WO2005019619A1 - Moteur a combustion interne et cycle de fonctionnement ameliores - Google Patents

Moteur a combustion interne et cycle de fonctionnement ameliores Download PDF

Info

Publication number
WO2005019619A1
WO2005019619A1 PCT/US2004/026861 US2004026861W WO2005019619A1 WO 2005019619 A1 WO2005019619 A1 WO 2005019619A1 US 2004026861 W US2004026861 W US 2004026861W WO 2005019619 A1 WO2005019619 A1 WO 2005019619A1
Authority
WO
WIPO (PCT)
Prior art keywords
closing
intake
stroke
engine
point
Prior art date
Application number
PCT/US2004/026861
Other languages
English (en)
Original Assignee
Bryant, Clyde, C.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bryant, Clyde, C. filed Critical Bryant, Clyde, C.
Publication of WO2005019619A1 publication Critical patent/WO2005019619A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0412Multiple heat exchangers arranged in parallel or in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/04Engines with prolonged expansion in main cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0257Independent control of two or more intake or exhaust valves respectively, i.e. one of two intake valves remains closed or is opened partially while the other is fully opened
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0273Multiple actuations of a valve within an engine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/08Shape of cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0418Layout of the intake air cooling or coolant circuit the intake air cooler having a bypass or multiple flow paths within the heat exchanger to vary the effective heat transfer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0269Controlling the valves to perform a Miller-Atkinson cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This invention relates to a method of deriving mechanical work from combusting gas in an internal combustion engine by means of a new thermodynamic working cycle and to reciprocating internal combustion engines for carrying out the method.
  • Increasing air charge density increases both power and fuel efficiency due to further thermodynamic improvements.
  • Typical objectives for an efficient engine are to provide a high- density charge, begin combustion at maximum density and then expand the gases as far as possible against a piston
  • the present invention comprises an internal combustion engine system (including methods and apparatuses) for managing combustion charge densities, temperatures, pressures and turbulence in order to produce a true mastery within the power cylinder in order to increase fuel economy, power and torque while minimizing polluting emissions.
  • the method includes the steps of (i) producing an air charge, (ii) controlling the temperature, density and pressure of the air charge (iii) transferring the air charge to a power cylinder of the engine such that an air charge having a weight and density selected from a range of weight and density levels ranging from atmospheric weight and density to a heavier-than-atmospheric weight and density is introduced into the power cylinder, and (iv) then compressing the air charge at a low "effective" compression ratio, (v) causing a pre-determined quantity of charge-air and fuel to produce a combustible mixture, (vi) causing the mixture to be ignited within the power cylinder, and (vii) allowing the combustion gas to expand against a piston operable in the power cylinder with the expansion ratio of the power cylinder being substantially greater than the effective compression ratio of the power cylinders of the engine.
  • the invented method is capable of producing mean effective [cylinder] pressures ("mep") which are much higher than produced by traditional Otto, Miller and Diesel cycle engines.
  • mean effective cylinder pressure is alternatively, selectively variable (and selectively varied) throughout a wide range during the operation of the engine.
  • the apparatus of the present invention provides a reciprocating internal combustion engine with at least one ancillary compressor for compressing an air charge, an intercooler through which the compressed air can be directed for cooling, power cylinders in which the combustion gas is ignited and expanded, a piston operable in each power cylinder and connected to a crankshaft by a connecting link for rotating the crankshaft in response to reciprocation of each piston, transfer conduit communicating an atmospheric inlet port to the inlet of at least one compressor, a transfer conduit communicating the compressor outlet to a control valve and to the intercooler, a transfer manifold communicating the intercooler with the power cylinders through which manifold the compressed charge is transferred to enter the power cylinders, an intake valve controlling admission of the compressed charge from the transfer manifold to said power cylinders.
  • the intake valves of the power cylinders are timed to operate such that charge air which is (by weight of air per liter) equal to or heavier than charge air utilized in traditional Otto, Miller and Diesel cycle engines can be maintained within the transfer manifold when required and introduced into the power cylinder during the intake stroke, with the intake valve closing at some point during the compression stroke, to provide a low "effective" compression ratio.
