EP0987408B1 - Verfahren zum Betrieb einer Verbrennungsmotoranlage mit schwefelanreichernder Abgasreiningungskomponete und damit betreibbare Verbrennungsmotoranlage - Google Patents

Verfahren zum Betrieb einer Verbrennungsmotoranlage mit schwefelanreichernder Abgasreiningungskomponete und damit betreibbare Verbrennungsmotoranlage Download PDF

Info

Publication number
EP0987408B1
EP0987408B1 EP99114565A EP99114565A EP0987408B1 EP 0987408 B1 EP0987408 B1 EP 0987408B1 EP 99114565 A EP99114565 A EP 99114565A EP 99114565 A EP99114565 A EP 99114565A EP 0987408 B1 EP0987408 B1 EP 0987408B1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
gas purification
internal combustion
combustion engine
sulphur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99114565A
Other languages
English (en)
French (fr)
Other versions
EP0987408A2 (de
EP0987408A3 (de
Inventor
Jürgen Dr. Schmidt
Gerd Tiefenbacher
Anton Waltner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP0987408A2 publication Critical patent/EP0987408A2/de
Publication of EP0987408A3 publication Critical patent/EP0987408A3/de
Application granted granted Critical
Publication of EP0987408B1 publication Critical patent/EP0987408B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • F01N3/222Control of additional air supply only, e.g. using by-passes or variable air pump drives using electric valves only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0878Bypassing absorbents or adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1612SOx amount trapped in catalyst

