WO2005035538A1 - ペナム結晶及びその製造法 - Google Patents

ペナム結晶及びその製造法 Download PDF

Info

Publication number
WO2005035538A1
WO2005035538A1 PCT/JP2004/015299 JP2004015299W WO2005035538A1 WO 2005035538 A1 WO2005035538 A1 WO 2005035538A1 JP 2004015299 W JP2004015299 W JP 2004015299W WO 2005035538 A1 WO2005035538 A1 WO 2005035538A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
acetone
crystal
tmpb
crystals
Prior art date
Application number
PCT/JP2004/015299
Other languages
English (en)
French (fr)
Inventor
Yoshihisa Tokumaru
Akihiro Shimabayashi
Original Assignee
Otsuka Chemical Co., Ltd.
Taiho Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co., Ltd., Taiho Pharmaceutical Co., Ltd. filed Critical Otsuka Chemical Co., Ltd.
Priority to CA2540601A priority Critical patent/CA2540601C/en
Priority to US10/574,279 priority patent/US7547777B2/en
Priority to AT04792516T priority patent/ATE497965T1/de
Priority to CN2004800292860A priority patent/CN1863808B/zh
Priority to EP04792516A priority patent/EP1671975B1/en
Priority to KR1020067006948A priority patent/KR101109177B1/ko
Priority to DE602004031350T priority patent/DE602004031350D1/de
Publication of WO2005035538A1 publication Critical patent/WO2005035538A1/ja
Priority to HK07102407.6A priority patent/HK1095142A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D499/00Heterocyclic compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. penicillins, penems; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • C07D499/86Heterocyclic compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. penicillins, penems; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring with only atoms other than nitrogen atoms directly attached in position 6 and a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D499/00Heterocyclic compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. penicillins, penems; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • C07D499/87Compounds being unsubstituted in position 3 or with substituents other than only two methyl radicals attached in position 3, and with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D499/00Heterocyclic compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. penicillins, penems; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • C07D499/04Preparation

