WO2005021815A1 - 高周波焼入用熱間鍛造非調質鋼 - Google Patents

高周波焼入用熱間鍛造非調質鋼 Download PDF

Info

Publication number
WO2005021815A1
WO2005021815A1 PCT/JP2004/012100 JP2004012100W WO2005021815A1 WO 2005021815 A1 WO2005021815 A1 WO 2005021815A1 JP 2004012100 W JP2004012100 W JP 2004012100W WO 2005021815 A1 WO2005021815 A1 WO 2005021815A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
machinability
content
less
induction hardening
Prior art date
Application number
PCT/JP2004/012100
Other languages
English (en)
French (fr)
Inventor
Daisuke Suzuki
Hitoshi Matsumoto
Hideki Imataka
Hayato Onda
Tetsuya Asai
Original Assignee
Sumitomo Metal Industries, Ltd.
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd., Honda Motor Co., Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to EP04772061A priority Critical patent/EP1666621B1/en
Publication of WO2005021815A1 publication Critical patent/WO2005021815A1/ja
Priority to US11/360,476 priority patent/US7387691B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium

Definitions

  • the present invention relates to a hot forged non-heat treated steel for induction hardening. More specifically, the present invention relates to a hot forged non-heat treated steel for induction hardening, which is suitable for mechanical structural parts such as crankshafts used for automobiles and industrial vehicles.
  • crankshafts and the like used for automobiles, industrial vehicles and the like have been required to have wear resistance and fatigue strength, and therefore, steel for machine structural use such as S48C specified in JIS has been used.
  • S48C is a so-called “tempered steel”. For this reason, after quenching and tempering after hot working, a predetermined strength is imparted, followed by mechanical processing, etc., to calorie into a predetermined shape, and then induction hardening to the necessary parts to obtain a hardened surface layer.
  • Patent Document 1 states that "by weight, C: 0.30 to 0.60%, Si: 0.03 to 1.0%, and Mn: 0.5 to 2.0%. Containing one or two of Mo: 0.05-0.5% and Nb: 0.01-0.3%, with the balance consisting essentially of Fe and having a volume fraction of bainite of 75% A non-heat treated steel for induction hardening characterized by having the structure described above is disclosed.
  • Patent Document 2 discloses that "C: 0.30 to 0.60%, Si: 0.10 to 0.80%, Mn
  • Patent Document 1 JP-A-63-100157
  • Patent Document 2 JP-A-2-179841
  • An object of the present invention is to use a hot as-forged steel material as a starting material, improve machinability compared to conventional steel, and have the same or higher fatigue strength as that of conventional steel. It is to provide non-heat treated steel.
  • Patent Document 1 The steel proposed in Patent Document 1 described above is one of the important characteristics desired for steel for machine structural use, because the structure of the base metal has a bainite rate of 75% or more. There is a problem that the machinability is reduced.
  • the present inventors conducted various studies to solve the above-mentioned problems, and in particular, improved the machinability of hot-forged non-heat treated steel and ensured the fatigue strength after induction hardening. The following findings were obtained.
  • the gist of the present invention resides in a hot forged non-heat treated steel for induction hardening shown in the following (1).
  • each element symbol in the above formulas (1), (2) and (3) indicates the content of the element in mass%.
  • a steel material as hot forged is used as a starting material, and has excellent machinability and a fatigue strength equal to or higher than that of the conventional steel. Having. BEST MODE FOR CARRYING OUT THE INVENTION
  • C has the effect of improving hardenability and internal strength. To obtain minimum hardenability and internal strength, it is necessary to contain 0.35% or more of C. On the other hand, when the content is 0.4 If it exceeds 5%, the hardness of the base material increases, and the machinability deteriorates. Therefore, the content of C was set to 0.35 to 0.45%. The C content is more preferable! /, The range is 0.35 to 0.40%.
  • Si is necessary as a deoxidizing agent for steel and has the effect of strengthening ferrite and improving fatigue strength.To achieve this effect, it is necessary to contain 0.20% or more of Si. You. On the other hand, if the content exceeds 0.60%, decarburization during hot forging is promoted and strength is reduced. Therefore, the content of Si was set to 0.20-0.60%. A more preferable range of the Si content is 0.30 to 0.50%.
  • Mn is necessary not only as a deoxidizing agent for steel, but also has the effect of improving the hardenability and improving the strength of the steel.To achieve this effect, it is necessary to contain 0.40% or more of Mn. There is. On the other hand, if the content exceeds 0.80%, the hardness of the material is increased and the machinability is reduced. Therefore, the content of Mn is set to 0.40 to 0.80%. A more preferred Shi ⁇ range of Mn content ⁇ or 0. 50-0. 70 0/0.
  • S has the effect of forming MnS together with Mn to improve machinability, and in order to obtain this effect, it is necessary to contain S in an amount of 0.440% or more.
  • the content of S was set to 0.404-0.070%.
  • the S content is more preferable! /, The range is from 0.040% to 0.060%.
  • Cr has the effect of improving the hardenability of the steel and increasing the strength. To obtain the desired effect, it is necessary to contain 0.10% or more of Cr. On the other hand, if the content exceeds 0.40%, the hot forgeability of the steel deteriorates and the machinability also decreases. Therefore, the content of Cr is set to 0.10 to 0.40%. The Cr content is more preferred! /, And the range is 0.10 to 0.20%.
  • Ti 0.020-0.100%
  • Ti is a deoxidizing agent for steel and combines with N in steel to form TiN and fix N.
  • solid solution Ti in steel has the effect of strengthening steel.
  • the A1 content is low.To suppress the generation of BN with the addition of B, it is necessary to fix N by Ti, and to obtain the desired effect, contain at least 0.020% Ti. Need to be done. On the other hand, if the content exceeds 0.10%, the machinability of steel decreases. Therefore, the content of Ti was set to be 0.020-0.100%.
  • the Ti content is more preferable! /, The range is from 0.030% to 0.060%.
  • Ca has the effect of finely dispersing MnS and greatly improving the machinability of steel. To obtain this effect, it is necessary to contain 0.0005% or more of Ca. On the other hand, if the content exceeds 0.0050%, the effect of improving the machinability of Ca is saturated, so that a coarse Ca-based oxide is formed which cannot be obtained by force and the fatigue strength is reduced. Therefore, the content of Ca was set to 0.0005-0.005 0%. The Ca content is more preferable! /, The range is 0.0005-0.0030%.
  • B has an important effect of improving the hardenability of steel.
  • the hardenability of C, Mn, Cr, etc. is increased.
  • the element content is controlled to be lower than that of conventional steel. Therefore, B must be added to secure the quenching depth during induction hardening, and 0.0005% or more of B must be contained in order to obtain the effect of improving hardenability.
  • the content of B is set to 0.0005 to 0.0030%.
  • 0 oxygen
  • 0 (oxygen) has an effect of suppressing machinability, especially tool wear during high-speed cutting by bonding with Ca, and in order to exhibit this effect, contain 0.0015% or more of 0 (oxygen). There is a need.
  • the content of o (oxygen) was set to 0.0015% to 0.0050%.
  • the O content is more preferable! /, The range is 0.0015% to 0.0035%.
  • Mo 0-0. 05%
  • the Mo syrup is optional. If added, it has the effect of improving the hardenability of the steel. To ensure this effect, the content of Mo should be 0.02% or more. On the other hand, if the content exceeds 0.05%, the hot forgeability and machinability of the steel are deteriorated, and the economy is also deteriorated. Therefore, the content of Mo is set to 0 to 0.05%.
  • A1 has the effect of deoxidizing steel, but if added too much it combines with oxygen to form a hard AlO
  • P is an unavoidable impurity in steel, and if present in a large amount in steel, cracking may be promoted in induction hardening. In particular, when the content of P exceeds 0.025%, cracking during induction hardening may become remarkable. Therefore, the content of P is set to 0.025% or less.
  • the P content is more preferably 0.015% or less.
