WO2005033324A1 - D−乳酸菌生産用生体触媒 - Google Patents

D−乳酸菌生産用生体触媒 Download PDF

Info

Publication number
WO2005033324A1
WO2005033324A1 PCT/JP2004/014037 JP2004014037W WO2005033324A1 WO 2005033324 A1 WO2005033324 A1 WO 2005033324A1 JP 2004014037 W JP2004014037 W JP 2004014037W WO 2005033324 A1 WO2005033324 A1 WO 2005033324A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactic acid
escherichia coli
microorganism
activity
culture
Prior art date
Application number
PCT/JP2004/014037
Other languages
English (en)
French (fr)
Inventor
Mitsufumi Wada
Toshihiro Oikawa
Daisuke Mochizuki
Junko Tokuda
Miyuki Kawashima
Tadashi Araki
Reiko Abe
Hitoki Miyake
Hitoshi Takahashi
Hideki Sawai
Takashi Mimizuka
Takashi Morishige
Yosuke Higashi
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to EP04773417.3A priority Critical patent/EP1669460B1/en
Priority to ES04773417.3T priority patent/ES2619176T3/es
Priority to BRPI0414673A priority patent/BRPI0414673B1/pt
Priority to JP2005514410A priority patent/JP4473219B2/ja
Priority to US10/573,813 priority patent/US8669093B2/en
Publication of WO2005033324A1 publication Critical patent/WO2005033324A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid

