WO2005049984A1 - Brennkraftmaschine mit abgasreinigungsanlage und verfahren zur reinigung des abgases einer brennkraftmaschine - Google Patents

Brennkraftmaschine mit abgasreinigungsanlage und verfahren zur reinigung des abgases einer brennkraftmaschine Download PDF

Info

Publication number
WO2005049984A1
WO2005049984A1 PCT/EP2004/010448 EP2004010448W WO2005049984A1 WO 2005049984 A1 WO2005049984 A1 WO 2005049984A1 EP 2004010448 W EP2004010448 W EP 2004010448W WO 2005049984 A1 WO2005049984 A1 WO 2005049984A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen oxide
oxide storage
exhaust gas
catalytic converter
operating mode
Prior art date
Application number
PCT/EP2004/010448
Other languages
English (en)
French (fr)
Inventor
Thomas Beckmann
Alexander Massner
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34485055&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005049984(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Priority to US13/226,882 priority Critical patent/USRE46512E1/en
Priority to US10/576,959 priority patent/US7584605B2/en
Publication of WO2005049984A1 publication Critical patent/WO2005049984A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/12Combinations of different methods of purification absorption or adsorption, and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/14Combinations of different methods of purification absorption or adsorption, and filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an internal combustion engine with an exhaust gas cleaning system according to the preamble of claim 1 and a method for cleaning the exhaust gas of an internal combustion engine according to the preamble of claim 10.
  • an exhaust gas purification system for an internal combustion engine with a nitrogen oxide storage catalytic converter in which ammonia (NH3) is released in the regeneration phases of the nitrogen oxide storage catalytic converter and is used to remove nitrogen oxides (NOx) in a direction of flow downstream SCR catalyst is used.
  • NH3 ammonia
  • NOx nitrogen oxides
  • the nitrogen oxide storage catalytic converter is supplied with a comparatively strongly enriched exhaust gas with reducing agents in a first phase.
  • the exhaust gas containing less reducing agent is fed to the nitrogen oxide storage catalytic converter.
  • NOx is stored in the catalyst material of the nitrogen oxide storage catalytic converter reduced NH3, which is fed to and stored in the downstream SCR catalytic converter.
  • NOx passing through the nitrogen oxide storage catalytic converter can be selectively reduced in the SCR catalytic converter.
  • the NH3 previously stored in the SCR catalytic converter serves as a selectively acting reducing agent. In this way, the nitrogen oxide reducing properties of the nitrogen oxide storage catalytic converter and the SCR catalytic converter complement one another. A sufficient supply of the SCR catalyst with NH3 is important for a high NOx reduction.
  • the object of the invention is to provide an internal combustion engine with an exhaust gas cleaning system and a method for cleaning the exhaust gas of an internal combustion engine of the type mentioned in the introduction, in which the highest possible nitrogen oxide cleaning effect is achieved.
  • the internal combustion engine according to the invention has an exhaust gas purification system with a nitrogen oxide storage catalytic converter and an SCR catalytic converter connected downstream of the nitrogen oxide storage catalytic converter, the nitrogen oxide storage catalytic converter in a first operating mode exhaust gas with an excess of oxidizing components and in a second operating mode exhaust gas with an excess reducing ingredients can be supplied.
  • a third operating mode is provided after the first operating mode and before the second operating mode, in which an exhaust gas can be fed to the nitrogen oxide storage catalytic converter, which exhaust gas has a lower oxidizing content than the first operating mode Has components and has a lower content of reducing components compared to the second operating mode.
  • the gas of the first operating mode present in the cavities of the catalyst body is replaced by a gas which has a lower content of reactive components than the first operating mode and the second operating mode.
  • the SCR catalytic converter downstream of the nitrogen oxide storage catalytic converter can therefore be supplied with a comparatively large amount of NH3, which accordingly improves its effectiveness.
  • the oxygen content of the exhaust gas present in the nitrogen oxide storage catalytic converter is reduced, thereby improving the NH3 yield in the NOx reduction in the storage catalytic converter.
  • the setting of the exhaust gas composition in the individual operating modes can be carried out by the internal combustion engine, which can be designed as a diesel engine or as a gasoline engine and has suitable control devices that enable corresponding internal combustion engine operating modes.
  • the setting of the exhaust gas composition can also be made or supported significantly in at least one of the operating modes by a gas-supplying additional device.
  • the nitrogen oxide storage catalytic converter is configured as an arrangement of a first nitrogen oxide storage catalytic converter element and a second nitrogen oxide storage catalytic converter element that is connected in flow parallel to the first nitrogen oxide storage catalytic converter element.
  • a first nitrogen oxide storage catalytic converter element and a second nitrogen oxide storage catalytic converter element that is connected in flow parallel to the first nitrogen oxide storage catalytic converter element.
  • This can also be used to improve the supply of NH3 to the SCR catalytic converter connected downstream of the nitrogen oxide storage catalytic converter elements.
  • the separate activation of the nitrogen oxide storage catalytic converter elements can be achieved, for example, by connecting them to different cylinders of the internal combustion engine and operating the cylinders with different air-fuel mixtures.
  • the first nitrogen oxide storage catalyst element and the second nitrogen oxide storage catalyst element can be operated alternately either in the first operating mode or in the second and third operating modes.
  • the first nitrogen oxide storage catalytic converter element is acted upon by a lean-operated cylinder with oxidizing exhaust gas, while the second nitrogen oxide storage catalytic converter element is operated in the third or in the second operating mode and is supplied with low-oxygen or reducing exhaust gas.
  • a switching device is provided such that the nitrogen oxide storage catalytic converter element operated in the second operating mode and / or in the third operating mode can be at least partially separated from the exhaust gas flow emitted by the internal combustion engine.
  • the exhaust gas flow can thus be reduced to a greater or lesser extent by the nitrogen oxide storage catalytic converter element operated in the second operating mode and / or in the third operating mode, which makes it easier to change the exhaust gas composition in the nitrogen oxide storage catalytic converter element because a smaller amount of gas is affected by this.
  • the switching device can, for example, redirect the exhaust gas flow kende exhaust valve, which is connected upstream of the nitrogen oxide storage catalytic converter elements.
  • a gas supply device is provided such that the nitrogen oxide storage catalytic converter operated in the second operating mode and / or in the third operating mode can be acted upon by a gas stream supplied by the gas supply device.
  • the depletion of the exhaust gas with oxygen or the enrichment of the exhaust gas with reducing agent can be carried out at least partially by the gas supply device for the nitrogen oxide storage catalytic converter operated in the third and / or in the second operating mode. The change in the operation of the internal combustion engine can therefore fail.
  • a single or several combined cylinders of the internal combustion engine or an external unit can be provided as the gas delivery device.
  • the second-mentioned case is particularly advantageous in the case of a parallel connection of two nitrogen oxide storage catalytic converter elements if the nitrogen oxide storage catalytic converter element affected by the gas exchange can be completely or partially separated from the main exhaust gas flow of the internal combustion engine. If necessary, a change in the operation of the internal combustion engine can then be dispensed with entirely and the internal combustion engine can be operated lean continuously. The change in the gas composition in the third or in the second operating mode compared to the first operating mode is then carried out exclusively by the gas delivery unit.
  • a gas stream which is low in oxygen can be supplied by the gas supply device.
  • the gas delivery device preferably enables an oxygen-poor gas with different reducing agent content to deliver.
  • the oxygen depletion of the exhaust gas which flows through the nitrogen oxide storage catalytic converter operated in the third operating mode, is carried out predominantly or entirely by the gas supply device.
  • the reducing agent enrichment of the exhaust gas in the second operating mode can also be carried out by the gas supply device.
  • the gas supply device is designed as a fuel reformer or as a burner.
  • the fuel reformer or the burner is preferably operated with the fuel of the internal combustion engine.
  • the fuel preparation carried out in the gas supply unit can be catalytically supported.
  • the nitrogen oxide storage catalytic converter is preceded by an oxidation-catalytically active catalytic element.
  • an oxidation catalyst or a three-way catalyst is suitable.
  • the oxidation-catalytically active catalyst element catalyzes the reaction of reducing agents with oxygen, so that an excess of oxygen or reducing agents in the exhaust gas can be reduced.
  • a particle filter is connected upstream of the SCR catalytic converter.
  • the exhaust gas cleaning effect of the exhaust gas cleaning system also includes particle reduction, which is particularly important in the case of a combustion engine designed as a diesel engine. engine is advantageous.
  • the particle filter can be arranged directly upstream of the SCR catalytic converter or can also be connected upstream of the nitrogen oxide storage catalytic converter.
  • the method according to the invention for cleaning the exhaust gas of an internal combustion engine provides that exhaust gas with an excess of oxidizing constituents is fed to a nitrogen oxide storage catalytic converter in a first process step, nitrogen oxides being removed from the exhaust gas by being stored in the nitrogen oxide storage catalytic converter, and exhaust gas in a second process step is supplied with an excess of reducing constituents, nitrogen oxide stored in the nitrogen oxide storage catalytic converter being at least partially reduced to NH3 and in a third process step carried out after the first process step and before the second process step, an exhaust gas which is supplied to the nitrogen oxide storage catalytic converter first process step has a lower content of oxidizing components and compared to the second process step has a lower content of reducing components.
  • the feed lines to the nitrogen oxide storage catalytic converter and the nitrogen oxide storage catalytic converter itself are flushed with an almost inert exhaust gas and the comparatively large oxygen content of the exhaust gas in the cavities of the catalyst is reduced.
  • reactions occurring in the nitrogen oxide storage catalytic converter during the transition to the second process step are less violent, and favorable conditions are set for the NH3 formation in the second process step in the nitrogen oxide storage catalytic converter.
  • the third method step is ended at the earliest when the nitrogen oxide storage catalytic converter has largely been delivered in the third method step.
  • fert exhaust gas is filled.
  • the filling of the catalyst is to be understood as the filling of the cavities present in it. This ensures that the gas column resulting from the first process step is predominantly flushed out of the nitrogen oxide storage catalytic converter with a comparatively high oxygen content.
  • the first nitrogen oxide storage catalyst element and the second nitrogen oxide storage catalyst element are alternately switched in the first process step or in the second and third process steps Process step operated.
  • continuous operation of the exhaust gas purification system with regard to NOx removal is achieved by incorporation in the catalyst material of the nitrogen oxide storage catalytic converter and by reduction in the SCR catalytic converter.
  • the exhaust gas supplied to the nitrogen oxide storage catalytic converter in the second method step and / or in the third method step is at least partially supplied by a gas delivery unit designed as a fuel reformer or as a burner.
  • the oxygen content of the exhaust gas is in the second and third method step upstream of the nitrogen oxide storage catalytic converter.
  • an oxidation catalytic catalyst element is preferably connected upstream of the nitrogen oxide storage catalyst.
  • the temperature of the nitrogen oxide storage catalytic converter element is influenced by adjusting the switching device in accordance with the temperature dependence of its effectiveness.
  • the switching device which is designed, for example, as an exhaust gas flap, is preferably actuated such that a predeterminable proportion of the oxidizing exhaust gas is conducted into the exhaust gas branch, in which the nitrogen oxide storage catalytic converter element operated in the third or in the second method step is arranged.
  • the reaction heat used to heat the downstream components is released by the reaction of oxygen with reducing agents. It can thus be achieved that these components are operated in a temperature range of optimal effectiveness.
  • 1 shows a schematic block diagram of a first embodiment of an internal combustion engine with associated exhaust gas cleaning system with nitrogen oxide storage catalytic converter and SCR catalytic converter
  • 2 shows a diagram for the time profile of the air ratio ⁇ A of the exhaust gas supplied to the nitrogen oxide storage catalytic converter in different operating modes
  • Fig. 3 is a schematic block diagram of a second embodiment of an internal combustion engine with associated exhaust gas purification system with nitrogen oxide storage catalyst and SCR catalyst and
  • Fig. 4 is a schematic block diagram of a third embodiment of an internal combustion engine with associated exhaust gas cleaning system with nitrogen oxide storage catalyst and SCR catalyst.
  • FIG. 1 schematically shows an internal combustion engine 1 with an exhaust gas cleaning system, which comprises a nitrogen oxide storage catalytic converter 4 and an SCR catalytic converter 5 connected downstream of the nitrogen oxide storage catalytic converter 4, which are arranged in an exhaust gas line 3 of the internal combustion engine 1.
  • the catalysts 4, 5 are preferably designed as honeycomb monoliths, which are traversed by channels through which the exhaust gas supplied can flow.
  • the internal combustion engine 1 can also be designed as a lean-gasoline engine, it is assumed below that the internal combustion engine 1 is a diesel engine.
  • the cylinders of the diesel engine 1 give their exhaust gas to the exhaust pipe 3 by way of example via a common exhaust manifold 2.
  • sensors are provided for detecting the exhaust gas composition and the temperature of the exhaust gas and the catalysts 4, 5. These can serve as signal generators, for example, for regulating the air-fuel ratio of the air-fuel mixture burned in the cylinders of the diesel engine 1.
  • an engine control unit not shown for reasons of clarity, is provided.
  • other components not shown here such as an exhaust gas turbocharger or exhaust gas recirculation, can be assigned to the diesel engine 1.
  • the diesel engine 1 can preferably be controlled such that it can be operated with changing air ratios ⁇ M.
  • the air ratio ⁇ M is understood as usual to mean the stoichiometric ratio of the combustion air and the fuel supplied to the cylinders of the diesel engine. ⁇ values greater than one correspond to lean operation and ⁇ values less than one correspond to rich operation of the diesel engine.
