WO2005047940A1 - Ndフィルタ及びこれを用いた光量絞り装置 - Google Patents

Ndフィルタ及びこれを用いた光量絞り装置 Download PDF

Info

Publication number
WO2005047940A1
WO2005047940A1 PCT/JP2004/016755 JP2004016755W WO2005047940A1 WO 2005047940 A1 WO2005047940 A1 WO 2005047940A1 JP 2004016755 W JP2004016755 W JP 2004016755W WO 2005047940 A1 WO2005047940 A1 WO 2005047940A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
filter
metal
light
dielectric film
Prior art date
Application number
PCT/JP2004/016755
Other languages
English (en)
French (fr)
Inventor
Koki Kunii
Original Assignee
Nidec Copal Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corporation filed Critical Nidec Copal Corporation
Priority to US10/552,613 priority Critical patent/US7388723B2/en
Priority to JP2005515444A priority patent/JPWO2005047940A1/ja
Priority to DE112004000723T priority patent/DE112004000723T5/de
Publication of WO2005047940A1 publication Critical patent/WO2005047940A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B7/00Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
    • G03B7/18Control of exposure by setting shutters, diaphragms or filters, separately or conjointly in accordance with light-reducing "factor" of filter or other obturator used with or on the lens of the camera

Definitions

  • the present invention relates to an ND filter.
  • ND Neutral Density-1
  • filters are used to reduce the amount of transmitted light uniformly over the entire visible range for reducing the amount of light.
  • Patent Document 1 JP-A-52-113236
  • Patent Document 2 JP-A-07-063915
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2003-043211
  • Patent Document 1 discloses that a metal thin film (Ti, Ni, etc.) and a dielectric film (MgF
  • Patent Document 2 An ND filter consisting of alternating layers has been proposed. That is, Patent Document 1 uses a metal film as a light absorbing film. For this reason, the thickness of the metal film for forming an ND filter having a large extinction coefficient of the light absorption film becomes extremely thin, and it is difficult to control the thickness. Further, when the thickness of the light absorbing film is small, it is difficult to obtain an antireflection effect due to the design of the optical multilayer film. [0005] Patent Document 2 discloses that the alternating layer force of two or more kinds of Ti metal oxide films (extinction coefficient k: 1.0 to 3.0) and a dielectric film (Al 2 O 3, SiO 2, MgF 2) is also obtained. We have proposed an ND filter. Patent Document 2
  • the material itself is unstable and the absorbing film contains a large amount of unstable substances such as a lower acid oxide, the optical characteristics change over time.
  • the extinction coefficient k in the range of 1.0-3.0, it is necessary to form a film at a high temperature of 150 ° C or more.
  • the substrate is greatly damaged. There is a problem. Further, there is a problem that the raw material price of the lower oxide itself is high.
  • Patent Document 3 discloses a thin-film ND filter in which a light absorption film and a dielectric film are laminated on a transparent substrate.
  • the light-absorbing film is formed by vapor deposition using a metal material as a raw material.
  • a mixed gas containing oxygen is introduced at the time of film formation, and the metal material generated while maintaining a constant degree of vacuum is formed.
  • the composition of the oxide of the metal material contained in the light absorbing film has not always been clarified.
  • an object of the present invention is to provide a thin-film ND filter that is inexpensive and has excellent durability.
  • the following measures were taken in order to achieve these objectives. That is, in an ND filter in which a light absorbing film and a dielectric film are laminated on a transparent substrate, the composition of the light absorbing film is as follows: 110% by weight of a single metal component and 50% by weight of a saturated oxide component of the metal. As described above, the other residual component is characterized by being composed of a compound of the metal including a lower oxide of the metal.
  • the metal raw material of the light absorbing film is selected from Ti, Cr, Ni, NiCr, NiFe and ⁇ .
  • the dielectric film uses SiO or Al 2 O 3.
  • a film and a dielectric film are laminated in a predetermined thickness and in a predetermined order to provide an antireflection function.
  • an antireflection layer may be provided on a surface different from the surface of the transparent substrate on which the light absorbing film and the dielectric film are laminated.
  • the antireflection layer can be formed as a single layer of a light absorbing film or a dielectric film.
  • the antireflection layer can be formed of a plurality of layers of a light absorbing film and a dielectric film.
  • the antireflection layer is a thermosetting material that is transparent in the visible light region. It can be formed in a single layer or a plurality of layers by using a resin or a photocurable resin. Such an ND filter is used for a light amount diaphragm device.
  • a light absorbing film mainly containing a saturated oxide containing a simple metal is produced, and an ND filter is produced by a laminated structure of the absorbing film and the dielectric film.
  • a ND filter that is characteristically and stable over time is obtained by minimizing residual components including the lower oxides of metals, mainly by the simple components of metals and their saturated oxide components.
  • a metal film is used as a starting material, and a reactive gas (O, O +
  • the ratio of the residual component including the lower oxide of the metal can be suppressed. Since this ND filter contains a large proportion of a saturated oxide component in addition to a simple metal component, the thickness of the light absorption film can be made larger than that of a single metal light absorption film. This facilitates the design of the optical film of the ND filter, facilitates the control of the manufacturing process, and improves the reliability.
  • the thickness of the absorbing film including the saturated oxide becomes thicker than that of the ND filter composed only of the metal film, so that the film thickness can be easily controlled and the reproducibility with high optical characteristics can be improved. I got it. Also, since there are few unstable components such as lower oxides in the absorbing film, the reliability of the ND filter is improved, and by adjusting the film forming conditions even at a low temperature, the optimal light for obtaining the ND characteristics is obtained. An absorbing film can be formed. Furthermore, since the starting material is an inexpensive metal, it is possible to produce an ND filter at low cost.
  • FIG. 1 is a schematic cross-sectional view showing a layer configuration of an embodiment of an ND filter according to the present invention.
  • FIG. 2 is a schematic block diagram showing a vacuum evaporation apparatus used for producing an ND filter according to the present invention.