Definitions

  • the present invention relates to a penum crystal and a method for producing the same.
  • the evening zobactam represented by the above formula (1) has an extremely weak antibacterial activity, so it is not used as an antibacterial agent by itself, but it produces bacteria.) It is irreversible with 3-lactamase Has the effect of inhibiting i3-lactamase activity. For this reason, Yuzobaku Yum is used in combination with existing antibacterial agents that are inactivated by 3-lactamase, and exerts the original antibacterial activity of these antibacterial agents against 3-lactamase-producing bacteria. (Katsuharu Sakai, Handbook of the Latest Antibiotics, 10th edition, p. 113).
  • zopactam is converted to 2-methyl-1-2-[(1,2,3-triazol-11-yl) methyl] penamou 3 ⁇ ; —benzhydryl ester of rubonate (hereinafter “ ⁇ ⁇ ⁇ ”), and then oxidized to give 2-methyl-2 / 3-[(1,2,3-triazol-1-yl) methyl] penamous 3 ⁇ -potassium 1,1- Manufactured by deesterification of dioxide benzhydryl ester (hereinafter sometimes referred to as “ ⁇ ”). Therefore, ⁇ is useful as a synthetic intermediate of zobactam and a precursor of ⁇ ⁇ ⁇ . Reaction formula:
  • Ph phenyl
  • TMPB has a 1,2,3-triazolyl group that has nucleophilic reactivity in its molecule. Oily or amorphous TMPB is unstable, and TMPB decomposes and degrades. Easy to receive. For this purpose, attempts have been made to extract stable TMPB crystals (WO 02/14325).
  • the method described in WO 02/14325 produces a crystal by concentrating a solution containing TMPB, diluting the concentrated solution with acetic ester, and then mixing the diluted solution with a solvent such as hexane.
  • One object of the present invention is to provide a method for producing high-purity TMPB in high yield.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, succeeded in developing a new TMP B-acetone crystal that could serve as a precursor before TAZB. Furthermore, the present inventors can easily produce a TMPB-acetone crystal from a solution obtained by concentrating a solution containing TMPB and dissolving the same in acetone, and efficiently It has been found that TMPB crystals can be isolated and that TMPB crystals can be produced with high purity and high yield by deacetonizing the TMP B-acetone crystals. The present invention has been completed based on such knowledge.
  • the present invention provides the following 1 to 22 inventions.
  • (C) A method for producing TMPB-acetone crystals, comprising a step of precipitating TMPB-acetone crystals from the obtained acetone solution.
  • step (A) adjust the amount of organic solvent based on 1 kg of TMPB.
  • the poor solvent is an aliphatic hydrocarbon having 4 to 8 carbon atoms, or an alicyclic ring having 4 to 8 carbon atoms.
  • the poor solvent is composed of n-pentane, n-hexane, n-heptane, n-octane, cyclohexane, getyl ether, di-n-butyl ether, di-isopropyl ether and di-so-butyl ether 15.
  • TMP B A process for producing TAZ B, comprising the step of reacting acetone crystals with an oxidizing agent in a solvent.
  • the oxidizing agent is selected from the group consisting of permanganic acid, periodic acid, peracetic acid, trifluoroperacetic acid, perbenzoic acid, m-chloroperbenzoic acid, alkali metal salts thereof, and hydrogen peroxide. 17. The method according to 17 above, wherein the method is at least one kind.
  • TMP B A method for producing TMP B crystals, including the step of deacetonating acetone crystals.
  • a method for producing a TMP B crystal comprising:
  • the TMP B-acetone crystal of the present invention is, for example, as described in the above (A)
  • This step is a step of concentrating the organic solvent solution containing TMP B.
  • the organic solvent solution containing TMPB used in this step includes a reaction solution containing TMPB obtained according to a known method.
  • the organic solvent may be a solvent used for the production reaction of TMPB or an organic solvent used for extraction of TMPB.
  • Preferred organic solvents are hydrophobic organic solvents.
  • Examples of such a hydrophobic organic solvent include halogenated hydrocarbon solvents such as dichloromethane, 1,2-dichloroethane, 1,2-dichloropropane, 1,1,2-trichloroethane, chloroform, and carbon tetrachloride. And the like. Of these, dichloromethane is particularly preferred.
  • the concentration of the organic solvent solution containing TMPB is performed by a known method.
  • the concentration is preferably performed under reduced pressure, for example, under a reduced pressure of about 25 to 80 kPa.
  • the concentration of the organic solvent solution includes both concentration until the organic solvent is completely removed and partial concentration in which the organic solvent remains in the concentrate. Generally, it is sufficient to concentrate the organic solvent to less than about 1.5 liters based on 1 kg of TMPB. From the viewpoint of crystallization efficiency, the concentration is preferably about 0.15 to 0.7 liter, more preferably about 0.2 to 0.5 liter, based on 1 kg of TMPB.
  • This step is a step of dissolving the concentrate obtained in the above step A in acetone.
  • the amount of acetone used may be 1.5 to 5 liters, preferably 2 to 4 liters, more preferably 2.2 to 3 liters, based on 1 kg of TMPB in the concentrate.
  • the organic solvent remains in the concentrate, it is preferable to use acetone so that the volume ratio of the organic solvent is 1/3 or less, preferably 1 to 4 or less, with respect to the amount of acetone used.
  • the temperature should be around 40 ° C in consideration of the stability of TMPB, It is preferable to avoid heating.
  • This step is a step of precipitating TMP B-acetone crystals from the acetone solution obtained in the above step B.
  • crystallization For the crystallization, a general crystallization method usually used can be widely applied.
  • the crystallization is performed, for example, by cooling the acetone solution or adding a poor solvent for TMP B-acetone crystallization to the acetone solution.
  • the acetone solution is usually cooled to about 10 ° C or lower, preferably to about 0 or lower.
  • a solvent having a low solubility in TMP B and having compatibility with acetone can be widely used.
  • poor solvents examples include aliphatic hydrocarbons having 4 to 8 carbon atoms, alicyclic hydrocarbons having 4 to 8 carbon atoms, and alkyl ethers having 2 to 10 carbon atoms. These poor solvents are used alone or as a mixture of two or more.
  • aliphatic female hydrocarbons having 4 to 8 carbon atoms examples include n-pentane, n-hexane, n-heptane, n-octane, and cyclohexane. Is mentioned.
  • alkyl ether having 2 to 10 carbon atoms examples include getyl ether, diisopropyl ether, di-n-butyl ether, diisobutyl ether and the like.
  • aliphatic hydrocarbons having 4 to 8 carbon atoms are preferable, and n-hexane is more preferable.
  • the amount of the poor solvent used is not particularly limited, but considering the crystallization efficiency and workability, usually 0.1 to 1 liter of acetone in the acetone solution is used.
  • It may be about 20 liters, preferably about 0.5 to 5 liters.
  • the crystallization temperature is usually about 56 ° C or lower, preferably about 178 to 30 ° C, and more preferably about 130 to 10 ° C.
  • the crystallized TMP B-acetone is crystallized by known filtration methods. Ton solution.
  • the TMP B-acetone crystal thus obtained has a 1: 1 molar ratio between TMP B and acetone, and has a unique X-ray powder diffraction pattern.
  • thermogravimetric analysis data supports the presence of TMPB and acetone at a molar ratio of 1: 1 with desorption of the acetone occurring at a temperature above the boiling point of the acetone (83.2.C). It indicates that.
  • the TMPB-acetone crystal of the present invention is not simply a substance in which acetone has adhered to TMPB due to insufficient drying, and acetone is present in the TMPB crystal lattice, thereby forming an inclusion body. It is presumed to have formed.
