り返し鍛造、スタンビングミル 、など種々の塑性カ卩ェをカ卩えることもできる。
[0047] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記塑 性加工物を作る工程の後に、前記塑性加工物に熱処理を行う工程をさらに具備する ことも可能である。これにより、熱処理後の塑性加工物の硬さ及び降伏強度を熱処理 前に比べてさらに向上させることができる。
[0048] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記熱 処理の条件は、 200°C以上 500°C未満で 10分以上 24時間未満であることが好まし い。
[0049] また、本発明に係る高強度高靭性マグネシウム合金の製造方法にぉ 、て、前記塑 性力卩ェを行った後のマグネシウム合金における hep構造マグネシウム相の転移密度 は長周期積層構造相の転位密度に比べて 1桁以上大きいことが好ましい。
発明の効果
[0050] 以上説明したように本発明によれば、マグネシウム合金の拡大した用途に対して強 度及び靭性ともに実用に供するレベルにある高強度高靭性マグネシウム合金及びそ の製造方法を提供することができる。
発明を実施するための形態
[0051] 以下、本発明の実施の形態について説明する。
本発明者は、基本に立ち返り、 2元マグネシウム合金カゝら始めて合金の強度及び靭 性を検討し、更にその検討を多元マグネシウム合金まで拡大した。その結果、強度及 び靭性とも高 ヽレベルで有するマグネシウム合金は Mg— Zn— Y系であり、更に従来 技術とは異なり亜鉛の含有量が 5. 0原子%以下で Yの含有量が 5. 0原子%以下と V、う低含有量にぉ 、て従来にな!、高強度及び高靭性が得られることを見出した。
[0052] 長周期積層構造相が形成される铸造合金は、塑性加工後あるいは塑性加工後に 熱処理を施すことによって、高強度 ·高延性.高靭性のマグネシウム合金が得られるこ とが分力ゝつた。また、長周期積層構造が形成されて、塑性加工後あるいは塑性加工 熱処理後に高強度 ·高延性 ·高靭性が得られる合金組成を見出した。
[0053] また、長周期積層構造が形成される铸造合金を切削することによってチップ形状の 铸造物を作り、この铸造物に塑性加工を行い、あるいは塑性加工後に熱処理を施す ことによって、チップ形状に切削する工程を行わない場合に比べて、より高強度'高 延性 ·高靭性のマグネシウム合金が得られることが分力つた。また、長周期積層構造 が形成されて、チップ形状に切削し、塑性加工後あるいは塑性加工熱処理後に高強 度 ·高延性,高靭性が得られる合金組成を見出した。
[0054] 長周期積層構造相を有する金属を塑性加工することによって長周期積層構造相の 少なくとも一部を湾曲又は屈曲させることができる。それにより高強度 ·高延性 *高靭 性の金属が得られることを見出した。
[0055] また、湾曲又は屈曲した長周期積層構造相にはランダム粒界が含まれている。この ランダム粒界によってマグネシウム合金が高強度化され、高温での粒界すべりが抑 制されると考えられ、高温で高強度が得られる。
[0056] また、 hep構造マグネシウム相に高密度の転位を含むことによりマグネシウム合金が 高強度化され、長周期積層構造相の転位密度が低いことによりマグネシウム合金の 延性の向上と高強度化が実現されると考えられる。前記長周期積層構造相の転位密 度は前記 hep構造マグネシウム相の転位密度に比べて少なくとも 1桁小さいことが好 ましい。
[0057] (実施の形態 1)
本発明の実施の形態 1によるマグネシウム合金は、基本的に Mg、 Zn及び Yを含む 3元以上の合金である。 [0058] 本実施の形態による Mg— Zn— Y合金の組成範囲は図 8に示す H— I C D— E— H の線で囲む範囲である。すなわち、亜鉛の含有量を a原子%とし、 Yを b原子%とする と、 aと bは下記式(1)一(3)を満たすものとなる。
(1) 0. 5≤a< 5. 0
(2) 0. 5<b< 5. 0
(3) 2/3a-5/6≤b
[0059] また、本実施の形態による Mg— Zn— Y合金の組成範囲は、好ましくは図 8に示す F — G— C— D— Ε— Fの線で囲む範囲である。すなわち、亜鉛の含有量を a原子%とし、 Y を b原子%とすると、 aと bは下記式(1)一(4)を満たすものとなる。
(1) 0. 5≤a< 5. 0
(2) 0. 5<b< 5. 0
(3) 2/3a-5/6≤b
(4) 0. 75≤b
[0060] また、本実施の形態によるより好ましい Mg— Zn— Y合金の組成範囲は、図 8に示す Α— Β— C—D— Ε— Αの線で囲む範囲である。すなわち、亜鉛の含有量を a原子%とし 、 Yを b原子%とすると、 aと bは下記式(1)一(3)を満たすものとなる。
(1) 0. 5≤a≤5. 0
(2) 1. 0≤b≤5. 0
(3) 0. 5a≤b
[0061] 亜鉛の含有量が 5原子%以上であると、特に靭性 (又は延性)が低下する傾向があ る力らである。また Yの含有量が合計で 5原子%以上であると、特に靭性 (又は延性) が低下する傾向があるからである。
[0062] また亜鉛の含有量が 0. 5原子%未満、又は Yの含有量が 1. 0原子%未満であると 強度及び靭性の少なくともいずれかが不十分になる。従って、亜鉛の含有量の下限 を 0. 5原子%とし、 Yの含有量の下限を 1. 0原子%とする。
[0063] 強度及び靭性の増大は亜鉛が 0. 5-1. 5原子%において顕著になる。亜鉛含有 量が 0. 5原子%付近において希土類元素含有量が少なくなると強度が低下する傾 向があるが、その範囲の場合でも従来よりも高強度及び高靭性を示す。従って、本実 施の形態のマグネシウム合金における亜鉛の含有量の範囲は最も広くて 0. 5原子% 以上 5. 0原子%以下である。
[0064] 本実施の形態の Mg— Zn— Y系マグネシウム合金では、前述した範囲の含有量を有 する亜鉛と希土類元素以外の成分がマグネシウムとなるが、合金特性に影響を与え な 、程度の不純物を含有しても良 、。
[0065] (実施の形態 2)
本発明の実施の形態 2によるマグネシウム合金は、基本的に Mg、 Zn及び Yを含む
4元以上の合金であり、第 4元素は、 Yb、 Tb、 Sm及び Ndからなる群から選択される
1又は 2以上の元素である。
[0066] 本実施の形態によるマグネシウム合金の組成範囲は、 Znの含有量を a原子%とし、
Yの含有量を b原子%とし、 1又は 2以上の第 4元素の合計含有量を c原子%とすると
、 a、 b及び cは下記式(1)一(5)を満たすものとなる。
(1) 0. 5≤a< 5. 0
(2) 0. 5< b< 5. 0
(3) 2/3a-5/6≤b
(4) 0≤c≤3. 0
(5) 0. 2≤b + c≤6. 0
[0067] また、本実施の形態による好ま 、マグネシウム合金の組成範囲は、 Znの含有量 を a原子%とし、 Yの含有量を b原子%とし、 1又は 2以上の第 4元素の合計含有量を c 原子%とすると、 a、 b及び cは下記式(1)一(6)を満たすものとなる。
(1) 0. 5≤a< 5. 0
(2) 0. 5< b< 5. 0
(3) 2/3a-5/6≤b
(4) 0. 75≤b
(5) 0≤c≤3. 0
(6) 0. 2≤b + c≤6. 0
[0068] また、本実施の形態によるより好ま 、マグネシウム合金の組成範囲は、 Znの含有 量を a原子%とし、 Yの含有量を b原子%とし、 1又は 2以上の第 4元素の合計含有量 を c原子%とすると、 a、 b及び cは下記式(1)一(5)を満たすものとなる。
(1) 0. 5≤a≤5. 0
(2) 1. 0≤b≤5. 0
(3) 0. 5a≤b
(4) 0≤c≤3. 0
(5) 0. 2≤b + c≤6. 0
[0069] 亜鉛の含有量を 5原子%以下とする理由、 Yの含有量を 5原子%以下とする理由、 亜鉛の含有量が 0. 5原子%以上とする理由、 Yの含有量を 1. 0原子%以上とする理 由は、実施の形態 1と同様である。また、第 4元素の含有量の上限を 3. 0原子%とし た理由は、第 4元素の固溶限が低いからである。また、第 4元素を含有させる理由は 、結晶粒を微細化させる効果があること、金属間化合物を析出させる効果があること による。
[0070] 本実施の形態の Mg— Zn— Y系マグネシウム合金においても、合金特性に影響を与 えな 、程度の不純物を含有しても良 、。
[0071] (実施の形態 3)
本発明の実施の形態 3によるマグネシウム合金は、基本的に Mg、 Zn及び Yを含む 4元以上の合金であり、第 4元素は、 La、 Ce、 Pr、 Eu、 Mm及び Gdからなる群力 選 択される 1又は 2以上の元素である。尚、 Mm (ミッシュメタル)とは、 Ce及び Laを主成 分とする複数の希土類元素の混合物又は合金であり、鉱石力 有用な希土類元素 である Smや Ndなどを精鍊除去した後の残渣であり、その組成は精鍊前の鉱石の組 成に依存するものである。
[0072] 本実施の形態によるマグネシウム合金の組成範囲は、 Znの含有量を a原子%とし、 Yの含有量を b原子%とし、 1又は 2以上の第 4元素の含有量を合計で c原子%とする と、 a、 b及び cは下記式(1)一(5)を満たすもの、又は(1)一(3)、(5)及び (6)を満た すものとなる。
(1) 0. 5≤a< 5. 0
(2) 0. 5< b< 5. 0
(3) 2/3a-5/6≤b (4) 0≤c< 2. 0
(5) 0. 2≤b + c≤6. 0
(6) c/b≤l . 5
[0073] また、本実施の形態による好ま 、マグネシウム合金の組成範囲は、 Znの含有量 を a原子%とし、 Yの含有量を b原子%とし、 1又は 2以上の第 4元素の含有量を合計 で c原子%とすると、 a、 b及び cは下記式(1)一(6)を満たすもの、又は(1)一(4)、 ( 6)及び(7)を満たすものとなる。
(1) 0. 5≤a< 5. 0
(2) 0. 5< b< 5. 0
(3) 2/3a-5/6≤b
(4) 0. 75≤b
(5) 0≤c< 2. 0