  • V combines with C and N to form carbonitride. Since this carbonitride becomes a stable nucleus of ferrite after hot forging, it causes a variation in hardness after induction hardening after hot forging. In particular, when the V content exceeds 0.03%, the hardness variation after induction hardening becomes remarkable. Therefore, the content of V is set to 0.03% or less.
  • N 0.0100% or less
  • N Since N has a high affinity for Ti, it forms TiN immediately and if the N content exceeds 0.0100%, coarse TiN is formed, leading to a decrease in fatigue strength. Therefore, the content of N is set to 0.0100% or less. Note that a more preferable range of the N content is 0.0060% or less.
  • the chemical composition of the hot forged non-heat treated steel for induction hardening according to the invention of the above (1) is such that the above elements from C to N and the balance are Fe and impurity power.
  • the value of Fnl represented by the above equation (1) was set to 0.63 or less. If the value of Fnl is too low, the internal hardness becomes low, and sufficient strength may not be obtained. Therefore, the lower limit of the value of Fnl is preferably set to about 0.50.
  • Fn2 By setting Fn2 to 1.0 or less, that is, by setting the ratio of Ca to 0 (oxygen) to 1.0 or less, MnS in the steel is finely dispersed, and this fine MnS is reduced during machining. The notch effect is exhibited in the steel, and the chip controllability is significantly improved. Therefore, the value of Fn2 represented by the above equation (2) is set to 1.0 or less.
  • the lower limit of the value of Fn2 is not particularly defined, but 0.0005%, which is the lower limit of the Ca content, and 0.0005%, which is the upper limit of the 0 (oxygen) content, is 0.1. Is the lower limit of the value of.
  • a parameter related to the induction hardening depth is Fn3 represented by the above equation (3) when the B content is 0.0005-0.003%.
  • Fn3 represented by the above equation (3) when the B content is 0.0005-0.003%.
  • the value of Fnl was set to 5.7 or more.
  • the upper limit of the value of Fn3 is not particularly specified, but elements that improve the induction hardening depth simultaneously increase the value of Fn1, which is an index of internal hardness, and may reduce machinability. Therefore, the upper limit of the value of Fn3 is preferably about 10.0.
  • the parameter related to the induction hardening depth is a force less than or equal to 0.56 times the value of Fn3 represented by the formula (3).
  • the parameter related to the induction hardening depth is Fn3.
  • a steel having the composition shown in Fig. 1 was melted in a 3 ton electric furnace to produce an ingot. Cooling was performed as it was. Next, each ingot was formed into a billet of 180 mm square by slab rolling, heated to 1200 ° C. or higher by a usual method, and a steel bar having a diameter of 100 mm and a diameter of 20 mm was formed by hot rolling.
  • a steel bar having a diameter of 100 mm was subjected to high-temperature normalization in which the steel bar was kept at 1200 ° C. for 60 minutes and then allowed to cool, and then cut into a length of 70 mm to obtain a machinability evaluation test piece.
  • the machinability was determined by using a water-soluble lubricant, a carbide drill with a diameter of 6.2 mm, and a cutting depth perpendicular to the cut surface of the test piece at a rotation speed of 6000 rpm and a feed of 200 mmZmin. A hole of 55 mm in diameter was drilled into 300 holes, and evaluated by the presence or absence of breakage of the gun drill.
  • the chip disposability was evaluated based on whether or not a chip discharged during the above-described cutting test contained a piece having a length of 30 mm or more. In other words, it is judged that chips with a length of 30 mm or more are included! / When cutting, chips are poorly treated, and chips with a length of 30 mm or more are included! / In the case of ⁇ , it was judged that the chip controllability was good.
  • a steel bar having a diameter of 20 mm is subjected to high-temperature normalization in which the steel bar is kept at 1200 ° C. for 30 minutes and then left to cool.
  • a labor test specimen was obtained.
  • high-frequency quenching with an output of 50 kW and a frequency of 200 kHz was applied to the parallel part of the test piece, and low-temperature tempering was performed at 150 ° C for 30 minutes to perform an Ono-type rotating bending fatigue test.
  • the rotational bending fatigue characteristics were measured using a JIS No. 1 rotary bending fatigue test piece having a parallel part diameter of 10 mm, a parallel part length of 30 mm, and a corner radius of 30 mm at room temperature by ordinary methods at room temperature.
  • a rotary bending fatigue test was performed, and the stress at a repetition of 1.0 ⁇ 10 7 times was evaluated as the rotary bending fatigue strength.
  • the rotating bending fatigue strength is 500 MPa or more
  • the target is to have a rotating bending fatigue strength of 500 MPa or more because it exceeds the rotating bending fatigue strength of the hot forged material of S48C specified in JIS. did.
  • FIG. 2 and FIG. 3 show the test results.
  • FIG. 2 shows the relationship between Fnl and Fn2 and machinability.
  • FIG. 3 shows the relationship between Fnl and Fn3 and the rotational bending fatigue characteristics and machinability.
  • FIG. 3 shows the relationship between Fnl and Fn3 and the rotational bending fatigue characteristics and machinability.
  • those with a value of Fn2 exceeding 1.0 are deleted.
  • FIG. 3 it can be seen that by setting the value of Fnl to 0.63 or less and the value of Fn3 to 5.7 or more, the rotational bending fatigue characteristics and machinability are improved. That is, by setting the value of Fnl to 0.63 or less, setting the value of Fn2 to 1.0 or less, and setting the value of Fn3 to 5.7 or more, the machinability and fatigue strength are improved. Power.
  • the steel indicated by Test No. 1-120 shown in Table 1 above was melted and manufactured in a 3 ton electric furnace, and allowed to cool as it was in the ingot.
  • the steels indicated by test numbers 1 to 10 in Table 1 are steels of the examples of the present invention whose chemical composition is within the range specified in the present invention, and the steels indicated by test numbers 11 to 20 in Table 1 It is a steel of a comparative example out of the range specified by the present invention.
  • each ingot was turned into a 180 mm square billet by slab rolling, and then heated to 1200 ° C. or more by a usual method, and hot-rolled to produce steel bars having a diameter of 100 mm and a diameter of 20 mm.
  • a steel bar having a diameter of 100 mm was subjected to high-temperature normalization in which the steel bar was kept at 1200 ° C. for 60 minutes and then allowed to cool, and then cut into a length of 70 mm to obtain a machinability evaluation test piece.
  • the machinability was measured using a water-soluble lubricant, a carbide drill with a diameter of 6.2mm, a rotation speed of 6000rpm, and a feed of 200mmZmin, perpendicular to the cut surface of the test piece. A hole of 55 mm in diameter was drilled into 300 holes, and evaluated by the presence or absence of breakage of the gun drill.
  • the chip disposability was evaluated based on whether or not a chip ejected during the above-mentioned cutting test contained a piece having a length of 30 mm or more. In other words, it is judged that chips with a length of 30 mm or more are included! / When cutting, chips are poorly treated, and chips with a length of 30 mm or more are included! / In the case of ⁇ , it was judged that the chip controllability was good.
  • the hot forged non-heat treated steel for induction hardening according to the present invention is made of a steel material as hot forged as a starting material, and has excellent machinability and a fatigue strength equal to or higher than that of the conventional steel. It can be used as a material for mechanical structural parts such as crankshafts for automobiles and industrial vehicles.
  • FIG. 1 is a view showing the concept of ensuring machinability and fatigue strength.
  • FIG. 2 is a diagram showing an example of the relationship between Fnl and Fn2 and machinability.
  • FIG. 3 is a diagram showing an example of the relationship between Fnl and Fn3, and rotational bending fatigue characteristics and machinability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 C:0.35~0.45%、Si:0.20~0.60%、Mn:0.40~0.80%、S:0.040~0.070%、Cr:0.10~0.40%、Ti:0.020~0.100%、Ca:0.0005~0.0050%、B:0.0005~0.0030%、O:0.0015~0.0050%、Mo:0~0.05%、P≦0.025%、V≦0.03%、Al≦0.009%、N≦0.0100%を含み、残部がFeと不純物よりなり、Fn1=C+(Si/10)+(Mn/5)+(5Cr/22)+1.65V−(5/7S)+1.51×(Ti−3.4N)≦0.63、Ca/O≦1.0であると共に、25.9×Fn1+27.5×(Ti−3.4N)−7.9≧5.7の高周波焼入用熱間鍛造非調質鋼。この鋼は、熱間鍛造ままの鋼材を出発材とし、従来鋼よりも被削性が優れると共に、従来鋼と同等以上の疲労強度を有する。    

