WO2005043744A1 - パルス変調回路 - Google Patents

パルス変調回路 Download PDF

Info

Publication number
WO2005043744A1
WO2005043744A1 PCT/JP2003/013947 JP0313947W WO2005043744A1 WO 2005043744 A1 WO2005043744 A1 WO 2005043744A1 JP 0313947 W JP0313947 W JP 0313947W WO 2005043744 A1 WO2005043744 A1 WO 2005043744A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
resistor
signal
modulation circuit
local oscillation
Prior art date
Application number
PCT/JP2003/013947
Other languages
English (en)
French (fr)
Inventor
Kenji Kawakami
Satoshi Hamano
Naohisa Uehara
Masayoshi Ono
Masaomi Tsuru
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2005510137A priority Critical patent/JP4152985B2/ja
Priority to EP03770040A priority patent/EP1679788A1/en
Priority to US10/576,348 priority patent/US20070072573A1/en
Priority to PCT/JP2003/013947 priority patent/WO2005043744A1/ja
Publication of WO2005043744A1 publication Critical patent/WO2005043744A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/02Transference of modulation from one carrier to another, e.g. frequency-changing by means of diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D9/00Demodulation or transference of modulation of modulated electromagnetic waves
    • H03D9/06Transference of modulation using distributed inductance and capacitance
    • H03D9/0608Transference of modulation using distributed inductance and capacitance by means of diodes
    • H03D9/0633Transference of modulation using distributed inductance and capacitance by means of diodes mounted on a stripline circuit