Definitions

  • the present invention relates to a microorganism capable of selectively and highly producing D-lactic acid, and a method for producing D-lactic acid using the microorganism. More specifically, the present invention relates to a method for efficiently producing high-purity lactic acid, and more particularly to an efficient method for producing D-lactic acid, which produces a small amount of pyruvic acid. Further, the present invention relates to a method for producing D-lactic acid, which comprises using a microorganism in which FAD-dependent D-lactic acid dehydrogenase is inactivated or reduced.
  • the present invention also relates to a microorganism that produces D-lactic acid without producing succinic acid / fumaric acid as an impurity, and a method for producing D-lactic acid using the same.
  • Polylactic acid is the background technology biodegradable polymer, C_ ⁇ 2 problem and energy manifested as both Sustainability pyridinium tea (sustainability) issues, LCA (life cycle Asesume down Bok) garnered strong attention as the corresponding products Therefore, an efficient and inexpensive production method is required for lactic acid as a raw material.
  • polylactic acid currently industrially produced is an L-lactic acid polymer.
  • Lactic acid includes L-lactic acid and D-lactic acid, and D-lactic acid has recently attracted attention as an intermediate for polymer raw materials, agricultural chemicals, and pharmaceuticals. It is getting.
  • lactic acid as a raw material requires high optical purity.
  • microorganisms that efficiently produce lactic acid such as lactic acid bacteria and filamentous fungi, in nature, and some of the lactic acid production methods using these have already been put to practical use.
  • L actbac illus de lb rue c As microorganisms capable of efficiently producing D-lactic acid, microorganisms belonging to the genus Sporo 1 actobaci 11 us are known.
  • the accumulated amount of lactic acid reached a high level, but by-products other than lactic acid contained in the culture medium, such as acetic acid, ethanol, acetate, and pyruvic acid, could not be removed during the purification process.
  • the quality of the final product lactic acid may be reduced. It is also a serious problem that the optical purity is reduced due to the contamination of optical isomers.
  • Escherichia coli in Escherichia coli, yeast, human cultured cells, etc., which have abundant genomic information and have a good track record as genetically modified hosts, gene disruption can be performed relatively easily. Particularly, Escherichia coli is most preferable in terms of growth speed and easiness of culture. Furthermore, since the lactic acid produced by Escherichia coli is only the D-form, it is a convenient host for the purpose of obtaining D-lactic acid with high optical purity. However, wild-type Escherichia coli has low D-lactic acid productivity and produces various by-product organic acids in addition to D-lactic acid. In order to solve this problem, attempts have been made in the past to modify the metabolic pathway of Escherichia coli by genetic recombination to selectively produce high levels of D-lactic acid.
  • Chang et al. (Chang, D.—E., et. Al., Appl. Environ. Microbiol., Vol. 65 (4), PP1384-1389 (1999)) describe a phosphotransacetylase of Escherichia coli. Pta) and phosphoenol pyruvate carboxylase (hereinafter sometimes abbreviated as PPc) heavy mutants with 5% glucose and amino acids.
  • PPc phosphoenol pyruvate carboxylase
  • L-lactate dehydrogenase (hereinafter sometimes abbreviated as 11d), which is a catalytic enzyme for the reaction to generate pyruvate from the L-form, is expressed under aeration conditions. If there is a method for efficiently performing lactic acid fermentation, it is possible to produce L-forms in the culture medium by utilizing the L-forms contained in the culture medium and to produce D-forms with high optical purity. Although it is expected, there has been no technology to achieve this.
  • D-lactate dehydrogenase is classified into NADH-dependent and FAD-dependent by its difference in coenzyme dependence.
  • NADH-dependent D-lactate dehydrogenase catalyzes the reaction of pyruvate to D-lactate in vivo.
  • NADH-dependent D-lactate dehydrogenase derived from Escherichia coli is called 1 dhA.
  • Yang et al. (Yang, ⁇ . ⁇ ⁇ , et. Al., Metab. Eng., Vol. 1 (2), ppl41-152 (1999)) introduced an expression vector incorporating the 1 dh A gene into Escherichia coli. It has been reported that D-lactic acid accumulation can be improved as low as about 8 g / L. That is, it is known from the data disclosure of Yang et al. That the enhancement of 1-dhA activity in Escherichia coli improves the productivity of D-lactic acid. On the other hand, according to the report of Punch et al. [: Bunch, PK, Microbiology, Vol.
  • Examples of overexpression of D-lactate dehydrogenase (hereinafter sometimes referred to as ldh) derived from bacteria other than Escherichia coli include Cocker et al.
  • 1 dh derived from Lacto obacillus helveticus. [Kochhar, S., Eur. J. Biochem., (1992) 208, 799-805) and Lacto ob acillus bul garicus 1 dh expression examples include Cocker et al. [Kochhar, S., Biochem.
  • the D-lactic acid productivity of microorganisms having inactivated or reduced pf 1 activity and enhanced 1 dh A activity has not been well known yet.
  • the gene enrichment method using an expression vector may cause a problem that the vector is dropped, the expression level of the target gene is reduced, and the productivity of the target substance is reduced.
  • there are several problems to be solved in the method of enhancing the 1 dh gene using an expression vector when applied to industrial production of D-lactic acid and there is a need for an alternative method of enhancing the gene.
  • no report has been made on such efforts.
  • d 1 d is stored in the database of E.co 1 i Genetic Stock Center (CGSC) attached to Y a 1 e University, which is one of the institutes for substituting E. coli strains.
  • CGSC E.co 1 i Genetic Stock Center
  • pf 1 double mutants of pf 1 were searched, the results of Mat-Jan et al. (Mat-Jan, F., et. Al., J. Bacteriol., Vol. 171 (1), pp342-348 (1989)) is output as a relevant case, but as a result of actual scrutiny, this paper did not find any description of double-disrupted strains d1d and pf1.
  • D-lactic acid has achieved both productivity and selectivity at the same level as the industrial level by fermentation production using microorganisms.
  • succinic acid-fumaric acid a major by-product organic acid, was not used.
  • Patent Document 1 JP-A-11-056361
  • Non-Patent Document 1 Chang, D.-E., et. Al., Appl. Environ. Microbiol., Vol. 65 (4), ppl 384-1389 (1999)
  • Non-Patent Document 2 Zhou, S., et. Al., Appl. Environ. Microbiol., Vol. 69 (1), PP399-407 (2003)
  • Non-patent document 3 Con tag, P.R., et.al., Appl. Environ. Microbiol., Vol. 56 (12), PP3760-3765 (1990)
  • Non-patent document 4 Yang, YT "et. Al., Metab. Eng., Vol. 1 (2), ppHl-152 (1999)
  • Non-patent document 5 Bunch, PK, et. Al., Microbiology, Vol. 143 (Pt 1), pl87-195 (1997)
  • Non-Patent Document 6 ochhar, S., et. Al., Eur. J. Biochem., Vol. 208 (3), PP799-805 (1992)
  • Non-Patent Document 7 Kochhar, S., et. Al., Biochem. Biophys. Res. Vol.185 (2), pp705-712 (1992)
  • Non-Patent Document 8 Sol em, C., et. Al., Appl. Environ. Microbiol., Vol. 68 (5), PP2397-2403 (2002)
  • Non-Patent Document 9 Shaw, L., et. Al., J. Bacteriol., Vol. 121 (3), ppl047-1055 (1975)
  • Non-Patent Document 10 Barnes, E.M., et.al., J. Biol. Chem., Vol.246 (17), PP5518-5522 (1971)
  • Non-Patent Document 11 Mat-Jan, F., et. Al., J. Bacteriol., Vol. 171 (1), pp342-348 (1989)
  • Non-Patent Document 12 Courtright, J.B. et.al., J. Bacteriol., Vol. 102 (3), PP722-728 (1970)
  • Non-Patent Document 13 Dreyfus, LA, et. Al., J. Bacteriol., Vol. 136 (2), pp757-764 (1978) DISCLOSURE OF THE INVENTION
  • One of the objects of the present invention is high production of D-lactic acid.
  • Another object of the present invention is to provide a method for producing D-lactic acid, which has high optical purity and low amount of by-product organic acids, and is highly selective.
  • Another object of the present invention is to provide a method for producing D-lactic acid in which the amount of pyruvic acid that has been conventionally difficult to remove from a medium in which lactic acid is produced and accumulated by a microorganism as an impurity organic acid has been reduced, has been reduced. Is to do.
  • Another object of the present invention is to provide a method for enhancing a stable D-lactic acid dehydrogenase gene, which is an alternative to the method using an expression vector, and to provide a method for producing D-lactic acid at a higher level. .
  • the present inventors have conducted intensive studies to solve these problems, and as a result, the i-pyruvate formate lyase (Pf 1) activity was inactivated or reduced, and the NAD derived from Escherichia coli We found that bacteria with enhanced H-dependent D-lactate dehydrogenase (1 dh A) activity produced D-lactate in a shorter time than ever before, and achieved an unprecedentedly high accumulation.
  • the gene encoding 1 dh A is linked on the genome to the promoter of a gene that controls the expression of proteins involved in glycolysis, nucleic acid biosynthesis, or amino acid biosynthesis.
  • the microorganisms expressed in this way it is possible to produce a significant amount of D-lactic acid in a shorter time than the method of enhancing gene expression using an expression vector.
  • the amount of D-lactate dehydrogenase expressed in the cell is larger than that of the method of the present invention, but for some reason, this enzyme is not directly linked to the high production of lactic acid. It is extremely surprising that the productivity of D-lactic acid is dramatically improved even if the expression level of the enzyme in the cell is not so high as described above.
  • the inventors found that a part of pyruvic acid present in the microorganism culture solution was actually produced from d-lactic acid by d1d, and furthermore, the d1d gene was substantially impaired.
  • the microorganisms that have been activated or reduced, the growth of the microorganisms is not suppressed as compared to the host, and it contains high-quality D-lactic acid with a reduced pyruvate content in the medium. It has been found that a culture solution can be obtained.
  • the present inventors have a TCA cycle, inactivate or reduce malate dehydrogenase (mdh) activity, and inactivate or reduce aspartate ammonium lyase (asp A) activity.
  • the present invention has been accomplished by finding that by using the above microorganisms, it is possible to suppress the by-products of succinic acid and fumaric acid while maintaining high productivity of D-lactic acid.
  • the present invention is as follows.
  • a method for producing lactic acid comprising recovering lactic acid from lactic acid.
  • a bacterium with enhanced NADH-dependent ffiD-lactate dehydrogenase (I dh A) activity derived from Escherichia coli and inactivated or reduced pyruvate formate lyase (pf 1) activity is cultured and obtained.
  • a method for producing D-lactic acid comprising recovering D-lactic acid from the obtained culture.
  • pf 1 A microorganism characterized in that the activity is inactivated or reduced, and / or the activity of NADH-dependent D-lactate dehydrogenase (ldhA) derived from Escherichia coli is enhanced.
  • microorganism according to any one of [7] to [9] is cultured in a liquid medium, D_lactic acid is generated and accumulated in the culture solution, and D-lactic acid is separated from the culture solution.
  • Microorganisms whose FAD-dependent D-lactate dehydrogenase (d1d) activity has been inactivated or reduced are cultured in a liquid medium, and D-lactic acid is produced and accumulated in the culture medium.
  • a method for producing D-lactic acid comprising separating D-lactic acid.
  • NADH-dependent D-lactate dehydrogenase derived from Escherichia coli is involved in the production of proteins involved in glycolysis, nucleic acid biosynthesis, or amino acid biosynthesis.
  • the promoter of a gene that controls the expression of proteins involved in glycolysis, nucleic acid biosynthesis, or amino acid biosynthesis in Escherichia coli is a promoter of the glyceraldehyde 3-phosphate dehydrogenase gene derived from Escherichia coli. Escherichia coli described in [18].
  • [21] A method for producing D-lactic acid by culturing the microorganism according to any one of [15] to [20] using a medium.
  • mdh malate dehydrogenase
  • pf1 pyruvate formate lyase
  • [29] The method for producing lactic acid according to any one of [1] to [6], [10] to [14], [21], and [28], which is characterized by culturing under aeration conditions. .
  • the aeration conditions are for water at a temperature of 30 ° C, under conditions that allow oxygen supply that can be achieved under conditions where the oxygen transfer capacity coefficient KL & at normal pressure is 1 hi or more and 400 hi or less.
  • (31) the method according to any one of (1) to (6), (10) to (14), (21), (28) to (30), wherein the culture pH is 6 to 8.
  • a microorganism having high D-lactic acid productivity and D-lactic acid selectivity is provided. Then, by culturing the microorganism produced according to the present invention to produce D-lactic acid, it becomes possible to produce high-purity D-lactic acid more economically as compared with the existing method.
  • a bacterium which produces D-lactic acid with a small amount of pyruvic acid produced.
  • FIG. 1 is a graph showing the time-dependent change in the amount of D-lactic acid accumulated in a culture solution in Example 20.
  • the triangles indicate the results of the MG1655Apfl Ad ld strain (Example 15), and the squares indicate the results of the MG1655Apfl Ad ld / pGAP1 dhA strain (Example 18).
  • the circle shows the result of the MG1655ApflAdld / GAPp1dh genome-introduced strain (Example 19).
  • FIG. 2 is a graph showing the time-dependent change in the lactic acid accumulation concentration in the culture solution in Example 24.
  • the cross shows the results for the ⁇ f 1 ⁇ 1 d strain
  • the circles show the results for the ⁇ f 1 ⁇ 1 dAm dh strain
  • the triangles show the results for the ⁇ f 1 ⁇ 1 dApp c strain
  • the squares show the results for the ⁇ f 1 ⁇ strain.
  • the results for the d1d ⁇ frd strain are shown.
  • FIG. 3 is a graph showing the change over time of the succinic acid accumulation concentration in the culture solution in Example 24.
  • the cross indicates the results for the ⁇ pf1 ⁇ d1d strain
  • the circle indicates the results for the ⁇ pf1 ⁇ d1d ⁇ mdh strain
  • the triangle indicates the results for the ⁇ f1 ⁇ 1 ⁇ pc strain
  • the square indicates the results for the ⁇
  • the results of the f1 ⁇ d1d ⁇ frd strain are shown.
  • FIG. 4 is a graph showing the change over time in the lactic acid accumulation concentration in the culture solution in Example 25.
  • the circles show the results of the ⁇ p ⁇ 1 ⁇ d 1 d Amdh ⁇ asp strain
  • the triangles show the results of the ⁇ ⁇ f 1 ⁇ d 1 d Amdh ⁇ asp / GAP 1 dh A genome-introduced strain
  • the squares show the results.
  • the results of the ⁇ pf 1 ⁇ d 1 d Amdh strain are shown.
  • FIG. 5 is a graph showing the change over time in the concentration of fumaric acid accumulated in the culture solution in Example 25.
  • the circles show the results of the ⁇ pf 1 ⁇ d 1 d Amd h ⁇ asp strain
  • the triangles show the results of the ⁇ f 1 ⁇ 1 dAmdhA s pZGAP 1 dh A genome-introduced strain
  • the squares show the results of the ⁇ pf 1 ⁇ d
  • the results for the 1 d Amdh strain are shown.
  • the pyruvate formate lyase (pf1) in the present invention is classified into the enzyme number 2.3.1.54 based on the report of the International Union of Biochemistry (IUB) Enzyme Committee, and formate acetyl It is an enzyme also called transferase.
  • This enzyme is a generic term for enzymes that reversibly catalyze the reaction that produces formic acid from pyruvate. Inactivation in the present invention refers to a state in which the activity of the enzyme measured by an existing measurement system is below the detection limit.
  • reduction in the present invention refers to a state in which the activity of the enzyme is significantly reduced due to mutation and / or genetic recombination of the gene encoding the enzyme, compared to the state before the treatment.
  • the heterofermentative bacterium in the present invention means a bacterium capable of fermentatively decomposing sugar and producing at least one or more substances selected from formic acid, acetic acid, succinic acid, and ethanol in addition to lactic acid.
  • Escherichia coli is preferred as the heterozygous bacterium of the present invention, and as the heterofermentative bacterium in which the activity of pyrpetoformate lyase (pf1) is inactivated or reduced
  • Examples include any Escherichia coli wild-type pf1 gene-disrupted strain and Escherichia coli E. coli MT-10934 that can be prepared by the methods described in the Examples and the like.
  • the above MT—10934 is a strain in which the activity of pf1 has already been confirmed to be reduced, and the present invention can be easily carried out.
  • This strain is deposited under the deposit number FE RM BP-107, at the Patent Organism Depositary, the National Institute of Advanced Industrial Science and Technology, National Institute of Advanced Industrial Science and Technology, 1-1-1, Tsukuba, Higashi, 1-chome, Ibaraki Prefecture. It has been deposited on January 8, 2002 based on the Budapest Treaty on International Recognition of Deposits of Microorganisms. :
  • a single mutant of pf1 is a wild-type strain having an arbitrary F— property, such as MG1655, W3110, etc. because MT—10934 has the property of H fr C. After mixing for 2 hours in LB medium and LB medium, dilute to obtain a single colony and select the desired mutant.
  • the pf1 mutant has a lower amount of formic acid in anaerobic culture than the wild-type strain, and can be obtained by selecting them as an index.
  • the culture according to the present invention means culturing the microorganism according to the present invention using a medium.
  • the medium to be used should be a medium containing organic trace elements, nucleic acids, vitamins, etc. required by microorganisms to produce a carbon source, a nitrogen source, inorganic ions, and lactic acid. No restrictions.
  • the medium to which two or more amino acids are added in the present invention means a medium containing at least two or more of naturally occurring amino acids, and includes yeast extract, casamino acid, peptone, whey, molasses Also, a medium containing a hydrolyzate of a natural product such as corn steep liquor or a natural product extract is included.
  • a medium containing 0.5% to 20% of at least one selected from yeast extract, peptone, whey, molasses, corn steep liquor, or a mixture thereof is preferable. % To 15% is more preferable. Particularly, addition of corn steep liquor has a great effect. At this time, it is better not to add a salt such as ammonium sulfate.
  • the medium is usually a liquid medium.
  • the cultivation conditions vary depending on the cells and cultivation apparatus prepared.
  • the culture temperature should be 20 to 40 ° C, more preferably 25 ° C.
  • the culture is preferably performed at a pH of from 6.0 to 7.2, and the pH is preferably adjusted from 6.0 to 7.2, more preferably from 6.5 to 6.9, with NaOH, NH 3 or the like.
  • the cultivation time is not particularly limited, but is the time required for the cells to grow sufficiently and to produce lactic acid.
  • MT-10934 may produce formic acid in the pH range of pH 7 to 7.5, whereas in the pf1 gene-disrupted strain of MG1655, no production of formic acid is confirmed by the culture method of the present invention. Therefore, Escherichia coli as a heterozygous bacterium When formic acid is observed as in the case of MT-10934 when lactic acid is produced using a medium with a pH near neutral with the cells used, During production, the pH of the medium is controlled to be slightly more acidic than neutral. If no formic acid is observed as in the case of the MG1655 pf1 gene-disrupted strain, the medium must be used for the actual production of lactic acid. The maximum productivity can be obtained by controlling the pH to neutral or slightly neutral.
  • the culture in the present invention refers to bacterial cells, culture solutions, and processed products thereof produced by the above-described method.
  • a generally known method can be used from a culture solution, for example, a method of directly distilling after acidification, or a method of lactide.
  • a method of forming and distilling, a method of adding alcohol and a catalyst, esterifying and then distilling, a method of extracting in an organic solvent, a method of separating with an ion exchange column, a method of concentrating and separating by electrodialysis, and a combination thereof Method can be adopted.
  • the cells produced by the method of the present invention produce a group of enzymes suitable for producing lactic acid, it is possible to further produce and recover lactic acid by using this enzyme, and it is also necessary to produce lactic acid from the culture. Considered as part of the recovery method.
  • the NADH-dependent D-lactate dehydrogenase (ldh A) derived from Escherichia coli in the present invention is an enzyme derived from Escherichia coli that produces D-lactic acid and NAD from pyruvate and NADH.
  • An enzyme produced from a gene having a sequence contained in the above can be exemplified.
  • “enhanced 1dh A activity” means that a gene encoding 1 dh A is significantly more mutated and / or recombined than a state before the treatment thereof due to mutation and / or genetic recombination of the gene encoding 1 dh A. It refers to a state where the activity of the enzyme produced is increased.
  • the bacterium in the present invention is a general prokaryotic microorganism.
  • MT-10934 / pG1y1 described in Examples of the present invention is exemplified.
  • dh A can be exemplified. This strain is obtained by culturing a heterolactic acid-fermenting bacterium with inactivated or reduced pyruvate formate lyase (pf1) activity described in [1] above in a medium supplemented with two or more amino acids. Further, it can be suitably used for a lactic acid production method characterized by recovering lactic acid from nutrients.
  • a gene encoding 1 dh A is replaced with a promoter of a gene that controls the expression of a protein involved in glycolysis, nucleic acid biosynthesis, or amino acid biosynthesis. It is effective to integrate the ligated state into an expression plasmid and introduce it into a desired bacterium.
  • the promoter of a gene that controls the expression of a protein involved in the glycolysis, nucleic acid biosynthesis, or amino acid biosynthesis is a strong promoter that functions constantly in bacteria, preferably in Escherichia coli.
  • a promoter that is not easily suppressed in expression even in the presence of glucose and specifically, a dalyseraldehyde triphosphate dehydrogenase promoter, a serine hydroxymethyltransferase (g1yA) promoter.
  • the bacterium thus obtained has an increased amount of accumulated D-lactic acid as compared with the case in which the expression of 1dhA is not enhanced when producing D-lactic acid under aeration conditions, and pyruvine, an impurity, is produced. As the acid concentration decreases, the optical purity of D-lactic acid can be improved.
  • the FAD-dependent D-lactate dehydrogenase (d1d) in the present invention is an enzyme that catalyzes a reaction that produces pyruvate from D-lactic acid in the presence of oxidized flavin adenine dinucleotide as a coenzyme. Refers to a generic name.
  • the microorganism in the present invention is not particularly limited as long as it is a microorganism having a D-lactic acid-producing ability, and even a microorganism having no D-lactic acid-producing ability can be modified to have a D-lactic acid-producing ability by some modification. And microorganisms having the same.
  • the d 1 d activity in the present invention is inactivated or reduced, and or A microorganism characterized in that pf 1 activity is inactivated or reduced and / or 1 dhA activity is enhanced, such as Escherichia coli MT-109.
  • the promoter of a gene that controls the expression of a protein involved in a glycolysis system, a nucleic acid biosynthesis system, or an amino acid biosynthesis system is a strong promoter that constantly functions in a microorganism, and in the presence of glucose.
  • the promoter is less likely to be suppressed in expression, and specific examples thereof include the promoter of dariceraldehyde 3-phosphate dehydrogenase (hereinafter sometimes referred to as GAPDH) and the promoter of serine hydroxymethyltransferase.
  • the promoter according to the present invention means a site to which RNA polymerase having a sigma factor binds and initiates transcription.
  • GAP DH from U.S. origin derived from Escherichia coli is described in base number 397-440 in the base sequence information of GenBankaccessonnumberX02662.
  • the gene encoding 1 dhA is used on the genome by using the promoter of the gene that controls the expression of a protein involved in the glycolysis, nucleic acid biosynthesis, or amino acid biosynthesis.
  • a microorganism characterized by expressing pf1 activity and having inactivated or reduced pf1 activity and having inactivated or reduced dd1 or d1d activity includes Escherichia coli E. coli MT-10994. (FER M BP-10058) strain can be exemplified.
  • the Escherichia coli MT-10994 strain is expressed by operably linking the 1 dhA gene to the GAP DH promoter on the genome, and pf 1 B and d 1 d are inactivated by gene disruption. Therefore, the present invention can be easily implemented using this.
  • This strain has a deposit number of FERM BP-10058, and is located at 1-1, Higashi 1-1, Tsukuba City, Ibaraki Prefecture. Deposited on March 19, 2004 based on the Budapest Treaty on International Recognition.
  • the TCA cycle is a carbon skeleton such as sugar, fatty acid, and many amino acids. Is a metabolic pathway for the ultimate complete oxidation of, and is also known as the citrate cycle, the tricarboxylic acid cycle, and the Krebs cycle.
  • Malate dehydrogenase (mdh) in the present invention is classified into enzyme number 1.1.1.137 based on the report of the International Union of Biochemistry (I.U.B.) Enzyme Committee, and is derived from malic acid. It refers to a general term for enzymes that reversibly catalyze the reaction of producing oxa mouth acetic acid in the presence of oxidized nicotinamide adenine dinucleotide, which is a coenzyme.
  • the microorganism in which the mdh activity is inactivated or reduced, the pf1 activity is inactivated or reduced, and / or the d1d activity is inactivated or reduced, Escherichia coli MT—109 94 strains can be exemplified.
  • the strain is a heterolactic acid-fermenting bacterium in which the activity of pyrpetoformate lyase (pf1) is inactivated or reduced, as described in [1] above, in a medium supplemented with two or more amino acids.