  • TAZB is produced by reacting the TMPB-acetone crystal of the present invention with an oxidizing agent in a solvent.
  • oxidizing agent known oxidizing agents can be widely used, and examples thereof include permanganic acid, periodic acid, peracetic acid, trifluoroperacetic acid, perbenzoic acid, m-chloroperbenzoic acid, and alkali metal salts thereof. Hydrogen oxide and the like can be given.
  • alkali metal include sodium and potassium.
  • the oxidizing agent may be used in a large excess amount with respect to the TMPB-acetone crystal, but usually, the molar amount may be about equimolar to 5 times the molar amount of the crystal.
  • solvent to be used examples include halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, etc., ethers such as tetrahydrofuran and dioxane, ketones such as acetone and methyl ethyl ketone, acetic acid, Organic such as formic acid Acids, pyridine, ⁇ and the like. These are used alone or in combination of two or more.
  • Such a solvent is usually used in an amount of about 0.001 to 100 liters, preferably about 0.01 to 10 liters, per 1 kg of acetone crystals, but is not limited thereto.
  • the temperature at which the oxidizing agent is reacted is not particularly limited, but usually about 0 to 60 ° C is sufficient.
  • the reaction time is generally about 0.5 to 12 hours.
  • the TAZB thus produced can be purified by a commonly used purification method such as an extraction method, column chromatography, recrystallization and the like.
  • the TMPB-acetone crystal of the present invention changes to a TMPB crystal very slowly at room temperature (20 ° C.) under atmospheric pressure, but it is necessary to produce a high-purity TMPB crystal to such an extent that no TMPB-acetone crystal is detected. It is preferable to perform a deacetonization treatment.
  • the deacetonization treatment is performed, for example, by keeping TMPB-acetone crystals under reduced pressure.
  • the degree of pressure reduction is not particularly limited, but for example, about 1 to 1 OkPa, preferably about 1.3 to 5 kPa is sufficient.
  • the environmental temperature of the TMPB-acetone crystal is generally maintained at about 20 ° C. or higher, preferably about 30 ° C. or higher, more preferably about 30 to 40 ° C. If the environmental temperature of the TM PB-acetone crystal is extremely high, the generated TMPB crystal may be inferior.
  • the treatment time varies depending on the degree of pressure reduction, temperature, and the like, and cannot be unconditionally determined. For example, it takes 6 hours or more at about 4 kPa and 40 ° C.
  • the crystallization efficiency is very excellent. It is thought that TMP B forms a clathrate different from TMP B together with acetone in acetone, thereby lowering the solubility in acetone and making it easier to precipitate TMPB-acetone crystals. Therefore, in producing the TMPB-acetone crystal of the present invention, the crystallization temperature is There is no particular limitation, and crystallization is sufficiently performed at about room temperature. Furthermore, cooling does not result in the incorporation of other components or the separation of oils.
  • the TMP B-acetone crystal of the present invention can be directly used for the production of TAZB.
  • the TMP B crystal can be easily produced by subjecting the TMP B-acetone crystal of the present invention to deacetonization treatment.
  • the TMP B-acetone crystal of the present invention can be easily produced by subjecting the TMP B-acetone crystal of the present invention to deacetonization treatment.
  • a crystal comprising TMP B and acetone, which can be taken out very efficiently, and then subjecting the crystal to deacetonization treatment, a high yield and high purity of the TMP B crystal can be obtained. Can be.
  • TMP B-acetone crystals of the present invention by passing through TMP B-acetone crystals having excellent crystallization efficiency, TMP B-acetone crystals can be produced without mixing the by-product cepham form. It can be easily led to TMP B crystal.
  • the method of the present invention is industrially extremely advantageous.
  • FIG. 1 is an X-ray powder diffraction pattern of the crystal obtained in Example 1.
  • FIG. 2 is an X-ray powder diffraction pattern of the crystal obtained in Example 8.
  • dichloro b methane solution (1) This dichloromethane solution is hereinafter referred to as “dichloro b methane solution (1)”.
  • This solution contained 30 g of TMP B.
  • the dichloromethane solution (1) is concentrated under reduced pressure (60 to 40 kPa) at 40 ° C or less, and when the amount of removed dichloromethane reaches about 450 ml, acetone solution of 250 m is added to the concentrated dichloromethane solution (1). One was added. Concentration was continued until the solution volume reached about 100 ml. Analysis by gas chromatography revealed that acetone was about 30 ml and dichloromethane was about 15 ml. Acetone was added to this solution so that the total amount was 80 ml. This acetone solution is hereinafter referred to as “acetone solution (1)”.
  • the acetone solution (1) was cooled to 120 ° C and stirred. After sufficient crystallization, the crystals were taken out by filtration and washed with 8 Oml of a mixed solution of acetone and n-hexane (volume ratio 1: 1).
  • FIG. 1 shows an X-ray powder diffraction pattern of the crystal.
  • TMPB-acetone crystals were obtained in the same manner as in Example 2 except that various poor solvents shown in Table 1 below were used instead of n-hexane.
  • the TMPB-acetone crystal (30 g) obtained in Example 1 was allowed to stand at 40 ° C. under reduced pressure (4 kPa) for 8 hours.
  • the obtained crystal was TMPB based on the iH-NMR spectrum, and the crystal did not include TMP B-acetone crystal.
  • FIG. 2 shows an X-ray powder diffraction pattern of the crystal.
  • Example 2 Using the TMPB-acetone crystal (32 g) obtained in Example 2, the same treatment as in Example 8 was performed.
  • the obtained crystal was TMPB from 1 H-NMR spectrum, and — NMR spectrum and X-ray powder diffraction pattern were those of Example 8. Agreed with them.
  • TMPB-acetone crystal (32 g) obtained in the same manner as in Example 1 was dissolved in dichloromethane (240 ml), and acetic acid (68 ml) was added. Next, 20.4 g of potassium permanganate was added in small portions to the mixture so that the temperature of the mixture did not exceed 20 ° C. The mixture was stirred for 3 hours, taking care that the temperature of the mixture did not exceed 40 ° C. After the reaction was completed, 300 ml of dichloromethane was added. The resulting mixture was cooled to 5 ° C and 35% aqueous hydrogen peroxide was added until the color of the mixture disappeared.
  • the dichloromethane layer was separated, washed with a 2% aqueous sodium bisulfite solution and water, and dried over magnesium sulfate.
  • the dichloromethane layer was concentrated, and the obtained residue was crystallized by adding methanol to obtain the desired TAZB.
  • a dichloromethane solution (1) was prepared in exactly the same manner as in Example 1.
  • the dichloromethane solution (1) was concentrated under reduced pressure (60-40 kPa) at 40. When the amount of dichloromethane removed reached about 420 ml, 86 ml of ethyl acetate was added. Further, concentration was continued until the amount of the removed organic solvent became 120 ml. The concentrate was analyzed by gas chromatography, and diluted with dichloromethane and ethyl acetate so that the amount of dichloromethane was 2 Om 1 and the amount of ethyl acetate was 8 Om 1. To this diluted solution, 48 ml of n-hexane was added while maintaining the solution temperature at 22 ° C. or higher to precipitate TMPB crystals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Cephalosporin Compounds (AREA)