Definitions

  • the present invention relates to a pulse modulation circuit for modulating the frequency of a pulse signal.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-33038 (pages 6 to 7, FIG. 1)
  • the conventional pulse modulation circuit is configured as described above, it is possible to output a pulse signal having twice the frequency of the local oscillation signal L0 to the RF terminal.
  • the voltage of the pulse signal applied to the pulse application terminal is close to zero volts, tens of milliports of noise will be superimposed.
  • the pulse signal output to the RF terminal must be Therefore, the output power at the time of 0 FF needs to be set higher, and there is a problem that the ratio of the output power at the time of ON to the output power at the time of OFF of the pulse signal output to the RF terminal is reduced.
  • the present invention has been made to solve the problems described above, It is an object of the present invention to provide a pulse modulation circuit that can obtain a large ratio of an output power when a pulse signal output to a terminal is turned on to an output power when the pulse signal is turned off. Disclosure of the invention
  • a pulse modulation circuit includes a voltage dividing means for dividing a voltage applied to a mixing means for mixing a pulse signal input by a demultiplexing means and a local oscillation signal.
  • FIG. 1 is a configuration diagram showing a pulse modulation circuit according to Embodiment 1 of the present invention.
  • FIG. 2 is a graph showing the relationship between the applied voltage of the DC pulse signal and the output power of the RF pulse signal.
  • FIG. 3 is an equivalent circuit of an anti-parallel diode pair.
  • FIG. 4 is a graph showing the phase of a double harmonic.
  • FIG. 5 is a configuration diagram showing a pulse modulation circuit according to Embodiment 2 of the present invention.
  • FIG. 6 is a configuration diagram showing a pulse modulation circuit according to Embodiment 3 of the present invention.
  • FIG. 7 is a configuration diagram showing a pulse modulation circuit according to Embodiment 4 of the present invention.
  • FIG. 8 is a configuration diagram showing a pulse modulation circuit according to a fifth embodiment of the present invention.
  • FIG. 9 is a graph showing characteristics when the diodes are connected in series.
  • FIG. 10 is a configuration diagram showing a pulse modulation circuit according to Embodiment 6 of the present invention.
  • FIG. 11 is a configuration diagram showing a pulse modulation circuit according to Embodiment 7 of the present invention.
  • FIG. 12 is a configuration diagram showing a pulse modulation circuit according to Embodiment 7 of the present invention.
  • FIG. 13 is a configuration diagram showing a pulse modulation circuit according to Embodiment 8 of the present invention.
  • FIG. 1 is a configuration diagram showing a pulse modulation circuit according to Embodiment 1 of the present invention.
  • a low-pass filter (hereinafter referred to as LPF) 2 receives a DC pulse signal (pulse signal) applied to a DC pulse application terminal 1 and removes unnecessary wave components from the DC pulse signal to reduce a pulse component. Output to parallel diode pair 5.
  • the local oscillation signal L 0 applied to the local oscillation wave input terminal 3 is input to the local oscillation signal input terminal 3, and unnecessary wave components are removed from the local oscillation signal L 0 to remove the antiparallel signal. Output to pair 5.
  • the mixing means mixes the BPF 6 with an RF pulse signal (pulse signal) having a frequency twice (even number times) the local oscillation signal L 0.
  • the BP 6 passes only the RF pulse signal given from the anti-parallel diode pair 5 and outputs it to the RF pulse output terminal 7.
  • the demultiplexing means is composed of the LPF 2 and the BPFs 4 and 6.
  • the resistor 8 is provided between the DC pulse application terminal 1 and the LPF 2, and constitutes voltage dividing means for dividing the voltage applied to the antiparallel diode pair 5.
  • the DC pulse signal applied to the DC pulse application terminal 1 is input to the LPF 2, and the LPF 2 removes an unnecessary wave component from the DC pulse signal and outputs the pulse component to the anti-parallel diode pair 5.
  • the local oscillation signal L 0 applied to the local oscillation wave input terminal 3 is input to the BPF 4, and the BPF 4 removes unnecessary wave components from the local oscillation signal L O and outputs the signal to the anti-parallel diode pair 5.
  • the anti-parallel diode pair 5 receives the local oscillation signal L 0 from which unnecessary wave components have been removed from the BPF 4, and receives the DC pulse signal from which unnecessary wave components have been removed from the LPF 2, and receives the local oscillation signal L 0.
  • an RF pulse signal having twice the frequency of the local oscillation signal L 0 is given to the BPF 6.
  • the BP 6 passes only the RF pulse signal and outputs it to the RF pulse output terminal 7.
  • FIG. 3 is an equivalent circuit of the anti-parallel diode pair 5.
  • the local oscillation signal L0 having a frequency of 1 is input to the local oscillation wave input terminal 3
  • the local oscillation signal L0 having a frequency of ⁇ 1 has an anti-oscillation signal as shown in FIG. 3 (a).
  • the ground side of the parallel diode pair 5 appears to be open, and the BPF 4 and 6 sides of the anti-parallel diode pair 5 appear to be short-circuited.
  • the diode pairs 5a and 5b are connected in opposite directions. From the viewpoint of each diode 5a and 5b, the components of the frequency ⁇ 1 are applied in opposite directions. And the component of frequency 2 ⁇ 1, which is the even harmonic component, is in phase.
  • Fig. 4 (a) shows the phase of the double harmonic of the signal half-wave rectified by the diode 5a
  • Fig. 4 (b) shows the half-wave rectified by the diode 5b in the opposite direction. Represents the phase of the double harmonic of the signal.
  • the components of the frequency ⁇ r—2 ⁇ 1 which are DC pulse signals have opposite phases to each other, and can be added and taken out from the diodes 5 a and 5 b connected with opposite polarities. .
