WO2005036667A1 - N- dotierung von organischen halbleitern - Google Patents

N- dotierung von organischen halbleitern Download PDF

Info

Publication number
WO2005036667A1
WO2005036667A1 PCT/DE2004/002247 DE2004002247W WO2005036667A1 WO 2005036667 A1 WO2005036667 A1 WO 2005036667A1 DE 2004002247 W DE2004002247 W DE 2004002247W WO 2005036667 A1 WO2005036667 A1 WO 2005036667A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor material
doped
charge carrier
dopant
diode
Prior art date
Application number
PCT/DE2004/002247
Other languages
English (en)
French (fr)
Inventor
Ansgar Werner
Martin Pfeiffer
Kentaro Harada
Karl Leo
C. Michael Elliott
Original Assignee
Novaled Gmbh
Colorado State University Research Foundation, Director Of Technology Transfer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novaled Gmbh, Colorado State University Research Foundation, Director Of Technology Transfer filed Critical Novaled Gmbh
Priority to JP2006529630A priority Critical patent/JP5089983B2/ja
Priority to US10/595,319 priority patent/US20070278479A1/en
Publication of WO2005036667A1 publication Critical patent/WO2005036667A1/de

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine

Definitions

  • the invention relates to doped organic semiconductor materials with increased charge carrier density and effective charge carrier mobility as well as a method for their production.
  • organic dopants Compared to doping methods with inorganic materials, which on the one hand involve diffusion problems of the doping material used in the form of relatively small molecules or atoms and on the other hand undesirable unpredictable chemical reactions between matrix and doping material, the use of organic molecules as doping material has proven to be advantageous.
  • organic dopants have a higher stability of the components, and the diffusion plays a subordinate role, so that the defined production of sharp transitions from p-doped to n-doped regions is simplified.
  • Doping with organic molecules only results in a charge transfer between see matrix and dopant, but no chemical bond is formed between them.
  • the doping concentration for obtaining a high conductivity of the doped layer in the case of organic dopants is advantageously at least one size unit below that of inorganic dopants.
  • the doping of organic semiconductor materials with organic compounds is essentially known in two different processes, namely doping with air-stable dopants and doping with a stable precursor substance to release a dopant that is not stable in the air.
  • air-stable organic dopants do not have a sufficiently low oxidation potential to be used for the use of technically relevant electron transport materials with a lower reduction potential.
  • the released compounds can have a sufficiently low oxidation potential for use as electron transport materials that are used in organic solar cells, but not for the use of organic light emitting diodes.
  • the object of the present invention is therefore to improve the electrical properties of (opto) electronic components, such as, for example, organic light-emitting diodes or solar cells which are based on organic semiconductor materials.
  • the ohmic losses in charge carrier transport layers are to be reduced and the contact properties Shafts can be improved.
  • the object is achieved by the production method according to claim 1, by the product obtainable therefrom according to claim 11 and by a diode obtainable using the product according to claim 18.
  • the dopant being produced by electrocrystallization in a first step, the dopant is selected from a group of organic compounds with a low oxidation potential, and wherein an organic semiconductor material is doped with the dopant in a second step, the use of easily accessible organic salts as starting materials for organic dopants is made possible.
  • the method therefore makes a new or a further class of dopants available, which has preferred properties over the materials used hitherto, in particular with regard to the parameter of the oxidation potential.
  • a salt of the organic dopant is used as the starting material for the electrocrystallization.
  • the organic dopant is typically simple or multiply charged cation in the salt of the starting material.
  • a single or multiply charged cation is used in the educt salt of the organic dopant. Electrocrystallization makes it possible to obtain the dopant contained in a salt form as an ion in the neutral state as a pure intermediate.
  • the dopant is an uncharged organic compound.
  • organic dopants is advantageous over inorganic dopants in terms of less undesired diffusion of the dopants in the matrix, higher stability and lower costs and in terms of procuring the starting material.
  • the dopant can be crystallized out on a working electrode and then harvested on the working electrode.
  • the dopant is usually only sparingly soluble in the solvent used in the electrocrystallization and can therefore be deposited almost completely on the electrode.
  • the dopant which is typically unstable in air, can be stored and, if necessary, transported under an inert gas atmosphere or, if necessary, transported.
  • the Dotancl can be cleaned in an additional intermediate step after harvesting on a working electrode.
  • the cleaning can be, for example, drying or another type of purification known in the prior art.
  • Urification the dopant is then kept ready for a further step for processing with the semiconductor material under an inert gas atmosphere. The dopant is thus available in the purest possible state.
  • the dopant is preferably mixed into the organic semiconductor material.
  • a connection to a Oxidation potential of less than 0 V against NHE is used.
  • a compound with an oxidation potential in the range from - 0.5 V against NHE to - 2.5 V against NHE is preferably used as dopant.
  • Bis (2, 2 '-terpyridine) ruthenium or tris (4, 4', 5, 5 '-tetramethyl-2, 2'-bypyridine) chromium is particularly preferably used as dopant, with bis (2, 2' -terpyridine) ruthenium has an oxidation potential of - 1.28 V against NHE and tris (4, 4 ', 5, 5' -tetramethyl-2, 2 '-bipyridine) chromium has an oxidation potential of - 1.44 V against NHE.
  • fullerene Cßo (with a reduction potential of - 0.98 V against Fc / Fc + ), tris (8-hydroxyquinolinato) aluminum (with a reduction potential of - 2.3 V against Fc / Fc + ) are used as organic semiconductors ), Bathoph.enath.ro1in (with an electron affinity of 3.0 eV) or phthalocyanine zinc (with a reduction potential of about - 0.65 V against NHE), but are not restricted to this.
  • a method according to the invention can produce a doped organic semiconductor material with increased charge carrier density and effective charge carrier mobility.
  • the semiconductor material is preferably doped with bis (2,2'-terpyridine) ruthenium.
  • the semiconductor material can be chromium-doped with tris (4, 4 ', 5, 5' -tetramethyl-2, 2 '-bipyridine).
  • the matrix of the semiconductor material consists essentially of fullerene.
  • the matrix of the semiconductor material can consist essentially of phthalocyanine zinc.
  • the semiconductor material has a conductivity of about 10 "1 S / cm at room temperature, the matrix of the semiconductor material consisting essentially of fullerene and the semiconductor material having bis (2, 2 '- terpyridine) ruthenium (doped.
  • the semiconductor material can have a conductivity of about 10 ⁇ 6 S / cm at room temperature, the matrix of the semiconductor material essentially consisting of phthalocyanine zinc and the semiconductor material containing bis (2,2 '- terpyridine) ruthenium is doped.
  • the doped organic semiconductor material is expediently part of an organic diode, the diode being made of a metal-insulator-N-doped semiconductor (min) junction or a p-doped semiconductor-insulator-N-doped semiconductor (pin).
  • the diode can have a rectification ratio of at least 10 5 .
  • the diode can have a built-in voltage of approximately 0.8 V.
  • a built-in voltage of 0.8 V is particularly advantageous for the production of organic solar cells.
  • Figure 1 shows an EcLuktkation and the neutral complex obtainable therefrom by the inventive method.
  • ruthenium bis (2,2'-terpyridine) ruthenium ([Ru (terpy)]) is used as the organic dopant.
  • the neutral ruthenium complex is produced from its salt by electrocrystallization in an electrochemical cell.
  • the Salt is a conventional compound in which the complex has a double positive charge.
  • the complex [Ru (terpy)] 2+ (PF 6 " ) 2 is used as salt.
  • the neutral form of the complex - [Ru (terpy)] 0 - is created by the uptake of two electrons by the cation complex [Ru (terpy)] 2+ .
  • the neutral complex [Ru (terpy)] 0 is poorly soluble in the solvent used in the electrocrystallization and is thus deposited on the working electrode in the electrochemical cell.
  • the neutral complex has a very low oxidation potential and is therefore very sensitive to oxygen and other contaminants. Accordingly, the electrochemical reduction must be carried out under protective gas and in compliance with strict purity criteria for the solvent used.
  • the neutral complex [Ru (terpy)] 0 is then harvested and filled into ampoules. These are then welded under protective gas.
  • Doped layers are produced by mixed evaporation of matrix and dopant or by another process.
  • organic diodes of the type Metal-insulator-N-doped semiconductor (min) manufactured (based on phthalocyanine zinc). These diodes have a certification ratio of 10 5 and higher and a high built-in voltage of 0.8V. A built-in voltage of 0.8 V is particularly advantageous for the production of organic solar cells.