  • the intake valve is held closed during the initial portion of the piston intake stroke and then opened and closed in a manner to create and maintain a compression ratio less than the expansion ratio so that ignition can commence at substantially maximum charge density.
  • Means are provided for causing fuel to be mixed with the air charge to produce a combustible gas.
  • the intake valve can open twice, once opening and closing during the intake stroke and again opening during the later part of the intake stroke, or later, and closing during the compression stroke at a point which captures a charge weight needed to power the engine and at such a time that the effective compression ratio of the engine will be less than the expansion ratio so that ignition can commence at substantially maximum charge density.
  • Means are provided for causing fuel to be mixed with the air charge to produce a combustible gas.
  • combustion chambers of the power cylinders are sized with respect to the displaced volume of the power cylinders such that the exploded combustion gas can be expanded to a volume substantially greater than the effective compression ratio of the power cylinders of the engine
  • the combustion chambers are of a size to establish compression ratios similar to those of a typical Otto or Diesel cycle engines or alternatively are enlarged for more power In some embodiments where combustion chambers are enlarged, engine stroke and/or cylinder bore are increased to match, concurrently, the increase in charge-air expansion.
  • one or more expansion valves are provided in the path of air introduction to the intake valve to effect a chilling of entry air; and the expansion valve can be provided with one or more controllable, variable orifices.
  • FIG. 1 is a perspective view (with portions schematically illustrated or in cross-section) of sections of an internal combustion engine operating in a four- stroke cycle showing a portion of the engine block, one cylinder with piston, and a section of the head showing an intake valve and an exhaust valve with compressors, inter-coolers and controls from which a first method and a second method of operation can be performed and will be described.
  • Fig. 2 is a perspective view of a partial engine block and head in cross- section and showing a cylinder of an engine with the intake valve operated by a camshaft and cam, the cam having two lobes for opening and closing the intake valve twice during each power cycle.
  • the engine of this invention is a high efficiency engine that attains both high power and torque with low fuel consumption and low polluting emissions.
  • the new working cycle is an external compression type combustion cycle.
  • the intake air is selectively compressed by at least one ancillary compressor 1, 2.
  • the temperature rise during compression can be suppressed by use of air coolers 10, 11, 12, which cool the intake air, and by a shorter effective compression stroke.
  • this first embodiment comprises a supercharged internal combustion engine in which, selectively, atmospheric air or air-fuel mix is compressed and cooled externally to the engine and introduced during the intake stroke or shortly thereafter, and the intake valve is then closed during the compression stroke at a point that the retained charge weight within cylinder/combustion chamber is sufficient, when mixed with fuel and ignited at piston top-dead-center (TDC), to produce the power and torque desired of the engine.
  • TDC piston top-dead-center
  • the intake valve is held closed during the initial part of the stroke. In this system, this first stroke expands any residual gases in the combustion chambers. These expanding gases cool piston and cylinder and enhance the entrance of the air charge which is inducted at some point before or after piston bottom-dead-center (BDC) of the first stroke.
  • Atmospheric air is received by port 8, filtered, compressed by compressor of turbo charger 1, is passed through after cooler 10, then alternatively, further compressed and temperature adjusted by wholly or partially passing through compressor 2, wholly or partially through intercooler 11 (which is alternatively water cooled), then passed wholly or partially through after-cooler 12 and through conduit B, through intake valve 16 and intake port 416 into chamber 407.
  • the chamber 407 is that chamber formed, in this embodiment by the piston 7 top, cylinder 7 walls, and engine head 404.
  • conduit B contains an expansion valve 410 (or, again optionally, intake port 416 is fitted with an expansion valve) as shown and illustrated in conduit B.
  • conduit to compressor 2 is fitted with an air bypass system consisting of bypass valve Rl and conduit XI ;
  • conduit to intercooler 11 is fitted with bypass valve R2 and bypass conduit X2,
  • conduit from intercooler 11 to intercooler 12 is fitted with a bypass valve R3 and bypass conduit X3, whereby the valving and bypass system so constructed that said R control valves, activated by sensors within the system, send messages concerning temperatures of the passing fluid to alternate engine control module, ECM-27 to alternatively cause R valves to individually pass the transmitted fluids wholly or partially through intercoolers or cause wholly or partially to bypass the compressor 2 or cooler 12, 13, in order to adjust pressure and temperature to that desired for best engine performance.
