EP0754841B1 - Verfahren und Vorrichtung zur Abgasreinigung bei Kraftfahrzeugen - Google Patents

Verfahren und Vorrichtung zur Abgasreinigung bei Kraftfahrzeugen Download PDF

Info

Publication number
EP0754841B1
EP0754841B1 EP96111786A EP96111786A EP0754841B1 EP 0754841 B1 EP0754841 B1 EP 0754841B1 EP 96111786 A EP96111786 A EP 96111786A EP 96111786 A EP96111786 A EP 96111786A EP 0754841 B1 EP0754841 B1 EP 0754841B1
Authority
EP
European Patent Office
Prior art keywords
adsorber
exhaust
catalyst
absorber
starting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96111786A
Other languages
English (en)
French (fr)
Other versions
EP0754841A1 (de
Inventor
Alf Degen
Roland Huss
Paul Friedrich Dr. Küper
Manfred Moosmann
Wolfgang Zahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Dr Ing HCF Porsche AG
Volkswagen AG
Mercedes Benz Group AG
Original Assignee
Bayerische Motoren Werke AG
DaimlerChrysler AG
Dr Ing HCF Porsche AG
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG, DaimlerChrysler AG, Dr Ing HCF Porsche AG, Volkswagen AG filed Critical Bayerische Motoren Werke AG
Publication of EP0754841A1 publication Critical patent/EP0754841A1/de
Application granted granted Critical
Publication of EP0754841B1 publication Critical patent/EP0754841B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0878Bypassing absorbents or adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/12Combinations of different methods of purification absorption or adsorption, and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/12By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of absorption, adsorption or desorption of exhaust gas constituents