Abstract

本発明は、2α−メチル−2β−[(1,2,3−トリアゾール−1−イル)メチル]ペナム−3α−カルボン酸1,1−ジオキシドベンズヒドリルエステル(TAZB)を製造するために用いられる新規な2α−メチル−2β−[(1,2,3−トリアゾール−1−イル)メチル]ペナム−3α−カルボン酸ベンズヒドリルエステル(TMPB)−アセトン結晶;(A)TMPBを含む有機溶媒溶液を濃縮する工程、(B)得られる濃縮物をアセトンに溶解する工程、及び(C)得られるアセトン溶液からTMPB−アセトン結晶を晶析させる工程を含むTMPB−アセトン結晶の製造方法;及びTMPB−アセトン結晶を酸化剤と反応させる工程を含むTAZBの製造方法を提供する。

Description

明 細 書
ペナム結晶及びその製造法
技 術 分 野
本発明は、 ペナム結晶及びその製造法に関する。
背 景 技 術
式 (1) :
(1)
Figure imgf000002_0001
上記式 (1) で表される夕ゾバクタムは、 抗菌活性が極めて弱いために、 夕ゾバクタム単独では抗菌剤として使用されることはないが、 細菌が産出す る) 3-ラクタマ一ゼと不可逆的に結合し、 i3—ラクタマーゼの活性を阻害する 作用を有している。 このため、 夕ゾバク夕ムは、 3—ラク夕マ一ゼによって 不活性化される既存の各種抗菌剤と併用され、 3—ラクタマーゼ産生菌に対 して該各種抗菌剤本来の抗菌作用を発揮させることができる (酒井克治、 最 新抗生物質要覧、 第 10版、 第 113頁) 。
下記反応式に示すように、 夕ゾパクタムは、 2ひ一メチル一 2 -[ (1, 2, 3—トリァゾールー 1一ィル) メチル]ペナムー 3 ο;—力ルボン酸ベン ズヒドリルエステル (以下 「ΤΜΡΒ」 という場合がある) を酸化し、 次い で得られる 2 ーメチルー 2 /3— [ (1, 2, 3 -トリアゾール—1—ィル) メチル]ペナムー 3 α—力ルボン酸 1, 1ージォキシドベンズヒドリルエス テル (以下 「ΤΑΖΒ」 という場合がある) を脱エステル化反応することに より、 製造される。 それ故、 ΤΜΡΒは夕ゾバクタムの合成中間体及び ΤΑ Ζ Βの前駆体として有用である。 反応式:
Figure imgf000003_0001
TMPB TAZB
Ph=フエニル
Figure imgf000003_0002
夕ゾバクタム
TMPBは、 その分子内に求核反応性を有する 1 , 2, 3—卜リアゾ一ル 基を有すること力 ^ら、 油状又はアモルファスの TMPBは不安定であり、 T MP Bの分解、 変質等を受け易い。 そのために、 安定な TMPB結晶を取り 出す試みがなされてきた (WO第 02/14325号公報) 。
WO第 02/14325号公報に記載の方法は、 TMPBを含む溶液を濃 縮し、 濃縮液を酢酸エステルで希釈し、 次に希釈液をへキサン等の溶媒と混 合することにより結晶を製造する方法である。
しかしながら、 W〇第 02Z14325号公報に記載されている方法では、 反応により TMP Bと同時に生成してくる副生成物から TMP Bを分離す る効率が低い。 そのため、 高純度の TMPB結晶を得るには、 多量の TMP Bが母液中に残存するのが避けられず、 その結果、 TMPB結晶の収率が低 下する。
発 明 の _開 _示
本発明の一つの目的は、 高純度の TMPBを高い収率で製造する方法を提 供することである。
本発明者らは、 上記問題点を解決すべく鋭意研究を重ねてきた結果、 TA Z Bの前,駆体となり得る新規な TMP B—アセトン結晶の開発に成功した。 更に、 本発明者らは、 TMPBを含む溶液を濃縮し、 これをアセトンに溶解 して得られる溶液から TMPB—アセトン結晶を容易に製造でき、 効率よく 単離できること、 及び該 TMP B—ァセトン結晶を脱ァセトン化処理するこ とにより T M P B結晶を高純度且つ高収率で製造できるという知見を得た。 本発明は、 斯かる知見に基づき完成されたものである。
本発明は、 下記 1〜 22の発明を提供する。
1. TMPB—アセトン結晶。
2. モノクロメータ一を通した λ = 1. 5418 Αの銅放射線で得られる X 線粉末回折パターンにおいて、 格子面間隔 11. 24〜12. 44Aにピ ークを有する上記 1に記載の結晶。
3. モノクロメータ一を通した λ = 1. 5418Αの銅放射線で得られる X 線粉末回折パターンにおいて、 下記の各格子面間隔にピークを有する上記 1 に記載の結晶。
d (格子面間隔)
11. 24〜: 12. 44
8. 41〜9. 30
4. モノクロメータ一を通した λ = 1. 5418Αの銅放射線で得られる X 線粉末回折パターンにおいて、 下記の各格子面間隔にピ一クを有する上記 1 に記載の結晶。
d (格子面間隔)
11. 24〜 44
8. 41〜 9. 30
7. 11〜7. 87
5. 62〜6. 22
3. 78〜5. 12
5. モノクロメータ一を通した λ=1. 5418Αの銅放射線で得られる X 線粉末回折パターンにおいて、 下記の各格子面間隔にピークを有する上記 1 に記載の結晶。
d (格子面間隔)
11. 248〜12. 433
8. 413〜9. 298 7. 119〜 7. 868
5. 621 〜 6. 213
4. 632 5. 119
4. 548 〜 5. 026
4. 457 4. 926
4. 206 〜 4. 648
4. 132 〜 4. 567
3. 738 〜 4. 131
3. 785 〜 4. 183
6. TMPB/アセトンのモル比が 1Z1である上記 1〜5のいずれかに記 載の結晶。
7. (A) TMPBを含む有機溶媒溶液を濃縮する工程、
(B) 得られる濃縮物をアセトンに溶解する工程、 及び
(C) 得られるアセトン溶液から TMPB—アセトン結晶を析出させる工程 を含む、 TMPB—アセトン結晶の製造方法。
8. (A) 工程の有機溶媒が、 ハロゲン化炭化水素溶媒である上記 7に記載 の製造方法。
9. 前記八ロゲン化炭ィ匕水素溶媒がジクロロメタンである上記 8に記載の製 造方法。
10. (A)工程において、 TMPB 1 kgを基準にして、有機溶媒量を 1.
5リットル程度以下に減少させる上記 7〜 9のいずれかに記載の製造方法。 11. (B) 工程において、 濃縮物中の TMPB 1 kgを基準にして、 ァセ トンを 1. 5〜 5リツトル程度使用する上記 7〜 10のいずれかに記載の製 造方法。
12. アセトン溶液を冷却することにより TMPB—アセトン結晶を析出さ せる上記 7〜 11のいずれかに記載の製造方法。
13. アセトン溶液に TMPB—アセトン結晶の貧溶媒を加えることにより 該結晶を析出させる上記 7〜 11のいずれかに記載の製造方法。
14. 前記貧溶媒が、 炭素数 4〜 8の脂肪族炭化水素、 炭素数 4〜 8の脂環 式炭化水素及び炭素数 2〜: L 0のアルキルエーテルからなる群より選ばれ る少なくとも 1種である上記 1 3に記載の製造方法。
1 5. 前記貧溶媒が、 n—ペンタン、 n—へキサン、 n—ヘプタン、 n—ォ クタン、 シクロへキサン、 ジェチルエーテル、 ジー n—ブチルエーテル、 ジ ィソプロピルエーテル及びジィソブチルェ一テルからなる群より選ばれる 少なくとも 1種である上記 1 4に記載の製造方法。
1 6. 前記貧溶媒が n—へキサンである上記 1 5に記載の製造方法。
1 7. TMP B—アセトン結晶を、溶媒中、酸化剤と反応させる工程を含む、 TA Z Bの製造方法。
1 8. 前記酸化剤が、 過マンガン酸、 過ヨウ素酸、 過酢酸、 トリフルォロ過 酢酸、 過安息香酸、 m—クロル過安息香酸及びこれらのアルカリ金属塩並び に過酸化水素からなる群より選ばれた少なくとも 1種である上記 1 7に記 載の製造方法。
1 9. TMP B—アセトン結晶を脱アセトン化処理する工程を含む、 TMP B結晶の製造方法。
2 0. TMP B—アセトン結晶は、 減圧下に脱アセトン化処理される、 上記 1 9に記載の製造方法。
2 1 . 脱ァセトン化処理を 1〜: L 0 k P a程度の減圧下、 2 0 °C程度以上行 う、 上記 2 0に記載の製造方法。
2 2. (A) TMP Bを含む有機溶媒溶液を濃縮する工程、
(B) 得られる濃縮物をアセトンに溶解する工程、
(C) 得られるアセトン溶液から TMP B—アセトン結晶を析出させる工程、 及び
(D) TMP B—アセトン結晶を脱アセトン化処理する工程
を含む、 TMP B結晶の製造方法。
TMP B—アセトン結晶
本発明の TM P B—アセトン結晶は、 例えば、 上記 (A)
経ることにより製造される。 A工程
本工程は、 TMP Bを含む有機溶媒溶液を濃縮する工程である。
本工程で使用される TMP Bを含む有機溶媒溶液は、 公知の方法に従って 得られる T M P Bを含む反応溶液を包含する。
有機溶媒としては、 TMPBの製造反応に使用される溶媒又は TMPBの 抽出に用いられる有機溶媒であってもよい。 好ましい有機溶媒は疎水性有機 溶媒である。 このような疎水性有機溶媒としては、 例えばジクロロメタン、 1, 2—ジクロロェタン、 1, 2ージクロ口プロパン、 1, 1, 2—トリク ロロェタン、 クロ口ホルム、 四塩化炭素等のハロゲン化炭化水素系溶媒等が 挙げられる。 これらの中でもジクロロメタンが特に好ましい。