  • Expansion valves so constructed that said R control valves, activated by sensors within the system, send messages concerning temperatures of the passing fluid to alternate engine control module, ECM-27 to alternatively cause R valves to individually pass the transmitted fluids wholly or partially through intercoolers or cause wholly or partially to bypass the compressor 2 or cooler 12, 13, in order to adjust pressure
  • variable orifice opening
  • ECM-27 which adjusts the size of the orifice, if present, to that producing a desired temperature of the charge air.
  • the very high pressure air or air-fuel charge is delivered to intake valve 16 and inlet port 416 and is utilized in this fashion:
  • Valve 16 and inlet port 416 are kept closed through the first part of the first (normally intake) stroke.
  • intake valve 16 and inlet port 416 open to induct the cool, dense air or air- fuel charge into the chamber 407.
  • the valve 16 is held open long enough that the charge inducted has time to fill chamber 407 and, possibly for piston 22, during compression (2 n ) stroke, (alternatively) to expel a portion of charge back through intake port 416 and valve 16 and into manifold 14. Alternatively any excess charge is expelled through an ancillary valve (not shown) with proper back pressure to prevent pressure drop.
  • Port 416 and valve 16 are then closed at a predetermined point of piston 22 travel in the compression stroke.
  • the point of closure of intake valve 16 and inlet port 416 is variable and varied using, for example, valve controlling devices known in the industry. When the port and valve are closed, a charge is trapped and retained which when mixed with fuel, if not already present, and ignited will cause the engine to produce the power and torque required of the engine at that moment.
  • the point of closure of the intake valve 16 and inlet port 416 occurs after the piston has traveled through a meaningful portion of the compression stroke, for example, at or after 25% and, preferably, after 50% of the compression stroke has been traveled.
  • the closure takes place as late as possible in the compression stroke while still providing enough time after the closure for the trapping of air to be complete and ignition of the fuel/air combination to take place no later than at the point of piston top dead center at the end of the compression stroke.
  • the closure of intake valve 16 and inlet port 416 occurs at a point in piston travel of approximately 15°-20° before top dead center.
  • Compression continues on the trapped portion of charge and near piston 22 top-dead-center, the charge is fueled, if fuel is not present, and ignited, producing great power, for the power/expansion (3 rd ) stroke, followed by the scavenging (4 th ) stroke to complete one power cycle.
  • Model ll Single Valve - or Multiple Valves in Unison Intake Valve Opens Twice Per Power Cycle
  • Atmospheric air or air-fuel is inducted by inlet duct 8, filtered into and compressed by turbo charger 1 , further compressed by compressor 2, cooled by at least one of intercoolers 10, 11 and 12.
  • the charge has its temperature and pressure adjusted by compressor and cooler system the same as for the engine of Model I.
  • the optimal charge is inducted, cool or "chilled", by intake conduit B, intake valve 16B and inlet port 416B (shown in Fig. 2).
  • the chief difference of this engine operation as compared to Model I is that inlet port 416B is opened and closed twice by valve 16B of Fig. 2, for example, with double-lobed cam 21, with lobes 21C and 2 ID each opening valve 16B and inlet port 416B once during each power cycle.
  • the air or air-fuel charge alternatively, has its pressure and temperature adjusted by the compression-cooling-bypass system, alternatively controlled by engine control module (ECM-27), Fig. 1.
  • the cool, high-pressure air as in the engine of Model I, can be thermodynamically "chilled” by being expanded by expansion valve 410 as indicated within conduit B of Fig. 1 and Fig. 2, or by the same system at valve inlet port 416 A.
  • Atmospheric air inducted by port 8 of Fig. 1 and pressure and temperature adjusted as specified is introduced by valve 16B and port 416B, of Fig. 2, in the following manner: (a) Intake valve 16B of Fig. 2, (being either cam 21 operated with cam 21 having two lobes 2 ID and 21C, or operated by a quick-acting valve controller such as valve controller 21' of Fig. 1, including but not limited to electrical, hydraulic, or mechanical operation) is opened quickly with low valve lift during part of the intake (1 st ) stroke of piston 22. Intake valve 16B, with cam lobe 21D of Fig. 2 or valve controller 21' of Fig. 1 closes quickly, capturing a light charge in the initial charge intake. This small air charge is expanded during any further piston 22 intake movement, providing some cooling to piston and cylinder, with little air charge remaining to create heat during the compression stroke.