(6) 0. 2≤b + c≤6. 0
(7) c/b≤l . 5
[0074] 本実施の形態によるより好ましいマグネシウム合金の組成範囲は、 Znの含有量を a 原子%とし、 Yの含有量を b原子%とし、 1又は 2以上の第 4元素の含有量を合計で c 原子%とすると、 a、 b及び cは下記式(1)一(5)を満たすもの、又は(1)一(3)、 (5) 及び (6)を満たすものとなる。
(1) 0. 5≤a≤5. 0
(2) 1. 0≤b≤5. 0
(3) 0. 5a≤b
(4) 0≤c< 2. 0
(5) 0. 2≤b + c≤6. 0
(6) c/b≤l . 5
[0075] 上記式 (6)とする理由は、 1. 5倍より大きくすると長周期積層構造相の形成の効果 が薄れるためであり、マグネシウム合金の重さが重くなつてしまうからである。
[0076] 亜鉛の含有量を 5原子%以下とする理由、 1又は 2以上の希土類元素の含有量が 合計で 5原子%以下とする理由、亜鉛の含有量が 0. 5原子%以上とする理由、希土 類元素の含有量が合計で 1. 0原子%以上とする理由は、実施の形態 1と同様である 。また、第 4元素の含有量の上限を 2. 0原子%とした主な理由は、第 4元素の固溶限 が殆ど無いからである。また、第 4元素を含有させる理由は、結晶粒を微細化させる 効果があること、金属間化合物を析出させる効果があることによる。
[0077] 本実施の形態の Mg— Zn— Y系マグネシウム合金においても、合金特性に影響を与 えな 、程度の不純物を含有しても良 、。
[0078] (実施の形態 4)
本発明の実施の形態 4によるマグネシウム合金は、基本的に Mg、 Zn及び Yを含む 5元以上の合金であり、第 4元素は、 Yb、 Tb、 Sm及び Ndからなる群から選択される 1又は 2以上の元素であり、第 5元素は、 La、 Ce、 Pr、 Eu、 Mm及び Gdからなる群か ら選択される 1又は 2以上の元素である。
[0079] 本実施の形態によるマグネシウム合金の組成範囲は、 Znの含有量を a原子%とし、 Yの含有量を b原子%とし、 1又は 2以上の第 4元素の含有量を合計で c原子%とし、 1又は 2以上の第 5元素の含有量を合計で d原子%とすると、 a、 b、 c及び dは下記式 (1)一 (6)を満たすもの、又は(1)一 (3)、 (6)及び (7)を満たすものとなる。
(1) 0. 5≤a< 5. 0
(2) 0. 5<b< 5. 0
(3) 2/3a-5/6≤b
(4) 0≤c≤3. 0
(5) 0≤d< 2. 0
(6) 0. 2≤b + c + d≤6. 0
(7) d/b≤l. 5
[0080] また、本実施の形態による好ま 、マグネシウム合金の組成範囲は、 Znの含有量 を a原子%とし、 Yの含有量を b原子%とし、 1又は 2以上の第 4元素の含有量を合計 で c原子%とし、 1又は 2以上の第 5元素の含有量を合計で d原子%とすると、 a、 b、 c 及び dは下記式(1)一(7)を満たすもの、又は(1)一(3)、(7)及び (8)を満たすもの となる。
(1) 0. 5≤a< 5. 0 (2) 0. 5<b< 5. 0
(3) 2/3a-5/6≤b
(4) 0. 75≤b
(5) 0≤c≤3. 0
(6) 0≤d< 2. 0
(7) 0. 2≤b + c + d≤6. 0
(8) d/b≤l. 5
[0081] また、本実施の形態によるより好ま 、マグネシウム合金の組成範囲は、 Znの含有 量を a原子%とし、 Yの含有量を b原子%とし、 1又は 2以上の第 4元素の含有量を合 計で c原子%とし、 1又は 2以上の第 5元素の含有量を合計で d原子%とすると、 a、 b 、 c及び dは下記式(1)一(6)を満たすもの、又は(1)一(3)、(6)及び (7)を満たすも のとなる。
(1) 0. 5≤a≤5. 0
(2) 1. 0≤b≤5. 0
(3) 0. 5a≤b
(4) 0≤c≤3. 0
(5) 0≤d< 2. 0
(6) 0. 2≤b + c + d≤6. 0
(7) d/b≤l. 5
[0082] 上記式 (7)とする理由は、 1. 5倍より大きくすると長周期積層構造相の形成の効果 が薄れるためであり、マグネシウム合金の重さが重くなつてしまうからである。
[0083] Zn、 Y、第 4元素及び第 5元素の合計含有量を 6. 0原子%以下とする理由は、 6% を超えると重くなり、原料コストが高くなり、さらに靭性が低下するからである。 Znの含 有量を 0. 5原子%以上、 Y、第 4元素及び第 5元素の合計含有量を 1. 0原子%以上 とする理由は、より低濃度とすると強度が不十分となるからである。また、第 4元素、第 5元素を含有させる理由は、結晶粒を微細化させる効果があること、金属間化合物を 析出させる効果があることによる。
[0084] 本実施の形態の Mg— Zn— Υ系マグネシウム合金においても、合金特性に影響を与 えな 、程度の不純物を含有しても良 、。
[0085] (実施の形態 5)
本発明の実施の形態 5によるマグネシウム合金としては、実施の形態 1一 4の組成 に Meをカ卩えたマグネシウム合金が挙げられる。但し、 Meは Al、 Th、 Ca、 Si、 Mn、 Z r、 Ti、 Hf、 Nb、 Ag、 Sr、 Sc、 B、 C、 Sn、 Au、 Ba、 Ge、 Bi、 Ga、 In、 Ir、 Li、 Pd、 Sb 及び V力もなる群力 選択される少なくとも 1種の元素である。この Meの含有量は 0 原子%超 2. 5原子%以下とする。 Meを添加すると、高強度高靭性を維持したまま、 他の性質を改善することができる。例えば、耐食性や結晶粒微細化などに効果があ る。
[0086] (実施の形態 6)
本発明の実施の形態 6によるマグネシウム合金の製造方法について説明する。 実施の形態 1一 5のいずれかの組成カゝらなるマグネシウム合金を溶解して铸造し、 マグネシウム合金铸造物を作る。铸造時の冷却速度は 1000KZ秒以下であり、より 好ましくは 100KZ秒以下である。铸造プロセスとしては、種々のプロセスを用いるこ とが可能であり、例えば、高圧铸造、ロールキャスト、傾斜板铸造、連続铸造、チクソ モールディング、ダイカストなどを用いることが可能である。また、マグネシウム合金铸 造物を所定形状に切り出したものを用いてもょ 、。
次いで、マグネシウム合金铸造物に均質ィ匕熱処理を施しても良い。この際の熱処 理条件は、温度が 400°C— 550°C、処理時間が 1分一 1500分 (又は 24時間)とする ことが好ましい。
[0087] 次に、前記マグネシウム合金铸造物に塑性カ卩ェを行う。この塑性カ卩ェの方法として は、例えば押出し、 ECAE(equa卜 channd- angular- extrusion)加工法、圧延、引抜カロ ェ、鍛造、プレス、転造、曲げ、 FSW(friction stir welding;摩擦撹拌溶接)加工、これ らの繰り返しカ卩ェなどを用いる。
押出しによる塑性カ卩ェを行う場合は、押出し温度を 250°C以上 500°C以下とし、押 出しによる断面減少率を 5%以上とすることが好ましい。
[0088] ECAE加工法は、試料に均一なひずみを導入するためにパス毎に試料長手方向 を 90° ずつ回転させる方法である。具体的には、断面形状が L字状の成形孔を形成 した成形用ダイの前記成形孔に、成形用材料であるマグネシウム合金铸造物を強制 的に進入させて、特に L状成形孔の 90° に曲げられた部分で前記マグネシウム合金 铸造物に応力を加えて強度及び靭性が優れた成形体を得る方法である。 ECAEの パス回数としては 1一 8パスが好ましい。より好ましくは 3— 5パスである。 ECAEのカロ ェ時の温度は 250°C以上 500°C以下が好ましい。
[0089] 圧延による塑性カ卩ェを行う場合は、圧延温度を 250°C以上 500°C以下とし、圧下 率を 5%以上とすることが好ま U、。
[0090] 引抜カ卩ェによる塑性カ卩ェを行う場合は、引抜力卩ェを行う際の温度が 250°C以上 50 0°C以下、前記引抜力卩ェの断面減少率が 5%以上であることが好ましい。
鍛造による塑性カ卩ェを行う場合は、鍛造力卩ェを行う際の温度が 250°C以上 500°C 以下、前記鍛造力卩ェの加工率が 5%以上であることが好ましい。
[0091] 前記マグネシウム合金铸造物に行う塑性カ卩ェは、 1回あたりの歪量が 0. 002以上 4 . 6以下であって総歪量が 15以下であることが好ましい。また、前記塑性加工は、 1回 あたりの歪量が 0. 002以上 4. 6以下であって総歪量が 10以下であることがより好ま しい。好ましい総歪量を 15以下、より好ましい総歪量を 10以下にする理由は、総歪 量を多くしてもそれに従ってマグネシウム合金の強度が増加するわけではないからで あり、また、総歪量を多くすればするほど製造コストが高くなつてしまうからである。
[0092] 尚、 ECAE加工の歪量は 0. 95-1. 15Z回であり、例えば ECAE加工を 16回行 つた場合の総歪量は 0. 95 X 16 = 15. 2となり、 ECAE加工を 8回行った場合の総 歪量は 0. 95 X 8 = 7. 6となる。
また、押出し力卩ェの歪量は、押出し比が 2. 5の場合が 0. 92Z回であり、押出し比 力 S4の場合が 1. 39Z回であり、押出し比が 10の場合が 2. 30Z回であり、押出し比 力 S20の場合が 2. 995Z回であり、押出し比が 50の場合が 3. 91Z回であり、押出し 比が 100の場合が 4. 61/回であり、押出し比が 1000の場合が 6. 90Z回である。
[0093] 上記のようにマグネシウム合金铸造物に塑性カ卩ェを行った塑性カ卩ェ物は、常温に ぉ ヽて hep構造マグネシウム相及び長周期積層構造相の結晶組織を有し、この長周 期積層構造を持つ結晶粒の体積分率は 5%以上 (より好ましくは 10%以上)となり、 前記 hep構造マグネシウム相の平均粒径は 2 m以上であり、前記長周期積層構造 相の平均粒径は 0. 以上である。この長周期積層構造相の結晶粒内には複数 のランダム粒界が存在し、このランダム粒界で規定される結晶粒の平均粒径は 0. 05 m以上である。ランダム粒界においては転移密度が大きいが、長周期積層構造相 におけるランダム粒界以外の部分の転位密度は小さい。従って、 hep構造マグネシゥ ム相の転移密度は、長周期積層構造相におけるランダム粒界以外の部分の転位密 度に比べて 1桁以上大きい。