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von dotierten organischen Halbleitermaterialien mit erhöhter Ladungsträgerdichte und effektiver Ladungsträgerbeweglichkeit durch Dotierung mit einem Dotanden, wobei der Dotand im wesentlichen durch Elektrokristallisation in einem ersten Schritt hergestellt wird, der Dotand ausgewählt ist aus einer Gruppe organischer Verbindungen mit einem geringen Oxidationspotential, und wobei ein organisches Halbleitermaterial mit dem Dotanden in einem zweiten Schritt dotiert wird. Ferner betrifft die Erfindung dotierte organische Halbleitermaterialien mit erhöhter Ladungsträgerdichte und effektiver Ladungsträgerbeweglichkeit, hergestellt durch das vorbezeichnete Verfahren. Ferner betrifft die Erfindung eine organische Diode, umfassend dotierte organische Halbleitermaterialien, welche nach dem vorbezeichneten Verfahren hergestellt wurden.

Description

N-DOTIERUNG VON ORGANISCHEN HALBLEITERN
Die Erfindung betrifft dotierte organische Halbleitermaterialien mit erhöhter Ladung-strägerdichte und effektiver Ladungstragerbeweglichkeit sowie ein Verfahren zu deren Herstellung.
Durch Dotierung von Löchertransportschichten mit einem geeigneten Akzeptormaterial (p-Dotierung) bzw. von Elektronentransport- schichten mit einem Donatormaterial (n-Dotierung) kann die Ladungsträgerdichte in organischen Festkörpern (und damit die Leitfähigkeit) beträchtlich erhöht werden. Darüber hinaus sind in A- nalogie zur Erfahrung mit anorganischen Halbleitern Anwendungen zu erwarten, die gerade auf Verwendung von p- und n-dotierten Schichten in einem Bauelement beruhen und anders nicht denkbar wären. In US 5,093,698 ist die Verwendung von dotierten Ladungsträgertransportschichten (p-Dotierung der Löchertransportschicht durch Beimischung von akzeptorartigen Molekülen, n-Dotierung der Elektronentransportschicrit durch Beimischung von donatorartigen Molekülen) in organischen Leuchtdioden beschrieben.
Gegenüber Dotierungsverfahren mit anorganischen Materialien, welche zum einen Diffusionsprobleme des verwendeten Dotierungsmaterials in Form von relativ kleinen Molekülen bzw. Atomen und zum anderen unerwünschte unvorhersehbare chemische Reaktionen zwischen Matrix und Dotierungsmaterial mit sich bringen, hat sich die Verwendung organischer Moleküle als Dotierungsmaterial als vorteilhaft erwiesen . Im allgemeinen weisen organische Dotanden eine höhere Stabilität der Bauelemente auf, und die Dif- fusion spielt eine untergeordnete Rolle, so dass die definierte Herstellung scharfer Übergänge von p-dotierten zu n-dotierten Bereichen vereinfacht wird. Bei einer Dotierung mit organischen Molekülen kommt es ausschließlich zu einem Ladungstransfer zwi- sehen Matrix und Dotiermaterial, zwischen diesen wird jedoch keine chemische Bindung ausgebildet. Ferner liegt die Dotierkonzentration zum Erhalt einer hohen Leitfähigkeit der dotierten Schicht im Fall von organischen Dotanden vorteilhaft um mindestens eine Größeneinheit unter der von anorganischen Dotanden.
Die Dotierung von organischen Halbleitermaterialien mit organi- sehen Verbindungen ist im wesentlichen in zwei unterschiedlichen Verfahren bekannt , nämlich der Dotierung mit luftstabilen Dotanden und die Dotierung mit einer stabilen Vorlaufersubstanz zur Freisetzung eines in der Luft nicht stabilen Dotanden.
Im Falle der Dotierung mit luftstabilen Dotanden zeigen die in Frage kommenden Verbindungen nachteilige Eigenschaften. Beispielsweise haben luftstabile organische Dotanden ein nicht genügend niedriges Oxidationspotential, um für die Verwendung technisch relevanter Elektronentransportmaterialien mit gerin- gern Reduktionspotential eingesetzt zu werden.
Hinsichtlich der Dotierung mit einer stabilen Vorlaufersubstanz zur Freisetzung eines in der Luft nicht stabilen Dotanden können die freigesetzten Verbindungen zwar ein ausreichend niedri- ges Oxidationspotential für die Verwendung als Elektronentransportmaterialien, die in. organischen Solarzellen eingesetzt werden, aufweisen, nicht j edoch für die Verwendung von organischen Leuchtdioden.
Daher liegt der vorliegenden Erfindung die Aufgabe zu Grunde, die elektrischen Eigenschaften (opto-) elektronischer Bauelemente, wie beispielsweise organischen Leuchtdioden oder Solarzellen, welche auf organischen Halbleitermaterialien beruhen, zu verbessern. Insbesondere sollen die ohmschen Verluste in La- dungsträgertransportschichten reduziert und die Kontakteigen- Schäften verbessert werden.
Die Aufgabe wird durch das Verfahren zur Herstellung nach Anspruch 1, durch das daraus erhältliche Produkt nach Anspruch 11 sowie durch eine unter Verwendung des Produktes erhältliche Diode nach Anspruch 18 gelöst.