  • the components of the frequency 2 ⁇ 1 generated by the anti-parallel diode pair 5 have opposite phases at the RF pulse output terminal 7 and do not leak to the RF pulse output terminal 7.
  • the RF pulse signal having a frequency twice as high as that of the local oscillation signal LO, which is an odd harmonic, is output from the RF pulse output terminal 7.
  • the resistor 8 is provided between the DC pulse application terminal 1 and the LPF 2, if the resistance of the resistor 8 is adjusted appropriately, the voltage applied to the anti-parallel diode pair 5 can be reduced. Any voltage can be set.
  • the horizontal axis in FIG. 2 shows the voltage of the DC pulse signal (the voltage applied to the DC pulse application terminal 1), and the vertical axis shows the output power of the RF pulse signal. However, the applied voltage at which the output power becomes maximum increases.
  • the resistance of the resistor 8 is increased, the output power when the RF pulse signal is 0 N and the output power when the RF pulse signal is 0 FF The ratio can be increased.
  • the resistor 8 does not affect the RF characteristics.
  • the configuration is such that the resistor 8 for dividing the voltage applied to the anti-parallel diode pair 5 for mixing the DC pulse signal and the local oscillation signal L 0 is provided. Therefore, the ratio of the output power at 0 N of the RF pulse signal output to the RF pulse output terminal 7 to the output power at the time of FF can be increased.
  • FIG. 5 is a configuration diagram showing a pulse modulation circuit according to a second embodiment of the present invention. In the figure, the same reference numerals as in FIG.
  • the parallel circuit of the resistance 10 and the capacitance 11 constitutes a voltage dividing means, and is installed between the antiparallel diode pair 5 and the ground.
  • the parallel circuit composed of the resistor 10 and the capacitance 11 is provided between the anti-parallel diode pair 5 and the ground.
  • a parallel circuit composed of the capacitance 11 may be provided between the connection between the BPFs 4 and 6 and the anti-parallel diode pair 5, and the same effects as in the second embodiment can be obtained.
  • FIG. 7 is a block diagram showing a pulse modulation circuit according to Embodiment 4 of the present invention.
  • the resistor 12 is installed between the DC pulse application terminal 1 and the ground, and suppresses the mismatch with the DC pulse signal.
  • the resistor 8 divides the voltage applied to the anti-parallel diode pair 5 .
  • the pulse wave has a very high frequency. Will have components.
  • a resistor 12 is provided between the DC pulse application terminal 1 and the ground to suppress the mismatch with the DC pulse signal.
  • the voltage dividing means including the resistor 8 is mounted, and in the second embodiment, the voltage dividing means including the parallel circuit of the resistance 10 and the capacitance 11 is mounted. As shown in FIG. 8, a diode 13 may be connected in series with the resistor 8 (or 10) to constitute a voltage dividing means.
  • the diode 13 is connected in series with the resistor 8 (or 10).
  • FIG. 9 shows the characteristics when the diode 13 is connected in series.
  • the resistance value at the time of ⁇ FF is “resistance 8 ( Or 10) resistance value + "diode 13 resistance value at 0FF", which is a very large value.
  • the state in which a voltage is applied to the DC pulse application terminal 1, that is, the resistance value at 0 N is “resistance value of resistor 8 (or 10)” + “resistance value of diode 13 at 0 N” Since the resistance of the diode 13 at 0 N is usually several ohms, a value close to the resistance of the resistor 8 (or 10) is obtained.
  • FIG. 10 is a configuration diagram showing a pulse modulation circuit according to Embodiment 6 of the present invention.
  • the same reference numerals as in FIG. 1 denote the same or corresponding parts, and a description thereof will be omitted.
  • the / 4 wavelength open end stub 21 has an electrical length of 1 wavelength of the local oscillation signal L 0 and is open at the end.
  • the 1/4 wavelength tip short-circuiting stub 22 has an electrical length of 1/4 wavelength of the local oscillation signal L0, and the tip is short-circuited.
  • the local oscillation signal L ⁇ may be input between the anti-parallel diode pair 5 and the 1 / 4-wavelength short-circuit stub 22 with the 1 and 1 / 4-wavelength short-circuit stub 22 mounted.
  • the anti-parallel diode pair 5 mixes the local oscillation signal L 0 and the DC pulse signal according to the same principle as in the first embodiment, and increases the frequency twice that of the local oscillation signal L 0. To the BPF6.
  • the resistor 8 is provided between the DC pulse application terminal 1 and the LPF 2, if the resistance value of the resistor 8 is appropriately adjusted as in the first embodiment, the resistor 8 is applied to the anti-parallel diode pair 5. Voltage can be set to any voltage.
  • the ratio of the output power at the time of NN to the output power at the time of 0 FF of the RF pulse signal output to the RF pulse output terminal 7 can be increased.
  • Embodiment ⁇ In the sixth embodiment, since the local oscillation signal L 0 and the RF pulse signal do not contribute to the resistor 8, the provision of the resistor 8 does not affect the RF characteristics. .
  • Embodiment ⁇ In the sixth embodiment, the case where the resistor 8 divides the voltage applied to the anti-parallel diode pair 5 has been described. However, as shown in FIG. 11 or FIG. 0 may divide the voltage applied to the anti-parallel diode pair 5, and the same effect as in the sixth embodiment can be obtained.
  • a resistor 12 is provided between the DC pulse application terminal 1 and the ground to suppress the mismatch with respect to the DC pulse signal. ing.
  • FIGS. The diode 13 may be connected in series to the resistor 8 (or 10) of the pulse modulation circuit shown in FIG.
  • the pulse modulation circuit according to the present invention is suitable for use in, for example, a communication device or a radar that needs to modulate the frequency of a pulse signal when transmitting and receiving the pulse signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Amplitude Modulation (AREA)

