WO2005033058A1 - 高純度テレフタル酸の製造方法 - Google Patents

高純度テレフタル酸の製造方法 Download PDF

Info

Publication number
WO2005033058A1
WO2005033058A1 PCT/JP2004/014772 JP2004014772W WO2005033058A1 WO 2005033058 A1 WO2005033058 A1 WO 2005033058A1 JP 2004014772 W JP2004014772 W JP 2004014772W WO 2005033058 A1 WO2005033058 A1 WO 2005033058A1
Authority
WO
WIPO (PCT)
Prior art keywords
terephthalic acid
acetic acid
slurry
water
tower
Prior art date
Application number
PCT/JP2004/014772
Other languages
English (en)
French (fr)
Inventor
Hideaki Fujita
Hiroshi Machida
Nobuo Namiki
Yoshio Waguri
Original Assignee
Mitsubishi Gas Chemical Company, Inc.
Toyo Boseki Kabushiki Kaisha
Mizushima Aroma Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Company, Inc., Toyo Boseki Kabushiki Kaisha, Mizushima Aroma Company, Ltd. filed Critical Mitsubishi Gas Chemical Company, Inc.
Priority to EP04773646A priority Critical patent/EP1669343B1/en
Priority to KR1020067004614A priority patent/KR101107927B1/ko
Priority to JP2005514497A priority patent/JP5047501B2/ja
Priority to DE602004019121T priority patent/DE602004019121D1/de
Priority to US10/574,273 priority patent/US7262323B2/en
Priority to CN2004800195396A priority patent/CN1819985B/zh
Publication of WO2005033058A1 publication Critical patent/WO2005033058A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/47Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/487Separation; Purification; Stabilisation; Use of additives by treatment giving rise to chemical modification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing high-purity terephthalic acid, and more particularly, to a method for replacing a mother liquor of crude terephthalic acid obtained by a liquid phase oxidation reaction with water, which replaces a mother liquor of an acetic acid solvent slurry.
  • a mother liquor of crude terephthalic acid obtained by a liquid phase oxidation reaction with water which replaces a mother liquor of an acetic acid solvent slurry.
  • terephthalic acid has been used as a catalyst for a catalyst such as cobalt or manganese or a catalyst for a catalyst such as cobalt or manganese or an accelerator such as a bromine compound or acetoaldehyde in an acetic acid solvent in the presence of p-xylene. It is produced by liquid phase oxidation in the presence.
  • the product obtained by this reaction contains various impurities that cause coloring, such as lipoxybenzaldehyde (4 CBA), p-toluic acid, etc. Requires a high degree of purification technology.
  • Methods for purifying crude terephthalic acid obtained by the liquid phase oxidation reaction include dissolving crude terephthalic acid in an aqueous solvent at high temperature and high pressure, followed by catalytic hydrogenation, oxidation, or recrystallization.
  • various methods such as a method of immersing a slurry in which terephthalic acid crystals are partially dissolved at a high temperature are known.
  • a method of dissolving crude terephthalic acid in water and subjecting it to catalytic hydrogenation at high temperature and pressure and in the presence of a Group VIII noble metal catalyst in the periodic table is one of the large-scale industrial processes for producing high-purity terephthalic acid. It has a decade of history.
  • one of the major problems with this catalytic hydrogenation method is the large number of steps.
  • this method even in major steps other than complicated and cumbersome steps such as catalyst recovery and solvent recovery, one or two or more stages of oxidation reactors, several crude system sequential crystallizers, crude system separators, Requires a large number of equipment such as a crude dryer, re-dissolution tank, catalytic hydrogenation reactor, several purification system sequential crystallizers, a purification system separator, and a purification system dryer.
  • the reaction solvent to be produced is acetic acid
  • the solvent for purification by catalytic hydrogenation is water.
  • the crude terephthalic acid formed by oxidation must be once completely separated from the acetic acid solvent and then redissolved in the aqueous solvent. If crude terephthalic acid and acetic acid are incompletely separated and the crude terephthalic acid is supplied to the catalytic hydrogenation step with acetic acid attached, acetic acid itself hardly undergoes any chemical change due to catalytic hydrogenation.
  • acetic acid is mixed into the water solvent of the catalytic hydrogenation treatment and discharged out of the system. This results in the disposal of useful acetic acid, and the acetic acid released must be made harmless to the environment, resulting in a large economic loss.
  • a solid bowl centrifuge introduces acetic acid slurry into a basket rotating at high speed, separates crystals and mother liquor by centrifugal force, and allows the mother liquor to overflow over a weir provided on a past, and the sedimented crystals are removed. It is a method of continuously ejecting with a screw.
  • the drawback is that maintenance and maintenance are complicated due to the structural limitations of the centrifuge, which requires high-speed rotation. Further, since the crude terephthalic acid crystals are separated as a wet cake with the mother liquor attached, it is necessary to provide a drying step downstream of the centrifugation step to remove acetic acid adhering to the crude terephthalic acid crystals.
  • a rotary vacuum filter In a rotary vacuum filter, crude terephthalic acid crystals stored in the bottom of the housing are sucked into a cylindrical filter medium whose inside is depressurized, rise with the rotation of the filter medium, and are usually held by the filter medium. After passing through a washing zone in which a washing solution is sprinkled on the crystals, the terephthalic acid crystals are peeled off from the filter medium as a cake. Since this method does not require high-speed rotation, it is relatively easy to maintain and maintain.However, it is difficult to completely remove the mother liquor attached to the crude terephthalenoic acid crystals. Similarly, a drying step is required downstream.
  • a method of more reliably removing the mother liquor from the crystal for example, a method of using a separator using a movable filter band (for example,
  • a method using a pressurized rotary filtration separator (for example, Japanese Patent Application Laid-Open No. 6-520263) has been proposed.
  • the separated crystals are washed with water and the attached mother liquor (acetic acid) is replaced with water, so that it is not necessary to use a dryer.
  • these methods do not require a dryer, they require a separator having a more complicated structure, so that there is not much advantage in terms of simplification of the process.
  • the crystals are separated from the acetic acid solvent at a temperature close to the oxidation reaction temperature (usually 150 to 230 ° C) to form a slurry with water, and the catalytic hydrogenation process is performed. (Usually performed at 250-300 ° C).
  • a temperature close to the oxidation reaction temperature usually 150 to 230 ° C
  • the catalytic hydrogenation process is performed.
  • not only a dryer but also a sequential crystallizer of a crude system is not required, and it is possible to save energy required for cooling and reheating of crystals and liquid.
  • the amount of impurities in the mother liquor that precipitates out of the crystals can be reduced, so that the quality of the crude terephthalic acid crystals is improved and purification is facilitated.
  • a slurry in which crude terephthalic acid is recrystallized from water is supplied to the upper part of the vertical pipe at a high temperature (at a temperature of more than 165 ° C) to resist the upward flow of the high-temperature water.
  • a method has been proposed in which terephthalic acid crystals are allowed to settle by gravity and the adhered mother liquor is washed (for example, Japanese Patent Publication No. 33-54010).
  • terephthalic acid crystals are recrystallized from water, and then the mother liquor is separated at a high temperature (under pressure).
  • the mother liquor replacement method involves replacing the terephthalic acid slurry mother liquor with fresh solvent. is there.
  • mother liquor replacement ratio the ratio of mother liquor separated and removed from the crystal
  • the mother liquor replacement rate it is sufficient to increase the rising speed of high-temperature water, but for this purpose, a large amount of water must be used, and if the rising speed is increased, the sedimentation speed of the crystal will decrease. This will cause a large amount of small-sized crystals to overflow from the top of the vertical tube.
  • a mother liquor replacement method has been proposed in which a tube is divided in a horizontal direction and a gravity sedimentation step of terephthalic acid crystals and a particle transport step are combined (for example, Japanese Patent Application Laid-Open No. 7-53431).
  • Such a partition plate is intended to prevent channeling or back-mixing of the fluid in the apparatus and increase the mother liquor replacement rate.
  • providing such a partition plate in mother liquor replacement using gravity sedimentation which handles slurry, results in the accumulation of crystals on the partition plate, blockage of openings, and bulking, and has a great deal of effort in stabilizing operation.
  • a replacement tower having a structure in which a large number of horizontally partitioned shelves are provided, and terephthalic acid crystals are dropped through micropores by a blade which rotates relatively slowly on each of the shelves.
  • Japanese Unexamined Patent Publication No. Hei 1-161042 In the embodiment in which the acetic acid solvent of the crude terephthalic acid was replaced with water using the replacement column, a high mother liquor replacement ratio in which 99.9 ° / 0 or more of the acetic acid solvent was replaced with water was achieved.
  • the rotational speed of the embodiment is estimated to be about 0.1 lm per second at the peripheral speed of the tip of the blade).
  • crystals may adhere and grow on the blades above the platen, and there is a problem of poor reliability in long-term operation. Disclosure of the invention
  • a first object of the present invention is to provide a method for producing high-purity terephthalic acid that achieves a high mother liquor substitution rate.
  • a second object of the present invention is to provide a method for producing high-purity terephthalic acid capable of stably obtaining a high substitution rate over a long operation period. To provide.
  • the present inventors have studied the mother liquor separation / substitution technology and its progress in the production of terephthalic acid for several decades described above, and studied to solve those technical problems. Forming a high-concentration zone of terephthalic acid crystals in a column in which a central axis having is disposed, and supplying water from the bottom of the column while generating a swirling flow in the high-concentration zone by rotation of the stirring blade.
  • the present inventors have found that a high mother liquor substitution rate of 98% or more can be stably obtained over a long operation period by bringing the terephthalic acid crystals in countercurrent contact with the high concentration zone, and have reached the present invention.
  • the mother liquor is replaced with a slurry obtained by dispersing a crude terephthalic acid crystal in an acetic acid solvent obtained by subjecting p-alkylbenzene to liquid phase oxidation in an acetic acid solvent. And then subjecting the mother liquor to a catalytic hydrogenation process, wherein the replacement of the mother liquor is carried out from a top of the column having a central axis having a plurality of stirring blades in a vertical direction.