Description

明 細 書
高周波焼入用熱間鍛造非調質鋼
技術分野
[0001] 本発明は、高周波焼入用熱間鍛造非調質鋼に関する。詳しくは、自動車や産業車 両等に用いられるクランクシャフト等の機械構造部品に適した高周波焼入用熱間鍛 造非調質鋼に係るものである。
背景技術
[0002] 従来、自動車、産業車両等に用いられるクランクシャフト等には、耐摩耗性及び疲 労強度が要求されるために、 JISで規定する S48C等の機械構造用鋼が使用されて いる。ここで、 S48Cはいわゆる「調質鋼」である。このため、熱間加工後に焼入れ-焼 戻し処理を行って所定の強度を付与し、更に機械加工等を行って所定の形状にカロ ェした後、必要な部位に高周波焼入れを施して表面硬化層を形成することによって 耐摩耗性及び疲労強度を向上させて!/ヽる。
[0003] ところが、上記した様な調質鋼は、熱間鍛造後に焼入れ 焼戻しの熱処理を施すた めに、多くのエネルギーと手間や設備コストが費やされており、近年では、省エネル ギ一という社会的要請に応えるべく熱間鍛造ままで使用できる非調質鋼の開発が盛 んに行われおり、これまでにも高周波焼入用非調質鋼についていくつか報告がなさ れている。
[0004] 例えば、特許文献 1には、「重量%で、 C : 0. 30-0. 60%、 Si: 0. 03-1. 0%及 び Mn: 0. 5—2. 0%を含み、更に Mo : 0. 05—0. 5%及び Nb : 0. 01—0. 3%の 1 種又は 2種を含み、残余が実質的に Feからなり、ベイナイトの占める体積率が 75% 以上である組織を有することを特徴とする高周波焼入用非調質鋼」等が開示されて いる。
[0005] また、特許文献 2には、「重量比で C : 0. 30—0. 60%、 Si: 0. 10—0. 80%、 Mn
: 0. 60—2. 00%、Cr: 0. 60%以下、 V: 0. 05—0. 30%、A1: 0. 030—0. 100 %、 N: 0. 0080—0. 0200%、 B: 0. 0005—0. 0050%を含有し、残部力Fe及び 不純物元素からなることを特徴とする高周波焼入用非調質鋼」等が開示されている。 特許文献 1:特開昭 63- 100157号公報
特許文献 2 :特開平 2-179841号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明の目的は、熱間鍛造ままの鋼材を出発材とし、従来鋼よりも被削性を向上さ せると共に、従来鋼と同等以上の疲労強度を有する高周波焼入用熱間鍛造非調質 鋼を提供することである。
[0007] 前述の特許文献 1で提案された鋼は、母材の組織がベイナイト率 75%以上力ゝらな るものであるために、機械構造用鋼に望まれる重要特性の 1つである被削性が低下 してしまうという問題がある。
[0008] また、特許文献 2で提案された技術の場合、 A1によって Nを充分に固定するために は比較的多量の A1を添加する必要がある力 A1を過剰に添加すると硬い Al O相を
2 3 形成して、 Vで内部強度を従来鋼並に確保している点と相俟って、被削性が低下す るという問題がある。
[0009] そこで、本発明者らは、上記した課題を解決するために様々な検討を行い、特に、 熱間鍛造非調質鋼の被削性の向上と高周波焼入後の疲労強度の確保について研 究を行い、以下の知見を得た。
[0010] (a)被削性を大幅に向上させるためには、内部硬さの低減、即ち、後述の(1)式で 表される Fnlで規定される C当量を 0. 63以下に制御すると共に、快削元素である S 及び Caの添加、及び切り屑処理性を確保するための A1の制限、及び後述の(2)式 で表される Fn2の値の 1. 0以下への制御が必要である。
[0011] (b)また、従来鋼 (例えば、 JISで規定される S48C等に焼入れ処理及び焼戻し処 理を施した鋼)と同等の疲労強度を確保するためには、図 1で示す様に、図 1中符号 aで示す内部硬さを低減した分、図 1中符号 bで示す高周波焼入れ時の焼入れ深さ を増加させる必要があり、所定の焼入れ深さを得るためには焼入性向上元素である Bの添加、及び後述の(3)式で表される Fn3の値を 5. 7以上に制御する必要がある 。更に、非調質鋼におけるフェライト析出時の生成核となる V炭窒化物の形成を抑制 するために Vを 0. 03%以下に制御する必要がある。 [0012] 本発明は、上記の知見に基づいて完成されたものである。
課題を解決するための手段
[0013] 本発明の要旨は、下記(1)に示す高周波焼入用熱間鍛造非調質鋼にある。
[0014] )質量0 /0で、 C:0.35—0.45%、 Si:0.20—0.60%、 Mn:0.40—0.80%、 S:0.040—0.070%、 Cr:0.10—0.40%、 Ti:0.020—0.100%、 Ca:0.000 5—0.0050%、 B:0.0005—0.0030%、 0(酸素) :0.0015—0.0050%、 Mo :0—0.05%、P:0.025%以下、 V:0.03%以下、 A1:0.009%以下及び N:0.0 100%以下を含有し、残部が Fe及び不純物からなり、下記(1)式で表される Fnlの 値が 0.63以下であり、下記(2)式で表される Fn2の値が 1.0以下であると共に、下 記(3)式で表される Fn3の値が 5.7以上であることを特徴とする高周波焼入用熱間 鍛造非調質鋼。
式(1): Fnl = C+ (Si/10) + (Mn/5) + (5Cr/22)+l.65V-(5/7S)+l .51X (Ti-3.4N)
式(2): Fn2 = Ca/0
式(3): Fn3 = 25.9 X Fnl + 27.5X (Ti-3.4N)— 7.9