[0094] 前記長周期積層構造相の少なくとも一部は湾曲又は屈曲している。また、前記塑 性力卩ェ物は、 Mgと希土類元素の化合物、 Mgと Znの化合物、 Znと希土類元素の化 合物及び Mgと Znと希土類元素の化合物力もなる析出物群力も選択される少なくとも 1種類の析出物を有していても良い。前記析出物の合計体積分率は 0%超 40%以 下であることが好ましい。前記塑性カ卩ェを行った後の塑性カ卩ェ物については、塑性 加工を行う前の铸造物に比べてビッカース硬度及び降伏強度がともに上昇する。
[0095] 前記マグネシウム合金铸造物に塑性加工を行った後の塑性加工物に熱処理を施 しても良い。この熱処理条件は、温度が 200°C以上 500°C未満、熱処理時間が 10分 一 1500分 (又は 24時間)とすることが好ましい。熱処理温度を 500°C未満とするのは 、 500°C以上とすると、塑性カ卩ェによって加えられた歪量がキャンセルされてしまうか らである。
[0096] この熱処理を行った後の塑性加工物については、熱処理を行う前の塑性加工物に 比べてビッカース硬度及び降伏強度がともに上昇する。また、熱処理後の塑性加工 物にも熱処理前と同様に、常温において hep構造マグネシウム相及び長周期積層構 造相の結晶組織を有し、この長周期積層構造を持つ結晶粒の体積分率は 5%以上( より好ましくは 10%以上)となり、前記 hep構造マグネシウム相の平均粒径は 2 m以 上であり、前記長周期積層構造相の平均粒径は 0. 2 m以上である。この長周期積 層構造相の結晶粒内には複数のランダム粒界が存在し、このランダム粒界で規定さ れる結晶粒の平均粒径は 0. 05 /z m以上である。ランダム粒界においては転移密度 が大きいが、長周期積層構造相におけるランダム粒界以外の部分の転位密度は小 さい。従って、 hep構造マグネシウム相の転移密度は、長周期積層構造相におけるラ ンダム粒界以外の部分の転位密度に比べて 1桁以上大きい。 [0097] 前記長周期積層構造相の少なくとも一部は湾曲又は屈曲している。また、前記塑 性力卩ェ物は、 Mgと希土類元素の化合物、 Mgと Znの化合物、 Znと希土類元素の化 合物及び Mgと Znと希土類元素の化合物力もなる析出物群力も選択される少なくとも 1種類の析出物を有していても良い。前記析出物の合計体積分率は 0%超 40%以 下であることが好ましい。
[0098] 上記実施の形態 1一 6によれば、マグネシウム合金の拡大した用途、例えば強度及 び靭性共に高性能が要求されるハイテク用合金としての用途に対して、強度及び靭 性ともに実用に供するレベルにある高強度高靭性マグネシウム合金及びその製造方 法を提供することができる。
[0099] (実施の形態 7)
本発明の実施の形態 7によるマグネシウム合金は、铸造物を切削することによって 作られた複数の数 mm角以下のチップ形状铸造物に適用するものであり、基本的に Mg、 Zn及び Yを含む 3元以上の合金である。
[0100] 本実施の形態による Mg— Zn— Y合金の組成範囲は図 9に示す A— B— C D— Eの 線で囲む範囲である。すなわち、亜鉛の含有量を a原子%とし、 Yの含有量を b原子 %とすると、 aと bは下記式(1)一 (3)を満たすものとなる。
(1) 0. 25≤a≤5. 0
(2) 0. 5≤b≤5. 0
(3) 0. 5a≤b
[0101] 亜鉛の含有量が 5原子%以上であると、特に靭性 (又は延性)が低下する傾向があ る力らである。また、 Yの含有量が 5原子%以上であると、特に靭性 (又は延性)が低 下する傾向があるからである。
[0102] また亜鉛の含有量が 0. 25原子%未満、又は Yの含有量が 0. 5原子%未満である と強度及び靭性の少なくともいずれかが不十分になる。従って、亜鉛の含有量の下 限を 0. 25原子%とし、希土類元素の合計含有量の下限を 0. 5原子%とする。このよ うに亜鉛の含有量及び Yの含有量それぞれの下限を実施の形態 1に比べて 1/2と 低くできるのは、チップ形状铸造物に適用する力らである。
[0103] 強度及び靭性の増大は亜鉛が 0. 5-1. 5原子%において顕著になる。亜鉛含有 量が 0. 5原子%付近において希土類元素含有量が少なくなると強度が低下する傾 向があるが、その範囲の場合でも従来よりも高強度及び高靭性を示す。従って、本実 施の形態のマグネシウム合金における亜鉛の含有量の範囲は最も広くて 0. 25原子
%以上 5. 0原子%以下である。
[0104] 本実施の形態の Mg— Zn— RE系マグネシウム合金では、前述した範囲の含有量を 有する亜鉛と希土類元素以外の成分がマグネシウムとなるが、合金特性に影響を与 えな 、程度の不純物を含有しても良 、。
[0105] (実施の形態 8)
本発明の実施の形態 8によるマグネシウム合金は、铸造物を切削することによって 作られた複数の数 mm角以下のチップ形状铸造物に適用するものであり、基本的に
Mg、 Zn及び Yを含む 4元以上の合金であり、第 4元素は、 Yb、 Tb、 Sm及び Ndから なる群力 選択される 1又は 2以上の元素である。
[0106] 本実施の形態によるマグネシウム合金の組成範囲は、 Znの含有量を a原子%とし、
Yの含有量を b原子%とし、 1又は 2以上の第 4元素の含有量を合計で c原子%とする と、 a、 b及び cは下記式(1)一(5)を満たすものとなる。
(1) 0. 25≤a≤5. 0
(2) 0. 5≤b≤5. 0
(3) 0. 5a≤b
(4) 0≤c≤3. 0
(5) 0. l≤b + c≤6. 0
[0107] 亜鉛の含有量を 5原子%以下とする理由、 1又は 2以上の希土類元素の含有量が 合計で 5原子%以下とする理由、亜鉛の含有量が 0. 25原子%以上とする理由、 Y の含有量が 0. 5原子%以上とする理由は、実施の形態 7と同様である。また、第 4元 素の含有量の上限を 3. 0原子%とした理由は、第 4元素の固溶限が低いからである 。また、第 4元素を含有させる理由は、結晶粒を微細化させる効果があること、金属間 化合物を析出させる効果があることによる。
[0108] 本実施の形態の Mg— Zn— RE系マグネシウム合金においても、合金特性に影響を 与えな 、程度の不純物を含有しても良 、。 [0109] (実施の形態 9)
本発明の実施の形態 9によるマグネシウム合金は、铸造物を切削することによって 作られた複数の数 mm角以下のチップ形状铸造物に適用するものであり、基本的に Mg、 Zn及び Yを含む 4元又は 5元以上の合金であり、第 4元素は、 La、 Ce、 Pr、 Eu 、 Mm及び Gdからなる群力も選択される 1又は 2以上の元素である。
[0110] 本実施の形態によるマグネシウム合金の組成範囲は、 Znの含有量を a原子%とし、 Yの含有量を b原子%とし、 1又は 2以上の第 4元素の含有量を合計で c原子%とする と、 a、 b及び cは下記式(1)一(5)を満たすものとなる。
(1) 0. 25≤a≤5. 0
(2) 0. 5≤b≤5. 0
(3) 0. 5a≤b
(4) 0≤c≤3. 0
(5) 0. l≤b + c≤6. 0
[0111] 亜鉛の含有量を 5原子%以下とする理由、 1又は 2以上の希土類元素の含有量が 合計で 5原子%以下とする理由、亜鉛の含有量を 0. 25原子%以上とする理由、 Yの 含有量を 0. 5原子%以上とする理由は、実施の形態 7と同様である。また、第 4元素 の含有量の上限を 2. 0原子%とした理由は、第 4元素の固溶限が殆ど無いからであ る。また、第 4元素を含有させる理由は、結晶粒を微細化させる効果があること、金属 間化合物を析出させる効果があることによる。
[0112] 本実施の形態の Mg— Zn— RE系マグネシウム合金にぉ 、ても、合金特性に影響を 与えな 、程度の不純物を含有しても良 、。
[0113] (実施の形態 10)
本発明の実施の形態 10によるマグネシウム合金は、铸造物を切削することによって 作られた複数の数 mm角以下のチップ形状铸造物に適用するものであり、基本的に Mg、 Zn及び Yを含む 5元以上の合金であり、第 4元素は、 Yb、 Tb、 Sm、 Nd及び G dからなる群から選択される 1又は 2以上の元素であり、第 5元素は、 La、 Ce、 Pr、 Eu 及び Mm力 なる群力 選択される 1又は 2以上の元素である。
[0114] 本実施の形態によるマグネシウム合金の組成範囲は、 Znの含有量を a原子%とし、 Yの含有量を b原子%とし、 1又は 2以上の第 4元素の含有量を合計で c原子%とし、 1又は 2以上の第 5元素の含有量を合計で d原子%とすると、 a、 b、 c及び dは下記式 (1)一(6)を満たすものとなる。
(1) 0. 25≤a≤5. 0
(2) 0. 5≤b≤5. 0
(3) 0. 5a≤b
(4) 0≤c≤3. 0
(5) 0≤d≤3. 0
(6) 0. l≤b + c + d≤6. 0
[0115] Zn、 Y、第 4元素及び第 5元素の合計含有量を 6. 0原子%未満とする理由、 Zn、 Y 、第 4元素及び第 5元素の合計含有量を 1. 0原子%超とする理由は、実施の形態 4 と同様である。
[0116] 本実施の形態の Mg— Zn— RE系マグネシウム合金にぉ 、ても、合金特性に影響を 与えな 、程度の不純物を含有しても良 、。
[0117] (実施の形態 11)
本発明の実施の形態 11によるマグネシウム合金としては、実施の形態 7— 10の組 成に Meをカ卩えたマグネシウム合金が挙げられる。但し、 Meは Al、 Th、 Ca、 Si、 Mn 、 Zr、 Ti、 Hf、 Nb、 Ag、 Sr、 Sc、 B、 C、 Sn、 Au、 Ba、 Ge、 Bi、 Ga、 In、 Ir、 Li、 Pd、 Sb及び Vからなる群力 選択される少なくとも 1種の元素である。この Meの含有量は 0原子%超 2. 5原子%以下とする。 Meを添加すると、高強度高靭性を維持したまま 、他の性質を改善することができる。例えば、耐食性や結晶粒微細化などに効果があ る。