Abstract

DCパルス信号と局部発振信号LOを混合するアンチパラレルダイオードペア5に印加される電圧を分圧する抵抗8を設置する。これにより、RFパルス出力端子7に出力するRFパルス信号のON時の出力電力とOFF時の出力電力の比を大きく取ることができる。

Description

パルス変調回路
技術分野
この発明は、 パルス信号の周波数を変調するパルス変調回路に関する 明
ものである。
背景技術 書 従来のパルス変調回路は、 パルス印加端子からパルス信号を入力し、 局部発振波入力端子から局部発振信号 L 0を入力すると、 内蔵している アンチパラレルダイォードペアがパルス信号と局部発振信号 L 0を混合 することにより、 その局部発振信号 L 0の 2倍の周波数を有するパルス 信号を: R F端子に出力するようにしている (以下の特許文献 1を参照)
[特許文献 1 ] 特開 2 0 0 0— 3 3 8 2 3 3号公報 (第 6頁から第 7 頁、 図 1 )
従来のパルス変調回路は以上のように構成されているので、 局部発振 信号 L 0の 2倍の周波数を有するパルス信号を R F端子に出力すること ができる。 しかし、 パルス印加端子に印加されるパルス信号の電圧が零 ボル卜に近い場合、 数十ミ リポルトの雑音が重畳されるため、 その雑音 の影響を回避するには、 R F端子に出力するパルス信号の 0 F F時の出 力電力を高めに設定する必要があり、 R F端子に出力するパルス信号の O N時の出力電力と O F F時の出力電力の比が小さくなつてしまう課題 があった。
この発明は上記のような課題を解決するためになされたもので、 R F 端子に出力するパルス信号の O N時の出力電力と O F F時の出力電力の 比を大きく取ることができるパルス変調回路を得ることを目的とする。 発明の開示
この発明に係るパルス変調回路は、 分波手段により入力されたパルス 信号と局部発振信号を混合する混合手段に印加される電圧を分圧する分 圧手段を設けたものである。
このことによって、 パルス出力端子に出力するパルス信号の O N時の 出力電力と O F F時の出力電力の比を大きく取ることができる効果があ る。 図面の簡単な説明
第 1図はこの発明の実施の形態 1 によるパルス変調回路を示す構成図 である。
第 2図は D Cパルス信号の印加電圧と R Fパルス信号の出力電力との 関係を示すグラフ図である。
第 3図はアンチパラレルダイオードペアの等価回路である。
第 4図は 2倍の高調波の位相を示すグラフ図である。
第 5図はこの発明の実施の形態 2によるパルス変調回路を示す構成図 である。
第 6図はこの発明の実施の形態 3によるパルス変調回路を示す構成図 である。
第 7図はこの発明の実施の形態 4によるパルス変調回路を示す構成図 である。
第 8図はこの発明の実施の形態 5によるパルス変調回路を示す構成図 である。 第 9図はダイォードが直列に接続されている場合の特性を示すグラフ 図である。
第 1 0図はこの発明の実施の形態 6によるパルス変調回路を示す構成 図である。
第 1 1図はこの発明の実施の形態 7によるパルス変調回路を示す構成 図である。
第 1 2図はこの発明の実施の形態 7によるパルス変調回路を示す構成 図である。
第 1 3図はこの発明の実施の形態 8によるパルス変調回路を示す構成 図である。 発明を実施するための最良の形態
以下、 この発明をより詳細に説明するために、 この発明を実施するた めの最良の形態について、 添付の図面に従って説明する。
実施の形態 1 .
第 1図はこの発明の実施の形態 1によるパルス変調回路を示す構成図 である。 図において、 ローパスフィル夕 (以下、 L P Fという) 2は D Cパルス印加端子 1に印加された D Cパルス信号 (パルス信号) を入力 し、 その D Cパルス信号から不要波成分を除去してパルス成分をアンチ パラレルダイオードペア 5に出力する。 ノ、'ン ドパスフィル夕 (以下、 B P Fという) 4は局部発振波入力端子 3に印加された局部発振信号 L 0 を入力し、 その局部発振信号 L 0から不要波成分を除去してアンチパラ レルダイォ一ドペア 5に出力する。
アンチパラレルダイオードペア 5は 2つのダイオード 5 a , 5 bが互 いに逆向きに並列接続され、 B P F 4により不要波成分が除去された局 部発振信号 L 0と L P F 2により不要波成分が除去された D Cパルス信 号を混合して、 その局部発振信号 L 0の 2倍 (偶数倍) の周波数を有す る R Fパルス信号 (パルス信号) を B P F 6に与える混合手段を構成し ている。
B P F 6はアンチパラレルダイォードペア 5から与えられた R Fパル ス信号のみを通過させて R Fパルス出力端子 7に出力する。 なお、 L P F 2及び B P F 4 , 6から分波手段が構成されている。
抵抗 8は D Cパルス印加端子 1 と L P F 2の間に設置され、 アンチパ ラレルダイオードペア 5に印加される電圧を分圧する分圧手段を構成し ている。
次に動作について説明する。
まず、 D Cパルス印加端子 1に印加された D Cパルス信号は L P F 2 に入力され、 L P F 2が D Cパルス信号から不要波成分を除去してパル ス成分をアンチパラレルダイォードペア 5に出力する。
また、 局部発振波入力端子 3に印加された局部発振信号 L 0は B P F 4に入力され、 B P F 4が局部発振信号 L Oから不要波成分を除去して アンチパラレルダイォードペア 5に出力する。
アンチパラレルダイォードペア 5は、 B P F 4から不要波成分が除去 された局部発振信号 L 0を受け、 L P F 2から不要波成分が除去された D Cパルス信号を受けると、 その局部発振信号 L 0と D Cパルス信号を 混合することにより、 その局部発振信号 L 0の 2倍の周波数を有する R Fパルス信号を B P F 6に与える。
B P F 6は、 アンチパラレルダイォ一ドペア 5から R Fパルス信号が 与えられると、 その R Fパルス信号のみを通過させて R Fパルス出力端 子 7に出力する。