  • Intake valve 16B of Fig. 2 being either cam 21 operated with cam 21 having two lobes 2 ID and 21C, or operated by a
  • the port 416B is held open long enough for the cylinder 7 (shown in Fig. 1 and Fig. 2) to receive sufficient charge to fill the chamber 407 and possibly for piston 22 (shown in Fig. 1 ), during the compression stroke, to expel any excess portion of charge back through intake port 416B and valve 16B and back into manifold 14 (of Fig. 1). Alternatively, excess charge is expelled through an ancillary valve (not shown) with proper back pressure to prevent pressure drop.
  • Port 416B and valve 16B are held open by lobe 21C of cam 21 , Fig. 2 or by quick-acting valve 16 of Fig. 1 , during the last part of the intake stroke and/or first part of the compression stroke. Port 416B and valve 16B are then closed at a predetermined point of piston 22 travel in the compression stroke.
  • the point of closure of intake valve 16B and inlet port 416B is variable and varied using, for example, valve controlling devices known in the industry.
  • the point of closure of the intake valve 16B and inlet port 416B occurs after the piston has traveled through a meaningful portion of the compression stroke, for example, at or after 25% and, preferably, after 50% of the compression stroke has been traveled. More preferably, in alternate embodiments, the closure takes place as late as possible in the compression stroke while still providing enough time after the closure for the trapping of air to be complete and ignition of the fuel/air combination to take place no later than at the point of piston top dead center at the end of the compression stroke. According to one example, the closure of intake valve 16B and inlet port 416B occurs at a point in piston travel of approximately 15°-20 c before top dead center.
  • valve 16A has a cam 21B on which a single lobe 2 IE has a profile matching lobe 21C on cam 21, which cam 21 opens and closes valve 16B and inlet port 416B.
  • Lobe 21D of cam 21 is missing on cam 21B.
  • this arrangement is constructed such that during each firing cycle: (a) lobe 2 ID first opens and closes valve 16B during an intake stroke of piston 22; and (b) subsequently, and in unison or approximately in unison, lobe 21 C and lobe 2 IE open and close their respective valves 16B, 16A and ports 416B, 416A.This permits much faster charging of the chamber 407.
  • the engine can operate in this mode continuously as "steady-state" power for heavy duty operation.
  • Mode Three the engine can operate in Mode One for cruising or at any time less power is required, and can then be switched to Mode Two at anytime great power is needed.
  • Engaging and disengaging the cam 21B can be accomplished in any of numerous ways known in the art of valve and cam control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

La présente invention se rapporte à un moteur à combustion interne, qui permet un cycle de fonctionnement à une température moins élevée et, sélectivement, une pression cylindre effective moyenne supérieure à celle des agencements de moteurs à cycle Otto et à cycle Miller classiques. Dans un mode de réalisation, au cours de chaque cycle, la soupape d'admission est maintenue fermée lors de la première partie du temps d'admission, puis elle est ensuite ouverte et fermée. Dans un autre mode de réalisation, au cours de chaque cycle, la soupape d'admission s'ouvre deux fois, s'ouvrant et se fermant d'abord pendant le temps d'admission, puis s'ouvrant et se fermant à nouveau. Dans tous les modes de réalisation, la dernière fermeture de la soupape d'admission du cycle a lieu pendant le temps de compression à un point qui capture un poids de charge nécessaire à l'alimentation du moteur et à un moment tel que le rapport de compression effectif du moteur soit inférieur au rapport d'expansion. Les chambres de combustion, la course du piston et/ou l'alésage du cylindre sont dimensionnés de manière sélective. Une autre variante comprend une soupape d'expansion, qui sert à refroidir l'air d'entrée et peut posséder un orifice variable réglable.