Definitions

  • the invention relates to a device for exhaust gas purification Motor vehicles, with an adsorber, optional flaps Actuation of the adsorber with the exhaust gas flow during the Adsorptionsvorgangs and during the rinsing process, a downstream the adsorber located main catalyst, downstream of the Adsorber arranged sensor for determining the Gas composition, arranged upstream of the absorber additional sensor for determining the gas composition, and a control unit of which, depending on the signals of the Sensors, the flaps are controlled, such that the Exhaust gas stream aufschaltbar on the adsorber or by him can be switched off.
  • a starting point for further reducing the Pollutant emissions from being provided with a catalyst Motor vehicles provides the warm-up phase of the catalytic Systems, because starting from the cold state of the motor vehicle and thus the catalytic system of the motor vehicle unpurified raw exhaust gas is emitted. Because that catalytic system only from a certain light-off temperature, also called light-off temperature, an effective emission control can perform, the catalytic system is especially at Cold start of the vehicle engine, i. the motor vehicle driving internal combustion engine largely ineffective.
  • the light-off temperature is understood as meaning the one Temperature of the catalyst, in which this one not realized immaterial conversion rate, the for example, at least 30 to 50%.
  • adsorbers which are able To store exhaust gas components at low temperatures (to adsorb) and at higher temperatures again to deliver (to desorb).
  • the adsorption capacity is greater, the lower the gas and adsorber temperature is. That means, that in the start-up and warm-up phase, when the catalytic System is still ineffective, from that the catalytic system upstream adsorber certain exhaust gas components adsorbed and only be released again when the catalytic System has reached its operating temperature.
  • the adsorber can be an ideal complement to the catalytic Represent system.
  • the adsorption capacity of the adsorbent first decreases with increasing temperature of the adsorber or with rising Exhaust gas temperature and then even the desorption of the Adsorbers before the subsequent catalytic system its Has reached light-off temperature.
  • the non-adsorbed or even desorbed exhaust gas components then flow through without After-reaction the catalytic system. Since the adsorber only at comparatively low temperatures is effective, the Catalyst only at comparatively high temperatures, Thus, due to the system, there is an intermediate period, in which neither the adsorber, nor the catalyst is sufficient are effective, or even worse, the adsorber itself desorbed while the catalyst is not yet effective is.
  • a device according to the introductory part of Claim 1 is known from JP 07042542 A.
  • the sensors can be used as hydrogen concentration or oxygen concentration sensors be executed, the adsorption process is terminated when the difference of the measured values of the two Sensors exceeds a predetermined value. After this Reaching the light-off temperature of the main catalyst is the Exhaust gas flow due to a temperature signal again through the Adsorber passed to rinse this and for the to reprocess the next cold start of the engine.
  • the task is solved, a device of the type mentioned above for the emission control To create motor vehicles, with an optimal interaction between the adsorber and the catalytic system so takes place that in all operating phases of the Motor vehicle exhaust purification takes place.
  • the sensors are designed as lambda probes which have an effective at least in terms of the conversion of HC and O 2 catalytic coating, wherein the respectively detected by the sensors exhaust stream is first passed over the coating and subsequently to the lambda probe, said during the adsorption process of the controller, the exhaust stream is not further passed through the adsorber when the gas composition detected by the downstream sensor downstream of the adsorber has HC contents, and during the purge from the controller, the exhaust gas flow from the adsorber is shut off when that from the downstream sensor determined gas composition downstream of the adsorber is equal to the determined by the additional sensor gas composition upstream of the adsorber (3).
  • a starting catalyst may be provided.
  • the adsorber By arranging the adsorber in a bypass and a controller by means of the exhaust valves, as well as by means of a close to the Motor output arranged and thus relatively fast heating starting catalyst is allowed that the catalytic system interacts with the adsorber so that the Starting catalyst has already reached its light-off temperature, while the adsorber still has high activity, but conversely, no rinsing takes place before, not even the further back in the exhaust stream located main catalyst its Has reached light-off temperature. It can be provided that the exhaust stream for purging or discharging the adsorber after Reaching the light-off temperature of the main catalyst in a row first the start catalyst, then the adsorber and then the Main catalyst flows through.
  • the starting catalyst is heated quickly and thus quickly effective, while on the other hand, the adsorber so is kept cool as long as possible and so too maintains its effectiveness for a relatively long time.
  • the exhaust gas flow if necessary from the starting catalyst, again directly into the Passed main catalyst, causing the adsorber after rinsing or after desorption, from impurities as well thermal load is saved by the exhaust gas flow. Also So can the flow conditions for the set steady state or continuous operation optimally. After sufficient rinsing of the adsorber, the Exhaust gas flow for continuous operation directly from the engine through the Main catalyst are passed.
  • the Starting catalyst be provided with a switchable bypass, further comprising an exhaust flap for applying the Starting catalyst or the bypass with the exhaust stream is provided. This has the advantage that the Starting catalyst on the one hand only for relatively short-term Operation must be designed, and on the other hand on the Starting catalyst such flow conditions set can be that this heats up very quickly, without thereby adversely affecting the continuous operation.
  • the branching off before the start catalyst bypass line on the input side with the input or output side with the Output of the adsorber is connected the output side Part of the bypass line opens into those pipeline part, which the output of the starting catalyst with the input of the Main catalyst connects, and in addition behind the Starting catalyst of that pipe part, which the Output of starting catalyst with the input of the Main catalytic converter connects, a connecting line branches, which with the bypass line on the input side based on the Adsorber is connected.
  • bypass line before the Starting catalyst branches off from that pipeline part, which the output of the motor with the input of the Starting catalyst connects, the bypass line on the input side with the input or output side with the Output of the adsorber is connected, the output side Part of the bypass line again in those pipeline part which connects the output of the motor with the input of the motor Start catalyst connects.
  • pipeline part which connecting the engine to the inlet of the starting catalyst, behind the branch point for the bypass line to one be provided opening and closing exhaust flap.
  • the starting catalyst and the main catalyst can be added a single component are summarized, so that this together form a single catalyst, which is constructive is advantageous to realize. It can be a little disadvantageous at most affect that the adsorber closer to the engine is arranged as the starting catalyst and thus earlier is heated while the starting catalyst is slower is heated.
  • a motor 1 a Starting catalyst 2, an adsorber 3 and a main catalyst. 4 connected by means of a piping system.
  • a first pipe part 5 extends between the Output of the engine 1 and the input of the starting catalyst 2
  • a second pipe part 6 extends between the Output of starting catalyst 2 and the input of the Main catalyst 4
  • a third pipe part 7 leads away from the main catalyst 4, for example, to an exhaust out.
  • the adsorber 3 is arranged in a bypass line 8, which on the input side of the aforementioned pipe section 6 based on the adsorber 3 opens, and the output side based on the adsorber 3 back into the pipe part. 6 opens.
  • a sensor 18 Located upstream of the main catalytic converter 4 is a sensor 18 arranged, the gas composition of the exhaust stream detected at least in terms of the exhaust gas component HC. Depending on Position of the exhaust valves 9, 10 and 11, the sensor 18 with the guided through the adsorber 3 exhaust stream, which from the Starting catalyst 2 exiting exhaust stream or a mixture charged therefrom.
  • a lambda probe 19 is also present, for a lambda control for the mixture preparation of the Engine 1 is provided.
  • the lambda probe 19 is usually arranged downstream of the starting catalyst 2; she can, however be arranged upstream of the starting catalyst 2, if it allow the thermal conditions.
  • control unit 20 To control the exhaust valves 9, 10 and 11 is a control unit 20 provided that the signals of the sensor 18 and the Lambda probe 19 receives and determines which of the Exhaust flaps 9, 10 or 11 to open or close.
  • FIGS. 2 to 4 represent subvariants of the embodiment of Figure 1 are according to the embodiment of Figure 2 only the Exhaust flaps 10 and 11 provided, according to Figure 3 only the Exhaust flaps 9 and 11 provided, and as a minimum solution according to the embodiment shown in Figure 4 only the Exhaust flap 11 is provided.
  • FIG. 5 Another embodiment is shown in FIG. 5, wherein the same Components designated by the same reference numerals as in Figure 1 are, the lambda probe 19 in Fig. 5 but not shown is ..
  • Figure 5 branches the Bypass 8 but not as shown in Figure 1 of the itself between the start catalyst 2 and the main catalyst 4 extending pipe part 6, but already empties between the output of the motor and the input of the motor Starting catalyst 2 extending pipe part 5 and before the start catalyst 2 again in this one. Therefore, too not as shown in Figure 1 to be opened and closed Exhaust flap in the pipe part 6, but in the Pipe part 5 between the Ausmündungs- and Junction of the bypass line 8 based on the Pipe part 5 is arranged. This exhaust flap is in the Drawing designated by the reference numeral 12. Analogous to the Exemplary embodiments according to FIGS. 2 to 4 can also be used at the embodiment of Figure 5, the exhaust valves 9 and 10th optionally omitted or provided.
  • FIG. 6 Another embodiment is shown in FIG. 6, where as well in the figures 1 and 5 the same elements with the same Reference signs are designated, the lambda probe 19, however, not is drawn.
  • a Connecting line 13 is provided, which the pipe part. 5 the output side based on the adsorber with the bypass line. 8 connects, and there are 2 more exhaust valves 14 and 15 provided, of which an exhaust flap 14 immediately before the Starting catalyst behind the branch point of Branch line 13 is disposed in the pipe part 5, and the other exhaust valve 15 in the bypass line. 8 the output side based on the adsorber 3 behind the Junction of the branch line 13 in the bypass line 8 is arranged.
  • the bypass line 8 opens altogether from the Pipe part 5 from and into the pipe part 6 a.
  • FIG. 7 A final embodiment is shown in Figure 7, wherein the same elements as in Figures 1, 5 and 6 with the same reference numerals are designated, the lambda probe 19th but not shown.
  • the Bypass line between a connecting line 16, which from the pipe part 6 opens behind the start catalyst 2 and input side based on the adsorber 3 in the Bypass line 8 opens, and the output side of the adsorber again in the pipe part 6 opening part of the Bypass 8 arranged.
  • an exhaust flap 17 arranged in the bypass line 8 in front of that point at which the connecting line 16 in the bypass line. 8 opens.
  • the adsorption characteristics of the adsorber or the Conversion characteristics of the starting catalyst show the Diagrams according to FIGS. 8 to 10.
  • FIG. 8 shows, FIG the adsorber on start of operation on a high storage rate, i.e. He can per unit of time a large volume of pollutants to save.
  • the fills up Adsorber and also assumes a higher temperature, which the volume that can be stored per unit of time decreases.
  • the starting catalyst conversion rate is too high Start of operation low and increases only after a certain Dead time or from a certain temperature on relatively steep.
  • the design of the starting catalyst and the adsorber is so chosen that the intersection of both curves is such that he as high as possible between 0 and 100%, which means that then it is ensured that the adsorber is still a high Adsorber Eatvolumenrate ensured while that of the Starting catalyst also converted exhaust gas volume already is relatively high.
  • the exhaust valve 11 is closed again and the exhaust valves 9 and 10 are opened again, whereby the Adsorber 3 is purged by hot exhaust gas through it is passed, which for the desorption of the beginning in the Adsorber adsorbed pollutants leads.
  • These will be then passed through the main catalyst 4, where the exhaust gas flow, which additionally with the desorbed exhaust components enriched in the main catalyst 4 are converted can.
  • the exhaust valve 12 opened and the exhaust valves 9 and 10 are closed, whereby the exhaust gas flow directly from the engine 1 by means of Pipe part 5 through the start catalyst 2 and means of the pipe part 6 through the main catalyst 4 and of There by means of the pipe part 7 to the exhaust is transported.
  • the exhaust valve 12 is again closed and the exhaust valves 9 and 10 are again opened, whereby the adsorber 3 can be rinsed.
  • the exhaust valve 12 is again opened and the exhaust valves 9 and 10 are again closed, whereby the exhaust gas flow from the engine through the Pipe part 5 directly into the starting catalyst 2 and further by means of the pipe part 6 in the main catalyst 4 is headed.
  • those desorbed Exhaust gas components also converted only in the main catalyst be closed by the exhaust flap 14 and the Exhaust flap 15 is opened.
  • the exhaust flaps 9, 10, 14 closed and the exhaust flaps 12 and 14 are opened, whereby the exhaust gas flow from the engine 1 via the Pipe part 5 through the connecting line 13 on the bypass line 8 and the pipe part 6 directly into the Main catalyst 4 and from this via the pipe part 7th out into the exhaust.
  • FIG. 7 A final embodiment is shown in Figure 7, wherein At the beginning of operation, first the exhaust valves 11 and 17th closed and exhaust flaps 14, 9 and 10 are open, whereby the exhaust gas flow from the engine 1 through the Pipe part 5 and subsequently through the start catalyst. 2 by means of the connecting line 16 and further by means of Bypass line 8 through the adsorber 3 back into the Pipe part 6 and flows through the main catalyst 4. After reaching the light-off temperature by the Starting catalyst 2 or after the adsorber 3 is no longer his has maximum adsorption capacity, the exhaust valves 9 and 10 in addition to the exhaust valve 17 is closed and the Exhaust flaps 14 and 11 are opened, whereby the exhaust gas flow from the engine 1 directly through the starting catalyst 2 and then can be passed through the main catalyst 4.
  • the exhaust valve 11 is closed again and the exhaust valves 9 and 10 are opened, whereby the exhaust gas flow through first the starting catalyst 2 through the connecting line 16 by Adsorber 3 can flow into the main catalyst 4 and the Adsorber 3 is flushed or discharged.
  • the exhaust valves 9 and 10 th closed again and the exhaust valve 11 is opened and the Exhaust gas flow may be from the engine directly through the startup catalyst 2 and then flow through the main catalyst 4.
  • the exhaust valve 14 are closed, and the Exhaust flap 17 are opened, the previously already opened exhaust flap 11 in its open state and the already closed exhaust valves 9 and 10 in their closed state remain.
  • the point at which desorption begins in the adsorber 3 is not dependent solely on the temperature of the adsorber 3, but additionally on the HC concentration of the exhaust gas stream entering the adsorber 3. Therefore, with a procedure based on a temperature detection, the time at which the adsorber 3 is no longer receptive can only be approximately determined. A much more accurate determination of this point in time is possible if the sensor 18 determines the gas composition, in particular the HC content, in the exhaust gas flow downstream of the adsorber 3.
  • a lambda probe is used according to the invention, which is surrounded by a catalytically active layer.
  • the catalytic layer is chosen so that preferably takes place a reaction of HC and O 2 .
  • the adsorber 3 As long as no HC is present in the exhaust gas stream, ie the adsorber 3 is able to absorb the HC present in the exhaust gas stream, the O 2 present in the exhaust gas stream can pass the catalytic layer and reach the actual lambda probe and generate a corresponding signal here. Is contained in the exhaust stream downstream of the adsorber 3 HC, ie the adsorber 3 is saturated, so that HC breaks through the adsorber 3, react in the catalytic layer HC and O 2 , so that no further O 2 can get to the actual lambda probe and again generates a corresponding signal. In order to be able to receive a signal from the lambda probe 18 even during a cold start, it must be heated in a known manner, including the catalytic layer.
  • the Storage capacity of the adsorber independent of the Environmental conditions exploited best possible is ensure that the adsorber 3 no longer than makes sense with the exhaust stream is applied and to a as early as possible the exhaust gas flow directly to the Main catalyst 4 can be routed so that this fast reached its activation temperature and for a effective exhaust gas purification ensures.
  • the rinsing of the adsorber 3 after reaching the Light-off temperature is controlled by means of the sensor 18.
  • the signal of the lambda probe 19 is used, which is arranged upstream of the adsorber 3. Because the Lambda probe 19, if it is behind the start catalyst 2 is arranged, the gas composition immediately before Adsorber 3 detected, it is now possible, the signal of the Compare sensors 18 with the signal of the lambda probe 19. This comparison is particularly easy to perform when the Sensor 18 and the lambda probe 19 are identical parts.
  • the rinsing of the adsorber 3 by opening the Exhaust flap 10 and closing the exhaust valve 11 so long until the signals of the sensor 18 and the lambda probe 19 are the same. At this time, the exhaust gas flow passes through the adsorber 3, without a change in the composition of the exhaust stream takes place in the adsorber 3 and the adsorber 3 thus completely is desorbed.
  • the difference of the signals of the sensor 18 and the lambda probe 19 are formed and stored. The rinsing of the adsorber 3 is then carried out until the difference of Signals again reached the previously stored value.
  • a warm or hot start of the engine 1 is based on a characteristic temperature of the engine 1, this can for example, be the cooling water or oil temperature, decided whether at the start of the engine 1, the adsorber 3 is switched on. If the adsorber 3 is switched on or was he does not in a previous phase of operation of the engine 1 completely discharged, so there is a purging of the adsorber. 3 after the procedure described above, as soon as it is ensured that the main catalyst 4 his Activation temperature has reached.
  • a starting catalyst. 2 is provided upstream of the adsorber 3, so it is on it to point out that an operation of the entire system in the same Way without the start catalyst 2 is possible.
  • this Arrangement also takes place an effective reduction of HC components in the exhaust gas flow during the time during which the Exhaust gas flow through the adsorber 3 is passed. Because after the Turning off the adsorber 3 of the main catalyst 4 its Operating temperature has not reached, are now downstream of the main catalyst 4 to detect increased HC levels, as in Comparison with the illustrated embodiments now no Implementation in starting catalyst 2 more takes place.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Description