Definitions

  • the invention relates to a method for operating an internal combustion engine system according to the preamble of claim 1 and to an operable with such a method engine system according to the preamble of claim 8.
  • Systems of this type are used in particular in motor vehicles and include an exhaust gas cleaning component in which during of the plant enriches sulfur contained in the fuel.
  • Such sulfur-enriching exhaust gas purification components may in particular be nitric oxide (NO x ) storage catalysts or so-called sulfur traps.
  • the sulfur enriching emission control component requires desulphation to free it from the accumulated sulphurous sulphate.
  • sulfur poisoning of NO x storage catalysts reduces their storage capacity.
  • the desulfation preferably proceeds at elevated exhaust gas temperatures and rich exhaust gas compositions.
  • EP 0 636 770 A1 proposes converting the internal combustion engine from lean to rich engine air ratio, ie air / fuel ratio of the air / fuel mixture supplied to the engine, and, if required, additionally an electric heater for the NO x storage catalytic converter to activate.
  • the respective Desulfatticiansphase is for a predetermined period of, for example, 10 min. maintained.
  • the setting of a sufficiently rich engine air ratio is accompanied by a metered addition of secondary air into the exhaust line upstream of the NO x storage catalytic converter.
  • a control and not only control of the catalyst air ratio, ie, the air / fuel ratio of the NO x storage-flowing through the exhaust gas may be provided, and the catalyst temperature may be set to a desired value.
  • the object of the invention is a method and an internal combustion engine system specify with which a sulfur-enriching Emission control component as fuel-efficient and odorless as well as avoiding disturbances of the Engine operation can be desulfated.
  • the invention solves this problem by providing a Operating method with the features of claim 1 and an internal combustion engine system with the features of the claim 8th.
  • the method of claim 1 is in each case at a Cold start a desulfating triggered in which the operation of the internal combustion engine system on the corresponding Desulfatticiansmodus is set, wherein the motor vehicle approached before setting the desulfating mode becomes.
  • the combustion engine will not be primary anyway operated according to fuel consumption minimizing criteria, such as for a normal operation mode with warmed up engine application can find because e.g. first in a catalyst heating mode Attempts are made to use existing exhaust gas cleaning components, in particular one or more catalytic converter units, if possible quickly bring to operating temperature.
  • the internal combustion engine is not yet in the so-called operated fuel-efficient stratified charge, and appropriate catalyst heating measures are also in engines with direct injection appropriate.
  • the engine catalytic converter heating measures for example, the setting of a rich engine air ratio include, as far as possible with the motor measures for desulfating the sulfur-enriching Exhaust gas purifying component correspond, arises by the procedure according to the invention no appreciably higher Fuel consumption compared to a plant operation without Desulfatticiansvortician.
  • a further developed according to claim 4 operating method is suitable itself for internal combustion engine plants, which in the exhaust line downstream sulfur-enriching emission control component Oxidation catalyst unit, i. such with oxidizing Function, such as a three-way catalyst., Have.
  • Oxidation catalyst unit i. such with oxidizing Function, such as a three-way catalyst., Have.
  • Oxidation catalyst unit i. such with oxidizing Function, such as a three-way catalyst., Have.
  • This process variant is during desulfation Secondary air in the exhaust line for the oxidation catalyst unit fed, i. directly into this or into the exhaust section between her and the currently desorbing, sulfur enriching emission control component. This allows oxidation of both carbon monoxide and unburned hydrocarbons as well as possibly in the desulfurization resulting hydrogen sulfide.
  • a further developed according to claim 5 operating method is suitable For internal combustion engine systems with two or more serial one after the other, sulfur enriching waste gas purification units.
  • the sulfur-enriching exhaust gas purification units in desulfating mode one after the other Desulfurized, in one of the exhaust gas flow direction corresponding Sequence.
  • This desulfating process is by accompanied by a secondary air supply, with the secondary air respectively only downstream of the sulfur-enriching one Exhaust gas purification unit is fed into the exhaust system, the is being desulfurized.
  • the method according to a cold start activation the catalyst heating mode and then includes the desulfating mode is advantageously the engine air ratio in Desulfatticiansmodus set slightly high, i. fuel-rich than the stoichiometric Ratio, but with less fuel than in the catalyst heating mode, which has a positive effect on fuel consumption.
  • the internal combustion engine system according to claim 8 includes at least two serially connected in the exhaust line, sulfur-enriching Exhaust gas purification units and secondary air supply means, each have their own secondary air supply branch for the sulfur-enriching Exhaust gas purification units included.
  • This is a targeted, procedural secondary air supply to the respective sulfur enriching emission control component possible to For example, to bring these faster to operating temperature or in the supplied exhaust gas contained hydrocarbons, carbon monoxide and / or hydrogen sulfide to oxidize.
  • the internal combustion engine system includes downstream the sulfur enriching emission control component, the comprise one or more serial exhaust gas purification units can, an oxidation catalyst unit.
  • the intended secondary air supply means include adjacent to one or more secondary air supply branches for the sulfur-enriching emission control component additionally a separate secondary air supply branch for the oxidation catalyst unit, so that in this example during a desulfurization process in the upstream, Sulfur enriching emission control component educated Hydrogen sulfide can be oxidized.
  • the exhaust line 2 is associated with an exhaust gas purification system comprising a sulfur-enriching exhaust gas purification component in the form of two series-connected NO x storage K1, K2 and a downstream three-way catalyst K3, which has, inter alia, an oxidizing function and thus acts as an oxidation catalyst unit.
  • a bypass line 3 in which a controllable valve 4 is connected, the two NO x storage catalysts can be bypassed if necessary.
  • the two NO x storage catalysts K1, K2 serve to periodically adsorb nitrogen oxides contained in the exhaust gas and desorb for the purpose of conversion, for example by exhaust gas recirculation or catalytic reduction, as is known per se and therefore no further explanation and drawings requirement.
  • the exhaust gas purification system further includes desulfating agent in order to be able to free the NO x storage catalysts K 1, K 2 from the enriched sulfur, more specifically from the sulfate acting poisonous for the nitrogen oxide adsorption function.
  • the secondary air line L1 branches downstream of the pump 5 into three line branches L2, L3, L4, of which a first branch L2 into a first exhaust line section 2a between the engine 1 and the upstream NO x storage catalyst K1, a second leg L3 in a second exhaust line section 2b between the two NO x storage K1, K2 and a third leg L4 in a third Abgasasstangabites 2c between the downstream NO x storage K2 and the three-way catalyst K3 open.
  • Each line branch L2, L3, L4 can be opened and closed by means of an associated, controllable valve 6, 7, 8.
  • the desulfating agents comprise a desulfating control unit, preferably as appropriate Control part in software or hardware integrated in an engine control unit is that the engine 1 and the other components of Emission control system 2 controls.
  • a desulfating control unit preferably as appropriate Control part in software or hardware integrated in an engine control unit is that the engine 1 and the other components of Emission control system 2 controls.
  • the relevant components are not shown in Fig. 1, this can the skilled person common, conventional components are used.
  • the control units are to be designed so that they entire internal combustion engine system according to the explained below Can operate procedures. The implementation of these operating procedure steps for example, in the engine control unit is the expert with knowledge of these steps without further possible, so that it will not be discussed here will need.
  • FIG. 2 illustrates in diagrammatic form an example of the operating method according to the invention for the internal combustion engine system of FIG. 1.
  • the method example schematically shows the time-dependent operation in the case of a cold start.
  • the vehicle speed v Fzg , the exhaust gas temperature T, the air / fuel ratio ⁇ and the secondary air mass mL, ie the secondary air quantity fed into the exhaust gas line 2 by the secondary air supply means, are reproduced in their time profile in the diagram of FIG. 2 in four superimposed diagrams.
  • a first, very short phase A an engine start is triggered when the engine 1 is cold, ie the vehicle speed v Fzg is zero and the exhaust gas temperature T is at ambient temperature.
  • the operation in a subsequent phase B is set to a catalyst heating mode.