  • a lean exhaust gas with an excess of oxidizing components such as, in particular, oxygen results from a lean engine operation and a rich exhaust gas with an excess of reducing components such as carbon monoxide, hydrogen and hydrocarbons in a rich engine operation.
  • the exhaust gas composition is characterized below by the air ratio ⁇ A analogous to the above definition.
  • the nitrogen oxide storage catalytic converter 4 has the ability to store NOx present in the exhaust gas under oxidizing conditions, mainly through chemical bonding as nitrate to the coating material.
  • this operating mode referred to below as the first operating mode
  • increasing saturation occurs, which is why the nitrogen oxide storage catalytic converter has to be regenerated from time to time in a so-called nitrate regeneration.
  • NOx is released under reducing conditions and largely converted into nitrogen and NH3.
  • the operating conditions set here are collectively referred to below as the second operating mode.
  • the SCR catalytic converter 5 arranged downstream of the nitrogen oxide storage catalytic converter 4 has the e.g. also known property from power plant technology to be able to store NH3 under reducing conditions and to use this stored NH3 as well as possibly supplied NH3 as a reaction partner in a selective catalytic reduction reaction under nitrogen formation for the chemical reduction of NOx under oxidizing conditions.
  • the latter property is used in particular to render NOx supplied to the SCR catalytic converter 5 harmless.
  • the SCR catalytic converter 5 receives NOx in the arrangement according to FIG. 1, for example, by increasing NOx slip due to the increasing decrease in the NOx absorption capacity of the nitrogen oxide storage catalytic converter 4 in the course of the NOx storage when the diesel engine is operating lean.
  • a sudden breakthrough of suddenly released nitrogen oxides can occur at the beginning of nitrate regeneration.
  • a prerequisite for the high effectiveness of the SCR catalytic converter 5 is, however, that appropriate amounts of NH3 have previously been made available for storage. Since the nitrogen oxide storage catalytic converter 4 in the arrangement according to FIG.
  • a hindrance to the formation of NH3 is avoided by reducing the oxygen content of the exhaust gas present in the cavities of the nitrogen oxide storage catalyst 4 before setting reducing conditions in the nitrogen oxide storage catalyst 4.
  • This is achieved by setting a third operating mode after the first operating mode and before the second operating mode, in which an exhaust gas is fed to the nitrogen oxide storage catalytic converter 4, which has a reduced oxygen content compared to the first operating mode and a reduced reducing agent content compared to the second operating mode having .
  • FIG. 2 schematically shows a preferred time course of the air ratio ⁇ A of the exhaust gas supplied to the nitrogen oxide storage catalytic converter in the different operating modes.
  • the first operating mode I is set, in which a lean exhaust gas with a high oxygen content is fed to the nitrogen oxide storage catalytic converter 4.
  • ⁇ M 3.
  • NOx emitted by the diesel engine 1 and contained in the exhaust gas is at least partially introduced into the catalytic converter.
  • Material of the nitrogen oxide storage catalyst 4 preferably in the form of nitrates, stored and thus at least partially removed from the exhaust gas. Any NOx (NOx slip) passing through the nitrogen oxide storage catalytic converter 4 is at least partially made harmless by reduction in the downstream SCR catalytic converter 5.
  • the third operating mode III is switched over at the time t0.
  • the nitrogen oxide storage catalytic converter 4 is supplied with an exhaust gas with an oxygen content that is greatly reduced compared to the first operating mode I.
  • the exhaust gas supplied to the nitrogen oxide storage catalytic converter 4 has an oxygen excess of one percent or less and has a weakly oxidizing effect.
  • the strongly oxygen-containing exhaust gas of the previously set first operating mode I is flushed out of the cavities of the nitrogen oxide storage catalytic converter 4. Because of the slight excess of oxygen in the exhaust gas, there is no or no appreciable reduction in stored nitrogen oxides in the nitrogen oxide storage catalytic converter 4.
  • the set third operating mode III is preferred ended at a time t1 at which the purging process is completed and the cavities of the nitrogen oxide storage catalytic converter 4 are predominantly filled with the low-oxygen and low-reducing agent exhaust gas provided in the third operating mode III.
  • the system is switched to second operating mode II and the nitrogen oxide storage catalytic converter 4 is supplied with a reducing exhaust gas with an air ratio ⁇ A, preferably between 0.80 and 0.95, the nitrate regeneration of the nitrogen oxide storage catalytic converter 4 he follows.
  • the NOx stored in the nitrogen oxide storage catalytic converter 4 is reduced to a comparatively large extent to NH3 and fed to the subsequent SCR catalytic converter 5 and stored there.
  • a corresponding reduction in the air ratio ⁇ M of the total air / fuel mixture supplied to the diesel engine 1 can be provided to provide the reducing agent-containing exhaust gas in the second operating mode II.
  • the diesel engine 1 is operated in a correspondingly rich manner with an air ratio ⁇ M which corresponds to the air ratio ⁇ A of the exhaust gas.
  • fuel can also be re-injected and, if necessary, throttling air-side at the same time.
  • the exhaust gas supplied to the nitrogen oxide storage catalytic converter 4 is enriched with reducing agents in such a way that only a predeterminable part of the cylinders of the diesel engine 1 are operated in rich form and the other part of the cylinders continues to be set in the previous third operating mode III Air ratio.
  • a separate gas supply unit (not shown in FIG. 1) can be provided for enriching the exhaust gas supplied to the nitrogen oxide storage catalytic converter 4 with reducing agents. This can be designed, for example, as a fuel reformer or fuel burner. In this case, the gas supplied by the gas supply unit is fed upstream of the nitrogen oxide storage catalytic converter 4 to the exhaust gas line 3.
  • a reducing agent present on board the vehicle for example the diesel fuel
  • the exhaust gas upstream of the nitrogen oxide storage catalytic converter 4 for the enrichment of the exhaust gas. Because of the enrichment of the exhaust gas, which is carried out after the engine, operation of the diesel engine 1 with an air ratio of ⁇ M less than 1.0, which is often difficult to set, can be avoided.
  • the second operating mode II is ended at the time t2 and in a further method step the conditions of the first operating mode I are set again when the nitrate regeneration of the nitrogen oxide storage catalytic converter 4 has been completed. This can be determined or initiated by sensors or by an appropriate calculation model.
  • the cleaning effect of the exhaust gas cleaning system can be further improved in connection with the method steps explained if an oxidation-catalytic catalyst element (not shown in FIG. 1) is arranged in the exhaust pipe 3 upstream of the nitrogen oxide storage catalytic converter 4.
  • This can effectively reduce or remove oxygen components or reducing agent components in the exhaust gas.
  • the exhaust gas flowing out of the catalyst element can thus be regarded as comparatively inert, since it has a reduced content of reactive components.
  • this can heat the exhaust gas and downstream components can be achieved.
  • a particle filter (not shown in FIG. 1), which can expediently be arranged upstream of the SCR catalytic converter 5 in the exhaust line 3.
  • an oxygen-containing gas is provided by the diesel engine 1, which is additionally enriched with reducing agents in the engine by post-injections or by means of the gas supply unit mentioned or by introducing liquid or vaporized fuel into the exhaust line.
  • the diesel engine 1 which is additionally enriched with reducing agents in the engine by post-injections or by means of the gas supply unit mentioned or by introducing liquid or vaporized fuel into the exhaust line.
  • FIG. 3 shows a schematic block diagram of a further advantageous embodiment of the internal combustion engine according to the invention with an associated exhaust gas purification system with nitrogen oxide storage catalytic converter and SCR catalytic converter, functionally identical components being provided with the same reference numerals in relation to FIG. 1.
  • the embodiment shown in FIG. 3 differs from that of FIG. 1 in that the nitrogen oxide storage catalytic converter 4 is designed as a parallel arrangement of a first nitrogen oxide storage catalytic converter element 4a and a second nitrogen oxide storage catalytic converter element 4b.
  • a switching device 6 is provided which allows the exhaust gas flow supplied through the exhaust gas line 3 to be distributed over the exhaust gas line branches 3a and 3b to the nitrogen oxide storage catalytic converter elements 4a, 4b.
  • the switching device 6 is preferably designed as a changeover flap such that the exhaust gas essentially either the first nitrogen oxide storage catalytic converter element 4a or the second nitrogen oxide storage catalytic converter. element 4b can be fed.
  • the exhaust gas line branches 3a, 3b are brought together on the output side of the nitrogen oxide storage catalytic converter elements 4a, 4b, so that the exhaust gas flowing out of the nitrogen oxide storage catalytic converter elements 4a, 4b can be fed to the SCR catalytic converter 5.
  • a gas supply unit 8 is provided, by means of which an additional fluid can be supplied to the first nitrogen oxide storage catalyst element 4a and / or the second nitrogen oxide storage catalyst element 4b via the switching device 6.
  • the gas delivery unit 6 can be designed, for example, as a metering unit and / or an evaporator for a liquid reducing agent present on board an associated vehicle. However, it is preferably designed as a fuel burner or as a fuel reformer, with which a fuel available on board the associated vehicle can be burned or converted into a gas by a reforming process. In the following, a fuel reformer 6 is referred to in a simplified manner.
  • the fuel reformer 6 can be operated with an air ratio ⁇ R that varies within wide limits.
  • the former case it produces a weakly oxidizing gas with a low oxygen content of approximately 0.5% and in the second case an almost oxygen-free, reducing gas with a comparatively high reducing agent content.
  • the reducing gas a high hydrogen content, which is achieved, for example, by a catalytically supported reforming process, possibly using the water gas shift reaction.
  • the first nitrogen oxide storage catalytic converter element 4a arranged in the exhaust branch 3a is considered. This is initially operated in the first operating mode I.
  • the switching device 6 is switched in such a way that the first nitrogen oxide storage catalytic converter element 4a is predominantly acted upon by the exhaust gas flow of the lean diesel engine 1, whereby it removes NOx from the exhaust gas by incorporation into the catalyst material. Any remaining NOx passing through as NOx slip are broken down in the downstream SCR catalytic converter 5.
  • the switching device 6 is switched over, so that now the first nitrogen oxide storage catalytic converter element 4a is predominantly separated from the exhaust gas flow of the diesel engine 1, which is still operated lean.
  • the first nitrogen oxide storage catalytic converter element 4a is supplied with a weakly oxidizing reformer gas by the fuel reformer 6 via the switching device 6 and is therefore operated in the third operating mode III.
  • the highly oxygen-containing gas from the previously set first operating mode I is flushed out of the exhaust line 3a and the first nitrogen oxide storage catalyst element 4a and is largely replaced by the weakly oxidizing reformer gas.
  • the purging process is complete, what is required after supplying a quantity of reformer gas determined by the present geometries If this is the case, with the setting of the switching device 6 unchanged, the first nitrogen oxide storage catalyst element 4a is acted upon by reducing, oxygen-free reformer gas and is thus operated in the second operating mode II. As a result, the nitrate regeneration of the first nitrogen oxide storage catalyst element 4a is started, a particularly large part of the stored NOx being reduced to NH3 due to the previous flushing process. This is fed to the downstream SCR catalytic converter 5 and stored there.
  • the reducing reformer gas therefore has a correspondingly long residence time in the first nitrogen oxide storage catalyst element 4a, which likewise improves the NH3 yield.
  • the reformer gas supplied to the first nitrogen oxide storage catalyst element 4a in the second operating mode II has a high hydrogen content.
  • the switching device 6 is switched back so that the lean exhaust gas emitted by the diesel engine 1 is again passed mainly via the first nitrogen oxide storage catalytic converter element 4a.
  • the second nitrogen oxide storage catalyst element 4b is operated with a time delay and complementary to the operating modes I, II, III set for the first nitrogen oxide storage catalyst element 4a.
  • the first operating mode I is set for the first nitrogen oxide storage catalyst element 4a
  • the second nitrogen oxide storage catalyst element 4b is therefore im second operating mode II or operated in third operating mode III.
  • FIG. 4 shows a schematic block diagram of a further advantageous embodiment of the internal combustion engine according to the invention with an associated exhaust gas purification system with nitrogen oxide storage catalytic converter and SCR catalytic converter, functionally identical components being designated with the same reference symbols in relation to FIG. 3.
  • the embodiment shown in FIG. 4 differs from that of FIG. 3 in that a first oxidation catalyst element 7a precedes the first nitrogen oxide storage catalyst element 4a in the exhaust line branch 3a and a second oxidation catalyst element 7b precedes the second nitrogen oxide storage catalyst element 4b in the exhaust line branch 3b is.
  • the embodiment shown in FIG. 4 is in principle just as operable as the one shown in FIG. 3. However, there are some additional options. To avoid repetitions, only the differences compared to the embodiment shown in FIG. 3 are discussed below. These differences are essentially due to the oxidation catalyst elements 7a, 7b. These are able to reduce the oxygen content of the exhaust gas supplied to them in accordance with the reducing agent present in the exhaust gas. Thus, in particular in the case of a nitrogen oxide storage catalytic converter element 4a, 4b operated in the third operating mode III, it can be avoided that oxygen-containing exhaust gas from the lean operated diesel engine 1 is supplied to it by a leakage of the switching device 6 caused by the apparatus or specifically set.
  • the respective exhaust branch 3a, 3b from the fuel reformer 6 is supplied with reducing reformer gas.
  • the force is preferably Material reformer operated so that the amount of reducing agent supplied by him via the switching device 6 to the respective exhaust branch 3a, 3b is sufficient to remove the oxygen flowing into the exhaust branch via the switching device 6 from the exhaust gas.
  • oxygen which interferes with the NH3 formation is flushed out of the corresponding exhaust gas line branch 3a, 3b or the nitrogen oxide storage catalyst element 4a, 4b or its penetration is avoided.
  • the reformer is operated in such a way that the air ratio ⁇ A corresponding to the third operating mode III or the second operating mode II according to FIG.
  • the respective nitrogen oxide storage catalyst element 4a, 4b can thereby be heated to the optimum operating temperature.
  • this also enables increased heating, for example to carry out sulfur regeneration.
  • a gas delivery device designed as a fuel metering device for each of the exhaust gas line branches 3a, 3b, by means of which liquid or vaporized fuel can be supplied to the exhaust gas on the input side of the oxidation catalyst elements 7a, 7b.
  • the switching device 6 Through a quantity-controlled or regulated supply of fuel in connection with a correspondingly set supply of lean exhaust gas via the switching device 6, the conditions required for the individual operating modes I, II, III can be set in the exhaust line branches 3a, 3b.