Durch das Verfahren zur Herstellung von dotierten organischen Halbleitermaterialien mit erhöhter Ladungsträgerdichte und ef- fektiver Ladungstragerbeweglichkeit durch Dotierung mit einem Dotanden, wobei der Dotand durch Elektrokristallisation in einem ersten Schritt hergestellt wird, der Dotand ausgewählt ist aus einer Gruppe organischer Verbindungen mit einem geringen Oxidationspotential, und wobei ein organisches Halbleitermate- rial mit dem Dotanden in einem zweiten Schritt dotiert wird, wird die Verwendung leicht zugänglicher organischer Salze als Ausgangsstoffe für organische Dotanden ermöglicht. Durch das Verfahren wird daher eine neue bzw. weitere Klasse von Dotanden verfügbar, welche gegenüber den bislang verwendeten Materia- lien, insbesondere im Hinblick auf den Parameter des Oxidati- onspotentials, bevorzugte Eigenschaften aufweist.
Verbindungen mit einem geringen Oxidationspotential können gegebenenfalls noch an der Luft stabil sein, sie sind es aber in der Regel nicht. Im Allgemeinen sind Verbindungen mit einen Oxidationspotential im Bereich von + 0,3 bis 0 V gegen SCE noch an der Luft stabil, wohingegen Verbindungen mit einem Oxidationspotential kleiner als 0 V gegen SCE nicht mehr als stabil an der Luft anzusehen sind. Je geringer das Oxidationspotential einer Verbindung ist, umso weniger stabil ist die Verbindung an der
Luft.
Erfindungsgemäß ist vorgesehen, dass zur Elektrokristallisation ein Salz des organischen Dotanden als Edukt verwendet wird. Ty- pischerweise liegt dabei der organische Dotand als einfach oder mehrfach geladenes Kation im Salz des Eduktes vor. In diesem Fall wird also im Eduktsalz des organischen Dotanden ein einfach oder mehrfach geladenes Kation verwendet . Durch die Elektrokristallisation ist es möglich, den in einer Salzform als Ion enthaltenen Dotanden im neutralen Zustand als reines Zwischenprodukt zu erhalten.
Es ist im Sinne der Erfindung, dass der Dotand eine ungeladene organische Verbindung ist. Die Verwendung organischer Dotanden ist gegenüber anorganischen Dotanden im Hinblick auf geringere unerwünschte Diffusion der Dotanden in der Matrix, höhere Stabilität und geringerer Kostenauf and hinsichtlich der Eduktbe- schaffung vorteilhaft.
Der Dotand kann an einer Arbeitselektrode auskristallisiert werden und danach an der Arbeitselektrode geerntet werden. Üblicherweise ist der Dotand in dem bei der Elektrokristallisation verwendeten Lösungsmittel nur schwer löslich und kann sich daher nahezu vollständig an der Elektrode abscheiden. Bei der Ernte kann der typischerwe±se an der Luft instabile Dotand direkt oder nach Trocknung unter Schutzgasatmosphäre gelagert und gegebenenfalls transportiert werden.
Zusätzlich kann der Dotancl nach dem Ernten an einer Arbeits- elektrode in einem zusätzlichen Zwischenschritt gereinigt werden. Die Reinigung kann beispielsweise eine Trocknung oder eine sonstige nach dem Stand der Technik bekannte Art der Purifizie- rung sein. Nach erfolgter _?urifizierung wird sodann der Dotand für einen weiteren Schritt zur Verarbeitung mit dem Halbleiter- material unter Inertgasatmosphäre bereitgehalten. Somit steht der Dotand in einem möglichst reinen Zustand zur Verfügung.
Vorzugsweise wird in dem zweiten Schritt der Dotand in das organische Halbleitermaterial eingemischt.
Es ist vorgesehen, dass als Dotand eine Verbindung mit einem Oxidationspotential von kleiner als 0 V gegen NHE verwendet wird. Vorzugsweise wird als Dotand eine Verbindung mit einem Oxidationspotential im Bereich von - 0,5 V gegen NHE bis - 2,5 V gegen NHE verwendet. Besonders bevorzugt wird als Dotand Bis (2, 2 '-terpyridin)ruthenium oder Tris (4, 4 ' , 5, 5 '-tetramethyl- 2, 2 '-bypyridin) chrom verwendet, wobei Bis (2 , 2 '-terpyridin) ru- thenium ein Oxidationspotential von - 1,28 V gegen NHE und Tris (4, 4 ' , 5, 5 '-tetramethyl-2 , 2 '-bipyridin) chrom ein Oxidationspotential von - 1,44 V gegen NHE aufweist. Als organischer Halb- leiter werden beispielsweise Fulleren Cßo (mit einem Reduktionspotential von - 0,98 V gegen Fc/Fc+) , Tris (8-hydroxy- quinolinato) aluminium (mit einem Reduktionspotential von - 2,3 V gegen Fc/Fc+) , Bathoph.enath.ro1in (mit einer Elektronenaffinität von 3,0 eV) oder Phthalocyanin-zink (mit einem Reduktionspoten- tial von etwa - 0,65 V gegen NHE) verwendet, ohne darauf beschränkt zu sein.
Durch ein erfindungsgemäßes Verfahren ist ein dotiertes organisches Halbleitermaterial mit erhöhter Ladungsträgerdichte und effektiver Ladungstragerbeweglichkeit herstellbar.