  • the acetic acid solvent slurry is introduced, a high concentration zone of the terephthalic acid crystal is formed in the tower by sedimentation of the terephthalic acid crystal, and a swirling flow is generated in the high concentration zone by rotation of the stirring blade.
  • Substitution water is supplied from the bottom of the tower to form an ascending flow of water into the tower, and the terephthalic acid crystals and the ascending flow of water are brought into countercurrent contact with each other to displace the terephthalic acid crystals from the bottom of the tower.
  • Withdraw with water and vinegar Provided is a method for producing high-purity terephthalic acid, wherein the method is carried out by removing acetic acid from above the acid slurry supply port. .
  • the mother liquor of the crude terephthalic acid slurry obtained by the liquid phase oxidation reaction is continuously used using a mother liquor displacement column having a plurality of stirring blades for generating a swirling flow.
  • a mother liquor displacement column having a plurality of stirring blades for generating a swirling flow.
  • FIG. 1 is a schematic diagram of the mother liquor replacement device used in Examples 1 to 24.
  • FIG. 2 is a schematic diagram of a mother liquor replacement tower main body used in Example 25.
  • 3 to 9 are schematic diagrams of the stirring blade used in the examples.
  • the upper side is a plan view and the lower side is a side view.
  • a slurry in which crude terephthalic acid crystals are dispersed in an acetic acid solvent (hereinafter, may be referred to as an acetic acid solvent slurry) to be subjected to mother liquor replacement is a p-phenylene compound such as p-alkylbenzene or the like. It is typically obtained by oxidizing p-xylene in an acetic acid solvent.
  • a heavy metal salt catalyst such as cobalt or manganese or a catalyst to which a promoter such as a bromine compound or acetoaldehyde is added is used for the oxidation reaction.
  • acetic acid containing about 3 to 20% of water is used.
  • oxidizing agent molecular oxygen, usually air or oxygen is used, and the reaction is generally carried out at one or more stages at a temperature of 140 to 230 ° C and a pressure of 0.5 to 3 MPa.
  • the slurry-like reaction product obtained in the liquid-phase oxidation process contains 4CBA, p-toluic acid, catalyst, and other various impurities in addition to terephthalic acid crystals.
  • the acetic acid solvent slurry is introduced into one or more stages of a crude system of successive crystallization tanks, and cooled while gradually reducing the pressure to crystallize the terephthalic acid dissolved in the mother liquor. After returning to atmospheric pressure, the pressure is sent to the separator.
  • impurities dissolved in the mother liquor precipitate together with terephthalic acid, and the lower the temperature, the higher the impurity concentration in the terephthalic acid crystals.
  • the acetic acid solvent slurry is supplied to the mother liquor replacement column directly or through a degassing tank for removing accompanying gas without passing through a step of lowering the temperature in the crystallization tank.
  • the supply temperature of the acetic acid solvent slurry in the displacement tower is preferably a temperature close to the oxidation reaction temperature (usually 150 to 230 ° C), and the difference between the oxidation reaction temperature and the supply temperature is ⁇ 50%.
  • the crude terephthalic acid crystals supplied from the top of the mother liquor replacement tower are settled down by gravity in the tower and extracted from the bottom of the tower as a slurry containing water as a dispersion medium (hereinafter sometimes referred to as a water slurry).
  • a water slurry containing water as a dispersion medium
  • the crude terephthalic acid water slurry withdrawn from the bottom of the column can be purified without any additional treatment by various known purification methods, generally by dissolving the water slurry at high temperature and high pressure. It can be sent to the process of finally obtaining high-purity terephthalic acid through a catalytic hydrogenation process using a Group VIII noble metal catalyst of the periodic table.
  • Water for replacing the acetic acid solvent is supplied from the bottom of the mother liquor replacement column.
  • This replacement water may be supplied from two places inside the high concentration zone and near the extraction part of the high concentration zone.
  • the temperature of the replacement water is preferably the same as that of the acetic acid solvent slurry supplied from the top of the tower, or 100 ° C. or lower.
  • the amount of replacement water is adjusted to be greater than the amount of water extracted as a crude terephthalic acid water slurry, to form an upward flow of water in the replacement tower, and to make countercurrent contact with the settling crystals. I do.
  • the higher the rising flow velocity of this water the rising linear velocity
  • the higher the acetic acid solvent substitution rate is supplied from the bottom of the mother liquor replacement column. This replacement water may be supplied from two places inside the high concentration zone and near the extraction part of the high concentration zone.
  • the temperature of the replacement water is preferably the same as that of the acetic acid solvent slurry supplied from the top of the tower, or 100 ° C.
  • the replacement rate may decrease.
  • the upward flow of water is mixed with the acetic acid solvent supplied at the top of the tower, and is discharged from the overflow port located above the acetic acid solvent slurry supply port. Higher water concentrations result in more energy required to remove water from the acetic acid solvent. Therefore, the lower limit of the ascending linear velocity should be a value exceeding zero, that is, a substantially ascending flow of water is formed, and the upper limit is approximately 3.3 m / h.
  • the replacement of the mother liquor is performed by forming a high-concentration zone of terephthalic acid crystals in a tower having a central axis having a plurality of stirring blades in a vertical direction and rotating the plurality of stirring blades. This is performed by forming counter-current contact with the replacement water supplied from the bottom while the terephthalic acid crystals are gradually settling by gravity while forming a horizontal swirling flow in the concentration zone in a multilayered manner.
  • the shape of the displacement column main body is preferably cylindrical.
  • the cylindrical shape is preferable from the viewpoint of operating under a high pressure to maintain the temperature.
  • a shape may be adopted in which the diameter is partially reduced by narrowing the position where the stirring blade is installed.
  • the shape of the tower top and the tower bottom is not particularly limited. It is common to have a flat or semi-elliptical dish-shaped structure.
  • a central axis is provided in the cylindrical displacement tower, and a plurality of agitating blades are installed vertically on the central axis.
  • the stirring blade is installed at the position where the high concentration zone of crude terephthalic acid crystals formed in the displacement tower is stirred.
  • the high concentration zone should be formed so that its height (from the bottom of the replacement tower to its top surface) is 1.03 to 1.5 times the height from the bottom of the replacement tower to the top stirring blade. I like it.
  • the stirring in the present invention generates a swirling flow in the high concentration zone, thereby separating the drift (channeling) generated in the high concentration zone, and suppressing the vertical mixing in the high concentration zone.
  • the shape of the stirring blade is preferably such that the flow in the circumferential direction (swirl flow) is mainly generated rather than the flow in the axial direction (vertical direction).
  • shapes such as those shown in FIGS. 3 to 6 can be given, but are not limited thereto.
  • the inclined paddle blade as shown in Fig. 7 is not preferable because it has a shape that positively generates a vertical flow.
  • the diameter of the impeller is an important form factor and needs to be long enough to produce a swirling flow over the entire section of the column.
  • the stirring blade diameter d is preferably 0.5 to 0.99 times the inner diameter D of the replacement column, and more preferably 0.65 to 0.99 times the inner diameter D.
  • the ratio of the blade diameter to the inner diameter D ′ of the restriction portion be the above-mentioned ratio.
  • the number of stirring blades required to obtain the desired mother liquor replacement rate depends on the amount of crystal processing per column cross-section and the linear velocity of water rise, but it is generally necessary to obtain a replacement rate of 98% or more. Requires at least 3 stirrers, and at least 6 stirrers to obtain a replacement rate of 99.5% or more.
  • the spacing of the stirring blades is too small, the flow generated by the upper and lower stirring blades will interfere or mix, resulting in a decrease in the mother liquor replacement rate.
  • the interval Even if the length is increased, the mother liquor displacement performance per stirring blade is not improved, and the length of the entire column is increased.
  • the preferred spacing of the stirring blades depends on the inside diameter of the replacement tower. If the inside diameter D of the replacement tower is less than 1 m, the spacing between the stirring blades should be 0.3 times or more and less than 3 times the inside diameter D. When the inner diameter D is equal to or more than lm, the interval is preferably 0.1 times or more and less than 1 time of the inner diameter D.
  • the rotation speed of the stirring is also a factor that affects the mother liquor replacement rate.
  • the stirring speed is low, the effect of the swirl flow to prevent channeling is reduced, the mother liquor replacement rate is deteriorated, and there is a risk that crystals adhere to the stirring blade. If the stirring speed is too high, the mixing in the vertical direction in the high concentration zone becomes strong, and the mother liquor replacement rate also decreases.
  • the preferable range of the rotation speed is D (unit: m), and the peripheral speed at the tip of the stirring blade is V (unit: mZ seconds).
  • the slurry concentration (solids concentration in the high concentration zone (based on volume)) in the crystal high concentration zone changes depending on the action of stirring, the ratio of the supply and extraction amounts of terephthalic acid crystals, and the supply amount of replacement water.
  • the mother liquor replacement rate decreases. It is considered that when the slurry concentration in the high concentration zone decreases, the ratio of the liquid phase in the high concentration zone increases, and convective mixing of the liquid tends to occur.
  • the slurry concentration is excessive, blocking of crystals and clogging at the slurry extraction port are likely to occur, and stable operation becomes difficult.
  • the slurry concentration is preferably 15 to 50%, more preferably 18 to 45%, as an average concentration of solid matter on a volume basis.