TMPBを含む有機溶媒溶液の濃縮は、 公知の方法により行われる。 濃縮 は、 減圧下で行うのが好ましく、 例えば、 25〜80kPa程度の減圧下で 行うのがよい。
本発明において、 有機溶媒溶液の濃縮とは、 有機溶媒が完全に除去される までの濃縮及び有機溶媒が濃縮物中に残存している部分的な濃縮の両方を 含む。 一般的には、 TMPB 1 kgを基準にして、 有機溶媒量が 1. 5リツ トル程度以下に濃縮することで十分である。 晶析効率の観点から、 TMPB 1 kgを基準にして、 好ましくは 0. 15〜0. 7リットル程度、 より好ま しくは 0. 2〜0. 5リットル程度に濃縮する。
B工程
本工程は、 上記 A工程で得られる濃縮物をァセトンに溶解させる工程であ る。
本工程においては、 アセトンの使用量を濃縮物中の TMPB 1 kgを基準 として、 1. 5〜5リットル、 好ましくは 2〜4リットル、 更に好ましくは 2. 2〜3リットルとすればよい。 濃縮物中に有機溶媒が残存する場合、 有 機溶媒量が使用するァセトン量に対し容積比で 1 / 3以下、 好ましくは 1ノ 4以下となるようにアセトンを使用するのが好ましい。
本工程において上記濃縮物をァセトンに溶解するに当たり、 加温して溶解 させる場合には、 TMPBの安定性を考慮して 40°C程度までとし、 長時間 の加温を避けるのが好ましい。
C工程
本工程は、 上記 B工程で得られるアセトン溶液から TMP B—アセトン結 晶を析出させる工程である。
晶析には、通常行われている一般的な晶析方法を広く適用できる。晶析は、 例えば、 アセトン溶液を冷却するか、 アセトン溶液に TMP B—アセトン結 晶の貧溶媒を添加することにより行われる。
アセトン溶液を冷却して結晶を析出させる場合には、 アセトン溶液を通常 1 0 °C程度以下、 好ましくは 0 程度以下に冷却するのがよい。
TMP B—アセトン結晶の貧溶媒としては、 TMP Bに対する溶解能が弱 く、 ァセトンと相溶性を有する溶媒を広く使用することができる。
このような貧溶媒としては、 例えば、 炭素数 4〜 8の脂肪族炭化水素、 炭 素数 4〜 8の脂環式炭化水素、 炭素数 2〜1 0のアルキルエーテル等を挙げ ることができる。 これらの貧溶媒は、 1種単独で又は 2種以上混合して使用 される。
炭素数 4〜 8の脂雌炭化水素及び炭素数 4〜 8の脂環式炭化水素の具 体例としては、 n—ペンタン、 n—へキサン、 n—ヘプタン、 n—オクタン、 シク口へキサン等が挙げられる。
炭素数 2〜 1 0のアルキルエーテルの具体例としては、 ジェチルェ一テル、 ジイソプロピルエーテル、 ジ— n—ブチルェ一テル、 ジイソブチルエーテル 等が挙げられる。
上記貧溶媒の中でも、 炭素数 4〜 8の脂肪族炭化水素が好ましく、 n—へ キサンがより好ましい。
貧溶媒の使用量は、 特に限定されるものではないが、 晶析効率及び作業性 を考慮すると、 アセトン溶液中のアセトン 1リットル当たり、 通常 0. 1〜
2 0リツトル程度、 好ましくは 0. 5〜 5リツトル程度とすればよい。
晶析温度は、 通常 5 6 °C程度以下、 好ましくは一 7 8〜3 0 °C程度、 更に 好ましくは一 3 0〜1 0 °C程度とすればよい。
上記で晶析した TMP B—ァセトン結晶は、 公知の濾過方法により、 ァセ トン溶液から単離され得る。
このようにして得られた TMP B—ァセトン結晶は、 TMP Bとアセトン とのモリレ比が 1 : 1であり、 特有の X線粉末回折パターンを有している。 本発明 TMPB—アセトン結晶は、 モノクロメータ一を通した λ= 1. 5 418 Αの銅放射線で得られる 末回折パターンにおいて、 格子面間隔 11. 24〜: 12. 44 Αにピークを有している。
好ましい本発明 TMPB—アセトン結晶は、 モノクロメータ一を通した λ = 1. 5418 Αの銅放射線で得られる X線粉末回折パターンにおいて、 下 記の各格子面間隔にピークを有している。
d (格子面間隔)
11. 24〜: L 2. 44
8. 41〜9. 30
より好ましい本発明 TMPB—アセトン結晶は、 モノクロメーターを通し た λ = 1. 5418 Αの銅放射線で得られる X線粉末回折パターンにおいて、 下記の各格子面間隔にピークを有している。
d (格子面間隔)
11. 24〜12. 44
8. 41〜9. 30
7. 11〜7. 87
5. 62〜6. 22
3. 78〜5. 12
特に好ましい本発明 TMP B—ァセトン結晶は、 モノクロメーターを通し た λ = 1. 5418 Αの銅放射線で得られる X線粉末回折パターンにおいて、 下記の各格子面間隔にピークを有している。
d (格子面間隔)
11. 248〜丄 2. 433
8. 413〜9. 298
7. 119〜7. 868
5. 62:!〜 6. 213 4. 632〜5. 119
4. 548〜5. 026
4. 457〜4. 926
4. 206〜4. 648
4. 132〜4. 567
3. 738〜4. 131
3. 785〜4. 183
X線粉末回折デ一夕は、 本発明 TMPB—アセトン結晶が、 公知の TMP B結晶とは全く異なった結晶構造であることを示している。 ?!一 NMRス ベクトルデータは、 TMPBとアセトンとのモル比が 1 : 1で、 TMPBが 存在していることを示している。 熱重量分析データは、 モル比が 1 : 1で T MPBとァセトンとが存在していることを支持し、 ァセトンの脱離がァセト ンの沸点よりも高い温度 (83. 2。C) で生じていることを示している。 こ れらのことから、 本発明 TMPB—アセトン結晶は、 乾燥が不十分なために TMPBにアセトンが単に付着したものではなく、 TMPB結晶格子中にァ セトンが存在し、 それにより包接体を形成していると推察される。
TAZBの製造
TAZBは、 本発明の TMPB—アセトン結晶を、 溶媒中で酸化剤と反応 させることにより製造される。
酸化剤としては、 公知の酸化剤を広く使用でき、 例えば、 過マンガン酸、 過ヨウ素酸、 過酢酸、 トリフルォロ過酢酸、 過安息香酸、 m—クロル過安息 香酸及びこれらのアルカリ金属塩、 過酸化水素等を挙げることができる。 こ こでアルカリ金属としては、ナトリウム、カリウム等を挙げることができる。 これらの酸化剤は、 1種単独で又は 2種以上混合して使用される。
上記酸化剤は、 TMPB—アセトン結晶に対して大過剰量使用してもよい が、 通常は該結晶に対して等モル量〜 5倍モル量程度とすればよい。
使用する溶媒としては、 例えば、 ジクロロメタン、 クロ口ホルム、 四塩化 炭素等のハロゲン化炭化水素類、 テ卜ラヒドロフラン、 ジォキサン等のェ一 テル類、 アセトン、 メチルェチルケトン等のケトン類、 酢酸、 蟻酸等の有機 酸、 ピリジン、 τΚ等が挙げられる。 これらは、 1種単独で又は 2種以上混合 して使用される。
斯かる溶媒は、 ΤΜΡΒ—アセトン結晶 1 kgに対して、 通常 0. 001 〜 100リツトル程度、 好ましくは 0. 01〜 10リツトル程度使用される が、 これらに限定されるものではない。
酸化剤を反応させる時の温度は、 特に限定されないが、 通常 0〜60°C程 度で十分である。 反応時間は、 一般に 0. 5〜 12時間程度である。
斯くして生成する TAZBは、 抽出法、 カラムクロマトグラフィー、 再結 晶等の通常行なわれる精製方法によって精製することができる。
TMPB結晶の製造
本発明 TMPB—アセトン結晶は、 大気圧下、 室温 (20°C) において、 非常にゆっくりと TMPB結晶に変化するが、 TMPB—アセトン結晶が検 出されない程度の高純度 TMPB結晶を製造するには、 脱アセトン化処理を 行うのが好ましい。
脱アセトン化処理は、 例えば、 TMPB—アセトン結晶を減圧下に保持す ることにより行われる。 減圧の程度は、 特に制限されないが、 例えば、 1〜 l OkPa程度、 好ましくは 1. 3〜5kPa程度で十分である。 更に、 T M P B—ァセトン結晶の環境温度を通常 20 °C程度以上、 好ましくは 30 °C 程度以上、 より好ましくは 30〜40°C程度に維持するのが好ましい。 TM PB—アセトン結晶の環境温度が極端に高くなると、 生成する TMPB結晶 の劣ィ匕が生じる虞がある。
処理時間としては、 減圧の程度、 温度等によって変化するため一概に決め られないが、 例えば、 約 4kPa、 40°Cで 6時間以上を要する。
発明の効果
本発明 TM P B—ァセトン結晶の製造方法の特徴の一つは、 晶析効率が非 常に優れていることである。 TMP Bがァセトン中でァセトンと一緒になつ て TMP Bとは異なる包接体を形成し、 それによりァセトンに対する溶解度 が低下し、 TMPB—アセトン結晶がより析出し易くなるものと考えられる。 従って、 本発明 TMPB—アセトン結晶を製造するに当たり、 晶析温度は 特に制限されず、 室温程度で十分晶析が行われる。 更に、 冷却は、 他成分の 混入又は油状物の分離を生じない。