Vorzugsweise ist das Halbleitermaterial mit Bis (2,2'- terpyridin) ruthenium dotiert . Alternativ kann das Halbleitermaterial mit Tris (4, 4 ' , 5 , 5 '-tetramethyl-2 , 2 '-bipyridin) chrom do- tiert sein.
Es ist vorgesehen, dass die Matrix des Halbleitermaterials im wesentlichen aus Fulleren besteht. Alternativ kann die Matrix des Halbleitermaterials im wesentlichen aus Phthalocyanin-Zink bestehen .
Besonders bevorzugt ist vorgesehen, dass das Halbleitermaterial bei Raumtemperatur eine Leitfähigkeit von etwa 10"1 S/cm aufweist, wobei die Matrix des Halbleitermaterials im wesentlichen aus Fulleren besteht und das Halbleitermaterial mit Bis (2 , 2 '- terpyridin) ruthenium (dotiert ist. Alternativ kann das Halbleitermaterial bei Raumtemperatur eine Leitfähigkeit von etwa 10~6 S/cm aufweisen, wobei die Matrix des Halbleitermaterials im wesentlichen aus Phthalocyanin-Zink besteht und das Halbleiterma- terial mit Bis (2,2 '-terpyridin) ruthenium dotiert ist.
Zweckmäßigerweise ist das dotierte organische Halbleitermaterial Bestandteil einer organischen Diode, wobei die Diode aus einem Metall-Isolator-N-dotierter Halbleiter (min) - Übergang oder einem p-dotierter Halbleiter-Isolator-N-dotierter Halbleiter (pin) ist. Dabei kann die Diode ein Rektifizierungsverhältnis von wenigstens 105 aufweisen. Alternativ oder zusätzlich kann die Diode eine eingebaute Spannung von etwa 0,8 V aufweisen.
Eine eingebaute Spannung von 0,8 V ist dabei für die Herstel- lung von organischen Solarzellen besonders vorteilhaft.
Weitere vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen.
Die Erfindung wird nachstehend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels erläutert werden.
Figur 1 zeigt ein EcLuktkation und den daraus nach dem erfindungsgemäßen Verfahren erhältlichen neutralen Komplex.
In einem erfindungsgemäßen Verfahren zur Herstellung von do- tierten organischen Halbleitermaterialien mit erhöhter Ladungsträgerdichte und effektiver Ladungstragerbeweglichkeit durch Dotierung mit einem Dotanden wird als organischer Dotand Bis (2,2 '-terpyridin)ruthenium ( [Ru(terpy) ] ) verwendet. Dazu wird der neutrale Ruthenium-Komplex durch Elektrokristallisation in einer elektrochemischen Zelle aus seinem Salz hergestellt. Das Salz ist eine konventionelle Verbindung, in der der Komplex zweifach positiv geladen vorliegt. Als Salz wird der Komplex [Ru(terpy) ]2+ (PF6 ")2 verwendet.
Bei der elektrochemische Reduktion des Salzes entsteht die neutrale Form des Komplexes - [Ru(terpy)]0 - durch Aufnahme von zwei Elektronen durch den Kationenkomplex [Ru(terpy) ]2+. Der neutrale Komplex [Ru(terpy)]0 ist in dem bei der Elektrokristallisation verwendeten Lösungsmittel schlecht löslich und scheidet sich so- mit an der Arbeitselektrode in der elektrochemischen Zelle ab. Der neutrale Komplex hat ein sehr geringes Oxidationspotential und ist deshalb gegenüber Sauerstoff und anderen Verunreinigungen sehr empfindlich. Entsprechend muss die elektrochemische Reduktion unter Schutzgas und unter Beachtung strenger Reinheits- kriterien für das verwendete Lösungsmittel durchgeführt werden. Der neutrale Komplex [Ru(terpy)]0 wird anschließend geerntet und in Ampullen gefüllt. Diese werden danach unter Schutzgas verschweißt.
Unter Luft- bzw. SauerstoffausSchluß wird dann mit diesem Mate- rial eine Verdampferquelle befüllt. Dotierte Schichte werden durch Mischverdampfung von Matrix und Dotand oder durch ein anderes Verfahren hergestellt.
Bei Verwendung von Fulleren C6o als Matrix wurden Leitfähigkeiten bei Raumtemperatur von 10"1 S/cm erreicht. Das ist eine Grö- ßenordnung höher als bei Verwendung bisher bekannter organischer
Dotanden. Bei der Verwendung von Phthalocyanin-Zink als Matrix wurde eine Leitfähigkeit von 10"6 S/cm erzielt. Bisher war es nicht möglich, diese Matrix mit organischen Donoren zu dotieren, da das Reduktionspotential der Matrix zu gering ist. Die Leitfä- higkeit von undotiertem Phthalocyanin-Zink beträgt hingegen nur
10"10 S/cm.
Mit Hilfe dieser neuen Donoren wurden organische Dioden vom Typ Metall-lsolator-N-dotierter Halbleiter (min) hergestellt (auf der Basis von Phthalocyanin-Zink) . Diese Dioden zeigen ein Rek- tifizierungsverhältnis von 105 und höher und eine hohe eingebaute Spannung von 0,8V. Eine eingebaute Spannung von 0,8 V ist dabei für die Herstellung organischer Solarzellen besonders vorteilhaft.
Außerdem ist es gelungen, erstmals einen p-n-Übergang mit organischen Dotanden zu demonstrieren, bei dem für die p- und n- dotierte Seite jeweils dasselbe Halbleitermaterial verwendet wurde (Homo-p-n-Übergang) .