Die Erfindung betrifft eine Vorrichtung zur Abgasreinigung bei Kraftfahrzeugen, mit einem Adsorber, Klappen zur wahlweisen Beaufschlagung des Adsorbers mit dem Abgasstrom während des Adsorptionsvorgangs und während des Spülvorgangs, einem stromab des Adsorbers gelegenen Hauptkatalysator, einem stromab des Adsorbers angeordneten Sensor zur Ermittlung der Gaszusammensetzung, einem stromauf des Absorbers angeordneten zusätzlichen Sensor zur Ermittlung der Gaszusammensetzung, und einem Steuergerät, von dem in Abhängigkeit von den Signalen der Sensoren die Klappen ansteuerbar sind, derart, daß der Abgasstrom auf den Adsorber aufschaltbar bzw. von ihm abschaltbar ist.
Einen Ansatzpunkt für eine weitere Reduzierung der Schadstoffemissionen von mit einem Katalysator versehenen Kraftfahrzeugen bietet die Warmlaufphase des katalytischen Systems, weil ausgehend vom kalten Zustand des Kraftfahrzeugs und damit des katalytischen Systems von dem Kraftfahrzeug ungereinigtes Rohabgas emittiert wird. Dadurch, daß das katalytische System erst ab einer gewissen Anspringtemperatur, auch Light-off-Temperatur genannt, eine wirksame Abgasreinigung durchführen kann, ist das katalytische System insbesondere bei Kaltstart des Fahrzeugmotors, d.h. der das Kraftfahrzeug antreibenden Brennkraftmaschine weitgehend unwirksam.
Um hier Abhilfe zu schaffen, war es aus dem Stand der Technik beispielsweise bekannt, den Katalysator von außen vorzuheizen, damit dieser möglichst schnell seine Anspringtemperatur erreicht. Unter der Anspringtemperatur versteht man diejenige Temperatur des Katalysators, bei welcher dieser eine nicht unwesentliche Konvertierungsrate verwirklicht, die beispielsweise bei wenigstens 30 bis 50 % liegt.
Als ein anderer Ansatz war es aus dem Stand der Technik bekannt, Adsorber einzusetzen, welche in der Lage sind, Abgaskomponenten bei niedrigen Temperaturen zu speichern (zu adsorbieren) und bei höheren Temperaturen wieder abzugeben (zu desorbieren). Dabei ist die Adsorptionsfähigkeit umso größer, je niedriger die Gas- und Adsorbertemperatur ist. Das bedeutet, daß in der Start- und Warmlaufphase, wenn das katalytische System noch unwirksam ist, von dem dem katalytischen System vorgeschalteten Adsorber bestimmte Abgaskomponenten adsorbiert und erst dann wieder abgegeben werden, wenn das katalytische System seine Betriebstemperatur erreicht hat. Auf diese Weise kann der Adsorber eine ideale Ergänzung des katalytischen Systems darstellen.
Jedoch sinkt die Adsorptionsfähigkeit des Adsorbers zunächst mit steigender Temperatur des Adsorbers bzw. mit steigender Abgastemperatur und dann beginnt sogar die Desorption des Adsorbers, bevor das nachfolgende katalytische System seine Anspringtemperatur erreicht hat. Die nicht adsorbierten oder sogar desorbierten Abgaskomponenten durchströmen dann ohne Nachreaktion das katalytische System. Da der Adsorber nur bei vergleichsweise niedrigen Temperaturen wirksam ist, der Katalysator aber nur bei vergleichsweise hohen Temperaturen, ergibt sich somit systembedingt eine Zwischenzeitspanne, in welcher weder der Adsorber, noch der Katalysator ausreichend wirksam sind, oder im noch schlechteren Fall der Adsorber sogar selbst desorbiert, während der Katalysator noch nicht wirksam ist.
Eine Vorrichtung gemäß dem einleitenden Teil des Patentanspruchs 1 ist aus JP 07042542 A bekannt. Die Sensoren können als Wasserstoffkonzentrations- oder Sauerstoffkonzentrations-Sensoren ausgeführt sein, wobei der Adsorptionsvorgang beendet wird, wenn die Differenz der Meßwerte der beiden Sensoren einen vorbestimmten Wert überschreitet. Nach dem Erreichen der Anspringtemperatur des Hauptkatalysators wird der Abgasstrom aufgrund eines Temperatursignals erneut durch den Adsorber geleitet, um diesen zu spülen und für den nächstfolgenden Kaltstart des Motors wieder aufzubereiten.
Durch die Erfindung wird die Aufgabegelöst, eine Vorrichtung der eingangs erwähnten Art zur Abgasreinigung bei Kraftfahrzeugen zu schaffen, wobei ein optimales Zusammenwirken zwischen dem Adsorber und dem katalytischen System derart stattfindet, daß in sämtlichen Betriebsphasen des Kraftfahrzeugs eine Abgasreinigung stattfindet.
Gemäß der Erfindung sind die Sensoren als Lambda-Sonden ausgebildet, die einen zumindest hinsichtlich der Umwandlung von HC und O2 wirksamen katalytischen Überzug aufweisen, wobei der von den Sensoren jeweils erfaßte Abgasstrom zunächst über den Überzug und nachfolgend zur Lambda-Sonde geleitet ist, wobei während des Adsorptionsvorgangs von dem Steuergerät der Abgasstrom nicht weiter durch den Adsorber geführt wird, wenn die vom stromabwärtigen Sensor stromab des Adsorbers ermittelte Gaszusammensetzung HC-Anteile aufweist, und während des Spülvorgangs von dem Steuergerät der Abgasstrom vom Adsorber abgeschaltet wird, wenn die vom stromabwärtigen Sensor ermittelte Gaszusammensetzung stromab des Adsorbers gleich der von dem zusätzlichen Sensor ermittelten Gaszusammensetzung stromauf des Adsorbers (3) ist.
In einer Weiterbildung der Erfindung kann stromauf des Hauptkatalysators, vorzugsweise auch stromauf des Adsorbers, ein Startkatalysator vorgesehen sein.
Durch Anordnung des Adsorbers in einem Bypaß und eine Steuerung mittels der Abgasklappen, sowie mittels eines nahe an dem Motorausgang angeordneten und damit relativ schnell aufheizenden Startkatalysators wird ermöglicht, daß das katalytische System mit dem Adsorber so zusammenwirkt, daß der Startkatalysator seine Anspringtemperatur bereits erreicht, während der Adsorber noch eine hohe Wirksamkeit aufweist, aber umgekehrt kein Spülvorgang stattfindet, bevor nicht auch der weiter hinten im Abgasstrom befindliche Hauptkatalysator seine Anspringtemperatur erreicht hat. Es kann vorgesehen sein, daß der Abgasstrom zum Spülen bzw. Entladen des Adsorbers nach Erreichen der Anspringtemperatur des Hauptkatalysators in Folge zuerst den Startkatalysator, dann den Adsorber und dann den Hauptkatalysator durchströmt. Analog dazu kann nach Erreichen der Anspringtemperatur des Hauptkatalysators der Abgasstrom zum Spülen bzw. Entladen des Adsorbers in Folge zuerst den Startkatalysator durchströmen, dann in zwei Teilströme geteilt werden, wovon einer der beiden Teilströme durch den Adsorber strömt und sich beide Teilströme hinter dem Adsorber wieder vereinigen, um dann gemeinsam durch den Hauptkatalysator zu strömen.
Dies bietet den Vorteil, daß der Startkatalysator so nahe wie möglich an den Motorausgang gelegt werden kann, sich dadurch schnell aufheizt und dabei den Abgasstrom abkühlt, welcher nachfolgend durch den im Bypaß angeordneten Adsorber strömt. Dadurch wird einerseits der Startkatalysator schnell aufgeheizt und damit schnell wirksam, während andererseits der Adsorber so lange wie möglich kühl gehalten wird und damit ebenfalls relativ lange seine Wirksamkeit beibehält.
Nach hinreichender Spülung des Adsorbers wird der Abgasstrom, ggf. aus dem Startkatalysator, wieder direkt in den Hauptkatalysator geleitet, wodurch der Adsorber nach dem Spülen bzw. nach der Desorption, vor Verunreinigungen sowie thermischer Belastung durch den Abgasstrom bewahrt wird. Auch lassen sich so die Strömungsverhältnisse für den eingeschwungenen Zustand oder Dauerbetrieb optimal einstellen. Nach hinreichender Spülung des Adsorberskann dann der Abgasstrom für den Dauerbetrieb direkt aus dem Motor durch den Hauptkatalysator geleitet werden. Hierzu kann der Startkatalysator mit einem zuschaltbaren Bypaß versehen sein, wobei ferner eine Abgasklappe zur Beaufschlagung des Startkatalysators oder des Bypasses mit dem Abgasstrom vorgesehen ist. Dies bringt den Vorteil mit sich, daß der Startkatalysator einerseits nur für relativ kurzzeitigen Betrieb ausgelegt werden muß, und andererseits an dem Startkatalysator solche Strömungsverhältnisse eingestellt werden können, daß sich dieser besonders schnell aufheizt, ohne dadurch den Dauerbetrieb negativ zu beeinträchtigen.
Dies kann beispielsweise dadurch verwirklicht werden, daß die vor dem Startkatalysator abzweigende Bypaßleitung eingangsseitig mit dem Eingang bzw. ausgangsseitig mit dem Ausgang des Adsorbers verbunden ist, wobei der ausgangsseitige Teil der Bypaßleitung in denjenigen Rohrleitungsteil einmündet, welcher den Ausgang des Startkatalysators mit dem Eingang des Hauptkatalysators verbindet, und zusätzlich hinter dem Startkatalysator von demjenigen Rohrleitungsteil, welcher den Ausgang des Startkatalysators mit dem Eingang des Hauptkatalysators verbindet, eine Verbindungsleitung abzweigt, welche mit der Bypaßleitung eingangsseitig bezogen auf den Adsorber verbunden ist.