  • the present invention can be suitably used for a method for producing lactic acid, which comprises culturing and recovering lactic acid from the obtained culture.
  • Aspartate ammonium lyase (asp A) in the present invention is classified into the enzyme number 4.3.1.1 according to the report of the International Union of Biochemistry (I.U.B.) Enzyme Committee, It is also called an enzyme.
  • This enzyme is a generic term for enzymes that reversibly catalyze the reaction to produce fumaric acid from L-aspartic acid.
  • the aeration conditions referred to here do not necessarily mean that air must pass through the culture solution.
  • the upper surface may be ventilated while the culture medium is agitated and the air layer on the culture solution is ventilated. Means that gas containing oxygen flows into the inside of the culture tank.
  • the dissolved oxygen concentration changes depending on the combination of the internal pressure, the position of the stirring blade, the shape of the stirring blade, and the stirring speed.Therefore, lactic acid productivity and the amount of organic acids other than lactic acid are used as indices as follows. Optimal conditions can be determined.
  • Another index of optimal aeration conditions is that formic acid, acetic acid, succinic acid, and ethanol produced by anaerobic cultivation of the MT-10934 strain are less than 5.OgZL, more preferably less than 1.OgZL and lactic acid. These are the aeration conditions achieved by the amount of aeration and the stirring speed as produced.
  • Another indicator of optimal aeration conditions is the concentration of L-lactic acid within 10 to 100 hours when the MT-10934 strain is cultured in a medium containing 0.3% of the optical isomer L_lactic acid. Is lower than 0.02%.
  • the aeration conditions described above do not need to be performed consistently from the beginning to the end of the culture, and favorable results can be obtained by performing them in a part of the culture process.
  • composition of the medium used for the culture is shown in Table 1 below.
  • Adekinol LG 126 0.1% This medium contains 0.34% of reduced sugars after acid hydrolysis derived from corn steep liquor, 0.31% of D-lactic acid, 0.31% of L-lactic acid, and 0 free amino acids. Contains 33% and trace amounts of various organic acids.
  • Escherichia coli MT-10934 strain was inoculated into 25 ml of LB Broth, Miller culture solution (Difco 244620) placed in an Erlenmeyer flask as a preculture, followed by stirring at 120 rpm overnight, and then 1 L The whole volume was inoculated into a culture vessel (culture apparatus BM J-01 manufactured by ABLE) containing 475 g of the medium having the above composition. The cultivation was carried out at atmospheric pressure, aeration of 0.5 V vm, stirring speed of 150 rpm, cultivation temperature of 3 It, pH 6.7 (adjusted with NaOH) until glucose was completely consumed.
  • Formic acid 1.8g / L ND ⁇ 0.lg / L
  • Acetic acid 2.g / L ND 0.lg / L
  • Ethanol 0.8g / L ND 0.lg / L
  • MG1655 was obtained as ATCC47076 from American 'Type' Culture, Collection (AT CC).
  • g 1 y A Amplified by PCR using E. coli genomic DNA as a template to obtain a promoter and SEQ ID NO: 1 and SEQ ID NO: 2 as a probe. Restriction fragment Digestion with elementary EcoRI yielded a fragment encoding the g1yA promoter of about 850 bp. Furthermore, in order to obtain a structural gene of 1 dhA, the genome DNA of Escherichia coli was used as a template, SEQ ID NO: 3 and SEQ ID NO: 4 were used as probes to amplify by PCR, and the obtained fragments were restricted.
  • Lactic acid-producing bacteria MT-10934 / pG1y1dhA strain was obtained by transforming the obtained plasmid pG1y1dhA into Escherichia coli 'coli MT-10934 strain.
  • pUC 18 can be obtained by extraction from A TCC 37253 available from American Type Culture Collection by a standard method.
  • the MT-10934 strain has been registered with the Patent Organism Depositary of the National Institute of Advanced Industrial Science and Technology (AIST) on November 8, 2002, at 1-1-1, Higashi 1-chome, Tsukuba, Ibaraki Prefecture, based on the above deposit number. Has been deposited.
  • Example 2 The lactic acid-producing bacterium MT—10934 / pG1y1dhA strain obtained in Example 2 was inoculated into 25 ml of LB Broth, Mi11er culture solution (Difco 244620) placed in an Erlenmeyer flask as a preculture. Then, the cells were cultured by the method described in Example 1. After completion of the culture, lactic acid quantification and optical purity were measured by HP LC according to a standard method. Table 3 shows the results. Table 3
  • Example 4 Cloning of the Neighboring Region of the Escherichia coli pf1 Gene
  • the entire nucleotide sequence of the genome DNA of Escherichia coli is known (GenBank accession numbe r U00096), and the pyrpeto of Escherichia coli 'coli is known.
  • the nucleotide sequence of the gene encoding formate lyase (hereinafter sometimes referred to as pf1) has also been reported (Genbank accession um ber AE 000192) 0 Gene encoding pf1 (2 , 283 bp), four oligonucleotide primers represented by SEQ ID NOS: 5, 6, 7 and 8 were synthesized.
  • the primers of SEQ ID NOs: 6 and 7 have an SphI recognition site at the 5 'end.
  • Escherichia 3UMG 1655 strain genomic DNA was prepared by the method described in Current Protocolsin Mo ecu lar Biol ogy (JonWi 1ey & Sons), and the resulting genomic DNA 1 ⁇ m was obtained.
  • Primer DN A 100 pmo 1 each Approximately 1.8 kb (hereinafter sometimes referred to as pf IB-L fragment) and about 1.3 kp (hereinafter referred to as pf 1B-R fragment) by performing PCR under normal conditions using DNA fragment was amplified.
  • This DNA fragment was separated and recovered by agarose electrophoresis, and the pf1B-L fragment was digested with HindIII and SphI, and the pf1B-R fragment was digested with SphI and PstI, respectively. Two of these digested fragments were combined with a temperature-sensitive plasmid pTH18cs1 (GenBank accession onumber AB 0 196 10) (Hashimoto-Gotoh, T., et.al., Gene, Vol. 241).
  • Example 5 Preparation of Escherichia coli MG1655 strain pf1 gene-disrupted strain
  • the plasmid ⁇ f1 obtained in Example 4 was transformed into the Escherichia coli MG1655 strain, and chloramphine was used at 30 which allows the cells to retain a temperature-sensitive plasmid.
  • Transformants were obtained by overnight culture on LB agar plates containing Enicol 1 O ⁇ gZml. The obtained transformant was cultured in LB medium at 30 for 3 hours to overnight, then appropriately diluted with LB liquid medium or physiological saline, and spread on an LB agar plate containing 10 g ml of chloramphenicol. .
  • the LB agar plate was cultured in 42 that cannot retain the temperature-sensitive plasmid, and the grown transformant was obtained as a strain in which the full-length plasmid had been integrated into the Escherichia coli genome by homologous recombination between the extragenome and the genome.
  • Genomic DNA was obtained from this strain, and PCR was performed using the DNA as a type II to confirm that the chloramphenicol resistance gene of pTHI8cs1 exists on the genome, and that the gene encoding pf1B It was confirmed that the strain had a full-length plasmid integrated into the Escherichia coli genome based on the presence of regions homologous to the 5′-side region and the 3′-side region in the genome.
  • the strain having the entire plasmid integrated into the Escherichia coli genome was inoculated into a 100-ml paffled flask containing 20 ml of LB liquid medium without clamphenicol, and cultured with shaking at 3 for 4 hours.
  • genomic DNA was obtained from the selected strain, and a ⁇ -type PCR was performed to select a strain in which the gene encoding pf1 was deleted, and this strain was named MG 1655 ⁇ pf1B strain. .
  • Example 6 Production of lactic acid by MG1655 ⁇ f1 strain using casamino acid A plurality of Erlenmeyer flasks containing 25 g of LB Brot, 1 161 ′′ culture solution (0 ⁇ fc o244620) were prepared as preculture. Lactic acid-producing bacteria MG 1655, MG 1655 ⁇ pf 1 strain, and MG 1655 ⁇ pf 1 strain, and the plasmid pG 1y 1 dhA described in Example 2 were recombined by a conventional method into MG 1655 ⁇ pf 1 / pG 1 y.
  • MG1655, MG1655 ⁇ f1, and MG1655Apfl / pGlyhdhA were separately inoculated into 25 g of a culture solution placed in an Erlenmeyer flask as a preculture, and stirred and cultured at 30 ° C and 120 rpm overnight. After that, the whole amount was separately inoculated into a 1-L culture tank (culture apparatus BMJ-01 manufactured by AB LE) containing 475 g of the medium shown in Table 6. The culture was performed at atmospheric pressure, aeration rate of 0.5 vvm, stirring speed of 300 rpm, culture temperature of 35 and pH 7.2 (adjusted with NaOH) for 24 hours. After completion of the culture, lactic acid and pyruvic acid in the obtained culture solution were measured by HP LC according to a standard method. Table 7 shows the results. Table 6 Glucose 10%
  • D-lactic acid accumulation Amount 52g / L 95g / kg medium 95g / kg medium
  • Dry cell weight 2.5g / L 2.5g / L 2.5g / L
  • Example 8 MG1655 ⁇ f1 was inoculated into 25 g of a culture solution placed in an Erlenmeyer flask as a high pre-culture of lactic acid using the MG1655 ⁇ f1 strain under a high Darcos concentration, and the mixture was inoculated at 120 r overnight. After culturing with stirring at pm, the whole amount was inoculated into cultivation tank of ABLE's culture device BM J-01 containing 475 g of the medium shown in Table 8 with the glucose concentration changed from 10% to 15%. did. Culture was performed at atmospheric pressure, aeration of 0.5 vvm, stirring speed of 300 rDm, culture temperature of 35, pH 7.2 (adjusted by NaOH). We went until the course withered. After completion of the culture, lactic acid was measured by HP LC according to a standard method. Table 9 shows the results. Table 8
  • MG 1655 ⁇ f1 was inoculated into 25 g of the culture solution in an Erlenmeyer flask as a preculture, and the mixture was stirred at 120 rpm overnight, and then placed in a culture tank of an AB LE culture device BM J-01. The whole amount was inoculated into a medium containing 475 g of a medium in which the corn steep liquor concentration shown in Table 10 was changed from 1 to 10%.
  • the culture was carried out at atmospheric pressure, aeration of 0.5 vvm, stirring speed of 300 rpm, culture temperature of 35, pH 7.2 (adjusted with NaOH). ) For 24 hours. After completion of the culture, lactic acid was measured by HPLC according to a standard method. Table 11 shows the results. Table 10
  • MG 1655 ⁇ f1B / pG1y1dhA was inoculated into 25 g of a culture solution in an Erlenmeyer flask as a preculture, followed by stirring culture at 120 rpm overnight, and then a ABLE BMJ— The total amount was inoculated into the culture tank No. 01 containing 475 g of a medium in which the concentration of corn steep liquor shown in Table 15 was changed from 1 to 10%.
  • Culture The test was carried out at atmospheric pressure, aeration rate of 0.5 vvm, stirring speed of 300 1.1, culture temperature of 35 ° C and pH 7.2 (adjusted with NaOH) for 24 hours. After completion of the culture, the measurement of D-lactic acid was performed by HPLC according to a standard method. Table 16 shows the results. Table 15
  • the 1% corn steep prima spike has the lowest productivity of all, but has an unprecedented production rate of 58 gZL in 24 hours.
  • the conversion rate of glucose used to D-lactic acid was maintained at 90% or more.
  • MG1655 ⁇ f1B / pG1y1dhA was inoculated into 25 g of a culture solution placed in an Erlenmeyer flask as a preculture, followed by stirring culture at 120 rpm overnight, and then an ABLE BMJ-01-01 culture device.
  • the total amount was inoculated into a culture tank containing 475 g of the medium shown in Table 17.
  • the culture was performed at atmospheric pressure, aeration conditions shown in Table 18, culture temperature 35, PH 7.2 (adjusted with NaOH) for 24 hours.
  • the amount of residual glucose was measured by Darcos CII-Test Co. (Wako Pure Chemical Industries). Table 17
  • Test plot 1 2 3 4 Ventilation volume (vvm) 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Stirring speed (rpm) 200 200 400 600
  • Example 13 Preparation of Escherichia coli MG1655 Strain d1d Gene Deletion Strain CAACACCAAGCTTTCGCG (SEQ ID NO: 9) and TAC were prepared based on the genetic information of the d1d gene vicinity region of genomic DNA derived from MG1655 strain.
  • TCCACTCCTTGTGGTGGC SEQ ID NO: 10
  • AACTGCAGAA ATTACGGATGGCAGAG SEQ ID NO: 11
  • TGTTCTAGAAA PCR was performed using GTTCTTTGAC (SEQ ID NO: 12).
  • Each of the obtained fragments was digested with restriction enzymes Hindll and PstI, and PstI and Xbal to obtain fragments of about 1140 bp.
  • This fragment was transformed with the temperature-sensitive plasmid ⁇ 18cs1 (Hashimoto-Gotoh, T., et.al., Gene, Vol. 241 (1), ppl85-191 (2000)) using Hind III, XbaI.
  • DH5 ⁇ strain is transformed at 30 "C to obtain a transformant growing on an LB agar plate containing 1.0 M gZml of chloramphenicol.
  • the obtained colony was cultured overnight in an LB liquid medium containing chloramphenicol 10 / ml at 30 at 30 ° C., and the plasmid was recovered from the obtained cells.
  • Transformation was performed to obtain a transformant growing on an LB agar plate containing 10 g / ml of chloramphenicol
  • the obtained transformant was spread on an agar plate and cultured overnight at 30.
  • LB agar plate containing 1 Og / m1 of chloramphenicol was obtained these cultures.
  • the procedure of obtaining a colony growing at 42 was repeated once again, and a clone in which the entire plasmid was integrated into the chromosome by homologous recombination was selected. Has no plasmid in the cytoplasm.
  • the above clone was spread on an LB agar plate, cultured overnight at 30 ° C., inoculated into an LB liquid medium (3 ml Z test tube), and cultured with shaking at 421 for 3 to 4 hours. This was diluted as appropriate single colonies should be obtained (10 one about 2 to 10 6), plated on LB agar plates, and cultured overnight at .42, to obtain colonies. Pick up 100 colonies at random from the colonies that appeared, grow them on LB agar plates and LB agar plates containing 10 g / m1 of chloramphenicol, and grow them only on LB agar plates. A sensible crown was chosen.
  • the plasmid ⁇ f1 obtained in Example 4 was transformed into the MG 1655 Ad 1d strain to obtain a transformant growing on an LB agar plate containing chloramphenicol 10 [Ig / m1].
  • the resulting transformant was spread on an agar plate, and cultured at 30 with an agar plate. Next, these cultured cells were applied to an LB agar plate containing 10 gZml of chloramphenicol to obtain colonies growing at 42.
  • a MG1655 d1d, Pf1 gene-deleted strain was obtained from the resulting clone in the same manner as in Example 5, and named MG1655 Apfl Adld strain. [Example 16] Introduction of 1 dh A expression vector into MG 1655 Ad 1d strain and MG 1655 Apfl Ad ld strain
  • Example 2 By transforming the plasmid pG1y1dhA obtained in Example 2 into MG1655 ⁇ (11 d strain, MG1655Apfl Ad ld strain, respectively, the MG1655 ⁇ 1 d / pG1y1 dhA strain, MG1655 Ap fl Ad ld / pG lyl dhA strain was obtained.
  • Example 17 MG 1655 strain, MG 1655 Ad ld strain, MG 1655 Ap fl strain, MG 1655 um pfl Ad ld strain, MG 1655 ⁇ d 1 d / p G 1 y 1 dhA strain, MG 1655 Apfl Ad ld / MG1655, MG1655 Ad 1d, MG1655Apf1, MG1655Apfl1, MG1655Apfl Ad ld in 25 ml of LB Broth, Miller culture in a Erlenmeyer flask as a preculture.
  • MG1655AdIdZpGlyldhA strain and MG1655ApflAdIld / pGlyldhA strain were inoculated, respectively, and cultured with stirring at 120 rpm.
  • the entire amount of each preculture was transferred to a culture tank of an ABLE culture device BMJ-01 containing 475 g of a medium having the composition shown in Table 20, and cultured.
  • the culture was performed for 96 hours at atmospheric pressure, aeration rate of 0.5 vvm, stirring speed of 200 rpm, culture temperature of 31 ° C, and pH 6.7 (adjusted with NaOH).
  • the nucleotide sequence of the 1 dhA gene of Escherichia coli has already been reported (GenBank accession number U36928).
  • GPDH Chryspere aldehyde 3-phosphate dehydrogenase
  • AA and genomic DNA of Escherichia coli MG 1655 were used as templates.
  • SEQ ID NO: 14 the obtained DNA fragment was digested with a restriction enzyme EcoRI to obtain a fragment encoding a GAPDH promoter of about 100 bp.
  • a D-lactate dehydrogenase structural gene (1 dhA) the genome DNA of Escherichia coli MG1655 was prepared as a template.
  • the obtained colony was cultured overnight in an LB medium containing LB medium containing 5 OgZmL of ampicillin at 30 at LB medium, and plasmid pGAP1dhA was recovered from the obtained cells.
  • the plasmid pGAP1dhA was transformed into the MG1655 ⁇ f1; ⁇ d1d strain, and the MG1655Apfl Ad ld / pGAP1 dhA strain was obtained by overnight incubation at 37 on an LB agar plate containing ampicillin gZmL. Obtained.
  • the nucleotide sequence of the dhA gene has also been reported (GenBank cc es ssion numbe r U 36928).
  • GenBank cc es ssion numbe r U 36928 The nucleotide sequence of the dhA gene has also been reported (GenBank cc es ssion numbe r U 36928).
  • AAGGTA CCACCAGAGCGTTCTCAAGC SEQ ID NO: 17
  • GCTCTAG ATTCTCCAGTGATGTTGAATCAC SEQ ID NO: 18
  • GGT CTAGAGCAATGATTCACACGATTCG SEQ ID NO: 19
  • GGT CTAGAGCAATGATTCACACGATTCG SEQ ID NO: 19
  • GPDH Dalicellaldehyde 3-phosphate dehydrogenase
  • the fragments obtained above were digested with the restriction enzymes KpnI and XbaI, XbaI and PstI, respectively, and the fragments were digested with the temperature-sensitive plasmid pTH18cs1 with KpnI and PstI.
  • DH5 ⁇ competent cells Yukara Bio Inc.
  • LB agar plate containing 10 gXm1 of chloramphenicol. A transformant was obtained.
  • the obtained colony was cultured overnight at 30 in an LB liquid medium containing chloramphenicol 1 O / ml, and a plasmid was recovered from the obtained cells and named pTH-GAP1dhA.
  • the pTH-GAP1dhA was transformed into the MG1655ApflAdld strain at 30 and cultured overnight at 30 on an LB agar plate containing 1 Og / ml of chloramphenicol to obtain a transformant.
  • the obtained transformant was inoculated into 1 ⁇ 8 liquid medium containing 10 ⁇ 1111 of chloramphenicol, and cultured at 30 overnight.
  • these cultured cells were applied to an LB agar plate containing 10 UL g / m1 of chloramphenicil so as to obtain the cells, thereby obtaining Niguchi 21 grown at 42V.
  • the resulting colonies were cultured overnight in a drug-free LB liquid medium for 301 overnight, and further spread on drug-free LB agar plates to obtain colonies growing at 42.
  • the cultivation was performed under atmospheric pressure at an aeration rate of 0.5 V vm, a stirring speed of 200 rpm, and a culturing temperature of 35 ⁇ ⁇ 7.2 (prepared with NaOH) until glucose was depleted.
  • the amount of D-lactic acid accumulated in the obtained culture solution was measured by HPLC according to a standard method. The results are shown in Figure 1.
  • the respective D-lactic acid storage productivity was 109.0 g / L for the MG 1655 ⁇ pf 1 ⁇ d 1 d strain at 48 hours, and 115.6 g for the MG 1655Apfl Ad ld / p GAP 1 dh A strain at 48 hours.
  • One dhA genome strain was 113.5 g in 30 hours.
  • the primer having the nucleotide sequence of SEQ ID NO: 24 has a BamHI recognition site at the 5 'end, and the primer having the nucleotide sequence of SEQ ID NO: 24 has an XbaI recognition site at the 5' end.
  • the genomic DNA of Escherichia coli MG1655 strain was prepared by the method described in Cu rrent Protocol 1 sin Molecular Biol ogy (John Wi 1ey & Sons), and 1 g of the obtained genomic DNA was obtained.
  • a combination of SEQ ID NO: 21 and SEQ ID NO: 22, SEQ ID NO: 23 and SEQ ID NO: 24, and using the above primer DNAs (100 pmo1 each) under normal conditions about 800 bp (hereinafter mdh-L And a DNA fragment of about 1,000 bp (hereinafter sometimes referred to as mdh-R fragment) was amplified.
  • Plasmid pTHAmdh was transformed into Escherichia coli MG1655ApflAdId strain, and the MG1655ApflAdId strain in which the mdh gene had been broken was obtained in the same manner as in Example 5.
  • the primers of SEQ ID NOS: 26 and 27 have an XbaI recognition site at the 5 'end, and the primer of SEQ ID NO: 28 has a SacI recognition site at the 5' end.
  • DNA fragments of 450 bp (hereinafter sometimes referred to as ppc-L fragment) and about 750 bp (hereinafter sometimes referred to as ppc ⁇ R fragment) were amplified.
  • This DNA fragment was separated and recovered by agarose electrophoresis, and the ppc-L fragment was digested with HindIII and XbaI, and the ppc-R fragment was digested with XbaI and SacI, respectively.
  • the plasmid ⁇ ppc was transformed into Escherichia coli E. coli MG1655Apf1 ⁇ d1d strain, and finally the MGl655 strain ⁇ f1 ⁇ d1d strain in which the ppc gene was disrupted was obtained.
  • This strain was named MGl 655Apfl BAdldApp strain. The detailed method for obtaining this strain was in accordance with the method described in Example 5 of the present invention.
  • the entire nucleotide sequence of Escherichia coli ⁇ — mu DNA is known (GenBank accession on number U 00096), and the nucleotide sequence of the frd gene of Escherichia coli is also reported (Genb ank accession numbe). r AE 000487).
  • the frd genes to be deleted in this example are the gene encoding fr dA (1,809 bp), the gene encoding frd B (735 bp), the gene encoding fr dC (396 bp), and fr It is a gene containing four types of genes (360 bp) encoding dD.
  • oligonucleotide primers having the nucleotide sequences shown in SEQ ID NOS: 29, 30, 31 and 32 were synthesized.
  • the primer of SEQ ID NO: 29 has an EcoR I recognition site at the 5 'end
  • the primers of SEQ ID NOs: 30 and 31 have a BamHI recognition site at the 5' end
  • the primer of SEQ ID NO: 32 has an H
  • Each has an indIII recognition site.
  • frd-L fragment A DNA fragment of 00 bp (hereinafter sometimes referred to as frd-L fragment) and about 800 bp (hereinafter sometimes referred to as frd-R fragment) were amplified. This DNA fragment was separated and recovered by agarose electrophoresis, and the frd-L fragment was digested with EcoRI and BamHI, and the frd-R fragment was digested with BamHI and HindII. These two digestion fragments and the EcoRI and H of the temperature-sensitive plasmid pTHl8cs1
  • the transformant After reacting with the 1st III digest with T4 DNA ligase, the transformant was transformed into Escherichia coli DH5 ⁇ competent cells (Treasure Bio), and the 5 'upstream fragment of the frd-encoding gene and 3' A plasmid containing two fragments near the downstream was obtained, and this plasmid was named ⁇ frd.
  • Plasmid ⁇ frd was transformed into Escherichia coli E. coli MG 1655Ap fl Ad ld strain, and finally MG 1655 ⁇ pf 1 mu d 1 d strain in which the frd gene was disrupted was obtained, and MG 1655Ap f 1 ⁇ 1 ⁇ frd strain was obtained. Named. Get this stock The detailed method was in accordance with the method described in Example-5 of the present invention.
  • PCR is performed under normal conditions using 1 g of genomic DNA of Escherichia coli MG1655, SEQ ID NO: 33 and SEQ ID NO: 34, and SEQ ID NO: 35 and SEQ ID NO: 36 in combination with the above primer DNAs at 100 pmo 1 each.
  • a DNA fragment of about 910 bp hereinafter sometimes referred to as asp A-L fragment
  • pA-R fragment 1,100 bp
  • the 5 'end was phosphorylated using a T4 polynucleotide kinase by a standard method.
  • the temperature-sensitive plasmid pTHl8cs1 was digested with SmaI and then dephosphorylated with alkaline phosphatase. After reacting the two phosphorylated fragments with the dephosphorylated plasmid with T4 DNA ligase, the cells are transformed into Escherichia coli DH5 ⁇ competent cells (Takara Bio) and the gene encoding as pA A plasmid containing two fragments, a 5 'upstream fragment and a 3' downstream fragment, was obtained, and this plasmid was named pTHAasp.
  • Plasmid pTH um asp was transformed into Escherichia coli MG 1655Ap f 1 Ad 1 d m mdh strain, and finally MG 1655 ⁇ pf 1 ⁇ d 1 d Amd h strain in which the asp A gene was disrupted was obtained.
  • the plasmid pTH-GAP1dhA obtained in Example 19 was transformed into Escherichia coli K.I. MG 1655Apfl AdIdAmd ⁇ asp strain with 30, and LB agar containing kuaram fuenocol 10 [1 / ml] was used. Transformants were obtained by culturing on a plate at 3 O. The resulting transformant was inoculated into an LB liquid medium containing chloramphenicol 1 OgZm1, and cultured at 30 ° C overnight. Next, these cultured cells were applied to an LB agar plate containing 10 ag / ml of chloramphenicol to obtain colonies growing at 42. The obtained colony was cultured overnight at 30 in a LB liquid medium containing no drug, and further applied to a LB agar plate containing no drug to obtain a colony growing at 42.
  • the strain was named 1 dhA genome-introduced strain.
  • Escherichia coli M G1655 ⁇ f 1 ⁇ 1 dApp c strain, Escherichia coli MG 1655 ⁇ fl Ad l dAf rd strain obtained in Comparative Example 2 were separately inoculated, and stirred and cultured overnight at 3 O and 120 rpm. Was done. Thereafter, 475 g of the medium shown in Table 24 was placed in four 1-L culture tanks (culture apparatus BMJ-01 manufactured by ABLE), and the entire contents of the above flasks were separately inoculated. The cultivation was performed at atmospheric pressure, aeration rate of 0.5 vvm, stirring speed of 200 rpm, culture temperature of 35, and pH 7.2 (adjusted with NaOH) for 32 hours.
  • Example 25 Escherichia 'Production of D-lactic acid and fumaric acid by E. coli MG 1655Ap f 1 ⁇ d 1 dAmdhA asp strain and MG 1655 ⁇ f 1 Ad 1 dAmdhA as / GAP 1 dA genome insertion strain'
  • 25 ml of LB Broth and Mi 1 ler culture solution placed in three Erlenmeyer flasks were mixed with the Escherichia coli E. coli MGl 655Apfl Ad l dAmdhAa sp strain obtained in Example 22.
  • Example 21 coli MG1655 ⁇ f1Ad1dAmdhAasp / GAP1dhA genomic strain obtained in Example 23 and the ⁇ f1 ⁇ 1dAmdh strain obtained in Example 21 were separately inoculated. Agitation culture was performed at 120 rpm at 30 nights. Then, 475 g of the medium shown in Table 24 was placed in three 1-L culture tanks (culture apparatus BMJ-01 manufactured by ABLE), and the entire contents of the flasks were separately inoculated. The culture was carried out at atmospheric pressure, aeration rate of 0.5 vvm, stirring speed of 200 rpm, culture temperature of 35 ⁇ , pH 7.2 (adjusted with NaOH) for 48 hours. After completion of the culture, the concentrations of lactic acid and fumaric acid in the obtained culture solution were measured by HP LC according to a standard method. Figure 4 shows the results of lactate accumulation and Figure 5 shows the results of fumaric acid accumulation.
  • the Ap fl Ad l dAmdhAa sp strain accumulated at 91 gZL at 48 hours and the ⁇ f1 ⁇ 1 dAmdh strain accumulated at 48 hours at 90 gZL, whereas ⁇ f1 Ad 1 dAmdhA
  • the asp / GAP 1 dhA genome-introduced strain showed an accumulation of 98 gZL in 24 hours.
  • the ⁇ f 1 Ad 1 dAmdh strain showed accumulation of 037 g ZL at 48 hours, whereas the ⁇ f 1 Ad 1 dAmdhAa sp strain and ⁇ f 1 ⁇ 1 dAmdhAa sp / GAP 1
  • the dhA genome-introduced strain showed an accumulation of 0.01 g / L in 48 hours.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