PCT/US2004/026861 2003-08-18 2004-08-18 Moteur a combustion interne et cycle de fonctionnement ameliores WO2005019619A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US49599703P 2003-08-18 2003-08-18
US60/495,997 2003-08-18

Publications (1)

Publication Number Publication Date
WO2005019619A1 true WO2005019619A1 (fr) 2005-03-03

Family

ID=34215948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/026861 WO2005019619A1 (fr) 2003-08-18 2004-08-18 Moteur a combustion interne et cycle de fonctionnement ameliores

Country Status (2)

Country Link
US (1) US20050039711A1 (fr)
WO (1) WO2005019619A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007033175A1 (de) * 2007-07-17 2009-01-22 Volkswagen Ag Brennkraftmaschine
WO2010118847A1 (fr) * 2009-04-17 2010-10-21 Behr Gmbh & Co. Kg Canal d'air de suralimentation pour moteur à combustion interne
US10036336B2 (en) 2006-09-08 2018-07-31 Hawar Technologies Limited Apparatus to improve the efficiency of internal combustion engines, and method therefor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7469662B2 (en) * 1999-03-23 2008-12-30 Thomas Engine Company, Llc Homogeneous charge compression ignition engine with combustion phasing
SE531705C2 (sv) * 2007-11-16 2009-07-14 Scania Cv Ab Arrangemang hos en överladdad förbränningsmotor
US20140305415A1 (en) * 2013-04-15 2014-10-16 Volvo Car Corporation Combustion control for combustion engines
US9739213B2 (en) * 2014-04-04 2017-08-22 Ford Global Technologies, Llc Methods for turbocharged engine with cylinder deactivation and variable valve timing
US9422902B2 (en) 2014-08-14 2016-08-23 Elwha Llc Heat transfer systems for internal combustion engines and methods
US9546631B2 (en) * 2014-08-14 2017-01-17 Elwha Llc Heat transfer systems for internal combustion engines and methods
US20160108861A1 (en) * 2014-10-15 2016-04-21 Matthew G. Riddle Engine Management System
US11852056B2 (en) 2018-02-05 2023-12-26 Volvo Truck Corporation Method for controlling lubrication of a connecting rod bearing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2202227A (en) * 1939-04-28 1940-05-28 Leroy E Noland Internal combustion engine
US2344993A (en) * 1939-01-03 1944-03-28 Lysholm Alf Internal combustion engine
US2644436A (en) * 1950-10-21 1953-07-07 American Locomotive Co Valve actuating mechanism
US3257797A (en) * 1963-11-14 1966-06-28 Nordberg Manufacturing Co Tandem supercharging system
DE3124668A1 (de) * 1981-06-24 1983-01-13 Daimler-Benz Ag, 7000 Stuttgart "gemischverdichtende, fremdgezuendete viertakt-brennkraftmaschine, insbesondere fuer kraftfahrzeuge"
US5970929A (en) * 1996-01-26 1999-10-26 Maurice Tacquet Turbocharged 4 stroke diesel engine with a variable camshaft timing system
US6234123B1 (en) * 1998-08-21 2001-05-22 Nissan Motor Co., Ltd. Four-cycle internal combustion engine and valve timing control method thereof
US6575129B2 (en) * 1999-10-25 2003-06-10 Volvo Car Corporation Method of reducing emissions in the exhaust gases of an internal combustion engine

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2400247A (en) * 1945-03-14 1946-05-14 Worthington Pump & Mach Corp Internal-combustion engine
US2780912A (en) * 1951-08-17 1957-02-12 Miller Ralph Method and apparatus for varying the final compression temperature in a four cycle internal combustion engine
GB1062983A (en) * 1962-12-21 1967-03-22 Perkins Engines Ltd Pressure charging system for internal combustion engines