[0015] ここで、上記(1)式、(2)式及び(3)式中の各元素記号は、その元素の質量%での 含有量を示している。
[0016] 以下、上記(1)に記載のものを(1)の発明という。
発明の効果
[0017] 本発明の高周波焼入用熱間鍛造非調質鋼では、熱間鍛造ままの鋼材を出発材と し、従来鋼よりも被削性が優れると共に、従来鋼と同等以上の疲労強度を有する。 発明を実施するための最良の形態
[0018] 以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表 示は「質量%」を意味する。
[0019] (A)化学成分
C:0.35—0.45%
Cは、焼入性及び内部強度を向上させる効果があり、最低限の焼入性及び内部強 度を得るためには、 0.35%以上の Cを含有させる必要がある。一方、含有量が 0.4 5%を超えると、母材の硬さが上昇し、被削性が悪ィ匕してしまう。従って、 Cの含有量 を 0. 35-0. 45%とした。なお、 C含有量のより好まし! /、範囲は 0. 35-0. 40%で ある。
[0020] Si: 0. 20—0. 60%
Siは、鋼の脱酸剤として必要であると共に、フェライトを強化し、疲労強度を向上さ せる効果があり、この効果を得るためには、 0. 20%以上の Siを含有させる必要があ る。一方、含有量が 0. 60%を超えると、熱間鍛造時の脱炭を促進して強度が低下し てしまう。従って、 Siの含有量を 0. 20-0. 60%とした。なお、 Si含有量のより好まし い範囲は 0. 30—0. 50%である。
[0021] Mn: 0. 40—0. 80%
Mnは、鋼の脱酸剤として必要であると共に、焼入性を向上させて鋼の強度を向上 させる効果があり、この効果を得るためには、 0. 40%以上の Mnを含有させる必要が ある。一方、含有量が 0. 80%を超えると、素材硬さを上昇させて被削性が低下して しまう。従って、 Mnの含有量を 0. 40-0. 80%とした。なお、 Mn含有量のより好ま し ヽ範囲 ίま 0. 50—0. 700/0である。
[0022] S : 0. 040—0. 070%
Sは、 Mnと共に MnSを形成して被削性を向上させる効果があり、この効果を得るた めには 0. 040%以上の Sを含有させる必要がある。一方、含有量が 0. 070%を超え ると、鋼の熱間鍛造性が劣化すると共に、疲労強度が低下してしまう。従って、 Sの含 有量を 0. 040— 0. 070%とした。なお、 S含有量のより好まし! /、範囲は 0. 040— 0. 060%である。
[0023] Cr: 0. 10—0. 40%
Crは、鋼の焼入性を向上させ強度を高める効果があり、所望の効果を得るために は 0. 10%以上の Crを含有させる必要がある。一方、含有量が 0. 40%を超えると、 鋼の熱間鍛造性が劣化すると共に、被削性も低下してしまう。従って、 Crの含有量を 0. 10-0. 40%とした。なお、 Cr含有量のより好まし! /、範囲は 0. 10-0. 20%であ る。
[0024] Ti: 0. 020—0. 100% Tiは、鋼の脱酸剤であると共に、鋼中の Nと結合して TiNを生成し、 Nを固定する 働きがある。また、鋼中の固溶 Tiは鋼を強化する効果がある。本発明鋼では A1含有 量が少なぐ B添加での BNの生成を抑制するために、 Tiによって Nを固定する必要 があり、所望の効果を得るためには 0. 020%以上の Tiを含有させる必要がある。一 方、含有量が 0. 100%を超えると、鋼の被削性が低下してしまう。従って、 Tiの含有 量を 0. 020— 0. 100%とした。なお、 Ti含有量のより好まし! /、範囲は 0. 030— 0. 0 60%である。
[0025] Ca: 0. 0005—0. 0050%
Caは、 MnSを微細分散させ、鋼の被削性を大きく向上させる効果があり、この効果 を得るためには 0. 0005%以上の Caを含有させる必要がある。一方、含有量が 0. 0 050%を超えると、 Caの被削性向上の効果が飽和するば力りでなぐ粗大な Ca系酸 化物を形成し疲労強度が低下してしまう。従って、 Caの含有量を 0. 0005-0. 005 0%とした。なお、 Ca含有量のより好まし! /、範囲は 0. 0005-0. 0030%である。
[0026] B: 0. 0005—0. 0030%
Bは、鋼の焼入性を向上させるという重要な効果があり、本発明では、内部硬さを低 減させ被削性を向上させるために、 Cや Mn、 Crなどの焼入性を高める元素の含有 量を従来鋼よりも低く制御している。そのため、高周波焼入れ時の焼入れ深さを確保 するために Bを添加する必要があり、焼入性向上効果を得るためには 0. 0005%以 上の Bを含有させる必要がある。一方、含有量が 0. 0030%を超えると、焼入性向上 効果力 S飽禾口してしまう。従って、 Bの含有量を 0. 0005— 0. 0030%とした。
[0027] 0 (酸素) : 0. 0015—0. 0050%
0 (酸素)は、 Caと結合して被削性、特に高速切削時の工具磨耗を抑制する効果が あり、この効果を発揮するためには 0. 0015%以上の 0 (酸素)を含有させる必要が ある。一方、含有量が 0. 0050%を超えると、逆に被削性が劣化したり、粗大な酸ィ匕 物系介在物を形成して疲労強度が低下したりしてしまう。従って、 o(酸素)の含有量 を 0. 0015— 0. 0050%とした。なお、 O含有量のより好まし! /、範囲は 0. 0015— 0. 0035%である。
[0028] Mo : 0—0. 05% Moの添カ卩は任意である。添加すれば、鋼の焼入性を向上させる効果がある。この 効果を確実に得るには、 Moは 0. 02%以上の含有量とすればよい。一方、含有量が 0. 05%を超えると、鋼の熱間鍛造性と被削性が悪ィ匕すると共に、経済性をも悪化し てしまう。従って、 Moの含有量を 0— 0. 05%とした。