Claims

Patentansprüche
1. Verfahren zur Herstellung von dotierten organischen Halbleitermaterialien mit erhöhter Ladungsträgerdichte und effektiver Ladungstragerbeweglichkeit durch Dotierung mit einem Dotanden, wobei der Dotand durch Elektrokristallisation in einem ersten Schritt hergestellt wird, der Dotand ausgewählt ist aus einer Gruppe organischer Verbindungen mit einem geringen Oxidationspotential, und wobei ein organisches Halbleitermaterial mit dem Dotanden in einem zweiten Schritt dotiert wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet , dass zur Elektrokristallisation ein Salz des organischen Dotanden als Edukt verwendet wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet , dass im Eduktsalz des organischen Dotanden ein einfach oder mehrfach geladenes Kation verwendet wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet , dass eine ungeladene organische Verbindung als Dotand verwendet wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet , dass der Dotand an einer Arbeitselektrode auskristallisiert wird und danach an der Arbeitselektrode geerntet wird.
6. Verfahren nach Anspruch 5, dadurch gekenn- zeichnet , dass der Dotand nach dem Ernten an einer Arbeitselektrode bei der Elektrokristallisation in einem Zwischenschritt gereinigt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet , dass als Dotand eine Verbindung mit einem Oxidationspotential von kleiner als 0 V gegen NHE verwendet wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet , dass als Dotand eine Verbindung mit einem Oxidationspotential im Bereich von - 0,5 V gegen NHE bis - 2,5 V gegen NHE verwendet wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet , dass als Dotand Bis (2,2'- terpyridin) ruthenium verwendet wird.
10. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet , dass als Dotand Tris (4, 4 ' , 5, 5 '-tetramethyl-2, 2 '-bipyridin) chrom verwendet wird.
11 . Dotiertes organisches Halbleitermaterial mit erhöhter Ladungsträgerdichte und effektiver Ladungstragerbeweglichkeit , hergestellt durch ein Verfahren nach den Ansprüchen 1 bis 10 .
12. Dotiertes organisches Halbleitermaterial mit erhöhter Ladungsträgerdichte und effektiver Ladungstragerbeweglichkeit nach Anspruch 11, dadurch gekennzeichnet , dass das Halbleitermaterial mit Bis(2,2'- terpyridin) ruthenium dotiert ist.
13. Dotiertes organisches Halbleitermaterial mit erhöhter Ladungsträgerdichte und effektiver Ladungstragerbeweglichkeit nach Anspruch 11, dadurch gekennzeichnet , dass das Halbleitermaterial mit Tris (4, 4 ' , 5, 5 '- tetramethyl-2, 2 '-bipyridin) chrom dotiert ist.
14. Dotiertes organisches Halbleitermaterial mit erhöhter Ladungsträgerdichte und effektiver Ladungstragerbeweglichkeit einem der Ansprüche 11 bis 13, dadurch gekennzeichnet , dass die Matrix des Halbleitermate- rials Fulleren enthält.
15. Dotiertes organisches Halbleitermaterial mit erhöhter Ladungsträgerdichte und effektiver Ladungstragerbeweglichkeit einem der Ansprüche 11 bis 14, dadurch g e - kennzeichnet , dass die Matrix des Halbleitermaterials Phthalocyanin-Zink enthält.
16. Dotiertes organisches Halbleitermaterial mit erhöhter Ladungsträgerdichte und effektiver Ladungsträgerbeweglich- keit nach Anspruch 11, dadurch gekennzeichnet , dass das Halbleitermaterial bei Raumtemperatur eine Leitfähigkeit von etwa 10"1 S/cm aufweist, wobei die Matrix des Halbleitermaterials Fulleren enthält und das Halbleitermaterial mit Bis (2 , 2 '-terpyridin) ruthenium do- tiert ist.
17 . Dotiertes organisches Halbleitermaterial mit erhöhter Ladungs trägerdichte und effektiver Ladungstragerbeweglichkeit nach Anspruch 11 , d a d u r c h g e k e n n z e i c h - n e t , dass das Halbleitermaterial bei Raumtemperatur eine Leitfähigkeit von etwa 10~6 S/cm aufweist , wobei die Matrix des Halbleitermaterials Phthalocyanin-Zink enthält und das Halbleitermaterial mit Bis (2 , 2 ' - terpyridin) ruthenium dotiert ist .
18. Diode aus dotiertem organischen Halbleitermaterial mit erhöhter Ladungsträgerdichte und effektiver Ladungstragerbeweglichkeit, dadurch gekennzeichet , dass die Diode dotiertes organisches Halbleitermaterial nach einem der Ansprüche 11 bis 17 umfasst.
19. Diode nach Anspruch 18, dadurch gekennzeichnet , dass die Diode ein Metall-Isolator-N- dotierter Halbleiter (min) ist.
20. Diode nach Anspruch 19, dadurch gekennzeichnet , dass die Diode ein p-dotierter Halbleiter- Isolator-N-dotierter Halbleiter (pin) ist.
21. Diode nach einem der Ansprüche 18 bis 20, dadurch gekennzeichnet , dass die Diode ein Rektifizierungsverhältnis von wenigstens 105 aufweist.
22. Diode nach einem der Ansprüche 18 bis 21, da - durch gekennzeichnet , dass die Diode eine eingebaute Spannung von etwa 0,8 V aufweist.
PCT/DE2004/002247 2003-10-10 2004-10-08 N- dotierung von organischen halbleitern WO2005036667A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006529630A JP5089983B2 (ja) 2003-10-10 2004-10-08 有機半導体のn‐ドーピング
US10/595,319 US20070278479A1 (en) 2003-10-10 2004-10-08 N-Doping Of Organic Semiconductors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10347856A DE10347856B8 (de) 2003-10-10 2003-10-10 Halbleiterdotierung
DE10347856.6 2003-10-10

Publications (1)

Publication Number Publication Date
WO2005036667A1 true WO2005036667A1 (de) 2005-04-21