  • FIG. 3 is a table showing film forming conditions of an ND filter according to the present invention.
  • FIG. 4 is an XPS spectrum diagram showing the composition of a light absorbing film included in the ND filter according to the present invention.
  • FIG. 5 is a table showing a composition of a light absorbing film included in the ND filter according to the present invention.
  • FIG. 6 is a table showing an element composition of a light absorbing film included in the ND filter according to the present invention.
  • FIG. 7 is a graph showing optical characteristics of the ND filter according to the present invention.
  • FIG. 8 is a schematic diagram showing an example in which the ND filter according to the present invention is applied to a light quantity diaphragm device for a camera.
  • FIG. 9 is a schematic cross-sectional view showing a layer configuration of another embodiment of the ND filter according to the present invention.
  • FIG. 10 is a schematic cross-sectional view showing a layer configuration of another embodiment of the ND filter according to the present invention.
  • FIG. 11 is a schematic exploded perspective view showing another example in which the ND filter according to the present invention is applied to a light quantity diaphragm device for a camera.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of an embodiment of the thin-film ND filter according to the present invention.
  • the ND filter 0 is a thin film type in which light absorbing films 3 and 5 and dielectric films 2, 4 and 6 are laminated on a transparent substrate 1.
  • the composition of the light absorbing films 3 and 5 is 30% by weight of a single metal component and 50% by weight or more of a saturated oxide component of the metal, and the remaining components are the lower oxides of the metal. And the compound of the metal.
  • the light absorbing films 3 and 5 can be formed by reactive physical vapor deposition (PVD) using a metal material as a raw material.
  • PVD reactive physical vapor deposition
  • metal raw material for the light-absorbing films 3 and 5 in addition to Ti, Cr, Ni and the like, alloy strengths such as NiCr, NiFe and NiTi can be selected.
  • SiO or Al 2 O can be used for the dielectric films 2, 4, and 6.
  • the anti-reflection function can be given to the ND filter by laminating the light absorbing films 3, 5 and the dielectric films 2, 4, 6 in a predetermined thickness and in a predetermined order.
  • the thin film type ND filter having such a configuration is used for a light amount diaphragm device.
  • the transparent substrate 1 has a PET (polyethylene terephthalate) force of 0.1 mm in thickness.
  • PET polyethylene terephthalate
  • the present invention is not limited to this, and a polyester film other than PET or a polycarbonate film can be used.
  • a polyester film such as PET or a polycarbonate film is preferably used for the aperture stop, but a glass or a plastic which is transparent in the wavelength region to be used can be appropriately used as the transparent substrate 1 unless the application is particularly limited.
  • the first dielectric film 2 formed on the transparent substrate 1 is made of SiO and has a physical thickness of 59 nm.
  • the first light absorbing film 3 formed thereon is mainly composed of metal Ti and its saturated oxide TiO.
  • the physical thickness of the first light absorbing film 3 is 28 nm.
  • the second dielectric film 4 formed thereon is made of SiO, and its physical thickness is 5 lnm.
  • the second light-absorbing film 5 formed thereon further comprises metal Ti and its saturated oxide TiO.
  • Two components, and other lower components include lower oxides TiO, TiO and metal compound TiN.
  • the physical thickness of the second light absorbing film 5 is 25 nm.
  • the third dielectric film 6 formed thereon is made of SiO2 and has a physical thickness of 78 nm. Note that such a laminated configuration is an example
  • a transparent ceramic material is usually expressed as a dielectric film at the wavelength used.
  • the optical characteristics (reflection, transmission, polarization, phase, etc.) of the incident light can be freely adjusted. be able to.
  • the ND filter has an anti-reflection function by adopting the layer configuration shown in FIG.
  • the light absorbing film has a function of literally absorbing light in a used wavelength region, and usually uses a metal in a visible region. In the present invention, the optical and physical properties are improved, especially by introducing the saturated oxide into the metal.
  • FIG. 2 is a schematic block diagram showing an example of a vacuum evaporation apparatus used for producing the ND filter shown in FIG.
  • the present apparatus mainly includes a vacuum chamber 11, on which a film thickness monitor 12 and a film thickness controller 13 are mounted.
  • a substrate holder 14 for supporting and fixing a substrate to be processed, a substrate 15 for film thickness measurement, and an evaporation source 16 are incorporated.
  • the film thickness monitor 12 includes a light source, a spectroscope, and a light receiver. The light emitted from the spectroscope enters the film thickness measuring substrate 15, and the reflected light enters the photodetector. The output is sent to the film thickness controller 13. In this way, by monitoring the film thickness in real time, a light absorbing film or a dielectric film having a desired thickness is formed on the substrate.
  • the chamber 11 is connected to a vacuum gauge section 17, a vacuum gauge control section 18, a gas introduction unit 19 and an exhaust unit 20.
  • an APC method is employed to keep the degree of vacuum in the chamber 11 constant.
  • feedback is provided via the vacuum gauge gauge section 17 and the vacuum gauge control section 18 to control the gas introduction unit 19 to adjust the amount of the mixed gas introduced into the chamber 11.
  • the present invention is not limited to this, and a method may be adopted in which the amount of introduction is adjusted to a constant value with a needle valve.
  • FIG. 3 is a table showing film forming conditions when the ND filter shown in FIG. 1 is produced using the vacuum deposition apparatus shown in FIG. As shown, the substrate temperature is 100 ° C. Moreover, the ultimate vacuum of the chamber is set to 1 X 10- 3 Pa.
  • Ti is used as a raw material, and the vapor deposition rate is set to 0.5-1.
  • air in which nitrogen and oxygen are mixed at a ratio of 4: 1 is used as a reactive gas to be introduced when Ti is deposited.
  • the present invention is not limited to this.
  • a mixed gas containing 50% or less of oxygen is used. For example, a mixture of O and N
  • a mixed gas of O and Ar can be used in place of the 22 mixed gas.
  • mixed gas containing oxygen can be used in place of the 22 mixed gas.
  • Deposition vacuum in the case of introducing scan was set to 3- 4 X 10- 3 Pa.