  • the fastest possible increase in the exhaust gas temperature is effected by appropriate engine control measures and secondary air supply to bring the exhaust gas purification system, especially the exhaust gas catalysts K1, K2, K3, quickly to operating temperature.
  • the air / fuel mixture supplied to the engine 1 is set to be rich, ie to a lambda value of less than one, as shown by a corresponding solid curve ⁇ M of the engine air ratio.
  • secondary air is fed into the upstream exhaust line section 2a via the first line branch L2, as shown by a corresponding, drawn through, first secondary air characteristic m L2 .
  • the two other secondary air line branches L3, L4 remain closed.
  • the secondary air feed into the exhaust line section 2a emerging from the engine 1 leads to a lean exhaust gas composition, ie the lambda values ⁇ K1 , ⁇ K2 and ⁇ K3 in the three catalyst units K1, K2, K3 are above the stoichiometric value one, as shown in FIG dashed characteristic ⁇ K1 , the solid curve ⁇ K2 and the dash-dotted curve ⁇ K3 shown. As further illustrated in FIG.
  • the exhaust gas temperature T K1 in front of the upstream NO x storage catalytic converter increases very rapidly through these measures in the catalyst heating mode and reaches one end for carrying out a heating phase B subsequent Desulfatticiansphase sufficient desulfurization temperature of typically about 550 ° C or more.
  • the exhaust gas temperature T K2 in front of the downstream NO x storage catalyst and the exhaust gas temperature T K3 in front of the three-way catalyst K3 increase to a slightly lesser extent, the three-way catalyst K3 at the end of the heating phase B its light-off temperature for the oxidation of unburned Hydrocarbons and carbon monoxide has reached.
  • v F the vehicle is started in the last half of the heating phase B.
  • the catalyst heating mode B is switched to a desulfurization mode which includes two successive desulfurization phases C, D.
  • the engine operation is primarily adjusted to the desulfation of the upstream NO x storage catalyst K1.
  • the supply of secondary air via the first line branch L2 is turned off to this NO x storage catalytic converter K1, ie the associated air mass characteristic m L2 drops to zero.
  • L3 secondary air is via the second line branch fed into the exhaust section 2b before the downstream NOx storage catalytic converter K2 as appropriate, drawn dashed by the rise of a second secondary air characteristic m L3 to detect.
  • the engine air ratio ⁇ M is raised to a value only slightly below the stoichiometric value, ie the engine 1 is operated slightly rich at the transition to the desulfurization mode.
  • the catalyst air ratio ⁇ K1 in the upstream NO x storage catalyst K1 changes from a lean to a slightly rich, the Desulfatticiansvorgang promotional value, while the catalyst air ratios ⁇ K2 , ⁇ K3 in the other two catalysts K2, K3 does not change significantly and remain in the lean area.
  • this catalyst units K2, K3 can thereby be oxidized both unburned hydrocarbons and carbon monoxide and possibly formed in the desulfurization of the upstream NO x storage K1 hydrogen sulfide.
  • a secondary air supply can be provided in this operating phase with essentially the same effect only via the third line branch L4 for the three-way catalyst K3 or one via the second and third line branch L3, L4.
  • the duration of the desulfurization phase C for the upstream NO x storage catalyst is determined by means of a model calculation relating to sulfur poisoning.
  • this model-based estimate of the sulfur present at the beginning of the desorbing NO x storage catalytic converter are the decisive factors of the spent fuel and its sulfur content and the evaluation of natural Desulfatmaschinesvone, as may have occurred during a previous Normalberiebs driving phase with warmed-up engine by at times the favorable conditions have existed. This is the case, for example, for motorway and full-load operating phases.
  • a sensory diagnosis of the NO x storage state may be provided.
  • the system switches to the second desulfurization phase D, in which primarily the next NO x storage catalyst K 2 in the exhaust gas flow direction is desulfated.
  • the secondary air supply via the second line branch L3 for this downstream NO x storage catalyst K2 is terminated, ie the associated characteristic m L3 drops to zero.
  • the supply of secondary air via the third line branch L4 for the three-way catalytic converter K3 is started at the latest now, as shown in FIG. 2 on the basis of an associated, third air mass characteristic m L4 .
  • the engine-engine air ratio ⁇ M is left unchanged in the slightly rich range.
  • the catalyst air ratio ⁇ K2 for the NO x storage catalytic converter K 2 which is now to be desulfated, drops from the former lean to the slightly rich region, as is favorable for the desulfurization process.
  • the internal combustion engine system is switched over to normal operation for a next phase E, ie to fuel consumption and engine power-optimized operation.
  • the Mo engine air ratio ⁇ M is set as lean as possible in this normal operation.
  • they are subjected to a desorption process in a conventional manner, to which end the secondary air supply means can also be activated if required.
  • the operating method according to the invention can also be applied to Absence of a secondary air supply to be applied, if it Exhaust emissions of unburned hydrocarbons and Allow carbon monoxide in the cold start phase.
  • the appropriate ones Operating conditions are then only by operational control measures on the engine 1 itself and without secondary air supply set in the exhaust system.
  • the Engine during the cold start phase with a rich exhaust gas mixture supplied so that on the one hand a fast Katalysatoretzloomung and on the other hand, a desulfurization of the sulfur-enriching Emission control component is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zum Betrieb einer Verbrennungsmotoranlage nach dem Oberbegriff des Anspruchs 1 sowie auf eine mit einem solchen Verfahren betreibbare Verbrennungsmotoranlage nach dem Oberbegriff des Anspruchs 8. Anlagen dieser Art werden insbesondere in Kraftfahrzeugen eingesetzt und enthalten eine Abgasreinigungskomponente, in der sich während des Betriebs Schwefel anreichert, der im Kraftstoff enthalten ist. Solche schwefelanreichernde Abgasreinigungskomponenten können insbesondere Stickoxid(NOx)-Speicherkatalysatoren oder sogenannte Schwefelfallen sein.
Die schwefelanreichernde Abgasreinigungskomponente bedarf von Zeit zu Zeit einer Desulfatisierung, um sie wieder vom angesammelten, meist in Sulfatform vorliegenden Schwefel zu befreien. So ist beispielsweise bekannt, daß die Schwefelvergiftung von NOx-Speicherkatalysatoren deren Speicherkapazität herabsetzt. Weiter ist bekannt, daß die Desulfatisierung bevorzugt bei erhöhten Abgastemperaturen und fetten Abgaszusammensetzungen abläuft.
Herkömmlicherweise werden Desulfatisierungsvorgänge im laufenden Motorbetrieb immer dann durchgeführt, wenn der Schwefelgehalt in der schwefelanreichernden Abgasreinigungskomponente ein gewisses Maß überschritten hat. Dies wird z.B. im Fall eines NOx-Speicherkatalysators dann angenommen, wenn dessen Speicherkapazität merklich nachläßt. Bei Verfahren dieser Art, wie sie in der Offenlegungsschrift EP 0 636 770 A1 und der deutschen Patentanmeldung Nr. 197 47 222.2 beschrieben sind, wird diese nachlassende Speicherkapazität daran erkannt, daß sich die Adsorptions- und Desorptionsphasen verkürzen. Die Dauer der Adsorptionsphasen kann durch einen stromabwärts des NOx-Speicherkatalysators positionierten NOx-Sensor und die Dauer der Desorptionsphasen durch eine dort positionierte Lambda-Sonde überwacht werden.
Zur Durchführung der Desulfatisierungsphasen wird in der genannten EP 0 636 770 A1 vorgeschlagen, den Verbrennungsmotor von magerem auf fettes Motorluftverhältnis, d.h. Luft/Kraftstoff-Verhältnis des dem Motor zugeführten Luft/Kraftstoff-Gemischs, umzustellen und bei Bedarf zusätzlich eine elektrische Heizeinrichtung für den NOx-Speicherkatalysator zu aktivieren. Die jeweilige Desulfatisierungsphase wird für einen vorgegebenen Zeitraum von z.B. 10 min. beibehalten. Bei dem Verfahren der genannten deutschen Patentanmeldung Nr. 197 47 222.2 wird die Einstellung eines ausreichend fetten Motorluftverhältnisses von einer Zudosierung von Sekundärluft in den Abgasstrang stromaufwärts des NOx-Speicherkatalysators begleitet. Dabei kann eine Regelung und nicht nur Steuerung des Katalysatorluftverhältnisses, d.h. des Luft/Kraftstoff-Verhältnisses des den NOx-Speicherkatalysator durchströmenden Abgases, vorgesehen sein, und die Katalysatortemperatur kann auf einen gewünschten Wert eingestellt werden.
In der Offenlegungsschrift DE 195 22 165 A1 sind ein weiteres derartiges Verfahren mit periodischer Desulfatisierung eines NOx-Speicherkatalysators im laufenden Motorbetrieb bei erkanntem Nachlassen von dessen Speicherkapazität sowie eine diesbezügliche Verbrennungsmotoranlage bekannt, wobei dort zur Aktivierung einer jeweiligen Desulfatisierungsphase auf ein fetteres Motorluftverhältnis und einen späteren Zündzeitpunkt für den jeweiligen Motorzylinder umgestellt und außerdem Sekundärluft in den Abgasstrang stromaufwärts des NOx-Speicherkatalysators zugeführt wird. Dies erfolgt vorzugsweise so, daß während der Desulfatisierung, die für eine vorgebbare Zeitdauer aufrechterhalten wird, die Katalysatortemperatur auf einen gewünschten, erhöhten Sollwert eingeregelt wird.
Aus der Offenlegungsschrift JP 09291 814 A ist es bekannt, eine Desulfatisierung eines NOx-Speicherkatalysators im Anschluss an einen Start des Verbrennungsmotors vorzunehmen. Unmittelbar nachdem von hierzu vorgesehenen Mitteln festgestellt wird, dass ein Start des Verbrennungsmotors erfolgt ist, wird hierzu der NOx-Speicherkatalysators aufgeheizt und mit einem an Kraftstoff angereicherten Abgas versorgt.