[0029] A1: 0. 009%以下
A1は、鋼を脱酸する効果があるが、添加しすぎると酸素と結合して硬質な Al O介
2 3 在物を生成し、被削性を低下させてしまう。特に、 A1の含有量が 0. 009%を超えると 被削性の低下が顕著になる。従って、 A1の含有量を 0. 009%以下とした。
[0030] 本発明においては、 P、 V及び Nの含有量を下記のとおりに制限する。これらの元 素は 、ずれも鋼中に不純物として含まれるものである。
[0031] P : 0. 025%以下
Pは、鋼の不可避不純物であり、鋼中に多量に存在すると高周波焼入において割 れを助長する場合がある。特に、 Pの含有量が 0. 025%を超えると高周波焼入時の 割れ発生が顕著になる場合がある。従って、 Pの含有量を 0. 025%以下とした。なお 、 Pの含有量は 0. 015%以下とすることがより好ましい。
[0032] V: 0. 03%以下
Vは、 C及び Nと結合して炭窒化物を形成する。この炭窒化物は熱間鍛造後にフエ ライトの安定な生成核となるため、熱間鍛造後の高周波焼入後の硬さにおいてバラッ キを発生させる要因となってしまう。特に、 Vの含有量が 0. 03%を超えると高周波焼 入後の硬さバラツキが顕著になる。従って、 Vの含有量を 0. 03%以下とした。
[0033] N: 0. 0100%以下
Nは、 Tiと親和力が大きいために TiNを生成しやすぐ Nの含有量が 0. 0100%を 超えると粗大な TiNが生成し、疲労強度の低下を招いてしまう。従って、 Nの含有量 を 0. 0100%以下とした。なお、 N含有量のより好ましい範囲は 0. 0060%以下であ る。
[0034] 上記(1)の発明に係る高周波焼入用熱間鍛造非調質鋼の化学組成は、上記の C から Nまでの元素と、残部が Fe及び不純物力 なるものである。
[0035] (B) Fnl、 Fn2及び Fn3 Fnl≤0. 63
被削性を確保するには内部硬さを低下することが有効である力 特に、ガンドリル穿 孔においては、内部硬さの低下により工具寿命が著しく向上する。従って、熱間鍛造 後の内部硬さを低下させ、良好な被削性を得るために前記の(1)式で表される Fnl の値を 0. 63以下とした。なお、 Fnlの値が低すぎると内部硬さが低くなり、十分な強 度が得られない場合があるため、 Fnlの値の下限は 0. 50程度とすることが好ましい
[0036] Fn2≤l. 0
Fn2を 1. 0以下とすることで、即ち、 Caと 0 (酸素)の比を 1. 0以下とすることで、鋼 中の MnSが微細に分散し、被削時に、この微細な MnSが鋼中で切欠き効果を発揮 して切り屑処理性が著しく向上する。従って、前記の(2)式で表される Fn2の値を 1. 0以下とした。なお、 Fn2の値の下限は特に規定しないが、 Ca含有量の下限である 0 . 0005%と、 0 (酸素)含有量の上限である 0. 0050%力ら計算される 0. 1が Fn2の 値の下限となる。
[0037] Fn3≥5. 7
高周波焼入れ深さに関係するパラメータは、 Bの含有量が前記 0. 0005—0. 003 0%の場合には、前記の(3)式で表される Fn3となる。被削性の向上と疲労強度の確 保を両立するためには、内部硬さの低下と共に、高周波焼入れ深さの増大を図る必 要がある。そして、 Fnlの値を 0. 63以下とすると共に、 Fn3の値を 5. 7以上に制御 すれば、被削性を損なうことなく高周波焼入れ深さを増大することができる。従って、 前記の(3)式で表される Fn3の値を 5. 7以上とした。なお、 Fn3の値の上限は特に 規定しないが、高周波焼入深さを向上させる元素は同時に内部硬さの指標である Fn 1の値を上昇させてしまい、被削性を低下させる場合があるため、 Fn3の値の上限は 10. 0程度とすることが好ましい。
なお、 Bの含有量が 0. 0005%未満の場合には、高周波焼入れ深さに関係するパ ラメータは、前記(3)式で表される Fn3を 0. 56倍したものとなる力 以下の説明にお いては、 Bの含有量が 0. 0005%未満の場合にも高周波焼入れ深さに関係するパラ メータは Fn3という。 [0038] 以下、本発明者らが表 1に示す試験番号 1一 20で示す鋼を用いて検討した結果を 一例として、上記した Fnl— Fn3の値に関する規定について詳しく説明する。
[0039] [表 1]
LL o o o o o o o o o Ιεεοο o o o o o o o o o o o inoo
Figure imgf000010_0001
1に示すィヒ学組成を有する鋼を 3ton電気炉で溶解して铸造し、インゴット のままで放冷を行った。次いで、各インゴットを分塊圧延により 180mm角のビレットに した後、通常の方法で 1200°C以上に加熱し、熱間圧延により直径 100mm及び直 径 20mmの棒鋼を作成した。
[0041] ここで、直径 100mmの棒鋼は、 1200°Cで 60分間保持後に放冷する高温焼ならし を施した後、 70mm長さに切断して被削性評価試験片を得た。
[0042] なお、被削性は、水溶性潤滑剤を使用し、超硬製の直径 6. 2mmのガンドリルを用 い、回転数 6000rpm、送り 200mmZminにて試験片の切断面に垂直に切削深さ 5 5mmの穴を 300穴穿孔してガンドリルの折損の有無により評価した。
[0043] また、切り屑処理性は、上記の切削試験の際に排出された切り屑に長さ 30mm以 上のものが含まれている力否かにより評価した。即ち、切り屑に長さ 30mm以上のも のが含まれて!/、る時は切り屑処理性が悪!、と判断し、切り屑に長さ 30mm以上のも のが含まれて!/ヽな ヽ時は切り屑処理性が良好と判断した。