  • the present invention and the metal and its saturated acids has good optical properties and physical properties when kept constant between 1 X 10- 3 Pa- 1 X 10- 2 Pa to general Nag limited thereto It is possible to form a light-absorbing film in which the ratio of the remaining lower oxidant is controlled with the lower oxidant as a main component.
  • SiO was used as a vapor deposition source, and the vapor deposition rate was 0.5-1.
  • mZsec mZsec is set.
  • a reactive gas is particularly introduced.
  • the light absorption film is formed by using vacuum evaporation.
  • a method capable of forming a dense film such as an ion plating method, an ion assist method, and a sputtering method may be used.
  • FIG. 4 is a graph showing the results of analyzing the composition of a light absorbing film formed by reactive PVD under the conditions shown in FIG. This analysis was performed using an X-ray photoelectron spectrometer (XPS, ESCA). Irradiation of soft X-rays with specific energy to the surface of the absorbing film in a high vacuum causes the photoelectric effect. Electrons are also emitted from the sample force. This is guided to an analyzer, and detected as a spectrum by dividing it by the kinetic energy of electrons. Figure 4 shows this spectrum. Photoelectrons also emit deep region forces, but they lose their kinetic energy due to inelastic scattering before reaching the sample surface, so they are not detected as peaks and become the background of the spectrum.
  • XPS X-ray photoelectron spectrometer
  • the horizontal axis of the spectrum in Fig. 4 is displayed in terms of electron coupling energy.
  • the binding energy is calculated as the difference between the energy of the irradiated soft X-ray and the kinetic energy of the photoelectron.
  • the core electrons of various atoms have their own binding energy! /, So from the detected binding energy of the electrons, the type of element and the signal strength can be used to determine the element ratio.
  • the spectrum in Figure 4 is the result of detecting the binding energy of the 2p inner-shell electrons of the atom.
  • FIG. 5 is a table showing the composition of the light absorbing film calculated based on the analysis result shown in FIG. Looking at the ratio, metal Ti is 5%, TiOZTiN is 5%, Ti O power is 10%, TiO is 8
  • the composition of the light absorbing film formed under the conditions shown in FIG. 3 includes a saturated oxide TiO as a main component, a simple Ti metal, and a low residual
  • FIG. 6 shows an analysis result of the element ratio on the surface of the light absorbing film, which is also obtained by XPS.
  • the element ratio of the light absorbing film was 53.8% for O, 27.5% for Ti, and 2.8% for N. Others Force containing 16.5% of C This is considered to be a residue of organic substances such as organic solvent and dirt left on the surface of the light absorbing film.
  • FIG. 7 is a graph showing the optical characteristics of the ND filter when the layered structure shown in FIG. 1 is created under the film forming conditions shown in FIG.
  • the horizontal axis shows the wavelength in the visible range, and the vertical axis shows the amount of light (%) representing the scale of reflectance and transmittance.
  • the ND filter exhibited -eutral transmission characteristics in the visible region, and was able to produce an ND filter with low surface reflectance. Furthermore, when this ND filter was put into an environmental test, it was proved that it exhibited very good durability. In some cases, heat treatment or the like may be performed in an oxygen atmosphere in order to stabilize unstable components such as lower oxidation products contained in the light absorbing film.
  • FIG. 8 is a schematic diagram showing an example in which the present ND filter is applied to a light amount diaphragm device for a camera.
  • An ND filter 105 is fixed to the concave portion of the diaphragm blade 100, which is one of the pair formed, by an adhesive 106, heat welding, or the like.
  • the aperture blade 100 is configured to rotate around a pivot pin 104 by a driving unit 103 to open and close the opening 101.
  • FIG. 9 is a schematic cross-sectional view showing a layer configuration of another embodiment of the ND filter that is useful in the present invention.
  • parts corresponding to the previous embodiment shown in FIG. 1 are denoted by corresponding reference numerals.
  • a laminate is formed in which dielectric films 2, 4, 6 and light absorbing films 3, 5 are alternately stacked.
  • An anti-reflection layer 7 is formed on another surface on the back side of the transparent substrate 1.
  • the antireflection layer 7 is formed on a substrate surface different from the laminated surface of the ND filter 0 for the purpose of suppressing ghost and flare generated by an optical system in which the ND filter 0 is incorporated.
  • the antireflection layer 7 as a single layer of a light absorbing film or a dielectric film, light reflection on a surface different from the laminated surface of the ND filter can be reduced.
  • FIG. 10 is a schematic cross-sectional view showing a layer configuration of still another embodiment of the ND filter according to the present invention.
  • an antireflection layer 7 is formed on the back surface of the transparent substrate 1.
  • the raw material of the dielectric film 7b it is also possible to use other raw materials (eg, SiO, MgF) other than the raw materials used in the ND filter of the present invention.
  • the raw material of the light absorbing film 7a is
  • the antireflection layer 7 may be formed by mixing more types.
  • the antireflection layer 7 can be formed as a single layer or a plurality of layers using a thermosetting resin or a photocurable resin that is transparent in a visible light region. However, if ghosts and flares are difficult to appear due to the optical system on which the ND filter is mounted, it is needless to say that the antireflection layer 7 is not necessarily provided.
  • FIG. 11 is a schematic exploded perspective view showing another example in which the ND filter according to the present invention is applied to a light amount diaphragm device for a camera.
  • the light amount diaphragm device for a camera basically includes a base plate 201, a filter blade 202, and a cover plate 203. These parts are assembled using pins 207.
  • the base plate 201 has a circular opening 204 for restricting photographing light.
  • the cover plate 203 has an opening 205 having a larger diameter than the main plate 201.
  • a filter blade 202 is arranged in a blade chamber formed between the base plate 201 and the cover plate 203.
  • the filter blade 202 is made of the ND filter according to the present invention, and has the same outer shape as a normally used diaphragm blade.
  • the filter blade 202 is rotatably supported by a rotating shaft (not shown) provided on the base plate 203, and is configured to reciprocate between a position covering the openings 204 and 205 and a retracted position by the drive unit 206. Tepuru.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Blocking Light For Cameras (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Diaphragms For Cameras (AREA)
  • Optical Filters (AREA)