以下、 アンチパラレルダイォードペア 5の作用を具体的に説明する。 ただし、 第 3図はアンチパラレルダイオードペア 5の等価回路である。 例えば、 周波数 1の局部発振信号 L 0が局部発振波入力端子 3に入 力されると、 周波数 ω 1の局部発振信号 L 0に対しては、 第 3図 ( a ) に示すように、 アンチパラレルダイオードペア 5のグラン ド側が開放に 見えて、 アンチパラレルダイオードペア 5の B P F 4, 6側が短絡に見
X. ·© o
よって、 ダイオードペア 5 a, 5 bが互いに逆向きに接続されている ことに注意すれば、 各ダイオード 5 a, 5 bから見れば、 周波数 ω 1の 成分は互いに逆向きに印加されていることになり、 偶数次の高調波成分 である周波数 2 ω 1の成分は同相であることになる。
第 4図 ( a ) はダイオード 5 aによって半波整流された信号の 2倍の 高調波の位相を表しており、 第 4図 (b ) は逆向きのダイオード 5 bに よって半波整流された信号の 2倍の高調波の位相を表している。
このことから、 2倍の高調波の位相は互いに逆相になっていることが わかる。
一方、 周波数 ω 1の約 2倍に相当する周波数 ω rの局部発振信号 L〇 に対しては、 第 3図 ( b ) に示すように、 アンチパラレルダイオードぺ ァ 5のグラン ド側が短絡に見えて、 アンチパラレルダイオードペア 5の B P F 4 , 6側が開放に見える。
したがって、 D Cパルス信号である周波数 ω r— 2 ω 1の成分は、 互 いに逆相となるので、 逆極性で接続されたダイォ一ド 5 a , 5 bから足 し合わされて取り出すことができる。
なお、 アンチパラレルダイォードペア 5により発生された周波数 2 ω 1の成分は、 R Fパルス出力端子 7において互いに逆相であるから、 R Fパルス出力端子 7には漏れない。
上記の説明より、 奇数次の高調波である局部発振信号 L Oの 2倍の周 波数を有する R Fパルス信号が R Fパルス出力端子 7から出力されるこ とが理解されるが、 D Cパルス印加端子 1 と L P F 2の間に抵抗 8が設 置されているので、 抵抗 8の抵抗値を適宜調整すれば、 アンチパラレル ダイオードペア 5に印加される電圧を任意の電圧に設定することができ る。
第 2図の横軸は D Cパルス信号の電圧 (D Cパルス印加端子 1に印加 される電圧) を示し、 縦軸は R Fパルス信号の出力電力を示しており、 抵抗 8の抵抗値を大きくする程、 出力電力が最大となる印加電圧が大き くなる。
したがって、 印加電圧が小さい部分に雑音が重畳されることを考慮し て、 抵抗 8の抵抗値を大きく取れば、 R Fパルス信号が 0 N時の出力電 力と、 0 F F時の出力電力との比を大きく取ることができる。
なお、 局部発振信号 L◦や R Fパルス信号は抵抗 8には寄与しないの で、 抵抗 8が設置されることにより、 R F的な特性に影響を与えること はない。
以上で明らかなように、 この実施の形態 1 によれば、 D Cパルス信号 と局部発振信号 L 0を混合するアンチパラレルダイオードペア 5に印加 される電圧を分圧する抵抗 8を設置するように構成したので、 R Fパル ス出力端子 7に出力する R Fパルス信号の 0 N時の出力電力と◦ F F時 の出力電力の比を大きく取ることができる効果を奏する。
また、 抵抗 8 として、 可変抵抗を用いれば、 図示せぬドライバ回路が パルス変調回路の D Cパルス印加端子 1に印加する D Cパルス信号の電 圧を適宜変更する場合でも、 その D Cパルス信号の電圧に応じて、 アン チパラレルダイオードペア 5に印加される電圧を適宜調整することがで きる効果を奏する。 実施の形態 2 第 5図はこの発明の実施の形態 2によるパルス変調回路を示す構成図 であり、 図において、 第 1図と同一符号は同一または相当部分を示すの で説明を省略する。
抵抗 1 0 とキャパシタンス 1 1の並列回路は分圧手段を構成し、 アン チパラレルダイオードペア 5 とグランドの間に設置されている。
次に動作について説明する。
上記実施の形態 1では、 抵抗 8がアンチパラレルダイォードペア 5 に 印加される電圧を分圧するものについて示したが、 並列回路の抵抗 1 0 がアンチパラレルダイオードペア 5に印加される電圧を分圧するように してもよく、 上記実施の形態 1 と同様の効果を奏することができる。 なお、 局部発振信号 L 0や R Fパルス信号はキャパシタンス 1 1側を 通過し、 抵抗 1 0には寄与することがないので、 抵抗 1 0が設置される ことにより、 R F的な特性に影響を与えることはない。 実施の形態 3 .
上記実施の形態 2では、 抵抗 1 0とキャパシタンス 1 1からなる並列 回路をアンチパラレルダイオードペア 5 とグラン ドの間に設置するもの について示したが、 第 6図に示すように、 抵抗 1 0 とキャパシタンス 1 1からなる並列回路を B P F 4 , 6の接続部分とアンチパラレルダイォ ードペア 5の間に設置するようにしてもよく、 上記実施の形態 2 と同様 の効果を奏することができる。 実施の形態 4 .
第 7図はこの発明の実施の形態 4によるパルス変調回路を示す構成図 であり、 図において、 第 1図と同一符号は同一または相当部分を示すの で説明を省略する。 抵抗 1 2は D Cパルス印加端子 1 とグラン ドの間に設置され、 D Cパ ルス信号に対する不整合を抑制する。
次に動作について説明する。
上記実施の形態 1では、 抵抗 8がアンチパラレルダイォ一ドペア 5に 印加される電圧を分圧するものについて示したが、 D Cパルス信号のパ ルス幅が狭い場合、 パルス波としては非常に高い周波数成分を持つこと になる。
しかし、 抵抗 8がアンチパラレルダイオードペア 5 に印加される電圧 を分圧する方式では、 D Cパルス印加端子 1からのイ ンピーダンスが非 常に大きくなり、 不整合を生じることがある。
そこで、 この実施の形態 4では、 D Cパルス印加端子 1 とグラン ドの 間に抵抗 1 2を設置して、 D Cパルス信号に対する不整合を抑制するよ うにしている。
この実施の形態 4によれば、 上記実施の形態 1 と同様の効果に加え、 D Cパルス信号に対する不整合を抑制することができる効果を奏する。 なお、 この実施の形態 4では、 第 1図のパルス変調回路に抵抗 1 2を 追加するものについて示したが、 第 5図及び第 6図のパルス変調回路に 抵抗 1 2を追加するようにしてもよい。 実施の形態 5 .