明 細 書
D—乳酸生産用生体触媒 技術分野 本発明は、 D—乳酸を高選択的に高生産する微生物と、 それを用いた D—乳酸 の生産方法に関するものである。 詳しくは純度が高い乳酸を効率良く生産する方 法、 特にピルビン酸の生成蓄積量が少ない D-乳酸の効率的な製造法に関わる。 また、本発明は、 FAD依存性 D-乳酸デヒドロゲナ一ゼが不活化あるいは低減 されている微生物を用いることを特徴とする D-乳酸の生産方法に関する。
また、本発明は、不純物であるコハク酸ゃフマル酸を生産せずに D-乳酸を生産 する微生物と、 それを用いた D-乳酸の生産方法に関するものである。 背景技術 生分解性ポリマーであるポリ乳酸は、 C〇2問題 ·エネルギー問題の顕在化と ともにサスティナピリティー (持続可能性) 、 LCA (ライフサイクルアセスメ ン卜) 対応型製品として強い注目を浴びており、 その原料である乳酸には効率的 で安価な製造法が求められている。
ちなみに現在工業生産されているポリ乳酸は L一乳酸ポリマーであるが、 乳酸 には L—乳酸と D—乳酸があり、 D-乳酸についてもポリマー原料や農薬、医薬の 中間体として近年注目が集まりつつある。 但しいずれの用途においても、 原料た る乳酸には高い光学純度が要求されるのが事実である。
自然界には乳酸菌や糸状菌など乳酸を効率良く生産する微生物が存在し、 それ らを用いた乳酸製造法の中には既に実用化済みのものもある。例えば、 L-乳酸を 効率良く生産させる微生物として L a c t b ac i l l u s de l b rue c k i i等、また D-乳酸を効率良く生産させる微生物として S p o r o 1 a c t o b a c i 1 1 u s属の微生物等が知られている。 どの場合も乳酸の蓄積量は高い レベルに達しているが、 培養液中に含まれる乳酸以外の副生物、 例えば酢酸、 ェ 夕ノール、 ァセトイン、 ピルビン酸といった化合物が精製過程で除けきれないこ とが、 最終産物である乳酸の品質低下につながることがある。 また光学異性体の 混入が原因で、 光学純度の低下をきたす事も重大な問題となる。
そのような乳酸の純度低下を回避するには、 微生物によって生産される副生物 の量を低減化させることが効果的な手段である。 近年発展してきた遺伝子組換え 技術を利用して微生物の特定遺伝子を破壊すれば、 狙つた副生物の生産を特異的 に阻害することが可能となってきた。 ただ現状的には、 遺伝子破壊法がどのよう な微生物にでも容易に適用できる訳ではなく、 乳酸菌や糸状菌など元来乳酸を高 生産できる微生物での適用は容易ではない。 なぜならこれらの微生物はゲノム情 報が必ずしも十分とは言えず、 かつ遺伝子組換えめ宿主としても汎用されていな いからである。
それに対しゲノム情報が豊富で、 遺伝子組換え宿主としての実績が十分にある ェシエリヒア *コリ、 酵母、 ヒト培養細胞等では、 比較的容易に遺伝子破壊を行 うことが可能である。 特に増殖の速さや培養の容易さの点ではェシエリヒア ·コ リが最も好ましい。 さらにェシエリヒア ·コリが生産する乳酸は D体のみである ため、光学純度の高い D-乳酸を得る目的では好都合な宿主である。 しかし野生型 のェシエリヒア,コリは、 D-乳酸生産性が低く、 D-乳酸以外にも種々の副生有 機酸を生産する。 この問題を解決するために、 遺伝子組換えによってェシエリヒ ァ ·コリの代謝経路を改変し、 D-乳酸を選択的に高生産させる試みが過去になさ れている。
C h a n gら (Chang, D.—E., et. al. , Appl. Environ. Microbiol. , Vol. 65 (4) , PP1384-1389 (1999)) は、 ェシエリヒア'コリのホスホトランスァセチラーゼ (以 下 p t aと略することがある)、及びホスホェノールピルピン酸カルポキシラーゼ (以下 P P cと略することがある)の 重変異株を 5 %のグルコース、 及びアミノ 酸を含む培地を用いて、 さらに予め通気培養で菌体を増加させた後、 嫌気培養を 行い、 培地中のグルコースが 5 %を超えないようにグルコースを追添加し培養す ることにより 6 2 . 2 gZLの D—乳酸を 6 0時間で生産させている。 この時の グルコースから D-乳酸への転換率は 7 6 %であった。
Z h o uら (Zhou,S., et. al., Appl. Environ. Microbiol. , Vol. 69 (1), PP399-407 (2003)) は、 ピルペートホルメートリアーゼ (以下 p f 1と略すこと がある)、 フマル酸レダクターゼ (以下 f r dと略すことがある)、 アルコール/ アルデヒドデヒドロゲナーゼ (以下 a d e Eと略すことがある)、 およびァセテ一 トキナ一ゼ (以下 a c k Aと略すことがある)の 4重破壊ェシエリヒア ·コリを作 製し、 これを 5 %のグルコースを含む無機塩培地で嫌気条件下にて 1 6 8時間培 養することによって、ギ酸、コハク酸、エタノールおよび酢酸の副生なしに 4 8 . 5 g/Lの D—乳酸が生産されたと報告している。 しかしこの試みは、 D—乳酸 を高選択的に生産させることには成功しているが、 生産性は 0 . 2 9 gZLZh rとかなり低く、 選択率と生産性の両方を満足させたとは言えない。 また副生物 のピルビン酸についての言及がなく、 その低減ィヒ効果については不明である。 ピ ルビン酸は D—乳酸の代謝反応基質であるため、 他の副生有機酸とは異なり、 む やみに生成を抑えると D—乳酸そのものの生成も抑えられてしまう。 その点でピ ルビン酸の副生を最小限に抑えることは容易なことではない。 一般にピルビン酸 が乳酸モノマー原料に不純物として含まれた場合には、 ポリマー重合率が低下す る等の好ましからざる問題が生じることは当業者には良く知られた事実であり、 その意味からもピルビン酸はぜひとも低減化すべき副生物の一つである。 にも拘 わらず D乳酸生産性を高く維持しながら、 ピルビン酸副生を抑えることに成功し たという報告は過去になされていない。
以上まとめると、 現在までに知られているェシエリヒア ·コリでの D—乳酸最 大蓄積量 6 2. 2 g/1であり、 その生産時間は 6 0時間であった。一方、 L—乳 酸の工業化生産に用いられている乳酸菌または糸状菌の L一乳酸生産性が蓄積量 1 0 O gZL以上かつ生産時間 2 4時間以内であることを考慮すれば、 ェシエリ ヒア ·コリの D—乳酸蓄積 *と生産時間は依然として低いレベルにあると言わざ るを得ない。 ェシエリヒア ·コリが乳酸菌や糸状菌なみの乳酸生産性を達成した という報告は過去になく、 それどころかそもそもェシエリヒア ·コリを用いて' 1 0 0 gZLを越える D—乳酸を蓄積生産させることができるのか否かについても、 それを示唆するようなデータは過去に存在しなかった。
大腸菌を用いて D—乳酸発酵させる場合、 一般には酸素の存在は好ましくない 考えられている。 なぜなら酸素のような電子受容体が存在すると、 大腸菌は発 酵ではなく呼吸を行うからである。 酸素のような電子受容体が無い場合に限り、 大腸菌は基質レベルのリン酸化のみによりエネルギー (AT P) を得、 解糖系で 得られた還元力 (NADH) を用いて乳酸などの還元性有機酸を生産する。 その ような理由から、 従来の大腸菌による D—乳酸発酵は殆ど嫌気培養で行われてい る。 まれに培養の前半を通気し、 後半を嫌気培養するという二相培養が行われる 場合もあるが、 これは前半の通気培養によって十分な菌体量を確保するのが目的 であり、 最終的な乳酸発酵はやはり嫌気で行っている訳である。 しかし実際のェ 業生産を想定した場合、 培地に添加する安価なアミノ酸源であるコーンスティー プリカ一 (以下 C S Lと略すことがある) 等の中には不純物となる有機酸だけで なく、 D体、 L体両方の乳酸が含まれるが、嫌気培養だと L一乳酸が資化されず、 培地中に残存したままとなる。 L体からピルビン酸を生成する反応の触媒酵素で ある L-乳酸デヒドロゲナーゼ(以下 1 1 dと略すことがある)は通気条件下で発 現することが知られているので、 もし通気条件下でも効率良く乳酸発酵させる方 法があれば、 その方法を用いることで培地中に含まれる L体を菌体に資ィ匕させ、 光学的にも高い純度の D体を生産させることが可能となるものと期待されるが、 これまでそれを実現する技術は存在しなかった。
p f 1破壊株を用いた乳酸生産に関しては Z h o uらの報告に先立ち、 以下の ような報告がなされている。 すなわち C o n t a gら (Contag, P. R. , et. al., Appl. Environ. Microbiol. , Vol.56 (12) , pp3760-3765 (1990) ) は、 p f 1非変 異ェシエリヒア ·コリ株が 3 5 mMの乳酸を生成するのに対して、 p f 1変異株 では乳酸の生産性は向上し、 45mMの乳酸を生成することを示している。 すな わちェシエリヒア ·コリにおいて p f 1活性の不活化により D—乳酸の生産性が 向上することは Con t a gらのデ一夕開示により既に公知となっている。
D—乳酸デヒドロゲナーゼは、 補酵素に対する依存性の違いによって、 NAD H依存性と F A D依存性に区別される。 NAD H依存性 D—乳酸デヒドロゲナー ゼは、 生体内でピルビン酸から D—乳酸への反応を触媒している。 特に大腸菌由 来の NADH依存性 D—乳酸デヒドロゲナーゼは 1 dhAと呼ばれる。
Yangら (Yang, Υ.Τ·, et. al., Metab. Eng., Vol.1(2), ppl41-152 (1999)) は 1 dh A遺伝子を組み込んだ発現ベクターをェシエリヒア ·コリに導入するこ とで、 D—乳酸蓄積量が 8 g/L程度と低いながらも向上することを報告してい る。 すなわちェシエリヒア *コリにおいて 1 dhA活性の強化により、 D—乳酸 の生産性が向上することは Yangらのデータ開示により公知となっている。 , 一方で、 パンチら 〔: Bunch, PK, Microbiology, Vol, 143(Ptl), 187-195(1997)〕 の報告によれば、 ェシエリヒア ·コリ由来 1 dh A遺伝子の発現ベクターを導入 したェシエリヒア ·コリは、 発現ベクターの導入によりその増殖が阻害されるこ とが報告されている。
また大腸菌以外の細菌由来 D—乳酸デヒドロゲナーゼ (以下、 l dhと呼ぶこ とがある) を大腸菌に過剰発現させた例としては、 Lac t ob a c i l l u s he l ve t i c u s由来 1 d hの発現例としてコッカーら 〔Kochhar,S., Eur. J. Biochem., (1992) 208, 799-805) や Lac t ob ac i l l u s bu l ga r i c u s由来 1 d hの発現例としてコッカーら 〔Kochhar,S., Biochem.
Biophys. Res. Commun., (1992) 185, 705-712〕 の報告が挙げられるが、 いずれ の例も発現させた酵素の物理化学的性質を調べたものであって、 D体やピルビン 酸の蓄積量についての言及は皆無である。
しかしながら p f 1活性を不活ィ匕または低減化させ、 且つ 1 dh A活性を強ィ匕 させた微生物の D—乳酸生産性については、 依然として良く知られてはいなかつ た。 一般に発現べクタ一を用いた遺伝子強化方法では、 ベクタ一の脱落が生じ、 目 的遺伝子の発現量が低下し、 さらには目的物質の生産性が低下するという不具合 が生じ得る。 こうしたことから D—乳酸工業生産への応用に際し、 発現ベクター を用いた 1 dh遺伝子の強化方法には幾つかの解決すべき課題が存在し、 それに 代わる遺伝子強化方法が望まれる。 しかしながらそうした取り組みの報告はなさ れていない。
発現ベクターに代わる遺伝子強化方法として、 So l emら (Sol em, , et. al., Appl. Environ. Microbiol., Vol.68(5), pp2397-2403 (2002)) が報告した ようにゲノム上のある遺伝子のプロモータ一領域を任意のプロモーターに置換す ることで、 該遺伝子を強化する方法があげられる。 しかし、 本技術を上記の I d h A遺伝子を用いた D—乳酸製造に応用した場合を考えると、 この方法では強化 される 1 d h A遺伝子はゲノム上の遺伝子 1コピーのみであり、 多コピーの遺伝 子が発現する発現ベクターによる強化方法に比べ、 1 dh A活性の向上は小さな ものであると予測され、 D—乳酸生産性が発現ベクターを用いた場合に比べ向上 すると予想することは当業者といえども困難であった。
一方、 FAD依存性 D—乳酸デヒドロゲナーゼ (以下 d 1 dと略すことがある) については、 大腸菌から精製された酵素の解析により N ADH依存性 D—乳酸デ ヒドロゲナーゼとは逆の反応、 すなわち D—乳酸からピルビン酸への反応を主と して触媒することが開示されている。 過去において、 Shawらは d i dが破壊 された大腸菌株 J S 150と J S 151を取得しているが、 それらの株における D—乳酸生産性やピルビン酸生産性については言及していない(Shaw, L., et. al., J. Bacteriol., Vol.121 (3), ppl047-1055 (1975))。 また Ba rne sらは、 d 1 dが種々のアミノ酸や糖類の取り1こみに関わっていると報告しているが
(Barnes, E.M., et. al., J. Biol. Chem. , Vol.246(17), pp5518- 5522 (1971)〕、 D—乳酸やピルビン酸の生産への関わりについては言及していない。
尚、 大腸菌株の分讓機関の一つである Y a 1 e大学付属の E. c o 1 i Ge ne t i c S t ock Cen t e r (C G S C) のデータベースで d 1 d と p f 1の 2重変異株の検索を行うと、 M a t— J a nらの論文 (Mat-Jan, F., et. al., J. Bacteriol. , Vol. 171 (1) , pp342-348 (1989) ) が該当案件として出力さ れるが、 実際に精査した結果、 この論文には d 1 dと p f 1の 2重破壊株に関す る記述は見られなかった。
先にも述べたが D—乳酸に関しては、 微生物による発酵生産で工業化レベルに 見合う生産性と選択性を同時に達成したという報告は無く、 例えば主たる副生有 機酸であるコハク酸ゃフマル酸を、 高い D—乳酸生産性を維持しながら低減化さ せた前例もない。
そこで我々は D—乳酸の生産性を損なうことなくコハク酸生産を抑制すること を目標にして鋭意検討を重ね、 その結果、 嫌気条件下でォキサ口酢酸からリンゴ 酸への反応を触媒する酵素リンゴ酸デヒドロゲナーゼ (以下 m d hと呼ぶことが ある) の遺伝子を破壌することによって、 D—乳酸の生産性を損な'うこと無しに コハク酸の生成を完全に抑えることが可能であることを見出した。 しかし依然と してフマル酸が副生されていたため、 ァスパラギン酸アンモニアリアーゼ (以下 a s p Aと呼ぶことがある) の遺伝子を破壊することによって、 フマル酸の副生 量をも低減化することが可能であることを見出した。
md h活性不活化の効果に関しては、 1 9 7 0年の C o u r t r i g h tらの 論文に開示されている (Court right, J. B. et. al., J. Bacteriol. , Vol. 102 (3) , PP722-728 (1970) )。 その開示内容は、 md h活性が不活化されたェシエリヒア · コリでは、 嫌気条件下でのォキサ口酢酸からリンゴ酸への反応活性がゼロになつ ているものの、 ァスパラギン酸からフマル酸への反応活性が逆に向上していると いうものであった。 つまり嫌気条件下でコ八ク酸を生成する経路には、 ォキサ口 酢酸からリンゴ酸を経由してフマル酸、 コハク酸に流れる経路と、 ォキサ口酢酸 からァスパラギン酸を経由してフマル酸、コ八ク酸に流れる経路の 2種類があり、 md h活性を不活化すると前者の経路は止まるが、 後者の経路はむしろ活性化さ れることを説明している。 よって C o u r t r i g tらの論文は、 md h活性 不活化によってコハク酸が生成しなくなることを開示したものではない。 md h活性不活化の効果に関するもう一つの先行技術は、 md h遺伝子が破壊 された酵母に関するものである(特開平 11— 056361号公報)。本特許は酵 母の mdh遺伝子を破壊することによって、 生産されるリンゴ酸量を変化させる というものであり、 その結果がコハク酸の生産量にどのような影響をもたらすか について言及したものではない。
つまるところ過去の知見からは、 微生物の m d hを不活化することによってコ ハク酸の生産が完全に抑制され得ることを想定することは、 当業者といえども困 難であった。
また a s p A活性不活化の効果については、過去において唯一、エルシニア ぺ ステイスでの知見が開示されている (Dreyfus, L. A., et. al., J. Bacteriol., Vol.136(2), pp757-764 (1978))。 しかしながら、 本論文の主旨は、 a s pA活性 の不活化によってァスパラギン酸やグルタミンが細胞内で分解されにくくなるこ とであって、 フマル酸生成量についての考察はなされてはいない。 特許文献 1 :特開平 11—056361号公報
非特許文献 1 : Chang, D. - E. , et. al., Appl. Environ. Microbiol., Vol.65(4), ppl 384-1389 (1999)
非特許文献 2 : Zhou,S., et. al., Appl. Environ. Microbiol., Vol.69(1), PP399-407 (2003)
非特許文献 3 : Con tag, P.R., et. al., Appl. Environ. Microbiol., Vol.56(12), PP3760-3765 (1990)
非特許文献 4 : Yang, Y.T" et. al., Metab. Eng., Vol.1(2), ppHl-152 (1999) 非特許文献 5 : Bunch, P.K., et. al., Microbiology, Vol.143 (Pt 1), pl87-195 (1997)
非特許文献 6 : ochhar, S., et. al., Eur. J. Biochem., Vol.208(3), PP799-805 (1992)
非特許文献 7 : Kochhar, S., et. al. , Biochem. Biophys. Res. Co匪 n., Vol.185(2), pp705-712 (1992)
非特許文献 8 : Sol em, C., et. al., Appl. Environ. Microbiol., Vol.68(5), PP2397-2403 (2002)
非特許文献 9 : Shaw, L., et. al., J. Bacteriol., Vol.121 (3), ppl047-1055 (1975)
非特許文献 1 0 : Barnes, E.M., et. al., J. Biol. Chem. , Vol.246(17), PP5518-5522 (1971)
非特許文献 11 : Mat-Jan, F., et. al., J. Bacteriol., Vol.171(1), pp342-348 (1989)
非特許文献 1 2 : Courtright, J. B. et. al., J. Bacteriol., Vol.102(3), PP722-728 (1970)
非特許文献 13: Dreyfus, L. A., et. al., J. Bacteriol., Vol.136(2), pp757-764 (1978) 発明の開示 本発明の課題の一つは、 D—乳酸の高生産方法を提供することであり、 本発明 の別な課題は光学純度が高く、 副生有機酸が少ない高選択的な D—乳酸の生産方 法を提供することにある。
本発明の他の課題は、 不純物有機酸として従来より微生物により乳酸を生成蓄 積させた培地中からの除去が簡単ではなかったピルビン酸の蓄積量を低減化させ た D-乳酸生産法を提供することにある。
本発明の他の課題は、 ヘテロ乳酸醱酵細菌を用いて乳酸を効率的に生産する乳 酸の生産方法を提供することである。 本発明の別な課題は、 ヘテロ乳酸醱酵細菌 を用いて光学純度の高い乳酸を効率的に生産する乳酸の生産方法を提供すること である。 本発明の他の課題は、 目的物質の生産性を低下させることなく、 副生物である コハク酸及び/又はフマル酸の生産を抑制する D-乳酸の生産方法を提供するも のである。
本発明の他の課題は、発現ベクターを用いた強化方法に代わる、安定な D-乳酸 デヒドロゲナーゼ遺伝子の強化方法を提供し、また、 D-乳酸をより高生産する方 法を提供することである。
本発明者らは、 これら上記の課題を解決すべく鋭意検討を行った結果、 iピルべ ートホルメートリアーゼ (P f 1 ) 活性が不活化あるいは低減化され、 かつェシ エリヒア ·コリ由来 NAD H依存性 D—乳酸デヒドロゲナーゼ (1 d h A) 活性 が増強された細菌が従来よりも短時間で D—乳酸を生産し、 これまでになく高い 蓄積量を達成することを見いだした。 特に 1 d h A活性の増強方法に関しては、 1 d h Aをコードする遺伝子をゲノム上において、 解糖系、 核酸生合成系又はァ ミノ酸生合成系に関わる蛋白質の発現を司る遺伝子のプロモーターと連結するこ とで発現させた微生物を用いることにより、 発現べクタ一を用いた遺伝子発現強 化方法に比して短時間で著量の D—乳酸を生産させることが可能であることを見 いだした。 発現ベクターを用いた方法では本発明の方法よりも D—乳酸デヒドロ ゲナーゼの細胞内発現量は多いが何らかの理由によりこの高い酵素量力 乳酸 の高生産には直接結びついておらず、.むしろ、 本発明のように細胞内での酵素の 発現量はそれほど高くなくとも結果的に D—乳酸の生産性が飛躍的に'向上するこ とは極めて驚くべきことである。
次に発明者らは、 微生物培養液中に存在するピルビン酸の一部が、 実際に d 1 dによって D—乳酸から生成されていることを見出し、 さらに d 1 d遺伝子が実 質的に不活化された、あるいは低減された微生物を育種し培養することによって、 当該微生物の増殖が宿主と比較して抑制されないこと、 および培地中のピルビン 酸含有濃度が低下した高品質の D—乳酸を含む培養液が得られることを見出した。 さらに、 p f 1活性が不活化あるいは低減化され、 且つノまたは 1 d h A活性が 増強され、 且つ d 1 d遺伝子が実質的に不活化あるいは低減された微生物を育種 し培養することによって、 培地中のピルビン酸が低下した高品質の D—乳酸が得 られることを見出した。
さらに本発明者らは、 T C A回路を有し、 且つリンゴ酸デヒドロゲナーゼ (m d h )活性が不活化または低減され、且つァスパラギン酸アンモニアリァーゼ(a s p A)活性が不活化または低減ィ匕されている上記微生物を用いることによって、 D—乳酸の生産性を高く維持したままでコハク酸とフマル酸の副生を抑えうるこ とを見出すことによつて本発明に到達した。
即ち、 本発明は以下のとおりである。
〔1〕 ピルペートホルメートリアーゼ (p f 1 ) の活性が不活化あるいは低減ィ匕 されたへテ口乳酸発酵細菌を 2種以上のァミノ酸が添加された培地で培養し、 得 られた培養物から乳酸を回収することを特徴とする、 乳酸の生産方法。
〔2〕 ヘテロ乳酸発酵細菌がェシエリヒア ·コリであることを特徴とする 〔1〕 に記載の乳酸の生産方法。
〔3〕 ェシエリヒア ·コリが MT— 1 0 9 3 4 (F E RM B P— 1 0 0 5 7 ) 株であることを特徴とする 〔2〕 に記載の乳酸の生産方法。
〔4〕 ェシエリヒア ·コリ由来 NADH依存 ffiD—乳酸デヒドロゲナ一ゼ (I d h A) 活性が増強され、 かつピルペートホルメートリアーゼ (p f 1 ) 活性が不 活化あるいは低減化された細菌を培養し、 得られた培養物から D—乳酸を回収す ることを特徴とする、 D—乳酸の生産方法。
〔5〕 細菌がェシエリヒア,コリである 〔4〕 に記載の D—乳酸の生産方法。
[ 6 ) 2種類以上のアミノ酸が添加された培地で培養することを特徴とする、〔4〕 又は 〔5〕 に記載の D—乳酸の生産方法。 .
〔7〕 該微生物が本来有している F AD依存性 D—乳酸デヒドロゲナ一ゼ (d 1 d) 活性が不活化あるいは低減ィ匕された微生物であって、 ピルペートホルメート リアーゼ (p f 1 ) 活性が不活化あるいは低減ィ匕されている、 且つ/またはェシ エリヒア ·コリ由来 NAD H依存性 D—乳酸デヒドロゲナーゼ (l d h A) 活性 が増強されていることを特徴とする微生物。 〔8〕 微生物が細菌である 〔7〕 に記載の微生物。
〔9〕 細菌がェシエリ,ヒア 'コリである 〔8〕 に記載の微生物。