Abstract

 安価で且つ耐久性に優れた薄膜型のNDフィルタを提供する。  光吸収膜3,5と誘電体膜2,4,6を透明基板1上に積層したNDフィルタ0において、光吸収膜3.5の組成が、金属の単体成分1~30重量%及び該金属の飽和酸化物成分50重量%以上で、他の残余成分が該金属の低級酸化物を含む該金属の化合物から構成されている。光吸収膜3,5の金属原料は、Ti,Cr,Ni,NiCr,NiFe及びNiTiから選択される。又、誘電体膜2,4,6はSiO2又はAl2O3を用いる。光吸収膜3,5及び誘電体膜2,4,6を所定の膜厚及び所定の順番で積層して反射防止機能を付与する。或いは基板1の裏側に反射防止層を形成しても良い。

Description

明 細 書
NDフィルタ及びこれを用いた光量絞り装置
技術分野
[0001] 本発明は NDフィルタに関する。 ND (ニュートラルデンシティ一)フィルタは、光量絞 り用として可視域全般に亘り均一に透過光量を減衰させる目的で使用するものであ る。
背景技術
[0002] 従来よりカメラやビデオなどの撮像系において、被写体輝度が高過ぎる時は絞りを 最小径に絞っても(開口径を最小にしても)感光面へ所定量以上の光量が入射して しまう場合がある。この為、撮像系の一部に NDフィルタを装着して感光面への入射 光量を規制することがしばしば行われている。この場合、 NDフィルタの分光特性は 単に入射光量を減少させるということから、可視領域全般に亘り均一な透過率を有し ていることが必要となっている。カメラやビデオなどの撮像系においては、可視域全 般に亘り均一に光量を減衰させる目的で以前力 プラスチックフィルムベースの ND フィルタが用いられてきた。
[0003] 近年では光学特性及び耐久性に優れた薄膜積層型の NDフィルタが利用される様 になってきており、特許文献 1一特許文献 3に記載されている。
特許文献 1 :特開昭 52- 113236号公報
特許文献 2 :特開平 07-063915号公報
特許文献 3:特開 2003— 043211号公報
発明の開示
発明が解決しょうとする課題
[0004] 特許文献 1には、金属薄膜 (Ti, Niなど)と誘電体膜 (MgF
2 )の交互層からなる ND フィルタが提案されている。すなわち特許文献 1では光吸収膜として金属膜を利用し ている。この為光吸収膜の消衰係数が大きぐ NDフィルタを作成する為の金属膜の 膜厚が非常に薄くなり、膜厚制御が困難である。又、光吸収膜の膜厚が薄くなると、 光学多層膜の設計上反射防止効果を得ることが困難となる。 [0005] 特許文献 2は、二種類以上の Ti金属酸ィ匕膜 (消衰係数 k: 1. 0— 3. 0)と誘電体膜 (Al O , SiO , MgF )との交互層力もなる NDフィルタを提案している。特許文献 2
2 3 2 2
においては、二種類以上の Ti金属酸ィ匕膜からなる吸収膜の出発材料として、 Tiの低 級酸化物(TiO, Ti O , Ti O , Ti oなど)を利用している。しかしながらこの原材
2 3 3 5 4 7
料自体が不安定であり、吸収膜の中に低級酸ィ匕物などの不安定な物質が多く含ま れる場合には、光学特性の経時変化が発生する。又 1. 0-3. 0の範囲の消衰係数 kを得る為には 150°C以上の高温で成膜する必要がある力 基材にプラスチックフィ ルムを用いた場合に基板のダメージが大きいという問題がある。更に、低級酸化物自 体の原材料価格が高 、と 、う問題もある。
[0006] 特許文献 3は、光吸収膜と誘電体膜を透明基板上に積層した薄膜型 NDフィルタを 開示している。光吸収膜は、金属材料を原料として蒸着により成膜されたものであり、 酸素を含む混合ガスを成膜時に導入し、真空度を一定に維持した状態で生成した金 属材料の酸ィ匕物を含有している。し力しながら、光吸収膜に含まれる金属材料の酸 化物の組成は必ずしも明らかにされて 、な!/、。
課題を解決するための手段
[0007] 上述した従来の技術の課題に鑑み、本発明は、安価で且つ耐久性に優れた薄膜 型の NDフィルタを提供することを目的とする。係る目的を達成する為に以下の手段 を講じた。即ち、光吸収膜と誘電体膜を透明基板上に積層した NDフィルタにおいて 、前記光吸収膜の組成が、金属の単体成分 1一 30重量%及び該金属の飽和酸ィ匕 物成分 50重量%以上で、他の残余成分が該金属の低級酸化物を含む該金属の化 合物から構成されて ヽることを特徴とする。
好ましくは、前記光吸収膜の金属原料は、 Ti, Cr, Ni, NiCr, NiFe及び ΝΓΠから 選択される。又、前記誘電体膜は SiO又は Al Oを用いる。好ましくは、前記光吸収
2 2 3
膜及び誘電体膜を所定の膜厚及び所定の順番で積層して反射防止機能を付与す る。或いは、前記光吸収膜と誘電体膜を積層した透明基板の面とは異なる面に反射 防止層を設けても良い。この場合、前記反射防止層は、光吸収膜もしくは誘電体膜 の単層で形成できる。或いは前記反射防止層は、光吸収膜及び誘電体膜の複数層 力 形成できる。或いは前記反射防止層は、可視光領域において透明な熱硬化性 の榭脂或いは光硬化性の榭脂を用いて、単層或いは複数層で形成できる。かかる N Dフィルタは光量絞り装置に用いられる。
発明の効果
[0008] 本発明によれば、金属単体を含む飽和酸ィ匕物を主成分とした光吸収膜を作成し、 この吸収膜と誘電体膜の積層構造により NDフィルタを作成している。すなわち金属 の単体成分及びその飽和酸化物成分を主とし、金属の低級酸化物を含む残余成分 を極力抑えることで、特性的及び経時的に安定した NDフィルタを得ている。例えば 出発材料として金属膜を用い、例えば基板温度を 100°Cにて反応性ガス (O , O +
2 2
N , O +Arなど)を適当量カ卩えることで、成膜過程において金属の飽和酸ィ匕物を導
2 2
入することができる。成膜条件を適切に設定することで、金属の低級酸化物を含む残 余成分の割合を抑えることができる。本 NDフィルタは、金属の単体成分に加え飽和 酸化物成分を大きな割合で含む為、光吸収膜の厚みが金属単体の光吸収膜に比べ ると大きくできる。これにより、 NDフィルタの光学膜設計が容易になるとともに、製造 プロセスの制御も容易となり、更に信頼性も改善できる。
以上の発明により、金属膜のみで構成した NDフィルタと比較して、飽和酸化物を 含む分吸収膜の膜厚が厚くなることで、膜厚制御が容易となり、光学特性の高い再 現性が得られる様になった。又、吸収膜中の低級酸ィ匕物など不安定な成分が少ない 為、 NDフィルタの信頼性が上がるとともに、低温でも成膜条件の調整を行うことで、 ND特性を得る為に最適な光吸収膜を形成することができる。更に出発材料が安価 な金属であることから、低コストで NDフィルタを作成することが可能である。
図面の簡単な説明
[0009] [図 1]本発明に係る NDフィルタの実施形態の層構成を示す模式的な断面図である。
[図 2]本発明に係る NDフィルタの作成に用いる真空蒸着装置を示す模式的なブロッ ク図である。
[図 3]本発明に係る NDフィルタの成膜条件を示す表図である。
[図 4]本発明に係る NDフィルタに含まれる光吸収膜の組成を示す XPSスペクトル図 である。