Aufgabe der Erfindung ist es, ein Verfahren und eine Verbrennungsmotoranlage anzugeben, mit welchen eine schwefelanreichernde Abgasreinigungskomponente möglichst kraftstoffsparend und geruchsneutral sowie unter Vermeidung von Störungen des Motorbetriebs desulfatisiert werden kann.
Die Erfindung löst dieses Problem durch die Bereitstellung eines Betriebsverfahrens mit den Merkmalen des Anspruchs 1 sowie einer Verbrennungsmotoranlage mit den Merkmalen des Anspruchs 8.
Gemäß dem Verfahren nach Anspruch 1 wird jeweils bei einem Kaltstart ein Desulfatisierungsvorgang ausgelöst, in welchem der Betrieb der Verbrennungsmotoranlage auf den entsprechenden Desulfatisierungsmodus eingestellt wird, wobei das Kraftfahrzeug vor der Einstellung des Desulfatisierungsmodus angefahren wird. In dem an eine Kaltstartaktivierung anschließenden Zeitraum wird der Verbrennungsmotor meist ohnehin noch nicht primär nach kraftstoffverbrauchsminimierenden Kriterien betrieben, wie sie für einen Normalbetriebsmodus bei warmgelaufenem Motor Anwendung finden können, da z.B. zunächst in einem Katalysatorheizmodus versucht wird, vorhandene Abgasreinigungskomponenten, insbesondere eine oder mehrere Abgaskatalysatoreinheiten, möglichst rasch auf Betriebstemperatur zu bringen. Dazu kann beispielsweise der Verbrennungsmotor noch nicht im sogenannten, verbrauchsgünstigen Schichtladebetrieb gefahren werden, und entsprechende Katalysatorheizmaßnahmen sind auch bei Motoren mit Direkteinspritzung zweckmäßig. Da die motorischen Katalysatorheizmaßnahmen, die beispielsweise die Einstellung eines fetten Motorluftverhältnisses beinhalten, weitestgehend mit den motorischen Maßnahmen zur Desulfatisierung der schwefelanreichernden Abgasreinigungskomponente korrespondieren, entsteht durch die erfindungsgemäße Vorgehensweise kein merklich höherer Kraftstoffverbrauch im Vergleich zu einem Anlagenbetrieb ohne Desulfatisierungsvorgänge. Da die Zeitabstände, zu denen spätestens wieder ein nächster Desulfatisierungsvorgang notwendig ist, typischerweise merklich größer als die Zeitabstände aufeinanderfolgender Kaltstarts sind, reichen die Kaltstart-Desulfatisierungsphasen im allgemeinen zur Erzielung einer rechtzeitigen und ausreichenden Entschwefelung aus, ohne daß zusätzliche Desulfatisierungsvorgänge bei warmgelaufenem Motor notwendig sind. Dadurch werden der normale Motorbetrieb nicht gestört und ein damit einhergehender Kraftstoffmehrverbrauch vermieden.
Bei einem nach Anspruch 2 weitergebildeten Verfahren wird nach der Aktivierung eines Motorkaltstarts der Betrieb der Verbrennungsmotoranlage zunächst auf einen Katalysatorheizmodus eingestellt, bis die Temperatur der schwefelanreichernden Abgasreinigungskomponente einen vorgebbaren Entschwefelungsmindestwert überschreitet, wonach dann der Betrieb auf den Desulfatisierungsmodus umgestellt wird. Der anfängliche Katalysatorheizmodus ermöglicht ein sehr rasches Erreichen einer ausreichenden Entschwefelungstemperatur für die zu desulfatisierende Abgasreinigungskomponente. In weiterer Ausgestaltung dieser Maßnahme kann gemäß Anspruch 3 während des Katalysatorheizmodus Sekundärluft in die schwefelanreichernde Abgasreinigungskomponente oder stromaufwärts davon in den Abgasstrang eingespeist werden, wodurch sich in Verbindung mit der Wahl eines fetten Motorluftverhältnisses die Abgastemperatur rasch steigern läßt. Bei Umstellung auf den Desulfatisierungsmodus wird diese Sekundärluftzufuhr beendet.
Ein nach Anspruch 4 weitergebildetes Betriebsverfahren eignet sich für Verbrennungsmotoranlagen, die im Abgasstrang stromabwärts der schwefelanreichernden Abgasreinigungskomponente eine Oxidationskatalysatoreinheit, d.h. eine solche mit oxidierender Funktion, wie z.B. einen Dreiwege-Katalysator., aufweisen. Gemäß dieser Verfahrensvariante wird während der Desulfatisierung Sekundärluft in den Abgasstrang für die Oxidationskatalysatoreinheit eingespeist, d.h. direkt in diese oder in den Abgasstrangabschnitt zwischen ihr und der momentan desorbierenden, schwefelanreichernden Abgasreinigungskomponente. Dies erlaubt ein Oxidieren sowohl von Kohlenmonoxid und unverbrannten Kohlenwasserstoffen als auch von eventuell bei der Desulfatisierung entstehendem Schwefelwasserstoff.
Ein nach Anspruch 5 weitergebildetes Betriebsverfahren eignet sich für Verbrennungsmotoranlagen mit zwei oder mehr seriell hintereinanderliegenden, schwefelanreichernden Abgasreinigungseinheiten. Verfahrensgemäß werden die schwefelanreichernden Abgasreinigungseinheiten im Desulfatisierungsmodus nacheinander entschwefelt, und zwar in einer der Abgasströmungsrichtung entsprechenden Reihenfolge. Dieser Desulfatisierungsprozeß wird von einer Sekundärluftzuführung begleitet, mit der Sekundärluft jeweils nur noch stromabwärts von derjenigen schwefelanreichernden Abgasreinigungseinheit in den Abgasstrang zugeführt wird, die gerade entschwefelt wird. Damit wird einerseits eine unerwünschte Sekundärluftzufuhr zu derjenigen Abgasreinigungseinheit, die gerade desulfatisiert wird, vermieden und andererseits eine Oxidation von Kohlenmonoxid, unverbrannten Kohlenwasserstoffen und bei der Entschwefelung eventuell entstehendem Schwefelwasserstoff gewährleistet.
Bei einem nach Anspruch 6 weitergebildeten Verfahren, das nach einer Kaltstartaktivierung den Katalysatorheizmodus und anschließend den Desulfatisierungsmodus beinhaltet, wird vorteilhafterweise das Motorluftverhältnis im Desulfatisierungsmodus leicht fett eingestellt, d.h. kraftstoffreicher als das stöchiometrische Verhältnis, jedoch kraftstoffärmer als im Katalysatorheizmodus, was sich günstig auf den Kraftstoffverbrauch auswirkt.
Gemäß einem nach Anspruch 7 weitergebildeten Verfahren wird die Dauer des jeweiligen Desulfatisierungsmodus aus einer sensorischen Überwachung des Schwefelspeicherzustands der schwefelanreichernden Abgasreinigungskomponente oder einer modellbasierten Schätzung ermittelt. In einer solchen Schätzung finden neben der verbrauchten Kraftstoffmenge und dem Schwefelgehalt des Kraftstoffs auch zwischenzeitlich stattgefundene, natürliche Desulfatisierungsvorgänge Berücksichtung. Darunter sind solche Desulfatisierungsprozesse zu verstehen, die bei warmgelaufenem Motor in Zeiträumen stattfinden, in denen aufgrund des aktuellen Motorbetriebszustands in der schwefelanreichernden Abgasreinigungskomponente desulfatisierungsfördernde Bedingungen herrschen, insbesondere ausreichend hohe Temperatur und ausreichend fettes Luft/Kraftstoff-Verhältnis des Abgases, wie z.B. bei Autobahn- und/oder Vollastfahrt.
Die Verbrennungsmotoranlage nach Anspruch 8 beinhaltet wenigstens zwei seriell in den Abgasstrang geschaltete, schwefelanreichernde Abgasreinigungseinheiten sowie Sekundärluftzufuhrmittel, die je einen eigenen Sekundärluftzufuhrzweig für die schwefelanreichernden Abgasreinigungseinheiten enthalten. Damit ist eine gezielte, verfahrensgemäße Sekundärluftzufuhr zur jeweiligen schwefelanreichernden Abgasreinigungskomponente möglich, um beispielsweise diese schneller auf Betriebstemperatur zu bringen oder im zugeführten Abgas enthaltene Kohlenwasserstoffe, Kohlenmonoxid und/oder Schwefelwasserstoff zu oxidieren.
Die Verbrennungsmotoranlage nach Anspruch 9 beinhaltet stromabwärts der schwefelanreichernden Abgasreinigungskomponente, die eine oder mehrere serielle Abgasreinigungseinheiten umfassen kann, eine Oxidationskatalysatoreinheit. Die vorgesehenen Sekundärluftzufuhrmittel umfassen neben einem oder mehreren Sekundärluftzufuhrzweigen für die schwefelanreichernde Abgasreinigungskomponente zusätzlich einen eigenen Sekundärluftzufuhrzweig für die Oxidationskatalysatoreinheit, so daß in dieser beispielsweise während eines Desulfatisierungsvorgangs in der stromaufwärtigen, schwefelanreichernden Abgasreinigungskomponente gebildeter Schwefelwasserstoff oxidiert werden kann.
Eine vorteilhafte Ausführungsform der Erfindung ist in den Zeichnungen dargestellt und wird nachfolgend beschrieben. Hierbei zeigen:
Fig. 1
ein schematisches Blockdiagramm einer Verbrennungsmotoranlage und
Fig. 2
ein schematisches Betriebsablaufdiagramm eines Verfahrens zum Betrieb der Verbrennungsmotoranlage von Fig. 1.
Die in Fig. 1 gezeigte Verbrennungsmotoranlage, die insbesondere für ein Kraftfahrzeug vorgesehen sein kann, beinhaltet einen Verbrennungsmotor 1, an den sich ausgangsseitig ein Abgasstrang 2 anschließt. Dem Abgasstrang 2 ist eine Abgasreinigungsanlage zugeordnet, die eine schwefelanreichernde Abgasreinigungskomponente in Form zweier hintereinandergeschalteter NOx-Speicherkatalysatoren K1, K2 und einen nachgeschalteten Dreiwege-Katalysator K3 umfaßt, der unter anderem eine oxidierende Funktion hat und damit als Oxidationskatalysatoreinheit fungiert. Mit einer Bypassleitung 3, in die ein ansteuerbares Ventil 4 geschaltet ist, können die beiden NOx-Speicherkatalysatoren bei Bedarf umgangen werden. Die beiden NOx-Speicherkatalysatoren K1, K2 dienen dazu, im Abgas enthaltene Stickoxide periodisch zu adsorbieren und zwecks Konvertierung, z.B. durch Abgasrückführung oder eine katalytische Reduktion, wieder zu desorbieren, wie dies an sich bekannt ist und daher hier keiner näheren Erläuterung und zeichnerischen Darstellung bedarf.
Die Abgasreinigungsanlage beinhaltet des weiteren Desulfatisierungsmittel, um die NOx-Speicherkatalysatoren K1, K2 vom angereicherten Schwefel, genauer von dem für die Stickoxid-Adsorptionsfunktion vergiftend wirkenden Sulfat, befreien zu können. Diese Desulfatisierungsmittel umfassen Sekundärluftzuführungsmittel in Form einer Sekundärluftleitung L1 mit zugehöriger Sekundärluftpumpe 5. Die Sekundärluftleitung L1 verzweigt sich stromabwärts der Pumpe 5 in drei Leitungszweige L2, L3, L4, von denen ein erster Zweig L2 in einen ersten Abgasstrangabschnitt 2a zwischen Motor 1 und dem stromaufwärtigen NOx-Speicherkatalysator K1, ein zweiter Leitungszweig L3 in einen zweiten Abgasstrangabschnitt 2b zwischen den beiden NOx-Speicherkatalysatoren K1, K2 und ein dritter Leitungszweig L4 in einen dritten Abgasstangabschnitt 2c zwischen dem stromabwärtigen NOx-Speicherkatalysator K2 und dem Dreiwege-Katalysator K3 münden. Jeder Leitungszweig L2, L3, L4 kann mittels eines zugehörigen, ansteuerbaren Ventils 6, 7, 8 geöffnet und geschlossen werden.