[0044] 一方、直径 20mmの棒鋼は、 1200°Cで 30分間保持した後に放冷する高温焼なら しを施した後、この直径 20mmの棒鋼カゝら平行部直径 10mmの小野式回転曲げ疲 労試験片を得た。更に、試験片の平行部に出力 50kW、周波数 200kHzの高周波 焼入れを施し、 150°Cで 30分間の低温焼戻しを行って小野式回転曲げ疲労試験を 実施した。
[0045] なお、回転曲げ疲労特性は、上記した平行部直径 10mmで、平行部長さが 30mm 、コーナー部の半径が 30mmの JIS1号回転曲げ疲労試験片を用いて、通常の方法 により室温で小野式回転曲げ疲労試験を行い、繰り返し数 1. 0 X 107回における応 力を回転曲げ疲労強度として評価を行った。ここで、回転曲げ疲労強度が 500MPa 以上であれば、 JISに規定する S48Cの熱間鍛造材における回転曲げ疲労強度を上 回っているために、 500MPa以上の回転曲げ疲労強度を有することを目標とした。
[0046] 以上の試験結果を図 2及び図 3に示す。
[0047] 図 2は、 Fnl及び Fn2と被削性の関係を示したものである。
図 2力ら、 Fnlの値を 0. 63以下にすると共に、 Fn2の値を 1. 0以下にすることによ つて被削性 (ガンドリルの寿命及び切り屑処理性)が良好になることがわかる。
[0048] 図 3は、 Fnl及び Fn3と回転曲げ疲労特性及び被削性の関係を示したものである。 なお、図 3では、 Fn2の値が 1. 0を超えるものについては削除している。 図 3力ら、 Fnlの値を 0. 63以下にすると共に、 Fn3の値を 5. 7以上にすることによ つて回転曲げ疲労特性及び被削性が良好になることがわかる。即ち、 Fnlの値を 0. 63以下にし、 Fn2の値を 1. 0以下にすると共に、 Fn3の値を 5. 7以上にすることによ つて、被削性と共に疲労強度が良好になることがわ力る。
実施例
[0049] 以下、実施例により本発明を詳しく説明する。
[0050] 上記した表 1に示す試験番号 1一 20で示す鋼を 3ton電気炉で溶解して铸造し、ィ ンゴットままで放冷を行った。なお、表 1における試験番号 1一 10で示す鋼は化学組 成が本発明で規定する範囲内にある本発明例の鋼であり、表 1における試験番号 11 一 20で示す鋼は化学組成が本発明で規定する範囲から外れた比較例の鋼である。 次いで、各インゴットを分塊圧延により 180mm角のビレットにした後、通常の方法 で 1200°C以上に加熱し、熱間圧延により直径 100mm及び直径 20mmの棒鋼を作 成した。
[0051] ここで、直径 100mmの棒鋼は、 1200°Cで 60分間保持後に放冷する高温焼ならし を施した後、 70mm長さに切断して被削性評価試験片を得た。
[0052] なお、被削性は、水溶性潤滑剤を使用し、超硬製の直径 6. 2mmのガンドリルを用 い、回転数 6000rpm、送り 200mmZminにて試験片の切断面に垂直に切削深さ 5 5mmの穴を 300穴穿孔してガンドリルの折損の有無により評価した。
[0053] また、切り屑処理性は、上記の切削試験の際に排出された切り屑に長さ 30mm以 上のものが含まれている力否かにより評価した。即ち、切り屑に長さ 30mm以上のも のが含まれて!/、る時は切り屑処理性が悪!、と判断し、切り屑に長さ 30mm以上のも のが含まれて!/ヽな ヽ時は切り屑処理性が良好と判断した。
[0054] 一方、直径 20mmの棒鋼は、 1200°Cで 30分間保持した後に放冷する高温焼なら しを施した後、この直径 20mmの棒鋼カゝら平行部直径 10mmの小野式回転曲げ疲 労試験片を得た。更に、試験片の平行部に出力 50kW、周波数 200kHzの高周波 焼入れを施し、 150°Cで 30分間の低温焼戻しを行って小野式回転曲げ疲労試験を 実施した。 [0055] なお、回転曲げ疲労特性は、上記した平行部直径 10mmで、平行部長さが 30mm 、コーナー部の半径が 30mmの JIS1号回転曲げ疲労試験片を用いて、通常の方法 により室温で小野式回転曲げ疲労試験を行い、繰り返し数 1. O X 107回における応 力を回転曲げ疲労強度として評価を行った。ここで、回転曲げ疲労強度が 500MPa 以上であれば、 JISに規定する S48Cの熱間鍛造材における回転曲げ疲労強度を上 回っているために、 500MPa以上の回転曲げ疲労強度を有することを目標とした。
[0056] 以上の各試験結果を表 2に整理して示す。
[0057] [表 2]
Figure imgf000014_0001
表 2から明らかな様に、前記(1)の発明で規定する条件から外れた試験番号 110の場合には、ガンドリル寿命か切り屑処理性のいずれかが悪く被削性が悪い、あ るいは疲労強度が低 ヽの 、ずれかである。
[0059] これに対して、前記(1)の発明で規定する条件を満たす試験番号 1一 10の場合に は、被削性を向上させつつ、疲労強度 500MPa以上を実現することが可能である。 産業上の利用可能性
[0060] 本発明の高周波焼入用熱間鍛造非調質鋼は、熱間鍛造ままの鋼材を出発材とし、 従来鋼よりも被削性が優れると共に、従来鋼と同等以上の疲労強度を有するので、 自動車や産業車両用のクランクシャフト等、機械構造部品の素材として利用すること ができる。
図面の簡単な説明
[0061] [図 1]被削性と疲労強度確保の考え方を示す図である。
[図 2]Fnl及び Fn2と被削性の関係の一例を示す図である。
[図 3]Fnl及び Fn3と回転曲げ疲労特性及び被削性の関係の一例を示す図である。