[図 5]本発明に係る NDフィルタに含まれる光吸収膜の組成を示す表図である。 [図 6]本発明に係る NDフィルタに含まれる光吸収膜の元素組成を示す表図である。
[図 7]本発明に係る NDフィルタの光学特性を示すグラフである。
[図 8]本発明に係る NDフィルタをカメラ用光量絞り装置に適用した例を示す模式図 である。
[図 9]本発明に係る NDフィルタの他の実施形態の層構成を示す模式的な断面図で める。
[図 10]本発明に係る NDフィルタの別の実施形態の層構成を示す模式的な断面図で める。
[図 11]本発明に係る NDフィルタをカメラ用光量絞り装置に適用した他の例を示す模 式的な分解斜視図である。
符号の説明
[0010] 0· · 'NDフィルタ、 1 · · '透明基板、 2· · '誘電体膜、 3 · · ·光吸収膜、 4· · '誘電体膜、 5 · · ·光吸収膜、 6 · · ·誘電体膜、 7· · ·反射防止層
発明を実施するための最良の形態
[0011] 以下図面を参照して本発明の実施の形態を詳細に説明する。図 1は、本発明に係 る薄膜型 NDフィルタの一実施形態の構成を示す模式的な断面図である。図示する 様に、本 NDフィルタ 0は、光吸収膜 3, 5と誘電体膜 2, 4, 6を透明基板 1上に積層し た薄膜型となっている。特徴事項として、光吸収膜 3, 5の組成が、金属の単体成分 1 一 30重量%及び該金属の飽和酸化物成分 50重量%以上で、他の残余成分が該金 属の低級酸化物を含む該金属の化合物から構成されている。係る光吸収膜 3, 5は、 金属材料を原料とした反応性の物理気相成長(PVD)により形成可能である。光吸 収膜 3, 5の金属原料としては、 Ti, Cr, Niなどの他、 NiCr, NiFe及び NiTiなどの 合金力 選択できる。一方、誘電体膜 2, 4, 6としては SiO又は Al Oを用いることが
2 2 3
できる。光吸収膜 3, 5及び誘電体膜 2, 4, 6を所定の膜厚及び所定の順番で積層し て NDフィルタに反射防止機能を付与することもできる。係る構成を有する薄膜型 ND フィルタは光量絞り装置に用いられる。
[0012] 引続き図 1を参照して、 NDフィルタ 0の具体的な膜構成を説明する。まず、透明基 板 1は厚みが 0. 1mmの PET (ポリエチレンテレフタレート)力もなる。但し、本発明は これに限られるものではなく PET以外のポリエステルフィルムやポリカーボネートフィ ルムを用いることができる。光量絞り用としては PETなどポリエステルフィルムやポリ力 ーボネートフィルムが好ましいが、特に用途を限定しなければ透明基板 1として使用 波長領域にぉ 、て透明であるガラスやプラスチックを適宜使うことができる。透明基 板 1の上に形成された第一の誘電体膜 2は SiOからなり、その物理膜厚は 59nmで
2
ある。その上に成膜された第一の光吸収膜 3は、金属 Tiとその飽和酸ィ匕物 TiOを主
2 成分とし、その他の残余成分として低級酸化物 Ti O , TiOなどや金属化合物 TiNな
2 3
どの副生成物を含有している。第一の光吸収膜 3の物理膜厚は 28nmである。その 上に成膜された第二の誘電体膜 4は SiOからなり、その物理膜厚は 5 lnmである。
2
その上に成膜された第二の光吸収膜 5は、同じく金属 Tiとその飽和酸ィ匕物 TiOを主
2 成分とし、その他の残余成分として低級酸化物 Ti O , TiOや金属化合物 TiNを含
2 3
んでいる。第二の光吸収膜 5の物理膜厚は 25nmである。その上に成膜された第三 の誘電体膜 6は SiOカゝらなりその物理膜厚は 78nmである。尚、係る積層構成は例
2
示であって本発明の範囲を限定するものではない。光学薄膜の場合、通常使用波長 にお 、て透明なセラミックス材料を誘電体膜として表現して 、る。光の干渉効果が現 われる厚さ (波長の数倍程度)の誘電体膜を積層することで、入射する光線の光学特 性 (反射量、透過量、偏光、位相など)を自由に調節することができる。本実施形態で は、図 1に示す層構成とすることで、 NDフィルタに反射防止機能を付与している。一 方光吸収膜は、使用波長領域において文字通り光を吸収する働きがあり、可視域で は通常金属を用いる。本発明では、特に金属にその飽和酸化物を導入することで光 学特性及び物理特性を改善して!/、る。
図 1に示した NDフィルタは例えば真空蒸着により形成できる。図 2は、図 1に示した NDフィルタの作成に使用する真空蒸着装置の一例を示す模式的なブロック図であ る。図示する様に、本装置は真空チャンバ 11を主体に構成されており、その上には 膜厚モニタ 12と膜厚制御器 13が取り付けられている。チャンバ 11内には処理対象と なる基板を支持固定する基板ホルダ 14と、膜厚測定用基板 15、と蒸着源 16とが組 み込まれている。膜厚モニタ 12は光源と分光器と受光器とを備えている。分光器から 出射した光は膜厚測定用基板 15に入射し、これ力も反射した光が受光器に入射し、 その出力が膜厚制御器 13に送られる。この様に、膜厚をリアルタイムでモニタするこ とにより、基板上に所望の厚みの光吸収膜や誘電体膜を成膜する様にしている。
[0014] チャンバ 11には真空計ゲージ部 17、真空計制御部 18、ガス導入ユニット 19及び 排気ユニット 20が接続している。本実施例では、チャンバ 11内の真空度を一定に保 つ為に、 APC方式を採用している。具体的には、真空計ゲージ部 17及び真空計制 御部 18を介してフィードバックをかけ、ガス導入ユニット 19を制御して、チャンバ 11 内に導入される混合ガスの量を調整している。但し、本発明はこれに限られるもので はなぐ導入量をニードルバルブにて一定に調整する方式を採用してもよい。
[0015] 図 3は、図 2に示した真空蒸着装置を用いて、図 1に示した NDフィルタを作成する 場合の成膜条件を表わした表図である。図示する様に、基板温度は 100°Cとしてい る。又、チャンバの到達真空度は 1 X 10— 3Paに設定している。ここで、光吸収膜 3, 5 を成膜する為に、原料として Tiを用い、蒸着速度は 0. 5-1. OnmZsecに設定して いる。 Tiを蒸着する際に導入する反応性ガスとして、本実施例では窒素と酸素を 4 : 1 で混合した空気を用いている。但し、本発明はこれに限られるものではなぐ一般に は酸素を 50%以下の割合で含有する混合ガスが用いられる。例えば、 Oと Nの混
2 2 合ガスに代えて Oと Arの混合ガスを用いることができる。尚、酸素を含有した混合ガ
2
スを導入した場合の蒸着真空度は、 3— 4 X 10— 3Paに設定した。但し、本発明はこれ に限られるものではなぐ一般に 1 X 10— 3Pa— 1 X 10— 2Paの間で一定に維持すれば 良好な光学特性並びに物理特性を有し且つ金属とその飽和酸ィ匕物を主成分とし残 余の低級酸ィ匕物の割合を抑制した光吸収膜を成膜することができる。次に、誘電体 膜 2, 4, 6を成膜する場合には、蒸着源として SiOを用い、蒸着速度は 0. 5-1. On
2
mZsecに設定している。 SiOを成膜する場合には特に反応性のガスを導入してい
2
ない。本実施例では真空蒸着を用いて光吸収膜を形成している。これに代え、他の P VD成膜方法として、イオンプレーティング法、イオンアシスト法、スパッタ法など緻密 な膜が形成できる手法を利用してもよい。