Darüber hinaus umfassen die Desulfatisierungsmittel eine Desulfatisierungssteuereinheit, die vorzugsweise als entsprechender Steuerteil in Software oder Hardware in ein Motorsteuergerät integriert ist, das den Motor 1 und die übrigen Komponenten der Abgasreinigungsanlage 2 steuert. Soweit die diesbezüglichen Komponenten in Fig. 1 nicht gezeigt sind, können hierfür dem Fachmann geläufige, herkömmliche Komponenten verwendet werden. Dabei sind lediglich die Steuereinheiten so auszulegen, daß sie die gesamte Verbrennungsmotoranlage gemäß dem nachfolgend erläuterten Verfahren betreiben können. Die Implementierung dieser Betriebsverfahrensschritte beispielsweise in das Motorsteuergerät ist dem Fachmann bei Kenntnis dieser Verfahrensschritte ohne weiteres möglich, so daß darauf hier nicht näher eingegangen zu werden braucht.
In Fig. 2 ist in Diagrammform ein Beispiel des erfindungsgemäßen Betriebsverfahrens für die Verbrennungsmotoranlage von Fig. 1 illustriert. Das Verfahrensbeispiel zeigt schematisch den zeitabhängigen Betriebsablauf für den Fall eines Kaltstarts. Dabei sind im Diagramm von Fig. 2 in vier übereinanderliegenden Diagrammen die Fahrzeuggeschwindigkeit vFzg, die Abgastemperatur T, das Luft/Kraftstoff-Verhältnis λ und die Sekundärluftmasse mL, d.h. die von den Sekundärluftzufuhrmitteln in den Abgasstrang 2 eingespeiste Sekundärluftmenge, in ihrem Zeitverlauf wiedergegeben.
In einer ersten, zeitlich sehr kurzen Phase A wird ein Motorstart bei kaltem Motor 1 ausgelöst, d.h. die Fahrzeuggeschwindigkeit vFzg ist null und die Abgastempteratur T liegt auf Umgebungstemperatur. Nach dieser Aktivierung eines Motorkaltstarts wird der Betrieb in einer anschließenden Phase B auf einen Katalysatorheizmodus eingestellt. In diesem wird durch entsprechende Motorsteuerungsmaßnahmen und Sekundärluftzuführung eine möglichst rasche Steigerung der Abgastemperatur bewirkt, um die Abgasreinigungsanlage, speziell die Abgaskatalysatoren K1, K2, K3, schnell auf Betriebstemperatur zu bringen. Das dem Motor 1 zugeführte Luft/Kraftstoff-Gemisch wird hierzu fett eingestellt, d.h. auf einen Lambdawert kleiner eins, wie an einer entsprechenden, durchgezogen gezeichneten Kennlinie λM des Motorluftverhältnisses dargestellt. Gleichzeitig wird über den ersten Leitungszweig L2 Sekundärluft in den stromaufwärtigen Abgasstrangabschnitt 2a eingespeist, wie mit einer entsprechenden, durchgezogen gezeichneten, ersten Sekundärluftkennlinie mL2 gezeigt. Die beiden anderen Sekundärluftleitungszweige L3, L4 bleiben geschlossen.
Die Sekundärluftzuführung in den vom Motor 1 abgehenden Abgasstrangabschnitt 2a führt zu einer mageren Abgaszusammensetzung, d.h. die Lambdawerte λK1, λK2 und λK3 in den drei Katalysatoreinheiten K1, K2, K3 liegen über dem stöchiometrischen Wert eins, wie in Fig. 2 durch die gestrichelte Kennlinie λK1, die durchgezogene Kennlinie λK2 und die strichpunktierte Kennlinie λK3 gezeigt. Wie weiter in Fig. 2 anhand entsprechender Temperaturkennlinien TK1, TK2 und TK3 dargestellt, nimmt durch diese Maßnahmen im Katalysatorheizmodus die Abgastemperatur TK1 vor dem stromaufwärtigen NOx-Speicherkatalysator sehr schnell zu und erreicht am Ende dieser Heizphase B eine zur Durchführung einer anschließenden Desulfatisierungsphase ausreichende Entschwefelungstemperatur von typischerweise etwa 550°C oder mehr. Parallel dazu nehmen auch die Abgastemperatur TK2 vor dem stromabwärtigen NOx-Speicherkatalysator und die Abgastemperatur TK3 vor dem Dreiwege-Katalysator K3 in etwas geringerem Maße zu, wobei der Dreiwege-Katalysator K3 am Ende der Heizphase B seine Anspringtemperatur für die Oxidation von unverbrannten Kohlenwasserstoffen und Kohlenmonoxid erreicht hat. Wie anhand einer Geschwindigkeitskennlinie vF zu erkennen, wird das Fahrzeug in der letzten Hälfte der Heizphase B angefahren.
Nachdem die Katalysatoreinheiten K1, K2, K3 auf diese Weise auf Betriebstemperatur gebracht wurden, wird vom Katalysatorheizmodus B auf einen Desulfatisierungsmodus umgeschaltet, der zwei aufeinanderfolgende Desulfatisierungsphasen C, D beinhaltet. In der ersten Desulfatisierungsphase C wird der Motoranlagenbetrieb primär auf die Desulfatisierung des stromaufwärtigen NOx-Speicherkatalysators K1 eingestellt. Dazu wird die Zuführung von Sekundärluft über den ersten Leitungszweig L2 zu diesem NOx-Speicherkatalysator K1 abgestellt, d.h. die zugehörige Luftmassenkennlinie mL2 fällt auf null ab. Gleichzeitig wird über den zweiten Leitungszweig L3 Sekundärluft in den Abgasstrangabschnitt 2b vor dem stromabwärtigen NOx-Speicherkatalysator K2 zugeführt, wie am Anstieg einer zugehörigen, gestrichelt gezeichneten, zweiten Sekundärluftkennlinie mL3 zu erkennen. Das Motorluftverhältnis λM wird beim Übergang zum Desulfatisierungsmodus auf einen nur noch geringfügig unter dem stöchiometrischen Wert eins liegenden Wert angehoben, d.h. der Motor 1 wird leicht fett betrieben.
Durch diese Maßnahmen ändert sich das Katalysatorluftverhältnis λK1 im stromaufwärtigen NOx-Speicherkatalysator K1 von einem mageren auf einen leicht fetten, den Desulfatisierungsvorgang fördernden Wert, während sich die Katalysatorluftverhältnisse λK2, λK3 in den beiden anderen Katalysatoren K2, K3 nicht wesentlich ändern und im mageren Bereich verbleiben. In diesen Katalysatoreinheiten K2, K3 können dadurch sowohl unverbrannte Kohlenwasserstoffe und Kohlenmonoxid als auch das möglicherweise bei der Desulfatisierung des stromaufwärtigen NOx-Speicherkatalysators K1 entstehender Schwefelwasserstoff oxidiert werden. Alternativ zur gezeigten Sekundärluftzufuhr allein über den zweiten Leitungszweig L3 kann in dieser Betriebsphase mit im wesentlichen gleicher Wirkung eine Sekundärluftzufuhr nur über den dritten Leitungzweig L4 für den Dreiwege-Katalysator K3 oder eine solche über den zweiten und dritten Leitungszweig L3, L4 vorgesehen sein.
Die Dauer der Desulfatisierungsphase C für den stromaufwärtigen NOx-Speicherkatalysator wird mittels einer Modellrechnung bezüglich der Schwefelvergiftung ermittelt. In diese modellbasierte Schätzung des zu Beginn vorliegenden Schwefelgehalts im zu desorbierenden NOx-Speicherkatalysator gehen als maßgebende Einflußgrößen der verbrauchte Kraftstoff und dessen Schwefelgehalt sowie die Auswertung natürlicher Desulfatisierungsprozesse ein, wie sie gegebenenfalls während einer vorangegangenen Normalberiebs-Fahrphase mit warmgelaufenen Motor aufgetreten sein können, indem zeitweise die dafür günstigen Bedingungen vorgelegen haben. Dies ist z.B. bei Autobahn- und Vollast-Betriebsphasen der Fall. Zusätzlich oder alternativ zu dieser modellbasierten Schätzung kann eine sensorische Diagnose des NOx-Speicherzustands vorgesehen sein.
Sobald dann die erste Desulfatisierungsphase C für die ermittelte Dauer durchgeführt worden ist, wird auf die zweite Desulfatisierungsphase D umgeschaltet, in welcher primär der in Abgasströmungsrichtung nächste NOx-Speicherkatalysator K2 desulfatisiert wird. Hierzu wird die Sekundärluftzufuhr über den zweiten Leitungszweig L3 für diesen stromabwärtigen NOx-Speicherkatalysator K2 beendet, d.h. die zugehörige Kennlinie mL3 fällt auf null ab. Gleichzeitig wird spätestens jetzt mit der Zuführung von Sekundärluft über den dritten Leitungszweig L4 für den Dreiwege-Katalysator K3 begonnen, wie in Fig. 2 anhand einer zugehörigen, dritten Luftmassenkennlinie mL4 dargestellt. Das Motor-Motorluftverhältnis λM wird unverändert im leicht fetten Bereich belassen.
Durch diese Maßnahmen fällt das Katalysatorluftverhältnis λK2 für den nun zu desulfatisierenden NOx-Speicherkatalysator K2 vom vormals mageren in den leicht fetten Bereich ab, wie es für den Desulfatisierungsprozeß günstig ist. Das Katalysatorluftverhältnis λK3 im Dreiwege-Katalysator K3 bleibt hingegen im mageren Bereich, so daß dort weiterhin die Oxidation von unverbrannten Kohlenwasserstoffen, Kohlenmonoxid und gegebenenfalls bei der Desulfatisierung entstehendem Schwefelwasserstoff gewährleistet ist.
Sobald dann die wiederum geeignet ermittelte Dauer der Desulfatisierungsphase D für den stromabwärtigen NOx-Speicherkatalysator K2 abgelaufen ist, wird die Verbrennungsmotoranlage für eine nächste Phase E auf Normalbetrieb umgestellt, d.h. auf kraftstoffverbrauchs- und motorleistungsoptimierten Betrieb. Das Mo-Motorluftverhältnis λM wird in diesem Normalbetrieb möglichst mager eingestellt. Im Motor dadurch entstehende Stickoxide werden von den NOx-Speicherkatalysatoren K1, K2 adsorbiert. Sobald deren NOx-Speicherkapazität erschöpft ist, werden sie in herkömmlicher Weise einem Desorptionsvorgang unterzogen, wozu bei Bedarf auch die Sekundärluftzufuhrmittel aktiviert werden können.
Es versteht sich, daß in der beschriebenen Weise auch mehr als zwei seriell hintereinanderliegende NOx-Speicherkatalysatoren oder andersartige schwefelanreichernde Abgasreinigungskomponenten desulfatisiert werden können.
Das erfindungsgemäße Betriebsverfahren kann im übrigen auch bei Fehlen einer Sekundärluftzuführung angewendet werden, sofern es die Abgasemissionen an unverbrannten Kohlenwasserstoffen und Kohlenmonoxid in der Kaltstartphase zulassen. Die jeweils geeigneten Betriebsbedingungen werden dann allein durch Betriebssteuerungsmaßnahmen am Motor 1 selbst und ohne Sekundärluftzuführung in den Abgasstrang eingestellt. Insbesondere wird der Motor während der Kaltstartphase mit einem fetten Abgasgemisch versorgt, so daß einerseits eine schnelle Katalysatoraufheizung und andererseits eine Entschwefelung der schwefelanreichernden Abgasreinigungskomponente erreicht wird.