本発明 TMP B—ァセトン結晶は、 そのまま T A Z Bの製造に供すること がでぎる。
更に、 本発明 TMP B—ァセトン結晶を脱ァセトン化処理することにより、 TMP B結晶を容易に製造することができる。 特に、 非常に効率よく取り出 すことができる TMP Bとアセトンとからなる結晶を形成させ、 次いで該結 晶を脱ァセトン化処理することにより、 TMP B結晶を高収率且つ高純度で 得ることができる。
本発明の TMP B結晶の製造方法によれば、 晶析効率の優れた TMP B - ァセトン結晶を経由することにより、 副生成物であるセファム体を混入させ ることなく、 TMP B—アセトン結晶から容易に TMP B結晶に導くことが できる。
従って、 本発明の方法は、 工業的に極めて有利である。
図面の簡単な説明
図 1は、 実施例 1で得られる結晶の X線粉末回折パターンである。
図 2は、 実施例 8で得られる結晶の X線粉末回折パターンである。
発明を実施するための最良の形態
以下に実施例、参考例及び試験例を挙げて、本発明を具体的に説明するが、 本発明はこれら実施例に限定されるものではない。
実施例 1
2 ]3—クロロメチル—2 α—メチルぺナム一 3—カルボン酸ベンズヒド リルエステル 4 3. 5 gを含むジクロロメタン溶液 7 0 0 m 1に 1, 2, 3 —トリァゾール 2 0 0 m l及び陰イオン交換樹脂 (「ダイャイオン WA 3 0」、 三菱化学社製)約 1 3 0 m 1を加え、 4 0 で 3時間攪拌した。反応終了後、 陰イオン交換樹脂を濾去し、 濾液に水 2 0 O m 1を加えてジクロロメタン層 を分液した。 得られたジクロロメタン層を水で 2回洗、净して、 ジクロロメ夕 ン溶液 6 0 0 m lを得た。 このジクロロメタン溶液を以下 「ジクロ bメタン 溶液 (1 ) 」 という。 この溶液中には 3 0 gの TMP Bが含まれていた。 ジクロロメタン溶液 (1) を減圧下 (60〜40 kPa) 、 40°C以下で 濃縮し、 除去されたジクロロメタン量が約 450mlになった時点で、 ジク ロロメタン溶液 ( 1 ) の濃縮液にァセトン 250 m 1を加えた。 溶液量が約 100mlとなるまで濃縮を継続した。 ガスクロマトグラフィーで分析した ところ、 アセトンは約 30ml、 ジクロロメタンは約 15mlであった。 こ の溶液にァセトンが合計 80mlとなるように追加した。 このァセトン溶液 を以下 「アセトン溶液 (1) 」 という。
アセトン溶液 (1) を一 20°Cに冷却し、 撹拌した。 十分に晶析を行った 後、濾過して結晶を取り出し、これをアセトンと n—へキサンとの混合液(体 積比 1 : 1) 8 Omlで洗浄した。
この結晶は、 ェ!!一 ^! スペクトルより、 TMPBとアセトンとからな るィ匕合物であり、 TMPBとアセトンとのモル比が 1 : 1であった。
性状:白色結晶
収量: 30 g
収率: 90% (ジクロロメタン溶液 (1) 中の TMPB基準)
— NMR (300MHz, CDC 13, δ ppm) :
1. 20 (3H, s) , 2. 16 (6H, s) , 3. 17 ( 1 H, ABq, J =l 6. 2Hz) , 3. 66 ( 1 H, ABq, J = 16. 2Hz) , 4. 58 (1H, ABq, J =l 4. 7Hz) , 4. 59 ( 1 H, ABq, J = 14. 7Hz) , 4. 87 ( 1 H, s) , 5. 41 ( 1 H, dd, J=4.
2Hz, 1. 5Hz) , 6. 90 ( 1 H, s) , 7. 2-7. 4 (1 OH, m) , 7. 73 (2H, d, J = 3. 9Hz)
X i^末回折パターン (モノクロメーターを通した λ=1. 5418Aの銅 放射線で得られる X線粉末回折パターン。 以下同様である。 )
d (格子面間隔) 相対強度 ( I / I。)
1 1. 8405 96
8. 8556 84
7. 4935 55
7. 2487 18 6. 5438 10
5. 9170 38
5. 5005 10
4. 8756 49
4. 7869 76
4. 6915 33
4. 4271 100
4. 3498 75
4. 2630 26
4. 2149 27
3. 9345 42
3. 6837 36
3. 6014 13
3. 5283 18
3. 4346 21
3. 2996 28
3. 2734 21
3. 2065 17
3. 0640 13
2. 9878 14
2. 8951 29
2. 8554 19
2. 8448 24
純度: 100% (液体クロマトグラフィーにより測定)
図 1に、 該結晶の X線粉末回折パターンを示す。
実施例 2
実施例 1と全く同様にしてアセトン溶液 (1) を作製した。
このアセトン溶液 (1) を 38。Cに加温し、 n—へキサン 80m 1を滴下 して加えると、 結晶が析出した。 更にこの溶液を一 20でに冷却し、 撹拌し た。 十分に晶析を行った後、 濾過して結晶を取り出し、 アセトンと n—へキ サンとの混合液 (体積比 1 : 1) 80mlで洗浄した。
得られた結晶の1 H— NMRスペクトルは実施例 1と一致し、 TMPB— ァセトン結晶であることを確認した。
性状:白色結晶
純度: 100% (液体クロマトグラフィ一により測定)
収量: 32 g
収率: 97% (ジクロロメタン溶液 (1) 中の TMPB基準) 。
実施例 3〜7
n—へキサンの代わりに下記表 1に示す各種貧溶媒を用いる以外は、 実施 例 2と同様にして、 TMPB—アセトン結晶を得た。
得られた TM P B _ァセトン結晶の — NMRスぺクトルは実施例 1の それと一致し、 TMPB—アセトン結晶であることを確認した。 表 1
Figure imgf000015_0001
実施例 8
実施例 1で得られた TMPB—アセトン結晶 (30g) を 40°C、 減圧下 (4 k Pa) で 8時間静置した。 得られた結晶は、 iH— NMRスペクトル より TMPBであり、 該結晶には TMP B—ァセトン結晶は含まれていなか つた。
性状:白色結晶 収量: 27 g
収率: 90% (ジクロロメタン溶液 (1) 中の TMPB基準)
Χ^»末回折パターン:
(格子面間隔) 相対強度 ( I Ζ I 0)
9. 5016 81
7. 5574 73
6. 3658 20
5. 5623 11
5. 0578 100
4. 8545 54
4. 7412 56
4. 6866 43
4. 5577 19
4. 4140 34
4. 3330 44
4. 2308 47
3. 9974 25
3. 7857 10
3. 6777 20
3. 601 29
3. 1907 11
3. 0995 11
2. 8483 11
純度: 100% (液体クロマトグラフィーにより測定)
図 2に、 該結晶の X線粉末回折パターンを示す。
実施例 9
実施例 2で得られた TMPB—アセトン結晶 (32g) を用い、 実施例 8 と同様に処理した。 得られた結晶は1 H— NMRスぺクトルより TMPBで あり、 — NMRスぺクトル及び X線粉末回折パターンは実施例 8のそれ らと一致した。
性状:白色結晶
収量: 29 g
収率: 97% (ジクロロメタン溶液 (1) 中の TMPB基準)
純度: 100% (液体クロマトグラフィーにより測定)
実施例 10
実施例 1と同様にして得られた TMPB—アセトン結晶 32 gをジクロ ロメタン 240mlに溶解後、酢酸 68m 1を加えた。次に、この混合物に、 混合物の温度が 20 °Cを越えないように過マンガン酸力リウム 20. 4 gを 少量ずつ加えた。 混合物の温度が 40°Cを越えないように注意しながら、 混 合物を 3時間撹拌した。 反応が完了した後、 ジクロロメタン 300 m 1を加 えた。 得られる混合物を 5 °Cに冷却し、 35 %過酸化水素水を混合物の色が 消失するまで加えた。 ジクロロメタン層を分液し、 2%亜硫酸水素ナトリウ ム水溶液及び水で洗浄した後、 硫酸マグネシウムで乾燥した。 ジクロロメタ ン層を濃縮し、 得られた残渣にメタノールを加えることにより結晶化して、 目的の TAZBを得た。
収量: 29. 7 g
収率: 96%
純度: 100% (液体クロマトグラフィーにより測定)
比較例 1
実施例 1と全く同様に行いジクロロメタン溶液 (1) を作製した。
ジクロロメタン溶液 (1) を減圧下 (60〜40 kPa) 40 で濃縮し た。 除去されたジクロロメタン量が約 420mlになった時点で酢酸ェチル 86mlを力 Πえた。 更に除去された有機溶媒量が 120mlになるまで濃縮 を続けた。 この濃縮液をガスクロマトグラフィーで分析し、 ジクロロメタン 量が 2 Om 1、 酢酸ェチル量が 8 Om 1となるようにジクロロメタンと酢酸 ェチルとを加えて希釈した。 この希釈液に、 その液温を 22 °C以上に保ちな がら n—へキサン 48mlを加えて、 TMP Bの結晶を析出させた。
この結晶を濾取し、酢酸ェチルと n—へキサンとの混合液(体積比 1 : 1) 80mlで洗浄し、 約 40°Cで減圧乾燥した。 性状:淡黄白色結晶
収量: 19 g
収率: 63. 3%