上記実施の形態 1では、 抵抗 8からなる分圧手段を搭載し、 上記実施 の形態 2では、 抵抗 1 0 とキャパシタンス 1 1の並列回路からなる分圧 手段を搭載するものについて示したが、 第 8図に示すように、 抵抗 8 ( または 1 0 ) と直列にダイオード 1 3を接続して分圧手段を構成するよ うにしてもよい。
上記実施の形態 1等では、 第 2図に示すように、 R Fパルス信号の 0 N時と O F F時の出力電力の比を高めようとする場合、 0 F F時の抵抗 値を大きく して、 ON時の抵抗値を所望の印加電圧で出力電力の最大値 が得られるように設定することが望ましい。
そこで、 この実施の形態 5では、 抵抗 8 (または 1 0 ) と直列にダイ オード 1 3を接続するようにしている。
第 9図はダイオード 1 3が直列に接続されている場合の特性を示して おり、 D Cパルス印加端子 1に電圧が印加されていない状態、 即ち、 〇 F F時の抵抗値は、 "抵抗 8 (または 1 0 ) の抵抗値" + "ダイオード 1 3の 0 F F時の抵抗値" となり、 非常に大きな値になる。
一方、 D Cパルス印加端子 1に電圧が印加されている状態、 即ち、 0 N時の抵抗値は、 "抵抗 8 (または 1 0 ) の抵抗値" + "ダイオード 1 3の 0 N時の抵抗値" となり、 ダイオード 1 3の 0 N時の抵抗値は通常 数オームであるため、 抵抗 8 (または 1 0 ) の抵抗値に近い値が得られ ることになる。
これにより、 R Fパルス信号の 0 N時と O F F時の出力電力の比を更 に高めることができる効果を奏する。 実施の形態 6.
第 1 0図はこの発明の実施の形態 6によるパルス変調回路を示す構成 図であり、 図において、 第 1図と同一符号は同一または相当部分を示す ので説明を省略する。
1 /4波長先端開放スタブ 2 1は電気長が局部発振信号 L 0の 1 /4 波長であって先端が開放されている。
1/4波長先端短絡スタブ 2 2は電気長が局部発振信号 L 0の 1/4 波長であって先端が短絡されている。
次に動作について説明する。 上記実施の形態 1では、 L P F 2 と B P F 4 , 6から分波手段が構成 されているものについて示したが、 L P F 2 と B P F 6から分波手段を 構成し、 1 / 4波長先端開放スタブ 2 1 と 1 / 4波長先端短絡スタブ 2 2を搭載して、 アンチパラレルダイオードペア 5 と 1 Z 4波長先端短絡 スタブ 2 2の間から局部発振信号 L〇を入力するようにしてもよい。
この場合も、 アンチパラレルダイォ一ドペア 5が上記実施の形態 1 と 同様の原理で、 局部発振信号 L 0と D Cパルス信号を混合して、 その局 部発振信号 L 0の 2倍の周波数を有する R Fパルス信号を B P F 6に与 える。
また、 D Cパルス印加端子 1 と L P F 2の間に抵抗 8が設置されてい るので、 上記実施の形態 1 と同様に、 抵抗 8の抵抗値を適宜調整すれば 、 アンチパラレルダイオードペア 5に印加される電圧を任意の電圧に設 定することができる。
したがって、 上記実施の形態 1 と同様に、 R Fパルス出力端子 7に出 力する R Fパルス信号の◦ N時の出力電力と 0 F F時の出力電力の比を 大きく取ることができる効果を奏する。
また、 抵抗 8 として、 可変抵抗を用いれば、 図示せぬドライバ回路が パルス変調回路の D Cパルス印加端子 1に印加する D Cパルス信号の電 圧を適宜変更する場合でも、 その D Cパルス信号の電圧に応じて、 アン チパラレルダイオードペア 5 に印加される電圧を適宜調整することがで きる効果を奏する。
なお、 この実施の形態 6の場合も、 局部発振信号 L 0や R Fパルス信 号が抵抗 8には寄与しないので、 抵抗 8が設置されることにより、 R F 的な特性に影響を与えることはない。 実施の形態 Ί 上記実施の形態 6では、 抵抗 8がアンチパラレルダイォ一ドペア 5 に 印加される電圧を分圧するものについて示したが、 第 1 1図又は第 1 2 図に示すように、 並列回路の抵抗 1 0がアンチパラレルダイオー ドペア 5 に印加される電圧を分圧するようにしてもよく、 上記実施の形態 6 と 同様の効果を奏することができる。
なお、 局部発振信号 L 0や R Fパルス信号はキャパシ夕ンス 1 1側を 通過し、 抵抗 1 0 には寄与することがないので、 抵抗 1 0が設置される ことによ り、 R F的な特性に影響を与えることはない。 実施の形態 8 .
上記実施の形態 6では、 抵抗 8がアンチパラレルダイォードペア 5 に 印加される電圧を分圧するものについて示したが、 D Cパルス信号のパ ルス幅が狭い場合、 パルス波としては非常に高い周波数成分を持つこと になる。
しかし、 抵抗 8がアンチパラレルダイォー ドペア 5 に印加される電圧 を分圧する方式では、 D Cパルス印加端子 1 からのィ ンピ一ダンスが非 常に大きくなり、 不整合を生じることがある。
そこで、 この実施の形態 8では、 第 1 3図に示すように、 D Cパルス 印加端子 1 とグラン ドの間に抵抗 1 2を設置して、 D Cパルス信号に対 する不整合を抑制するようにしている。
この実施の形態 8によれば、 上記実施の形態 6 と同様の効果に加え、 D Cパルス信号に対する不整合を抑制することができる効果を奏する。 なお、 この実施の形態 6では、 第 1 0図のパルス変調回路に抵抗 1 2 を追加するものについて示したが、 第 1 1図及び第 1 2図のパルス変調 回路に抵抗 1 2 を追加するようにしてもよい。 実施の形態 9 .
上記実施の形態 6〜 8では、 抵抗 8 (または 1 0 ) にダイォ一ド 1 3 が直列に接続されていないものについて示したが、 上記実施の形態 5 と 同様に、 第 1 0図〜第 1 2図のパルス変調回路の抵抗 8 (または 1 0 ) にダイォード 1 3を直列に接続するようにしてもよい。
これにより、 上記実施の形態 5 と同様に、 R Fパルス信号の O N時と O F F時の出力電力の比を更に高めることができる効果を奏する。 産業上の利用可能性
以上のように、 この発明に係るパルス変調回路は、 例えば、 パルス信 号を送受信するに際して、 パルス信号の周波数を変調する必要がある通 信装置やレーダに用いるのに適している。