Claims (9)

  1. Verfahren zum Betrieb einer Verbrennungsmotoranlage eines Kraftfahrzeugs, die einen Verbrennungsmotor (1) mit zugehörigem Abgasstrang (2), eine im Abgasstrang angeordnete, schwefelanreichernde Abgasreinigungskomponente mit wenigstens einer schwefelanreichernden Abgasreinigungseinheit (K1, K2,) und Mittel zur Desulfatisierung der schwefelanreichernden Abgasreinigungskomponente umfasst, wobei der Betrieb der Verbrennungsmotoranlage zu vorgebbaren Zeitpunkten jeweils im Anschluss an eine Kaltstartaktivierung des Verbrennungsmotors vor Übergang in einen Normalbetriebsmodus auf einen Desulfatisierungsmodus eingestellt wird,
    dadurch gekennzeichnet, dass
    das Kraftfahrzeug vor der Einstellung des Desulfatisierungsmodus angefahren wird.
  2. Verfahren nach Anspruch 1, weiter
    dadurch gekennzeichnet, dass
    der Betrieb der Verbrennungsmotoranlage nach einer jeweiligen Motorkaltstartaktivierung zunächst auf einen Katalysatorheizmodus zur Aufheizung der schwefelanreichernden Abgasreinigungskomponente eingestellt und dann auf den Desulfatisierungsmodus umgestellt wird, wenn die Temperatur der schwefelanreichernden Abgasreinigungskomponente einen vorgebbaren Entschwefelungsmindestwert überschritten hat.
  3. Verfahren nach Anspruch 2 zum Betrieb einer Verbrennungsmotoranlage, die des weiteren Mittel zur Sekundärluftzuführung an einer oder mehreren Stellen des Abgasstrangs (2) beinhaltet, weiter
    dadurch gekennzeichnet, dass
    im Katalysatorheizmodus Sekundärluft in die schwefelanreichernde Abgasreinigungskomponente oder den Abgasstrangabschnitt stromaufwärts davon zugeführt und diese Sekundärluftzufuhr bei Umstellung auf den Desulfatisierungsmodus beendet wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3 zum Betrieb einer Verbrennungsmotoranlage, die des weiteren Mittel zur Sekundärluftzuführung an einer oder mehreren Stellen des Abgasstrangs (2) und stromabwärts der schwefelanreichernden Abgasreinigungskomponente eine Oxidationskatalysatoreinheit (K3) beinhaltet, weiter
    dadurch gekennzeichnet, dass
    im Desulfatisierungsmodus Sekundärluft in die Oxidationskatalysatoreinheit oder den Abgasstrangabschnitt zwischen der schwefelanreichernden Abgasreinigungskomponente und der Oxidationskatalysatoreinheit zugeführt wird.
  5. Verfahren nach Anspruch 3 oder 4 zum Betrieb einer Verbrennungsmotoranlage, die des weiteren Mittel zur Sekundärluftzuführung an einer oder mehreren Stellen des Abgasstrangs (2) beinhaltet und bei der die schwefelanreichernde Abgasreinigungskomponente mehrere seriell in den Abgasstrang geschaltete Abgasreinigungseinheiten (K1, K2) umfasst, weiter
    dadurch gekennzeichnet, dass
    die schwefelanreichernden Abgasreinigungseinheiten (K1, K2) im Desulfatisierungsmodus in Abgasströmungsrichtung nacheinander in einer jeweils zugehörigen Desulfatisierungsphase desulfatisiert werden, wobei während der jeweiligen Desulfatiserungsphase Sekundärluft in den Abgasstrang ausschließlich an einer oder mehreren Stellen stromabwärts der schwefelanreichernden Abgasreinigungseinheit, die momentan desulfatisiert wird, zugeführt wird.
  6. Verfahren nach einem der Ansprüche 2 bis 5, weiter
    dadurch gekennzeichnet, dass
    das Luft-Kraftstoff-Verhältnis (λM) des dem Verbrennungsmotor (1) zugeführten Luft-Kraftstoff-Gemischs im Desulfatisierungsmodus kraftstoffreicher als der stöchiometrische Wert und kraftstoffärmer als im Katalysatorheizmodus gewählt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, weiter
    dadurch gekennzeichnet, dass
    die Dauer des jeweiligen Desulfatisierungsmodus aus einer sensorischen Überwachung des Speicherzustands der schwefelanreichernden Abgasreinigungskomponente und/oder einer modellbasierten Schätzung der gespeicherten Schwefelmenge ermittelt wird, wobei die Schätzung wenigstens in Abhängigkeit vom verbrauchten Kraftstoff und dessen Schwefelgehalt sowie von während eines vorangegangenen Normalbetriebs eventuell stattgefundenen, natürlichen Desulfatisierungsprozessen erfolgt.
  8. Verbrennungsmotoranlage, insbesondere für ein Kraftfahrzeug, mit
    einem Verbrennungsmotor (1) mit zugehörigem Abgasstrang (2),
    einer im Abgasstrang angeordneten, schwefelanreichernden Abgasreinigungskomponente und
    Mitteln zur Desulfatisierung der schwefelanreichernden Abgasreinigungskomponente, die Sekundärluftzufuhrmittel umfassen,
    dadurch gekennzeichnet, dass
    die schwefelanreichernde Abgasreinigungskomponente wenigstens zwei seriell in den Abgasstrang geschaltete Abgasreinigungseinheiten (K1, K2) beinhaltet und
    die Sekundärluftzufuhrmittel je einen eigenen Sekundärluftzufuhrzweig (L2, L3) für die schwefelanreichernden Abgasreinigungseinheiten aufweisen.
  9. Verbrennungsmotoranlage nach Anspruch 8, mit
    einem Verbrennungsmotor (1) mit zugehörigem Abgasstrang (2),
    einer im Abgasstrang angeordneten, schwefelanreichernden Abgasreinigungskomponente und
    Mitteln zur Desulfatisierung der schwefelanreichernden Abgasreinigungskomponente, die Sekundärluftzufuhrmittel umfassen,
    dadurch gekennzeichnet, dass
    stromabwärts der schwefelanreichernden Abgasreinigungskomponente eine Oxidationskatalysatoreinheit (K3) vorgesehen ist und
    die Sekundärluftzufuhrmittel mindestens je einen Sekundärluftzufuhrzweig (L2, L3; L4) für die schwefelanreichernde Abgasreinigungskomponente einerseits und die Oxidationskatalysatoreinheit (K3) andererseits aufweisen.
EP99114565A 1998-09-17 1999-07-24 Verfahren zum Betrieb einer Verbrennungsmotoranlage mit schwefelanreichernder Abgasreiningungskomponete und damit betreibbare Verbrennungsmotoranlage Expired - Lifetime EP0987408B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19842625 1998-09-17
DE19842625A DE19842625C2 (de) 1998-09-17 1998-09-17 Verfahren zum Betrieb einer Verbrennungsmotoranlage mit schwefelanreichernder Abgasreinigungskomponente und damit betreibbare Verbrennungsmotoranlage