〔10〕 〔7〕 〜 〔9〕 の何れか一項に記載の微生物を液体培地で培養し、 培養液 中に D _乳酸を生成蓄積せしめ、 培養液から D—乳酸を分離することを特徴とす る D—乳酸の生産方法。
〔11〕 2種以上のアミノ酸が添加された培地で培養することを特徴とする、 請 求項 10に記載の D—乳酸の製造方法。
〔12〕 FAD依存性 D—乳酸デヒドロゲナーゼ (d 1 d) 活性が不活化あるい は低減化されている微生物を液体培地で培養し、 培養液中に D—乳酸を生成蓄積 せしめ、 培養液から D—乳酸を分離することを特徴とする D—乳酸の生産方法。 〔13〕 微生物が細菌である 〔12〕 に記載の方法。
〔14〕 細菌がェシエリヒア ·コリである 〔13〕 に記載の方法。
〔15〕 微生物のゲノム上において、 ェシエリヒア 'コリ由来の NADH依存性 D—乳酸デヒドロゲナ一ゼ ( l dhA) をコードする遺伝子が、 解糖系、 核酸生 合成系又はアミノ酸生合成系に関わる蛋白質の発現を司る遺伝子のプロモー夕一 を使用することで該 NADH依存性 D—乳酸デヒドロゲナーゼ (l dhA) を発 現する微生物。
〔16〕 微生物がェシエリヒア ·コリである 〔15〕 に記載の微生物。
〔17〕 該微生物が本来有しているピルペートホルメートリアーゼ (p f 1) 活 性が不活化あるいは低減ィヒされている、 且つ Zまたは FAD依存性 D—乳酸デヒ ドロゲナ一ゼ (d 1 d) 活性が不活化あるいは低減化されていることを特徴とす る 〔15〕 又は 〔16〕 に記載の微生物。
〔18〕 ェシエリヒア ·コリのゲノム上において、 ェシエリヒア ·コリ由来の N ADH依存性 D—乳酸デヒドロゲナーゼ (l dhA) をコードする遺伝子のプロ モーターに代えて、 ェシエリヒア 'コリ由来の解糖系、 核酸生合成系又はアミノ 酸生合成系に関わる蛋白質の発現を司る遺伝子のプロモーターを使用することで 該 NADH依存性 D—乳酸デヒドロゲナーゼ (l dhA) を発現するェシエリヒ 04014037 ァ ·コリ。
〔19〕 ェシエリヒア 'コリの解糖系、 核酸生合成系又はアミノ酸生合成系に関 わる蛋白質の発現を司る遺伝子のプロモーターが、 ェシェリヒア 'コリ由来のグ リセルアルデヒド 3—リン酸デヒドロゲナーゼ遺伝子のプロモーターである 〔 1 8〕 記載のェシエリヒア ·コリ。
〔20〕 該ェシエリヒア ·コリが本来有しているピルペートホルメ一トリアーゼ (p f 1) 活性が不活化あるいは低減化されている、 且つノまたは FAD依存性 D—乳酸デヒドロゲナーゼ (d 1 d) 活性が不活化あるいは低減化されているこ とを特徴とする 〔18〕 又は 〔19〕 に記載のェシエリヒア 'コリ。
〔21〕 〔15〕 〜 〔20〕 のいずれか一項に記載の微生物を培地を用いて培養す ることにより D—乳酸を生産する方法。
〔22〕 TCA回路を有し、 且つリンゴ酸デヒドロゲナーゼ (mdh) 活性が不 活化あるいは低減ィヒされている微生物であって、 更にピルべートホルメートリア ーゼ (p f 1) 活性が不活化あるいは低減ィ匕されている、 且つ または FAD依 存性 D—乳酸デヒドロゲナーゼ (d i d) 活性が不活化あるいは低減化されてい ることを特徴とする微生物。
〔23〕 該微生物が本来有しているァスパラギン酸アンモニアリア一ゼ (a s p A) 活性が不活化または低減化されている 〔22〕 に記載の微生物。
〔24〕 微生物が細菌である 〔22〕 又は 〔23〕 に記載の微生物。
〔25〕 細菌がェシエリヒア ·コリである 〔24〕 に記載の微生物。
〔 26〕ェシエリヒア ·コリ由来の NAD H依存性 D—乳酸デヒド口ゲナ一ゼ ( 1 dhA) 活性が増強されている 〔25〕 に記載の微生物。
〔27〕 〔22;! 〜 〔26〕 の何れか一項に記載の微生物を培地を用いて培養する ことにより、 T C A回路上で生産される有機酸以外の化合物を生産させる方法。 〔28〕 有機酸以外の化合物が D—乳酸である 〔27〕 に記載の生産方法。
〔29〕 通気条件下で培養することを特徴とする 〔1〕 〜 〔6〕、 〔10〕 〜 〔1 4〕、 〔21〕、 〔28〕 の何れか一項に記載の乳酸の生産方法。 〔30〕 通気条件が温度 30°Cの水を対象とした場合、 常圧で酸素移動容量係数 KL&が 1 h-i以上 400 h-i以下となるような条件で達成し得る酸素供給を可能 とする条件であることを特徴とする 〔29〕 に記載の乳酸の生産方法。
〔31〕 培養 pHが 6〜8であることを特徴とする 〔1〕 〜 〔6〕、 〔10〕 〜 〔1 4〕、 〔21〕、 〔28〕 〜 〔30〕 の何れか一項に記載の乳酸の生産方法。
本発明により、 高い D—乳酸生産性と D—乳酸選択性を有する微生物が提供さ れる。 そして、 本発明により作製された微生物を培養し、 D—乳酸を生産するこ とにより既存の方法に比較してより経済的に高純度な D—乳酸を生産することが 可能となる。
また、本発明により、 ピルビン酸の生成量が少ない D-乳酸を生成する細菌が提 供される。そして、本発明により作成された菌株を培養し、 D-乳酸を生産するこ とにより既存の方法に比較してより経済的に化学的純度及び光学純度の高い D - 乳酸を生産することが可能となる。
また、本発明により作製された菌体を使用し D-乳酸を生産することにより、既 存の方法に比較して不純物 あるピルビン酸含量の低下した、 精製負荷の少ない 高品質の D-乳酸発酵液を製造できるようになる。
また、 本発明により、 TC A回路上で生産される有機酸以外の化合物の生産性 低下を招くことなく、 コハク酸及び Z又はフマル酸の副生を抑えることが可能と. なる。 特に TC A回路上で生産される有機酸以外の化合物を工業的に生産するこ とを目的とする場合、 副生物の種類と量を低減化することで目的物質の精製コス 卜の低減化が可能となる。 図面の簡単な説明 図 1は、 実施例 20における培養液中の D—乳酸蓄積量の経時変化を示したグ ラフである。 図中、 三角は MG1655Ap f l Ad l d株 (実施例 15) の結 果を、四角は MG 1655Ap f l Ad l d/pGAP 1 dhA株(実施例 18) の結果を、丸は MG 1655Ap f l Ad l d/GAP p 1 d hゲノム揷入株 (実 施例 19) の結果を示す。
図 2は、 実施例 24における培養液中乳酸蓄積濃度の経時変化を示したグラフ である。 図中、 十字は Δρ f 1 Δά 1 d株の結果を、 丸は Δρ f 1 Δά 1 dAm dh株の結果を、 三角は Δρ f 1 Δά 1 dApp c株の結果を、 四角は Δρ f 1 Δ d 1 d Δ f r d株の結果を示す。
図 3は、 実施例 24における培養液中コハク酸蓄積濃度の経時変化を示したグ ラフである。 図中、 十字は Δ p f 1 Δ d 1 d株の結果を、 丸は Δ p f 1 Δ d 1 d △ mdh株の結果を、 三角は Δρ f 1 Δά 1 άΔρ p c株の結果を、 四角は Δρ f 1 Δ d 1 d Δ f r d株の結果を示す。
図 4は、 実施例 25における培養液中乳酸蓄積濃度の経時変化を示したグラフ である。 図中、 丸は Δ p ί 1 Δ d 1 d Amd h Δ a s p株の結果を、 三角は Δ ρ f 1△ d 1 d Amdh Δ a s p/GAP 1 d h Aゲノム揷入株の結果を、 四角は Δ p f 1 Δ d 1 d Amd h株の結果を示す。
図 5は、 実施例 25における培養液中フマル酸蓄積濃度の経時変化を示したグ ラフである。 図中、 丸は Δ p f 1 Δ d 1 d Amd h Δ a s p株の結果を、 三角は Δρ f 1 Δά 1 dAmdhA s pZGAP 1 d h Aゲノム揷入株の結果を、 四 角は Δ p f 1 Δ d 1 d Amd h株の結果を示す。
発明を実施するための最良の形態 以下に本発明を詳しく説明する。
本発明におけるピルべ一卜ホルメートリアーゼ (p f 1) とは、 国際生化学連 合 (I. U. B.)酵素委員会報告に準拠した酵素番号 2. 3. 1. 54に分類さ れ、 ホルメートァセチルトランスフェラーゼとも呼ばれる酵素である。 本酵素は ピルビン酸からギ酸を生成する反応を可逆的に触媒する酵素の総称を意味する。 本発明における不活化とは、 既存の測定系によって測定された当該酵素の活性 が検出限界以下である状態を指す。
本発明における低減化とは、 当該酵素をコードする遺伝子の突然変異及び/ま たは遺伝子組み換えにより、 それらの処理を行う前の状態よりも有意に当該酵素 活性が低下している状態を指す。
本発明におけるヘテロ発酵細菌とは、 糖を発酵的に分解して乳酸以外にギ酸、 酢酸、 コハク酸、 エタノールより選ばれる物質のうち少なくとも 1種類以上を生 産する能力をもつ細菌を意味する。 具体的に本発明のへテロ醱酵性細菌としては ェシエリヒア ·コリが好適であり、 ピルペートホルメートリアーゼ (p f 1 ) の 活性が不活化あるいは低減化されたヘテロ発酵細菌としては、 本発明の実施例で 示した方法などで作製できる任意のェシエリヒア ·コリ野生株の p f 1遺伝子の 破壊株やェシェリヒア 'コリ MT— 1 0 9 3 4が例示できる。
上記 MT— 1 0 9 3 4はすでに p f 1は活性が低下していることが確認されて いる株であり、 容易に本発明を実施することが可能である。 本菌株は、 寄託番号 F E RM B P— 1 0 0 5 7として、 茨城県つくば巿東 1丁目 1番 1号中央第 6 の、 独立行政法人産業技術総合研究所 特許生物寄託センターに、 特許手続上の 微生物の寄託等の国際的承認に関するブタペスト条約に基いて、 平成 1 4年 1 1 月 8日より寄託されている。 :
また p f 1の単独変異株は、 MT— 1 0 9 3 4には H f r Cの性質があるため 任意の F—の性質をもつ野生株、 例えば MG 1 6 5 5、 W 3 1 1 0などと L B培 地中で 2時間混合後、 希釈してシングルコロニーを取得し、 所望の変異株を選択 すればよい。 p f 1変異株は嫌気培養において、 野生株と比較してギ酸の生成量 が低下しているのでそれらを指標に選択することでも取得できる。
本発明の培養とは、 培地を用いて本発明に係る微生物を培養することである。 その際、 使用される培地としては、 炭素源、 窒素源、 無機イオン、 及び乳酸を生 産するために微生物が要求する有機微量元素、 核酸、 ビタミン類等が含まれた培 地であれば特に制限はない。 本発明における 2種以上のアミノ酸が添加された培地とは、 天然に存在する各 種アミノ酸の中から少なくとも 2種以上を含有する培地を意味し、 酵母エキス、 カザミノ酸、 ペプトン、 ホエー、 廃糖蜜、 コーンスティープリカ一などの天然物 や天然物抽出物の加水分解物を含有する培地も含む。 より好ましい結果を得るた めには酵母エキス、 ペプトン、 ホエー、 廃糖蜜、 コーンスティ一プリカ一より選 ばれる少なくとも 1種類、 もしくはそれらの混合物が 0. 5%から 20%含む培 地が好ましく、 2%から 15%ではさらに好ましい。 特にコーンスティープリカ 一添加は大きな効果が得られ、 このとき硫酸アンモニゥムなどの塩は添加しない ほうがむしろよい結果となる。 培地は通常液体培地である。
' 培養条件としては作成された菌体、 培養装置により変動するが、 例えば p.f 1 活性が低減化された MT— 10934を使用する場合は、 培養温度は 20 ,から 40°C、 より好ましくは 25 から 35でで培養することが好ましく、 pHは N aOH、 NH3等で 6. 0から 7. 2、 より好ましくは 6. 5から 6. 9で調整 し、 培養することが好ましい。 培養時間は得に限定されないが、 菌体が十分に増 殖し、 且つ乳酸が生成するに必要な時間である。
また、 p f 1活性が不活化されたェシエリヒア 'コリ野生株 MG1655の p f 1遺伝子破壊株を用いた場合には、 中性もしくは中性よりややアルカリ性側の pHで最大の生産性を得られ、培養 pHは 6. 9から 7. 4、より好ましくは 7. 1から 7. 3である。 培養温度は MT— 10934より高温で培養することが可 能となり 33 から 42°Cで培養することで最大の生産性を得ることができる。 培養に際しては通常は温度、 pH、 通気条件、 攪拌速度を制御し得る培養槽を 用いるのが一般的であるが、 本発明の培養に際しては培養槽を使用することに限 定されない。 培養槽を用いて培養する場合には、 必要により、 予め前培養として 種培養を行いこれを必要量予め調製しておいた培養槽内の培地に接種してもよい。
MT— 10934は、 pH7〜7. 5の p H領域でギ酸が生成することがある のに対して MG1655の p f 1遺伝子破壊株では、 本発明の培養方法ではギ酸 の生成は確認されない。 よって、 ヘテロ醱酵性細菌としてェシエリヒア ·コリを 用いる場合は、 採用した菌体で中性付近の P Hの培地を用いて乳酸を生産させた 場合に MT— 1 0 9 3 4のようにギ酸の生成が観察されたときは、 実際の乳酸の 製造に際しては培地の P Hを中性よりやや酸性側で制御し、 MG 1 6 5 5の p f 1遺伝子破壊株のようにギ酸の生成が観察されない場合は実際の乳酸の製造に際 しては培地の p Hを中性もしくはややアル力リ性側に制御することで最大生産性 が得られる。
本発明における培養物とは、 上述した方法により生産された菌体、 培養液、 及 びそれらの処理物を指す。
以上のようにして得られた培養液等の培養物から乳酸を回収する方法は、 例え ば培養液からならば通常知られた方法が利用でき、 例えば酸性化した後直接蒸留 する方法、 ラクチドを形成させて蒸留する方法、 アルコールと触媒を加えエステ ル化した後蒸留する方法、 有機溶媒中に抽出する方法、 イオン交換カラムで分離 する方法、 電気透析により濃縮分離する方法などやそれらを組み合わせた方法が 採用できる。 また、 本発明の方法により生産された菌体は、 乳酸の生産に適した 酵素群を生産していることから、 これを利用してさらに乳酸を生産し、 回収する ことも培養物から乳酸を回収する方法の一部とみなされる。
本発明におけるェシエリヒア ·コリ由来 NADH依存性 D—乳酸デヒドロゲナ ーゼ (l d h A) とは、 ピルビン酸と NAD Hから D—乳酸と NADを生成する ェシエリヒア ·コリ由来の酵素であり、 具体的には B u n c hら (Microbiology 143 (Pt 1), 187-195 (1997) ) が取得した遺伝子、 またはェシエリヒア ·コリの ゲノム D N Aを铸型に配列番号 3および配列番号 4より P C Rにより増幅される D NAフラグメントに含まれる配列をもつ遺伝子より生産される酵素を例示でき る。
本発明において 1 d h A活性が増強されたとは、 1 d h Aをコードする遺伝子 の突然変異及び/または遺伝子組み換えにより、 それらの処理を行う前の状態よ りも有意に 1 d h Aをコードする遺伝子より生産される酵素の活性が増加した状 態を指す。 本発明における細菌とは一般の原核細胞の微生物である。
本発明において 1 d h A活性が増強され、 かつ P f 1活性が不活化あるいは低 減ィ匕された細菌の例として、 本発明実施例記載の MT— 1 0 9 3 4 / p G 1 y 1 d h Aを例示できる。 本菌株は上記 〔1〕 に記載した、 ピルべートホルメートリ ァーゼ (p f 1 ) の活性が不活化あるいは低減化されたヘテロ乳酸発酵細菌を 2 種以上のアミノ酸が添加された培地で培養し、 得られた ^養物から乳酸を回収す ることを特徴とする乳酸の生産方法に好適に利用することが出来る。
本発明における 1 d h A活性を増強する方策の一つとして、 1 d h Aをコード する遺伝子を、 解糖系、 核酸生合成系又はアミノ酸生合成系に関わる蛋白質の発 現を司る遺伝子のプロモーターと連結した状態で発現プラスミドに組込み、 それ を所望の細菌へ導入する方法が有効である。 その場合の解糖系、 核酸生合成系又 はアミノ酸生合成系に関わる蛋白質の発現を司る遺伝子のプロモーターとは、 恒 常的に細菌内、 好ましくはェシエリヒア ·コリ内で機能する強力なプロモーター 'で、 且つグルコース存在下でも発現の抑制を受けにくいプロモーターを指し、 具 体的にはダリセルアルデヒド 3リン酸デヒドロゲナーゼのプロモーターゃセリン ヒドロキシメチルトランスフェラーゼ (g 1 y A) プロモーターが例示できる。 このよゔにして得られた細菌は、 通気条件下で D—乳酸を生産させる時に 1 d h Aの発現が増強されていないものと比較して D—乳酸の蓄積量が向上し、 不純物 のピルビン酸濃度が減少すると共に D—乳酸の光学純度が向上させることが可能 となる。
本発明における F AD依存性 D—乳酸デヒドロゲナーゼ (d 1 d ) とは、 D— 乳酸から、 補酵素である酸化型フラビンアデニンジヌクレオチドの存在下でピル ビン酸を生成する反応を触媒する酵素の総称を意味する。
本発明における微生物とは、 D—乳酸生産能を有する微生物であれば特に制限 はなく、 D—乳酸生産能を有さない微生物であっても、 何らかの改変を加えるこ とによって D—乳酸生産能を有するようになった微生物をも含む。
本発明における d 1 d活性が不活化あるいは低減化されている、 且つ または p f 1活性が不活化あるいは低減化されている、 且つ/または 1 dhA活性が増 強されていることを特徴とする微生物として、 ェシエリヒア ·コリ MT— 109
94 (FERM BP— 10058) 株が例示できる。
本発明における解糖系、 核酸生合成系、 またはアミノ酸生合成系に関わる蛋白 質の発現を司る遺伝子のプロモー夕一とは、 恒常的に微生物内で機能する強力な プロモーターで、 かつグルコース存在下でも発現の抑制を受けにくいプロモー夕 一で、 具体的にはダリセルアルデヒド 3—リン酸デヒドロゲナーゼ (以下 GAP DHと呼ぶことがある) のプロモーターゃセリンヒドロキシメチルトランスフエ ラーゼのプロモーターが例示できる。
本発明におけるプロモーターとはシグマ因子を有する R N Aポリメ;ラーゼが結 合し、 転写を開始する部位を意味する。 例えばェシエリヒア 'コリ由来の GAP DHフロモー夕一は G e n B a n k ac c e s s i on numbe r X 0 2662の塩基配列情報において、 塩基番号 397 -440に記されている。 本発明における 1 dhAをコードする遺伝子がゲノム上において、 解糖系、 核 酸生合成系、 またはアミノ酸生合成系に関わる蛋白質の発現を司る遺伝子のプロ モー夕一を使用することで該 1 dhAを発現し、 p f 1活性が不活化あるいは低 減化されている、 且つノまたは d 1 d活性が不活化あるいは低減化されているこ とを特徴とする微生物としては、 ェシエリヒア 'コリ MT— 10994 (FER M BP— 10058) 株を例示することができる。
ェシエリヒア ·コリ MT— 10994株は、 1 dhA遺伝子をゲノム上におい て GAP DHプロモーターと機能的に連結することで発現させており、 また遺伝 子破壊により p f 1 B、 d 1 dが不活化しているため、 これを用いて容易に本発 明を実施することが可能である。 本菌株は、 FERM BP— 10058の寄託 番号で、 茨城県つくば市東 1丁目 1番 1号中央第 6の独立行政法人産業技術総合 研究所 特許生物寄託センターに、 特許手続上の微生物の寄託等の国際的承認に 関するブタペスト条約に基いて、 平成 16年 3月 19日より寄託されている。 本発明において TC A回路とは、 糖 ·脂肪酸 ·多くのアミノ酸などの炭素骨格 を最終的に完全酸化するための代謝経路であり、 クェン酸回路、 トリカルボン酸 回路、 クレプス回路とも呼ばれる。
本発明におけるリンゴ酸デヒドロゲナーゼ (md h)とは、国際生化学連合( I . U. B . ) 酵素委員会報告に準拠した酵素番号 1 . 1 . 1 . 3 7に分類され、 リン ゴ酸から、 補酵素である酸化型ニコチンアミドアデニンジヌクレオチドの存在下 でォキサ口酢酸を生成する反応を可逆的に触媒する酵素の総称を指す。
本発明における md h活性が不活化または低減されている微生物であって、 p f 1活性が不活化または低減されている、 且つ/または d 1 d活性が不活化または 低減されている微生物としては、 ェシエリヒア ·コリ MT— 1 0 9 9 4株を例示 できる。 本菌株は上記 〔1〕 に記載した、 ピルペートホルメートリア一ゼ (p f 1 ) の活性が不活化あるいは低減化されたヘテロ乳酸発酵細菌を 2種以上のアミ ノ酸が添加された培地で培養し、 得られた培養物から乳酸を回収することを特徴 とする乳酸の生産方法に好適に利用することが出来る。
本発明におけるァスパラギン酸アンモニアリア一ゼ (a s p A) とは、 国際生 化学連合 (I . U. B . ) 酵素委員会報告に準拠した酵素番号 4. 3. 1 . 1に分 類され、 ァスパルターゼとも呼ばれる酵素である。 本酵素は L—ァスパラギン酸 からフマル酸を生成する反応を可逆的に触媒する酵素の総称を意味する。
本発明で得られた微生物を培養して乳酸を生産させる際には、 通気を全く行わ なくとも良いが、 より好ましい結果を得るためには通気を行った方がよい。 ここ で言う通気条件下とは必ずしも培養液中を空気が通過する必要はなく、 培養槽の 形状によっては適度に培養液を撹拌しながら培養液上の空気層が換気されるよう な上面通気も含み、培養槽の内部に酸素を含む気体を流入させることを意味する。 液中に通気する場合は内圧、 撹拌羽根位置、 撹拌羽根形状、 撹拌速度の組み合わ せにより溶存酸素濃度が変化するために乳酸の生産性および乳酸以外の有機酸量 などを指標に次のように最適条件を求めることができる。 例えばェシエリヒア · コリ MT— 1 0 9 3 4株を AB L E社製培養装置 BM J— 0 1等の比較的小型の 培養槽で培養する場合は、 5 0 0 gの培養液を使用した際、 空気を常圧で 0 . 0 1 v vm〜l v vm、 撹拌 度 50 r pm〜500 r pm、 より好ましくは、 常 圧で 0. lvvm〜0. 5 v vm、 撹拌速度 100 r pm〜400 r pmで達成 し得る通気条件で好ましい結果を得ることができる。 この条件は通気撹拌条件が 温度 30 の水を対象とした場合常圧で酸素移動速度係数 k L aが 1 h— 1以上 400 h— 1となる条件で達成し得る酸素供給を可能とする条件である。
また、 最適な通気条件の別の指標としては MT— 10934株が嫌気培養で生 産するギ酸、 酢酸、 コハク酸、 エタノールが 5. OgZL以下、 さらに好ましく は 1. OgZL以下になり且つ、 乳酸が生産されるような通気量、 撹拌速度によ り達成される通気条件である。
また、 最適な通気条件の別の指標としては 0. 3%の光学異性体である L_乳 酸を含む培地で MT— 10934株を培養した際に 10〜100時間以内に L— 乳酸の濃度が 0. 02%以下に低下するような通気量、 攪拌速度である。
上述した通気条件は培養初期から終了まで一貫して行う必要はなく、 培養工程の 一部で行うことでも好ましい結果を得ることができる。
また、 上記のように通気を行うことで乳酸の生産性の向上、 光学異性体の削減 を達成することができる。
以下に実施例により本発明の一例を示すが、 これらは本発明をなんら制限する ものではない。
[実施例 1] MT— 10934株による乳酸生産
培養に使用する培地の組成を下記表 1に記載する。
ブドウ糖 10%
コーンスティープリカ一 (日本食品化工製) 5%
硫酸アンモニゥム 0. 5%
リン酸水素ニナトリウム 12水和物 0 3%
リン酸ニ水素力リゥム 0 15%
塩化ナトリウム 0, 15%
硫酸マグネシウム 7水和物 0, 1 %
アデ力ノール LG 126 0, 1 % 本培地にはコーンスティープリカ一由来の酸加水分解後の還元糖 0. 34%、 D—乳酸 0. 31 %、 L—乳酸 0. 31%、 遊離アミノ酸 0. 33%及び微量の 各種有機酸が含まれている。
前培養として三角フラスコに入れた LB B r o t h, Mi l l e r培養液 (D i f c o 244620) 25mlにェシエリヒア ·コリ MT— 10934株 を植菌し、 一晩 120 r pmで撹拌培養を行った後、 1 L容培養槽 (ABLE社 製培養装置 BM J—01) に上記組成の培地 475 gを入れたものに全量植菌し た。 培養は大気圧下、 通気量 0. 5 V vm、 撹拌速度 150 r pm、 培養温度 3 It、 pH6. 7 (NaOHで調整) でグルコースが完全に消費されるまで行つ た。
培養終了後、 得られた培養液中の有機酸の定量および光学純度の測定は HP L Cで定法に従って測定した。 結果を表 2に示す。 表 2
MG1655 (wild) MT-10934
D-乳酸蓄積量 54.9g/kg培溶液 90.5g/kg培養 培養液回収量 540g 570g
乾燥菌体重量 3.5g/L 2.2g/L
D -乳酸光学純度 99.9%ee以上 99.9 ee以上 . コハク酸 6.2g/L N. D〈0.2g/L ギ酸 1.8g/L N.D <0. lg/L 酢酸 2. g/L N.Dく 0. lg/L エタノール 0.8g/L N.Dく 0. lg/L 培養開始 50hr後の D-乳酸蓄積量 46.5g/kg 58.2g/kg