[0016] 図 4は、図 3に示した条件で反応性 PVDにより成膜された光吸収膜の組成の分析 結果を示すグラフである。この分析は X線光電子分光分析装置 (XPS, ESCA)を用 いた。高真空中で吸収膜表面に特定エネルギーの軟 X線を照射すると、光電効果に より試料力も電子が放出される。これをアナライザーに導き、電子の運動エネルギー で分けてスペクトルとして検出する。図 4はこのスペクトルを表わしている。光電子は 深い領域力 も放出されるが、試料表面に到達するまでに非弾性散乱により運動ェ ネルギーを失う為、ピークとしては検出されず、スペクトルのバックグラウンドとなる。非 弾性散乱せずに試料表面力 脱出した数 nmの深さ領域の光電子のみが図示の様 にピークとして検出され、分析に用いられる。図 4のスペクトルの横軸は電子の結合ェ ネルギ一で表示される。結合エネルギーは照射した軟 X線のエネルギー力 光電子 の運動エネルギーを引 、た差として求められる。各種原子の内殻電子は固有の結合 エネルギーを持って!/、るので、検出された電子の結合エネルギーから元素の種類、 シグナル強度力も元素の比率を調べることができる。図 4のスペクトルは、原子の 2p 内殻電子の結合エネルギーを検出した結果である。更に、各種元素の化学結合状 態が異なると結合エネルギーが僅かに変化し、区別されて検出される。これにより、 金属とその酸ィ匕状態の定量が可能となる。図示のスペクトルでは、金属 Tiのピークが 454. leVに観測され、その飽和酸化物 TiOのピークが 458. 5eVに観測され、低
2
級酸化物 Ti Oのピークが 456. 3eVに観測され、別の低級酸化物 TiOのピークが 4
2 3
55. 2eVに観測されている。尚、 TiOと TiNのピークはほぼ等しい点に現われる為、 455. 2eVのピークには、 TiOの他 TiNも含まれているものと思われる。
[0017] 図 5は、図 4に示した分析結果に基づいて算出した、光吸収膜の組成を表わす表 図である。比率を見ると、金属 Tiが 5%、 TiOZTiNが 5%、 Ti O力 10%、 TiOが 8
2 3 2
0%であった。図 3に示した条件にて成膜した光吸収膜の組成は、図 5の表図に示し た様に、飽和酸化物 TiOを主成分として Ti金属単体を含み、更に残余成分として低
2
級酸ィ匕物が混在したものとなっている。尚、吸収膜内に窒素が検出されたことから、 τ iNも存在しているものと思われる。係る組成を有する光吸収膜の消衰係数は 0. 5— 1. 0程度であった。
[0018] 図 6は光吸収膜表面の元素比率の分析結果であり、同じく XPSにより得られたもの である。図示の表図によれば、光吸収膜の元素比率は、 Oが 53. 8%、 Tiが 27. 5% 、 Nが 2. 8%であった。その他 Cが 16. 5%含まれている力 これは光吸収膜の表面 に残された有機溶剤や汚れなど有機物の残差と思われる。 [0019] 図 7は、図 3に示した成膜条件で、図 1に示した積層構造を作成した場合における、 NDフィルタの光学特性を示すグラフである。横軸に可視域の波長を取り、縦軸には 反射率及び透過率の尺度を表わす光量 (%)を取ってある。グラフから明らかな様に 、本 NDフィルタは可視域において-ユートラルな透過特性を示し、表面の反射率も 低く抑えられた NDフィルタを作成することができた。更に本 NDフィルタを環境試験 に投入したところ、非常に良好な耐久性を示すことが分力つた。場合によっては、光 吸収膜に含まれる低級酸ィ匕物など不安定な成分を安定化させる為、酸素雰囲気中 で加熱処理などを行ってもょ ヽ。
[0020] 図 8は、本 NDフィルタをカメラ用光量絞り装置に適用した一例を示す模式図である 。一対に形成された内の一枚を示した絞り羽根 100の凹部には、 NDフィルタ 105が 接着剤 106又は熱溶着などにより固設されている。絞り羽根 100は駆動部 103により 、枢支ピン 104の周りを回動して、開口部 101を開閉する様に構成されている。
[0021] 図 9は本発明に力かる NDフィルタの他の実施形態の層構成を示す模式的な断面 図である。理解を容易にするため、図 1に示した先の実施形態と対応する部分には 対応する参照番号を付してある。図示するように、 PETからなる透明基板 1の表側と なる一面には誘電体膜 2, 4, 6と光吸収膜 3, 5を交互に重ねた積層が形成されてい る。この透明基板 1の裏側となる他の面には反射防止層 7が形成されている。この反 射防止層 7は、 NDフィルタ 0が組み込まれる光学系により発生するゴーストやフレア を抑制する目的で、 NDフィルタ 0の積層面とは異なる基板面上に形成されたもので ある。この反射防止層 7は、光吸収膜もしくは誘電体膜の単層で形成することで、 ND フィルタの積層面とは異なる面における光反射低減が可能となる。
[0022] 図 10は本発明に力かる NDフィルタの更に別の実施形態の層構成を示す模式的 な断面図である。理解を容易にするため、図 9に示した先の実施形態と対応する部 分には対応する参照番号を付してある。この実施形態も透明基板 1の裏面に反射防 止層 7が形成されている。特徴事項として、この反射防止層 7を光吸収膜 7a及び誘 電体膜 7bの複数層から形成することで、より大きな反射低減の効果を得ることが可能 となる。誘電体膜 7bの原料は本発明の NDフィルタに用いた原料だけでなぐ他の原 料 (例: SiO、 MgF )を用いることも可能である。また光吸収膜 7aの原料も本発明の
2 NDフィルタに用いた原料だけでなぐ他の原料〔例: Ta O , ZrO , TiO, TiO (1≤
2 5 2 x x≤2) , Nb O , CeO、 ZnS〕を用いることも可能である。更には、これらの原料を 2
2 5 2
種類以上混合することで反射防止層 7を形成しても良い。
[0023] また反射防止層 7は、可視光領域において透明な熱硬化性榭脂或いは光硬化性 榭脂を用いて、単層或いは複数層で形成することも可能である。但し、 NDフィルタが 搭載される光学系によりゴーストやフレアが出にくい場合は反射防止層 7を必ずしも 設ける必要が無 、ことは言うまでもな 、。
[0024] 図 11は本発明に力かる NDフィルタをカメラ用光量絞り装置に適用した他の例を 示す模式的な分解斜視図である。図示するように、カメラ用光量絞り装置は、基本的 に地板 201とフィルタ羽根 202とカバー板 203とで構成されている。これらの部品は ピン 207を用いて組み立てられる。地板 201は撮影光の規制をする円形の開口 204 を有している。カバー板 203は地板 201より大きな直径の開口 205を有している。地 板 201とカバー板 203の間に構成された羽根室にはフィルタ羽根 202が配置されて いる。フィルタ羽根 202は本発明による NDフィルタで作成されていて、外形は通常 用いられる絞り羽根と同じ形状をしている。このフィルタ羽根 202は地板 203に設けら れた図示しない回転軸に回動可能に支持され、駆動部 206により開口 204, 205を 覆う位置と退避する位置との間で往復動作するように構成されて ヽる。