Claims

請 求 の 範 囲
1 . パルス印加端子からパルス信号を入力するとともに、 局部発振波入 力端子から局部発振信号を入力する一方、 その局部発振信号の偶数倍の 周波数を有するパルス信号をパルス出力端子に出力する分波手段と、 上 記分波手段により入力されたパルス信号と局部発振信号を混合して、 そ の局部発振信号の偶数倍の周波数を有するパルス信号を上記分波手段に 与える混合手段と、 上記混合手段に印加される電圧を分圧する分圧手段 とを備えたパルス変調回路。
2 . 抵抗からなる分圧手段をパルス印加端子と分波手段の間に設置した ことを特徴とする請求の範囲第 1項記載のパルス変調回路。
3 . 分圧手段を構成する抵抗が可変抵抗であることを特徴とする請求の 範囲第 2項記載のパルス変調回路。
4 . 抵抗とキャパシ夕ンスの並列回路からなる分圧手段を混合手段とグ ラン ドの間、 または、 分波手段と上記混合手段の間に設置したことを特 徴とする請求の範囲第 1項記載のパルス変調回路。
5 . パルス印加端子とグラン ドの間に抵抗を設置したことを特徴とする 請求の範囲第 1項記載のパルス変調回路。
6 . 抵抗とダイォードの直列回路からなる分圧手段をパルス印加端子と 分波手段の間に設置したことを特徴とする請求の範囲第 1項記載のパル ス変調回路。
7 . 抵抗及びダイオー ドの直列回路とキャパシタンスの並列回路からな る分圧手段を混合手段とグラン ドの間、 または、 分波手段と上記混合手 段の間に設置したことを特徴とする請求の範囲第 1項記載のパルス変調 回路。
8 . パルス印加端子からパルス信号を入力する一方、 局部発振信号の偶 数倍の周波数を有するパルス信号をパルス出力端子に出力する分波手段 と、 上記分波手段により入力されたパルス信号と局部発振波入力端子か ら入力された局部発振信号を混合して、 その局部発振信号の偶数倍の周 波数を有するパルス信号を上記分波手段に与える混合手段と、 上記混合 手段に印加される電圧を分圧する分圧手段とを備えたパルス変調回路。
9 . 抵抗からなる分圧手段をパルス印加端子と分波手段の間に設置した ことを特徴とする請求の範囲第 8項記載のパルス変調回路。
1 0 . 分圧手段を構成する抵抗が可変抵抗であることを特徴とする請求 の範囲第 9項記載のパルス変調回路。
1 1 . 抵抗とキャパシ夕ンスの並列回路からなる分圧手段を混合手段と 局部発振波入力端子の間、 または、 分波手段と上記混合手段の間に設置 したことを特徴とする請求の範囲第 8項記載のパルス変調回路。
1 2 . パルス印加端子とグラン ドの間に抵抗を設置したことを特徴とす る請求の範囲第 8項記載のパルス変調回路。
1 3 . 抵抗とダイォードの直列回路からなる分圧手段をパルス印加端子 と分波手段の間に設置したことを特徴とする請求の範囲第 8項記載のパ ルス変調回路。
1 4 . 抵抗及びダイォードの直列回路とキャパシ夕ンスの並列回路から なる分圧手段を混合手段と局部発振波入力端子の間、 または、 分波手段 と上記混合手段の間に設置したことを特徴とする請求の範囲第 8項記載 のパルス変調回路。
PCT/JP2003/013947 2003-10-30 2003-10-30 パルス変調回路 WO2005043744A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005510137A JP4152985B2 (ja) 2003-10-30 2003-10-30 パルス変調回路
EP03770040A EP1679788A1 (en) 2003-10-30 2003-10-30 Pulse modulation circuit
US10/576,348 US20070072573A1 (en) 2003-10-30 2003-10-30 Pulse modulation circuitry
PCT/JP2003/013947 WO2005043744A1 (ja) 2003-10-30 2003-10-30 パルス変調回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/013947 WO2005043744A1 (ja) 2003-10-30 2003-10-30 パルス変調回路

Publications (1)

Publication Number Publication Date
WO2005043744A1 true WO2005043744A1 (ja) 2005-05-12

Family

ID=34532054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013947 WO2005043744A1 (ja) 2003-10-30 2003-10-30 パルス変調回路

Country Status (4)