US4009695A (en) * 1972-11-14 1977-03-01 Ule Louis A Programmed valve system for internal combustion engine
US3938483A (en) * 1973-08-20 1976-02-17 Joseph Carl Firey Gasoline engine torque regulator
US4138973A (en) * 1974-06-14 1979-02-13 David Luria Piston-type internal combustion engine
JPS5179840A (fr) * 1975-01-07 1976-07-12 Honda Motor Co Ltd
US4020809A (en) * 1975-06-02 1977-05-03 Caterpillar Tractor Co. Exhaust gas recirculation system for a diesel engine
IL47787A (en) * 1975-07-24 1979-11-30 Luria D Piston-type internal combustion engine
US4009694A (en) * 1976-04-15 1977-03-01 Joseph Carl Firey Gasoline engine torque regulator with partial speed correction
US4132213A (en) * 1977-03-29 1979-01-02 Weaver R Homer Rotary engine
US4134371A (en) * 1977-04-28 1979-01-16 Hausknecht Louis A Valve control system
US4423709A (en) * 1977-12-02 1984-01-03 Arrieta Francisco A Method and apparatus for economizing fuel consumption in operating a multicylinder internal combustion engine
FR2448032A1 (fr) * 1979-02-05 1980-08-29 Semt Procede pour ameliorer le rendement d'un moteur a combustion interne notamment suralimente
US4582029A (en) * 1982-09-10 1986-04-15 Mazda Motor Corporation Valve timing control system for internal combustion engine
JPS5946310A (ja) * 1982-09-10 1984-03-15 Mazda Motor Corp エンジンのバルブタイミング制御装置
US4589380A (en) * 1983-07-20 1986-05-20 Avalon Research Cyclic dwell engine
US4643049A (en) * 1983-09-20 1987-02-17 Honda Giken Kogyo Kabushiki Kaisha Control system for a hydraulic transmission to prevent vehicle creep
JPH0627488B2 (ja) * 1984-05-14 1994-04-13 日産自動車株式会社 内燃機関のバルブタイミング制御装置
JPH0637870B2 (ja) * 1984-05-30 1994-05-18 マツダ株式会社 過給機付エンジンの点火装置
US4572114A (en) * 1984-06-01 1986-02-25 The Jacobs Manufacturing Company Process and apparatus for compression release engine retarding producing two compression release events per cylinder per engine cycle
US4667636A (en) * 1985-03-22 1987-05-26 Toyota Jidosha Kabushiki Kaisha Fuel injection type internal combustion engine
US4805571A (en) * 1985-05-15 1989-02-21 Humphrey Cycle Engine Partners, L.P. Internal combustion engine
SE451337B (sv) * 1985-07-18 1987-09-28 Volvo Ab Forfarande for styrning av arbetsforloppet i en fyrtakts forbrenningskolvmotor
US4716863A (en) * 1985-11-15 1988-01-05 Pruzan Daniel A Internal combustion engine valve actuation system
US4771742A (en) * 1986-02-19 1988-09-20 Clemson University Method for continuous camlobe phasing
US4798184A (en) * 1986-11-17 1989-01-17 Sandor Palko Extended expansion diesel cycle engine
SE469906B (sv) * 1987-01-14 1993-10-04 Volvo Ab Anordning för styrning av arbetsförloppet i en förbränningskolvmotor
DE3737822A1 (de) * 1987-11-06 1989-05-18 Schatz Oskar Ladeverfahren zum betrieb eines verbrennungsmotors und verbrennungsmotor zur durchfuehrung des verfahrens
US4833971A (en) * 1988-03-09 1989-05-30 Kubik Philip A Self-regulated hydraulic control system
JPH0656106B2 (ja) * 1988-10-29 1994-07-27 マツダ株式会社 過給機付エンジンの吸気装置
US5002022A (en) * 1989-08-30 1991-03-26 Cummins Engine Company, Inc. Valve control system with a variable timing hydraulic link
US5000145A (en) * 1989-12-05 1991-03-19 Quenneville Raymond N Compression release retarding system
JPH03229947A (ja) * 1990-02-05 1991-10-11 Mazda Motor Corp エンジンの制御装置
SE467634B (sv) * 1990-05-15 1992-08-17 Volvo Ab Anordning vid turboreglering
US5107802A (en) * 1990-05-28 1992-04-28 Honda Giken Kogyo Kabushiki Kaisha Valve driving mechanism for internal combustion engines