Publications (3)

Publication Number Publication Date
EP0987408A2 EP0987408A2 (de) 2000-03-22
EP0987408A3 EP0987408A3 (de) 2003-01-08
EP0987408B1 true EP0987408B1 (de) 2004-09-08

Family

ID=7881296

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99114565A Expired - Lifetime EP0987408B1 (de) 1998-09-17 1999-07-24 Verfahren zum Betrieb einer Verbrennungsmotoranlage mit schwefelanreichernder Abgasreiningungskomponete und damit betreibbare Verbrennungsmotoranlage

Country Status (3)

Country Link
US (1) US6293094B1 (de)
EP (1) EP0987408B1 (de)
DE (2) DE19842625C2 (de)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19816276C2 (de) * 1998-04-11 2000-05-18 Audi Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE19845397C2 (de) * 1998-10-02 2000-09-14 Daimler Chrysler Ag Verfahren zur Entschwefelung eines motorischen Kraftstoffs an Bord eines Kraftfahrzeugs
DE19922962C2 (de) * 1999-05-19 2003-02-27 Daimler Chrysler Ag Verfahren zur periodischen Desulfatisierung eines Stickoxid- oder Schwefeloxid-Speichers einer Abgasreinigungsanlage
DE19960430B4 (de) * 1999-12-15 2005-04-14 Daimlerchrysler Ag Abgasreinigungsanlage mit Stickoxid-Speicherkatalysator und Schwefeloxid-Falle und Betriebsverfahren hierfür
DE10025044C1 (de) * 2000-05-20 2001-11-29 Daimler Chrysler Ag Abgasreinigungsanlage für eine Verbrennungsvorrichtung und Verfahren zur Durchführung von Desulfatisierungsvorgängen
EP1167710B1 (de) * 2000-07-01 2005-04-06 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Erhöhung einer Katalysatortemperatur
DE10038724A1 (de) * 2000-08-09 2002-02-21 Porsche Ag Verfahren und Vorrichtung zur katalytischen Abgasnachbehandlung des Abgases einer Brennkraftmaschine
DE10047809B4 (de) * 2000-09-27 2014-01-09 Volkswagen Ag Vefahren zur Betriebssteuerung einer Sekundärluftpumpe und Abgasreinigungsanlage mit einer Sekundärluftpumpe
US6758036B1 (en) * 2000-10-27 2004-07-06 Delphi Technologies, Inc. Method for sulfur protection of NOx adsorber
JP2002309928A (ja) * 2001-04-13 2002-10-23 Yanmar Diesel Engine Co Ltd 内燃機関の排気浄化装置
JP3757856B2 (ja) * 2001-12-07 2006-03-22 トヨタ自動車株式会社 排気ガス浄化装置
ITBO20010762A1 (it) * 2001-12-14 2003-06-16 Magneti Marelli Powertrain Spa Metodo per la stima del contenuto di zolfo nel carburante di un motore a combustione interna
DE10223595A1 (de) * 2002-05-27 2003-12-11 Volkswagen Ag Verfahren zum Betreiben eines Kraftfahrzeugs mit NOx-Speicherkatalysator
JP2004068700A (ja) * 2002-08-06 2004-03-04 Toyota Motor Corp 排気ガス浄化方法
US6832473B2 (en) 2002-11-21 2004-12-21 Delphi Technologies, Inc. Method and system for regenerating NOx adsorbers and/or particulate filters
GB0305415D0 (en) * 2003-03-08 2003-04-16 Johnson Matthey Plc Exhaust system for lean burn IC engine including particulate filter and NOx absorbent
US6779339B1 (en) 2003-05-02 2004-08-24 The United States Of America As Represented By The Environmental Protection Agency Method for NOx adsorber desulfation in a multi-path exhaust system
DE10326592A1 (de) * 2003-06-13 2004-12-30 Daimlerchrysler Ag Verfahren zur Regeneration eines NOx-Speicherkatalysators in einer Abgasanlage einer direkteinspritzenden Ottobrennkraftmaschine
DE102004002292B4 (de) * 2004-01-16 2010-08-12 Audi Ag Abgaskatalysator und Verfahren zum Betreiben einer Abgaskatalysatorvorrichtung
JP2005264735A (ja) * 2004-03-16 2005-09-29 Yamaha Marine Co Ltd 過給機付きエンジン
US7767163B2 (en) * 2004-04-20 2010-08-03 Umicore Ag & Co. Kg Exhaust treatment devices
US7111451B2 (en) * 2004-09-16 2006-09-26 Delphi Technologies, Inc. NOx adsorber diagnostics and automotive exhaust control system utilizing the same
US7770386B2 (en) * 2004-12-28 2010-08-10 Caterpillar Inc Filter desulfation system and method
DE102005033395B4 (de) * 2005-07-16 2007-06-06 Umicore Ag & Co. Kg Verfahren zur Regeneration von Stickoxid-Speicherkatalysatoren
US7435275B2 (en) 2005-08-11 2008-10-14 Delphi Technologies, Inc. System and method of heating an exhaust treatment device
US20070084116A1 (en) * 2005-10-13 2007-04-19 Bayerische Motoren Werke Aktiengesellschaft Reformer system having electrical heating devices
FR2894286B1 (fr) * 2005-12-01 2010-10-29 Peugeot Citroen Automobiles Sa Systeme de determination du niveau d'empoisonnement en soufre de moyens de depollution integres dans une ligne d'echappement d'un moteur de vehicule automobile.
US8429896B2 (en) * 2006-04-18 2013-04-30 Kohler Co. Engine exhaust systems with secondary air injection systems
JP4665914B2 (ja) * 2007-02-23 2011-04-06 トヨタ自動車株式会社 内燃機関の排気浄化装置
FR2921970B1 (fr) * 2007-10-03 2011-07-15 Faurecia Sys Echappement Ligne d'echappement de vehicule automobile equipee d'un piege a oxydes d'azote bipassable.
JP2011220158A (ja) 2010-04-07 2011-11-04 Ud Trucks Corp エンジンの排気浄化装置
KR101619184B1 (ko) * 2010-11-03 2016-05-10 현대자동차 주식회사 산화촉매의 탈황장치 및 방법
US9683470B2 (en) * 2011-12-27 2017-06-20 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine
DE102015219113A1 (de) * 2015-10-02 2017-04-06 Volkswagen Ag Verfahren und Vorrichtung zur Abgasnachbehandlung eines Verbrennungsmotors
DE102018203495A1 (de) * 2018-03-08 2019-09-12 Ford Global Technologies, Llc Anordnung mit einem Dual-LNT-Katalysator und deren Verwendung, Kraftfahrzeug sowie Verfahren zur Behandlung eines Abgasstroms
US11428181B2 (en) * 2020-03-25 2022-08-30 Cummins Inc. Systems and methods for ultra-low NOx cold start warmup control and fault diagnosis