Auch ist es möglich, daß die Bypaßleitung vor dem Startkatalysator von demjenigen Rohrleitungsteil abzweigt, welcher den Ausgang des Motors mit dem Eingang des Startkatalysators verbindet, wobei die Bypaßleitung eingangsseitig mit dem Eingang bzw. ausgangsseitig mit dem Ausgang des Adsorbers verbunden ist, wobei der ausgangsseitige Teil der Bypaßleitung wieder in denjenigen Rohrleitungsteil einmündet, welcher den Ausgang des Motors mit dem Eingang des Startkatalysators verbindet.
Dabei kann vorteilhaft in demjenigen Rohrleitungsteil, welcher dem Motor mit dem Eingang des Startkatalysators verbindet, hinter der Abzweigungsstelle für die Bypaßleitung eine zu öffnende und zu schließende Abgasklappe vorgesehen sein. Dabei können sogar der Startkatalysator und der Hauptkatalysator zu einem einzigen Bauteil zusammengefaßt werden, sodaß diese zusammen einen einzigen Katalysator ausbilden, was konstruktiv vorteilhaft zu verwirklichen ist. Etwas nachteilig kann es sich dabei allenfalls auswirken, daß der Adsorber näher an dem Motor angeordnet ist als der Startkatalysator und damit früher aufgeheizt wird, während der Startkatalysator langsamer aufgeheizt wird.
Die Erfindung wird nachfolgend anhand
von bevorzugten Ausführungsbeispielen unter Bezugnahme auf die Zeichnung näher erläutert. In der Zeichnung zeigen:
  • Figuren 1 bis 4 vier Untervarianten eines ersten Ausführungsbeispiels in schematischer Darstellung;
  • Figur 5 ein zweites Ausführungsbeispiel in schematischer Darstellung;
  • Figur 6 ein drittes Ausführungsbeispiel in schematischer Darstellung;
  • Figur 7 ein viertes Asuführungsbeispiel in schematischer Darstellung;
  • Figur 8 ein Diagramm, welches die Adsorberspeichervolumenrate in Abhängigkeit von der Temperatur bzw. Zeit zeigt;
  • Figur 9 ein Diagramm, welches die Startkatalysator-Umwandlungsrate in Abhängigkeit von der Temperatur bzw. Zeit zeigt; und
  • Figur 10 ein Diagramm, welches die adsorbierte bzw.
  • konvertierte Abgasvolumenrate über der Temperatur bzw. Zeit zeigt.
    Wie aus Figur 1 ersichtlich ist, sind ein Motor 1, ein Startkatalysator 2, ein Adsorber 3 und ein Hauptkatalysator 4 mittels eines Rohrleitungssystems miteinander verbunden. Dabei erstreckt sich ein erster Rohrleitungsteil 5 zwischen dem Ausgang des Motors 1 und dem Eingang des Startkatalysators 2, ein zweiter Rohrleitungsteil 6 erstreckt sich zwischen dem Ausgang des Startkatalysators 2 und dem Eingang des Hauptkatalysators 4, und ein dritter Rohrleitungsteil 7 führt von dem Hauptkatalysator 4 weg, beispielsweise zu einem Auspuff hin. Der Adsorber 3 ist in einer Bypaßleitung 8 angeordnet, welche von dem vorgenannten Rohrleitungsteil 6 eingangsseitig bezogen auf den Adsorber 3 ausmündet, und ausgangsseitig bezogen auf den Adsorber 3 wieder in den Rohrleitungsteil 6 einmündet. Bei dem Ausführungsbeispiel nach Figur 1 sind in der Bypaßleitung vor und hinter dem Adsorber 3 jeweils eine zu öffnende und zu schließende Abgasklappe 9 bzw. 10 vorgesehen, und in dem Rohrleitungsteil 6, welcher sich zwischen dem Startkatalysator 2 und dem Hauptkatalysator 4 erstreckt, ist an derjenigen Stelle, welche sich zwischen der Ausmündungsstelle der Bypaßleitung 8 und der Einmündungsstelle der Bypaßleitung 8 befindet, eine weitere zu öffnende und zu schließende Abgasklappe 11 angeordnet.
    Unmittelbar stromauf des Hauptkatalysators 4 ist ein Sensor 18 angeordnet, der die Gaszusammensetzung des Abgasstromes zumindest hinsichtlich des Abgasbestandteils HC erfaßt. Je nach Stellung der Abgasklappen 9, 10 und 11 ist der Sensor 18 mit dem durch den Adsorber 3 geführten Abgasstrom, dem aus dem Startkatalysator 2 austretenden Abgasstrom oder einer Mischung hieraus beaufschlagt.
    Hinter dem Motor 1 ist zudem eine Lambda-Sonde 19 vorhanden, die für eine Lambda-Regelung für die Gemischaufbereitung des Motors 1 vorgesehen ist. Die Lambda-Sonde 19 ist üblicherweise stromab des Startkatalysators 2 angeordnet; sie kann jedoch auch stromauf des Startkatalysators 2 angeordnet sein, wenn es die thermischen Verhältnisse zulassen.
    Zur Steuerung der Abgasklappen 9, 10 und 11 ist ein Steuergerät 20 vorgesehen, das die Signale des Sensors 18 sowie der Lambda-Sonde 19 erhält und hieraus bestimmt, welche der Abgasklappen 9, 10 oder 11 zu öffnen bzw. zu schließen ist.
    Die in den Figuren 2 bis 4 dargestellten'Ausführungsformen stellen Untervarianten der Ausführungsform nach Figur 1 dar. So sind gemäß der Ausführungsform nach Figur 2 nur die Abgasklappen 10 und 11 vorgesehen, gemäß Figur 3 nur die Abgasklappen 9 und 11 vorgesehen, und als Minimallösung ist gemäß der in Figur 4 dargestellten Ausführungsform nur die Abgasklappe 11 vorgesehen.
    Eine weitere Ausführungsform zeigt Figur 5, wobei gleiche Bauteile mit gleichen Bezugszeichen wie in Figur 1 bezeichnet sind, die Lambdasonde 19 in Fig. 5 aber nicht eingezeichnet ist.. Bei der Ausführungsform nach Figur 5 zweigt die Bypaßleitung 8 jedoch nicht wie gemäß Figur 1 von dem sich zwischen dem Startkatalysator 2 und dem Hauptkatalysator 4 erstreckenden Rohrleitungsteil 6 ab, sondern mündet bereits aus dem sich zwischen dem Ausgang des Motors und dem Eingang des Startkatalysators 2 erstreckenden Rohrleitungsteil 5 aus und vor dem Startkatalysator 2 wieder in diesen ein. Daher ist auch nicht wie nach Figur 1 eine zu öffnende und zu schließende Abgasklappe in dem Rohrleitungsteil 6, sondern in dem Rohrleitungsteil 5 zwischen der Ausmündungs- und Einmündungsstelle der Bypaßleitung 8 bezogen auf den Rohrleitungsteil 5 angeordnet. Diese Abgasklappe ist in der Zeichnung mit dem Bezugszeichen 12 bezeichnet. Analog zu den Ausführungsbeispielen nach den Figuren 2 bis 4 können auch bei dem Ausführungsbeispiel nach Figur 5 die Abgasklappen 9 und 10 wahlweise entfallen oder vorgesehen sein.
    Eine weitere Ausführungsform zeigt Figur 6, wobei ebenso wie bei den Figuren 1 und 5 gleiche Elemente mit gleichen Bezugszeichen bezeichnet sind, die Lambdasonde 19 jedoch nicht eingezeichnet ist. Bezogen auf die Ausführungsformen nach Figur 5 ist in der Ausführungsform nach Figur 6 zusätzlich eine Verbindungsleitung 13 vorgesehen, welche den Rohrleitungsteil 5 ausgangsseitig bezogen auf den Adsorber mit der Bypaßleitung 8 verbindet, und es sind 2 weitere Abgasklappen 14 und 15 vorgesehen, wovon die eine Abgasklappe 14 unmittelbar vor dem Startkatalysator hinter der Abzweigungstelle der Abzweigungsleitung 13 in dem Rohrleitungsteil 5 angeordnet ist, und die andere Abgasklappe 15 in der Bypaßleitung 8 ausgangsseitig bezogen auf den Adsorber 3 hinter der Einmündungsstelle der Abzweigungsleitung 13 in der Bypaßleitung 8 angeordnet ist. Die Bypaßleitung 8 mündet insgesamt aus dem Rohrleitungsteil 5 aus und in den Rohrleitungsteil 6 ein.
    Eine letzte Ausführungsform ist in Figur 7 dargestellt, wobei gleiche Elemente ebenso wie in den Figuren 1, 5 und 6 mit gleichen Bezugszeichen bezeichnet sind, die Lambdasonde 19 jedoch nicht eingezeichnet ist. Verglichen mit den Ausführungsbeispiel nach Figur 6 ist bei dem Ausführungsbeispiel nach Figur 7 der Adsorber jedoch in der Bypaßleitung zwischen einer Verbindungsleitung 16, welcher aus den Rohrleitungsteil 6 hinter dem Startkatalysator 2 ausmündet und eingangseitig bezogen auf den Adsorber 3 in die Bypaßleitung 8 einmündet, und dem ausgangsseitig des Adsorbers wieder in den Rohrleitungsteil 6 einmündenden Teil der Bypaßleitung 8 angeordnet. Zusätzlich ist eine Abgasklappe 17 in der Bypaßleitung 8 vor derjenigen Stelle angeordnet, an welcher die Verbindungsleitung 16 in die Bypaßleitung 8 einmündet.
    In den Ausführungsformen nach den Figuren 6 und 7 kann anstelle des im Vergleich mit Fig. 5 zusätzlichen Zweiges der Bypaßleitung 8 und der hinzugefügten Abgasklappen 14, 15, 17 auch eine besondere Ausbildung des Startkatalysators 2 verwendet werden, wie sie beispielsweise aus der DE-A-39 30 380 (= JP-A-3100313) bekannt ist. Dieser Startkatalysator 2 weist einen zentralen, mit einer Abgasklappe versehenen Kanal auf, der von einem Bypaß-Ringspalt umgeben ist. Bei geschlossener Abgasklappe strömt der Abgasstrom durch den Ringspalt, wohingegen bei geöffneter Abgasklappe nahezu ausschließlich der zentrale Kanal durchströmt wird, da dessen Strömungswiderstand deutlich kleiner als der des Ringspaltes ist.