[0118] (実施の形態 12)
本発明の実施の形態 12によるマグネシウム合金の製造方法について説明する。 実施の形態 7— 11の 、ずれかの組成力 なるマグネシウム合金を溶解して铸造し、 マグネシウム合金铸造物を作る。铸造時の冷却速度は 1000KZ秒以下であり、より 好ましくは 100KZ秒以下である。このマグネシウム合金铸造物としては、インゴットか ら所定形状に切り出したものを用いる。 [0119] 次いで、マグネシウム合金铸造物に均質ィ匕熱処理を施しても良い。この際の熱処 理条件は、温度が 400°C— 550°C、処理時間が 1分一 1500分 (又は 24時間)とする ことが好ましい。
次いで、このマグネシウム合金铸造物を切削することによって複数の数 mm角以下 のチップ形状铸造物を作製する。
[0120] 次 、で、チップ形状铸造物を圧縮又は塑性加工法的手段を用いて予備成形し、均 質化熱処理を施しても良い。この際の熱処理条件は、温度が 400°C— 550°C、処理 時間が 1分一 1500分 (又は 24時間)とすることが好ましい。また、前記予備成形した 成形物に、 150°C— 450°Cの温度で 1分一 1500分(又は 24時間)の熱処理を施し ても良い。
[0121] チップ形状の铸造物は例えばチクソ一モールドの原料に一般的に用いられている 尚、チップ形状铸造物とセラミック粒子とを混合したものを圧縮又は塑性加工法的 手段を用いて予備成形し、均質化熱処理を施しても良い。また、チップ形状铸造物を 予備成形する前に、付加的に強歪加工を施しても良い。
[0122] 次に、前記チップ形状铸造物に塑性加工を行うことにより、チップ形状铸造物を固 化成形する。この塑性加工の方法としては、実施の形態 6の場合と同様に種々の方 法を用いることができる。尚、このチップ形状铸造物を固化成形する前に、ボールミル やスタンプミル、高エネルギーボールミルなどのメカ-カルァロイング、あるいはバル クメカ-カルァロイングなどの繰り返しカ卩ェ処理を加えても良い。また、固化成形後に 、さらに塑性カ卩ェゃブラストカ卩ェをカ卩えても良い。また、前記マグネシウム合金铸造 物を金属間化合物粒子あるいはセラミック粒子や繊維などと複合ィ匕しても良いし、前 記切削物をセラミック粒子や繊維などと混合しても良い。
[0123] このように塑性カ卩ェを行った塑性カ卩ェ物は、常温において hep構造マグネシウム相 及び長周期積層構造相の結晶組織を有する。この長周期積層構造相の少なくとも一 部は湾曲又は屈曲して 、る。前記塑性カ卩ェを行った後の塑性カ卩ェ物にっ 、ては、 塑性加工を行う前の铸造物に比べてビッカース硬度及び降伏強度がともに上昇する [0124] 前記チップ形状铸造物に塑性加工を行う際の総歪量は 15以下であることが好まし ぐまた、より好ましい総歪量は 10以下である。また、前記塑性加工を行う際の 1回あ たりの歪量は 0. 002以上 4. 6以下であることが好ましい。
尚、ここでいう総歪量とは、焼鈍しなどの熱処理によってキャンセルされない総歪量 であって、チップ形状铸造物を予備成形した後に塑性加工を行った際の総歪量を意 味する。つまり、製造工程の途中で熱処理を行ってキャンセルされた歪については総 歪量にカウントされず、また、チップ形状铸造物を予備成形するまでの歪量について は総歪量にカウントされな!/、。
[0125] 前記チップ形状铸造物に塑性加工を行った後の塑性加工物に熱処理を施しても 良い。この熱処理条件は、温度が 200°C以上 500°C未満、熱処理時間が 10分一 15 00分 (又は 24時間)とすることが好ましい。熱処理温度を 500°C未満とするのは、 50 0°C以上とすると、塑性カ卩ェによってカ卩えられた歪量がキャンセルされてしまうからで ある。
この熱処理を行った後の塑性カ卩ェ物については、熱処理を行う前の塑性カ卩ェ物に 比べてビッカース硬度及び降伏強度がともに上昇する。また、熱処理後の塑性加工 物にも熱処理前と同様に、常温において hep構造マグネシウム相及び長周期積層構 造相の結晶組織を有する。この長周期積層構造相の少なくとも一部が湾曲又は屈曲 している。
[0126] 上記実施の形態 12では、铸造物を切削することによってチップ形状铸造物を作製 することにより、組織が微細化するので、実施の形態 6に比べてよりより高強度'高延 性 ·高靭性の塑性加工物などを作製することが可能となる。また、本実施の形態によ るマグネシウム合金は実施の形態 1一 6によるマグネシウム合金に比べて亜鉛及び希 土類元素がより低濃度であっても高強度及び高靭性の特性を得ることができる。
[0127] 上記実施の形態 7— 12によれば、マグネシウム合金の拡大した用途、例えば強度 及び靭性共に高性能が要求されるハイテク用合金としての用途に対して、強度及び 靭性ともに実用に供するレベルにある高強度高靭性マグネシウム合金及びその製造 方法を提供することができる。
実施例 [0128] 以下、実施例について説明する。
実施例 1では、 97原子%Mg— 1原子%Zn— 2原子%Yの 3元系マグネシウム合金 を用いる。
[0129] 実施例 2では、 96. 5原子%Mg— 1原子%Ζη— 1原子%Υ— 1. 5原子%Gdの 4元 系マグネシウム合金を用いる。実施例 2マグネシウム合金は、長周期積層構造を形 成する希土類元素と長周期積層構造を形成しない希土類元素とを複合的に添加し たものである。
[0130] 実施例 3では、 97. 5原子%Mg— 1原子%Zn— 2原子%Y— 0. 5原子%Laの 4元系 マグネシウム合金を用いる。
実施例 4では、 97. 5原子%Mg - 0. 5原子%Zn - 1. 5原子%Y - 0. 5原子%Yb の 4元系マグネシウム合金を用いる。
実施例 3及び 4それぞれのマグネシウム合金は、長周期積層構造を形成する希土 類元素と長周期積層構造を形成しない希土類元素とを複合的に添加したものである
[0131] 実施例 5では、 96. 5原子%Mg— 1原子%Zn— 1. 5原子%Y— 1原子%Gdの 4元 系マグネシウム合金を用いる。
実施例 6では、 96原子%Mg— 1原子%Zn— 3原子%Yの 3元系マグネシウム合金 を用いる。
[0132] 比較例 1では、 97原子%Mg— 1原子%Ζη— 2原子%Laの 3元系マグネシウム合金 を用いる。
比較例 2では、 97原子%Mg— 1原子%Zn— 2原子%Ybの 3元系マグネシウム合金 を用いる。
[0133] 比較例 3では、 97原子%Mg— 1原子%Zn— 2原子%Ceの 3元系マグネシウム合金 を用いる。
比較例 4では、 97原子%Mg— 1原子%Zn— 2原子%Prの 3元系マグネシウム合金 を用いる。
比較例 5では、 97原子%Mg— 1原子%Zn— 2原子%Ndの 3元系マグネシウム合金 を用いる。 比較例 6では、 97原子%Mg— 1原子%Zn— 2原子%Smの 3元系マグネシウム合金 を用いる。
比較例 7では、 97原子%Mg— 1原子%Zn— 2原子%Euの 3元系マグネシウム合金 を用いる。
比較例 8では、 97原子%Mg— 1原子%Zn— 2原子%Tmの 3元系マグネシウム合 金を用いる。
比較例 9では、 97原子%Mg— 1原子%Zn— 2原子%Luの 3元系マグネシウム合金 を用いる。
[0134] 参考例としては、 98原子%Mg— 2原子%Yの 2元系マグネシウム合金を用いる。
[0135] (铸造材の組織観察)
まず、 Arガス雰囲気中で高周波溶解によって実施例 1一 6、比較例 1一 9及び参考 例それぞれの組成のインゴットを作製し、これらのインゴットから φ 10 X 60mmの形 状に切り出す。この切り出した铸造材の組織観察を SEM、 XRDによって行った。こ れらの結晶組織の写真を図 1一図 7に示す。
[0136] 図 1には、実施例 1及び比較例 1、 2それぞれの結晶組織の写真が示されている。
図 3には、実施例 2の結晶組織の写真が示されている。図 4には、実施例 3, 4の結晶 組織の写真が示されている。図 5には、実施例 5の結晶組織の写真が示されている。 図 6には、比較例 3— 9の結晶組織の写真が示されている。図 7には、参考例の結晶 組織の写真が示されている。図 10には、実施例 6の結晶組織の写真が示されている
[0137] 図 1、図 3—図 5に示すように、実施例 1一 6のマグネシウム合金には長周期積層構 造の結晶組織が形成されている。これに対し、図 1、図 6及び図 7に示すように、比較 例 1一 9及び参考例それぞれのマグネシウム合金は長周期積層構造の結晶組織が 形成されていない。
[0138] 実施例 1一 6及び比較例 1一 9それぞれの結晶組織力 以下のことが確認された。
Mg— Zn— RE3元系铸造合金では、 REが Yの場合に長周期積層構造が形成され るのに対し、 REが La、 Ce、 Pr、 Nd、 Sm、 Eu、 Gd、 Ybの場合は長周期積層構造が 形成されない。 Gdは、 La、 Ce、 Pr、 Nd、 Sm、 Eu、 Ybと少し挙動が異なっており、 G dの単独添加 (Znは必須)では長周期積層構造は形成されないが、長周期積層構造 を形成する元素である Yとの複合添加では 2. 5原子%でも長周期積層構造が形成さ れる(実施例 2、 5参照)。
また、 Yb、 Tb、 Sm、 Nd及び Gdは、 Mg— Zn— Yに添カ卩する場合には、 5. 0原子% 以下なら、長周期積層構造の形成を妨げない。また、 La、 Ce、 Pr、 Eu及び Mmは、 Mg— Zn— Yに添加する場合には、 5. 0原子%以下なら、長周期積層構造の形成を 妨げない。
[0139] 比較例 1の铸造材の結晶粒径は 10— 30 μ m程度であり、比較例 2の铸造材の結 晶粒径は 30— 100 m程度であり、実施例 1の铸造材の結晶粒径は 20— 60 mで あり、いずれも粒界に多量の晶出物が観察された。また、比較例 2の铸造材の結晶組 織では粒内に微細な析出物が存在していた。
[0140] (铸造材のビッカース硬度試験)