Abstract

Es wird eine Brennkraftmaschine und ein Abgasreinigungsverfahren für eine Brennkraftmaschine mit einer Abgasreinigungsanlage, umfassend einen NOx-Speicherkatalysator und einen nachgeschalteten SCR-Katalysator vorgeschlagen, wobei dem NOx-Speicherkatalysator in einem ersten Betriebsmodus ein oxidierendes Abgas und in einem zweiten Betriebsmodus ein reduzierendes Abgas zuführbar ist. Dabei entfernt der Nox-Speicherkatalysator im ersten Betriebsmodus NOx durch Einlagerung aus dem Abgas. Im zweiten Betriebsmodus erfolgt im NOx­-Speicherkatalysator eine wenigstens teilweise Reduktion von eingelagertem NOx zu NH3. Erfindungsgemäß ist ein dritter Betriebsmodus zeitlich nach dem ersten und vor dem zweiten Betriebsmodus vorgesehen, in welchem dem Nox-Speicherkatalysator ein Abgas zuführbar ist, welches gegenüber dem ersten Betriebsmodus einen geringeren Gehalt an oxidierenden Bestandteilen und gegenüber dem zweiten Betriebsmodus einen geringeren Gehalt an reduzierenden Bestandteilen aufweist.

Description

Brennkraftmaschine mit Abgasreinigungsanlage und Verfahren zur Reinigung des Abgases einer Brennkraftmaschine
Die Erfindung betrifft eine Brennkraftmaschine mit einer Abgasreinigungsanlage gemäß dem Oberbegriff des Anspruchs 1 sowie ein Verfahren zur Reinigung des Abgases einer Brennkraftmaschine gemäß dem Oberbegriff des Anspruchs 10.
Aus der Offenlegungsschrift DE 101 13 947 AI ist eine Abgasreinigungsanlage für eine Brennkraftmaschine mit einem Stickoxid-Speicherkatalysator bekannt, bei welcher in Regenerationsphasen des Stickoxid-Speicherkatalysators von diesem Ammoniak (NH3) abgegeben wird, welches zur Entfernung von Stickoxiden (NOx) in einem in Strömungsrichtung nachgeschalteten SCR-Katalysator genutzt wird. In dem entsprechenden Abgasreinigungsverfahren wird dem Abgas bei einem mageren Betrieb der Brennkraftmaschine NOx durch Einlagerung in das Katalysatormaterial des Stickoxid-Speicherkatalysators entzogen. Nach Sättigung wird der Stickoxid-Speicherkatalysator bei einem fetten Motorbetrieb regeneriert. Gemäß der DE 101 13 947 AI wird bei dieser Regeneration dem Stickoxid-Speicherkatalysator in einer ersten Phase ein vergleichsweise stark mit Reduktionsmitteln angereichertes Abgas zugeführt . In einer zweiten Phase der Regeneration wird dem Stickoxid-Speicherkatalysator dagegen ein weniger stark reduktionsmittelhalti- ges Abgas zugeführt. Dabei wird im Katalysatormaterial des Stickoxid-Speicherkatalysators eingelagertes NOx unter Bil- dung von NH3 reduziert, welches dem nachgeschalteten SCR-Katalysator zugeführt und in diesem eingelagert wird. In der auf die Regeneration folgenden mageren Betriebsphase kann durch den Stickoxid-Speicherkatalysator durchtretendes NOx im SCR-Katalysator selektiv reduziert werden. Dabei dient das im SCR-Katalysator zuvor eingelagerte NH3 als selektiv wirkendes Reduktionsmittel. Auf diese Weise ergänzen sich die stick- oxidvermindernden Eigenschaften des Stickoxid-Speicherkatalysators und des SCR-Katalysators . Für eine hohe NOx-Verminde- rung ist jedoch die ausreichende Versorgung des SCR-Katalysators mit NH3 von Bedeutung.
Aufgabe der Erfindung ist es, eine Brennkraftmaschine mit einer Abgasreinigungsanlage sowie ein Verfahren zur Reinigung des Abgases einer Brennkraftmaschine der eingangs genannten Art anzugeben, bei welchen insgesamt eine möglichst hohe Stickoxidreinigungswirkung erzielt wird.
Diese Aufgabe wird erfindungsgemäß durch eine Brennkraftmaschine mit den Merkmalen des Anspruchs 1 und durch ein Verfahren mit den Merkmalen des Anspruchs 10 gelöst.
Die erfindungsgemäße Brennkraftmaschine weist eine Abgasreinigungsanlage mit einem Stickoxid-Speicherkatalysator und einen dem Stickoxid-Speicherkatalysator nachgeschalteten SCR- Katalysator auf, wobei dem Stickoxid-Speicherkatalysator in einem ersten Betriebsmodus Abgas mit einem Überschuss an oxi- dierenden Bestandteilen und in einem zweiten Betriebsmodus Abgas mit einem Überschuss an reduzierenden Bestandteilen zuführbar ist . Erfindungsgemäß ist ein dritter Betriebsmodus zeitlich nach dem ersten Betriebsmodus und vor dem zweiten Betriebsmodus vorgesehen, in welchem dem Stickoxid-Speicherkatalysator ein Abgas zuführbar ist, welches gegenüber dem ersten Betriebsmodus einen geringeren Gehalt an oxidierenden Bestandteilen aufweist und gegenüber dem zweiten Betriebsmodus einen geringeren Gehalt an reduzierenden Bestandteilen aufweist .
Bekanntlich erfordert die chemische Reduktion von NOx zu NH3 eine chemisch reduzierend wirkende Umgebung. Wie sich überraschend gezeigt hat, beeinträchtigen dabei jedoch bereits vergleichsweise geringe Restmengen an oxidierenden Bestandteilen und insbesondere an Sauerstoff auch bei vergleichsweise stark reduzierenden Verhältnissen nachhaltig den Wirkungsgrad der NH3-Bildung. Da als Stickoxid-Speicherkatalysator entweder ein mit Kanälen durchzogener Wabenkδrper oder eine Schüttung von Formkörpern eingesetzt wird, tritt in den durch diese Katalysatorstrukturen gebildeten Hohlräumen bei einem sprunghaften Wechsel der Abgaszusammensetzung von oxidierend zu reduzierend eine Vermischung der unterschiedlich zusammengesetzten Abgase ein. Daraus resultieren kurzzeitig vergleichsweise heftige Reaktionen, wobei die Reduktion von im Katalysatormaterial eingelagertem NOx zu NH3 wegen des noch vorhandenen Sauerstoffs behindert ist. Stattdessen kann es sogar zu einer schlagartigen Freisetzung von NOx kommen, welches ohne Reduktion als sogenannter NOx-Durchbruch den Stickoxid-Speicherkatalysator verlässt . Dies verschlechtert die Reinigungswirkung der Abgasreinigungsanlage. Umgekehrt ist es wünschenswert, dass insbesondere zu Beginn der Nitratregeneration, wenn im Katalysatormaterial des Stickoxid-Speicherkatalysators noch verhältnismäßig große NOx-Mengen gespeichert sind, eine wirksame NOx-Reduktion mit hoher NH3 -Bildung erfolgt. Dies wird erreicht, indem zeitlich nach dem ersten Betriebsmodus und vor dem zweiten Betriebsmodus ein dritter Betriebsmodus eingestellt wird, bei welchem dem Stickoxid- Speicherkatalysator ein Abgas zugeführt wird, dessen Sauerstoffgehalt im Vergleich zum ersten Betriebsmodus verringert ist und dessen Reduktionsmittelgehalt im Vergleich zum zweiten Betriebsmodus ebenfalls verringert ist.
Im dritten Betriebsmodus wird das in den Hohlräumen des Katalysatorkörpers vorhandene Gas des ersten Betriebsmodus durch ein Gas ersetzt, welches gegenüber dem ersten Betriebsmodus und dem zweiten Betriebsmodus einen geringeren Gehalt an reaktionsfreudigen Bestandteilen aufweist. Damit werden die oben genannten unerwünschten Effekte vermieden und im Stickoxid-Speicherkatalysator Bedingungen geschaffen, welche die NH3 -Bildung im nachfolgenden zweiten Betriebsmodus verbessern. Der dem Stickoxid-Speicherkatalysator nachgeschaltete SCR-Katalysator kann daher mit einer vergleichsweise großen NH3 -Menge versorgt werden, was dessen Wirksamkeit entsprechend verbessert . Insbesondere wird im dritten Betriebsmodus der Sauerstoffgehalt des im Stickoxid-Speicherkatalysator vorhandenen Abgases herabgesetzt und dadurch die NH3 -Ausbeute bei der NOx-Reduktion im Speicherkatalysator verbessert.
Die Einstellung der AbgasZusammensetzung in den einzelnen Betriebsmodi kann dabei von der Brennkraftmaschine vorgenommen werden, welche als Dieselmotor oder als Ottomotor ausgeführt sein kann und über geeignete Steuereinrichtungen verfügt, die entsprechende Brennkraftmaschinenbetriebsarten ermöglichen. Die Einstellung der AbgasZusammensetzung kann jedoch auch maßgeblich in wenigstens einem der Betriebsmodi durch eine gasliefernde Zusatzeinrichtung geleistet oder unterstützt werden.
In Ausgestaltung der Erfindung ist der Stickoxid-Speicherkatalysator als Anordnung aus einem ersten Stickoxid-Speicherkatalysatorelement und einem dem ersten Stickoxid-Speicherkatalysatorelement strömungsmäßig parallel geschalteten zweiten Stickoxid-Speicherkatalysatorelement ausgebildet. Damit besteht die Möglichkeit, die beiden Stickoxid-Speicherkatalysatorelemente getrennt anzusteuern und zeitversetzt in den einzelnen Betriebsmodi zu betreiben. Damit kann ebenfalls die Versorgung des den Stickoxid-Speicherkatalysatorelementen nachgeschalteten SCR-Katalysators mit NH3 verbessert werden. Die getrennte Ansteuerung der Stickoxid-Speicherkatalysatorelemente kann beispielsweise dadurch erreicht werden, dass diese an unterschiedliche Zylinder der Brennkraftmaschine anschließbar sind, und die Zylinder mit unterschiedlichen Luft-Kraftstoffgemischen betrieben werden.
In weiterer Ausgestaltung der Erfindung sind das erste Stickoxid-Speicherkatalysatorelement und das zweite Stickoxid- Speicherkatalysatorelement wechselweise entweder im ersten Betriebsmodus oder im zweiten und dritten Betriebsmodus betreibbar. Somit wird beispielsweise das erste Stickoxid- Speicherkatalysatorelement mit oxidierendem Abgas mager betriebener Zylinder beaufschlagt, während das zweite Stickoxid-Speicherkatalysatorelement im dritten oder im zweiten Betriebsmodus betrieben und dabei mit sauerstoffarmem oder reduzierendem Abgas beaufschlagt wird.
In weiterer Ausgestaltung der Erfindung ist eine Schaltvorrichtung derart vorgesehen, dass das im zweiten Betriebsmodus und/oder im dritten Betriebsmodus betriebene Stickoxid-Speicherkatalysatorelement wenigstens teilweise von dem von der Brennkraftmaschine abgegebenen Abgasstrom abtrennbar ist . Damit kann der Abgasstrom durch das im zweiten Betriebsmodus und/oder im dritten Betriebsmodus betriebene Stickoxid-Speicherkatalysatorelement mehr oder weniger stark vermindert werden, was den Wechsel der AbgasZusammensetzung im Stickoxid-Speicherkatalysatorelement erleichtert, weil eine geringere Gasmenge hiervon betroffen ist. Die Schaltvorrichtung kann hierbei beispielsweise als eine den Abgasstrom umlen- kende Abgasklappe ausgebildet sein, welche den Stickoxid- Speicherkatalysatorelementen vorgeschaltet ist.
In weiterer Ausgestaltung der Erfindung ist eine Gasliefereinrichtung derart vorgesehen, dass der im zweiten Betriebsmodus und/oder im dritten Betriebsmodus betriebene Stickoxid- Speicherkatalysator von einem von der Gasliefereinrichtung gelieferten Gasstrom beaufschlagbar ist. Mit dieser erfindungsgemäßen Ausgestaltung kann für den im dritten und/oder im zweiten Betriebsmodus betriebenen Stickoxid-Speicherkatalysator die Abreicherung des Abgases mit Sauerstoff bzw. die Anreicherung des Abgases mit Reduktionsmittel wenigstens teilweise durch die Gasliefereinrichtung vorgenommen werden. Somit kann der Wechsel des Brennkraftmaschinenbetriebs tnode- rater ausfallen.