Family

ID=34428422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/002247 WO2005036667A1 (de) 2003-10-10 2004-10-08 N- dotierung von organischen halbleitern

Country Status (5)

Country Link
US (1) US20070278479A1 (de)
JP (1) JP5089983B2 (de)
DE (1) DE10347856B8 (de)
TW (1) TWI265649B (de)
WO (1) WO2005036667A1 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155310A1 (de) * 2007-06-20 2008-12-24 Siemens Aktiengesellschaft Halbleitendes material und organische gleichrichterdiode
WO2008154915A1 (de) * 2007-06-20 2008-12-24 Osram Opto Semiconductors Gmbh Verwendung eines metallkomplexes als p-dotand für ein organisches halbleitendes matrixmaterial, organisches halbleitermaterial und elektronisches bauteil
WO2008154914A1 (de) * 2007-06-20 2008-12-24 Osram Opto Semiconductors Gmbh Verwendung eines metallkomplexes als p-dotand für ein organisches halbleitendes matrixmaterial, organisches halbleitermaterial und organische leuchtdioden
WO2009021663A1 (de) * 2007-08-10 2009-02-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dotiertes halbleitermaterial und dessen verwendung
DE102010031829A1 (de) 2009-07-21 2011-02-03 Novaled Ag Thermoelektrische Bauelemente mit dünnen Schichten
WO2011044867A2 (de) 2009-10-14 2011-04-21 Novaled Ag Elektrooptisches, organisches halbleiterbauelement und verfahren zum herstellen
WO2011045253A1 (de) 2009-10-13 2011-04-21 Basf Se Mischungen zur herstellung von photoaktiven schichten für organische solarzellen und organische photodetektoren
DE102010031979A1 (de) 2010-07-22 2012-01-26 Novaled Ag Halbleiterbauelement
WO2012114316A1 (en) 2011-02-25 2012-08-30 Ecole Polytechnique Federale De Lausanne (Epfl) Metal complexes for use as dopants and other uses
EP2551949A1 (de) 2011-07-28 2013-01-30 Ecole Polytechnique Fédérale de Lausanne (EPFL) Metallkomplexe zur Verwendung als Dotierungsmittel und andere Verwendungen
WO2013055410A1 (en) 2011-06-14 2013-04-18 Georgia Tech Research Corporation N-doping of organic semiconductors by bis-metallosandwich compounds
DE102012100642A1 (de) 2012-01-26 2013-08-01 Novaled Ag Anordnung mit mehreren organischen Halbleiterbauelementen und Verfahren zum Herstellen
US10038150B2 (en) 2011-02-25 2018-07-31 Ecole Polytechnique Federale De Lausanne (Epfl) Metal complexes for use as dopants and other uses

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006015567A1 (de) 2004-08-13 2006-02-16 Novaled Ag Schichtanordnung für ein lichtemittierendes bauelement
DE502005002342D1 (de) 2005-03-15 2008-02-07 Novaled Ag Lichtemittierendes Bauelement
EP2284923B1 (de) 2005-04-13 2016-12-28 Novaled GmbH Anordnung für eine organische Leuchtdiode vom pin-Typ und Verfahren zum Herstellen
EP1780816B1 (de) 2005-11-01 2020-07-01 Novaled GmbH Methode zur Herstellung eines elektronischen Bauelements mit einer Schichtstruktur und elektronisches Bauelement
EP1939320B1 (de) * 2005-12-07 2013-08-21 Novaled AG Verfahren zum Abscheiden eines Aufdampfmaterials
DE502005004675D1 (de) 2005-12-21 2008-08-21 Novaled Ag Organisches Bauelement
DE602006001930D1 (de) 2005-12-23 2008-09-04 Novaled Ag tur von organischen Schichten
EP1804308B1 (de) * 2005-12-23 2012-04-04 Novaled AG Organische lichtemittierende Vorrichtung mit mehreren aufeinander gestapelten organischen elektrolumineszenten Einheiten
EP1808909A1 (de) * 2006-01-11 2007-07-18 Novaled AG Elekrolumineszente Lichtemissionseinrichtung
JP5683104B2 (ja) 2006-03-21 2015-03-11 ノヴァレッド・アクチエンゲゼルシャフト ドープされた有機半導体材料の製造方法及びそのために用いられる配合物
EP1848049B1 (de) 2006-04-19 2009-12-09 Novaled AG Lichtemittierendes Bauelement
DE102007019260B4 (de) 2007-04-17 2020-01-16 Novaled Gmbh Nichtflüchtiges organisches Speicherelement
DE102007059887A1 (de) * 2007-09-26 2009-04-09 Osram Opto Semiconductors Gmbh Lichtemittierendes organisches Bauelement und Verfahren zu dessen Herstellung
GB2467316B (en) 2009-01-28 2014-04-09 Pragmatic Printing Ltd Electronic devices, circuits and their manufacture
DE102008036063B4 (de) 2008-08-04 2017-08-31 Novaled Gmbh Organischer Feldeffekt-Transistor
DE102008036062B4 (de) 2008-08-04 2015-11-12 Novaled Ag Organischer Feldeffekt-Transistor
DE102009013685B4 (de) 2009-03-20 2013-01-31 Novaled Ag Verwendung einer organischen Diode als organische Zenerdiode und Verfahren zum Betreiben
DE102009051142B4 (de) 2009-06-05 2019-06-27 Heliatek Gmbh Photoaktives Bauelement mit invertierter Schichtfolge und Verfahren zu seiner Herstellung
GB2473200B (en) 2009-09-02 2014-03-05 Pragmatic Printing Ltd Structures comprising planar electronic devices
ES2587082T3 (es) 2009-12-16 2016-10-20 Heliatek Gmbh Elemento de construcción fotoactivo con capas orgánicas
ES2857904T3 (es) 2010-05-04 2021-09-29 Heliatek Gmbh Componente fotoactivo con capas orgánicas
EP2398056B1 (de) 2010-06-21 2016-03-02 Heliatek GmbH Organische Solarzelle mit mehreren Transportschichtsystemen
WO2012092972A1 (de) 2011-01-06 2012-07-12 Heliatek Gmbh Elektronisches oder optoelektronisches bauelement mit organischen schichten
DE102011013897A1 (de) 2011-03-11 2012-09-13 Technische Universität Dresden Organische Solarzelle
DE102012103448B4 (de) 2012-04-19 2018-01-04 Heliatek Gmbh Verfahren zur Optimierung von in Reihe geschalteten, photoaktiven Bauelementen auf gekrümmten Oberflächen
DE102012104118B4 (de) 2012-05-10 2021-12-02 Heliatek Gmbh Lochtransportmaterialien für optoelektronische Bauelemente
DE102012104247B4 (de) 2012-05-16 2017-07-20 Heliatek Gmbh Halbleitendes organisches Material für optoelektronische Bauelemente
WO2013179223A2 (de) 2012-05-30 2013-12-05 Heliatek Gmbh Solarmodul zur anordnung auf formteil aus beton
EP2859587B1 (de) 2012-06-11 2017-08-09 Heliatek GmbH Filtersystem für photoaktive bauelemente
DE102012105022A1 (de) 2012-06-11 2013-12-12 Heliatek Gmbh Fahrzeug mit flexiblen organischen Photovoltaik-Modulen
KR102128943B1 (ko) 2012-07-02 2020-07-01 헬리아텍 게엠베하 광전자 소자용 투명 전극
DE102012105810B4 (de) 2012-07-02 2020-12-24 Heliatek Gmbh Transparente Elektrode für optoelektronische Bauelemente
DE102012105809B4 (de) 2012-07-02 2017-12-07 Heliatek Gmbh Organisches optoelektronisches Bauelement mit transparenter Gegenelektrode und transparenter Elektrodenvorrichtung
DE102012105812A1 (de) 2012-07-02 2014-01-02 Heliatek Gmbh Elektrodenanordnung für optoelektronische Bauelemente
JP2014053383A (ja) * 2012-09-05 2014-03-20 Konica Minolta Inc タンデム型の有機光電変換素子およびこれを用いた太陽電池
DE102013110693B4 (de) 2013-09-27 2024-04-25 Heliatek Gmbh Photoaktives, organisches Material für optoelektronische Bauelemente