    Die Adsorptionscharakteristik des Adsorbers bzw. die Konvertierungscharakteristik des Startkatalysators zeigen die Diagramme gemäß den Figuren 8 bis 10. Wie Figur 8 zeigt, weist der Adsorber bei Betriebsbeginn eine hohe Speicherrate auf, d.h. er kann pro Zeiteinheit ein großes Schadstoffvolumen speichern. Mit fortschreitender Zeitdauer füllt sich der Adsorber und nimmt überdies eine höhere Temperatur an, wodurch sich das pro Zeiteinheit speicherbare Volumen verringert.
    Im Gegensatz dazu ist die Startkatalysator-Umwandlungsrate zu Betriebsbeginn gering und steigt erst nach einer gewissen Totzeit bzw. ab einer gewissen Temperatur relativ steil an.
    Die Auslegung des Startkatalysators und des Adsorbers ist so gewählt, daß der Schnittpunkt beider Kurven so liegt, daß er möglichst hoch zwischen 0 und 100 % liegt, was bedeutet, daß dann gewährleistet ist, daß der Adsorber immer noch eine hohe Adsorberspeichervolumenrate gewährleistet, während die von dem Startkatalysator konvertierte Abgasvolumenrate auch bereits relativ hoch ist.
    Die Funktionsweise der Ausführungsformen nach den Figuren 1 bis 7 ist wie folgt:
    Nach dem Anlassen des Motors ist zunächst die Abgasklappe 11 bei dem Ausführungsbeispiel nach Figur 1 geschlossen, wodurch der Abgasstrom von dem Motor über den Rohrleitungsteil 5 durch den Startkatalysator 2 in die Bypaßleitung 8 durch den Adsorber 3 und wieder zurück in den Rohrleitungsteil 6 und schließlich durch den Hauptkatalysator 4 sowie mittels des Rohrleitungsteils 7 in den Auspuff strömt. Dabei sind die Abgasklappen 9 und 10 offen. Nachdem der Startkatalysator seine Anspringtemperatur erreicht hat, bzw. nachdem der Adsorber 3 nur noch eine zu vernachlässigende Wirkung aufgrund der Erwärmung bzw. aufgrund des voll ausgenutzten Speichervolumens hat, werden die Abgasklappen 9 und 10 geschlossen und die Abgasklappe 11 wird geöffnet, wonach der Hauptkatalysator 4 Gelegenheit erhält, sich bis auf seine Anspringtemperatur zu erhitzen. Danach wird die Abgasklappe 11 erneut geschlossen und die Abgasklappen 9 und 10 werden erneut geöffnet, wodurch der Adsorber 3 gespült wird, indem heißes Abgas durch diesen geleitet wird, welches zur Desorption der eingangs in dem Adsorber adsorbierten Schadstoffe führt. Diese werden dann durch den Hauptkatalysator 4 geleitet, wo der Abgasstrom, welcher zusätzlich mit den desorbierten Abgasbestandteilen angereichert ist, in dem Hauptkatalysator 4 konvertiert werden kann.
    Nach erfolgter Spülung, wobei derjenige Zeitpunkt, in welchem die Spülung bzw. Desorption beendet ist, durch die Abgassensoren 18, 19 festgestellt wird, werden die Abgasklappen 9 und 10 wieder geschlossen, wodurch der Adsorber 3 vollständig von dem Abgasstrom isoliert ist; und nach späterem Abschalten und Auskühlen des Motors sowie des Startkatalysators 2 und des Hauptkatalysators 4 für einen erneuten Betrieb bereit ist.
    Als Minimallösung ist es auch möglich, wie in dem Ausführungsbeispiel nach Figur 4, nur eine einzige Abgasklappe 11 vorzusehen, wobei auf diese Weise bereits erreicht werden kann, daß zu Betriebsbeginn der vollständige Abgasstrom zwecks Adsorption durch den Adsorber 3 geleitet wird, sowie später zwecks Spülung erneut vollständig durch den Adsorber 3 geleitet wird. Jedoch strömt auch bei geöffneter Abgasklappe 11 stets ein kleiner, möglicherweise nicht erwünschter Teilabgasstrom durch den Adsorber 3. Durch konstruktive Gestaltung des Bypaß-Abgasrohres vor dem Adsorber muß daher verhindert werden, daß der Adsorber in dieser Phase durch den Teilabgasstrom weiter aufgeheizt wird und bereits hier mit der Desorption beginnt. Andererseits muß verhindert werden, daß nach erfolgter Adsorption und Desorption im Normalbetrieb der auch dann durch den Adsorber fließende Teilabgasstrom zu stark abgekühlt wird und der Adsorber adsorbiert. Dies hätte zur Folge, daß im nächsten Kaltstart nur noch ein Teil des gesamten Adsorbervolumens genutzt werden könnte. Abhilfe kann hier wie nach den Figuren 2 und 3 auch mit jeweils nur einer Abgasklappe 9 bzw. 10 geschaffen werden.
    Bei dem Ausführungsbeispiel nach Figur 5 sind bei Betriebsbeginn die Abgasklappen 9 und 10 geöffnet und die Abgasklappe 12 ist geschlossen, wodurch der gesamte Abgasstrom von dem Motor 1 über den Rohrleitungsteil 5 mittels der Bypaßleitung 8 durch den Adsorber 3 zurück in den Rohrleitungsteil 5 und dann durch den Startkatalysator 2 sowie mittels des Rohrleitungsteils 6 durch den Hauptkatalysator 4 und mittels des Rohrleitungsteils 7 in den Auspuff geführt wird, und so eine Adsorption von Abgasvolumen in dem Adsorber 3 stattfinden kann. Nachdem der Startkatalysator seine Anspringtemperatur erreicht hat, wird die Abgasklappe 12 geöffnet und die Abgasklappen 9 und 10 werden geschlossen, wodurch der Abgasstrom unmittelbar von dem Motor 1 mittels des Rohrleitungsteils 5 durch den Startkatalysator 2 und mittels des Rohrleitungsteils 6 durch den Hauptkatalysator 4 und von dort aus mittels des Rohrleitungsteils 7 zu dem Auspuff befördert wird. Nachdem auch der Hauptkatalysator 4 seine Anspringtemperatur erreicht hat, wird die Abgasklappe 12 wieder geschlossen und die Abgasklappen 9 und 10 werden wieder geöffnet, wodurch der Adsorber 3 gespült werden kann. Die so desorbierten Schadstoffe können dann sowohl in dem Startkatalysator 2, als auch in dem Hauptkatalysator 4 nachreagieren. Schließlich wird die Abgasklappe 12 wieder geöffnet und die Abgasklappen 9 und 10 werden wieder geschlossen, wodurch der Abgasstrom von dem Motor durch den Rohrleitungsteil 5 direkt in den Startkatalysator 2 sowie weiter mittels des Rohrleitungsteils 6 in den Hauptkatalysator 4 geleitet wird.
    Bei der in Figur 6 dargestellten Ausführungsform sind bei Betriebsbeginn zunächst die Abgasklappen 12 und 15 geschlossen, und die Abgasklappen 9, 10 und 14 geöffnet, wodurch der Abgasstrom zunächst durch den Adsorber 3, dann durch den Startkatalysator 2 und schließlich durch den Hauptkatalysator 4 strömt. Nachdem der Startkatalysator 2 seine Anspringtemperatur erreicht hat, wird die Abgasklappe 12 geöffnet und die Abgasklappen 9 und 10 werden geschlossen, wodurch der Abgasstrom zunächst nur von dem Motor direkt durch den Startkatalysator 2 und dann durch den Hauptkatalysator 4 strömt. Nach Erreichen der Anspringtemperatur des Hauptkatalysators 4 wird die Abgasklappe 12 geschlossen und die Abgasklappen 9 und 10 werden geöffnet, wodurch die aus dem Adsorber desorbierten Abgasbestandteile sowohl in dem Startkatalysator, als auch in dem Hauptkatalysator konvertiert werden können. Wahlweise können die desorbierten Abgasbestandteile auch nur in dem Hauptkatalysator konvertiert werden, indem die Abgasklappe 14 geschlossen und die Abgasklappe 15 geöffnet wird. Nachdem der Adsorber ausreichend gespült wurde, können schließlich die Abgasklappen 9, 10, 14 geschlossen und die Abgasklappen 12 und 14 geöffnet werden, wodurch der Abgasstrom von dem Motor 1 über den Rohrleitungsteil 5 durch die Verbindungsleitung 13 weiter über die Bypaßleitung 8 und den Rohrleitungsteil 6 direkt in den Hauptkatalysator 4 und aus diesem über den Rohrleitungsteil 7 heraus in den Auspuff geleitet werden kann. Wahlweise können auch die Klappen 8,9 und 14 geschlossen und die Klappen 12 und 15 geöffnet werden, wodurch dann der Abgasstrom direkt vom Motor 1 durch den Hauptkatalysator 4 und von dort aus durch den Auspuff in das Freie strömen kann.