Als Gasliefereinrichtung kann ein einzelner oder mehrere zusammengefasste Zylinder der Brennkraftmaschine oder eine externe Einheit vorgesehen sein. Der zweitgenannte Fall ist insbesondere bei einer Parallelschaltung von zwei Stickoxid- Speicherkatalysatorelementen von Vorteil, wenn das vom Gaswechsel betroffene Stickoxid-Speicherkatalysatorelement ganz oder teilweise vom Hauptabgasstrom der Brennkraftmaschine abtrennbar ist. Gegebenenfalls kann dann auf einen Wechsel des Brennkraftmaschinenbetriebs ganz verzichtet werden und die Brennkraftmaschine durchgehend mager betrieben werden. Die Änderung der GasZusammensetzung im dritten bzw. im zweiten Betriebsmodus gegenüber dem ersten Betriebsmodus wird dann ausschließlich von der Gasliefereinheit vorgenommen.
In weiterer Ausgestaltung der Erfindung ist von der Gasliefereinrichtung ein sauerstoffarmer Gasstrom lieferbar. Vorzugsweise ermöglicht es die Gasliefereinrichtung, ein sauer-' stoffarmes Gas mit unterschiedlichem Reduktionsmittelgehalt zu liefern. Somit wird die Sauerstoff-Abreicherung des Abgases, welches durch den im dritten Betriebsmodus betriebenen Stickoxid-Speicherkatalysator strömt, überwiegend oder ganz von der Gasliefereinrichtung durchgeführt. Analog kann die Reduktionsmittel-Anreicherung des Abgases im zweiten Betriebsmodus ebenfalls von der Gasliefereinrichtung vorgenommen werden.
In weiterer Ausgestaltung der Erfindung ist die Gasliefereinrichtung als Kraftstoffreformer oder als Brenner ausgebildet. Vorzugsweise wird der Kraftstoffreformer oder der Brenner mit dem Kraftstoff der Brennkraftmaschine betrieben. Die in der Gasliefereinheit vorgenommene Kraftstoffaufbereitung kann dabei katalytisch unterstützt sein.
In weiterer Ausgestaltung der Erfindung ist dem Stickoxid- Speicherkatalysator ein oxidationskatalytisch wirksames Katalysatorelement vorgeschaltet. Als solches ist beispielsweise ein Oxidationskatalysator oder ein Drei-Wege-Katalysator geeignet. Das oxidationskatalytisch wirksame Katalysatorelement katalysiert die Reaktion von Reduktionsmitteln mit Sauerstoff, so dass ein Überschuss von Sauerstoff oder Reduktionsmitteln im Abgas vermindert werden kann. Durch diese erfindungsgemäße Ausgestaltung wird somit erreicht, dass der Stickoxid-Speicherkatalysator im dritten Betriebsmodus ein vergleichsweise inertes Abgas erhält, so dass die NH3-Bildung im nachfolgenden dritten Betriebsmodus nicht durch überschüssigen Sauerstoff behindert wird.
In weiterer Ausgestaltung der Erfindung ist dem SCR-Katalysator ein Partikelfilter vorgeschaltet. Damit umfasst die Abgasreinigungswirkung der Abgasreinigungsanlage neben der Stickoxidverminderung auch eine PartikelVerminderung, was insbesondere bei einer als Dieselmotor ausgebildeten Brenn- kraftmaschine vorteilhaft ist. Der Partikelfilter kann unmittelbar vor dem SCR-Katalysator angeordnet sein oder auch dem Stickoxid-Speicherkatalysator vorgeschaltet sein.
Das erfindungsgemäße Verfahren zur Reinigung des Abgases einer Brennkraftmaschine sieht vor, dass einem Stickoxid- Speicherkatalysator in einem ersten Verfahrensschritt Abgas mit einem Überschuss an oxidierenden Bestandteilen zugeführt wird, wobei dem Abgas Stickoxide durch Einlagerung in den Stickoxid-Speicherkatalysator entzogen werden, in einem zweiten Verfahrensschritt Abgas mit einem Überschuss an reduzierenden Bestandteilen zugeführt wird, wobei im Stickoxid-Speicherkatalysator eingelagertes Stickoxid wenigstens teilweise zu NH3 reduziert wird und in einem zeitlich nach dem ersten Verfahrensschritt und vor dem zweiten Verfahrensschritt durchgeführten dritten Verfahrensschritt dem Stickoxid-Speicherkatalysator ein Abgas zugeführt wird, welches gegenüber dem ersten Verfahrensschritt einen geringeren Gehalt an oxidierenden Bestandteilen und gegenüber dem zweiten Verfahrens- schritt einen geringeren Gehalt an reduzierenden Bestandteilen aufweist. Im dritten Verfahrensschritt werden damit die Zuleitungen zum Stickoxid-Speicherkatalysator und der Stickoxid-Speicherkatalysator selbst mit einem nahezu inerten Abgas gespült und der vergleichsweise große Sauerstoffgehalt des in den Hohlräumen des Katalysators Abgases vermindert . Dadurch verlaufen beim Übergang in den zweiten Verfahrens- schritt im Stickoxid-Speicherkatalysator auftretende Reaktionen weniger heftig, und es werden für die NH3-Bildung im zweiten Verfahrensschritt im Stickoxid-Speicherkatalysator günstige Bedingungen voreingestellt.
In Ausgestaltung des Verfahrens wird der dritte Verfahrens- schritt frühestens beendet, wenn der Stickoxid-Speicherkatalysator überwiegend von im dritten Verfahrensschritt gelie- ferten Abgas gefüllt ist. Unter der Füllung des Katalysators ist hierbei die Füllung der in diesem vorhandenen Hohlräume zu verstehen. Dadurch wird sichergestellt, dass die aus dem ersten Verfahrensschritt resultierende Gassäule mit einem vergleichsweise hohen Sauerstoffgehalt aus dem Stickoxid- Speicherkatalysator überwiegend ausgespült wird.
In weiterer Ausgestaltung des Verfahrens werden bei einem als Parallelanordnung aus einem ersten Stickoxid-Speicherkatalysatorelement und einem zweiten Stickoxid-Speicherkatalysatorelement ausgebildeten Stickoxid-Speicherkatalysator das erste Stickoxid-Speicherkatalysatorelement und das zweite Stickoxid-Speicherkatalysatorelement über eine Schaltvorrichtung im Wechsel im ersten Verfahrensschritt oder im zweiten und dritten Verfahrensschritt betrieben. Dadurch wird eine kontinuierliche Betriebsweise der Abgasreinigungsanlage bezüglich der NOx-Entfernung durch Einlagerung im Katalysatormaterial des Stickoxid-Speicherkatalysators und durch Reduktion im SCR-Katalysator erreicht.
In weiterer Ausgestaltung des Verfahrens wird das im zweiten Verfahrensschritt und/oder im dritten Verfahrensschritt dem Stickoxid-Speicherkatalysator zugeführte Abgas wenigstens teilweise von einer als Kraftstoffreformer oder als Brenner ausgebildeten Gasliefereinheit geliefert. Dadurch kann auf einen sehr starken Wechsel des Luft-Kraftstoffverhältnisses im Betrieb der Brennkraftmaschine verzichtet werden und die Brennkraftmaschine gegebenenfalls konstant mager betrieben werden, weil der Wechsel in der Zusammensetzung des Abgases, welches den Stickoxid-Speicherkatalysator durchströmt, teilweise von der Gasliefereinheit übernommen wird.
In weiterer Ausgestaltung des Verfahrens wird im zweiten und im dritten Verfahrensschritt der Sauerstoffgehalt des Abgases stromauf des Stickoxid-Speicherkatalysators katalytisch vermindert. Hierzu ist vorzugsweise ein oxidationskatalytisch wirksames Katalysatorelement dem Stickoxid-Speicherkatalysator vorgeschaltet. Ein Vorteil bei dieser Ausgestaltung des Verfahrens besteht darin, dass die an diesem Katalysatorelement frei werdende Reaktionswärme zur Erhöhung der Temperatur des nachgeschalteten Stickoxid-Speicherkatalysators genutzt werden kann.
In weiterer Ausgestaltung des Verfahrens wird über eine Verstellung der Schaltvorrichtung die Temperatur des Stickoxid- Speicherkatalysatorelements nach Maßgabe der Temperaturabhän- gigkeit seiner Wirksamkeit beeinflusst . Vorzugsweise wird bei mager betriebener Brennkraftmaschine die beispielsweise als Abgasklappe ausgebildete Schaltvorrichtung so betätigt, dass ein vorgebbarer Anteil des oxidierenden Abgases in den Abgaszweig geleitet wird, in dem das im dritten oder im zweiten Verfahrensschritt betriebene Stickoxid-Speicherkatalysatorelement angeordnet ist. Durch Reaktion von Sauerstoff mit Reduktionsmitteln wird dabei zur Aufheizung der nachgeschalteten Bauteile genutzte Reaktionswärme frei. Somit kann erreicht werden, dass diese Bauteile in einem Temperaturbereich optimaler Wirksamkeit betrieben werden.
Vorteilhafte Ausführungsformen der Erfindung sind in den Zeichnungen veranschaulicht und werden nachfolgend beschrieben. Dabei zeigen:
Fig. 1 ein schematisches Blockbild einer ersten Ausführungs- form einer Brennkraftmaschine mit zugehöriger Abgas- reinigungsanlage mit Stickoxid-Speicherkatalysator und SCR-Katalysator, Fig. 2 ein Diagramm für den zeitlichen Verlauf der Luftzahl λA des dem Stickoxidspeicher-Katalysator in verschiedenen Betriebsmodi zugeführten Abgases,
Fig. 3 ein schematisches Blockbild einer zweiten Ausführungsform einer Brennkraftmaschine mit zugehöriger Abgasreinigungsanlage mit Stickoxid-Speicherkatalysator und SCR-Katalysator und
Fig. 4 ein schematisches Blockbild einer dritten Ausführungsform einer Brennkraftmaschine mit zugehöriger Abgasreinigungsanlage mit Stickoxid-Speicherkatalysator und SCR-Katalysator.
In Fig. 1 ist schematisch eine Brennkraftmaschine 1 mit einer Abgasreinigungsanlage dargestellt, welche einen Stickoxid- Speicherkatalysator 4 und einen dem Stickoxid-Speicherkatalysator 4 nachgeschalteten SCR-Katalysator 5 umfasst, welche in einer Abgasleitung 3 der Brennkraftmaschine 1 angeordnet sind. Die Katalysatoren 4, 5 sind vorzugsweise als Wabenkör- permonolithen ausgeführt, die von Kanälen durchzogen sind, durch welches das zugeführte Abgas strömen kann.
Obschon die Brennkraftmaschine 1 auch als magerbetriebsfähiger Ottomotor ausgebildet sein kann, wird im folgenden davon ausgegangen, dass es sich bei der Brennkraftmaschine 1 um einen Dieselmotor handelt. Die Zylinder des Dieselmotors 1 geben hier beispielhaft ihr Abgas über einen gemeinsamen Abgaskrümmer 2 an die Abgasleitung 3 ab. Zweckmäßigerweise sind hier nicht dargestellte Sensoren zur Erfassung der AbgasZusammensetzung und der Temperatur des Abgases sowie der Katalysatoren 4, 5 vorgesehen. Diese können als Signalgeber beispielsweise für die Regelung des Luft-Kraftstoffverhältnisses des in den Zylindern des Dieselmotors 1 verbrannten Luft-Kraftstoffgemisches dienen. Zur Regelung des Dieselmo- tors 1 ist dabei ein aus Gründen der Übersichtlichkeit nicht dargestelltes Motorsteuergerät vorgesehen. Selbstverständlich können weitere hier nicht dargestellte Bauteile, wie beispielsweise ein Abgasturbolader oder eine Abgasrückführung dem Dieselmotor 1 zugeordnet sein. Vorzugsweise kann der Dieselmotor 1 so angesteuert werden, dass er mit wechselnden Luftzahlen λM betrieben werden kann. Dabei wird unter der Luftzahl λM wie üblich das Stöchiometrieverhältnis der den Zylindern des Dieselmotors zugeführten Verbrennungsluft und des Kraftstoffs verstanden. λ-Werte größer als eins entsprechen einem mageren und λ-Werte kleiner als eins einem fetten Betrieb des Dieselmotors. Entsprechend resultiert aus einem mageren Motorbetrieb ein mageres Abgas mit einem Überschuss an oxidierend wirkenden Bestandteilen wie insbesondere Sauerstoff und bei einem fetten Motorbetrieb eine fettes Abgas mit einem Überschuss an reduzierenden Bestandteilen wie beispielsweise Kohlenmonoxid, Wasserstoff und Kohlenwasserstoffen. Die Abgaszusammensetzung wird nachfolgend analog zur oben genannten Definition durch die Luftzahl λA charakterisiert .