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003070822A2 (de) * 2002-02-20 2003-08-28 Novaled Gmbh Dotiertes organisches halbleitermaterial sowie verfahren zu dessen herstellung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093698A (en) * 1991-02-12 1992-03-03 Kabushiki Kaisha Toshiba Organic electroluminescent device
GB9826405D0 (en) * 1998-12-02 1999-01-27 South Bank Univ Entpr Ltd Method for forming films or layers
JP2001006878A (ja) * 1999-06-22 2001-01-12 Matsushita Electric Ind Co Ltd 薄膜el素子およびその駆動方法
US6392250B1 (en) * 2000-06-30 2002-05-21 Xerox Corporation Organic light emitting devices having improved performance
AU2002323418A1 (en) * 2002-04-08 2003-10-27 The University Of Southern California Doped organic carrier transport materials

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003070822A2 (de) * 2002-02-20 2003-08-28 Novaled Gmbh Dotiertes organisches halbleitermaterial sowie verfahren zu dessen herstellung

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BLOOM C J ET AL: "Low work function reduced metal complexes as cathodes in organic electroluminescent devices", JOURNAL OF PHYSICAL CHEMISTRY B ACS USA, vol. 107, no. 13, 3 April 2003 (2003-04-03), pages 2933 - 2938, XP002317496, ISSN: 1089-5647 *
ELWELL D: "Electrocrystallization of semiconducting materials from molten salt and organic solutions", JOURNAL OF CRYSTAL GROWTH NETHERLANDS, vol. 52, April 1981 (1981-04-01), pages 741 - 752, XP002317498, ISSN: 0022-0248 *
HARADA KENTARO ET AL: "Realization of organic pn-homojunction using a novel n-type doping technique", PROCEEDINGS OF SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING; ORGANIC OPTOELECTRONICS AND PHOTONICS 2004, vol. 5464, September 2004 (2004-09-01), pages 1 - 9, XP002317497 *
PFEIFFER M ET AL: "DOPED ORGANIC SEMICONDUCTORS: PHYSICS AND APPLICATION IN LIGHT EMITTING DIODES", ORGANIC ELECTRONICS, ELSEVIER, AMSTERDAM, NL, vol. 4, no. 2/3, September 2003 (2003-09-01), pages 89 - 103, XP001177135, ISSN: 1566-1199 *
ZHOU C ET AL: "MODULATED CHEMICAL DOPING OF INDIVIDUAL CARBON NANOTUBES", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE,, US, vol. 290, no. 5496, 24 November 2000 (2000-11-24), pages 1552 - 1555, XP001190870, ISSN: 0036-8075 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513702B2 (en) 2007-06-20 2013-08-20 Osram Opto Semiconductors Gmbh Use of a metal complex as a p-dopant for an organic semiconductive matrix material, organic semiconductor material and organic light-emitting diodes
TWI483440B (zh) * 2007-06-20 2015-05-01 Siemens Ag 半導體材料及有機整流二極體
US8278652B2 (en) 2007-06-20 2012-10-02 Siemens Aktiengesellschaft Semiconductor material for an organic diode
EP3157073A1 (de) * 2007-06-20 2017-04-19 OSRAM OLED GmbH Verwendung eines metallkomplexes als p-dotand für ein or-ganisches halbleitendes matrixmaterial, organisches halb-leitermaterial und organische leuchtdiode
WO2008154915A1 (de) * 2007-06-20 2008-12-24 Osram Opto Semiconductors Gmbh Verwendung eines metallkomplexes als p-dotand für ein organisches halbleitendes matrixmaterial, organisches halbleitermaterial und elektronisches bauteil
WO2008155310A1 (de) * 2007-06-20 2008-12-24 Siemens Aktiengesellschaft Halbleitendes material und organische gleichrichterdiode
WO2008154914A1 (de) * 2007-06-20 2008-12-24 Osram Opto Semiconductors Gmbh Verwendung eines metallkomplexes als p-dotand für ein organisches halbleitendes matrixmaterial, organisches halbleitermaterial und organische leuchtdioden
WO2009021663A1 (de) * 2007-08-10 2009-02-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dotiertes halbleitermaterial und dessen verwendung
DE102010031829B4 (de) 2009-07-21 2021-11-11 Novaled Gmbh Thermoelektrische Bauelemente mit dünnen Schichten
DE102010031829A1 (de) 2009-07-21 2011-02-03 Novaled Ag Thermoelektrische Bauelemente mit dünnen Schichten
US9368729B2 (en) 2009-10-13 2016-06-14 Basf Se Mixtures for producing photoactive layers for organic solar cells and organic photodetectors
WO2011045253A1 (de) 2009-10-13 2011-04-21 Basf Se Mischungen zur herstellung von photoaktiven schichten für organische solarzellen und organische photodetektoren
WO2011044867A2 (de) 2009-10-14 2011-04-21 Novaled Ag Elektrooptisches, organisches halbleiterbauelement und verfahren zum herstellen
WO2012022342A1 (de) 2010-07-22 2012-02-23 Novaled Ag Halbleiterbauelement
DE102010031979A1 (de) 2010-07-22 2012-01-26 Novaled Ag Halbleiterbauelement
WO2012114316A1 (en) 2011-02-25 2012-08-30 Ecole Polytechnique Federale De Lausanne (Epfl) Metal complexes for use as dopants and other uses
US10038150B2 (en) 2011-02-25 2018-07-31 Ecole Polytechnique Federale De Lausanne (Epfl) Metal complexes for use as dopants and other uses
US9231219B2 (en) 2011-06-14 2016-01-05 Georgia Tech Research Corporation N-doping of organic semiconductors by bis-metallosandwich compounds
WO2013055410A1 (en) 2011-06-14 2013-04-18 Georgia Tech Research Corporation N-doping of organic semiconductors by bis-metallosandwich compounds
EP2551949A1 (de) 2011-07-28 2013-01-30 Ecole Polytechnique Fédérale de Lausanne (EPFL) Metallkomplexe zur Verwendung als Dotierungsmittel und andere Verwendungen
DE102012100642A1 (de) 2012-01-26 2013-08-01 Novaled Ag Anordnung mit mehreren organischen Halbleiterbauelementen und Verfahren zum Herstellen
WO2013110268A1 (de) 2012-01-26 2013-08-01 Novaled Ag Anordnung mit mehreren organischen halbleiterbauelementen und verfahren zum herstellen