    Eine letzte Ausführungsform ist in Figur 7 dargestellt, wobei zu Betriebsbeginn zunächst die Abgasklappen 11 und 17 geschlossen und Abgasklappen 14, 9 und 10 geöffnet sind, wodurch der Abgasstrom von dem Motor 1 durch den Rohrleitungsteil 5 und nachfolgend durch den Startkatalysator 2 mittels der Verbindungsleitung 16 und weiter mittels der Bypaßleitung 8 durch den Adsorber 3 wieder zurück in den Rohrleitungsteil 6 und durch den Hauptkatalysator 4 strömt. Nach Erreichen der Anspringtemperatur durch den Startkatalysator 2 bzw. nachdem der Adsorber 3 nicht mehr seine maximale Adsorptionsfähigkeit besitzt, werden die Abgasklappen 9 und 10 zusätzlich zu der Abgasklappe 17 geschlossen und die Abgasklappen 14 und 11 werden geöffnet, wodurch der Abgasstrom von dem Motor 1 direkt durch den Startkatalysator 2 und dann durch den Hauptkatalysator 4 geleitet werden kann. Nachdem auch der Hauptkatalysator 4 seine Anspringtemperatur erreicht hat, wird die Abgasklappe 11 wieder geschlossen und die Abgasklappen 9 und 10 werden geöffnet, wodurch der Abgasstrom zunächst durch den Startkatalysator 2 über die Verbindungsleitung 16 durch Adsorber 3 in den Hauptkatalysator 4 strömen kann und der Adsorber 3 dabei gespült bzw. entladen wird. Nach vollständiger Entladung des Adsorbers 3 werden die Abgasklappen 9 und 10 wieder geschlossen sowie die Abgasklappe 11 geöffnet und der Abgasstrom kann von dem Motor direkt durch den Startkatalysator 2 und dann durch den Hauptkatalysator 4 strömen. Dann kann wahlweise die Abgasklappe 14 geschlossen werden, sowie die Abgasklappe 17 geöffnet werden, wobei die zuvor bereits geöffnete Abgasklappe 11 in ihrem offenen Zustand und die bereits zuvor geschlossen Abgasklappen 9 und 10 in ihrem geschlossen Zustand verbleiben. Dadurch kann der Abgasstrom von dem Motor 1 mittels der Bypaßleitung 8 durch die Verbindungsleitung 16 und mittels des Rohrleitungsteils 6 direkt durch den Hauptkatalysator 4 strömen, wodurch der Startkatalysator bei Langstreckenbetrieb des Fahrzeugs vollständig ausgeschaltet ist und auf diese Weise geschont wird.
    Die Ansteuerung der Abgasklappen 10, 11 soll nun anhand des in Fig. 2 dargestellten Ausführungsbeispieles erläutert werden. Bei einem Kaltstart der Brennkraftmaschine werden die Abgasklappe 11 geschlossen und die Abgasklappe 10 geöffnet, so daß der Abgasstrom vollständig durch den Adsorber 3 geleitet wird. Der Sensor 18 erfaßt in diesem Schaltzustand der Abgasklappen 10, 11 den Abgasstrom ausgangsseitig des Adsorbers 3.
    In Versuchen hat sich gezeigt, daß der Punkt, an dem im Adsorber 3 die Desorption einsetzt, nicht alleine von der Temperatur des Adsorbers 3, sondern zusätzlich von der HC-Konzentration des in den Adsorber 3 eintretenden Abgasstromes abhängig ist. Daher kann mit einer auf einer Temperaturerfassung beruhenden Vorgehensweise der Zeitpunkt, zu dem der Adsorber 3 nicht mehr aufnahmefähig ist, nur näherungsweise bestimmt werden. Eine deutlich genauere Bestimmung dieses Zeitpunktes ist möglich, wenn der Sensor 18 die Gaszusammensetzung, insbesondere den HC-Anteil, im Abgasstrom stromab des Adsorbers 3 ermittelt. Hierzu wird erfindungsgemäß eine Lambda-Sonde eingesetzt, die von einer katalytisch wirksamen Schicht umgeben ist. Die katalytische Schicht ist dabei so gewählt, daß hier bevorzugt eine Umsetzung von HC und O2 stattfindet. Solange im Abgasstrom kein HC vorhanden ist, d.h. der Adsorber 3 in der Lage ist, das im Abgasstrom befindliche HC aufzunehmen, kann das im Abgasstrom befindliche O2 an der katalytischen Schicht vorbei zur eigentlichen Lambda-Sonde gelangen und hier ein entsprechendes Signal erzeugen. Ist im Abgasstrom stromab des Adsorbers 3 HC enthalten, d.h. der Adsorber 3 ist gesättigt, so daß HC durch den Adsorber 3 durchschlägt, reagieren in der katalytischen Schicht HC und O2, so daß kein weiteres O2 zur eigentlichen Lambda-Sonde gelangen kann und wiederum ein entsprechendes Signal erzeugt. Um auch bei einem Kaltstart von der Lambda-Sonde 18 ein Signal erhalten zu können, muß diese einschließlich der katalytischen Schicht in bekannter Weise beheizt sein.
    Erkennt das Steuergerät 20 an dem vom Sensor 18 gelieferten Signal, daß der Grenzwert HC im Abgasstrom enthalten ist, d.h. die Sättigungsgrenze des Adsorbers 3 erreicht ist, so schließt das Steuergerät 20 die Abgasklappe 10 und öffnet gleichzeitig die Abgasklappe 11. Mit den vorstehend beschriebenen Vorgehensweisen ist es möglich, bei einem Kaltstart des Motors 1 durch Steuerung der Abgasklappen 10, 11 den Abgasstrom exakt so lange über den Adsorber 3 zu leiten, wie dieser in der Lage ist, HC aufzunehmen. Somit wird einerseits die Speicherfähigkeit des Adsorbers unabhängig von den Umgebungsbedingungen bestmöglich ausgenutzt, andererseits wird dafür Sorge getragen, daß der Adsorber 3 nicht länger als sinnvoll mit dem Abgasstrom beaufschlagt ist und zu einem möglichst frühen Zeitpunkt der Abgasstrom direkt zum Hauptkatalysator 4 geleitet werden kann, so daß dieser schnell seine Aktivierungstemperatur erreicht und für eine wirkungsvolle Abgasreinigung sorgt.
    Auch das Spülen des Adsorbers 3 nach Erreichen der Anspringtemperatur wird mit Hilfe des Sensors 18 gesteuert. Zusätzlich wird das Signal der Lambda-Sonde 19 herangezogen, die stromauf des Adsorbers 3 angeordnet ist. Da die Lambda-Sonde 19, sofern sie hinter dem Startkatalysator 2 angeordnet ist, die Gaszusammensetzung unmittelbar vor dem Adsorber 3 erfaßt, ist es nunmehr möglich, das Signal des Sensors 18 mit dem Signal der Lambda-Sonde 19 zu vergleichen. Dieser Vergleich ist besonders einfach durchzuführen, wenn der Sensor 18 und die Lambda-Sonde 19 baugleiche Teile sind. In diesem Fall erfolgt das Spülen des Adsorbers 3 durch Öffnen der Abgasklappe 10 und Schließen der Abgasklappe 11 so lange, bis die Signale des Sensors 18 und der Lambda-Sonde 19 gleich sind. Zu diesem Zeitpunkt durchströmt der Abgasstrom den Adsorber 3, ohne daß eine Veränderung der Zusammensetzung des Abgasstromes im Adsorber 3 stattfindet und der Adsorber 3 somit vollständig desorbiert ist.
    Falls der Sensor 18 und die Lambda-Sonde 19 nicht baugleich sind oder die Lambda-Sonde vor dem Startkatalysator 2 angeordnet ist, muß vor dem Spülen des Adsorbers 3, d.h. noch bei geschlossener Abgasklappe 10 und geöffneter Abgasklappe 11, die Differenz der Signale des Sensors 18 und der Lambda-Sonde 19 gebildet und gespeichert werden. Das Spülen des Adsorbers 3 wird daraufhin so lange durchgeführt, bis die Differenz der Signale wieder den zuvor gespeicherten Wert erreicht.
    Bei einem Warm- oder Heißstart des Motors 1 wird anhand einer charakteristischen Temperatur des Motors 1, dies kann beispielsweise die Kühlwasser- oder Öltemperatur sein, entschieden, ob beim Start des Motors 1 der Adsorber 3 zugeschaltet wird. Wird der Adsorber 3 zugeschaltet oder wurde er in einer vorhergehenden Betriebsphase des Motors 1 nicht vollständig entladen, so erfolgt ein Spülen des Adsorbers 3 nach der oben dargestellten Vorgehensweise, sobald sichergestellt ist, daß der Hauptkatalysator 4 seine Aktivierungstemperatur erreicht hat.
    Auch wenn in allen Ausführungsbeispielen ein Startkatalysator 2 stromauf des Adsorbers 3 vorgesehen ist, so ist doch darauf hinzuweisen, daß auch ein Betrieb des Gesamtsystems in gleicher Weise ohne den Startkatalysator 2 möglich ist. Bei dieser Anordnung erfolgt ebenfalls eine wirkungsvolle Reduktion der HC-Anteile im Abgasstrom während der Zeit, während welcher der Abgasstrom durch den Adsorber 3 geleitet wird. Da nach dem Abschalten des Adsorbers 3 der Hauptkatalysator 4 seine Betriebstemperatur noch nicht erreicht hat, sind nun stromab des Hauptkatalysators 4 erhöhte HC-Anteile festzustellen, da im Vergleich mit den dargestellten Ausführungsbeispielen nun keine Umsetzung im Startkatalysator 2 mehr stattfindet. Da andererseits durch die Betriebsdauer des Motors 1 während der Zeitspanne, während welcher der Abgasstrom durch den Adsorber 3 geleitet wird, sich deutlich erwärmt, erreicht der Hauptkatalysator 4 deutlich schneller seiner Anspringtemperatur, so daß die Gesamtemissionen während des Startvorganges auch ohne den Startkatalysator 2 deutlich reduziert sind.
    Schließlich ist darauf hinzuweisen, daß bei der Ansteuerung der Abgasklappen 10, 11 es insbesondere beim Spülen des Adsorbers 3 nicht unbedingt erforderlich ist, den gesamten Abgasstrom durch den Adsorber 3 zu leiten. Vielmehr ist es auch möglich, nur einen Teilstrom des Abgasstromes durch den Adsorber 3 hindurchzuleiten.
    Die vorstehend anhand der Ausführungsform nach Fig. 2 beschriebene Ansteuerung der Abgasklappen 9, 10 und 11 wird in gleicher Weise zur Ansteuerung der Abgasklappen 9, 10, 11, 12, 13, 14, 15 und 17 in den Ausführungformen nach den Fig. 1 und 3 bis 7 angewendet, soweit diese verwendet werden, um den Adsorber 3 mit dem Abgasstrom zu beaufschlagen.