N.D:Not detected 上記結果において、 総乳酸量が培養開始時に加えたグルコース量を上まわって いる原因はコーンスティ一プリカ一中の炭素源を利用したためと考えられる。 し かしながら、 コーンスティ一プリカ一中の還元糖、 有機酸、 アミノ酸をすベて使 用したとしても 90%以上の変換率を達成した。 また、 培地中に不純物である有 機酸や乳酸の光学異性体の含まれる培養液を使用しても不純物である有機酸が減 少し、 光学純度が高い乳酸が製造された。
なお、 MG1655はアメリカン'タイプ'カルチャー,コレクション (AT CC) より ATCC47076として入手した。
[実施例 2] 1 d h A発現ベクターおよび乳酸生産菌の構築
セリンヒドロキシメチルトランスフェラーゼ
(serine hydroxymethyl transferase) (g 1 y A) プロモーターを取得するため大 腸菌ゲノム DNAをテンプレートに用いて配列番号 1、 及び配列番号 2をプロ ーブとして用いることにより PCR法で増幅し、 得られたフラグメントを制限酵 素 Ec oR Iで消化することで約 850 bpの g 1 y Aプロモーターをコードす るフラグメントを得た。 さらに 1 dh Aの構造遺伝子を取得するためにェシエリ ヒア ·コリのゲノム DNAをテンプレートに用いて配列番号 3 、 及び配列番号 4をプローブとして用いることにより P C R法で増幅し、 得られたフラグメント を制限酵素 E c o R I及ぴ H i nd I I Iで消化することで約 1. Okbpの 1 dh A構造遺伝子フラグメントを得た。 上記の 2つのフラグメントとプラスミド pUC 18を制限酵素 E c oR I及び H i nd I I Iで消化することで得られる フラグメントとを混合し、 DNAリガーゼを用いて結合した後、 大腸菌に形質転 換することによりプラスミド pG 1 y 1 dhAを得た。
得られたプラスミド pG 1 y 1 dhAをェシエリヒア 'コリ MT— 10934 株に形質転換することにより乳酸生産菌 MT— 10934/pG 1 y 1 dhA株 を得た。
尚、 pUC 18はアメリカンタイプカルチヤ一コレクションより入手できる A TCC 37253から定法により抽出することにより得られる。 また、 MT— 1 0934株は、 上記寄託番号により、 茨城県つくば市東 1丁目 1番 1号中央第 6 の、 独立行政法人産業技術総合研究所 特許生物寄託センターに平成 14年 11 月 8日より寄託されている。
[実施例 3] 乳酸生産菌 MT— 10934/pG 1 y 1 dhA株による乳酸 生産
前培養として三角フラスコにいれた LB B r o t h, M i 1 1 e r培養液 (D i f c o 244620) 25mlに実施例 2で得られた乳酸生産菌 MT— 1 0934/pG 1 y 1 dhA株を植菌し、 実施例 1に記載の方法で培養を行った。 培養終了後、 乳酸の定量および光学純度の測定は HP L Cで定法にしたがって測 定した。 結果を表 3に示す。 表 3
D—乳酸蓄積量 94gZkg培養液
570 g
2. 0 g
D—乳酸光学純度 99. 9 % e e以上
培養開始 50 h r後の D—乳酸蓄積量 65. 2 g/g一 上記結果において、 総乳酸量が培養開始時に加えたグルコース量を上まわって いる原因はコーンスティ一プリカー中の炭素源を利用したためと考えられる。 し かしながら、 コーンスティープリカ一中の還元糖、 有機酸、 アミノ酸をすベて使 用したとしても 90%以上の変換率を達成した。
[実施例 4] ェシエリヒア ·コリ p f 1遺伝子の近傍領域のクローニング ェシエリヒア ·コリのゲノム DN Aの全塩基配列は公知であり (Ge nB a n k ac c e s s i on numbe r U 00096 ),ェシエリヒア'コリ のピルペートホルメートリア一ゼ (以下 p f 1と呼ぶことがある) をコードする 遺伝子の塩基配列も報告されている (Ge n b an k ac c e s s i on n umbe r AE 000192)0 p f 1をコードする遺伝子 ( 2, 283 b p) の塩基配列近傍領域をクローニングするため、 配列番号 5、 6、 7及び 8に示す オリゴヌクレオチドプライマーを 4種合成した。 配列番号 6、 7のプライマーは 5 '末端側に S p h I認識部位を有している。
ェシエリヒア · 3UMG 1655株のゲノム DNAを、 Cur r en t Pr o t oco l s i n Mo l ecu l ar B i o l ogy (J o nW i 1 ey & Sons) 記載の方法により調製し、 得られたゲノム DNA 1 μ, g と、 配列番号 5の塩基配列を有するプライマ一と配列番号 6の塩基配列を有する プライマー、 配列番号 7の塩基配列を有するプライマーと.配列番号 8の塩基配列 を有するプライマーの組み合わせで、 上記プライマー DN A各々 100 pmo 1 とを用いて、 通常の条件で PCRを行うことにより約 1. 8 kb (以下 p f I B 一 L断片と呼ぶことがある) 及び、 約 1. 3 kp (以下 p f 1 B— R断片と呼ぶ ことがある) の DNA断片を増幅した。 この DNA断片をァガロース電気泳動に て分離、 回収し、 p f 1 B— L断片を H i n d I I I及び S p h Iで、 p f 1 B — R断片を Sph I及び P s t Iでそれぞれ消化した。 この消化断片 2種と、 温 度感受性プラスミド pTH 18 c s 1 (Ge nB ank a c c e s s i on n umb e r AB 0 1 9 6 1 0) (Hashimoto— Gotoh, T., et.al., Gene, Vol.241(1), ppl85-191 (2000)) ©H i nd i I I及び P s t I消化物とを T 4 DNAリガーゼで反応した後、ェシエリヒア ·コリ D H 5. a;コンビテントセル(宝 バイオ) に形質転換して、 p f 1 Bをコードする遺伝子の 5 '上流近傍断片と 3 '下流近傍断片の 2つの断片を含むプラスミドを得、 ρΤΗΔρ f 1と命名した。
[実施例 5] ェシエリヒア ·コリ MG1655株 p f 1遺伝子破壊株の作製 実施例 4で得たプラスミド ρΤΗΔρ f 1をェシエリヒア ·コリ MG 1655 株に形質転換し、 細胞が温度感受性プラスミドを保持できる 30 でクロラムフ ェニコール 1 O^gZmlを含む LB寒天プレート上で一晩培養し、 形質転換体 を得た。 得られた形質転換体を LB培地で 30でで 3時間から一晩培養後、 LB 液体培地または生理食塩水で適当に希釈して、 クロラムフエ二コール 10 g mlを含む LB寒天プレート上に塗布した。 この LB寒天プレートを、 温度感受 性プラスミドを保持できない 42 で培養し、 生育した形質転換体をゲノム外一 ゲノム間相同組換えによりプラスミド全長がェシエリヒア ·コリゲノムに組み込 まれた株として得た。
この株からゲノム DNAを取得し、 これを铸型とした PCRを実施して、 pT HI 8 c s 1が有するクロラムフエ二コール耐性遺伝子がゲノム上に存在するこ と、 および p f 1 Bをコードする遺伝子の 5 '側近傍領域、 及び 3 '側近傍領域 のそれぞれと相同な領域がゲノム上に存在することをもつてプラスミド全長がェ シエリヒア ·コリゲノムに組み込まれた株であることを確認した。 プラスミド全長がェシエリヒア ·コリゲノムに組み込まれた株を、 ク nラムフ ェニコールを含まない LB液体培地 20mlを入れた 100mlのパッフル付き フラスコに植え、 これを 3 で 4時間振とう培養した。 この培養液を適当にク 口ラムフエ二コールを含まない LB液体培地で希釈し、 クロラムフエ二コールを 含まない LB寒天培地上に塗布する。 これを 42でで培養して生育したコロニー を無作為に 96個選抜し、 それぞれをクロラムフエ二コールを含まない LB寒天 培地上と、 クロラムフエ二コールを含む LB寒天培地上に生育させ、 クロラムフ ェニコール感受性の株を選抜した。
さらに選抜された株からゲノム DNAを取得し、 これを铸型とした PC Rを実 施して p f 1をコードする遺伝子が欠損した株を選抜し、 これを MG 1655 Δ p f 1 B株と命名した。
[実施例 6] カザミノ酸を用いた MG1655Δρ f 1株による乳酸の生産 前培養として三角フラスコに LB Bro t , 1 1 161"培養液 (0丄 f c o244620) 25 gを入れたものを複数用意した。 これに乳酸生産菌 M G 1655、 MG 1655 Δ p f 1株、 および MG 1655 Δ p f 1株に実施例 2に記載のプラスミド pG 1 y 1 dhAを定法により組み換えた MG 1655 Δ p f 1 /pG 1 y 1 dhAの 3種類の菌株を別々に植菌し、 一晚、 30 、 1 20 r pmで撹拌培養を行った後、 1 L容の培養槽 (AB L E社製培養装置 BM J - 01) に表 4に示す培地 475 gを入れたものにそれぞれ全量植菌した。 培 養は大気圧下、 通気量 0. 5vvm、 撹拌速度 200 rpm、 培養温度 31 、 ρΗ6. 7 (NaOHで調整) で 50時間行った。 培養終了後、 得られた培養液 中の乳酸の定量および光学純度の測定は HP LCで定法に従って測定した。 結果 を表 5に示す。 表 4
培地組成
Gl ucos e 100 g/L
Na2HP04 · 12H20 6. 0 g/L
Figure imgf000031_0001
KH2P04 0 g/L
NaC 1 0 g/L
Mg S〇4 · 7 a q 1 g/L
酵母エキス 5 g/L
カザミノ酸 0 g/L 表 5
MG1655 MG1655 Apfl MG1655Apfl /pGlyldhA
D—乳酸蓄積量 28 g/L 58 g/L 63. 7 g/L
[実施例 7] コーンスティ一プリカ一を用いた MG 1655 Δ p f 1による乳 酸の生産
前培養として三角フラスコに入れた培養液 25 gに MG 1655、 MG 165 5 Δρ f 1、 および MG1655Ap f l/pGl y l dh Aを別々に植菌し、 一晩 30Ό、 120 r pmで撹拌培養を行った後、 1 L容培養槽 (AB L E社製 培養装置 BMJ— 01) に表 6に示す培地 475 gを入れたものに別々に全量植 菌した。 培養は大気圧下、 通気量 0. 5vvm、 撹拌速度 300 rpm、 培養温 度 35で、 pH7. 2 (NaOHで調整) で 24時間行った。 培養終了後、 得ら れた培養液中の乳酸およびピルビン酸の測定は HP L Cで定法に従って測定した。 結果を表 7に示す。 表 6 ブドウ糖 10 %
コーンスティ一プリカ一 (日本食品化工製) 5%
アデ力ノール LG 126 0. 1 %
MG1655 MG1655Apfl MG1655Apfl/pGlyldhA
D -乳酸蓄積:量 52g/L 95g/kg培養液 95g/kg培養液
培養液回収量 520g 560g 560g
乾燥菌体重量 2.5g/L 2.5g/L 2.5g/L
ピルビン酸 l.lg/L l.lg/L 0.3g/L
培養時間 24時間 24時間 24時間 上記結果において、 総乳酸量が培養開始時に加えたグルコース量を上まわって いる原因はコーンスティープリカ一中の炭素源を利用したためと考えられる。 し かしながら、 コーンスティ一プリカ一中の還元糖、 有機酸、 アミノ酸を全て使用 したとしても 90 %以上の変換率を達成した。
[実施例 8] 高ダルコ一ス濃度下での MG 1 655 Δρ f 1株による乳酸の高 前培養として三角フラスコにいれた培養液 25 gに MG1655 Δρ f 1を植 菌し、 一晩 120 r pmで撹拌培養を行った後、 AB L E社製培養装置 BM J— 01の培養槽に表 8に示すグルコース濃度を 10%〜15%まで変化させた培地 475 gを入れたものに全量植菌した。 培養は大気圧下、 通気量 0. 5 vvm、 撹拌速度 300 rDm、 培養温度 35 、 pH7. 2 (N a OHで調整) でグル コースが枯渴するまで行った。 培養終了後、 乳酸の測定は HP LCで定法にした がって測定した。 結果を表 9に示す。 表 8
mm
ブドウ糖 10%、 2 %, 15% コーンスティープリカ一 (日本食品化工製) 5 %
アデ力ノール LG126 0. 1 % 表 9
グルコース濃度 0% 2% 5%
95g/kg培養液 112g/kg培養液 130g/kg培養液 培養液回収量 560g 567g 580g
2.5 g/L 2.5g/L 2.5g/L 総乳酸量が培養開始時に加えたグルコース量を上まわる原因はコーンスティープ リカー中の炭素源を利用したためと考えられる。 しかしながら、 コーンスティー プリカ一中の還元糖、 有機酸、 アミノ酸をすベて使用したとしても 90%以上の 変換率を達成し、 かつ 130 g/Lというこれまでにない高い蓄積量を達成した。
[実施例 9] MG 1655Ap f 1株によるコーンスティープリカ一添加量の 検討
前培養として三角フラスコにいれた培養液 25 gに MG 1655 Δρ f 1を植 菌し、 一晩 120 r pmで撹拌培養を行った後、 AB L E社製培養装置 BM J— 01の培養槽に表 10に示すコーンスティ一プリカ一濃度を 1〜10%まで変化 させた培地 475 gを入れたものに全量植菌した。 培養は大気圧下、 通気量 0. 5vvm、 撹拌速度 300 r pm、 培養温度 35で、 pH 7. 2 (N a OHで調 整) で 24時間行った。 培養終了後、 乳酸の測定は HPLCで定法にしたがって 測定した。 結果を表 11に示す。 表 10
I.成
ブドウ糖 10%
CSL (日本食品化工製) 1%、 2. 5%、 5%、 10% アデ力ノール LG 126 0. 1 %
表 1
CSL % 2. 5% 5% 10%
D—乳酸蓄積量 55 g/L 90 gXL 94 g/ 1 96 g/L
1%のコーンスティ一プリカ一添加区では生産速度の低下が観察されたものの 2 4時間で 55 gZLとこれまでにない生産速度である。 また、 使用したダルコ一 スに対する乳酸への変換率は 90 %以上を維持していた。
[実施例 10] MG1655 Δρ f 1株による通気条件による解糖速度への影 響
前培養として三角フラスコにいれた培養液 25 gに MG 1655 Δρ f 1株を植 菌し、 一晩 120 r pmで撹拌培養を行った後、 AB L E社製培養装置 BM J— 01の培養槽に表 12に示す培地 475 gを入れたものに全量植菌した。 培養は 大気圧下、 通気条件は表 13に示す条件、 培養温度 35 、 ρΗ7.' 2 (NaO Hで調整) で 24時間行った。 残存グルコース量はグルコース C I I—テストヮ コー (和光純薬工業) により測定した。 表 12
編 ,
ブドウ糖 12%
C S L (日本食品化工製) 5 「 % o/ アデ力ノール LG 126 0. 1 %
表 13
試験!^ 1 2 3 4
通気量 (vvm) 0 0. 5 0. 5 0. 5 攪拌速度 (rpm) 200 200 400 600
表 14
試験区 1 2 3 4
ク レコース残存量
(g/L) 59. 4 39. 4 21. 7 67. 9 この試験により通気条件が向上するに従い解糖速度が向上し、 通気条件を向 上させすぎると解糖速度が低下することがわかる。
[実施例 11] MG 1655Ap f lZpGl y l dhA株によるコーンステ ィープリカ一添加量の検討
前培養として三角フラスコにいれた培養液 25 gに MG 1655 Δρ f 1 B/ pG 1 y 1 dhAを植菌し、 一晩 120 r pmで撹拌培養を行った後、 ABLE 社製培養装置 BMJ— 01の培養槽に表 15に示すコーンスティープリカ一濃度 を 1〜10%まで変化させた培地 475 gを入れたものに全量植菌した。 培養は 大気圧下、 通気量 0. 5vvm、 撹拌速度300 1!1、 培養温度 35°C、 pH 7. 2 (NaOHで調整) で 24時間行った。 培養終了後、 D—乳酸の測定は H PLCで定法にしたがって測定した。 結果を表 16に示す。 表 15
培地組成
ブドウ糖 10%
CSL (日本食品化工製) 1 。、 厶 · 5 %、 5%、 10% アデ力ノール LG 126 0. 1 %
表 16
CSL 1 % 2. 5% 5% 10%
D—乳酸蓄積量 58g/L 92 g/L 96 g/1 97 g/L
1 %のコーンスティ一プリカ一添加区はこの中では最も低い生産性であるが、 24時間で 58 gZLと従来にない生産速度である。 また、 使用したグルコース に対する D—乳酸への変換率は 90 %以上を維持していた。
[実施例 12] MG1655Ap f 1/pGl y l dhA株による通気条件に よる解糖速度への影響
前培養として三角フラスコにいれた培養液 25 gに MG1655 Δρ f 1 B/ pG 1 y 1 dhAを植菌し、 一晩 120 r pmで撹拌培養を行った後、 ABLE 社製培養装置 BMJ— 01の培養槽に表 17に示す培地 475 gを入れたものに 全量植菌した。培養は大気圧下、通気条件は表 18に示す条件、培養温度 35 、 PH7. 2 (NaOHで調整) で 24時間行った。 残存グルコース量はダルコ一 ス CI I—テス卜ヮコー (和光純薬工業) により測定した。 表 17
ブドウ糖 12%
CSL (日本食品化工製) 5%
アデ力ノール LG126 0. 1 %
表 18
試験区 1 2 3 4 通気量 (vvm) 0 0. 5 0. 5 0. 5 攪拌速度(rpm) 200 200 400 600
表 19
試験区 1 2 3 4
グルコース残存量.
(g/L) 59. 4 36. 6 20. 1 54. 5 この試験により通気条件が向上するに従い解糖速度が向上し、 通気条件を向上 させすぎると解糖速度が低下することがわかる。
[実施例 13] ェシエリヒア ·コリ MG1655株 d 1 d遺伝子欠失株の作製 MG1655株由来ゲノム DNAの d 1 d遺伝子近傍領域の遺伝子情報に基づ いて作製された、 CAACACCAAGCTTTCGCG (配列番号 9) と T TCCACTCCTTGTGGTGGC (配列番号 10)、 AACTGCAGAA ATTACGGATGGCAGAG (配列番号 11 ) と TGTTCTAGAAA GTTCTTTGAC (配列番号 12) を用いて PCRを行った。 得られたフラ グメントをそれぞれ、 制限酵素 H i nd l l lと P s t I、 P s t Iと Xb a l で消化することにより、 それぞれ約 1 140 bpの フラグメントを得た。 この フラグメントを温度感受性プラスミド ρΤΗ 18 c s 1 (Hashimoto- Got oh, T., et.al., Gene, Vol.241(1), ppl85-191 (2000)) を H i n d I I I,、 Xb a Iで 消化して得られるフラグメントと混合し、 リガーゼを用いて結合した後、 DH5 α株に 30"Cで形質転換し、 クロラムフエ二コール 1.0 M gZmlを含む LB寒 天プレートに生育する形質転換体を得た。 得られたコロニーをクロラムフエニコ ール 10 /m 1を含む LB液体培地で 30 で一晩培養し、 得られた菌体か らプラスミドを回収した。 このプラスミドを MG 1655株に 30°Cで形質転換 し、 クロラムフエ二コール 10 g/m 1を含む LB寒天プレートに生育する形 質転換体を得た。 得られた形質転換体を寒天プレートに塗布し、 30 で一晩培 養した。 次にこれらの培養菌体をが得られるようにクロラムフエ二コール 1 O g/m 1を含む LB寒天プレートに塗布し、 42でで生育するコロニーを得た。 さらにもう一度、 42でで生育するシングルコロニーを得る操作を繰り返し、 相同組換えによりプラスミド全体が染色体に組込まれたクローンを選択した。 本 クローンがプラスミドを細胞質中に持たないことを確認した。
次に上記クローンを LB寒天プレートに塗布し、 30°Cで一晩培養した後に、 LB液体培地 (3mlZ試験管) に接種し、 421で3〜4時間、 振とう培養し た。 これをシングルコロニーが得られるように適当に希釈(10一2〜 10— 6程度) し、 LB寒天プレートに塗布し、 .42 で一晩培養し、 コロニーを得た。 出現し たコロニーの中から無作為に 100コロニ一をピックアップしてそれぞれを LB 寒天プレートとクロラムフエ二コール 10 g/m 1を含む LB寒天プレートに 生育させ、 L B寒天プレートにのみ生育するクロラムフエ二コール感受性のク口 ーンを選んだ。 さらにはこれらの目的クローンの染色体 DNAから PC Rにより d i dを含む約 2. O kb断片を増幅させ、 d 1 d遺伝子領域が欠失している株 を選抜し、 以上を満足するクローンを d I d欠失株とし、 得られた株を MG 16 55 Δά 1 d株と命名した。
[実施例 14] MG 1655 Δά 1 d株による D—乳酸生産
前培養として三角フラスコにいれた LB B r o t h, M i l l e r培養液
(D i f c o 244620) 25m lに MG 1655株、 または MG 1655 Δ d 1 d株を植菌し、 一晩、 1 20 r pmで攪拌培養を行った。 各々の前培養液全 量を、 表 20に示す組成の培地 475 gの入った ABLE社製培養装置 BM J— 01の培養槽に移し、 培養を行った。 培養は大気圧下、 通気量 0. 5 vvm、 撹 拌速度 200 r pm、 培養温度 3 I 、 pH6. 7 (N a OHで調整) で 96時 間行った。 48時間後、 および培養終了後、 HPLCで乳酸、 ピルビン酸、 ギ酸 および酢酸の定量を定法にしたがって測定した。 MG 1655株、 MG 1655 △ d 1 d株それぞれを Wi 1 d、 Δά 1 dと表記して 48時間後の結果を表 21 に、 培養終了時の結果を表 22に示す。 表 20
培地組成
G l u c o s e 100 g/L
Na2HP04 · 12H20 6. 0 g/L
(NH4) 2S04 6. 0 g/L
KH2P04 3. 0 g/L
Na C 1 3. 0 g/L
Mg S04 · 7 a q 0. 1 g/L
酵母エキス 0. 5 g/L
カザミノ酸 5. 0 g/L 表 2
48時間後の結果
W.i 1 d △ d i d
D一乳酸蓄積量 26 g/L 22 g/L
ピルビン酸蓄積』 4. 5 g/L 1. 1 g/L
5. 0 g/L 1. 55 g/L
14 g/L 9. 5 g/L
表 22
96時間後の結果
Wi l d △ d i d
D—乳酸蓄積量 36 g/L 41 g/L
ピルビン酸蓄積量 5. 84 g/L 1. 26 g/L
3. 4 g/L 0 g/L
12 g/L 11 /L
[実施例 15] ェシエリヒア 'コリ MG 1655 p f 1、 d 1 d遺伝子欠失株 作製
実施例 4で得たプラスミド ρΤΗΔρ f 1を、 MG 1655 Ad 1 d株に形質 転換し、 クロラムフエ二コール 10 [I g/m 1を含む LB寒天プレートに生育す る形質転換体を得た。 得られた形質転換体を寒天プレートに塗布し、 30でで一 晚培養した。 次にこれらの培養菌体が得られるようにクロラムフエ二コール 10 gZmlを含む LB寒天プレートに塗布し、 42 で生育するコロニーを得た。 得られたクローンから、 実施例 5と同様に行うことにより MG1655 d 1 d、 P f 1遺伝子欠失株を取得し、 MG 1655 Ap f l Ad l d株と命名した。 [実施例 16] MG 1655 Ad 1 d株、 MG 1655Ap f l Ad l d株へ の 1 d h A発現ベクターの導入
実施例 2で得たプラスミド pG 1 y 1 dhAを、 MG1655 Δ(1 1 d株、 M G1655Ap f l Ad l d株にそれぞれ形質転換することにより、 MG 165 5 Δά 1 d/pG 1 y 1 dhA株、 MG1655 Ap f l Ad l d/pG l y l dhA株を得た。
[実施例 17] MG 1655株、 MG 1655 Ad l d株、 MG 1655 Ap f l株、 MG 1655厶 p f l Ad l d株、 MG 1655 Δ d 1 d/p G 1 y 1 dhA株、 MG 1655Ap f l Ad l d/pG 1 y 10111八株にょる0—乳酸 前培養として三角フラスコにいれた LB B r o t h, M i l l e r培養液 25mlに MG1655株、 MG1655 Ad 1 d株、 MG 1655Ap f 1株、 MG 1655Ap f l Ad l d株、 MG1655Ad l dZpG l y l dhA株、 MG 1655 Ap f l Ad l d/pG l y l d h A株をそれぞれ植菌し、 ー晚、 120 r pmで攪拌培養を行った。 各々の前培養液全量を、 表 20に示す組成の 培地 475 gの入った ABLE社製培養装置 BMJ— 01の培養槽に移し、 培養 を行った。 培養は大気圧下、 通気量 0. 5vvm、 撹拌速度 200 r pm、 培養 温度 31°C、 pH6. 7 (N a OHで調整) で 96時間行った。 培養終了後、 H PLCで乳酸、ピルビン酸、ギ酸および酢酸の定量を定法にしたがって測定した。 96時間後の結果を表 23に示す。 菌株名はそれぞれ A、 B、 D、 E、 F と表記した。 表 23