  • the slurry concentration in the high concentration zone can be adjusted by adjusting the ratio of the amount of crystal supplied and the amount extracted and the amount of replacement water supplied.
  • the mother liquor replacement ratio was calculated by the following equation.
  • Mother liquor replacement ratio (%) [1 (amount of acetic acid in extracted slurry) / (supplied slurry Acetic acid flow inside)] X 100
  • the mother liquor of an acetic acid solvent slurry (raw material slurry) of crude terephthalic acid crystals obtained by a liquid phase oxidation reaction was replaced with water.
  • the raw material slurry was supplied from the raw material slurry storage tank 1 to the upper part of the mother liquor replacement column 4 through the raw material slurry supply pipe 2 by the raw material slurry supply pump 2.
  • the mother liquor replacement column 4 is a titanium cylinder having an inner diameter D of 36 mm, and has a stirring shaft 6 connected to a motor 5.
  • a total of 15 stirring blades 7 are attached at intervals of 50 mm below the raw material slurry supply port of the stirring shaft 6.
  • the stirring blade used had the shape shown in Fig.
  • the diameter d of the stirring blade is 32 mm, which is about 0.9 times the inner diameter D of the column.
  • a mother liquor discharge pipe 9 At the top of the mother liquor exchange tower 4, there is a mother liquor discharge pipe 9.
  • a replacement water supply pipe 10 and a replacement slurry extraction pipe 11 are connected.
  • the replacement water is supplied to the mother liquor replacement column 4 by the pump 12.
  • the flow paths 3, 10, and 11 are provided with a flow meter and a valve (not shown) for adjusting the flow rate, respectively.
  • the flow path 9 is provided with a valve (not shown) for adjusting the pressure in the tower.
  • the water supply pump 12 was driven, and water at 90 ° C. was poured into the system.
  • the water supply was adjusted so that the rising linear velocity of the water in the tower was 0.5 m / h.
  • the shaft 6 and the stirring blade 7 were rotated at a speed of 120 revolutions per minute.
  • the raw material slurry supply pump 2 was operated, and the raw material slurry at 160 ° C was supplied from the raw material slurry supply nozzle 8 at a flow rate of 8.3 kg / hr via the raw material slurry introduction pipe 3. .
  • An acetic acid solvent slurry of terephthalic acid manufactured on an industrial scale was used as a raw material slurry.
  • the raw material slurry was obtained by blowing air into a hydrous acetic acid solvent at a reaction temperature of 190 ° C. using para-xylene as a catalyst for oxidation reaction, with the use of a compound of the form of kort, manganese and bromine.
  • the concentration of terephthalic acid crystals in the raw material slurry was 30% by weight, and the composition of the mother liquor from which the crystal components had been removed was 86% acetic acid and 14% water.
  • the replacement water supply was increased and the removal of replacement slurry from the bottom of the tower was started.
  • the extracted replacement slurry was stored in a replacement slurry receiving tank 13.
  • High concentration zone The displacement of the replacement slurry from the tower bottom is adjusted so that the height of the area is at the predetermined position, and the replacement water is adjusted so that the linear velocity of water in the tower maintains the predetermined value (0.5 m / h).
  • the feed rate was adjusted.
  • Example 2 The same operation as in Example 1 was performed except that the number of the stirring blades was set to 10 (the interval between the stirring blades: 5 Omm).
  • the solid concentration in the high concentration zone was 26% by volume, and the acetic acid substitution rate was 99.61% by weight.
  • Example 2 The same operation as in Example 1 was performed, except that the number of the stirring blades was set to 5 (the spacing between the stirring blades: 50 mm).
  • the solid concentration in the high concentration zone was 26% by volume, and the acetic acid substitution rate was 98.80% by weight.
  • Example ⁇ The same operation as in Example 1 was performed except that the number of stirring blades was set to 19 (stirring blade interval: 25 mm). The solid concentration in the high concentration zone was 26% by volume, and the acetic acid substitution rate was 99.86% by weight.
  • Example ⁇ The same operation as in Example 1 was performed except that the number of stirring blades was set to 19 (stirring blade interval: 25 mm). The solid concentration in the high concentration zone was 26% by volume, and the acetic acid substitution rate was 99.86% by weight.
  • Example 2 The same operation as in Example 1 was performed except that the number of the stirring blades was changed to 46 (the stirring blade interval: 10 mm).
  • the solid concentration in the high concentration zone is 25% by volume, and the acetic acid substitution rate is 98.60 weight. /. Met.
  • Example 2 The same operation as in Example 1 was performed except that the stirring blade was changed to the shape shown in FIG.
  • the solid concentration in the high concentration zone was 26% by volume, and the acetic acid substitution rate was 99.1% by weight.
  • Example 2 The same operation as in Example 1 was performed except that the stirring blade was changed to the shape shown in Fig. 5 and the peripheral speed of the stirring blade was set to 0.25 m / sec.
  • the solid concentration in the high concentration zone was 26% by volume, and the acetic acid substitution rate was 99.94% by weight.
  • Example 9 The same operation as in Example 9 was performed, except that the stirring blade was changed to the shape shown in FIG.
  • the solid concentration in the high concentration zone was 27% by volume, and the acetic acid substitution rate was 99.93% by weight.
  • Example 2 The same operation as in Example 1 was performed except that the stirring blade was changed to the one having the shape shown in Fig. 7 (45 ° inclined paddle blade).
  • the solid concentration in the high concentration zone was 26% by volume, and the acetic acid substitution rate was 95.20% by weight.
  • Example 2 The same operation as in Example 1 was performed, except that the stirring blade was changed to one having a shape shown in Fig. 8 (a stirring blade diameter of 20 mm (0.56 times the tower diameter)).
  • the solid concentration in the high concentration zone is 26 volumes. /.
  • the acetic acid substitution rate was 98.22% by weight.
  • Example 9 The same operation as in Example 9 was performed, except that the stirring blade was changed to a shape shown in Fig. 9 (a stirring blade diameter of 2 Omm (0.56 times the tower diameter)).
  • the solid concentration in the high concentration zone was 25% by volume, and the acetic acid substitution rate was 98.30% by weight.
  • Example 9 The same operation as in Example 9 was performed except that the replacement water supply rate was 4.3 kg / hr. It was.
  • the solid concentration in the high concentration zone was 31% by volume, and the acetic acid substitution rate was 99.6% by weight.
  • Example 9 The same operation as in Example 9 was performed except that the replacement water supply rate was changed to 10.3 kg / hr.
  • the solid concentration in the high-concentration zone was 13% by volume, and the acetic acid replacement rate was 9.7.68 weight. %.
  • Example 1 4 The same operation as in Example 9 was performed except that the replacement water supply rate was changed to 10.3 kg / hr.
  • the solid concentration in the high-concentration zone was 13% by volume, and the acetic acid replacement rate was 9.7.68 weight. %.
  • Example 9 The same operation as in Example 9 was performed except that the supply amount of the raw slurry was 12.5 kgZhr and the supply amount of the replacement water was 6.5 kg / hr.
  • the solid concentration in the high concentration zone was 27% by volume, and the acetic acid substitution rate was 99.89% by weight.
  • Example 14 The same operation as in Example 14 was performed, except that the supply amount of the replacement water was set to 1 1. O kg / hr. The solid concentration in the high concentration zone is 14 volumes. /. The acetic acid substitution rate was 97.5% by weight.
  • Example 9 The same operation as in Example 9 was performed except that the supply amount of the replacement water was set to 6. O kg / hr and the linear rising speed was set to 1. Om / hr.
  • the solid concentration in the high concentration zone was 24% by volume, and the acetic acid substitution rate was 99.3% by weight.
  • Example 9 The same operation as in Example 9 was performed, except that the supply amount of the replacement water was 8.0 kg / hr and the ascending linear velocity was 3.2 / hr.
  • the solid concentration in the high concentration zone was 18% by volume, and the acetic acid substitution rate was 98.50% by weight.
  • the mother liquor of the terephthalic acid acetic acid slurry was replaced with water in the same procedure as in Example 1.
  • the feed rate of the raw material was 520 kg / hr
  • the replacement water feed rate was 330 kg / hr
  • the ascending linear velocity was 0.5 m / lir.
  • the stirring blades had the shape shown in Fig. 5.
  • the number of stirring blades was 10, and the spacing between the stirring blades was 150mm.
  • the height of the high-concentration zone was maintained at 200 mm above the topmost impeller.
  • the solid concentration in the high concentration zone is 26% by volume
  • the acetic acid substitution rate is 9 9. It was 88% by weight.
  • the stirring blade peripheral velocity per 1. 3m (v 2 / D 5. 6) and to other than the was performed in the same manner as in Example 1 7.
  • the solid concentration in the high concentration zone is 25 volumes. / 0 , the acetic acid substitution rate was 99.35% by weight.
  • a continuous operation for 10 days was performed in the same manner as in Example 17 except that the number of stirring blades was set to 12 (the spacing between the stirring blades: 150 mm).
  • the acetic acid substitution rate determined from the acetic acid concentration in the slurry withdrawn from the bottom was stable in the range of 99.92 to 99.95%. After the operation was completed, the inside of the replacement tower was inspected, and almost no crystals were found on the stirring blades or the inner wall of the tower.
  • the mother liquor of the terephthalic acid acetate slurry was replaced with water in the same procedure as in Example 17.
  • the inside diameter D of the replacement tower is 300 mm
  • the inside diameter D 'of the narrowing section is 200 mm
  • the shape of the stirring blade is as shown in Fig. 5.
  • the diameter d is 180 mm
  • the number of stirring blades is eight (the spacing between the stirring blades is eight). : 1 80 mm).
  • the height of the high concentration zone was maintained at 200 mm above the top stirring blade.
  • the solid concentration in the high concentration zone was 28% by volume, and the acetic acid substitution rate was 99.93% by weight.
  • the terephthalic acid obtained by the production method of the present invention is useful as a raw material of polyester used for producing cloths, fibers, bottles and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明の高純度テレフタル酸の製造方法においては、p−アルキルベンゼンを酢酸溶媒中で液相酸化して得られた、粗テレフタル酸結晶が酢酸溶媒に分散されたスラリーを、連続的に水を分散媒としたスラリーに母液置換した後、接触水素化処理を行う。鉛直方向に複数個の攪拌翼を有する中心軸が配置された塔の上部から、該酢酸溶媒スラリーを導入し、テレフタル酸結晶の沈降によって塔内にテレフタル酸結晶の高濃度帯域を形成する。攪拌翼の回転により高濃度帯域の旋回流を生じさせながら、該塔の底部から塔内に水の上昇流を形成するように置換水を供給して該テレフタル酸結晶と該水の上昇流とを向流接触させる。水の上昇流と向流接触したテレフタル酸結晶は置換水と共に塔下部から抜き出されると共に酢酸は、酢酸スラリー供給口よりも上部から取り出される。本発明の方法により、酢酸スラリーの酢酸溶媒は、高い母液置換率で水に置換される。