    Claims (4)

    1. Vorrichtung zur Abgasreinigung bei Kraftfahrzeugen, mit einem Adsorber (3), Klappen (9, 10, 11) zur wahlweisen Beaufschlagung des Adsorbers (3) mit dem Abgasstrom während des Adsorptionsvorgangs und während des Spülvorgangs, einem stromab des Adsorbers (3) gelegenen Hauptkatalysator (4), einem stromab des Adsorbers (3) angeordneten Sensor (18) zur Ermittlung der Gaszusammensetzung, einem stromauf des Absorbers angeordneten zusätzlichen Sensor (19) zur Ermittlung der Gaszusammensetzung, und einem Steuergerät (20), von dem in Abhängigkeit von den Signalen der Sensoren (18, 19) die Klappen (9,10,11) ansteuerbar sind, derart, daß der Abgasstrom auf den Adsorber (3) aufschaltbar bzw. von ihm abschaltbar ist,
      dadurch gekennzeichnet, daß
      die Sensoren (18, 19) als Lambda-Sonden ausgebildet sind, die einen zumindest hinsichtlich der Umwandlung von HC und O2 wirksamen katalytischen Überzug aufweisen, wobei der von den Sensoren (19) jeweils erfaßte Abgasstrom zunächst über den Überzug und nachfolgend zur Lambda-Sonde geleitet ist, wobei während des Adsorptionsvorgangs von dem Steuergerät (20) der Abgasstrom nicht weiter durch den Adsorber (3) geführt wird, wenn die vom stromabwärtigen Sensor (18) stromab des Adsorbers (3) ermittelte Gaszusammensetzung HC-Anteile aufweist, und während des Spülvorgangs von dem Steuergerät (20) der Abgasstrom vom Adsorber (3) abgeschaltet wird, wenn die vom stromabwärtigen Sensor (18) ermittelte Gaszusammensetzung stromab des Adsorbers (3) gleich der von dem zusätzlichen Sensor (19) ermittelten Gaszusammensetzung stromauf des Adsorbers (3) ist.
    2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß stromauf des Hauptkatalysators (4) ein Startkatalysator (2) vorgesehen ist.
    3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der Startkatalysator (2) stromauf des Adsorbers (3) angeordnet ist.
    4. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der Startkatalysator (2) mit einem zuschaltbaren Bypaß versehen ist, und ferner eine Abgasklappe (14, 15, 17) zur Beaufschlagung des Startkatalysators (2) oder des Bypasses mit dem Abgasstrom vorgesehen ist.
    EP96111786A 1995-07-21 1996-07-22 Verfahren und Vorrichtung zur Abgasreinigung bei Kraftfahrzeugen Expired - Lifetime EP0754841B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19526765 1995-07-21
    DE19526765A DE19526765A1 (de) 1995-07-21 1995-07-21 Verfahren und Vorrichtung zur Abgasreinigung bei Kraftfahrzeugen