Claims

請求の範囲
質量0 /0で、 C:0.35—0.45%, Si:0.20—0.60%, Mn:0.40—0.80%, S:.040—0.070%、 Cr:0. 10—0.40%、Ti:0.020—0.100%、 Ca:0.0005 0.0050%、 B:0.0005—0.0030%、 0(酸素) :0.0015—0.0050%、 Mo:—0.05%、P:0.025%以下、 V:0.03%以下、 A1:0.009%以下及び N:0.010%以下を含有し、残部が Fe及び不純物よりなり、
下記(1)式で表される Fnlの値が 0.63以下であり、
下記(2)式で表される Fn2の値が 1.0以下であると共に、
下記(3)式で表される Fn3の値が 5.7以上である
ことを特徴とする高周波焼入用熱間鍛造非調質鋼。
式(1): Fnl = C+ (Si/10) + (Mn/5) + (5Cr/22)+l.65V-(5/7S)+l 51X (Ti-3.4N)
式(2): Fn2 = Ca/0
式(3): Fn3 = 25.9 X Fnl + 27.5X (Ti-3.4N)— 7.9
PCT/JP2004/012100 2003-08-27 2004-08-24 高周波焼入用熱間鍛造非調質鋼 WO2005021815A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04772061A EP1666621B1 (en) 2003-08-27 2004-08-24 Hot forged non-heat treated steel for induction hardening
US11/360,476 US7387691B2 (en) 2003-08-27 2006-02-24 Hot forged non-heat treated steel for induction hardening

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003302691A JP4038457B2 (ja) 2003-08-27 2003-08-27 高周波焼入用熱間鍛造非調質鋼
JP2003-302691 2003-08-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/360,476 Continuation US7387691B2 (en) 2003-08-27 2006-02-24 Hot forged non-heat treated steel for induction hardening

Publications (1)

Publication Number Publication Date
WO2005021815A1 true WO2005021815A1 (ja) 2005-03-10

Family

ID=34269185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012100 WO2005021815A1 (ja) 2003-08-27 2004-08-24 高周波焼入用熱間鍛造非調質鋼

Country Status (5)