US5103645A (en) * 1990-06-22 1992-04-14 Thermon Manufacturing Company Internal combustion engine and method
US5012778A (en) * 1990-09-21 1991-05-07 Jacobs Brake Technology Corporation Externally driven compression release retarder
EP0489263B1 (fr) * 1990-11-06 1999-03-10 Mazda Motor Corporation Système de récirculation de gaz d'échappement pour un moteur à combustion interne
US5392740A (en) * 1990-11-20 1995-02-28 Mazda Motor Corporation Gas fuel engine
DE69231397T2 (de) * 1991-05-23 2001-02-01 Toyoda Automatic Loom Works Vorrichtung zur drehzahlregelung bei einer fahrzeugbrennkraftmaschine
US5201907A (en) * 1991-06-28 1993-04-13 Mazda Motor Corporation Internal combustion engine
US5309756A (en) * 1991-07-04 1994-05-10 Toyota Jidosha Kabushiki Kaisha Device for determining malfunction of an engine cylinder
JP2944264B2 (ja) * 1991-07-23 1999-08-30 株式会社ユニシアジェックス 内燃機関の動弁装置
JP3357385B2 (ja) * 1991-08-27 2002-12-16 マツダ株式会社 過給機付きエンジン
US5191867A (en) * 1991-10-11 1993-03-09 Caterpillar Inc. Hydraulically-actuated electronically-controlled unit injector fuel system having variable control of actuating fluid pressure
US5293741A (en) * 1992-01-31 1994-03-15 Mazda Motor Corporation Warming-up system for warming up an engine for an automotive vehicle
US5518818A (en) * 1992-02-05 1996-05-21 Toray Industries, Inc. Primer and multilayer coated article
JPH05296070A (ja) * 1992-04-14 1993-11-09 Mazda Motor Corp 過給機付エンジンの制御装置
US5398502A (en) * 1992-05-27 1995-03-21 Fuji Jukogyo Kabushiki Kaisha System for controlling a valve mechanism for an internal combustion engine
US5205251A (en) * 1992-08-05 1993-04-27 Ibex Technologies, Inc. Rotary valve for internal combustion engine
GB9222353D0 (en) * 1992-10-23 1992-12-09 Ricardo Consulting Eng Spark ignited internal combustion engines
DE69406560T2 (de) * 1993-02-03 1998-03-05 Mazda Motor Fremdgezündete brennkraftmaschine mit Auflader
GB2275096B (en) * 1993-02-15 1996-05-22 Unisia Jecs Corp Valve control device for internal combustion device
US5417189A (en) * 1993-03-08 1995-05-23 Chrysler Corporation High speed indirect injection diesel engine
DK170121B1 (da) * 1993-06-04 1995-05-29 Man B & W Diesel Gmbh Gliderventil og stor totakts forbrændingsmotor
JPH0777073A (ja) * 1993-09-09 1995-03-20 Toyota Motor Corp 内燃機関のバルブタイミング制御装置
US5704316A (en) * 1993-09-20 1998-01-06 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Valve drive system of an internal combustion engine
JP2982581B2 (ja) * 1993-10-14 1999-11-22 日産自動車株式会社 内燃機関の可変動弁装置
US5611204A (en) * 1993-11-12 1997-03-18 Cummins Engine Company, Inc. EGR and blow-by flow system for highly turbocharged diesel engines
JP3232925B2 (ja) * 1994-03-10 2001-11-26 トヨタ自動車株式会社 内燃機関の吸入空気量演算装置
US5419301A (en) * 1994-04-14 1995-05-30 Ford Motor Company Adaptive control of camless valvetrain
DE19515508C2 (de) * 1994-04-28 1999-01-28 Hitachi Ltd Verfahren und Steuervorrichtung zur Antriebssteuerung eines Fahrzeugs mit Verbrennungsmotor und Getriebe
JP3385717B2 (ja) * 1994-05-02 2003-03-10 日産自動車株式会社 内燃機関の可変動弁装置
JPH084505A (ja) * 1994-06-17 1996-01-09 Yamaha Motor Co Ltd エンジンの動弁装置
US5479890A (en) * 1994-10-07 1996-01-02 Diesel Engine Retarders, Inc. Compression release engine brakes with electronically controlled, multi-coil hydraulic valves
US5718199A (en) * 1994-10-07 1998-02-17 Diesel Engine Retarders, Inc. Electronic controls for compression release engine brakes