Claims

請求の範囲
[1] 光吸収膜と誘電体膜を透明基板上に積層した NDフィルタにおいて、
前記光吸収膜の組成が、金属の単体成分 1一 30重量%及び該金属の飽和酸ィ匕 物成分 50重量%以上で、他の残余成分が該金属の低級酸化物を含む該金属の化 合物から構成されて ヽることを特徴とする NDフィルタ。
[2] 前記光吸収膜の金属原料は、 Ti, Cr, Ni, NiCr, NiFe及び ΝΓΠから選択される ことを特徴とする請求項 1記載の NDフィルタ。
[3] 前記誘電体膜は SiO又は Al Oを用いることを特徴とする請求項 1又は 2記載の N
2 2 3
Dフィノレタ。
[4] 前記光吸収膜及び誘電体膜を所定の膜厚及び所定の順番で積層して反射防止 機能を付与したことを特徴とする請求項 1, 2又は 3記載の NDフィルタ。
[5] 前記光吸収膜と誘電体膜を積層した透明基板の面とは異なる面に反射防止層を 設けたことを特徴とする請求項 1乃至 4記載の NDフィルタ。
[6] 前記反射防止層は、光吸収膜もしくは誘電体膜の単層で形成されていることを特 徴とする請求項 1乃至 5記載の NDフィルタ。
[7] 前記反射防止層は、光吸収膜及び誘電体膜の複数層から形成されていることを特 徴とする請求項 1乃至 5記載の NDフィルタ。
[8] 前記反射防止層は、可視光領域にぉ 、て透明な熱硬化性の榭脂或いは光硬化性 の榭脂を用いて、単層或いは複数層で形成することを特徴とする請求項 1乃至 5記 載の NDフィルタ。
[9] 請求項 1乃至 8記載の NDフィルタを用いた光量絞り装置。
PCT/JP2004/016755 2003-11-14 2004-11-11 Ndフィルタ及びこれを用いた光量絞り装置 WO2005047940A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/552,613 US7388723B2 (en) 2003-11-14 2004-11-11 ND filter and light quantity diaphragming device including the same
JP2005515444A JPWO2005047940A1 (ja) 2003-11-14 2004-11-11 Ndフィルタ及びこれを用いた光量絞り装置
DE112004000723T DE112004000723T5 (de) 2003-11-14 2004-11-11 ND-Filter und Lichtmengenblendenvorrichtung einschließlich ND-Filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-384438 2003-11-14
JP2003384438 2003-11-14

Publications (1)

Publication Number Publication Date
WO2005047940A1 true WO2005047940A1 (ja) 2005-05-26

Family

ID=34587322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016755 WO2005047940A1 (ja) 2003-11-14 2004-11-11 Ndフィルタ及びこれを用いた光量絞り装置

Country Status (6)