Country Link
US (1) US7387691B2 (ja)
EP (1) EP1666621B1 (ja)
JP (1) JP4038457B2 (ja)
CN (1) CN100374603C (ja)
WO (1) WO2005021815A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105803308A (zh) * 2016-03-19 2016-07-27 上海大学 一种含镁钙的45MnVS易切削非调质钢及其制造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1001251B1 (pt) * 2009-01-16 2021-05-04 Nippon Steel Corporation Aço para endurecimento por indução
JP5299104B2 (ja) * 2009-06-15 2013-09-25 新日鐵住金株式会社 高周波焼入用鋼
KR20150085727A (ko) * 2014-01-16 2015-07-24 엘지전자 주식회사 크랭크 샤프트 및 이를 구비한 스크롤 압축기
KR20170083653A (ko) * 2015-12-23 2017-07-19 현대다이모스(주) 기계적 성질이 우수한 액슬 샤프트
CN110686062B (zh) * 2019-09-16 2023-03-28 宝鸡新利达汽车零部件有限公司 一种非调质钢轻量化制动凸轮轴及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100157A (ja) 1986-10-14 1988-05-02 Daido Steel Co Ltd 高周波焼入用非調質鋼
JPH02179841A (ja) 1988-12-29 1990-07-12 Aichi Steel Works Ltd 高周波焼入用非調質鋼およびその製造方法
JP2916069B2 (ja) * 1993-09-17 1999-07-05 新日本製鐵株式会社 高強度高周波焼入れ軸部品
JPH11350065A (ja) * 1998-06-04 1999-12-21 Daido Steel Co Ltd 旋削加工性に優れた熱間鍛造用非調質鋼
JP2000160285A (ja) * 1998-11-30 2000-06-13 Kawasaki Steel Corp 高強度高靱性非調質鋼材
JP2000160286A (ja) * 1998-11-30 2000-06-13 Kawasaki Steel Corp ドリル被削性に優れた高強度高靱性非調質鋼材
JP3267164B2 (ja) * 1996-08-01 2002-03-18 住友金属工業株式会社 窒化用鋼および窒化鋼製品の製造方法
US20030084965A1 (en) 2001-10-01 2003-05-08 Sumitomo Metal Industries, Ltd. Steel for machine structural use and method of producing same
US20030147434A1 (en) * 1998-12-15 2003-08-07 Jin Hong Generation of short optical pulses using strongly complex coupled dfb lasers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3753054B2 (ja) * 2001-06-08 2006-03-08 大同特殊鋼株式会社 超硬工具切削性にすぐれた機械構造用の快削鋼
JP2003147434A (ja) 2001-11-15 2003-05-21 Daido Steel Co Ltd コネクションロッドの製造方法。
CN1169992C (zh) * 2001-11-15 2004-10-06 住友金属工业株式会社 机械结构用钢

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100157A (ja) 1986-10-14 1988-05-02 Daido Steel Co Ltd 高周波焼入用非調質鋼
JPH02179841A (ja) 1988-12-29 1990-07-12 Aichi Steel Works Ltd 高周波焼入用非調質鋼およびその製造方法
JP2916069B2 (ja) * 1993-09-17 1999-07-05 新日本製鐵株式会社 高強度高周波焼入れ軸部品
JP3267164B2 (ja) * 1996-08-01 2002-03-18 住友金属工業株式会社 窒化用鋼および窒化鋼製品の製造方法
JPH11350065A (ja) * 1998-06-04 1999-12-21 Daido Steel Co Ltd 旋削加工性に優れた熱間鍛造用非調質鋼
JP2000160285A (ja) * 1998-11-30 2000-06-13 Kawasaki Steel Corp 高強度高靱性非調質鋼材
JP2000160286A (ja) * 1998-11-30 2000-06-13 Kawasaki Steel Corp ドリル被削性に優れた高強度高靱性非調質鋼材
US20030147434A1 (en) * 1998-12-15 2003-08-07 Jin Hong Generation of short optical pulses using strongly complex coupled dfb lasers
US20030084965A1 (en) 2001-10-01 2003-05-08 Sumitomo Metal Industries, Ltd. Steel for machine structural use and method of producing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1666621A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105803308A (zh) * 2016-03-19 2016-07-27 上海大学 一种含镁钙的45MnVS易切削非调质钢及其制造方法

Also Published As

Publication number Publication date
US20060137771A1 (en) 2006-06-29
EP1666621A4 (en) 2006-11-15
CN100374603C (zh) 2008-03-12
EP1666621A1 (en) 2006-06-07
JP4038457B2 (ja) 2008-01-23
JP2005068518A (ja) 2005-03-17
EP1666621B1 (en) 2012-07-11
US7387691B2 (en) 2008-06-17
CN1842611A (zh) 2006-10-04

Similar Documents

Publication Publication Date Title
CN102741440B (zh) 淬火用钢材及其制造方法
JP4581966B2 (ja) 高周波焼入れ用鋼材
WO2003106724A1 (ja) 被削性に優れた鋼
JP5655366B2 (ja) ベイナイト鋼
JP5541418B2 (ja) ばね鋼およびばね
JP4451808B2 (ja) 疲労特性と耐結晶粒粗大化特性に優れた肌焼用圧延棒鋼およびその製法
US7387691B2 (en) Hot forged non-heat treated steel for induction hardening
JP6620490B2 (ja) 時効硬化性鋼
JP2004027334A (ja) 高周波焼もどし用鋼およびその製造方法
JP3536770B2 (ja) 非調質鋼材
JPH06172867A (ja) 衝撃疲労寿命に優れた歯車の製造方法
JP4488228B2 (ja) 高周波焼入れ用鋼材
JP5445345B2 (ja) ステアリングラックバー用棒鋼およびその製造方法
JPH11302727A (ja) 高強度シャフトの製造方法
JP3739958B2 (ja) 被削性に優れる鋼とその製造方法
JP4344126B2 (ja) ねじり特性に優れる高周波焼もどし鋼
JPH04154936A (ja) 析出硬化型窒化用鋼
JPH0790380A (ja) 高周波焼入れ部品の製造方法
JP3419333B2 (ja) 高周波焼入れ性に優れた冷間加工用鋼並びに機械構造用部品及びその製造方法
JP2005105390A (ja) 高温浸炭用鋼
JP2001214241A (ja) 被削性に優れた機械構造用鋼材及び機械構造部品
JPH07102340A (ja) 疲労特性に優れる非調質鋼の製造方法
JP2000178683A (ja) 靱性に優れた快削非調質鋼
JPH10265891A (ja) フェライト・パーライト型非調質鋼
JPH07157824A (ja) 降伏強度、靭性および疲労特性に優れる亜熱間鍛造非調質鋼材の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480024474.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11360476

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004772061

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004772061

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11360476

Country of ref document: US