Description

明 細 書 高純度テレフタル酸の製造方法 .
技術分野
本発明は高純度テレフタル酸の製造方法に関.し、 詳しくは液相酸化反応によつ て得られた粗テレフタル酸結曰曰曰の酢酸溶媒スラリーの母液を水に置換する母液置 換法に関する。
従来、 テレフタル酸は、 p—キシレンを代表とする p—アルキルベンゼン等の p—フヱ レン化合物を酢酸溶媒中、 コバルト、 マンガン等の触媒または該触媒 と臭素化合物、 ァセトアルデヒド等の促進剤の存在下で液相酸化することにより 製造されている。 し力 し、 この反応によって得られた生^物は、 4一力ルポキシ ベンズアルデヒド (4 C B A) 、 p —トルィル酸等の着色の原因となる種々の不 純物を含むため、 高純度のテレフタル酸を得るにはかなりの高度の精製技術が必 要である。
液相酸化反応で得られた粗テレフタル酸を精製する方法としては、 粗テレフタ ル酸を水溶媒に高温、 高圧下で溶解した後、 接触水素化処理、 酸化処理、 または 再結晶処理する方法、 あるいは、 テレフタル酸結晶を一部溶解したスラリーを高 温浸漬処理する方法等の種々の方法が知られている。 特に粗テレフタル酸を水に 溶解して高温 ·高圧下、 周期律表第 VIII族貴金属触媒の存在下で接触水素化処理— する方法は、 高純度テレフタル酸製造の大規模な工業的プロセスとして数十年の 歴史を有している。
しかしながら、 この接触水素化処理する方法は、 工程数が多いことが大きな問 題点の一つに挙げられる。 すなわち該方法では、 触媒回収や溶媒回収などの複雑 で煩わしい工程以外の主要な工程においても、 1ないしは 2段以上の酸化反応器 、 数個の粗製系逐次的晶析器、 粗製系分離機、 粗製系乾燥機、 再溶解槽、 接触水 素化反応器、 数個の精製系逐次的晶析器、 精製系分離機、. 精製系乾燥機等の数多 くの一連の装置を必要とする。
このように工程数が多くなる大きな要因に、 酸化によって粗テレフタル酸を製 造する反応溶媒が酢酸であり、 接触水素化処理による精製の溶媒が水である点が 挙げられる。 母液を酢酸から水に置換するには、 酸化で生成した粗テレフタル酸 を一旦酢酸溶媒から完全に分離し、 次に水溶媒に再溶解しなければならない。 も し粗テレフタル酸と酢酸の分離が不完全で、 粗テレフタル酸に酢酸が付着したま ま接触水素化処理工程に供給すると、 酢酸自体は接触水素化処理によって化学的 変化を受けることは殆ど無いので、 酢酸は接触水素化処理の水溶媒に混入して系 外へ排出されることになる。 これは、 有用な酢酸を廃棄することになり、 また放 出する酢酸を環境に対して無害化しなければならないので、 その経済的な損失が 大きい。
これらの経済的な損失を抑えるために、 接触水素化工程へ送る粗テレフタル酸 に酢酸が付着して同伴することをほぼ完全に防止することが必要である。 そのた めに、 従来の工業的規模の装置では、 酸化工程からの結晶を含むスラリーから母 液を分離する粗製系分離機と粗製系乾燥機との組み合わせが用いられている。 結 晶を含むスラリーから母液を分離する方法として最も一般的に用いられているの はソリッドボウル型の遠心分離機や回転式バキュームフィルターである。 粗テレ フタル酸結晶スラリーから母液を分離する場合もこの両者が広範に使用されてい る。
ソリツドボウル型遠心分離機は、 高速回転をしているバスケット中に酢酸スラ リーを導入し遠心力で結晶と母液を分離し、 母液をパスケットに設けた堰からォ —バーフローさせ、 沈降した結晶をスクリューで連続的に搔き出す方法である。 高速回転させるという遠心分離機の構造上の制約から保全、 保守が煩雑であるこ とが欠点である。 また粗テレフタル酸結晶は母液が付着した湿潤ケーキとして分 離されるので、 遠心分離工程の下流に乾燥工程を設けて粗テレフタル酸結晶に付 着している酢酸を除去する必要がある。
回転式バキュームフィルタ一は、 内部を減圧にした円筒状の濾材にハウジング の底部に貯つている粗テレフタル酸結晶が吸引され、 濾材の回転と共に上昇し、 通常、 濾材に吸引保持された粗テレフタル酸結晶に洗浄液を振りかける洗浄ゾー ンを通過後、 テレフタル酸結晶をケーキとして濾材から剥離するものである。 こ の方式は高速回転を要しないために、 保全や保守は比較的容易であるが、 粗テレ フタノレ酸結晶に付着した母液を完全に除去することが難しいため、 遠心分離機と 同様に下流に乾燥工程を必要とする。
このような問題を解決するために、 結晶から母液をより確実に除去する方法、 例えば、 可動フィルターバンドを用いた分離機を使用する方法 (例えば、 特開平
5 - 6 5 2 4 6号公報) 、 加圧式回転濾過分離機を使用する方法 (例えば、 特表 平 6— 5 0 2 6 5 3号公報) が提案されている。 これらの方法では、 分離した結 晶を水で洗浄して付着した母液 (酢酸) を水に置換するので、 乾燥機の便用が不 要である。 しかし、 これらの方法では乾燥機は不要になるものの、 より複雑な構 造の分離機を必要とするため工程の簡略化の面でさほど利点はない。
工程をより簡略化するには、 酸化反応温度 (通常 1 5 0〜2 3 0 °C) に近い温 度で結晶を酢酸溶媒と分離して水とのスラリーを形成し、 接触水素化処理工程 ( 通常 2 5 0〜3 0 0 °Cで行われる) に送る方法が望ましい。 このような方法によ れば、 乾燥機の他に粗製系の逐次的晶析器も不要になる上、 結晶や液の冷却およ ぴ再加熱に要するエネルギーを節約することが可能になる。 さらに、 高温で結晶 を母液と分離することにより、 母液中の不純物が結晶に析出する量を低減できる ため、 粗テレフタル酸結晶の品質が高くなり、 精製が容易になる利点もある。 このような方法に適用可能な手段として、 粗テレフタル酸を水から再結晶した スラリーを高温 (1 6 5 °C以上) で垂直管上部に供給し、 高温水の緩慢な上昇流 に抗してテレフタル酸結晶を重力で沈降させ、 付着母液を洗浄する方法が提案さ れている (例えば、 特公昭 3 3 - 5 4 1 0号公報) 。 こめ方法はテレフタル酸結 晶を水から再結晶した後、 母液分離を高温 (加圧下) で行っているが、 基本的に は、 テレフタル酸スラリーの母液を新鮮な溶媒に置換する母液置換法である。 この母液置換法では重力を結晶の沈降に用いるので、 特別の動力を必要としな い点で優れており、 使用される装置自体がシンプルな点も魅力的である。 しかし 結晶から分離除去される母液の比率 (以後、 これを母液置換率と称する) が低い ことと、 実験結果をそのまま実装置にスケールアップすることが難しいという欠 陥を持っている。 母液置換率の向上を図るためには高温水の上昇速度を大きくす れば良いが、 このためには大量の水を使用しなければならず、 また上昇速度を大 きくすると結晶の沈降速度が低下し、 小粒径の結晶が大量に垂直管の頂部から溢 流することになる。
このような欠点を克服するために、 多数の孔をもった複数個の仕切り板で垂直 管を水平方向に分割し、 テレフタル酸結晶の重力沈降工程と粒子輸送工程を組み 合わせた母液置換法が提案されている (例えば、 特開昭 ¾ 7— 5 3 4 3 1号公報 ) 。 このような仕切り板は装置内流体のチャネリングまたはバックミキシングを 防止して母液置換率を高めるためのものである。 しかしスラリーを扱う重力沈降 を利用した母液置換においてこのような仕切り板を設けることは、 仕切り板への 結晶の堆積、 開口部の閉塞やバルキングが起こり、 運転の安定化に多大な労力を 有する。
また、 水平方向に仕切られた多数の棚段を設け、 各棚段上を比較的ゆっくりと 回転する搔き取り翼でテレフタル酸結晶を微細孔を通して落下させる構造の置換 塔が提案されている (例えば、 特開平 1一 1 6 0 9 4 2号公報) 。 該置換塔を用 いて粗テレフタル酸の酢酸溶媒を水で置換した実施例では、 酢酸溶媒の 9 9 . 9 °/0以上を水に置換する高い母液置換率が達成されている。 しかしながら、 このよ うな固定された棚段とゆつくりと回転する搔き取り翼 (実施例の回転速度は翼先 端の周速で毎秒 0 . O l m程度と推定される) を使用する方式では、 棚段上ゃ搔 き取り翼上で結晶が付着成長する懸念があり、 長期運転での信頼性に乏しい問題 がある。 発明の開示
以上のように液相酸化反応によって得られた粗テレフタル酸結晶の酢酸溶媒ス ラリ一を酸化反応温度に近い高温で複雑な機械的機構を持たない塔形式の装置に 導入し、 その塔内で結晶から酢酸溶媒を除去し水に置換することが可能になれば 、 工程数の低減化、 エネルギーの節約、 製品品質の向上などの大きな利点が得ら れる。 しかしながら、 これまでに提案されてきた母液置換法は、 その母液置換率 、 運転の安定性、 長期運転の信頼性などにおいて課題を残すものであった。 本発明の第一の目的は、 高い母液置換率を達成する高純度テレフタル酸の製造 方法を提供することである。 母液置換率の具体的な目標値は製造プラントのおか れている種々の経済的環境によつて異なり厳格な線引きはむずかしいが、 少なく とも 9 8 %以上の母液置換率が必要であり、 より好ましくは 9 9 . 5 %を越える 母液置換率を達成する事が望まれる。 本発明の第二の目的は、 高い置換率を長期 の運転期間にわたり安定して得ることができる高純度テレフタル酸の製造方法を 提供することである。
本発明者等は、 前記した数十年にわたるテレフタル酸製造における母液の分離 置換技術とその進歩を検討し、 それらの技術的問題点を解決すべく研究した結果 、 鉛直方向に複数個の攪拌翼を有する中心軸が配置された塔内に、 テレフタル酸 結晶の高濃度帯域を形成し、 該攪拌翼の回転により該高濃度帯域に旋回流を生じ させながら、 該塔の底部より水を供給し該高濃度帯域のテレフタル酸結晶と向流 接触させることにより、 9 8 %以上の高い母液置換率を長期の運転期間にわたり 安定して得られることを見出し、 本発明に到達した。
即ち本発明は、 p—アルキルベンゼンを酢酸溶媒中で液相酸化して得られた、 粗テレフタル酸結晶が酢酸溶媒に分散されたスラリーを、 連続的に水を分散媒と したスラリ一に母液置換した後、 接触水素化処理を行う高純度テレフタル酸の製 造方法であって、 前記母液置換を、 鉛直方向に複数個の攪拌翼を有する中心軸が 配置された塔に、 該塔の上部から該酢酸溶媒スラリーを導入し、 テレフタル酸結 晶の沈降によつて塔内に該テレフタル酸結晶の高濃度帯域を形成し、 該攪拌翼の 回転によって該高濃度帯域に旋回流を生じさせながら、 該塔の底部から塔内に水 の上昇流を形成するように置換水を供給して該テレフタル酸結晶と 水の上昇流 とを向流接触させ、 該塔の底部から該テレフタル酸結晶を置換水と共に抜き出す と共に、 酢酸スラリー供給口よりも上部から酢酸を取り出すことにより行うこと を特徴とする高純度テレフタル酸の製造方法を提供する。.