Der Stickoxid-Speicherkatalysator 4 verfügt über die Fähigkeit, unter oxidierenden Bedingungen im Abgas vorhandenes NOx, hauptsächlich durch chemische Bindung als Nitrat an das Beschichtungsmaterial, einzulagern. Während dieser nachfolgend als erster Betriebsmodus bezeichneten Betriebsart tritt eine zunehmende Sättigung ein, weshalb der Stickoxid-Speicherkatalysator von Zeit zu Zeit in einer sogenannten Nitrat- regeneration wieder regeneriert werden muss. Dabei wird unter reduzierenden Bedingungen eingelagertes NOx wieder freigesetzt und zum größten Teil in Stickstoff und NH3 umgesetzt. Nachfolgend werden die dabei eingestellten Betriebsbedingungen zusammenfassend als zweiter Betriebsmodus bezeichnet. Um die NOx-Reinigungswirkung des Stickoxid-Speicherkatalysators 4 nutzen zu können, ist daher ein ständiger Wechsel zwischen dem ersten Betriebsmodus mit einer oxidierenden Abgaszusammensetzung mit einer Luftzahl λA größer als eins und dem zweiten Betriebsmodus mit einer Luftzahl λA kleiner als eins notwendig. Aus Gründen des Kraftstoffverbrauchs ist allerdings ein hoher Zeitanteil des mageren Betriebs anzustreben. Entsprechend ist ein vergleichsweise niedriger Zeitanteil für die Bereitstellung einer reduzierenden AbgasZusammensetzung und hierfür ein geringer Einsatz an Reduktionsmitteln wünschenswert. Die oxidierende AbgasZusammensetzung im ersten Betriebsmodus wird dabei bei dem normalen mageren Betrieb des Dieselmotors 1 zwangsläufig erreicht . Die Versorgung des Stickoxid-Speicherkatalysators 4 mit reduzierendem Abgas im zweiten Betriebsmodus kann mittels eines fetten Betriebs des Dieselmotors 1 oder durch eine nachmotorische Anfettung des Abgases erreicht werden, wie weiter unten erläutert wird.
Der stromab des Stickoxid-Speicherkatalysators 4 angeordnete SCR-Katalysator 5 besitzt die z.B. auch aus der Kraftwerkstechnik her bekannte Eigenschaft, bei reduzierenden Bedingungen NH3 einspeichern zu können und bei oxidierenden Bedingungen dieses eingespeicherte NH3 sowie ev. zugeführtes NH3 als Reaktionspartner in einer selektiven katalytischen Reduktionsreaktion unter Stickstoffbildung zur chemischen Reduktion von NOx nutzen zu können.
Die letztgenannte Eigenschaft wird insbesondere dazu genutzt, dem SCR-Katalysator 5 zugeführtes NOx unschädlich zu machen. Der SCR-Katalysator 5 erhält NOx in der Anordnung nach Fig. 1 beispielsweise durch zunehmenden NOx-Schlupf infolge der im Verlauf der NOx-Einlagerung zunehmenden Abnahme der NOx- Aufnahmekapazität des Stickoxid-Speicherkatalysators 4 bei Mager-Betrieb des Dieselmotors . Außerdem kann es insbesondere zu Beginn der Nitratregeneration zu einem Durchbruch von schlagartig freigesetzten Stickoxiden kommen. Voraussetzung für eine hohe Wirksamkeit des SCR-Katalysators 5 ist allerdings, dass ihm zuvor entsprechende Mengen an NH3 zur Einspeicherung zur Verfügung gestellt wurden. Da in der Anordnung gemäß Fig. 1 der Stickoxid-Speicherkatalysator 4 die einzige NH3-Quelle darstellt, ist es vorteilhaft, das im Stickoxid-Speicherkatalysator 4 eingelagerte NOx mit einem möglichst großen Wirkungsgrad zu NH3 zu reduzieren und dem nachgeschalteten SCR-Katalysator 5 zuzuführen. Dabei ist ein möglichst geringer Verbrauch an Reduktionsmitteln anzustreben.
Erfindungsgemäß wird eine Behinderung der NH3 -Bildung vermieden indem vor der Einstellung reduzierender Verhältnisse im Stickoxid-Speicherkatalysator 4 der Sauerstoffgehalt des in den Hohlräumen des Stickoxid-Speicherkatalysators 4 vorhandenen Abgases vermindert wird. Dies wird erreicht, indem zeitlich nach dem ersten Betriebsmodus und vor dem zweiten Betriebsmodus ein dritter Betriebsmodus eingestellt wird, bei welchem dem Stickoxid-Speicherkatalysator 4 ein Abgas zugeführt wird, welches im Vergleich zum ersten Betriebsmodus einen verminderten Sauerstoffgehalt und Vergleich zum zweiten Betriebsmodus einen verminderten Reduktionsmittelgehalt aufweist .
Nachfolgend werden unter Bezug auf Fig. 2 die in den Betriebsmodi eingestellten Bedingungen und die nacheinander ablaufenden Verfahrensschritte näher erläutert, wobei zusätzlich auf Fig. 1 Bezug genommen wird. Im Diagramm der Fig. 2 ist schematisch ein bevorzugter zeitlicher Verlauf der Luftzahl λA des dem Stickoxidspeicher-Katalysator in den verschiedenen Betriebsmodi zugeführten Abgases dargestellt. In einem ersten Verfahrensschritt wird zunächst der erste Betriebsmodus I eingestellt, bei dem welchem dem Stickoxid- Speicherkatalysator 4 ein mageres Abgas mit einem hohen Sau- erstoffgehalt zugeführt wird. Dieses wird durch den' mit einer Luftzahl von beispielsweise λM = 3 betriebenen Dieselmotor 1 geliefert. Vom Dieselmotor 1 emittiertes und im Abgas enthaltenes NOx wird dabei wenigstens teilweise in das Katalysator- material des Stickoxid-Speicherkatalysators 4, vorzugsweise in Form von Nitraten, eingelagert und so wenigstens teilweise aus dem Abgas entfernt. Gegebenenfalls durch den Stickoxid- Speicherkatalysator 4 tretendes NOx (NOx-Schlupf) wird durch Reduktion im nachgeschalteten SCR-Katalysator 5 wenigstens teilweise unschädlich gemacht.
Wird mit zunehmender NOx-Sättigung des Stickoxid-Speicherkatalysators 4 beispielsweise sensorisch ein auf inakzeptable Werte angestiegener NOx-Schlupf festgestellt, so wird zum Zeitpunkt tO auf den dritten Betriebsmodus III umgestellt. Dabei wird dem Stickoxid-Speicherkatalysator 4 ein Abgas mit einem gegenüber dem ersten Betriebsmodus I stark verringerten Sauerstoffgehalt zugeführt. Dies wird vorzugsweise durch Umstellung des Dieselmotorbetriebs auf eine geringfügig über 1,0 liegende Luftzahl λM, etwa λM = 1,05, erreicht. Hierzu ist es vorteilhaft, in einem oder mehreren Zylindern des Dieselmotors 1 eine Nacheinspritzung von Kraftstoff vorzunehmen, welche vorzugsweise im Expansionstakt zwischen etwa 20° und 120° Kurbelwinkel nach dem oberen Totpunkt oder im Ausschiebetakt vorgenommen wird. Zusätzlich kann eine zuluftseitige Androsselung des Dieselmotors 1 und/oder eine Erhöhung der Abgasrückführrate vorteilhaft sein. Unter diesen Bedingungen weist das dem Stickoxid-Speicherkatalysator 4 zugeführte Abgas einen Sauerstoffüberschuss von einem Prozent oder weniger auf und wirkt schwach oxidierend.
Während dieses Verfahrensschrittes wird das stark sauer- stoffhaltige Abgas des zuvor eingestellten ersten Betriebsmodus I aus den Hohlräumen des Stickoxid-Speicherkatalysators 4 gespült. Wegen des geringfügigen SauerstoffÜberschusses im Abgas erfolgt im Stickoxid-Speicherkatalysator 4 noch keine oder keine nennenswerte Reduktion eingelagerter Stickoxide. Der eingestellte dritte Betriebsmodus III wird vorzugsweise zu einem Zeitpunkt tl beendet, an dem der Spülvorgang abgeschlossen ist und die Hohlräume des Stickoxid-Speicherkatalysators 4 überwiegend mit dem im dritten Betriebsmodus III bereitgestellten sauerstoffarmem und reduktionsmittelarmem Abgas gefüllt sind.
Anschließend wird zum Zeitpunkt tl in einem weiteren Verfahrensschritt auf den zweiten Betriebsmodus II umgestellt und dem Stickoxid-Speicherkatalysator 4 ein reduzierendes Abgas mit einer Luftzahl λA vorzugsweise zwischen 0,80 und 0,95 zugeführt, wobei die Nitrat-Regeneration des Stickoxid-Speicherkatalysators 4 erfolgt. Dabei wird das im Stickoxid-Speicherkatalysator 4 eingelagerte NOx zu einem vergleichsweise großen Teil zu NH3 reduziert und dem nachfolgenden SCR-Katalysator 5 zugeführt und dort eingelagert.
Für die Bereitstellung des reduktionsmittelhaltigen Abgases im zweiten Betriebsmodus II kann eine entsprechende Verminderung der Luftzahl λM des dem Dieselmotor 1 insgesamt zugeführten Luft-Kraftstoffgemisches vorgesehen sein. Der Dieselmotor 1 wird in diesem Fall insgesamt entsprechend fett mit einer Luftzahl λM betrieben, die der Luftzahl λA des Abgases entspricht. Hierfür kann, wie oben beschrieben, ebenfalls eine Nacheinspritzung von Kraftstoff und gegebenenfalls gleichzeitig eine luftzufuhrseitige Androsselung vorgenommen werden. Es kann jedoch auch vorgesehen sein, die Anreicherung des dem Stickoxid-Speicherkatalysator 4 zugeführten Abgases mit Reduktionsmitteln so vorzunehmen, dass nur ein vorgebbarer Teil der Zylinder des Dieselmotors 1 fett betrieben werden und der andere Teil der Zylinder weiterhin mit der im vorangegangenen dritten Betriebsmodus III eingestellten Luftzahl . Ferner kann für die Anreicherung des dem Stickoxid-Speicherkatalysator 4 zugeführten Abgases mit Reduktionsmitteln eine in Fig. 1 nicht dargestellte separate Gasliefereinheit vorgesehen sein. Diese kann beispielsweise als Kraftstoffreformer oder Kraftstoffbrenner ausgeführt sein. Das von der Gasliefereinheit gelieferte Gas wird in diesem Fall stromauf des Stickoxid-Speicherkatalysators 4 der Abgasleitung 3 zugeführt. Es kann schließlich ebenfalls vorteilhaft sein, für die Anfettung des Abgases ein an Bord des Fahrzeugs vorhandenes Reduktionsmittel, beispielsweise den Dieselkraftstoff, stromauf des Stickoxid-Speicherkatalysators 4 in das Abgas einzubringen. Durch die nachmotorisch vorgenommene Anfettung des Abgases kann ein oft schwierig einzustellender Betrieb des Dieselmotors 1 mit einer Luftzahl von λM kleiner als 1,0 vermieden werden.
Der zweite Betriebsmodus II wird zum Zeitpunkt t2 beendet und in einem weiteren Verfahrensschritt werden wieder die Bedingungen des ersten Betriebsmodus I eingestellt, wenn die Nitratregeneration des Stickoxid-Speicherkatalysators 4 abgeschlossen ist. Dies kann sensorisch oder durch ein entsprechendes Rechenmodell festgestellt bzw. initiiert werden.
Die Reinigungswirkung der Abgasreinigungsanlage lässt sich im Zusammenhang mit den erläuterten Verfahrensschritten weiter verbessern, wenn stromauf des Stickoxid-Speicherkatalysators 4 ein in Fig. 1 nicht dargestelltes oxidationskatalytisch wirksames Katalysatorelement in der Abgasleitung 3 angeordnet wird. Durch dieses können Sauerstoffanteile bzw. Reduktionsmittelanteile im Abgas wirksam vermindert bzw. entfernt werden. Das dabei aus dem Katalysatorelement ausströmende Abgas kann somit als vergleichsweise inert angesehen werden, da es einen verminderten Gehalt an reaktionsfreudigen Bestandteilen aufweist. Zusätzlich kann dadurch eine Aufheizung des Abgases und stromab angeordneter Bauteile erreicht werden. Vorteilhaft ist dies insbesondere im Zusammenhang mit einem in Fig. 1 nicht dargestellten Partikelfilter, welcher zweckmäßigerweise stromauf des SCR-Katalysators 5 in der Abgasleitung 3 angeordnet sein kann. Hierfür wird beispielsweise vom Dieselmotor 1 ein sauerstoffhaltiges Gas bereitgestellt, welches zusätzlich motorisch durch Nacheinspritzungen oder mittels der erwähnten Gasliefereinheit oder durch Einbringung von flüssigem oder verdampftem Kraftstoff in den Abgasstrang mit Reduktionsmitteln angereichert wird. Auf diese Weise wird für das Ablaufen exothermer Oxidationsreaktionen am oxidationskatalytisch wirksamen Katalysatorelement gesorgt. Mit der dabei frei werdenden Reaktionswärme können nachgeschaltete reinigungswirksame Bauelemente im Abgasstrang 3 sehr effektiv auf Betriebstemperatur gebracht werden.