    Publications (2)

    Publication Number Publication Date
    EP0754841A1 EP0754841A1 (de) 1997-01-22
    EP0754841B1 true EP0754841B1 (de) 2004-04-07

    Family

    ID=7767491

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96111786A Expired - Lifetime EP0754841B1 (de) 1995-07-21 1996-07-22 Verfahren und Vorrichtung zur Abgasreinigung bei Kraftfahrzeugen

    Country Status (3)

    Country Link
    EP (1) EP0754841B1 (de)
    JP (1) JPH0932538A (de)
    DE (2) DE19526765A1 (de)

    Families Citing this family (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2764637B1 (fr) * 1997-06-16 1999-08-13 Inst Francais Du Petrole Procede et ensemble d'elimination des oxydes d'azote presents dans des gaz d'echappement, utilisant un moyen de piegeage des oxydes d'azote
    US6354076B1 (en) 1998-07-16 2002-03-12 Honda Giken Kogyo Kabushiki Kaisha Exhaust gas purification system of internal combustion engine
    DE59901383D1 (de) 1998-08-19 2002-06-13 Bayerische Motoren Werke Ag Abgasanlage einer Brennkraftmaschine mit einem Speichervolumen
    DE19837509A1 (de) * 1998-08-19 2000-02-24 Bayerische Motoren Werke Ag Abgasanlage einer Brennkraftmaschine mit einem Speichervolumen
    JP3557925B2 (ja) * 1998-12-22 2004-08-25 トヨタ自動車株式会社 内燃機関の排気浄化装置
    JP3680650B2 (ja) * 1999-01-25 2005-08-10 トヨタ自動車株式会社 内燃機関の排気浄化装置
    JP3508707B2 (ja) * 2000-07-31 2004-03-22 トヨタ自動車株式会社 車輌用エンジン排気装置
    US6922986B2 (en) * 2001-12-14 2005-08-02 General Motors Corporation Catalytic converter early light off using cylinder deactivation
    DE10216537B3 (de) 2002-04-15 2004-02-05 Visteon Global Technologies, Inc., Dearborn Umsteuervorrichtung für strömende Medien, insbesondere Weichenventil für die Abgase einer Verbrennungskraftmaschine
    JP4174767B2 (ja) * 2003-10-20 2008-11-05 トヨタ自動車株式会社 排ガス浄化装置
    FR2886337B1 (fr) * 2005-05-25 2010-10-29 Faurecia Sys Echappement Ligne d'echappement pour moteur thermique
    US9057303B2 (en) * 2013-03-14 2015-06-16 Tenneco Automotive Operating Company Inc. Exhaust system for dual fuel engines
    US9382829B2 (en) 2014-10-21 2016-07-05 Toyota Motor Engineering & Manufacturing North America, Inc. Bypass exhaust pathway to allow gases to bypass the start catalyst of a vehicle

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE3930380A1 (de) 1989-09-12 1991-03-21 Porsche Ag Abgasanlage eines mehrzylinder-verbrennungsmotors
    US5051244A (en) * 1990-07-20 1991-09-24 Uop Use of a molecular sieve bed to minimize emissions during cold start of internal combustion engines
    JPH0559942A (ja) * 1991-08-29 1993-03-09 Toyota Motor Corp コールドhc吸着除去装置
    JP3083599B2 (ja) * 1991-09-30 2000-09-04 株式会社日立製作所 排気ガス浄化システム
    FR2686375B1 (fr) * 1992-01-17 1995-07-07 Ecia Equip Composants Ind Auto Ligne d'echappement des gaz de sortie d'un moteur notamment de vehicule automobile.
    KR960004832B1 (ko) * 1992-08-24 1996-04-16 미쯔비시지도오샤고오교오 가부시기가이샤 배기가스정화장치
    DE69315153T2 (de) * 1992-09-16 1998-04-02 Denso Corp Abgasreinigungsvorrichtung für einen Verbrennungsmotor
    US5307627A (en) * 1993-01-07 1994-05-03 Ford Motor Company Method and apparatus for oxidizing hydrocarbons from exhaust gases
    JPH0742542A (ja) * 1993-07-27 1995-02-10 Honda Motor Co Ltd 内燃機関の排気ガス浄化装置
    JPH0763048A (ja) * 1993-08-20 1995-03-07 Ngk Insulators Ltd 排ガス浄化システム及び排ガス浄化方法
    DE4400202C1 (de) * 1994-01-05 1995-04-06 Daimler Benz Ag Verfahren zur Reduzierung von Kohlenwasserstoff-Emissionen einer Brennkraftmaschine

    Also Published As

    Publication number Publication date
    DE59610966D1 (de) 2004-05-13
    DE19526765A1 (de) 1997-01-23
    EP0754841A1 (de) 1997-01-22
    JPH0932538A (ja) 1997-02-04

    Similar Documents

    Publication Publication Date Title
    EP0931922B1 (de) Verfahren und Einrichtung zum Reinigen von Abgasen eines Verbrennungsmotors
    EP0913558B1 (de) Abgasreinigungsanlage für eine Brennkraftmaschine
    DE69910107T2 (de) Abgasemissionssteuerungssystem für eine Brennkraftmaschine
    DE69813934T2 (de) Abgasreinigungsverfahren für einen Motor
    DE602005004814T2 (de) Abgasreinigungsvorrichtung und abgasreinigungsverfahren für verbrennungsmotor
    EP0987408B1 (de) Verfahren zum Betrieb einer Verbrennungsmotoranlage mit schwefelanreichernder Abgasreiningungskomponete und damit betreibbare Verbrennungsmotoranlage
    DE112008002856B4 (de) Abgasreinigungsvorrichtung und Abgasreinigungsverfahren für einen Verbrennungsmotor
    EP0754841B1 (de) Verfahren und Vorrichtung zur Abgasreinigung bei Kraftfahrzeugen
    DE19960430B4 (de) Abgasreinigungsanlage mit Stickoxid-Speicherkatalysator und Schwefeloxid-Falle und Betriebsverfahren hierfür
    DE112006001296B4 (de) Auspufflinie für Brennkraftmotoren
    EP0690210B1 (de) Verfahren und Vorrichtung zum kontrollierten Regenerieren eines Dieselrussfilters
    DE60300270T2 (de) Abgaskontrollsystem für eine Diesel Brennkraftmaschine und Regelverfahren dafür
    DE10354276A1 (de) Vorrichtung und Verfahren zur Abgasreinigung für einen Verbrennungsmotor
    DE4328125A1 (de) Abgasreinigungsvorrichtung für einen Verbrennungsmotor oder dergleichen
    WO2005049984A1 (de) Brennkraftmaschine mit abgasreinigungsanlage und verfahren zur reinigung des abgases einer brennkraftmaschine
    DE102017205170B4 (de) Abgassystem für einen Verbrennungsmotor sowie Verfahren zum Betrieb eines Abgassystems
    EP1050675B1 (de) Abgasreinigungsanlage mit Stickoxidadsorber und Desulfatisierungsverfahren hierfür
    DE19731131A1 (de) Verfahren und Vorrichtung zur Regeneration einer Schwefelfalle
    EP1387929B1 (de) Verfahren zum betreiben einer brennkraftmaschine, insbesondere eines kraftfahrzeugs
    DE10152187A1 (de) Abgasreinigungsanlage mit Stickoxid-Speicherkatalysator und SCR-Katalysator und Verfahren zur Verminderung des Stickoxidgehalts im Abgas von Brennkraftmaschinen
    DE19939988A1 (de) Verfahren zum Betreiben eines Dieselmotors
    EP0688940B1 (de) Ottomotor mit Katalysator
    DE102012101767B4 (de) Verbrennungskraftmaschine
    DE19609306A1 (de) Abgasanlage für eine Brennkraftmaschine
    DE10018062B4 (de) Mehrzylindermotor für Kraftfahrzeuge mit einer mehrflutigen Abgasreinigungsanlage und Verfahren zur Steuerung eines Betriebs des Mehrzylindermotors

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES FR GB IT SE

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT

    Owner name: DR.ING. H.C. F. PORSCHE AKTIENGESELLSCHAFT

    Owner name: BAYERISCHE MOTOREN WERKE AKTIENGESELLSCHAFT

    Owner name: DAIMLER-BENZ AKTIENGESELLSCHAFT

    17P Request for examination filed

    Effective date: 19970721

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT

    Owner name: DR.ING. H.C. F. PORSCHE AKTIENGESELLSCHAFT

    Owner name: BAYERISCHE MOTOREN WERKE AKTIENGESELLSCHAFT

    Owner name: DAIMLERCHRYSLER AG

    17Q First examination report despatched

    Effective date: 20000428

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: VOLKSWAGEN AG

    Owner name: DR.ING. H.C. F. PORSCHEAKTIENGESELLSCHAFT

    Owner name: BAYERISCHE MOTOREN WERKE AKTIENGESELLSCHAFT

    Owner name: DAIMLERCHRYSLER AG

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES FR GB IT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 20040407

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 59610966

    Country of ref document: DE

    Date of ref document: 20040513

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040707

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040718

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040720

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050110

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20090127

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20090126

    Year of fee payment: 13

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TQ

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20090129

    Year of fee payment: 13

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20090722

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20100331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090722

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100202