本発明の高純度テレフタル酸製造法においては、 旋回流を生じさせる攪拌翼を 複数個有する母液置換塔を使用して、 液相酸化反応によって得られた粗テレフタ ル酸スラリ一の酢酸母液を連続的に水母液に置換することで、 固液分離機と乾燥 機が不要となり工程数が低減され建設費が著しく削減される。 また該母液置換塔 は、 高温、 高圧での運転が容易であるので、 結晶や液の冷却および再加熱に要す るエネルギーが節約されるとともに、 粗テレフタル酸中の不純物を低減出来るた めに精製が容易になる。 さらに本発明の置換塔方式は、 高い母液置換率が長期間 安定して得られ運転操作が容易である。 従って本発明により工業的に極めて有利 に高純度テレフタル酸を製造することができる。 図面の簡単な説明
図 1は、 実施例 1〜 2 4で使用した母液置換装置の概略図である。
図 2は、 実施例 2 5で使用した母液置換塔本体の概略図である。
図 3〜9は、 実施例で使用した撹拌翼の概略図である。 各々の図において上側 が平面図で、 下側が側面図である。 発明を実施するための最良の形態
本発明において、 母液置換に供する、 粗テレフタル酸結晶が酢酸溶媒に分散さ れたスラリー (以下、 酢酸溶媒スラリーと称すことがある。 ) は、 p—アルキル ベンゼン等の p—フ 二レン化合物、 代表的には p—キシレンを酢酸溶媒中で酸 化することで得られる。 該酸化反応には、 通常はコバルト、 マンガン等の重金属 塩触媒、 又はこれに臭素化合物あるいはァセトアルデヒドなどの促進剤を加えた 触媒が用いられる。 溶媒には 3〜2 0 %程度の水分を含有した酢酸を用いる。 酸 化剤としては、 分子状酸素、 通常は空気または酸素が用いられ、 一般に温度 1 4 0〜2 3 0 °C、 圧力 0 . 5〜3 MP aで、 1または 2段以上で反応が行われる。 液相酸化工程で得られたスラリー状の反応生成物 (酢酸溶媒スラリー) はテレ フタル酸結晶以外に 4 C B A、 p—トルィル酸、 触媒その他種々の不純物を含有 している。 従来のプロセスでは、 酢酸溶媒スラリーを 1または 2段以上の粗製系 逐次的晶析槽に導き、 逐次圧力を降下させながら冷却して母液に溶解していたテ レフタル |¾を結晶化させ、 .大気圧に.返い圧力まで下げた後、 分離機に送られる。 - この晶析の過程で母液中に溶解していた不純物がテレフタル酸と共に析出し、 温 度が低くなるほどテレフタル酸結晶中の不純物濃度が上昇する。
—方、 本発明のプロセスでは、 晶析槽で温度を下げる工程を経ることなく、 酢 酸溶媒スラリーを直接または同伴ガスを除去する脱気槽を経てから母液置換塔に 供給する。 母液置換塔に供給するスラリー温度が高いほど、 置換塔内での結晶の 沈降速度が大きくなり塔断面積あたりの処理量を大きくすることが可能になり、 テレフタル酸結晶中の不純物濃度を低減出来る。 置換塔べの酢酸溶媒スラリーの 供給温度は、 酸化反応温度 (通常 1 5 0〜2 3 0 °C) に近い温度であるのが好ま しく、 酸化反応温度と供給温度との差が ± 5 0 °Cの範囲内であるのが好ましい。 場合によっては酢酸溶媒スラリ一を加熱してから置換塔に供給することも可能で あるが、 溶媒の蒸発を防ぐために置換塔をより高レ、圧力で運転する必要があり、 過剰に加熱するのは好ましくない。
母液置換塔の上部から供給された粗テレフタル酸結晶は重力により塔内を沈降 し塔底部から水を分散媒としたスラリー (以下、 水スラリーと称すことがある。 ) として抜き出される。 塔底部から抜き出す結晶量を調節することで置換塔内に 結晶の高濃度帯域を形成させることが出来る。 塔底部から抜き出される粗テレフ タル酸の水スラリ一は、 何等の追加的な処理を加えることなく既に公知である種 々の精製手法、 一般的には水スラリーを高温'高圧下で溶解し、 周期律表第 VIII 族貴金属触媒を使って接触水素化処理工程を経て最終的に高純度テレフタル酸を 得る工程に送ることができる。
酢酸溶媒と置換する水は母液置換塔の塔底部より供給する。 この置換水は、 高 濃度帯域内部と高濃度帯域抜出部近傍の 2箇所から供給しても良い。 置換水の温 度は、 塔上部から供給される酢酸溶媒スラリーと同温か、 · それよりも 1 0 0 °C以 下だけ低い温度とするのが好ましい。 置換水の量は、 粗テレフタル酸の水スラリ 一として抜き出される水の量よりも多くして置換塔内に水の上昇流を形成させ、 沈降してくる結晶と向流接触させる様に調節する。 この水の上昇流の速度 (上昇 線速度) が大きいほど、 酢酸溶媒の置換率が向上するが、 高濃度帯域での空塔基 準の上昇線速度がおおよそ毎時 3 . 3 mを越えると逆に置換率が低下する場合が ある。 また、 水の上昇流は塔上部で供給された酢酸溶媒と混合して酢酸溶媒スラ リー供給口よりも上部にあるオーバーフロー口から排出されるため、 水の上昇線 速度が大きいほど酢酸溶媒中の水濃度が高くなり、 酢酸溶媒からの水の除去に要 するエネルギーの増大をもたらす。 従って、 上昇線速度の下限はゼロを越える値 、 つまり実質的に水の上昇流が形成されれば良く、 その上限はおおよそ毎時 3 . 3 mである。
本発明を実施する上での重要な要件である置換塔の構造およぴその操作条件に ついて以下に述べる。 本発明において母液置換は、 概略、 鉛直方向に複数個の攪 拌翼を有する中心軸を配置された塔内に、 テレフタル酸結晶の高濃度帯域を形成 させ、 複数個の撹拌翼の回転によって高濃度帯域内に水平方向の旋回流を多層状 に形成させつつ、 テレフタル酸結晶を重力によって徐々に沈降させながら、 塔底 より供給される置換水と向流接触させることにより行う。 置換塔本体の形状は円筒形であるのが好ましい。 塔の水平断面が角を有する形 状であると、 撹拌によって生じる旋回流が不均一になり十分な置換率を得ること が困難になる。 また、 温度を維持するために高い圧力下で運転する点からも円筒 形が好ましい。 なお、 図 2に示されるように撹拌翼を設置する位置に絞りを入れ て径を部分的に細くするような形状としても良い。 塔頂および塔底の形状は、 特 に限定されない。 平板または半楕円の皿形構造にするのが一般的である。
円筒形の置換塔には中心軸を設け、 この中心軸に鉛直方向に複数個の撹拌翼を 設置する。 撹拌翼は置換塔内に形成させる粗テレフタル酸結晶の高濃度帯域を撹 拌する位置に取り付ける。
高濃度帯域は、 その高さ (置換塔底部からその上面まで) が、 置換塔底部から 最上部の攪拌翼までの高さの 1 . 0 3〜1 . 5倍になるように形成するのが好ま しい。
本発明における撹拌は、 高濃度帯域内に旋回流を生じさせ、 これによつて高濃 度帯域内に生じる偏流 (チャネリング) を分断し、 高濃度帯域内の上下方向の混 合を抑えること、 および結晶同士が付着しプロッキングする事を防止する必要が ある。 従って撹拌翼は、 軸方向 (上下方向) の流れよりも円周方向の流れ (旋回 流) を主として生じさせるような形状が好ましい。 たとえば、 図 3〜6に示すよ うな形状があげられるが、 これらに限定されるものではない。 なお、 図 7に示す ような傾斜パドル翼は上下方向の流れを積極的に生じさせる形状であり好ましく ない。 撹拌翼の径は重要な形状因子であり、 塔の断面全体に及ぶ旋回流を生じさ せるのに足る長さが必要である。 撹拌翼径 dは、 好ましくは置換塔の内径 Dの 0 . 5〜0 . 9 9倍、 より好ましくは内径 Dの 0 . 6 5〜0 . 9 9倍である。 なお 、 図 2のような撹拌翼部分に絞りがある塔形状の場合には、 絞り部分の内径 D ' に対して上記比率の翼径とするのが好ましい。
所望の母液置換率を得るのに必要な撹拌翼の個数は、 塔断面積あたりの結晶処 理量ゃ水の上昇線速度によっても左右されるが、 概ね 9 8 %以上の置換率を得る には 3個以上、 9 9 . 5 %以上の置換率を得るには 6個以上の撹拌翼が必要であ る。
撹拌翼の取り付け間隔は、 小さ過ぎる場合には上下の撹拌翼によって生じる流 れが干渉または混合して母液置換率の低下をもたらす。 一方、 間隔を必要以上に 長くしても撹拌翼一個あたりの母液置換性能は向上せず、 塔全体の長さが大きく なる為好ましくない。 好ましい撹拌翼の取り付け間隔は置換塔の内径によって左 右され、 置換塔の内径 Dが 1 m未満の場合には攪拌翼間隔は内径 Dの 0 . 3倍以 上 3倍未満とし、 置換塔の内径 Dが l m以上の場合には間隔は内径 Dの 0 . 1倍 以上 1倍未満とするのが良い。
撹拌の回転速度も母液置換率に影響を与える要因である。 撹拌速度が遅い場合 には、 チャネリングを防ぐ旋回流の効果が低下し母液置換率が悪くなり、 撹拌翼 への結晶付着を起こす危険性も生じる。 撹拌速度が大きすぎる場合は、 高濃度帯 域内上下方向の混合が強くなりやはり母液置換率は低下する。 好ましい回転速度 の範囲は、 塔径を D (単位: m) 、 撹拌翼先端での周速度を V (単位: mZ秒) として、 好ましくは次式:
0 . 1 0 < V 2/Dく 1 5
より好ましくは次式:
0 . 2 < V 2/D < 6
の範囲になるようにする。 なお、 図 2のような撹拌翼部分に絞りがある塔形状の 場合には、 絞り部分の内径 D ' を Dの代わりに用いる。
撹拌による作用、 テレフタル酸結晶の供給量と抜き出し量の割合、 および置換 水の供給量によって結晶高濃度帯域のスラリー濃度 (高濃度帯域中の固形物濃度 (容量基準) ) が変化する。 本発明の製造方法では、 高濃度帯域のスラリー濃度 が低下すると母液置換率の低下をもたらす。 高濃度帯域のスラリー濃度が低下す ると高濃度帯域内の液相の比率が高くなり液の対流混合が生じやすくなる為と考 えられる。 一方、 スラリー濃度が過大になると結晶のブロッキングやスラリー抜 き出し口での閉塞が起きやすくなり、 安定した運転が困難になる。 スラリー濃度 は、 好ましくは容量基準の固形物の平均濃度で 1 5 ~ 5 0 %、 より好ましくは 1 8〜4 5 %である。 高濃度帯域のスラリー濃度は、 結晶の供給量と抜き出し量の 割合および置換水の供給量を調整することで調節可能である。
次に実施例によって本発明を更に具体的に説明する。 ただし本発明はこれらの 実施例により制限されるものではない。
なお、 以下の実施例において母液置換率は以下の式で計算した。
母液置換率 (%) = [ 1一(抜き出しスラリー中の酢酸流量) / (供給スラリー 中の酢酸流量)] X 1 0 0
実施例 1