実施例 1、比較例 1及び比較例 2それぞれの铸造材をビッカース硬度試験により評 価した。比較例 1の铸造材のビッカース硬度は 75Hvであり、比較例 2の铸造材のビ ッカース硬度は 69Hvであり、実施例 1の铸造材のビッカース硬度は 79Hvであつた。
[0141] (ECAE加工)
上記の実施例 1及び比較例 1、 2それぞれの铸造材に 400°Cで ECAE力卩ェを施し た。 ECAEカ卩工法は、試料に均一なひずみを導入するためにパス毎に試料長手方 向を 90度ずつ回転させる方法を用いて、パス回数を 4回及び 8回で行った。この際の 加ェ速度は 2mmZ秒の一定である。
[0142] (EC AE加工材のピツカース硬度試験)
ECAE加ェを施した試料をピツカース硬度試験により評価した。 4回の ECAE加ェ 後の試料のビッカース硬度は、比較例 1の試料が 82Hv、比較例 2の試料が 76Hv、 実施例 1の試料が 96Hvであり、 ECAE加工前の铸造材と比較して 10— 20%の硬さ の向上が見られた。 8回の ECAE加工をした試料では、 4回の ECAEカ卩ェをした試 料とほとんど硬さに変化はな力つた。
[0143] (ECAE力卩工材の結晶組織)
ECAE力卩ェを施した試料の組織観察を SEM、 XRDによって行った。比較例 1、 2 の加工材では粒界に存在していた晶出物が数/ z mオーダーに分断され、微細に均 一分散しているのに対し、実施例 1の加工材では晶出物は微細に分断されることなく 、マトリックスと整合性を保ったまま剪断を受けているのが確認された。 8回の ECAE 加工をした試料では、 4回の ECAEカ卩ェをした試料とほとんど組織に変化はなカゝつた
[0144] (ECAE加工材の引張試験)
ECAE加工を施した試料を引張試験により評価した。引張試験は、押出し方向に 対して平行に初期ひずみ速度 5 X 10— 4Z秒の条件で行った。 4回の ECAE加工をし た試料の引張特性については、比較例 1、 2の試料では 200MPa以下の降伏応力と 2— 3%の伸びしか示さないのに対し、実施例 1の試料では 260MPaの降伏応力と 1 5%の伸びを示した。これは、铸造材の特性が 0. 2%耐カ 100MPa、伸び 4%である のを遥かに凌駕する特性であった。
[0145] 図 12は、実施例 1の試料に 375°Cの温度で ECAE加工を施した場合の ECAEの パス回数と降伏強度(a y)、引張強さ(σ の
UTS )、伸び (%) 関係を示すグラフである。 図 13は、実施例 1の試料に 400°Cの温度で ECAE加工を施した場合の ECAEの パス回数と降伏強度(a y)、引張強さ(σ
UTS )、伸び (%)の関係を示すグラフである。
[0146] 図 12及び図 13から ECAEのパス回数を多くして総歪量を多くしていっても、それに 従ってマグネシウム合金の強度が増加するわけではないことが分かる。
[0147] (ECAE加工材の熱処理)
4回の ECAE力卩ェを施した試料を 225°Cで等温保持し、保持時間と硬度変化の関 係を調査した。実施例 1の試料では、 225°Cの熱処理を施すことで硬さがさらに向上 し、引張試験による降伏応力は 300MPaまで向上できることがわ力つた。
[0148] また、実施例 1の铸造材を 375°Cまで ECAEの加工温度を下げると (即ち実施例 1 の铸造材を 400°Cではなく 375°Cで 4回の ECAE加工を施すと)、実施例 1の ECAE 加工材の降伏応力は 300MPaと 12%の伸びを示した。そして、この ECAE加工を施 した試料に 225°Cの熱処理を施すことにより、引張試験による降伏応力は 320MPa まで向上できることが確認された。
[0149] (実施例 6の铸造合金の押出し) 実施例 6の铸造合金は、長周期積層構造を持つ 96原子%Mg-l原子%Zn-3原 子%¥の 3元系マグネシウム合金である。この铸造合金を、温度が 300°C、断面減少 率が 90%、押出し速度 2. 5mmZ秒の条件で押出しカ卩ェした。この押出し後のマグ ネシゥム合金は、室温において 420MPaの引張降伏強度と 2%の伸びを示した。
[0150] (実施例 6— 42及び比較例 10— 15の铸造合金の押出し後の特性)
表 1に示す組成を有するマグネシウム合金の铸造材を作製し、その铸造材に表 1に 示す押出し温度及び押出し比で押出し加工を行った。この押出し加工後の押出し材 を、表 1に示す試験温度で引張試験により 0. 2%耐カ(降伏強度)、引張強さ、伸び を測定した。これらの測定結果を表 1に示している。
[0151] [表 1]
Figure imgf000035_0001
表 1は、 Znと Yの添加量が異なる種々の Mg— Zn— Y合金铸造材を、表に示す押出 し温度と押出し比で、押出し速度 2. 5mmZ秒で押出し加工を行った後の室温にお ける弓 I張試験の結果を示して 、る。
実施例 30の組成を有するマグネシウム合金の铸造材の結晶組織を図 11に示す。
[0153] 実施例 17— 20の測定結果から、第 4元素を添加することにより 3元系に比べて強 度や伸びあるいは強度と伸びの両方を改善することができることが分かる。
[0154] 高強度高靭性マグネシウム合金の実用化の観点力 すると、伸びが小さくても強度 が高ければ実用に耐え得るし、また強度がやや低くても伸びが大きければ実用に耐 え得るといえる。そこで、降伏強度 (MPa)を Sとし、伸び(%)を dとした場合、下記式( 1)及び(2)を満たすマグネシウム合金であることが実用化の観点から好ま 、。
S >— 15(1+435 · · · (1)
S≥325 - - - (2)
[0155] 表 1の測定データから上記式(1)及び(2)を満たす Mg— Zn— Y合金の組成範囲は 図 2に示すとおりである。
つまり、上記式(1)及び(2)を満たす Mg— Zn— Y合金の組成範囲は、図 2に示す K L C— D— E— F— G— H— Kの線で囲む範囲であって、 G— H— K L C D— E— Fの 線上を含まな 、範囲である。
また、上記式(1)及び(2)を満たす好ましい Mg— Zn— Y合金の組成範囲は、図 2に 示す I J C— D— E— F— G— H— Iの線で囲む範囲であって、 G— H— I J C D— E— F の線上を含まな 、範囲である。
また、上記式(1)及び(2)を満たすより好ましい Mg— Zn— Y合金の組成範囲は、図 2に示す A— B— C D— E— F— G— H— Aの線で囲む範囲であって、 G— H— A— B— C— D E— Fの線上を含まな!/、範囲である。
[0156] 尚、図 2に示す点 Iは Znが 1原子%、 Yが 0. 75原子%であり、点 Kは Znが 1原子% 、 Yが 0. 5原子%であり、点 Kは Znが 1原子%、 Yが 0. 5原子%であり、点 Lは Znが 5 Z3原子%、Yが 0. 5原子%であり、点 Jは Znが 2原子%、 Υが 0. 75原子%であり、 点 Cは Znが 5原子%、 Yが 3原子%であり、点 Dは Znが 5原子%、 Yが 5原子%であり 、点 Eは Znが 2. 5原子%、 Yが 5原子%であり、点 Fは Zn力 . 5原子%、 Yが 3. 5原 子%であり、点 Gは Zn力 . 5原子%、 Yが 2原子%であり、点 Hは Znが 1原子%、 Y 力 原子%である。 [0157] (実施例 43— 62の铸造合金の押出し後の特性)
表 2に示す組成を有する Mg— Zn— Y合金のインゴットを高周波溶解炉を用いて Ar ガス雰囲気中で溶製し、そのインゴットを切削することによってチップ形状の铸造材を 作る。次いで、チップ材を銅製の缶に充填した後で 150°Cで加熱真空脱ガスを行つ て封止した。その後、缶に充填されたチップ材を缶ごと、表 2に示す押出し温度及び 押出し比で押出し力卩ェを行った。この押出しカ卩ェ後の押出し材を、表 2に示す試験 温度で引張試験により 0. 2%耐カ(降伏強度)、引張強さ、伸びを測定した。また、押 出し材の硬さ(ピッカース硬度)についても測定した。これらの測定結果を表 2に示し ている。
[0158] [表 2]
Figure imgf000038_0001
表 2は、 Znと Yの添加量が異なる Mg— Zn— Y合金の铸造材を切削することによって 作製したチップ材を種々の押出し温度と押出し比で、押出し速度 2. 5mm/秒で押 出し固化した試料の室温における引張試験及び硬さ試験の結果を示している。
[0160] 実施例 46— 48の測定結果から、 200°Cまでの高温強度が铸造塑性カ卩工合金より ち高くなることが分かる。
[0161] 尚、本発明は上述した実施の形態及び実施例に限定されるものではなぐ本発明 の主旨を逸脱しない範囲内で種々変更して実施することが可能である。
図面の簡単な説明
[0162] [図 1]実施例 1、比較例 1及び比較例 2それぞれの铸造材の結晶組織を示す写真で ある。
[図 2]実用化の観点力も好ましいマグネシウム合金の組成範囲を示す図である。
[図 3]実施例 2— 4それぞれの铸造材の結晶組織を示す写真である。
[図 4]実施例 5及び 6それぞれの铸造材の結晶組織を示す写真である。
[図 5]実施例 7— 9それぞれの铸造材の結晶組織を示す写真である。
[図 6]比較例 3— 9それぞれの铸造材の結晶組織を示す写真である。
[図 7]参考例の铸造材の結晶組織を示す写真である。
[図 8]本発明の実施の形態 1によるマグネシウム合金の組成範囲を示す図である。
[図 9]本発明の実施の形態 7によるマグネシウム合金の組成範囲を示す図である。
[図 10]実施例 10の铸造材の結晶組織を示す写真である。
[図 11]実施例 26の铸造材の結晶組織を示す写真である。
[図 12]実施例 1の試料に 375°Cの温度で ECAE加工を施した場合の ECAEのパス 回数と降伏強度(a y)、引張強さ(σ )、伸び (%)の関係を示すグラフである。
UTS
[図 13]実施例 1の試料に 400°Cの温度で ECAE加工を施した場合の ECAEのパス 回数と降伏強度(a y)、引張強さ(σ )、伸び (%)の関係を示すグラフである。