In Fig. 3 ist ein schematisches Blockbild einer weiteren vorteilhafte Ausführungsform der erfindungsgemäßen Brennkraftmaschine mit zugehöriger Abgasreinigungsanlage mit Stickoxid- Speicherkatalysator und SCR-Katalysator dargestellt, wobei in Bezug auf Fig. 1 funktionsmäßig gleiche Bauteile mit gleichen Bezugszeichen versehen sind. Die in Fig. 3 dargestellte Ausführungsform unterscheidet sich on derjenigen der Fig. 1 dadurch, dass der Stickoxid-Speicherkatalysator 4 als Parallelanordnung aus einem ersten Stickoxid-Speicherkatalysatorelement 4a und einem zweiten Stickoxid-Speicherkatalysatorelement 4b ausgebildet ist. Ferner ist eine SchaltVorrichtung 6 vorgesehen, welche es erlaubt, den ihr durch die Abgasleitung 3 zugeführten Abgasstrom wahlweise über die Abgasleitungszweige 3a und 3b auf die Stickoxid-Speicherkatalysatorelemente 4a, 4b zu verteilen. Vorzugsweise ist die Schaltvorrichtung 6 als Wechselklappe so ausgeführt, dass das Abgas im wesentlichen entweder dem ersten Stickoxid-Speicherkatalysatorelement 4a oder dem zweiten Stickoxid-Speicherkatalysator- element 4b zuführbar ist. Die Abgasleitungszweige 3a, 3b sind ausgangsseitig der Stickoxid-Speicherkatalysatorelemente 4a, 4b zusammengeführt, so dass das aus den Stickoxid-Speicherkatalysatorelementen 4a, 4b ausströmende Abgas dem SCR-Katalysator 5 zuführbar ist. Zusätzlich ist in der in Fig. 3 dargestellten Ausführungsform eine Gasliefereinheit 8 vorgesehen, durch welche ein zusätzliches Fluid über die Schaltvorrichtung 6 wahlweise dem ersten Stickoxid-Speicherkatalysatorelement 4a und/oder dem zweiten Stickoxid-Speicherkatalysatorelement 4b zuführbar ist. Der Gasliefereinheit 6 zugeordnete periphere Versorgungsbauteile wie Leitungen und dergleichen sind aus Gründen der Übersichtlichkeit nicht dargestellt, sind jedoch je nach Bedarf vorgesehen. Die Gasliefereinheit 6 kann beispielsweise als Dosiereinheit und/oder Verdampfer für ein an Bord eines zugehörigen Fahrzeugs vorhandenes flüssiges Reduktionsmittel ausgeführt sein. Vorzugsweise ist sie jedoch als Kraftstoffbrenner oder als Kraftstoffreformer ausgeführt, mit welchem ein an Bord des zugehörigen Fahrzeugs verfügbarer Kraftstoff verbrannt oder durch einen Reforming-Prozess zu einem Gas aufbereitet werden kann. Nachfolgend wird vereinfachend von einem Kraftstoff-reformer 6 gesprochen.
Es ist vorgesehen, dass der Kraftstoffreformer 6 mit einer in weiten Grenzen variierenden Luftzahl λR betreibbar ist. Bevorzugte Betriebsarten sind dabei ein Betrieb mit einem geringem Luftüberschuss, d.h. mit einer Luftzahl von etwa λR = 1,05 oder weniger und ein Betrieb mit einem vergleichsweise großen Kraftstoffüberschuss, entsprechend etwa λR = 0,5 oder weniger. Im erstgenannten Fall wird von ihm ein schwach oxidierendes Gas mit einem geringen Sauerstoffgehalt von etwa 0,5 % und im zweiten Fall ein nahezu sauerstofffreies, reduzierendes Gas mit einem vergleichsweise hohem Reduktionsmittelgehalt erzeugt. Vorzugsweise weist das reduzierende Gas einen hohen Wasserstoffanteil auf, was beispielsweise durch einen katalytisch unterstützten Reformierprozess, gegebenenfalls unter Ausnutzung der Wassergasshiftreaktion, erreicht wird. Nachfolgend wird vereinfachend von einem oxidierenden oder reduzierenden Reformergas gesprochen.
Im folgenden wird unter Bezug auf Fig. 2 eine bevorzugte Betriebsweise der in Fig. 3 dargestellten Anordnung erläutert. Dabei wird zunächst das im Abgaszweig 3a angeordnete erste Stickoxid-Speicherkatalysatorelement 4a betrachtet. Dieses wird zunächst im ersten Betriebsmodus I betrieben. Hierzu ist die Schaltvorrichtung 6 so geschaltet, dass das erste Stickoxid-Speicherkatalysatorelement 4a überwiegend vom Abgasstrom des mager betrieben Dieselmotors 1 beaufschlagt wird, wobei es dem Abgas NOx durch Einlagerung in das Katalysatormaterial entzieht. Gegebenenfalls als NOx-Schlupf durchtretende NOx-Restmengen werden hierbei im nachgeschalteten SCR-Katalysator 5 abgebaut. Bei Vorliegen eines vorgebbaren Sättigungszustands des ersten Stickoxid-Speicherkatalysatorelements 4a wird die Schaltvorrichtung 6 umgeschaltet, so dass nunmehr das erste Stickoxid-Speicherkatalysatorelement 4a überwiegend vom Abgasstrom des weiterhin mager betriebenen Dieselmotors 1 abgetrennt ist. Gleichzeitig wird das erste Stickoxid-Speicherkatalysatorelement 4a vom Kraftstoffrefor- mer 6 über die Schaltvorrichtung 6 mit einem schwach oxidierenden Reformergas versorgt und somit im dritten Betriebsmodus III betrieben. Dabei wird das stark sauerstoffhaltige Gas aus dem zuvor eingestellten ersten Betriebsmodus I aus der Abgasleitung 3a und dem ersten Stickoxid-Speicherkatalysatorelement 4a ausgespült und überwiegend durch das schwach oxi- dierende Reformergas ersetzt.
Ist der Spülvorgang abgeschlossen, was nach Zufuhr einer von den vorliegenden Geometrien bestimmten Reformergasmenge der Fall ist, so wird bei unveränderter Einstellung der Schalt- Vorrichtung 6 das erste Stickoxid-Speicherkatalysatorelement 4a mit reduzierendem, sauerstofffreien Reformergas beaufschlagt und somit im zweiten Betriebsmodus II betrieben. Dadurch wird die Nitratregeneration des ersten Stickoxid- Speicherkatalysatorelements 4a in Gang gesetzt, wobei aufgrund des vorangegangenen Spülvorgangs ein besonders großer Teil des eingelagerten NOx zu NH3 reduziert wird. Dieses wird dem nachgeschalteten SCR-Katalysator 5 zugeführt und dort eingelagert. Vorteilhaft ist, dass zur Nitratregeneration des vom Abgasstrom des Dieselmotors 1 überwiegend abgesperrten ersten Stickoxid-Speicherkatalysatorelements 4a lediglich ein geringer Reformergasstrom bereitgestellt werden muss. Das reduzierende Reformergas hat daher eine dementsprechend große Aufenthaltsdauer im ersten Stickoxid-Speicherkatalysatorelement 4a, was die NH3 -Ausbeute ebenfalls verbessert. Zur weiteren Steigerung der NH3 -Ausbeute ist es vorteilhaft, wenn das dem ersten Stickoxid-Speicherkatalysatorelement 4a im zweiten Betriebsmodus II zugeführte Reformergas einen hohen Wasserstoffgehalt aufweist.
Wird festgestellt, dass die Nitratregeneration des ersten Stickoxid-Speicherkatalysatorelements 4a abgeschlossen ist, was sensorisch oder modellbasiert geschehen kann, so wird die Schaltvorrichtung 6 zurückgeschaltet, so dass das vom Dieselmotor 1 abgegebene magere Abgas erneut hauptsächlich über das erste Stickoxid-Speicherkatalysatorelement 4a geführt wird.
Zeitversetzt und komplementär zu den für das erste Stickoxid- Speicherkatalysatorelement 4a eingestellten Betriebsmodi I, II, III wird das zweite Stickoxid-Speicherkatalysatorelement 4b betrieben. Bei einer Einstellung des ersten Betriebsmodus I für das erste Stickoxid-Speicherkatalysatorelement 4a wird somit das zweite Stickoxid-Speicherkatalysatorelement 4b im zweiten Betriebsmodus II oder im dritten Betriebsmodus III betrieben. Dabei laufen die oben erläuterten Vorgänge in analoger Form ab.
In Fig. 4 ist ein schematisches Blockbild einer weiteren vorteilhaften Ausführungsform der erfindungsgemäßen Brennkraftmaschine mit zugehöriger Abgasreinigungsanlage mit Stickoxid- Speicherkatalysator und SCR-Katalysator dargestellt, wobei in Bezug auf Fig. 3 funktionsmäßig gleiche Bauteile mit gleichen Bezugszeichen bezeichnet sind. Die in Fig. 4 dargestellte Ausführungsform unterscheidet sich von derjenigen der Fig. 3 dadurch, dass im Abgasleitungszweig 3a dem ersten Stickoxid- Speicherkatalysatorelement 4a ein erstes Oxidationskatalysa- torelement 7a und im Abgasleitungszweig 3b dem zweiten Stickoxid-Speicherkatalysatorelement 4b ein zweites Oxidationska- talysatorelement 7b vorgeschaltet ist .
Die in Fig. 4 dargestellte Ausführungsform ist prinzipiell ebenso betreibbar wie die in Fig. 3 dargestellte. Allerdings sind einige zusätzliche Möglichkeiten gegeben. Zur Vermeidung von Wiederholungen wird nachfolgend lediglich auf die gegenüber der in Fig. 3 dargestellten Ausführungsform vorhandenen Unterschiede eingegangen. Im wesentlichen sind diese Unterschiede durch die Oxidationskatalysatόrelemente 7a, 7b bedingt. Diese sind in der Lage, den Sauerstoffgehalt des ihnen zugeführten Abgases entsprechend dem im Abgas vorhandenen Reduktionsmittel zu vermindern. Somit kann insbesondere bei einem im dritten Betriebsmodus III betriebenem Stickoxid- Speicherkatalysatorelement 4a, 4b vermieden werden, dass ihm durch eine apparatebedingte oder gezielt eingestellte Leckage der Schaltvorrichtung 6 sauerstoffhaltiges Abgas vom mager betriebenen Dieselmotor 1 zugeführt wird. Hierzu wird dem jeweiligen Abgaszweig 3a, 3b vom Kraftstoffreformer 6 reduzierendes Reformergas zugeführt. Vorzugsweise wird der Kraft- Stoffreformer so betrieben, dass die von ihm über die Schaltvorrichtung 6 dem jeweiligen Abgaszweig 3a, 3b zugeführte Reduktionsmittelmenge ausreicht, um den über die Schaltvorrichtung 6 in diesen Abgaszweig einströmenden Sauerstoff aus dem Abgas zu entfernen. Dadurch wird wie oben beschrieben für die NH3-Bildung störender Sauerstoff aus dem entsprechenden Abgasleitungszweig 3a, 3b bzw. dem Stickoxid-Speicherkatalysatorelement 4a, 4b ausgespült bzw. dessen Eindringen vermieden. Der Reformer wird dabei so betrieben, dass sich die dem dritten Betriebsmodus III bzw. dem zweiten Betriebsmodus II entsprechende Luftzahl λA gemäß Fig. 2 eingangsseitig des jeweiligen Stickoxid-Speicherkatalysatorelements 4a, 4b einstellt. Um den Reduktionsmittelbedarf gering zu halten, ist es vorteilhaft, für die Oxidationskatalysatorelemente 7a, 7b eine katalytische Beschichtung mit geringer oder keiner Sauerstoffspeicherfunktion vorzusehen.
Die an dem jeweiligen Oxidationskatalysatorelement 7a, 7b bei der dort stattfindenden Oxidation von Reduktionsmittel frei werdende Reaktionswärme lässt sich mit Vorteil für ein Wärmemanagement des nachgeschalteten Stickoxid-Speicherkatalysatorelements 4a, 4b nutzen. Hierfür ist es zweckmäßig, die Schaltvorrichtung stufenlos verstellbar auszuführen. Auf diese Weise können vorgebbare Mengen des vom mager betriebenen Dieselmotor 1 abgegebenen Abgases in den Abgasleitungs- zweig 3a, 3b des im zweiten Betriebsmodus II oder im dritten Betriebsmodus III betriebenen Stickoxid-Speicherkatalysatorelements 4a, 4b geleitet werden. Mit der im Oxidationskatalysatorelement 7a, 7b frei werdenden Reaktionswärme kann dadurch das jeweilige Stickoxid-Speicherkatalysatorelement 4a, 4b auf optimale Betriebstemperatur aufgeheizt werden. Insbesondere ist dadurch auch eine verstärkte Aufheizung möglich, beispielsweise zur Durchführung einer Schwefel- regeneration. Es kann ferner vorteilhaft sein, anstelle des Reformers 8 für jeden der Abgasleitungszweige 3a, 3b eine als Kraftstoff- dosiereinrichtung ausgebildete Gaslie ereinrichtung vorzusehen, durch welche flüssiger oder verdampfter Kraftstoff eingangsseitig der Oxidationskatalysatorelemente 7a, 7b dem Abgas zuführbar ist . Durch eine mengenmäßig gesteuerte oder geregelte Zufuhr von Kraftstoff im Zusammenhang mit einer entsprechend eingestellten Zufuhr von magerem Abgas über die Schaltvorrichtung 6 können die für die einzelnen Betriebsmodi I, II, III erforderlichen Bedingungen in den Abgasleitungszweigen 3a, 3b eingestellt werden.