Claims

請 求 の 範 囲
1. 2 CK—メチルー 2 ]3— [ (1, 2, 3—トリァゾ一ルー 1一ィル) メチ ル] ペナムー 3 α—カルボン酸べンズヒドリルエステル一アセトン結晶。
2. モノクロメータ一を通した λ = 1. 5418Αの銅放射線で得られる X 線粉末回折パターンにおいて、 格子面間隔 11. 24〜12. 44 Αにピ ークを有する請求の範囲第 1項に記載の結晶。
3. (A) 2 α—メチル一 23— [ (1, 2, 3—トリァゾールー 1一ィル) メチル]ぺナム— 3 α—力ルボン酸べンズヒドリルエステルを含む有機溶媒 溶液を濃縮する工程、
(Β) 得られる濃縮物をアセトンに溶解する工程、 及び
(C) 得られるアセトン溶液から 2 α—メチルー 2 /3— [ (1, 2, 3—ト リアゾールー 1一ィル) メチル]ペナム _ 3 α—カルボン酸べンズヒドリル エステル一アセトン結晶を析出させる工程
を含む、 2 α—メチル— 2 iS— [ (1, 2, 3—トリァゾール— 1一ィル) メチル]ペナムー 3 α—カルボン酸べンズヒドリルエステル—アセトン結晶 の製造方法。
4. 2ひ一メチルー 2 )3— [ (1, , 3—トリァゾール一 1—ィル) メチ ル] ペナムー 3 «—カルボン酸べンズヒドリルエステル—アセトン結晶を、 溶媒中、 酸化剤と反応させる工程
を含む、 2 (¾—メチル _23— [ (1, 2, 3—トリァゾールー 1—ィル) メチル] ペナムー 3 一力ルボン酸 1, 1ージォキシドベンズヒドリルエス テルの製造方法。
5. 2 α—メチル一2 /3— [ (1, 2, 3—トリァゾ一ル一 1—ィル) メチ ル] ペナムー 3ひ一力ルボン酸べンズヒドリルエステル—アセトン結晶を脱 アセトン化処理する工程
を含む、 2 α—メチル一 2 /3— [ (1, 2, 3—トリァゾールー 1—ィル) メチル]ペナムー 3 —カルボン酸べンズヒドリルエステル結晶の製造方法。
6. (Α) 2 一メチルー 2 /3— [ (1, 2, 3—トリァゾ一ル一 1—ィル) メチル]ペナム— 3 α—力ルボン酸べンズヒドリルエステルを含む有機溶媒' 溶液を濃縮する工程、
(B) 得られる濃縮物をアセトンに溶解する工程、
(C) 得られるアセトン溶液から 2ひ一メチルー 2 /3—[ (1, 2, 3—ト リアゾ一ルー 1一ィル) メチル]ぺナム— 3 a—力ルボン酸べンズヒドリル エステル一アセトン結晶を析出させる工程、 及び
(D) 2ひーメチル一2^— [ (1, 2, 3—卜リアゾールー 1一ィル) メ チル] ペナムー 3 α—カルボン酸べンズヒドリルエステル一アセトン結晶を 脱アセトン化処理する工程
を含む、 2ひ—メチルー 2 )3— [ (1, 2, 3 _トリァゾ一ルー 1一ィル) メチル]ペナムー 3 α—カルボン酸べンズヒドリルエステル結晶の製造方法。
PCT/JP2004/015299 2003-10-10 2004-10-08 ペナム結晶及びその製造法 WO2005035538A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2540601A CA2540601C (en) 2003-10-10 2004-10-08 Penam crystals and process for producing the same
US10/574,279 US7547777B2 (en) 2003-10-10 2004-10-08 Penam crystals and process for producing the same
AT04792516T ATE497965T1 (de) 2003-10-10 2004-10-08 Penamkristall und verfahren zu dessen herstellung
CN2004800292860A CN1863808B (zh) 2003-10-10 2004-10-08 青霉烷晶体及其制备方法
EP04792516A EP1671975B1 (en) 2003-10-10 2004-10-08 Penam crystal and process for producing the same
KR1020067006948A KR101109177B1 (ko) 2003-10-10 2004-10-08 페남 결정 및 그 제조법
DE602004031350T DE602004031350D1 (de) 2003-10-10 2004-10-08 Penamkristall und verfahren zu dessen herstellung
HK07102407.6A HK1095142A1 (en) 2003-10-10 2007-03-05 Penam crystals and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-352723 2003-10-10
JP2003352723 2003-10-10

Publications (1)

Publication Number Publication Date
WO2005035538A1 true WO2005035538A1 (ja) 2005-04-21

Family

ID=34431126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015299 WO2005035538A1 (ja) 2003-10-10 2004-10-08 ペナム結晶及びその製造法

Country Status (13)