Claims

請求の範囲 [1] Znを a原子%含有し、 Yを b原子%含有し、残部が Mgから成り、 aと bは下記式(1) 一 (3)を満たすことを特徴とする高強度高靭性マグネシウム合金。 (1) 0. 5≤a< 5. 0 (2) 0. 5< b< 5. 0 (3) 2/3a-5/6≤b [2] 請求項 1にお 、て、前記高強度高靭性マグネシウム合金は、 hep構造マグネシウム 相を有し、マグネシウム合金铸造物に塑性カ卩ェを行った塑性カ卩ェ物であることを特 徴とする高強度高靭性マグネシウム合金。 [3] Znを a原子%含有し、 Yを b原子%含有し、残部が Mgから成り、 aと bは下記式(1) 一 (3)を満たすマグネシウム合金铸造物を作り、前記マグネシウム合金铸造物に塑 性力卩ェを行った後の塑性カ卩ェ物は、常温にお!、て hep構造マグネシウム相及び長 周期積層構造相を有することを特徴とする高強度高靭性マグネシウム合金。
(1) 0. 5≤a< 5. 0
(2) 0. 5< b< 5. 0
(3) 2/3a-5/6≤b
[4] Znを a原子%含有し、 Yを b原子%含有し、残部が Mgから成り、 aと bは下記式(1) 一 (3)を満たすマグネシウム合金铸造物を作り、前記マグネシウム合金铸造物に塑 性加工を行って塑性加工物を作り、前記塑性加工物に熱処理を行った後の塑性カロ ェ物は、常温にぉ 、て hep構造マグネシウム相及び長周期積層構造相を有すること を特徴とする高強度高靭性マグネシウム合金。
(1) 0. 5≤a< 5. 0
(2) 0. 5< b< 5. 0
(3) 2/3a-5/6≤b
[5] 請求項 2乃至 4にお 、て、前記 hep構造マグネシウム相の平均粒径は 2 μ m以上で あることを特徴とする高強度高靭性マグネシウム合金。
[6]
Figure imgf000040_0001
、て、前記 hep構造マグネシウム相の転位密 度に比べて前記長周期積層構造相の転位密度が少なくとも 1桁小さいことを特徴と する高強度高靭性マグネシウム合金。
[7]
Figure imgf000041_0001
、て、前記長周期積層構造相の結晶粒の体 積分率が 5%以上である高強度高靭性マグネシウム合金。
[8] 請求項 2乃至 7のいずれか一項において、前記塑性加工物は Mgと希土類元素の 化合物、 Mgと Znの化合物、 Znと希土類元素の化合物及び Mgと Znと希土類元素の 化合物からなる析出物群力 選択される少なくとも 1種類の析出物を有していることを 特徴とする高強度高靭性マグネシウム合金。
[9] 請求項 8において、前記少なくとも 1種類の析出物の合計体積分率は 0%超 40% 以下である高強度高靭性マグネシウム合金。
[10] 請求項 2乃至 9のいずれか一項において、前記塑性加工は、圧延、押出し、 ECAE
、引抜加工、鍛造、プレス、転造、曲げ、 FSW加工及びこれらの繰り返しカ卩ェのうち 少なくとも一つを行うものである高強度高靭性マグネシウム合金。
[11] 請求項 2乃至 10のいずれか一項において、前記塑性加工を行った際の総歪量は
15以下である高強度高靭性マグネシウム合金。
[12] 請求項 2乃至 10のいずれか一項において、前記塑性加工を行った際の総歪量は
10以下である高強度高靭性マグネシウム合金。
[13] 請求項 1乃至 12のいずれか一項において、前記 Mgに Yb、 Tb、 Sm及び Ndからな る群力 選択される少なくとも 1種の元素を合計で c原子%含有し、 cは下記式 (4)及 び (5)を満たすことを特徴とする高強度高靭性マグネシウム合金。
(4) 0≤c≤3. 0
(5) 0. 2≤b + c≤6. 0
[14] 請求項 1乃至 12のいずれか一項において、前記 Mgに La、 Ce、 Pr、 Eu、 Mm及び Gdからなる群力も選択される少なくとも 1種の元素を合計で c原子%含有し、 cは下記 式 (4)及び (5)を満たすこと、又は (5)及び (6)を満たすことを特徴とする高強度高靭 '性マグネシウム合金。
(4) 0≤c< 2. 0
(5) 0. 2≤b + c≤6. 0
(6) c/b≤l. 5
[15] 請求項 1乃至 12のいずれか一項において、前記 Mgに Yb、 Tb、 Sm及び Ndからな る群力 選択される少なくとも 1種の元素を合計で c原子%含有し、 La、 Ce、 Pr、 Eu 、 Mm及び Gdからなる群力 選択される少なくとも 1種の元素を合計で d原子%含有 し、 c及び dは下記式 (4)一 (6)を満たすこと、又は(6)及び (7)を満たすことを特徴と する高強度高靭性マグネシウム合金。
(4) 0≤c≤3. 0
(5) 0≤d< 2. 0
(6) 0. 2≤b + c + d≤6. 0
(7) d/b≤l . 5
[16] Znを a原子%含有し、 Yを b原子%含有し、残部が Mgから成り、 aと bは下記式(1) 一 (3)を満たすことを特徴とする高強度高靭性マグネシウム合金。
(1) 0. 25≤a≤5. 0
(2) 0. 5≤b≤5. 0
(3) 0. 5a≤b
[17] 請求項 16にお 、て、前記高強度高靭性マグネシウム合金は、 hep構造マグネシゥ ム相を有し、マグネシウム合金铸造物を切削した後に塑性カ卩ェを行った塑性カ卩ェ物 であることを特徴とする高強度高靭性マグネシウム合金。
[18] Znを a原子%含有し、 Yを b原子%含有し、残部が Mgから成り、 aと bは下記式(1) 一 (3)を満たすマグネシウム合金铸造物を作り、前記マグネシウム合金铸造物を切 削することによってチップ形状の铸造物を作り、前記铸造物を塑性加工により固化し た塑性加工物は、常温にお!、て hep構造マグネシウム相及び長周期積層構造相を 有することを特徴とする高強度高靭性マグネシウム合金。
(1) 0. 25≤a≤5. 0
(2) 0. 5≤b≤5. 0
(3) 0. 5a≤b
[19] Znを a原子%含有し、 Yを b原子%含有し、残部が Mgから成り、 aと bは下記式(1) 一 (3)を満たすマグネシウム合金铸造物を作り、前記マグネシウム合金铸造物を切 削することによってチップ形状の铸造物を作り、前記铸造物を塑性加工により固化し た塑性加工物を作り、前記塑性加工物に熱処理を行った後の塑性加工物は、常温 において hep構造マグネシウム相及び長周期積層構造相を有することを特徴とする 高強度高靭性マグネシウム合金。
(1) 0. 25≤a≤5. 0
(2) 0. 5≤b≤5. 0
(3) 0. 5a≤b
[20] 請求項 17乃至 19において、前記 hep構造マグネシウム相の平均粒径は 0. l ^ m 以上であることを特徴とする高強度高靭性マグネシウム合金。
[21] 請求項 17乃至 20のいずれか一項において、前記 hep構造マグネシウム相の転位 密度に比べて前記長周期積層構造相の転位密度が少なくとも 1桁小さいことを特徴 とする高強度高靭性マグネシウム合金。
[22] 請求項 18乃至 21のいずれか一項において、前記長周期積層構造相の結晶粒の 体積分率が 5%以上である高強度高靭性マグネシウム合金。
[23] 請求項 17乃至 22のいずれか一項において、前記塑性加工物は Mgと希土類元素 の化合物、 Mgと Znの化合物、 Znと希土類元素の化合物及び Mgと Znと希土類元素 の化合物力 なる析出物群力 選択される少なくとも 1種類の析出物を有していること を特徴とする高強度高靭性マグネシウム合金。
[24] 請求項 23において、前記少なくとも 1種類の析出物の合計体積分率は 0%超 40% 以下である高強度高靭性マグネシウム合金。
[25] 請求項 17乃至 24のいずれか一項において、前記塑性加工は、圧延、押出し、 EC
AE、引抜加工、鍛造、プレス、転造、曲げ、 FSW加工及びこれらの繰り返しカ卩ェのう ち少なくとも一つを行うものである高強度高靭性マグネシウム合金。
[26] 請求項 17乃至 25のいずれか一項において、前記塑性加工を行った際の総歪量 は 15以下である高強度高靭性マグネシウム合金。
[27] 請求項 17乃至 25のいずれか一項において、前記塑性加工を行った際の総歪量 は 10以下である高強度高靭性マグネシウム合金。
[28] 請求項 16乃至 27のいずれか一項において、前記 Mgに Yb、 Tb、 Sm及び Ndから なる群力 選択される少なくとも 1種の元素を合計で c原子%含有し、 cは下記式 (4) 及び (5)を満たすことを特徴とする高強度高靭性マグネシウム合金。
(4) 0≤c≤3. 0
(5) 0. l≤b + c≤6. 0
[29] 請求項 16乃至 27の!、ずれか一項にお 、て、前記 Mgに La、 Ce、 Pr、 Eu、 Mm及 び Gdからなる群力も選択される少なくとも 1種の元素を合計で c原子%含有し、 cは下 記式 (4)及び (5)を満たすことを特徴とする高強度高靭性マグネシウム合金。
(4) 0≤c≤3. 0
(5) 0. l≤b + c≤6. 0
[30] 請求項 16乃至 27のいずれか一項において、前記 Mgに Yb、 Tb、 Sm及び Ndから なる群力 選択される少なくとも 1種の元素を合計で c原子%含有し、 La、 Ce、 Pr、 E u、 Mm及び Gdからなる群から選択される少なくとも 1種の元素を合計で d原子%含 有し、 c及び dは下記式 (4)一 (6)を満たすことを特徴とする高強度高靭性マグネシゥ ム合金。
(4) 0≤c≤3. 0
(5) 0≤d≤3. 0
(6) 0. l≤b + c + d≤6. 0
[31] 請求項 1乃至 30のいずれか一項において、前記 Mgに Al、 Th、 Ca、 Si、 Mn、 Zr、 Ti、 Hf、 Nb、 Ag、 Sr、 Sc、 B、 C、 Sn、 Au、 Ba、 Ge、 Bi、 Ga、 In、 Ir、 Li、 Pd、 Sb及 び V力 なる群力 選択される少なくとも 1種の元素を合計で 0原子%超 2. 5原子% 以下含有する高強度高靭性マグネシウム合金。
[32] Znを a原子%含有し、 Yを b原子%含有し、残部が Mgから成り、 aと bは下記式(1) 一 (3)を満たすマグネシウム合金铸造物を作る工程と、
前記マグネシウム合金铸造物に塑性カ卩ェを行うことにより塑性カ卩ェ物を作る工程と を具備することを特徴とする高強度高靭性マグネシウム合金の製造方法。
(1) 0. 5≤a< 5. 0
(2) 0. 5<b< 5. 0
(3) 2/3a-5/6≤b
[33] 請求項 32において、前記マグネシウム合金铸造物は hep構造マグネシウム相及び 長周期積層構造相を有することを特徴とする高強度高靭性マグネシウム合金の製造 方法。
[34] 請求項 32又は 33において、前記 Mgに Yb、 Tb、 Sm及び Ndからなる群力も選択さ れる少なくとも 1種の元素を合計で c原子%含有し、 cは下記式 (4)及び(5)を満たす ことを特徴とする高強度高靭性マグネシウム合金の製造方法。
(4) 0≤c≤3. 0
(5) 0. 2≤b + c≤6. 0
[35] 請求項 32又は 33において、前記 Mgに La、 Ce、 Pr、 Eu、 Mm及び Gdからなる群 力 選択される少なくとも 1種の元素を合計で c原子%含有し、 cは下記式 (4)及び(5 )を満たすこと、又は (5)及び (6)を満たすことを特徴とする高強度高靭性マグネシゥ ム合金。
(4) 0≤c< 2. 0
(5) 0. 2≤b + c≤6. 0
(6) c/b≤l . 5
[36] 請求項 32又は 33において、前記 Mgに Yb、 Tb、 Sm及び Ndからなる群力も選択さ れる少なくとも 1種の元素を合計で c原子%含有し、 La、 Ce、 Pr、 Eu、 Mm及び Gdか らなる群力 選択される少なくとも 1種の元素を合計で d原子%含有し、 c及び dは下 記式 (4)一 (6)を満たすこと、又は (6)及び (7)を満たすことを特徴とする高強度高靭 性マグネシウム合金の製造方法。
(4) 0≤c≤3. 0
(5) 0≤d< 2. 0
(6) 0. 2≤b + c + d≤6. 0
(7) d/b≤l . 5
[37] Znを a原子%含有し、 Yを b原子%含有し、残部が Mgから成り、 aと bは下記式(1) 一 (3)を満たすマグネシウム合金铸造物を作る工程と、
前記マグネシウム合金を切削することによってチップ形状の切削物を作る工程と、 前記切削物に塑性加工による固化を行うことにより塑性加工物を作る工程と、 を具備することを特徴とする高強度高靭性マグネシウム合金の製造方法。
(1) 0. 25≤a≤5. 0
(2) 0. 5≤b≤5. 0
(3) 0. 5a≤b
[38] 請求項 37において、前記マグネシウム合金铸造物は hep構造マグネシウム相及び 長周期積層構造相を有することを特徴とする高強度高靭性マグネシウム合金の製造 方法。
[39] 請求項 37又は 38において、前記 Mgに Yb、 Tb、 Sm及び Ndからなる群力も選択さ れる少なくとも 1種の元素を合計で c原子%含有し、 cは下記式 (4)及び(5)を満たす ことを特徴とする高強度高靭性マグネシウム合金の製造方法。
(4) 0≤c≤3. 0
(5) 0. l≤b + c≤6. 0
[40] 請求項 37又は 38において、前記 Mgに La、 Ce、 Pr、 Eu、 Mm及び Gdからなる群 力 選択される少なくとも 1種の元素を合計で c原子%含有し、 cは下記式 (4)及び(5 )を満たすことを特徴とする高強度高靭性マグネシウム合金の製造方法。
(4) 0≤c≤3. 0
(5) 0. l≤b + c≤6. 0
[41] 請求項 37又は 38において、前記 Mgに Yb、 Tb、 Sm及び Ndからなる群力も選択さ れる少なくとも 1種の元素を合計で c原子%含有し、 La、 Ce、 Pr、 Eu、 Mm及び Gdか らなる群力 選択される少なくとも 1種の元素を合計で d原子%含有し、 c及び dは下 記式 (4)一 (6)を満たすことを特徴とする高強度高靭性マグネシウム合金の製造方 法。
(4) 0≤c≤3. 0
(5) 0≤d≤3. 0
(6) 0. l≤b + c + d≤6. 0
[42] 請求項 32乃至 41のいずれか一項において、前記 Mgに Al、 Th、 Ca、 Si、 Mn、 Zr 、 Ti、 Hf、 Nb、 Ag、 Sr、 Sc、 B、 C、 Sn、 Au、 Ba、 Ge、 Bi、 Ga、 In、 Ir、 Li、 Pd、 Sb 及び V力 なる群力 選択される少なくとも 1種の元素を合計で 0原子%超 2. 5原子 %以下含有することを特徴とする高強度高靭性マグネシウム合金の製造方法。
[43] 請求項 32乃至 42のいずれか一項において、前記塑性加工は、圧延、押出し、 EC AE、引抜加工、鍛造、プレス、転造、曲げ、 FSW加工及びこれらの繰り返しカ卩ェのう ち少なくとも一つを行うものである高強度高靭性マグネシウム合金の製造方法。
[44] 請求項 32乃至 43のいずれか一項において、前記塑性加工を行う際の総歪量は 1 5以下である高強度高靭性マグネシウム合金の製造方法。
[45] 請求項 32乃至 43のいずれか一項において、前記塑性加工を行う際の総歪量は 1 0以下である高強度高靭性マグネシウム合金の製造方法。
[46] 請求項 32乃至 45のいずれか一項において、前記塑性カ卩ェ物を作る工程の後に、 前記塑性加工物に熱処理を行う工程をさらに具備する高強度高靭性マグネシウム合 金の製造方法。
[47] 請求項 46において、前記熱処理の条件は、 200°C以上 500°C未満で 10分以上 2 4時間未満であることを特徴とする高強度高靭性マグネシウム合金の製造方法。
[48] 請求項 32乃至 47のいずれか一項において、前記塑性加工を行った後のマグネシ ゥム合金における hep構造マグネシウム相の転移密度は長周期積層構造相の転位 密度に比べて 1桁以上大きいことを特徴とする高強度高靭性マグネシウム合金の製 造方法。
PCT/JP2004/017616 2003-11-26 2004-11-26 高強度高靭性マグネシウム合金及びその製造方法 WO2005052203A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/580,236 US20070125464A1 (en) 2003-11-26 2004-11-26 High strength and high toughness magnesium alloy and method of producing the same
EP04819458.3A EP1688509B1 (en) 2003-11-26 2004-11-26 High strength and high toughness magnesium alloy and method for production thereof
JP2005515823A JP3905115B2 (ja) 2003-11-26 2004-11-26 高強度高靭性マグネシウム合金及びその製造方法
ES04819458.3T ES2458559T3 (es) 2003-11-26 2004-11-26 Aleación de magnesio de alta resistencia y alta dureza, y método para la producción de la misma
KR1020067010104A KR101245203B1 (ko) 2003-11-26 2004-11-26 고강도 고인성 마그네슘 합금 및 그 제조방법
CN2004800346907A CN1886529B (zh) 2003-11-26 2004-11-26 高强度高韧性镁合金及其制造方法
US14/449,430 US10184165B2 (en) 2003-11-26 2014-08-01 High strength and high toughness magnesium alloy and method of producing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003395905 2003-11-26
JP2003-395905 2003-11-26
JP2004-096344 2004-03-29
JP2004096344 2004-03-29
JP2004287912 2004-09-30
JP2004-287912 2004-09-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/580,236 A-371-Of-International US20070125464A1 (en) 2003-11-26 2004-11-26 High strength and high toughness magnesium alloy and method of producing the same
US14/449,430 Division US10184165B2 (en) 2003-11-26 2014-08-01 High strength and high toughness magnesium alloy and method of producing the same