Country Link
US (1) US20070072573A1 (ja)
EP (1) EP1679788A1 (ja)
JP (1) JP4152985B2 (ja)
WO (1) WO2005043744A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136103A1 (ja) 2007-04-25 2008-11-13 Mitsubishi Electric Corporation 偶高調波ミクサ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2935849A1 (fr) * 2008-09-10 2010-03-12 Thomson Licensing Melangeur bi-mode signaux
CN104579176A (zh) * 2015-01-07 2015-04-29 电子科技大学 基于共面波导传输线的分谐波混频器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1127053A (ja) * 1997-06-30 1999-01-29 Sony Corp 高調波ミキサー回路
JPH11313116A (ja) * 1998-04-27 1999-11-09 Mitsubishi Electric Corp 通信装置
JP2000338233A (ja) * 1999-05-28 2000-12-08 Mitsubishi Electric Corp パルスドップラレーダ装置
JP2002344246A (ja) * 2001-05-17 2002-11-29 Sharp Corp 偶高調波ミキサおよびそれを用いた高周波通信回路装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4266201A (en) * 1979-03-23 1981-05-05 Harris Corporation Method and apparatus using first and second parallel channels, one of which includes an inverter, for producing an electrical signal with an improved on/off ratio
DE69004770T2 (de) * 1989-04-07 1994-05-11 Sharp Kk Frequenzmodulator.
US4954791A (en) * 1989-09-29 1990-09-04 Hewlett-Packard Company Non-commensurate line length rf modulator
US4955079A (en) * 1989-09-29 1990-09-04 Raytheon Company Waveguide excited enhancement and inherent rejection of interference in a subharmonic mixer
US5020079A (en) * 1989-11-17 1991-05-28 Nynex Corporation Apparatus for generating a minimum-shift-keying signal
US5483696A (en) * 1994-01-31 1996-01-09 Qualcomm Incorporated Method and apparatus for using a balanced mixer as a switch
US5495208A (en) * 1994-04-04 1996-02-27 Motorola, Inc. Wide band tunable and modulatable reference oscillator
KR100243489B1 (ko) * 1995-11-22 2000-02-01 니시무로 타이죠 주파수 변환기 및 이를 이용한 무선 수신기
US6225873B1 (en) * 1995-12-01 2001-05-01 Lear Automotive Dearborn, Inc. Frequency shift key modulating oscillator
US6675005B2 (en) * 1999-03-25 2004-01-06 Zenith Electronics Corporation Printed single balanced downconverter mixer
WO2003038992A1 (fr) * 2001-11-01 2003-05-08 Sharp Kabushiki Kaisha Melangeur d'harmoniques d'ordre pair a filtre integre et appareil de communication radio haute frequence l'utilisant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1127053A (ja) * 1997-06-30 1999-01-29 Sony Corp 高調波ミキサー回路
JPH11313116A (ja) * 1998-04-27 1999-11-09 Mitsubishi Electric Corp 通信装置
JP2000338233A (ja) * 1999-05-28 2000-12-08 Mitsubishi Electric Corp パルスドップラレーダ装置
JP2002344246A (ja) * 2001-05-17 2002-11-29 Sharp Corp 偶高調波ミキサおよびそれを用いた高周波通信回路装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136103A1 (ja) 2007-04-25 2008-11-13 Mitsubishi Electric Corporation 偶高調波ミクサ
US8229387B2 (en) 2007-04-25 2012-07-24 Mitsubishi Electric Corporation Even harmonic mixer

Also Published As

Publication number Publication date
JP4152985B2 (ja) 2008-09-17
JPWO2005043744A1 (ja) 2007-05-10
US20070072573A1 (en) 2007-03-29
EP1679788A1 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
JP6109452B1 (ja) 高周波整流器
CN105553425B (zh) 三倍频器和本地振荡器信号发生器
JPS63198408A (ja) バイアス回路
JP4501711B2 (ja) 偶高調波ミクサ
US10097389B1 (en) Signal modulator
EP3396856A1 (en) Push-pull amplification systems and methods
WO2005043744A1 (ja) パルス変調回路
JP4421350B2 (ja) ハーモニックミキサ及びこれを備えた無線装置
US5379458A (en) Transformerless diode mixer
JP4033960B2 (ja) 無線周波数信号ミクサ
AU2003217059B8 (en) Method of combining signals and device therefor
CN211508898U (zh) 开关单元配置
US9929700B2 (en) Distortion compensation circuit
US10284289B1 (en) Signal modulator
JP6661190B2 (ja) 可変リアクタンス回路
JPWO2005064787A1 (ja) 周波数変換器
JP2006030019A (ja) パルス変調回路
JPH09238027A (ja) ハーモニックミキサ
JP5586141B2 (ja) 偶高調波ミクサならびにそれを用いた通信装置およびレーダ装置
KR101077614B1 (ko) 주파수 혼합기 또는 감쇄기로 동작하는 다중기능 회로
JP4066295B2 (ja) 偶高調波ミクサ
JP6731396B2 (ja) 信号変調器
US20020118050A1 (en) Frequency doubler
JPH10117109A (ja) 発振回路の周波数切替装置
JP4185017B2 (ja) 周波数変換回路

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005510137

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003770040

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007072573

Country of ref document: US

Ref document number: 10576348

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200380110632.3

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003770040

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10576348

Country of ref document: US