Claims

Patentansprüche
Brennkraftmaschine (1) mit einer Abgasreinigungsanlage, umfassend einen Stickoxid-Speicherkatalysator (4; 4a, 4b) und einen dem Stickoxid-Speicherkatalysator (4; 4a, 4b) nachgeschalteten SCR-Katalysator (5) , wobei dem Stickoxid-Speicherkatalysator (4; 4a, 4b) in einem ersten Betriebsmodus (I) Abgas mit einem Überschuss an oxidierenden Bestandteilen zuführbar ist, wobei der Stickoxid-Speicherkatalysator (4; 4a, 4b) Stickoxide durch Einlagerung aus dem Abgas entfernt , in einem zweiten Betriebsmodus (II) Abgas mit einem Überschuss an reduzierenden Bestandteilen zuführbar ist, wobei im Stickoxid-Speicherkatalysator (4; 4a, 4b) gespeichertes Stickoxid wenigstens teilweise zu Ammoniak reduziert wird und in einem zeitlich nach dem ersten Betriebsmodus (I) und vor dem zweiten Betriebsmodus (II) eingestellten dritten Betriebsmodus (III) ein Abgas zuführbar ist, welches gegenüber dem ersten Betriebsmodus (I) einen geringeren Gehalt an oxidierenden Bestandteilen und gegenüber dem zweiten Betriebsmodus (II) einen geringeren Gehalt an reduzierenden Bestandteilen aufweist .
2. Abgasreinigungsanlage nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass der Stickoxid-Speicherkatalysator (4; 4a, 4b) als Anordnung aus einem ersten Stickoxid-Speicherkatalysatorelement (4a) und einem dem ersten Stickoxid-Speicherkatalysatorelement (4a) strömungsmäßig parallel geschalteten zweiten Stickoxid-Speicherkatalysatorelement (4b) ausgebildet ist.
3. Abgasreinigungsanlage nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , dass das erste Stickoxid-Speicherkatalysatorelement (4a) und das zweite Stickoxid-Speicherkatalysatorelement (4b) wechselweise entweder im ersten Betriebsmodus (I) oder im zweiten Betriebsmodus (II) und dritten Betriebsmodus (III) betreibbar sind.
4. Abgasreinigungsanlage nach Anspruch 2 oder 3, d a d u r c h g e k e n n z e i c h n e t , dass eine Schaltvorrichtung (6) derart vorgesehen ist, dass das im zweiten Betriebsmodus (II) und/oder im dritten Betriebsmodus (III) betriebene Stickoxid-Speicherkatalysatorelement (4a; 4b) wenigstens teilweise von dem von der Brennkraftmaschine (1) abgegebenen Abgasstrom abtrennbar ist.
5. Abgasreinigungsanlage nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , dass eine Gasliefereinrichtung (8) derart vorgesehen ist, dass der im zweiten Betriebsmodus (II) und/oder im dritten Betriebsmodus (III) betriebene Stickoxid-Speicherkatalysator (4a; 4b) von einem von der Gasliefereinrichtung (8) gelieferten Gasstrom beaufschlagbar ist.
6. Abgasreinigungsanlage nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , dass von der Gasliefereinrichtung (8) ein sauerstoffarmer Gasstrom lieferbar ist.
7. Abgasreinigungsanlage nach Anspruch 5 oder 6, d a d u r c h g e k e n n z e i c h n e t , dass die Gasliefereinrichtung (8) als Kraftstoffreformer oder als Brenner ausgebildet ist.
8. Abgasreinigungsanlage nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t , dass dem Stickoxid-Speicherkatalysator (4a, 4b) ein oxidationskatalytisch wirksames Katalysatorelement (7a, 7b) vorgeschaltet ist.
9. Abgasreinigungsanlage nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t , dass dem SCR-Katalysator (5) ein Partikelfilter vorgeschaltet ist.
10. Verfahren zur Reinigung des Abgases einer Brennkraftmaschine (1) mit einer Abgasreinigungsanlage, umfassend einen Stickoxid-Speicherkatalysator (4; 4a, 4b) und einen dem Stickoxid-Speicherkatalysator (4; 4a, 4b) nachgeschalteten SCR-Katalysator (5) , wobei dem Stickoxid-Speicherkatalysator (4; 4a, 4b) in einem ersten Verfahrensschritt Abgas mit einem Überschuss an oxidierenden Bestandteilen zugeführt wird, wobei dem Abgas Stickoxide durch Einlagerung in den Stickoxid-Speicherkatalysator (4; 4a, 4b) entzogen werden, in einem zweiten Verfahrensschritt Abgas mit einem Überschuss an reduzierenden Bestandteilen zugeführt wird, wobei im Stickoxid-Speicherkatalysator (4; 4a, 4b) eingelagertes Stickoxid wenigstens teilweise zu NH3 reduziert wird und in einem zeitlich nach dem ersten Verfahrensschritt und vor dem zweiten Verfahrensschritt durchgeführten dritten Verfahrensschritt dem Stickoxid-Speicherkatalysator (4; 4a, 4b) ein Abgas zugeführt wird, welches gegenüber dem ersten Verfahrensschritt einen geringeren Gehalt an oxidierenden Bestandteilen und gegenüber dem zweiten Verfahrensschritt einen geringeren Gehalt an reduzierenden Bestandteilen aufweist.
11. Verfahren nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t , dass der dritte Verfahrensschritt frühestens beendet wird, wenn der Stickoxid-Speicherkatalysator (4; 4a, 4b) überwiegend von im dritten Verfahrensschritt geliefertem Abgas gefüllt ist.
12. Verfahren nach Ansprüche 10 oder 11, d a d u r c h g e k e n n z e i c h n e t , dass bei einem als Parallelanordnung aus einem ersten Stickoxid-Speicherkatalysatorelement (4a) und einem zweiten Stickoxid-Speicherkatalysatorelement (4b) ausgebildeten Stickoxid-Speicherkatalysator das erste Stickoxid- Speicherkatalysatorelement (4a) und das zweite Stickoxid- Speicherkatalysatorelement (4b) über eine Schaltvorrichtung (6) im Wechsel im ersten Verfahrensschritt oder im zweiten und dritten Verfahrensschritt betrieben werden.
13. Verfahren nach einem der Ansprüche 10 bis 12, d a d u r c h g e k e n n z e i c h n e t , dass das im zweiten Verfahrensschritt und/oder im dritten Verfahrensschritt dem Stickoxid-Speicherkatalysator (4; 4a, 4b) zugeführte Abgas wenigstens teilweise von einer als Kraftstoffreformer oder als Brenner ausgebildeten Gasliefereinheit (8) geliefert wird.
14. Verfahren nach einem der Ansprüche 10 bis 13, d a d u r c h g e k e n n z e i c h n e t , dass im zweiten und im dritten Verfahrensschritt der Sauerstoffgehalt des Abgases stromauf des Stickoxid-Speicherkatalysators (4; 4a, 4b) katalytisch vermindert wird.
15. Verfahren nach einem der Ansprüche 13 bis 14, d a d u r c h g e k e n n z e i c h n e t , dass über eine Verstellung der Schaltvorrichtung (6) die Temperatur des Stickoxid-Speicherkatalysatorelements (4a, 4b) nach Maßgabe der Temperaturabhängigkeit seiner Wirksamkeit beeinflusst wird.
PCT/EP2004/010448 2003-10-25 2004-09-17 Brennkraftmaschine mit abgasreinigungsanlage und verfahren zur reinigung des abgases einer brennkraftmaschine WO2005049984A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/226,882 USRE46512E1 (en) 2003-10-25 2004-09-17 Internal combustion engine with exhaust-gas purification system, and method for purifying the exhaust gas from an internal combustion engine
US10/576,959 US7584605B2 (en) 2003-10-25 2004-09-17 Internal combustion engine with exhaust-gas purification system, and method for purifying the exhaust gas from an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10349876.1 2003-10-25
DE10349876A DE10349876A1 (de) 2003-10-25 2003-10-25 Brennkraftmaschine mit Abgasreinigungsanlage und Verfahren zur Reinigung des Abgases einer Brennkraftmaschine

Publications (1)

Publication Number Publication Date
WO2005049984A1 true WO2005049984A1 (de) 2005-06-02

Family

ID=34485055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/010448 WO2005049984A1 (de) 2003-10-25 2004-09-17 Brennkraftmaschine mit abgasreinigungsanlage und verfahren zur reinigung des abgases einer brennkraftmaschine

Country Status (3)

Country Link
US (2) USRE46512E1 (de)
DE (1) DE10349876A1 (de)
WO (1) WO2005049984A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7624570B2 (en) 2006-07-27 2009-12-01 Eaton Corporation Optimal fuel profiles
US7810315B2 (en) 2007-02-20 2010-10-12 Eaton Corporation LNT regeneration strategy to reduce NOx spike