Publications (1)

Publication Number Publication Date
WO2005052203A1 true WO2005052203A1 (ja) 2005-06-09

Family

ID=34636962

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2004/017617 WO2005052204A1 (ja) 2003-11-26 2004-11-26 高強度高靭性マグネシウム合金及びその製造方法
PCT/JP2004/017616 WO2005052203A1 (ja) 2003-11-26 2004-11-26 高強度高靭性マグネシウム合金及びその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017617 WO2005052204A1 (ja) 2003-11-26 2004-11-26 高強度高靭性マグネシウム合金及びその製造方法

Country Status (7)

Country Link
US (4) US20070125464A1 (ja)
EP (2) EP1690954B1 (ja)
JP (2) JP3905115B2 (ja)
KR (2) KR101225530B1 (ja)
CN (1) CN101705404A (ja)
ES (1) ES2458559T3 (ja)
WO (2) WO2005052204A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006036033A1 (ja) * 2004-09-30 2006-04-06 Yoshihito Kawamura 高強度高靭性金属及びその製造方法
WO2006125278A1 (en) * 2005-05-26 2006-11-30 Cast Centre Pty Ltd Hpdc magnesium alloy
JP2007169756A (ja) * 2005-12-26 2007-07-05 Honda Motor Co Ltd 耐熱マグネシウム合金
EP1925684A2 (en) 2006-11-21 2008-05-28 Kabushiki Kaisha Kobe Seiko Sho Magnesium alloy material and production thereof
JP2008231536A (ja) * 2007-03-22 2008-10-02 Honda Motor Co Ltd マグネシウム合金及びマグネシウム合金部材の製造方法
WO2008140062A1 (ja) * 2007-05-09 2008-11-20 National Institute For Materials Science Mg基合金
DE112007000673T5 (de) 2006-03-20 2009-02-05 Chiba University Magnesiumlegierung mit hoher Festigkeit und hoher Zähigkeit und Verfahren zu deren Herstellung
JP2010503767A (ja) * 2006-09-13 2010-02-04 マグネシウム エレクトロン リミテッド ガドリニウム含有マグネシウム合金
WO2010044320A1 (ja) * 2008-10-15 2010-04-22 国立大学法人 熊本大学 マグネシウム合金及びその製造方法
WO2010101122A1 (ja) * 2009-03-02 2010-09-10 国立大学法人 熊本大学 マグネシウム合金
JP2011140701A (ja) * 2010-01-08 2011-07-21 Honda Motor Co Ltd 鋳造用マグネシウム合金及びマグネシウム鋳造体の製造方法
KR20120123187A (ko) 2011-04-19 2012-11-08 가부시키가이샤 고베 세이코쇼 마그네슘 합금재 및 엔진 부품
US8394211B2 (en) 2006-03-20 2013-03-12 Kobe Steel, Ltd. Magnesium alloy material and method for manufacturing same
JP2013170292A (ja) * 2012-02-20 2013-09-02 Kumamoto Univ マグネシウム合金材の製造方法
JP2014205920A (ja) * 2008-06-06 2014-10-30 ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング 吸収性マグネシウム合金
CN104451303A (zh) * 2014-12-03 2015-03-25 东南大学 一种生物医用镁合金及其丝材的制备方法和应用
CN105568096A (zh) * 2015-11-25 2016-05-11 山东银光钰源轻金属精密成型有限公司 一种镁合金半连铸浇铸工艺
CN106350720A (zh) * 2016-10-17 2017-01-25 南京镐极信息技术有限公司 含铪耐热铸造镁合金及其制备方法
WO2024075854A1 (ja) * 2022-10-07 2024-04-11 国立大学法人 熊本大学 マグネシウム合金及びその製造方法

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348349A (ja) * 2005-06-16 2006-12-28 Katsuyoshi Kondo マグネシウム合金粉体原料、高耐力マグネシウム合金、マグネシウム合金粉体原料の製造方法および高耐力マグネシウム合金の製造方法
FR2904005B1 (fr) * 2006-07-20 2010-06-04 Hispano Suiza Sa Procede de fabrication de pieces forgees a chaud en alliage de magnesium.
JP5175470B2 (ja) * 2006-11-30 2013-04-03 株式会社神戸製鋼所 マグネシウム合金材およびその製造方法
WO2008117890A1 (ja) 2007-03-26 2008-10-02 Toyota Jidosha Kabushiki Kaisha Mg合金およびその製造方法
KR100860091B1 (ko) * 2007-04-05 2008-09-25 주식회사 지알로이테크놀로지 축비가 감소된 마그네슘 합금 및 그 마그네슘 합금의 판재제조방법
CN100436624C (zh) * 2007-06-22 2008-11-26 西安工业大学 高强耐热变形镁合金
JP5201500B2 (ja) * 2007-09-18 2013-06-05 株式会社神戸製鋼所 マグネシウム合金材およびその製造方法
CN100532605C (zh) * 2007-12-06 2009-08-26 中国科学院长春应用化学研究所 一种镁-锌-钪合金及其制备方法
JP2009149952A (ja) * 2007-12-21 2009-07-09 Honda Motor Co Ltd 耐熱性マグネシウム合金及びその製造方法
CN101215661B (zh) * 2008-01-07 2011-05-25 吉林大学 一种强韧易变形镁合金
JP5202038B2 (ja) * 2008-03-03 2013-06-05 学校法人同志社 高靭性軽合金材料及びその製造方法
JP5531274B2 (ja) * 2009-03-27 2014-06-25 国立大学法人 熊本大学 高強度マグネシウム合金
CN101781730A (zh) * 2010-03-22 2010-07-21 北京工业大学 一种低成本耐热镁合金及其制备方法
JP5581505B2 (ja) 2010-03-31 2014-09-03 国立大学法人 熊本大学 マグネシウム合金板材
KR101863573B1 (ko) 2013-04-15 2018-06-01 고꾸리쯔다이가꾸호오진 구마모또 다이가꾸 난연 마그네슘 합금 및 그 제조 방법
CN103255329B (zh) * 2013-05-07 2015-08-26 宝山钢铁股份有限公司 一种低成本细晶弱织构镁合金薄板及其制造方法
CN103938045B (zh) * 2014-04-30 2016-04-06 东北大学 一种含钙变形镁合金及其棒材制备方法
CN104018049B (zh) * 2014-06-04 2016-11-02 北京工业大学 一种超塑性镁合金及其制备方法
CN104388783A (zh) * 2014-12-15 2015-03-04 春兴精工(常熟)有限公司 用于制备高屈服强度镁合金的方法
CN104388784A (zh) * 2014-12-15 2015-03-04 春兴精工(常熟)有限公司 用于制备高抗拉强度镁合金的方法
CN106119644A (zh) * 2015-04-15 2016-11-16 丁永新 生物相容性较好的医用镁基合金材料及其制备方法
JP6594663B2 (ja) 2015-05-27 2019-10-23 本田技研工業株式会社 耐熱性マグネシウム鋳造合金とその製造方法
US10836220B2 (en) 2015-08-06 2020-11-17 Dana Heavy Vehicle Systems Group, Llc Control and supply valve assembly for a tire pressure management system
DE112016003594T5 (de) 2015-08-06 2018-05-30 Dana Heavy Vehicle Systems Group, Llc Kanalventilbaugruppe für ein Reifendruckmanagementsystem
US10214059B2 (en) 2015-10-16 2019-02-26 Dana Heavy Vehicle Systems Group, Llc Tire pressure management system and method of decreasing tire pressure
CN105349861B (zh) * 2015-11-24 2017-07-07 北京工业大学 一种可快速轧制成形的镁金属板材及其轧制方法
CN105483484B (zh) * 2016-02-04 2017-04-05 哈尔滨工业大学(威海) 制造各向同性高强度变形镁合金的方法
CN106498252B (zh) * 2016-10-27 2018-04-13 江苏理工学院 一种高强度镁‑钕‑锌‑锆‑锂合金及其制备方法
CN107201473A (zh) * 2017-06-07 2017-09-26 深圳市威富通讯技术有限公司 一种镁合金及其制备方法、腔体滤波器
CN109355539B (zh) * 2018-11-01 2020-11-03 贵州航天风华精密设备有限公司 一种高性能镁合金
CN109182860A (zh) * 2018-11-08 2019-01-11 中信戴卡股份有限公司 一种高强韧镁合金及制备方法
CN109182861A (zh) * 2018-11-08 2019-01-11 中信戴卡股份有限公司 一种塑性变形镁合金及其制备方法
CN109628812B (zh) * 2019-01-29 2020-11-03 吉林大学 一种低合金高性能超塑性镁合金及其制备方法
US20200354818A1 (en) * 2019-05-10 2020-11-12 Terves, Llc High Strength Microalloyed Magnesium Alloy
CN110983137B (zh) * 2019-12-31 2021-11-09 哈尔滨工程大学 一种长周期堆垛有序相中孪晶增强的高阻尼镁锂合金及其制备方法
CN113005378B (zh) * 2021-03-03 2021-11-19 赣南师范大学 一种含Ag的Mg-Sm系稀土镁合金热处理工艺
CN113278857B (zh) * 2021-04-02 2022-06-28 中国兵器科学研究院宁波分院 一种高强韧镁合金及其制备方法
CN113444944B (zh) * 2021-06-30 2022-02-22 赣州虔博新材料科技有限公司 低成本高强高延展性稀土镁合金及其制备方法
CN114836664B (zh) * 2022-04-23 2023-04-14 中国兵器装备集团西南技术工程研究所 一种高强高塑耐热镁合金构件及其制备方法
CN114540686B (zh) * 2022-04-28 2023-01-17 北京理工大学 一种多元微合金化高强高模双相镁锂合金及其制备方法
CN115323204A (zh) * 2022-09-18 2022-11-11 山东天元重工有限公司 一种轻轨车多功能轻量化侧墙外镁合金板及其制备方法
CN115519116B (zh) * 2022-10-21 2024-07-23 安徽智磁新材料科技有限公司 一种高生物相容性镁基非晶合金粉末及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002066696A1 (fr) 2001-01-26 2002-08-29 Tohoku Techno Arch Co., Ltd. Alliage de magnesium a haute resistance
JP2002256370A (ja) 2001-03-05 2002-09-11 Japan Science & Technology Corp 高強度高延性Mg基合金
JP2002309332A (ja) * 2001-04-11 2002-10-23 Yonsei Univ 熱間成形性の優れた準結晶相強化マグネシウム系合金
JP2003096549A (ja) * 2001-09-25 2003-04-03 Kenji Azuma 機械的性質及び衝撃延性に優れた合金及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1035260A (en) * 1963-11-15 1966-07-06 Magnesium Elektron Ltd Improvements in or relating to magnesium base alloys
US3414407A (en) * 1966-04-26 1968-12-03 Revere Copper & Brass Inc Aluminum-zinc-magnesium alloy
JPS55128351A (en) * 1979-03-27 1980-10-04 Hitachi Zosen Corp Casting mold material for continuous casting equipment
JPH04131350A (ja) * 1990-09-21 1992-05-06 Sugitani Kinzoku Kogyo Kk 凝固温度範囲の狭い鋳造用マグネシウム合金
US5149496A (en) * 1991-02-04 1992-09-22 Allied-Signal Inc. Method of making high strength, high stiffness, magnesium base metal alloy composites
DE69222455T2 (de) * 1991-03-14 1998-04-16 Tsuyoshi Masumoto Amorphe Legierung auf Magnesiumbasis und Verfahren zur Herstellung dieser Legierung
US5552110A (en) * 1991-07-26 1996-09-03 Toyota Jidosha Kabushiki Kaisha Heat resistant magnesium alloy
JP2807374B2 (ja) * 1992-04-30 1998-10-08 ワイケイケイ株式会社 高強度マグネシウム基合金およびその集成固化材
JP3238516B2 (ja) * 1993-03-15 2001-12-17 健 増本 高強度マグネシウム合金及びその製造方法
EP0665299B1 (en) * 1993-12-17 2000-03-08 Mazda Motor Corporation Magnesium alloy cast material for plastic processing, magnesium alloy member using the same, and manufacturing method thereof
JPH10140304A (ja) * 1996-11-01 1998-05-26 Toyota Central Res & Dev Lab Inc マグネシウム合金の熱処理方法
IT1316715B1 (it) * 2000-03-03 2003-04-24 A M T Robotics S R L Procedimento per la realizzazione di tubi metallici e relativaapparecchiatura
US7879162B2 (en) * 2008-04-18 2011-02-01 United Technologies Corporation High strength aluminum alloys with L12 precipitates