図 1に示す装置を用いて液相酸化反応によって得られた粗テレフタル酸結晶の 酢酸溶媒スラリー (原料スラリー) の母液を水で置換する実験を行つた。 図 1に おいて、 原料スラリー貯槽 1から原料スラリー供給ポンプ 2によって原料スラリ 一導入管 3を通して、 母液置換塔 4の上部に原料スラリーを供給した。 母液置換 塔 4は内径 Dが 3 6 mmのチタン製円筒であり、 モーター 5に接続された撹拌軸 6 を有している。 撹拌軸 6の原料スラリー供給口より下方の部分には、 5 0 mm間隔 で計 1 5個の撹拌翼 7が取り付けられている。 撹拌翼は、 図 3に示す形状のもの を使用した。 撹拌翼の径 dは 3 2 mmで、 塔内径 Dの約 0 . 9倍である。 母液置 換塔 4の塔頂部には母液排出管 9がある。 母液置換塔の底部には、 置換水の供給 管 1 0と置換スラリーの抜き出し管 1 1が連結されている。 置換水はポンプ 1 2 によって母液置換塔 4に供給される。 なお、 流路 3、 1 0、 1 1にはそれぞれ流 量計と流量を調節する弁 (図示せず) が設けられている。 また、 流路 9には塔内 の圧力を調節するための弁 (図示せず) が設けられている。
図 1において先ず水供給ポンプ 1 2を駆動し、 系内に 9 0 °Cの水を張り込んだ 。 母液排出管 9から水がオーバーフローし始めたところで、 塔内の水の上昇線速 度が毎時 0 . 5 mとなるように水の供給量を調節した。 モーター 5を作動させて 軸 6および撹拌翼 7を毎分 1 2 0回転の速度で回転させた。 撹拌翼先端の周速度 は毎秒 0 . 2 0 m ( v 2 /D = 1 . l m/ (秒)2 ) である。
次に原料スラリ一供給ポンプ 2を作動して、 原料スラリ一導入管 3を経由して 1 6 0 °Cの原料スラリーを 8 . 3 k g / h rの流量で原料スラリ一供給ノズル 8 から供給した。 原料スラリ一には工業的規模で製造されたテレフタル酸の酢酸溶 媒スラリーを用いた。 該原料スラリーはパラキシレンを酸化反応触媒としてコノ ルト、 マンガン、 臭素化合物を用い、 反応温度 1 9 0 °Cで含水酢酸溶媒中に空気 を吹き込んで酸化して得た。 原料スラリー中のテレフタル酸結晶の濃度は 3 0重 量%、 結晶分を除去した母液の組成は酢酸が 8 6 %、 水が 1 4重量%であった。 粉面検出器で検知しながら高濃度帯域の高さが最上段の撹拌翼よりも 5 0 mm 上に達したら、 置換水の供給量を増加させ、 塔底からの置換スラリー抜き出しを 開始した。 抜き出した置換スラリ一は置換スラリー受槽 1 3に貯えた。 高濃度帯 域の高さが所定位置になるように塔底からの置換スラリー抜き出し量を調節する とともに、 塔内の水の上昇線速度が所定値 (毎時 0. 5 m) を維持するように置 換水の供給量を調節した。 系内が安定した状態になってから 4時間運転を継続し たのち、 抜き出したスラリーのサンプルを採取した。 採取したサンプルを室温ま で冷却した後、 結晶を分離し母液中の酢酸濃度を測定したところ 0. 1 1重量% であった。 計算した酢酸の置換率は 99. 91重量%であった。 運転終了後、 塔 内に保持されていたスラリーを抜き出して結晶を回収し、 その重量と高濃度帯域 の高さから高濃度帯域の平均固形物濃度を求めた。 計算された高濃度帯域固形物 濃度は 34重量%で、 テレフタル酸結晶の比重 (約 1. 5) で換算すると 26容 量%であった。
実施例 2
撹拌翼の回転数を毎分 1 80回転 (撹拌翼周速度:毎秒 0. 30m、 V 2 /D =2. 5) とした以外は実施例 1と同様の操作を行った。 高濃度帯域の固形物濃 度は 25容量。/。、 酢酸置換率は 99. 90重量%であった。
実施例 3
撹拌翼の回転数を毎分 40回転 (撹拌翼周速度:毎秒 0. 067m、 v2 /D =0. 1 2) とした以外は実施例 1と同様の操作を行った。 高濃度帯域の固形物 濃度は 27容量%、 酢酸置換率は 98. 10重量%であった。
実施例 4
撹拌翼の個数を 10 (攪拌翼間隔: 5 Omm) とした以外は実施例 1と同様の 操作を行った。 高濃度帯域の固形物濃度は 26容量%、 酢酸置換率は 99. 61 重量%であった。
実施例 5
撹拌翼の個数を 5 (攪拌翼間隔: 50 mm) とした以外は実施例 1と同様の操 作を行った。 高濃度帯域の固形物濃度は 26容量%、 酢酸置換率は 98. 80重 量%であった。
実施例 6
撹拌翼の個数を 19 (攪拌翼間隔: 25 mm) とした以外は実施例 1と同様の 操作を行った。 高濃度帯域の固形物濃度は 26容量%、 酢酸置換率は 99. 86 重量%であった。 実施例 Ί
撹拌翼の個数を 46 (攙拌翼間隔: 10 mm) した以外は実施例 1と同様の 操作を行った。 高濃度帯域の固形物濃度は 25容量%、 酢酸置換率は 98. 60 重量。 /。であった。
実施例 8
撹拌翼を図 4に示す形状のものに変えた以外は実施例 1と同様の操作を行った 。 高濃度帯域の固形物濃度は 26容量%、 酢酸置換率は 99. 1 1重量%であつ た。
実施例 9
撹拌翼を図 5に示す形状のものに変え、 撹拌翼の周速を毎秒 0. 25mとした 以外は実施例 1と同様の操作を行った。 高濃度帯域の固形物濃度は 26容量%、 酢酸置換率は 99. 94重量%であった。
実施例 10
撹拌翼を図 6に示す形状のものに変えた以外は実施例 9と同様の操作を行った 。 高濃度帯域の固形物濃度は 27容量%、 酢酸置換率は 99. 93重量%であつ た。
比較例 1
撹拌翼を図 7に示す形状のもの (45° 傾斜パドル翼) に変えた以外は実施例 1と同様の操作を行った。 高濃度帯域の固形物濃度は 26容量%、 酢酸置換率は 95. 20重量%であった。
実施例 1 1
撹拌翼を図 8に示す形状のもの (撹拌翼径 20mm (塔径の 0. 56倍) ) に 変えた以外は実施例 1と同様の操作を行った。 高濃度帯域の固形物濃度は 26容 量。 /。、 酢酸置換率は 98. 22重量%であった。
実施例 1 2
撹拌翼を図 9に示す形状のもの (撹拌翼径 2 Omm (塔径の 0. 56倍) ) に 変えた以外は実施例 9と同様の操作を行った。 高濃度帯域の固形物濃度は 25容 量%、 酢酸置換率は 98. 30重量%であった。
実施例 1 3
置換水の供給量を 4. 3 k g/h rとした以外は実施例 9と同様の操作を行つ た。 高濃度帯域の固形物濃度は 3 1容量%、 酢酸置換率は 9 9. 9 6重量%であ つた。
比較例 2
置換水の供給量を 1 0. 3 k g/h rとした以外は実施例 9と同様の操作を行 つた高濃度帯域の固形物濃度は 1 3容量%、 酢酸置換率は 9 7. 6 8重量%であ つた。 - 実施例 1 4
原料スラリーの供給量を 1 2. 5 k gZh rとし、 置換水の供給量を 6. 5 k g/h rとした以外は実施例 9と同様の操作を行った。 高濃度帯域の固形物濃度 は 2 7容量%、 酢酸置換率は 9 9. 8 9重量%であつた。
比較例 3
置換水の供給量を 1 1. O k g/h rとした以外は実施例 1 4と同様の操作を 行った。 高濃度帯域の固形物濃度は 1 4容量。/。、 酢酸置換率は 9 7. 5 1重量% であった。
実施例 1 5
置換水の供給量を 6. O k g/h rとし、 上昇線速度を 1. Om/h rとした 以外は実施例 9と同様の操作を行った。 高濃度帯域の固形物濃度は 24容量%、 酢酸置換率は 9 9. 9 3重量%であった。
実施例 1 6
置換水の供給量を 8. 0 k g/h rとし、 上昇線速度を 3. 2 /h rとした 以外は実施例 9と同様の操作を行った。 高濃度帯域の固形物濃度は 1 8容量%、 酢酸置換率は 9 8. 5 0重量%であった。
実施例 1 7
内径 Dが 3 0 Omm, 攪拌翼径 dが 2 7 0 mmの置換塔を使用し、 実施例 1と 同様の手順でテレフタル酸の酢酸スラリーの母液を水に置換した。 この時の原料 供給量は 5 20 k g/h r , 置換水供給量は 3 3 0 k g/h r , 上昇線速度は 0 . 5m/li rであった。 また、 攪拌翼は図 5に示す形状のものであり、 攪拌翼個 数は 1 0、 攪拌翼間隔は 1 5 0mmであった。 高濃度帯域の高さは最上段の撹拌 翼よりも 200mm上に維持した。 撹拌翼周速度は毎秒 0. 64mであり、 v 2 /D=l . 4であった。 高濃度帯域の固形物濃度は 2 6容量%、 酢酸置換率は 9 9. 88重量%であった。
実施例 1 8
撹拌翼周速度を毎秒 0. 20m ( V 2 ZD =0. 13). とした以外は実施例 1 7と同様の操作を行った。 高濃度帯域の固形物濃度は 2.5容量。 /。、 酢酸置換率は 98. 90重量%であった。
実施例 1 9
撹拌翼周速度を毎秒 1. 3m (v2 /D=5. 6) とした以外は実施例 1 7と 同様の操作を行った。 高濃度帯域の固形物濃度は 25容量。 /0、 酢酸置換率は 99 . 35重量%であった。
実施例 20
撹拌翼周速度を毎秒 1. 9 m (v 2 /D= 12) とした以外は実施例 1 7と同 様の操作を行った。 高濃度帯域の固形物濃度は 26容量%、 酢酸置換率は 98. 1 0重量%であった。
実施例 2 1
撹拌翼の数を 1 2個 (攪拌翼間隔: 1 50 mm) とした以外は実施例 1 7と同 様の操作で、 10日間の連続運転を行った。 塔底の抜き出しスラリー中の酢酸濃 度から求めた酢酸置換率は、 99. 92〜99. 95%の範囲で安定していた。 運転終了後、 置換塔内部を点検したところ、 撹拌翼や塔内壁への結晶付着はほと んど認められなかった。
実施例 22
図 2に示した置換塔を使用し (図 1と図 2の同一符号は同一の要素を示す) 、 実施例 1 7と同様の手順でテレフタル酸の酢酸スラリ一の母液を水に置換した。 なお置換塔の内径 Dは 300mm、 絞り部の内径 D' は 200mm、 撹拌翼の形 状は図 5に示すもので、 その径 dは 1 80mm、 撹拌翼の個数は 8個 (攪拌翼間 隔: 1 80mm) である。 高濃度帯域の高さは最上段の撹拌翼よりも 200 mm 上に維持した。 撹拌翼周速度は毎秒 0. 57mであり、 v2 ZD=l. 6であつ た。 高濃度帯域の固形物濃度は 28容量%、 酢酸置換率は 99. 93重量%であ つた。 産業上の利用可能性
本発明の製造方法により得られるテレフタル酸は、 布、 繊維、 ボトル等の製造 使用されるポリエステルの原料として有用である。