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332135B2 (en) * 2002-10-22 2008-02-19 Ford Global Technologies, Llc Catalyst system for the reduction of NOx and NH3 emissions
DE10349876A1 (de) 2003-10-25 2005-05-25 Daimlerchrysler Ag Brennkraftmaschine mit Abgasreinigungsanlage und Verfahren zur Reinigung des Abgases einer Brennkraftmaschine
US7490464B2 (en) * 2003-11-04 2009-02-17 Basf Catalysts Llc Emissions treatment system with NSR and SCR catalysts
US20050247050A1 (en) * 2004-05-05 2005-11-10 Eaton Corporation Adsorption based ammonia storage and regeneration system
US7827782B2 (en) * 2005-05-19 2010-11-09 Ford Global Technologies, Llc Method for remediating emissions
DE102005055240A1 (de) * 2005-11-19 2007-05-31 Daimlerchrysler Ag Abgasnachbehandlungsvorrichtung für eine Brennkraftmaschine
US7767181B2 (en) * 2006-06-30 2010-08-03 Caterpillar Inc System and method for ammonia production
US7673446B2 (en) * 2007-01-29 2010-03-09 Caterpillar Inc. Dual path exhaust emission control system
DE102007004602B4 (de) * 2007-01-30 2009-05-28 Continental Automotive Gmbh Heizvorrichtung zum Erhitzen eines Speichers für ein Komplexsalz
EP2200734A4 (de) * 2007-10-19 2012-04-18 Ecocat Oy Entfernung von ammoniak aus fluiden
EP2246535B1 (de) * 2008-01-08 2012-06-27 Honda Motor Co., Ltd. Abgasreinigungsvorrichtung für einen verbrennungsmotor
JP5081635B2 (ja) * 2008-01-08 2012-11-28 本田技研工業株式会社 内燃機関の排気浄化装置
DE102008059698A1 (de) 2008-11-29 2010-06-02 Daimler Ag Verfahren zum Betreiben eines Dieselmotors mit einer einen Stickoxid-Speicherkatalysator aufweisenden Abgasreinigungsanlage
US9662611B2 (en) 2009-04-03 2017-05-30 Basf Corporation Emissions treatment system with ammonia-generating and SCR catalysts
DE102009057277A1 (de) * 2009-12-02 2011-06-09 Volkswagen Ag Verfahren zum Betreiben eines in einem Abgasnachbehandlungssystem integrierten Brenners sowie Steuergerät zur Ausführung des Verfahrens
DE102009060758B4 (de) * 2009-12-30 2017-10-19 Huber Automotive Ag Vorrichtung und Verfahren zur Reinigung des Abgases einer Brennkraftmaschine
DE102010012744B4 (de) * 2010-03-25 2021-06-10 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine mit Betriebsartenübergang
DE102014000871B3 (de) * 2014-01-23 2015-04-09 Audi Ag Verfahren zum Betreiben einer Brennkraftmaschine sowie entsprechende Brennkraftmaschine
JP6252450B2 (ja) * 2014-11-28 2017-12-27 トヨタ自動車株式会社 内燃機関の制御装置
JP6512199B2 (ja) * 2016-09-30 2019-05-15 トヨタ自動車株式会社 内燃機関の排気浄化システム
DE102020214435A1 (de) * 2020-11-17 2022-05-19 Volkswagen Aktiengesellschaft Reduktionsverfahren zur Verringerung des Sauerstoffgehalts im Katalysator, Motoranordnung und Fahrzeug
CN115111037B (zh) * 2022-07-06 2023-12-15 潍柴动力股份有限公司 一种后处理系统及其控制方法、装置、车辆及存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10113947A1 (de) * 2001-03-22 2002-09-26 Daimler Chrysler Ag Verfahren zur Verringerung des Stickoxidgehalts im Abgas einer im Mager-Fett-Wechsel betreibbaren Brennkraftmaschine

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE176605T1 (de) 1990-11-26 1999-02-15 Catalytica Inc Palladium katalysatoren für unvollständige verbrennung und verfahren zu deren verwendung
US5437153A (en) 1992-06-12 1995-08-01 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
EP0636770B1 (de) 1993-01-19 1999-09-08 Toyota Jidosha Kabushiki Kaisha Abgasreinigungsgerät für eine brennkraftmaschine
JP3427581B2 (ja) 1994-09-13 2003-07-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2836522B2 (ja) 1995-03-24 1998-12-14 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO1997017532A1 (en) 1995-11-09 1997-05-15 Toyota Jidosha Kabushiki Kaisha Method and device for purifying exhaust gas of engine
JPH09133032A (ja) 1995-11-10 1997-05-20 Toyota Motor Corp 内燃機関の排気浄化装置
JP3713831B2 (ja) 1996-04-19 2005-11-09 トヨタ自動車株式会社 内燃機関の排気浄化装置
US5704339A (en) * 1996-04-26 1998-01-06 Ford Global Technologies, Inc. method and apparatus for improving vehicle fuel economy
JP3454334B2 (ja) 1996-06-18 2003-10-06 トヨタ自動車株式会社 排気浄化方法及びその装置
JP3456408B2 (ja) 1997-05-12 2003-10-14 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE59807160D1 (de) * 1997-07-19 2003-03-20 Volkswagen Ag Verfahren und Vorrichtung zur Überwachung der De-Sulfatierung bei NOx-Speicherkatalysatoren
DE19747670C1 (de) 1997-10-29 1998-12-10 Daimler Benz Ag Abgasreinigungsanlage für eine Brennkraftmaschine
DE19802631C1 (de) 1998-01-24 1999-07-22 Daimler Chrysler Ag Verfahren und Einrichtung zum Reinigen von Abgasen eines Verbrennungsmotors
DE19808382A1 (de) 1998-02-27 1999-09-02 Volkswagen Ag Steuerung eines NOx-Absorber-Katalysator
DE19820828B4 (de) 1998-05-09 2004-06-24 Daimlerchrysler Ag Stickoxidemissionsmindernde Abgasreinigungsanlage
US6244047B1 (en) 1998-10-02 2001-06-12 Ford Global Technologies, Inc. Method of purging lean NOx trap
US6877313B1 (en) * 1998-12-05 2005-04-12 Johnson Matthey Public Limited Company Particulate control
US6182443B1 (en) 1999-02-09 2001-02-06 Ford Global Technologies, Inc. Method for converting exhaust gases from a diesel engine using nitrogen oxide absorbent
DE19909933A1 (de) 1999-03-06 2000-09-07 Daimler Chrysler Ag Abgasreinigungsanlage mit interner Ammoniakerzeugung zur Stickoxidreduktion und Betriebsverfahren hierfür
US6427437B1 (en) 2000-03-17 2002-08-06 Ford Global Technologies, Inc. Method for improved performance of an engine emission control system
DE10043798A1 (de) 2000-09-06 2002-03-14 Daimler Chrysler Ag Verfahren zum Betrieb eines Katalysators
DE10104160B4 (de) 2001-01-30 2008-07-10 Umicore Ag & Co. Kg Verfahren zum Betreiben einer Abgasreinigungsanlage für einen Verbrennungsmotor
US6604504B2 (en) * 2001-06-19 2003-08-12 Ford Global Technologies, Llc Method and system for transitioning between lean and stoichiometric operation of a lean-burn engine
DE10164833A1 (de) * 2001-07-03 2004-06-09 Daimlerchrysler Ag Brennkraftmaschine mit Abgasnachbehandlungseinrichtung und Betriebsverfahren hierfür
WO2003048548A1 (en) * 2001-11-30 2003-06-12 Delphi Technologies, Inc. Cylinder deactivation to improve vehicle interior heating
US7332135B2 (en) 2002-10-22 2008-02-19 Ford Global Technologies, Llc Catalyst system for the reduction of NOx and NH3 emissions
US6832473B2 (en) * 2002-11-21 2004-12-21 Delphi Technologies, Inc. Method and system for regenerating NOx adsorbers and/or particulate filters
US7198764B2 (en) * 2003-03-05 2007-04-03 Delphi Technologies, Inc. Gas treatment system and a method for using the same
US6779339B1 (en) * 2003-05-02 2004-08-24 The United States Of America As Represented By The Environmental Protection Agency Method for NOx adsorber desulfation in a multi-path exhaust system
DE10349876A1 (de) 2003-10-25 2005-05-25 Daimlerchrysler Ag Brennkraftmaschine mit Abgasreinigungsanlage und Verfahren zur Reinigung des Abgases einer Brennkraftmaschine
JP4645543B2 (ja) 2006-07-13 2011-03-09 株式会社デンソー 内燃機関用排ガス浄化装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10113947A1 (de) * 2001-03-22 2002-09-26 Daimler Chrysler Ag Verfahren zur Verringerung des Stickoxidgehalts im Abgas einer im Mager-Fett-Wechsel betreibbaren Brennkraftmaschine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7624570B2 (en) 2006-07-27 2009-12-01 Eaton Corporation Optimal fuel profiles
EP2458169A1 (de) 2006-07-27 2012-05-30 Eaton Corporation Optimale Brennstoffprofile
US7810315B2 (en) 2007-02-20 2010-10-12 Eaton Corporation LNT regeneration strategy to reduce NOx spike

Also Published As

Publication number Publication date
USRE46512E1 (en) 2017-08-15
US20070130915A1 (en) 2007-06-14
DE10349876A1 (de) 2005-05-25
US7584605B2 (en) 2009-09-08

Similar Documents

Publication Publication Date Title
WO2005049984A1 (de) Brennkraftmaschine mit abgasreinigungsanlage und verfahren zur reinigung des abgases einer brennkraftmaschine
EP0931922B1 (de) Verfahren und Einrichtung zum Reinigen von Abgasen eines Verbrennungsmotors
EP1333908B1 (de) Abgasreinigungsanlage und verfahren zur abgasreinigung
EP0913558B1 (de) Abgasreinigungsanlage für eine Brennkraftmaschine
DE69636436T2 (de) Abgasemissionsregelungsvorrichtung für brennkraftmaschinen
EP0907010B1 (de) Verfahren zum Betrieb einer mit Luftüberschuss arbeitenden Brennkraftmaschine
DE102013212801B4 (de) Anordnung zur Abgasnachbehandlung für einen Verbrennungsmotor sowie Verfahren zum Betreiben eines Verbrennungsmotors
DE10237777A1 (de) Brennkraftmaschine mit Reduktionsmittelerzeugungseinheit und Betriebsverfahren hierfür
DE19960430B4 (de) Abgasreinigungsanlage mit Stickoxid-Speicherkatalysator und Schwefeloxid-Falle und Betriebsverfahren hierfür
EP2104782A1 (de) Abgasreinigungsanlage für magermotoren und verfahren zum betreiben der anlage
EP1050675B1 (de) Abgasreinigungsanlage mit Stickoxidadsorber und Desulfatisierungsverfahren hierfür
EP1058578B1 (de) REGENERATION EINES NOx-SPEICHERKATALYSATORS EINES VERBRENNUNGSMOTORS
DE102007039588B4 (de) Vorrichtung und Verfahren zur Reinigung von Abgasen für eine Brennkraftmaschine
EP0754841B1 (de) Verfahren und Vorrichtung zur Abgasreinigung bei Kraftfahrzeugen
DE102004018393A1 (de) Abgasnachbehandlungseinrichtung
EP1079079B1 (de) Motorsteuerung für einen Dieselmotor
DE102007041501B4 (de) Verfahren und Vorrichtung zur Reinigung von Abgasen für eine Brennkraftmaschine, insbesondere zur Desulfatisierung von Stickoxid-Speicherkatalysatoren
DE10038458B4 (de) Vorrichtung und Verfahren zur Abgasreinigung
DE102006043151A1 (de) Verfahren und Vorrichtung zur Regeneration eines Partikelfilters
WO2007098848A1 (de) Baugruppe sowie verfahren zur stickoxidminderung in der abgasanlage einer verbrennungskraftmaschine
DE102004048141A1 (de) Abgasreinigungsverfahren
DE10010031B4 (de) Verfahren und Vorrichtung zur Durchführung einer NOx-Regeneration eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators
DE102015221028A1 (de) Verfahren zum Betrieb einer Abgasnachbehandlungsvorrichtung eines Kraftfahrzeugs
DE102016213856A1 (de) Verfahren zum Betreiben einer Brennkraftmaschineneinrichtung, Brennkraftmaschineneinrichtung
DE102015221025A1 (de) Verfahren zum Betrieb einer Abgasnachbehandlungsvorrichtung eines Kraftfahrzeugs

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 2007130915

Country of ref document: US

Ref document number: 10576959

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10576959

Country of ref document: US