Country Link
US (1) US7547777B2 (ja)
EP (1) EP1671975B1 (ja)
JP (1) JP4841129B2 (ja)
KR (1) KR101109177B1 (ja)
CN (1) CN1863808B (ja)
AR (1) AR046065A1 (ja)
AT (1) ATE497965T1 (ja)
CA (1) CA2540601C (ja)
DE (1) DE602004031350D1 (ja)
ES (1) ES2357839T3 (ja)
HK (1) HK1095142A1 (ja)
TW (1) TW200519119A (ja)
WO (1) WO2005035538A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105085544A (zh) * 2015-08-19 2015-11-25 齐鲁天和惠世制药有限公司 一种他唑巴坦二苯甲酯的合成方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200523264A (en) * 2003-10-09 2005-07-16 Otsuka Chemical Co Ltd CMPB crystal and method for producing the same
US20060173177A1 (en) * 2005-01-28 2006-08-03 Gego Csaba L Process for preparation of penam derivatives
JP4959385B2 (ja) * 2007-03-09 2012-06-20 本田技研工業株式会社 車両用シート
US20150246931A1 (en) * 2012-09-06 2015-09-03 Hospira, Inc. Process for the preparation of tazobactam
US8476425B1 (en) 2012-09-27 2013-07-02 Cubist Pharmaceuticals, Inc. Tazobactam arginine compositions
KR102329764B1 (ko) 2013-03-15 2021-11-23 머크 샤프 앤드 돔 코포레이션 세프톨로잔 항균성 조성물
US9872906B2 (en) 2013-03-15 2018-01-23 Merck Sharp & Dohme Corp. Ceftolozane antibiotic compositions
US20140274991A1 (en) 2013-03-15 2014-09-18 Cubist Pharmaceuticals, Inc. Ceftolozane pharmaceutical compositions
EP3043797B1 (en) 2013-09-09 2020-04-08 Merck Sharp & Dohme Corp. Treating infections with ceftolozane/tazobactam in subjects having impaired renal function
US20150094293A1 (en) 2013-09-27 2015-04-02 Calixa Therapeutics, Inc. Solid forms of ceftolozane
US9433269B2 (en) 2014-02-25 2016-09-06 Oliver Joen-An Ma Quick assembly methods and components for shade structures
CN113861222A (zh) * 2021-11-19 2021-12-31 山东安舜制药有限公司 一种采用新型催化剂合成去氧他唑巴坦二苯甲酯的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08505645A (ja) * 1993-11-06 1996-06-18 大鵬薬品工業株式会社 結晶性ペニシリン誘導体並びにその製造及び使用
WO2002009605A2 (en) * 2000-07-31 2002-02-07 Sdgi Holdings, Inc. Contourable spinal staple with centralized and unilateral prongs
JP2002053581A (ja) * 2000-08-11 2002-02-19 Otsuka Chem Co Ltd ペニシリン結晶及びその製造法
JP2002053582A (ja) * 2000-08-11 2002-02-19 Otsuka Chem Co Ltd ペニシリン結晶及びその製造法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891369A (en) * 1986-12-03 1990-01-02 Taiho Pharmaceutical Company, Limited 2β-Substituted-methylpenicillanic acid derivatives, and salts and esters thereof
JP2603082B2 (ja) * 1987-09-07 1997-04-23 大塚化学株式会社 ペニシラン酸誘導体の製造法
JP2602685B2 (ja) * 1988-03-01 1997-04-23 大鵬薬品工業株式会社 2α−メチル−2β―(1,2,3−トリアゾール−1−イル)メチルペナム−3α−カルボン酸誘導体の製造法
JP2599610B2 (ja) * 1988-03-01 1997-04-09 大鵬薬品工業株式会社 2β―置換メチルペニシリン誘導体の製造法
JP2648750B2 (ja) 1988-03-02 1997-09-03 大塚化学株式会社 β−ラクタム誘導体の製造方法
JP3306473B1 (ja) * 2001-05-01 2002-07-24 大塚化学株式会社 β−ラクタム化合物の無水結晶及びその製造法
JP2002338578A (ja) 2001-05-14 2002-11-27 Otsuka Chem Co Ltd β−ラクタム化合物の水和物結晶
JP4716708B2 (ja) * 2004-10-28 2011-07-06 大塚化学株式会社 ペナム化合物の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08505645A (ja) * 1993-11-06 1996-06-18 大鵬薬品工業株式会社 結晶性ペニシリン誘導体並びにその製造及び使用
WO2002009605A2 (en) * 2000-07-31 2002-02-07 Sdgi Holdings, Inc. Contourable spinal staple with centralized and unilateral prongs
JP2002053581A (ja) * 2000-08-11 2002-02-19 Otsuka Chem Co Ltd ペニシリン結晶及びその製造法
JP2002053582A (ja) * 2000-08-11 2002-02-19 Otsuka Chem Co Ltd ペニシリン結晶及びその製造法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105085544A (zh) * 2015-08-19 2015-11-25 齐鲁天和惠世制药有限公司 一种他唑巴坦二苯甲酯的合成方法
CN105085544B (zh) * 2015-08-19 2017-08-08 齐鲁天和惠世制药有限公司 一种他唑巴坦二苯甲酯的合成方法

Also Published As

Publication number Publication date
CA2540601C (en) 2013-01-08
HK1095142A1 (en) 2007-04-27
JP4841129B2 (ja) 2011-12-21
AR046065A1 (es) 2005-11-23
EP1671975B1 (en) 2011-02-09
CA2540601A1 (en) 2005-04-21
US20070060559A1 (en) 2007-03-15
CN1863808B (zh) 2013-06-05
ATE497965T1 (de) 2011-02-15
TWI294880B (ja) 2008-03-21
JP2005132839A (ja) 2005-05-26
EP1671975A4 (en) 2007-03-14
CN1863808A (zh) 2006-11-15
TW200519119A (en) 2005-06-16
KR20060120036A (ko) 2006-11-24
ES2357839T3 (es) 2011-05-03
EP1671975A1 (en) 2006-06-21
KR101109177B1 (ko) 2012-02-17
US7547777B2 (en) 2009-06-16
DE602004031350D1 (de) 2011-03-24

Similar Documents

Publication Publication Date Title
WO2005035538A1 (ja) ペナム結晶及びその製造法
JP5153334B2 (ja) L−ビオプテリンの製造方法
JP3743823B2 (ja) ペニシリン結晶及びその製造法
EP1253147B1 (en) Process for preparing piperonal
CN106749335B (zh) 一种卤代氧头孢类中间体的制备方法和应用
KR20020068517A (ko) 페니실린 결정 및 그 제조 방법
WO2003092889A1 (fr) Procede de preparation de derives de 2-aminopyrazine
JP2000219646A (ja) アダマンタノール類の製造方法
JP5929555B2 (ja) ヒドロキシアダマンタンカルボン酸化合物の製造方法
JP4658806B2 (ja) 3−クロロメチル−3−セフェム誘導体の製造方法
JP2013112676A (ja) アダマンタノール化合物の製造方法
JP2008303173A (ja) チオジグリコール酸ジメチルの製造方法
WO2008032453A1 (fr) Procédé de fabrication d'une hydrazone
JPS6254303B2 (ja)
WO2015199006A1 (ja) 3-(アルキルスルホニル)ピリジン-2-カルボン酸の製造方法
JPH0480918B2 (ja)
CN106458965A (zh) 杂芳基羧酸酯衍生物的制造方法及其制造中间体
JP2846939B2 (ja) 2,3―エポキシ―2,3―ジヒドロ―1,4―ナフトキノンの製造方法
KR100771655B1 (ko) 라베프라졸 및 그 중간체의 제조방법
JP4463622B2 (ja) 1,3−アダマンタンジオール類の製造方法
JP2005097297A (ja) ペニシラン酸化合物の製造方法
JPS6155914B2 (ja)
JP2001064279A (ja) 新規なセレン化合物類
KR20150146007A (ko) 나테글리니드의 신규한 제조방법
JPH04164080A (ja) フラノン誘導体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480029286.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2540601

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004792516

Country of ref document: EP

Ref document number: 1747/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007060559

Country of ref document: US

Ref document number: 10574279

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067006948

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004792516

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067006948

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10574279

Country of ref document: US