培養液中の各種有機酸濃度 (表中の数値の単位は全て gZL)
A B C D E F
D—乳酸蓄積量 40 41. 5 60 61 43 65 ピルビン酸蓄積】; 2. 7 1. 0 2 . 3 1 . 1 0 . 9 0 . 7
4. 0 3. 5 ND ND 3 . 5 ND
11 7. 3 4 . 4 4 . 3 7 . 0 4 . 2
[実施例 18] GAPDHプロモ一夕一制御下 1 dh A発現べクタ一および 1 d h A発現ベクター形質転換体の構築
ェシエリヒア ·コリの 1 dh A遺伝子の塩基配列はすでに報告されている (G enBank ac c e s s i on numbe r U36928) 。 クリセヅレ デヒド 3—リン酸デヒドロゲナーゼ (GAPDH) プロモーターを取得するため ェシエリヒア ·コリ MG 1655株のゲノム DNAをテンプレートに用いて AA 、
Figure imgf000042_0001
(配 列番号 14) により PCR法で増幅し、 得られた DNAフラグメントを制限酵素 E c oR Iで消化することで約 100 b pの GAPDHプロモーターをコードす るフラグメントを得た。さらに D—乳酸デヒドロゲナーゼ構造遺伝子( 1 d h A) を取得するためにェシエリヒア 'コリ MG1655株のゲノム DN Aをテンプレ
C (配列番号 16) により PCR法で増幅し、 得られた DNAフラグメントを制 限酵素 E c oR I及び H i nd I I Iで消化することで約 1. 0 kbpの D—乳 酸デヒドロゲナーゼ構造遺伝子 (1 dh) フラグメントを得た。 上記の 2つの D NAフラグメントとプラスミド pUC 18を制限酵素 E c oR I及び H i nd I I Iで消化することで得られるフラグメントを混合し、 リガーゼを用いて結合し た後、 ェシエリヒア 'コリ DH5 aコンビテントセル (夕カラバイオ社製) に形 質転換し、 アンピシリン 50 g/mLを含む L B寒天プレートに生育する形質 転換体を得た。 得られたコロニーをアンピシリン 5 O gZmLを含む LB液体 培地で LB培地で 30 で一晩培養し、 得られた菌体からプラスミド pGAP 1 dhAを回収した。 このプラスミド pGAP 1 dhAを MG1655 Δρ f 1;Δ d 1 d株に形質転換し、 アンピシリン l gZmLを含む LB寒天プレ トで 3 7で一晩することにより MG 1655Ap f l Ad l d/pGAP 1 dhA株を 得た。
[実施例 19] ェシエリヒア ·コリ MG1655Δρ ί 1 Δά 1 d株のゲノム 上 1 dhAプロモーターの GAPDHプロモーターへの置換
ェシエリヒア ·コリのゲノム DN Aの全塩基配列は公知であり (Ge nBan k ac c e s s i on numbe r U 00096)、 ェシエリヒア ·コリの
1 dhA遺伝子の塩基配列も報告されている (GenB ank a c c e s s i on numbe r U 36928)。 ェシエリヒア ·コ UMG 1655株由来 1 dhA遺伝子の 5' 近傍領域の遺伝子情報に基づいて作成された、 AAGGTA CCACCAGAGCGTTCTCAAGC (配列番号 17 ) と GCTCTAG ATTCTCCAGTGATGTTGAATCAC (配列番号 18 ) を用いて、 ェシエリヒア ·コリゲノム DN Aを铸型として PC Rを行うことにより約 100 0 b pの DNA断片を増幅した。
また、 ェシエリヒア ·コリ MG1655株のダリセルデヒド 3—リン酸デヒド ロゲナーゼ (GAPDH) プロモーターの配列情報に基づいて作製された GGT CTAGAGCAATGATTCACACGATTCG (配列番号 19) とェシ エリヒア ·コリ MG1655株の 1 d h A遺伝子の配列情報に基づいて作製され を用いて、 実施例 18で作製した発現ベクター p GAP 1 (111八を铸型として? CRを行い、 GAPDHプロモーターと 1 dh A遺伝子の開始コドン近傍領域か らなる約 850 b pの DNAフラグメントを得た。
上記により得られたフラグメントをそれぞれ、 制限酵素 Kpn Iと Xb a I、 Xb a Iと P s t Iで消化し、 このフラグメントを温度感受性プラスミド pTH 18 c s 1を Kpn Iと P s t Iで消化して得られるフラグメントと混合し、 リ ガーゼを用いて結合した後、 DH5 αコンビテントセル (夕カラバイオ社製) に 30 で形質転換し、 クロラムフエ二コール 10 gXm 1を含む LB寒天プレ ートに生育する形質転換体を得た。 得られたコロニーをクロラムフエ二コール 1 O /mlを含む LB液体培地で 30で一晩培養し、 得られた菌体からプラス ミドを回収し、 pTH— GAP 1 d hAと命名した。 p TH— GAP 1 d h Aを MG 1655Ap f l Ad l d株に 30 で形質転換し、 クロラムフエ二コール 1 O g/mlを含む LB寒天プレートに 30 で一晩培養し、 形質転換体を得 た。 得ちれた形質転換体をクロラムフエ二コール 10 § 1111を含む1^8液体 培地に接種し、 30 で一晩培養した。 次にこれらの培養菌体が得られるように クロラムフエニコ一ル 10 UL g/m 1を含む LB寒天プレートに塗布し、 42V, で生育するコ口二一を得た。 得られたコロニーを薬剤を含まない L B液体培地で 301一晩培養し、 さらに薬剤を含まない L B寒天プレートに塗布して 42 で 生育するコロニーを得た。
出現したコロニーの中から無作為に 100コロニーをピックアップしてそれぞ れを薬剤を含まない LB寒天プレートとクロラムフエ二コール 10 n g/m 1.を 含む LB寒天プレートに生育させ、 クロラムフエ二コール感受性のクローンを選 んだ。 さらにはこれらの目的クローンの染色体 DNAから PC Rにより GAPD Hプロモーターと 1 dh A遺伝子を含む約 800 b p断片を増幅させ、 1 dhA プロモーター領域が GAPDHプロモーターに置換されている株を選抜し、 以上 を満足するクロ一ンを MG 1655Δρ ί 1 Δά 1 d/GAP 1 dhAゲノム揷 入株と命名した。 [実施例 20] MG 1655 Ap f l Ad l d株、 MG 1655Ap f 1 Δά
1 d/p GAP 1 dhA株、 MG 1655Ap f l Ad l d/GAP 1 dhAゲ ノム揷入株による D—乳酸生産
前培養として三角フラスコにいれた LB B r o t h, M i 1 1 e r培養液
(D i f c o 244620) 25mLに MG1655Δρ ί 1 Δά 1 d株、 MG 1655Ap f l Ad l d/pGAP 1 dhA株、 MG 1655Ap f l Ad l d&p f 1 B/GAP 1 dhAゲノム揷入株をそれぞれ植菌し、 ー晚、 120 r pmで攪拌培養を行った。 各々の前培養液全量を、 グルコース 120 g/L、 コ ーンスティープリカ一 (日本食品化工製) 5%よりなる培地 475 gの入った 1L容の培養槽 (ABLE社製培養装置 BMJ— 01) に移し、 培養を行った。 培養は大気圧下、通気量 0. 5 V vm、撹拌速度 200 r pm、培養温度 35Χλ ρΗ7. 2 (N a OHで調犛)でグルコースが枯渴するまで行った。培養終了後、 得られた培養液中の D—乳酸蓄積量を H P L Cで定法に従つて測定した。 結果を 図 1に示す。 それぞれの D—乳酸蓄生産性は、 MG 1655 Δ p f 1 Δ d 1 d株 が 48時間で 109. 0 g/L, MG 1655Ap f l Ad l d/p GAP 1 d h A株が 48時間で 115. 6 g/L、 MG 1655Ap f l Ad l d GAP
1 dhAゲノム揷入株が 30時間で 113. 5 gノ乙であった。
[実施例 21] ェシエリヒア 'コリ MG 1655Ap f l Ad l dAmdh株 の作製
ェシエリヒア ·コリのゲノム DN Aの全塩基配列は公知であり (Ge nB an k a c c e s s i on numb e r U 00096)、ェシエリヒア-コリの md h遺伝子の塩基配列も報告されている (Genb ank a c c e s s i o n numbe r AE 000403 )。md hをコードする遺伝子( 939 b p) の塩基配列近傍領域をクローニングするため、 配列番号 21、 22、 23及び 2 4に示すオリゴヌクレオチドプライマーを 4種合成した。 配列番号 21の塩基配 列を有するプライマーは 5 '末端側に Kpn I認識部位を、 配列番号 22、 23 の塩基配列を有するプライマーは 5 '末端側に BamHI認識部位を、 配列番号 24の塩基配列を有するプライマーは 5 '末端側に Xb a I認識部位をそれぞれ 有している。
ェシエリヒア .コリ MG1655株のゲノム DNAを、 Cu r r en t P r o t o c o 1 s i n Mo l e c u l a r B i o l ogy (J oh nW i 1 ey & S on s )記載の方法により調製し、得られたゲノム DNA 1 z gと、 配列番号 21と配列番号 22、 配列番号 23と配列番号 24の組み合わせで、 上 記プライマー DNA各々 100 pmo 1とを用いて、 通常の条件で PCRを行う ことにより約 800 bp (以下 mdh— L断片と呼ぶことがある) 及び、 約 1, 000 bp (以下 mdh— R断片と呼ぶことがある) の DNA断片を増幅した。 この DNA断片をァガロース電気泳動にて分離、 回収し、 mdh— L断片を Kp η I及び BamH Iで、 md h— R断片を B amH I及び Xb a Iでそれぞれ消 化した。 この消化断片 2種と、 温度感受性プラスミド pTHl 8 c s 1 (Gen B a n k a c c e s s i o n n umb e r AB 0 1 9 6 1 0 )
(Hashimoto— Gotoh, T., et.al., Gene, Vol.241(1), ppl85-191 (2000)) の Kp 111及び & I消化物とを T 4 DNAリガーゼで反応した後、 ェシエリヒア · コリ DH 5 αコンビテントセル (宝バイオ) に形質転換して、 mdhをコードす る遺伝子の 5 '上流近傍断片と 3 '下流近傍断片の 2つの断片を含むプラスミド を得、 本プラスミドを pTHAmdhと命名した。
プラスミド pTHAmdhをェシエリヒア ·コリ MG 1655Ap f l Ad l d株に形質転換し、 実施例 5と同様の方法に従って、 mdh遺伝子が破壌された MG1655Ap f l Ad l d株を取得した。 本株を MG 1655Δρ ί 1 Δά
1 dAmdh株と命名した。
[比較例 1 ] ェシェリヒア 'コリ MG1655Ap f I BAd l dApp c株の 作製
ェシエリヒア ·コリのゲノム DNAの全塩基配列は公知であり (Ge nB an k ac c e s s i on numbe r U 00096 )、ェシエリヒア.コリの p p c遺伝子の塩基配列も報告されている (Genbank ac c e s s i o n numb e r AE 000469)。 p p cをコードする遺伝子(2, 652 bp) の塩基配列近傍領域をクローニングするため、 配列番号 25、 26、 27 及び 28に示す塩基配列を有するオリゴヌクレオチドプライマーを 4種合成した。 配列番号 26、 27のプライマーは 5 '末端側に Xb a I認識部位を、 配列番号 28のプライマーは 5 '末端側に Sac I認識部位ををそれぞれ有している。 ェシエリヒア ·コリ MG1655株のゲノム DNA1 jtigと、 配列番号 25と 配列番号 26、 配列番号 27と配列番号 28の組み合わせで、 上記プライマー. D NA各々 100 pmo 1とを用いて、通常の条件で P C Rを行うことにより約 1,
450 bp (以下 p p c—L断片と呼ぶことがある) 及び、 約 750 bp (以下 pp c^R断片と呼ぶことがある) の DNA断片を増幅した。 この DNA断片を ァガロース電気泳動にて分離、 回収し、 pp c— L断片を Hi nd I I I及び X b a Iで、 p p c— R断片を Xb a I及び S a c Iでそれぞれ消化した。 この消 化断片 2種と、 温度感受性プラスミド pTHl 8 c s 1の H i nd I I I及び S a c I消化物とを T 4 DNAリガーゼで反応した後、 ェシエリヒア ·コリ DH 5 αコンビテン卜セル (宝バイオ) に形質転換して、 pp cをコードする遺伝子の
5 '上流近傍断片と 3 '下流近傍断片の 2つの断片を含むプラスミドを得て、 こ のプラスミドを ρΤΗΔρ p cと命名した。
プラスミド ρΤΗΔ p p cをェシエリヒア 'コリ MG 1655Ap f 1 Δ d 1 d株に形質転換し、 最終的に pp c遺伝子が破壊された MGl 655株 Δρ f 1 △ d 1 d株を取得した。 本株を MGl 655Ap f l BAd l dApp c株と命 名した。 なお本株を得る詳細な方法は、 本発明の実施例 5に記載された方法に準 じた。
[比較例 2 ]
ェシエリヒア 'コリ MG 1655Ap f 1 Δά 1 άΔ f r d株の作製 ェシェリヒア ·コリの^ —ム DN Aの全塩基配列は公知であり (G e n B a n k ac c e s s i on numb e r U 00096)、ェシエリヒア.コリの f r d遺伝子の塩基配列も報告されている (Genb ank a c c e s s i o n numbe r AE 000487 )。本実施例で欠失を試みる f r d遺伝子は、 f r dAをコードする遺伝子(1, 809 b p)、 f r d Bをコードする遺伝子( 7 35 b p), f r dCをコードする遺伝子 (396 b p)、 及び f r dDをコード する遺伝子 (360 bp) の 4種類の遺伝子を含む遺伝子である。 f r d遺伝子 の塩基配列近傍領域をクローニングするため、 配列番号 29、 30、 31及び 3 2に示す塩基配列を有するオリゴヌクレオチドプライマ一を 4種合成した。 配列 番号 29のプライマーは 5 '末端側に E c oR I認識部位を、 配列番号 30、 3 1のプライマーは 5 '末端側に BamH I認識部位を、 配列番号 32のプライマ 一はその内部に H i nd I I I認識部位をそれぞれ有している。
ェシエリヒア ·コリ MG1655株のゲノム DNA1 fi gと、 配列番号 29と 配列番号 30、 配列番号 31と配列番号 32の組み合わせで、 上記プライマ一 D NA各々 100 pmo 1とを用いて、 通常の条件で P CRを行うことにより約 6
00 b p (以下 f r d— L断片と呼ぶことがある) 及び、 約 800 bp (以下 f r d— R断片と呼ぶことがある) の DNA断片を増幅した。 この DNA断片をァ ガロース電気泳動にて分離、 回収し、 f r d— L断片を E c oR I及び B amH Iで、 f r d— R断片を B amH I及び H i n d I I Iでそれぞれ消化した。 こ の消化断片 2種と、 温度感受性プラスミド pTHl 8 c s 1の Ec oR I及び H
1 nd I I I消化物とを T 4 DNAリガーゼで反応した後、 ェシエリヒア ·コリ DH5 αコンビテントセル (宝バイオ) に形質転換して、 f r dをコードする遺 伝子の 5一上流近傍断片と 3 '下流近傍断片の 2つの断片を含むプラスミドを得 て、 このプラスミドを ρΤΗΔ f r dと命名した。
プラスミド ρΤΗΔ f r dをェシエリヒア 'コリ MG 1655Ap f l Ad l d株に形質転換し、 最終的に f r d遺伝子が破壊された MG 1655 Δ p f 1厶 d 1 d株を得、 MG 1655Ap f 1 Δά 1 άΔ f r d株と命名した。 本株を得 る詳細な方法は、 本発明の実施例— 5に記載された方法に準じた。
[実施例 22] ェシエリヒア 'コリ MG 1655 Ap f l Ad l dAmdhA a s p株の作製
ェシエリヒア ·コリのゲノム DN Aの全塩基配列は公知であり (Ge nB an k a c c e s s i on numb e r U 00096 )、ェシエリヒア'コリの a s p A遺伝子の塩基配列も報告されている (Ge nb ank a c c e s s i on numb e r AE 000486 )。 a s p Aをコードする遺伝子( 1, 4 82 b p) の塩基配列近傍領域をクローニングするため、 配列番号 33、 34、 35,及び 36に示すオリゴヌクレオチドプライマーを 4種合成した。
ェシエリヒア ·コリ MG1655株のゲノム DNA1 gと、 配列番号 33と 配列番号 34、 配列番号 35と配列番号 36の組み合わせで、 上記プライマー D NA各々 100 pmo 1とを用いて、 通常の条件で PCRを行うことにより約 9 10 b p (以下 a s p A— L断片と呼ぶことがある)及び、約 1, 100 bp (以 下 a s pA— R断片と呼ぶことがある) の DNA断片を増幅した。 この DNA断 片をァガロース電気泳動にて分離、 回収し、 As pA— L断片と As pA— R断 片の両者ともに DNA B l un t i ng K i t (宝バイオ) で末端を平滑化 した後、 T4ポリヌクレオチドキナーゼを用いて定法にて 5 '末端をリン酸化し た。 一方温度感受性プラスミド pTHl 8 c s 1は、 Sma I消化後、 アルカリ フォスファターゼにて脱リン酸化処理を行つた。 上記のリン酸化した 2種類の断 片と、 脱リン酸化したプラスミドを T4DNAリガーゼで反応した後、 ェシエリ ヒア ·コリ DH5 αコンビテントセル (宝バイオ) に形質転換して、 a s pAを コードする遺伝子の 5 '上流近傍断片と 3 '下流近傍断片の 2つの断片を含むプ ラスミドを得て、 このプラスミドを pTHA a s pと命名した。
プラスミド pTH厶 a s pをェシエリヒア コリ MG 1655Ap f 1 Ad 1 d厶 mdh株に形質転換し、 最終的に a s p A遺伝子が破壊された MG 1655 Δ p f 1 Δ d 1 d Amd h株を得、 MG 1655Ap f l Ad l d Amd h Δ a s p株と命名した。 本株を得る詳細な方法は、 本発明の実施例 5に記載された方 法に準じた。
[実施例 23] ェシエリヒア 'コリ MG1655Ap f l Ad l dAmdhA a s p株/ GAP 1 dh Aゲノム揷入株の作製
実施例 19で得たプラスミド pTH— GAP 1 dhAを、 ェシエリヒア 'コ リ MG 1655Ap f l Ad l dAmd ίιΔ a s p株に 30でで形質転換し、 ク 口ラムフエ二コール 10 [1 /m 1を含む LB寒天プレートに 3 O でー晚培養 し、 形質転換体を得た。 得られた形質転換体をクロラムフエ二コール 1 O gZ m 1を含む LB液体培地に接種し、 30°Cで一晩培養した。 次にこれらの培養菌 体が得られるようにクロラムフエ二コール 10 a g/m 1を含む LB寒天プレー トに塗布し、 42 で生育するコロニーを得た。 得られたコロニーを薬剤を含ま ない L B液体培地で 30で一晩培養し、 さらに薬剤を含まない L B寒天プレート に塗布して 42でで生育するコロニーを得た。
出現したコロニーの中から無作為に 100コロニーをピックアップしてそれぞ れを薬剤を含まない LB寒天プレートとクロラムフエニコ一ル 10 gZmlを 含む LB寒天プレードに生育させ、 クロラムフエニコ一ル感受性のクローンを選 んだ。 さらにはこれらの目的クローンの染色体 DNAから PC Rにより GAPD Hプロモーターと 1 dhA遺伝子を含む約 800 bp断片を增幅させ、 1 dhA プロモータ一領域が GAP DHプロモーターに置換されている株を選抜し、 以上 を満足するクローンを MG 1655 Δρ f 1 Δά 1 dAmd A a s p/GAP
1 dhAゲノム揷入株と命名した。
[実施例 24 ]
ェシエリヒア'コリ MG1655Ap f l Ad l d Amd h株による D—乳酸、 及びコ八ク酸の生産
前培養として 4本の三角フラスコに入れた LB B r o t h、 M i 1 1 e r培 養液 (D i f co244620) 25mlに、 実施例 15で得たェシエリヒア · コリ MG1655Ap f l Ad l d株、 実施例 21で得たェシェリヒア 'コリ M G1655Ap f Ι Δά Ι dAmd h株、 比較例 1で得たェシェリヒア 'コリ M G1655 Δρ f 1 Δά 1 dApp c株、 比較例 2で得たェシエリヒア ·コリ M G 1655 Δρ f l Ad l dAf r d株を別々に植菌し、 一晩 3 O 、 120 r pmで攪拌培養を行った。 その後、 4台の 1L容培養槽 (ABLE社製培養装置 BMJ—01) に、 表 24に示す培地 475 gを入れたものに、 別々に上記フラ スコ内容物全量を植菌した。 培養は大気圧下、 通気量 0. 5vvm、 攪拌速度 2 00 r pm,培養温度 35 、 pH7. 2 (N a OHで調整)で 32時間行った。 培養終了後、 得られた培養液中の乳酸、 及びコ八ク酸濃度を HP LCで定法に従 つて測定した。 乳酸蓄積の結果を図 2に、 コハク酸蓄積の結果を図 3に示す。 乳酸については、 Δρ f Δ d 1 dAmdh株が 32時間で 89 g/L蓄積し、 △ p f 1△ d 1 d株と同等の蓄積を示したのに対して、 Δ p f 1 Δ d 1 p p c株、 Δρ f 1 Ad 1 dA f r d株ではそれぞれ 56 gZL、 71 gZLであつ た。 '
コハク酸については、 Δρ f 1 Ad 1 d株が 32時間で 3. 8 gZL蓄積した のに対して、 残る 3株はいずれも蓄積が見られなかった。 表 24
培地組成
ブドウ糖 12%
コーンスティープリカ一 (日本食品化工製) 5%
(残部:水)
[実施例 25] ェシエリヒア 'コリ MG 1655Ap f 1 Δ d 1 dAmdhA a s p株および MG 1655 Δρ f 1 Ad 1 dAmdhA a s /GAP 1 d A ゲノム挿入株による D—乳酸、 及びフマル酸の生産 ' 前培養として 3本の三角フラスコに入れた LB Bro th、 Mi 1 l e r培 養液 (D i f c o 244620) 25m 1に、 実施例 22で得たェシエリヒア . コリ MGl 655Ap f l Ad l dAmdhAa s p株と、 実施例 23で得たェ シエリヒア,コリ MG 1655 Δρ f 1 Ad 1 dAmdhA a s p/GAP 1 d h Aゲノム揷入株、 および実施例 21で得た Δρ f 1 Δά 1 dAmdh株を別々 に植菌し、 一晩 30で、 120 r pmで攪拌培養を行った。 その後、 3台の 1L 容培養槽 (ABLE社製培養装置 BMJ— 01) に、 表 24に示す培地 475 g を入れたものに、 別々に上記フラスコ内容物全量を植菌した。 培養は大気圧下、 通気量 0. 5vvm、 攪拌速度 200 rpm、 培養温度 35^、 pH7. 2 (N a OHで調整) で 48時間行った。 培養終了後、 得られた培養液中の乳酸、 及び フマル酸の濃度を HP L Cで定法に従って測定した。 乳酸蓄積の結果を図 4に、 フマル酸蓄積の結果を図 5に示す。
乳酸については、 Ap f l Ad l dAmdhAa s p株が 48時間で 91 gZ L、 Δρ f 1 Δά 1 dAmdh株が 48時間で 90 gZLと同等の蓄積を示した のに対して、 Δρ f 1 Ad 1 dAmdhA a s p/GAP 1 dh Aゲノム揷入株 では 24時間で 98 gZLの蓄積を示した。
フマル酸については、 Δρ f 1 Ad 1 dAmdh株が 48時間でひ. 037 g ZLの蓄積を示したのに対して、 Δρ f 1 Ad 1 dAmdhAa s p株と Δρ f 1 Δά 1 dAmdhAa s p/GAP 1 dh Aゲノム揷入株では 48時間で 0. 01 g/Lの蓄積を示した。