Claims

請 求 の 範 囲
1 . p—アルキルベンゼンを酢酸溶媒中で液相酸化して得られた、 粗テレフタル 酸結晶が酢酸溶媒に分散されたスラリーを、 連続的に水を分散媒としたスラリー に母液置換した後、 接触水素化処理を行う高純度テレフタル酸の製造方法であつ て、 前記母液置換を、 鉛直方向に複数個の攪拌翼を有する中心軸が配置された塔 に、 該塔の上部から該酢酸溶媒スラリーを導入し、 テレフタル酸結晶の.沈降によ つて塔内に該テレフタル酸結晶の高濃度帯域を形成し、 該攪拌翼の回転によって 該高濃度帯域に旋回流を生じさせながら、 該塔の底部から塔内に水の上昇流を形 成するように置換水を供給して該テレフタル酸結晶と該水の上昇流とを向流接触 させ、 該塔の底部から該テレフタル酸結晶を置換水と共に抜き出しながら、 酢酸 スラリー供給口よりも上部から酢酸を取り出すことにより行うことを特徴とする 高純度テレフタル酸の製造方法。
2 . 塔内に形成される高濃度帯域中の固形物の平均濃度が 1 5〜5 0容量%であ ることを特徴とする請求項 1に記載の高純度テレフタル酸の製造方法。
PCT/JP2004/014772 2003-10-02 2004-09-30 高純度テレフタル酸の製造方法 WO2005033058A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP04773646A EP1669343B1 (en) 2003-10-02 2004-09-30 Method for producing high purity terephthalic acid
KR1020067004614A KR101107927B1 (ko) 2003-10-02 2004-09-30 고순도 테레프탈산의 제조 방법
JP2005514497A JP5047501B2 (ja) 2003-10-02 2004-09-30 高純度テレフタル酸の製造方法
DE602004019121T DE602004019121D1 (de) 2003-10-02 2004-09-30 Verfahren zur herstellung hochreiner terephthalsäure
US10/574,273 US7262323B2 (en) 2003-10-02 2004-09-30 Method for producing high purity terephthalic acid
CN2004800195396A CN1819985B (zh) 2003-10-02 2004-09-30 生产高纯度对苯二甲酸的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-344002 2003-10-02
JP2003344002 2003-10-02