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943709A (en) * 1972-01-12 1976-03-16 Exxon Research & Engineering Co. Substoichiometric air addition to first stage of dual catalyst system
US5577383A (en) * 1991-09-20 1996-11-26 Hitachi, Ltd. Apparatus for controlling internal combustion engine
US5362463A (en) * 1992-08-26 1994-11-08 University Of De Process for removing NOx from combustion zone gases by adsorption
EP0625633B1 (de) * 1992-12-03 2000-03-15 Toyota Jidosha Kabushiki Kaisha Abgasreinigungsgeraet fuer brennkraftmaschinen
DE69420488T2 (de) * 1993-01-19 2000-04-13 Toyota Jidosha K.K., Toyota Abgasreinigungsgerät für eine brennkraftmaschine
US5459999A (en) * 1993-07-05 1995-10-24 Mitsubishi Denki Kabushiki Kaisha Exhaust gas cleaner system for an internal combustion engine with catalytic converter supplied with secondary air
JPH0763048A (ja) * 1993-08-20 1995-03-07 Ngk Insulators Ltd 排ガス浄化システム及び排ガス浄化方法
US5657625A (en) * 1994-06-17 1997-08-19 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Apparatus and method for internal combustion engine control
JP3542404B2 (ja) * 1995-04-26 2004-07-14 本田技研工業株式会社 内燃機関の空燃比制御装置
JPH09119310A (ja) * 1995-10-26 1997-05-06 Denso Corp 内燃機関の排ガス浄化装置
US5656244A (en) * 1995-11-02 1997-08-12 Energy And Environmental Research Corporation System for reducing NOx from mobile source engine exhaust
JP3085192B2 (ja) * 1996-04-26 2000-09-04 三菱自動車工業株式会社 エンジンの排気ガス浄化装置
US5743084A (en) * 1996-10-16 1998-04-28 Ford Global Technologies, Inc. Method for monitoring the performance of a nox trap
GB9626290D0 (en) * 1996-12-18 1997-02-05 Ford Motor Co Method of de-sulphurating engine exhaust NOx traps
JP3645704B2 (ja) * 1997-03-04 2005-05-11 トヨタ自動車株式会社 内燃機関の排気浄化装置
US5832722A (en) * 1997-03-31 1998-11-10 Ford Global Technologies, Inc. Method and apparatus for maintaining catalyst efficiency of a NOx trap
GB9718059D0 (en) * 1997-08-28 1997-10-29 Johnson Matthey Plc Improvements relating to catalysts
DE19747222C1 (de) * 1997-10-25 1999-03-04 Daimler Benz Ag Verbrennungsmotoranlage mit Stickoxid-Speicherkatalysator und Betriebsverfahren hierfür

Also Published As

Publication number Publication date
DE59910440D1 (de) 2004-10-14
DE19842625C2 (de) 2003-03-27
US6293094B1 (en) 2001-09-25
EP0987408A2 (de) 2000-03-22
DE19842625A1 (de) 2000-03-30
EP0987408A3 (de) 2003-01-08

Similar Documents

Publication Publication Date Title
EP0987408B1 (de) Verfahren zum Betrieb einer Verbrennungsmotoranlage mit schwefelanreichernder Abgasreiningungskomponete und damit betreibbare Verbrennungsmotoranlage
EP0931922B1 (de) Verfahren und Einrichtung zum Reinigen von Abgasen eines Verbrennungsmotors
EP0928890B1 (de) Verfahren zum Betreiben eines Stickoxid-Speicherkatalysators
EP1154130B1 (de) Verfahren zur Entfernung von Stickoxiden und Russpartikeln aus dem mageren Abgas eines Verbrennungsmotors
EP1105629B1 (de) Verfahren zur periodischen desulfatisierung eines stickoxid- oder schwefeloxid-speichers einer abgasreinigungsanlage
EP1050675B1 (de) Abgasreinigungsanlage mit Stickoxidadsorber und Desulfatisierungsverfahren hierfür
DE19960430B4 (de) Abgasreinigungsanlage mit Stickoxid-Speicherkatalysator und Schwefeloxid-Falle und Betriebsverfahren hierfür
EP1058578B1 (de) REGENERATION EINES NOx-SPEICHERKATALYSATORS EINES VERBRENNUNGSMOTORS
DE19511548A1 (de) Verfahren und Vorrichtung zur Stickoxidreduzierung im Abgas einer Brennkraftmaschine
DE19922960C2 (de) Abgasreinigungsanlage mit interner Ammoniakerzeugung zur Stickoxidreduktion
EP2122135B1 (de) Verfahren zum entschwefeln von stickoxid-speicherkatalysatoren in der abgasanlage eines magermotors
DE10024845B4 (de) Abgasreinigungsvorrichtung für Verbrennungsmotoren
EP1187975B1 (de) Verfahren und vorrichtung zur desulfatisierung eines stickoxidabsorbers
DE19744409A1 (de) Verfahren zur Regeneration einer Stickoxidfalle im Abgassystem eines Verbrennungsmotors sowie Vorrichtung zur Durchführung des Verfahrens
DE10160704B4 (de) Verfahren zum Betrieb von Abgasreinigungsvorrichtungen
DE10025044C1 (de) Abgasreinigungsanlage für eine Verbrennungsvorrichtung und Verfahren zur Durchführung von Desulfatisierungsvorgängen
DE10130053B4 (de) Verfahren und Vorrichtung zur Entschwefelung eines NOX-Speicherkatalysators
WO2000061931A1 (de) Verfahren zur desorption eines stickoxidadsorbers einer abgasreinigungsanlage
DE10059791B4 (de) Verfahren und Vorrichtung zur Entschwefelung eines Vorkatalysators
EP1544430B1 (de) Verfahren zum Betreiben eines Stickoxid-Speicherkatalysators
EP0688940A1 (de) Ottomotor mit Katalysator
DE10010031B4 (de) Verfahren und Vorrichtung zur Durchführung einer NOx-Regeneration eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators
DE10349854B4 (de) Verfahren und Vorrichtung zur Entschwefelung eines NOx-Speicherkatalysators
DE10347446B4 (de) Verfahren zur Aufheizung und zur Desulfatisierung eines Hauptkatalysators einer mehrflutigen Abgaslage einer mehrzylindrigen Brennkraftmaschine eines Fahrzeugs, insbesondere eines Kraftfahrzeugs
DE69909147T2 (de) Verfahren zur Funktionsüberwachung des Abgaskatalysators eines Kraftfahrzeuges

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 01N 3/08 A, 7F 01N 3/22 B, 7F 02D 41/02 B

17P Request for examination filed

Effective date: 20030603

17Q First examination report despatched

Effective date: 20030707

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD OF OPERATION OF AN INTERNAL COMBUSTION ENGINE WITH SULPHUR ACCUMULATING EXHAUST GAS PURIFICATION COMPONENTS AND AN

RTI1 Title (correction)

Free format text: METHOD OF OPERATION OF AN INTERNAL COMBUSTION ENGINE WITH SULPHUR ACCUMULATING EXHAUST GAS PURIFICATION COMPONENTS AND AN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59910440

Country of ref document: DE

Date of ref document: 20041014

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050724

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050724

ET Fr: translation filed
26N No opposition filed

Effective date: 20050609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060331