Claims

請 求 の 範 囲 .
1. ピルペートホルメートリアーゼ (p f 1) の活性が不活化あるいは低減化 されたヘテロ乳酸発酵細菌を 2種以上のアミノ酸が添加された培地で培養し、 得 られた培養物から乳酸を回収することを特徴とする、 乳酸の生産方法。
2. ヘテロ乳酸発酵細菌がェシエリヒア ·コリであることを特徴とする請求項 1に記載の乳酸の生産方法。
3. ェシエリヒア ·コリが MT— 10934 (FERM BP— 10057) 株であることを特徴とする請求項 2に記載の乳酸の生産方法。
4. ェシエリヒア ·コリ由来 NADH依存性 D—乳酸デヒドロゲナーゼ (1 d hA) 活性が増強され、 かつピルペートホルメートリアーゼ (p ί 1) 活性が不 活化あるいは低減化された細菌を培養し、 得られた培養物から D—乳酸を回収す ることを特徵とする、 D_乳酸の生産方法。
5. 細菌がェシエリヒア ·コリである請求項 4に記載の D—乳酸の生産方法。
6. 2種類以上のアミノ酸が添加された培地で培養することを特徴とする、 請 求項 4又は 5に記載の D—乳酸の生産方法。
7. 該微生物が本来有している FAD依存性 D—乳酸デヒドロゲナ一ゼ (d 1. d) 活性が不活化あるいは低減化された微生物であって、 ピルペートホルメート リアーゼ (p f 1) 活性が不活化あるいは低減化されている、 且つ Zまたはェシ エリヒア ·コリ由来 NADH依存性 D—乳酸デヒドロゲナ一ゼ (1 dhA) 活性 が増強されていることを特徴とする微生物。
8. 微生物が細菌である請求項 7に記載の微生物。
9. 細菌がェシエリヒア ·コリである請求項 8に記載の微生物。
10. 請求項 7〜 9の何れか一項に記載の微生物を液体培地で培養し、 培養液 中に D—乳酸を生成蓄積せしめ、 培養液から D—乳酸を分離することを特徴とす る D—乳酸の生産方法。
11. 2種以上のアミノ酸が添加された培地で培養することを特徴とする、 請求 項 10に記載の D—乳酸の生産方法。
12. FAD依存性 D—乳酸デヒドロゲナーゼ (d 1 d) 活性が不活化あるい は低減化されている微生物を液体培地で培養し、 培養液中に D—乳酸を生成蓄積 せしめ、 培養液から D—乳酸を分離することを特徴とする D—乳酸の生産方法。
13. 微生物が細菌である請求項 12に記載の方法。
14. 細菌がェシェリヒア ·コリである請求項 13に記載の方法。
15. 微生物のゲノム上において、 ェシエリヒア ·コリ由来の NAD H依存性 D—乳酸デヒドロゲナーゼ (l dhA) をコードする遺伝子が、 解糖系、 核酸生 合成系又はアミノ酸生合成系に関わる蛋白質の発現を司る遺伝子のプロモーター を使用することで該 NADH依存性 D—乳酸デヒドロゲナーゼ (l dhA) を発 現する微生物。
16. 微生物がェシエリヒア ·コリである請求項 15に記載の微生物。
17. 該微生物が本来有しているピルべートホルメートリァーゼ (p f 1 ) 活 性が不活化あるいは低減化されている、 且つノまたは FAD依存性 D—乳酸デヒ ドロゲナ一ゼ (d 1 d) 活性が不活化あるいは低減化されていることを特徴とす る請求項 15又は請求項 16に記載の微生物。
18. ェシエリヒア ·コリのゲノム上において、 ェシエリヒア ·コリ由来の N ADH依存性 D—乳酸デヒドロゲナーゼ (l dhA) をコードする遺伝子のプロ モーターに代えて、 ェシェリヒア,コリ由来の解糖系、 核酸生合成系又はアミノ 酸生合成系に関わる蛋白質の発現を司る遺伝子のプロモーターを使用することで 該 NADH依存性 D—乳酸デヒドロゲナーゼ (l dhA) を発現するェシエリヒ ァ ·コリ。
19. ェシエリヒア ·コリの解糖系、 核酸生合成系又はアミノ酸生合成系に関 わる蛋白質の発現を司る遺伝子のプロモーターが、 ェシエリヒア 'コリ由来のグ リセルアルデヒド 3—リン酸デヒドロゲナ一ゼ遺伝子のプロモータ一である請求 項 18記載のェシエリヒア ·コリ。
20. 該ェシエリヒア ·コリが本来有しているピルペートホルメートリアーゼ (p f 1) 活性が不活化あるいは低減化されている、 且つ または FAD依存性 D—乳酸デヒドロゲナーゼ (d 1 d) 活性が不活化あるいは低減化されているこ とを特徴とする請求項 18又は請求項 19に記載のェシエリヒア 'コリ。
21. 請求項 15〜 20のいずれか一項に記載の微生物を培地を用いて培養す ることにより D—乳酸を生産する方法。
22. TCA回路を有し、 且つリンゴ酸デヒドロゲナーゼ (mdh) 活性が不 活化あるいは低減化されている微生物であって、 更にピルべ一トホルメートリア, ーゼ (p f 1) 活性が不活化あるいは低減化されている、 且つ/または FAD依 存性 D—乳酸デヒドロゲナーゼ (d 1 d) 活性が不活化あるいは低減化されてい ることを特徵とする微生物。
23. 該微生物が本来有しているァスパラギン酸アンモニアリアーゼ (a s p
A) 活性が不活化または低減化されている請求項 22に記載の微生物。
24. 微生物が細菌である請求項 22又は 23に記載の微生物。
25. 細菌がェシエリヒア ·コリである請求項 24に記載の微生物。
26. ェシエリヒア ·コリ由来の NAD H依存性 D—乳酸デヒドロゲナーゼ( 1 dhA) 活性が増強されている請求項 25に記載の微生物。
27. 請求項 2.2〜 26の何れか一項に記載の微生物を培地を用いて培養する ことにより、 TC A回路上で生産される有機酸以外の化合物を生産させる方法。
28. 有機酸以外の化合物が D—乳酸である請求項 27に記載の生産方法。
29. 通気条件下で培養することを特徴とする請求項 1〜6、 10〜14、 2
1、 28の何れか一項に記載の乳酸の生産方法。
30. 通気条件が温度 30 の水を対象とした場合、 常圧で酸素移動容量係数 ^aが 1 h-i以上 40 Oh-i以下となるような条件で達成し得る酸素供給を可能 とする条件であることを特徴とする請求項 29に記載の乳酸の生産方法。
31. 培養 pHが 6〜8であることを特徴とする請求項 1〜 6、 10〜14、 21、 28〜 30の何れか一項に記載の乳酸の生産方法。
PCT/JP2004/014037 2003-09-30 2004-09-17 D−乳酸菌生産用生体触媒 WO2005033324A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP04773417.3A EP1669460B1 (en) 2003-09-30 2004-09-17 Biocatalyst for producing d-lactic acid
ES04773417.3T ES2619176T3 (es) 2003-09-30 2004-09-17 Biocatalizador para producir ácido D-láctico
BRPI0414673A BRPI0414673B1 (pt) 2003-09-30 2004-09-17 escherichia coli recombinante, bem como método para a produção de ácido d-láctico
JP2005514410A JP4473219B2 (ja) 2003-09-30 2004-09-17 D−乳酸生産用生体触媒
US10/573,813 US8669093B2 (en) 2003-09-30 2004-09-17 Biocatalyst for production of D-lactic acid

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2003/340062 2003-09-30
JP2003/342222 2003-09-30
JP2003/342165 2003-09-30
JP2003342165 2003-09-30
JP2003342222 2003-09-30
JP2003340062 2003-09-30
JP2004/150253 2004-05-20
JP2004/150252 2004-05-20
JP2004150252 2004-05-20
JP2004150253 2004-05-20

Publications (1)

Publication Number Publication Date
WO2005033324A1 true WO2005033324A1 (ja) 2005-04-14

Family

ID=34427105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014037 WO2005033324A1 (ja) 2003-09-30 2004-09-17 D−乳酸菌生産用生体触媒

Country Status (6)

Country Link
US (1) US8669093B2 (ja)
EP (1) EP1669460B1 (ja)
JP (1) JP4473219B2 (ja)
BR (1) BRPI0414673B1 (ja)
ES (1) ES2619176T3 (ja)
WO (1) WO2005033324A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326550B2 (en) 1997-09-12 2008-02-05 Tate & Lyle Ingredients Americas, Inc. Yeast strains for the production of lactic acid
US7473540B2 (en) 2005-09-22 2009-01-06 Tate & Lyle Ingredients Americas, Inc. Methods for selecting a yeast population for the production of an organic acid and producing an organic acid
WO2010032698A1 (ja) 2008-09-16 2010-03-25 三井化学株式会社 植物由来原料から乳酸を生産する方法及び乳酸生産細菌
WO2010032697A1 (ja) 2008-09-16 2010-03-25 三井化学株式会社 乳酸生産細菌及び乳酸生産方法
WO2011013721A1 (ja) 2009-07-28 2011-02-03 三井化学株式会社 乳酸製造方法
WO2011012693A1 (en) 2009-07-30 2011-02-03 Metabolic Explorer Mutant methylglyoxal synthase (mgs) for the production of a biochemical by fermentation
JP5149619B2 (ja) * 2005-05-25 2013-02-20 サントリーホールディングス株式会社 pH制御によるコーヒー生豆の処理方法
JP2013252057A (ja) * 2012-02-24 2013-12-19 Mitsui Eng & Shipbuild Co Ltd モーレラ属細菌の遺伝子組換え法
WO2014017469A1 (ja) * 2012-07-23 2014-01-30 三井化学株式会社 D-乳酸の生産方法、ポリマーの生産方法およびポリマー
US9120891B2 (en) 2008-06-24 2015-09-01 Lg Chem, Ltd. Method for preparing polylactate and copolymer thereof using a mutant microorganism with enhanced polylactate, and the copolymer producing capability thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142256A (ja) * 2007-03-19 2009-07-02 Sumitomo Chemical Co Ltd D−乳酸の製造方法
WO2013146557A1 (en) * 2012-03-29 2013-10-03 Mitsui Chemicals, Inc. Biocatalysts for production of d-lactic acid from glycerol
CN111826405B (zh) * 2019-04-16 2022-09-27 中国科学院大连化学物理研究所 一种生物催化还原丙酮酸产d-乳酸的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003159091A (ja) * 2001-11-27 2003-06-03 Inobakkusu Kk 乳酸の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1156361A (ja) 1997-08-13 1999-03-02 Oozeki Kk 変異酵母、その育種法およびそれを用いた発酵食品の製造方法
DE10232930A1 (de) * 2002-07-19 2004-02-05 Consortium für elektrochemische Industrie GmbH Verfahren zur fermentativen Herstellung von Aminosäuren und Aminosäure-Derivaten der Phosphoglycerat-Familie
ES2573980T3 (es) * 2005-08-10 2016-06-13 University Of Florida Research Foundation, Inc. Materiales y métodos para la producción eficaz de ácido láctico

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003159091A (ja) * 2001-11-27 2003-06-03 Inobakkusu Kk 乳酸の製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] 1 December 2000 (2000-12-01), BLATTNER F.R. ET AL., XP002904561, Database accession no. AE000302 *
DYM O. ET AL.: "The crystal structure of D-lactate dehydrogenase, a peripheral membrane respiratory enzyme", PROC. NATL. ACAD. SCI. USA, vol. 97, no. 17, 2000, pages 9413 - 9418, XP002904560 *
MOCHIZUKI D. ET AL.: "Daichokin niyoru D-nyusan hakko seisan no kokoromi", NIPPON NOGEI KAGAKUKAI 2004 NENDO (HEISEI 16 NEN) TAIKAI KOEN YOSHISHU, March 2004 (2004-03-01), pages 43, XP002989371 *
See also references of EP1669460A4 *
SHAW L. ET AL.: "Vinylglycolate resistance in Escherichia coli", J. BACTERIOL., vol. 121, no. 3, 1975, pages 1047 - 1055, XP002904564 *
ZHOU S. ET AL.: "Production of potically pure D-lactic acid in mineral solts medium by metabolically engineered Escherichia coli W3110", APPL. ENVIRON. MICROBIOL., vol. 69, no. 1, January 2003 (2003-01-01), pages 399 - 407, XP002904559 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326550B2 (en) 1997-09-12 2008-02-05 Tate & Lyle Ingredients Americas, Inc. Yeast strains for the production of lactic acid
JP5149619B2 (ja) * 2005-05-25 2013-02-20 サントリーホールディングス株式会社 pH制御によるコーヒー生豆の処理方法
US7473540B2 (en) 2005-09-22 2009-01-06 Tate & Lyle Ingredients Americas, Inc. Methods for selecting a yeast population for the production of an organic acid and producing an organic acid
US9120891B2 (en) 2008-06-24 2015-09-01 Lg Chem, Ltd. Method for preparing polylactate and copolymer thereof using a mutant microorganism with enhanced polylactate, and the copolymer producing capability thereof
US8614076B2 (en) 2008-09-16 2013-12-24 Mitsui Chemicals, Inc. Bacterium capable of producing lactic acid, and method for producing lactic acid
WO2010032697A1 (ja) 2008-09-16 2010-03-25 三井化学株式会社 乳酸生産細菌及び乳酸生産方法
JPWO2010032697A1 (ja) * 2008-09-16 2012-02-09 三井化学株式会社 乳酸生産細菌及び乳酸生産方法
WO2010032698A1 (ja) 2008-09-16 2010-03-25 三井化学株式会社 植物由来原料から乳酸を生産する方法及び乳酸生産細菌
US8679800B2 (en) 2008-09-16 2014-03-25 Mitsui Chemicals, Inc. Method for producing lactic acid from plant-derived raw material, and lactic-acid-producing bacterium
JP5210391B2 (ja) * 2008-09-16 2013-06-12 三井化学株式会社 乳酸生産細菌及び乳酸生産方法
JP5243546B2 (ja) * 2008-09-16 2013-07-24 三井化学株式会社 植物由来原料から乳酸を生産する方法及び乳酸生産細菌
WO2011013721A1 (ja) 2009-07-28 2011-02-03 三井化学株式会社 乳酸製造方法
US9096874B2 (en) 2009-07-28 2015-08-04 Mitsui Chemicals, Inc. Method for producing lactic acid under pressure that exceeds normal atmospheric pressure
JPWO2011013721A1 (ja) * 2009-07-28 2013-01-10 三井化学株式会社 乳酸製造方法
WO2011012693A1 (en) 2009-07-30 2011-02-03 Metabolic Explorer Mutant methylglyoxal synthase (mgs) for the production of a biochemical by fermentation
JP2013252057A (ja) * 2012-02-24 2013-12-19 Mitsui Eng & Shipbuild Co Ltd モーレラ属細菌の遺伝子組換え法
WO2014017469A1 (ja) * 2012-07-23 2014-01-30 三井化学株式会社 D-乳酸の生産方法、ポリマーの生産方法およびポリマー
JPWO2014017469A1 (ja) * 2012-07-23 2016-07-11 三井化学株式会社 D−乳酸の生産方法およびポリマーの生産方法

Also Published As

Publication number Publication date
US8669093B2 (en) 2014-03-11
EP1669460B1 (en) 2016-12-21
JP4473219B2 (ja) 2010-06-02
BRPI0414673A (pt) 2006-11-28
US20070065930A1 (en) 2007-03-22
EP1669460A1 (en) 2006-06-14
JPWO2005033324A1 (ja) 2006-12-14
EP1669460A4 (en) 2011-06-15
BRPI0414673B1 (pt) 2019-12-17
ES2619176T3 (es) 2017-06-23

Similar Documents

Publication Publication Date Title
TWI486453B (zh) 乳酸生產細菌及乳酸生產方法
US8945888B2 (en) Method for producing high amount of glycolic acid by fermentation
US7405068B2 (en) Pyruvate producing yeast strain
JP7395501B2 (ja) エタノール生産経路が抑制された耐酸性酵母及びこれを用いた乳酸の製造方法
KR20020048910A (ko) 유기 생성물의 합성방법 및 재료
JPWO2005106005A1 (ja) ヒドロキシカルボン酸類の生産方法
JP2012506716A (ja) グリセロールを化学物質に変換するための微好気性培養
WO2005033324A1 (ja) D−乳酸菌生産用生体触媒
US20130210097A1 (en) Glycolic acid fermentative production with a modified microorganism
WO2010001862A1 (ja) 有機酸の製造方法
JP5243546B2 (ja) 植物由来原料から乳酸を生産する方法及び乳酸生産細菌
JPWO2010032698A6 (ja) 植物由来原料から乳酸を生産する方法及び乳酸生産細菌
CN100560727C (zh) 用于生产d-乳酸的生物催化剂
JP2005102625A (ja) D−乳酸製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480027610.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514410

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2004773417

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004773417

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004773417

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007065930

Country of ref document: US

Ref document number: 10573813

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0414673

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 10573813

Country of ref document: US