Also Published As

Publication number Publication date
TW200514289A (en) 2005-04-16
US20070278479A1 (en) 2007-12-06
JP2007512681A (ja) 2007-05-17
TWI265649B (en) 2006-11-01
DE10347856B8 (de) 2006-10-19
JP5089983B2 (ja) 2012-12-05
DE10347856A1 (de) 2005-06-02
DE10347856B4 (de) 2006-07-06

Similar Documents

Publication Publication Date Title
DE10347856B4 (de) Halbleiterdotierung
DE102008051737B4 (de) Quadratisch planare Übergangsmetallkomplexe, organische halbleitende Materialien sowie elektronische oder optoelektronische Bauelemente, die diese umfassen und Verwendung derselben
EP2002492B1 (de) Verwendung von heterocyclischen radikalen zur dotierung von organischen halbeitern
EP1808910B1 (de) Elektronisches Bauelement mit mindestens einer organischen Schichtanordnung
DE102007018456B4 (de) Verwendung von Hauptgruppenelementhalogeniden und/oder -pseudohalogeniden, organisches halbleitendes Matrixmaterial, elektronische und optoelektronische Bauelemente
EP1806795B1 (de) Organisches Bauelement
DE102006054523B4 (de) Dithiolenübergangsmetallkomplexe und Selen-analoge Verbindungen, deren Verwendung als Dotand, organisches halbleitendes Material enthaltend die Komplexe, sowie elektronische oder optoelektronisches Bauelement enthaltend einen Komplex
WO2009003455A1 (de) Chinoide verbindungen und deren verwendung in halbleitenden matrixmaterialien, elektronischen und optoelektronischen bauelementen
DE102011003192B4 (de) Halbleiterbauelement und Verfahren zu seiner Herstellung
DE112011102747T5 (de) Dotierte Graphendünnschichten mit verringertem Flächenwiderstand
WO2011161108A1 (de) Photoaktives bauelement mit mehreren transportschichtsystemen
DE10058578A1 (de) Lichtemittierendes Bauelement mit organischen Schichten
EP1860709A1 (de) Verwendung von quadratisch planaren Übergangsmetallkomplexen als Dotand
EP2229699B1 (de) Dithiolenübergangsmetallkomplexe und elektronische oder optoelektronische bauelemente
WO2010100194A1 (de) Monolagen organischer verbindungen auf metalloxidoberflächen oder oxidhaltigen metalloberflächen und damit hergestelltes bauelement auf basis organischer elektronik
EP3526825A1 (de) Induktiv dotierte mischschichten für ein optoelektronisches bauteil und verfahren zu deren herstellung
WO2008077615A1 (de) Elektronisches bauelement mit mindestens einer organischen schichtanordnung
EP3201959A1 (de) Verfahren zur herstellung eines organischen elektronischen bauteils und ein organisches elektronisches bauteil
DE102015200699A1 (de) Aminophosphazen-Basen als n-Dotierstoffe in der organischen Elektronik
EP2659529B1 (de) Optoelektronisches bauelement mit dotierten schichten
EP2335302A1 (de) Verfahren zum herstellen einer metallischen elektrode über einer metalloxidschicht
DE102013226998B4 (de) Verfahren zur Herstellung einer Nanodrahtelektrode für optoelektronische Bauelemente sowie deren Verwendung
DE102021130501A1 (de) Schichtsystem mit mindestens einer photoaktiven Schicht mit mindestens einer Zwischenschicht für ein organisches elektronisches Bauelement
DE102022120943A1 (de) Absorber, Solarzelle und Verfahren zur Herstellung eines Absorbers
DE102011117357A1 (de) Ein Verfahren zur n-Dotierung von organischen Halbleitern mit Alkalimetallen aus der Flüssigphase

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006529630

Country of ref document: JP

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 10595319

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10595319

Country of ref document: US