Publications (1)

Publication Number Publication Date
WO2005033058A1 true WO2005033058A1 (ja) 2005-04-14

Family

ID=34419365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014772 WO2005033058A1 (ja) 2003-10-02 2004-09-30 高純度テレフタル酸の製造方法

Country Status (9)

Country Link
US (1) US7262323B2 (ja)
EP (1) EP1669343B1 (ja)
JP (2) JP5047501B2 (ja)
KR (1) KR101107927B1 (ja)
CN (1) CN1819985B (ja)
DE (1) DE602004019121D1 (ja)
MY (1) MY142126A (ja)
TW (1) TWI343372B (ja)
WO (1) WO2005033058A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290948A (ja) * 2007-05-22 2008-12-04 Mitsubishi Gas Chem Co Inc イソフタル酸原スラリーの分散媒置換方法
WO2011108420A1 (ja) 2010-03-01 2011-09-09 株式会社クレハ 塔型固液向流接触装置、固体粒子の洗浄装置、及び、方法
WO2011145424A1 (ja) 2010-05-21 2011-11-24 株式会社クレハ 縦型固液向流接触方法、固体粒子の洗浄方法、ポリアリーレンスルフィドの製造方法、及び、装置
CN101460442B (zh) * 2006-07-24 2012-10-31 三菱瓦斯化学株式会社 分散介质置换方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG146675A1 (en) 2003-10-03 2008-10-30 Mitsubishi Gas Chemical Co Process for washing solid particles
CN102040512B (zh) * 2009-10-13 2014-03-05 中国石油化工股份有限公司 粗对苯二甲酸母液置换方法
CN102040513A (zh) * 2009-10-13 2011-05-04 中国石油化工股份有限公司 溶剂置换制取对苯二甲酸水性浆料的方法
US20110152878A1 (en) * 2009-12-17 2011-06-23 Ethicon Endo-Surgery, Inc. Interface systems for aiding clinicians in controlling and manipulating at least one endoscopic surgical instrument and a cable controlled guide tube system
GB201011008D0 (en) 2010-06-30 2010-08-18 Davy Process Techn Ltd Process and system
US10388156B2 (en) * 2015-12-29 2019-08-20 The Directv Group, Inc. Method and system for displaying a position of a vehicle at a remotely located device
EP3514136A4 (en) * 2016-09-14 2020-04-22 Mitsubishi Gas Chemical Company, Inc. PROCESS FOR THE PRODUCTION OF HIGH PURITY TEREPHTHALIC ACID

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160942A (ja) * 1987-12-17 1989-06-23 Mitsui Petrochem Ind Ltd テレフタル酸スラリーの分散媒交換方法
JPH08231465A (ja) * 1994-12-26 1996-09-10 Mitsubishi Gas Chem Co Inc 高純度テレフタル酸の製造方法
JPH09286759A (ja) * 1996-04-18 1997-11-04 Mitsubishi Gas Chem Co Inc 高純度テレフタル酸の製造方法
JPH09286758A (ja) * 1996-04-18 1997-11-04 Mitsubishi Gas Chem Co Inc 高純度テレフタル酸の製造法
JPH1045667A (ja) * 1996-07-29 1998-02-17 Mitsubishi Gas Chem Co Inc 分散媒置換装置を用いた高純度テレフタル酸の製造方法
JP2000191583A (ja) * 1998-12-25 2000-07-11 Mitsui Chemicals Inc 芳香族カルボン酸の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156744A (ja) * 1986-12-22 1988-06-29 Toray Ind Inc 酢酸の回収方法
JP4055913B2 (ja) * 1994-04-26 2008-03-05 三菱瓦斯化学株式会社 高純度テレフタル酸を製造する方法
US5712412A (en) 1994-12-26 1998-01-27 Mitsubishi Gas Chemical Co., Inc. Process for producing highly pure terephthalic acid
JPH10287614A (ja) * 1997-02-17 1998-10-27 Mitsui Chem Inc 高純度テレフタル酸の製造方法
JP3846080B2 (ja) * 1998-12-28 2006-11-15 三井化学株式会社 芳香族カルボン酸の製造方法
SG146675A1 (en) * 2003-10-03 2008-10-30 Mitsubishi Gas Chemical Co Process for washing solid particles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160942A (ja) * 1987-12-17 1989-06-23 Mitsui Petrochem Ind Ltd テレフタル酸スラリーの分散媒交換方法
JPH08231465A (ja) * 1994-12-26 1996-09-10 Mitsubishi Gas Chem Co Inc 高純度テレフタル酸の製造方法
JPH09286759A (ja) * 1996-04-18 1997-11-04 Mitsubishi Gas Chem Co Inc 高純度テレフタル酸の製造方法
JPH09286758A (ja) * 1996-04-18 1997-11-04 Mitsubishi Gas Chem Co Inc 高純度テレフタル酸の製造法
JPH1045667A (ja) * 1996-07-29 1998-02-17 Mitsubishi Gas Chem Co Inc 分散媒置換装置を用いた高純度テレフタル酸の製造方法
JP2000191583A (ja) * 1998-12-25 2000-07-11 Mitsui Chemicals Inc 芳香族カルボン酸の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1669343A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101460442B (zh) * 2006-07-24 2012-10-31 三菱瓦斯化学株式会社 分散介质置换方法
JP2008290948A (ja) * 2007-05-22 2008-12-04 Mitsubishi Gas Chem Co Inc イソフタル酸原スラリーの分散媒置換方法
WO2011108420A1 (ja) 2010-03-01 2011-09-09 株式会社クレハ 塔型固液向流接触装置、固体粒子の洗浄装置、及び、方法
KR101359260B1 (ko) 2010-03-01 2014-02-05 가부시끼가이샤 구레하 탑형 고액 향류 접촉 장치, 고체 입자의 세정 장치 및 방법
US9339778B2 (en) 2010-03-01 2016-05-17 Kureha Corporation Column-type solid-liquid countercurrent contact apparatus, solid particle washing apparatus, and method
WO2011145424A1 (ja) 2010-05-21 2011-11-24 株式会社クレハ 縦型固液向流接触方法、固体粒子の洗浄方法、ポリアリーレンスルフィドの製造方法、及び、装置

Also Published As

Publication number Publication date
JP5047501B2 (ja) 2012-10-10
EP1669343A1 (en) 2006-06-14
MY142126A (en) 2010-09-15
US20070015935A1 (en) 2007-01-18
KR101107927B1 (ko) 2012-01-25
TWI343372B (en) 2011-06-11
JP2012158614A (ja) 2012-08-23
EP1669343A4 (en) 2007-01-03
CN1819985A (zh) 2006-08-16
US7262323B2 (en) 2007-08-28
CN1819985B (zh) 2011-08-10
DE602004019121D1 (de) 2009-03-05
EP1669343B1 (en) 2009-01-14
KR20060105738A (ko) 2006-10-11
JPWO2005033058A1 (ja) 2006-12-14
TW200517370A (en) 2005-06-01

Similar Documents

Publication Publication Date Title
JP2012158614A (ja) 高純度テレフタル酸の製造方法
JP3979505B2 (ja) 高純度テレフタル酸の製造方法
RU2002731C1 (ru) Способ замены диспергирующей среды в суспензии терефталевой кислоты
JP3731681B2 (ja) 高純度テレフタル酸の製造方法
JP3788634B2 (ja) 高純度テレフタル酸の製造法
JP4055913B2 (ja) 高純度テレフタル酸を製造する方法
US10683253B2 (en) Method for producing high-purity terephthalic acid
KR101145010B1 (ko) 고체 입자의 세정 방법
KR102593219B1 (ko) 고순도 테레프탈산의 제조방법
EP2455360B1 (en) Apparatus for replacing dispersion medium
JP4643801B2 (ja) 分散媒置換方法および高純度テレフタル酸の製造方法
KR102282661B1 (ko) 테레프탈산의 제조방법
JP5173474B2 (ja) テレフタル酸の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480019539.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514497

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004773646

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067004614

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007015935

Country of ref document: US

Ref document number: 1121/CHENP/2006

Country of ref document: IN

Ref document number: 10574273

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004773646

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10574273

Country of ref document: US