Country Link
US (1) US7388723B2 (ja)
JP (1) JPWO2005047940A1 (ja)
KR (1) KR20060115324A (ja)
CN (1) CN100516938C (ja)
DE (1) DE112004000723T5 (ja)
WO (1) WO2005047940A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083833A1 (ja) * 2006-01-20 2007-07-26 Sumitomo Metal Mining Co., Ltd. 吸収型多層膜ndフィルターおよびその製造方法
JP2007206185A (ja) * 2006-01-31 2007-08-16 Canon Electronics Inc Ndフィルタ
JP2008180844A (ja) * 2007-01-24 2008-08-07 Sumitomo Metal Mining Co Ltd 吸収型多層膜片面ndフィルター
JP2008310016A (ja) * 2007-06-14 2008-12-25 Sumitomo Metal Mining Co Ltd 耐熱遮光フィルムとその製造方法、及びそれを用いた絞り又は光量調整用装置
US7666527B2 (en) * 2004-11-24 2010-02-23 Sumitomo Metal Mining Co., Ltd. Absorption type multi-layer film ND filter
JP2013222203A (ja) * 2012-04-13 2013-10-28 Leica Microsystems (Schweiz) Ag 顕微鏡にて傾斜照明を生成するための絞り装置と顕微鏡
WO2017145910A1 (ja) * 2016-02-23 2017-08-31 東海光学株式会社 プラスチック基材ndフィルタ及び眼鏡用プラスチック基材ndフィルタ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006091694A (ja) * 2004-09-27 2006-04-06 Nidec Copal Corp Ndフィルタ及びその製造方法と光量絞り装置
JP5114995B2 (ja) * 2006-11-30 2013-01-09 住友金属鉱山株式会社 耐熱遮光フィルムとその製造方法、及びそれを用いた絞り又は光量調整装置
AU2010364232B2 (en) * 2010-11-19 2014-09-04 Siemens Concentrated Solar Power Ltd. Solar energy absorptive coating, arrangement of the coating on a substrate, method for manufacturing the arrangement and use of the arrangement
TW201338876A (zh) * 2012-03-29 2013-10-01 Juant Technology Co Ltd 黑膜結構與黑膜結構之製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5715103A (en) * 1993-08-26 1998-02-03 Canon Kabushiki Kaisha Neutral density (ND) filter
JP2002279685A (ja) * 2001-03-16 2002-09-27 Nippon Shinku Kogaku Kk 光ピックアップ装置用絞りフィルタ
JP2002350610A (ja) * 2001-05-23 2002-12-04 Sony Corp 薄膜型ndフィルタおよびその製造方法
JP2002371236A (ja) * 2001-06-14 2002-12-26 Dainippon Printing Co Ltd コーティング組成物、その塗膜、反射防止膜、反射防止フィルム、及び画像表示装置
US20030026014A1 (en) * 2001-07-27 2003-02-06 Nidec Copal Corporation ND filter having composite PVD film of metal and its oxide
JP2003186239A (ja) * 2001-12-14 2003-07-03 Ricoh Co Ltd 電子写真トナー用外添剤、電子写真用トナー、電子写真用現像剤、画像形成方法及び画像形成装置
JP2003202612A (ja) * 2002-01-08 2003-07-18 Nisca Corp 光量調整用フィルター及び光量調整装置、製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960310A (en) * 1989-08-04 1990-10-02 Optical Corporation Of America Broad band nonreflective neutral density filter
US6650478B1 (en) * 1999-08-20 2003-11-18 Cpfilms Inc. Optical filter for a window
JP2003279685A (ja) 2002-03-22 2003-10-02 Mitsubishi Heavy Ind Ltd キャスク用冷却フィンの取付構造および取付方法
JP3692096B2 (ja) * 2002-06-28 2005-09-07 ニスカ株式会社 Ndフィルタ及びその製造方法並びにndフィルタを組み込んだ絞り装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5715103A (en) * 1993-08-26 1998-02-03 Canon Kabushiki Kaisha Neutral density (ND) filter
JP2002279685A (ja) * 2001-03-16 2002-09-27 Nippon Shinku Kogaku Kk 光ピックアップ装置用絞りフィルタ
JP2002350610A (ja) * 2001-05-23 2002-12-04 Sony Corp 薄膜型ndフィルタおよびその製造方法
JP2002371236A (ja) * 2001-06-14 2002-12-26 Dainippon Printing Co Ltd コーティング組成物、その塗膜、反射防止膜、反射防止フィルム、及び画像表示装置
US20030026014A1 (en) * 2001-07-27 2003-02-06 Nidec Copal Corporation ND filter having composite PVD film of metal and its oxide
JP2003186239A (ja) * 2001-12-14 2003-07-03 Ricoh Co Ltd 電子写真トナー用外添剤、電子写真用トナー、電子写真用現像剤、画像形成方法及び画像形成装置
JP2003202612A (ja) * 2002-01-08 2003-07-18 Nisca Corp 光量調整用フィルター及び光量調整装置、製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666527B2 (en) * 2004-11-24 2010-02-23 Sumitomo Metal Mining Co., Ltd. Absorption type multi-layer film ND filter
WO2007083833A1 (ja) * 2006-01-20 2007-07-26 Sumitomo Metal Mining Co., Ltd. 吸収型多層膜ndフィルターおよびその製造方法
JPWO2007083833A1 (ja) * 2006-01-20 2009-06-18 住友金属鉱山株式会社 吸収型多層膜ndフィルターおよびその製造方法
US7894148B2 (en) 2006-01-20 2011-02-22 Sumitomo Metal Mining Co., Ltd. Absorption type multi-layer film ND filter and process for producing the same
JP4692548B2 (ja) * 2006-01-20 2011-06-01 住友金属鉱山株式会社 吸収型多層膜ndフィルターおよびその製造方法
JP2007206185A (ja) * 2006-01-31 2007-08-16 Canon Electronics Inc Ndフィルタ
JP2008180844A (ja) * 2007-01-24 2008-08-07 Sumitomo Metal Mining Co Ltd 吸収型多層膜片面ndフィルター
JP2008310016A (ja) * 2007-06-14 2008-12-25 Sumitomo Metal Mining Co Ltd 耐熱遮光フィルムとその製造方法、及びそれを用いた絞り又は光量調整用装置
JP2013222203A (ja) * 2012-04-13 2013-10-28 Leica Microsystems (Schweiz) Ag 顕微鏡にて傾斜照明を生成するための絞り装置と顕微鏡
WO2017145910A1 (ja) * 2016-02-23 2017-08-31 東海光学株式会社 プラスチック基材ndフィルタ及び眼鏡用プラスチック基材ndフィルタ
JP2017151430A (ja) * 2016-02-23 2017-08-31 東海光学株式会社 プラスチック基材ndフィルタ及び眼鏡用プラスチック基材ndフィルタ
US10663634B2 (en) 2016-02-23 2020-05-26 Tokai Optical Co., Ltd. ND filter with plastic base material, and ND filter with plastic base material for eyeglasses

Also Published As

Publication number Publication date
CN1795401A (zh) 2006-06-28
KR20060115324A (ko) 2006-11-08
US20060279866A1 (en) 2006-12-14
US7388723B2 (en) 2008-06-17
JPWO2005047940A1 (ja) 2007-05-31
CN100516938C (zh) 2009-07-22
DE112004000723T5 (de) 2008-03-06

Similar Documents

Publication Publication Date Title
TWI538817B (zh) 強吸收性層系統,製造該層系統之方法及適用於該層系統之濺鍍靶材
JP3359114B2 (ja) 薄膜型ndフィルター及びその製造方法
US7483226B2 (en) ND filter, manufacturing method thereof, and aperture device
US7230779B2 (en) ND filter and aperture diaphragm apparatus
US6671109B2 (en) ND filter having composite PVD film of metal and its oxide
EP3467553A1 (en) Optical filter and sensor system
WO2005047940A1 (ja) Ndフィルタ及びこれを用いた光量絞り装置
US20080258043A1 (en) Optical element and optical equipment
JP2000314808A (ja) 赤外線カットフィルタ
JP2006317603A (ja) 表面鏡
JP2007310335A (ja) 表面鏡
EP3660182A1 (en) Film forming method and film forming apparatus
EP3660548A1 (en) Optical member and producing method of optical member
JP2011118251A (ja) Ndフィルタの製造方法およびndフィルタ
JP2020064260A (ja) 光学フィルタ、及び光量調整装置、撮像装置
JP2004053720A (ja) 赤外線透過フィルターの製造方法
JP7271121B2 (ja) 光学フィルタ及び光学装置
JP6727454B2 (ja) 反射防止膜、光学素子および光学系
JP2004317738A (ja) 紫外光遮蔽素子とその製造方法及び光学装置
EP1091360A2 (en) Multilayer film structure for soft X-ray optical elements
JP2004295015A (ja) Ndフィルタ及びその製造方法
JP2020064257A (ja) 光学フィルタ、及び光量調整装置、撮像装置
JP2023163424A (ja) 光学フィルタ、光学フィルタを搭載した撮像装置
JP3404346B2 (ja) 光学薄膜の製造方法及び光学薄膜を有する基板の製造方法
JP2020064256A (ja) 光学フィルタ、及び光量調整装置、撮像装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515444

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006279866

Country of ref document: US

Ref document number: 10552613

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057020622

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048144750

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057020622

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10552613

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112004000723

Country of ref document: DE

Date of ref document: 20080306

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: DE