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002066696A1 (fr) 2001-01-26 2002-08-29 Tohoku Techno Arch Co., Ltd. Alliage de magnesium a haute resistance
JP2002256370A (ja) 2001-03-05 2002-09-11 Japan Science & Technology Corp 高強度高延性Mg基合金
JP2002309332A (ja) * 2001-04-11 2002-10-23 Yonsei Univ 熱間成形性の優れた準結晶相強化マグネシウム系合金
JP2003096549A (ja) * 2001-09-25 2003-04-03 Kenji Azuma 機械的性質及び衝撃延性に優れた合金及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
E. ABE ET AL.: "Long-period ordered structure in a high- strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM", ACTA MATERIALIA, no. 50, 2002, pages 3845 - 3857
MATERIAL TRANSACTIONS, vol. 44, no. 4, 2003, pages 463 - 467

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006036033A1 (ja) * 2004-09-30 2006-04-06 Yoshihito Kawamura 高強度高靭性金属及びその製造方法
US20070169859A1 (en) * 2004-09-30 2007-07-26 Yoshihito Kawamura High strength and high toughness metal and method of producing the same
EP1816224A1 (en) * 2004-09-30 2007-08-08 KAWAMURA, Yoshihito High-strength and high-toughness metal and process for producing the same
EP1816224A4 (en) * 2004-09-30 2010-09-29 Yoshihito Kawamura HIGH HARDNESS AND HIGH STRENGTH METAL AND METHOD FOR MANUFACTURING THE SAME
WO2006125278A1 (en) * 2005-05-26 2006-11-30 Cast Centre Pty Ltd Hpdc magnesium alloy
JP2007169756A (ja) * 2005-12-26 2007-07-05 Honda Motor Co Ltd 耐熱マグネシウム合金
JP4700488B2 (ja) * 2005-12-26 2011-06-15 本田技研工業株式会社 耐熱マグネシウム合金
DE112007000673T5 (de) 2006-03-20 2009-02-05 Chiba University Magnesiumlegierung mit hoher Festigkeit und hoher Zähigkeit und Verfahren zu deren Herstellung
DE112007000673B4 (de) * 2006-03-20 2015-01-08 Chiba University Magnesiumlegierung mit hoher Festigkeit und hoher Zähigkeit und Verfahren zu deren Herstellung
US8394211B2 (en) 2006-03-20 2013-03-12 Kobe Steel, Ltd. Magnesium alloy material and method for manufacturing same
US8333924B2 (en) 2006-03-20 2012-12-18 National University Corporation Kumamoto University High-strength and high-toughness magnesium alloy and method for manufacturing same
JP2010503767A (ja) * 2006-09-13 2010-02-04 マグネシウム エレクトロン リミテッド ガドリニウム含有マグネシウム合金
US9562277B2 (en) 2006-11-21 2017-02-07 Kobe Steel, Ltd. Magnesium alloy material and production process thereof
JP2008150704A (ja) * 2006-11-21 2008-07-03 Kobe Steel Ltd マグネシウム合金材およびその製造方法
EP1925684A2 (en) 2006-11-21 2008-05-28 Kabushiki Kaisha Kobe Seiko Sho Magnesium alloy material and production thereof
JP2008231536A (ja) * 2007-03-22 2008-10-02 Honda Motor Co Ltd マグネシウム合金及びマグネシウム合金部材の製造方法
JP5404391B2 (ja) * 2007-05-09 2014-01-29 独立行政法人物質・材料研究機構 Mg基合金
WO2008140062A1 (ja) * 2007-05-09 2008-11-20 National Institute For Materials Science Mg基合金
JP2014205920A (ja) * 2008-06-06 2014-10-30 ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング 吸収性マグネシウム合金
WO2010044320A1 (ja) * 2008-10-15 2010-04-22 国立大学法人 熊本大学 マグネシウム合金及びその製造方法
WO2010101122A1 (ja) * 2009-03-02 2010-09-10 国立大学法人 熊本大学 マグネシウム合金
JP2010202901A (ja) * 2009-03-02 2010-09-16 Kumamoto Univ マグネシウム合金
JP2011140701A (ja) * 2010-01-08 2011-07-21 Honda Motor Co Ltd 鋳造用マグネシウム合金及びマグネシウム鋳造体の製造方法
KR20120123187A (ko) 2011-04-19 2012-11-08 가부시키가이샤 고베 세이코쇼 마그네슘 합금재 및 엔진 부품
JP2013170292A (ja) * 2012-02-20 2013-09-02 Kumamoto Univ マグネシウム合金材の製造方法
CN104451303A (zh) * 2014-12-03 2015-03-25 东南大学 一种生物医用镁合金及其丝材的制备方法和应用
CN105568096A (zh) * 2015-11-25 2016-05-11 山东银光钰源轻金属精密成型有限公司 一种镁合金半连铸浇铸工艺
CN106350720A (zh) * 2016-10-17 2017-01-25 南京镐极信息技术有限公司 含铪耐热铸造镁合金及其制备方法
WO2024075854A1 (ja) * 2022-10-07 2024-04-11 国立大学法人 熊本大学 マグネシウム合金及びその製造方法

Also Published As

Publication number Publication date
US20150013854A1 (en) 2015-01-15
EP1690954B1 (en) 2014-10-08
CN101705404A (zh) 2010-05-12
EP1690954A1 (en) 2006-08-16
KR20060123192A (ko) 2006-12-01
US20070102072A1 (en) 2007-05-10
JPWO2005052203A1 (ja) 2007-12-06
JPWO2005052204A1 (ja) 2007-12-06
ES2458559T3 (es) 2014-05-06
KR101245203B1 (ko) 2013-03-19
WO2005052204A1 (ja) 2005-06-09
US20070125464A1 (en) 2007-06-07
EP1688509A1 (en) 2006-08-09
KR101225530B1 (ko) 2013-01-23
EP1688509A4 (en) 2008-07-09
JP3905115B2 (ja) 2007-04-18
US10184165B2 (en) 2019-01-22
JP3940154B2 (ja) 2007-07-04
US20150020931A1 (en) 2015-01-22
EP1688509B1 (en) 2014-01-15
KR20060100450A (ko) 2006-09-20
EP1690954A4 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
WO2005052203A1 (ja) 高強度高靭性マグネシウム合金及びその製造方法
JP4139841B2 (ja) 鋳造物及びマグネシウム合金の製造方法
EP1770180B1 (en) High toughness magnesium-base alloy, drive component using same, and method for producing high toughness magnesium-base alloy material
JP5239022B2 (ja) 高強度高靭性マグネシウム合金及びその製造方法
JP5089945B2 (ja) 高耐食性を有する高強度マグネシウム合金
JP6361051B2 (ja) 難燃マグネシウム合金及びその製造方法
JP5618276B2 (ja) 高耐食性を有する高強度マグネシウム合金及びその製造方法
JP2008075183A (ja) 高強度高靭性金属及びその製造方法
WO2004085689A1 (ja) 高強度高靭性マグネシウム合金及びその製造方法
CN1886529B (zh) 高强度高韧性镁合金及其制造方法
JP2865499B2 (ja) 超塑性アルミニウム基合金材料及び超塑性合金材料の製造方法
EP2412834B1 (en) Mg ALLOY MEMBER
CN110193597B (zh) 制造结晶铝-铁-硅合金的方法
JPH05302138A (ja) アルミニウム基合金集成固化材並びにその製造方法
JPH08232034A (ja) 超塑性アルミニウム合金材料およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480034690.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515823

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007125464

Country of ref document: US

Ref document number: 10580236

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067010104

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004819458

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004819458

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067010104

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10580236

Country of ref document: US