US5713331A (en) * 1994-12-21 1998-02-03 Mannesmann Rexroth Gmbh Injection and exhaust-brake system for an internal combustion engine having several cylinders
JP3106890B2 (ja) * 1995-01-11 2000-11-06 トヨタ自動車株式会社 内燃機関の弁駆動装置
DE19502717C1 (de) * 1995-01-28 1996-05-30 Mtu Friedrichshafen Gmbh Aufgeladene, mehrzylindrische Brennkraftmaschine mit Abgasrückführung
JP3079933B2 (ja) * 1995-02-14 2000-08-21 トヨタ自動車株式会社 内燃機関の排気浄化装置
US5619965A (en) * 1995-03-24 1997-04-15 Diesel Engine Retarders, Inc. Camless engines with compression release braking
JPH08270470A (ja) * 1995-03-31 1996-10-15 Toyota Motor Corp 内燃機関のバルブタイミング制御装置
US5617726A (en) * 1995-03-31 1997-04-08 Cummins Engine Company, Inc. Cooled exhaust gas recirculation system with load and ambient bypasses
US5495830A (en) * 1995-04-05 1996-03-05 General Motors Corporation Variable valve timing
JP2888178B2 (ja) * 1995-04-13 1999-05-10 トヨタ自動車株式会社 内燃機関のバルブタイミング制御装置
JP3479379B2 (ja) * 1995-04-27 2003-12-15 ヤマハ発動機株式会社 筒内噴射エンジン
US5520161A (en) * 1995-07-17 1996-05-28 Alternative Fuel Sytems Inc. Exhaust gas recirculation system for a compression ignition engine and a method of controlling exhaust gas recirculation in a compression ignition engine
US5615646A (en) * 1996-04-22 1997-04-01 Caterpillar Inc. Method and apparatus for holding a cylinder valve closed during combustion
US5724939A (en) * 1996-09-05 1998-03-10 Caterpillar Inc. Exhaust pulse boosted engine compression braking method
US6067946A (en) * 1996-12-16 2000-05-30 Cummins Engine Company, Inc. Dual-pressure hydraulic valve-actuation system
JPH10238354A (ja) * 1996-12-27 1998-09-08 Kanesaka Gijutsu Kenkyusho:Kk ハイブリッド過給エンジン
US5809964A (en) * 1997-02-03 1998-09-22 Diesel Engine Retarders, Inc. Method and apparatus to accomplish exhaust air recirculation during engine braking and/or exhaust gas recirculation during positive power operation of an internal combustion engine
JP3587957B2 (ja) * 1997-06-12 2004-11-10 日立建機株式会社 建設機械のエンジン制御装置
US6026786A (en) * 1997-07-18 2000-02-22 Caterpillar Inc. Method and apparatus for controlling a fuel injector assembly of an internal combustion engine
US6189504B1 (en) * 1997-11-24 2001-02-20 Diesel Engine Retarders, Inc. System for combination compression release braking and exhaust gas recirculation
JP3500951B2 (ja) * 1998-03-09 2004-02-23 株式会社日立製作所 ノンスロットル式の圧縮着火式内燃機関およびその制御方法
JP3521790B2 (ja) * 1998-03-25 2004-04-19 株式会社デンソー 内燃機関の制御装置
US6170441B1 (en) * 1998-06-26 2001-01-09 Quantum Energy Technologies Engine system employing an unsymmetrical cycle
JP2000130200A (ja) * 1998-10-30 2000-05-09 Mitsubishi Motors Corp ディーゼルエンジンの制御装置
US6178749B1 (en) * 1999-01-26 2001-01-30 Ford Motor Company Method of reducing turbo lag in diesel engines having exhaust gas recirculation
US6035640A (en) * 1999-01-26 2000-03-14 Ford Global Technologies, Inc. Control method for turbocharged diesel engines having exhaust gas recirculation
US6035639A (en) * 1999-01-26 2000-03-14 Ford Global Technologies, Inc. Method of estimating mass airflow in turbocharged engines having exhaust gas recirculation
JP3549779B2 (ja) * 1999-09-17 2004-08-04 日野自動車株式会社 内燃機関
US6688280B2 (en) * 2002-05-14 2004-02-10 Caterpillar Inc Air and fuel supply system for combustion engine
US6722349B2 (en) * 2002-02-04 2004-04-20 Caterpillar Inc Efficient internal combustion engine valve actuator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2344993A (en) * 1939-01-03 1944-03-28 Lysholm Alf Internal combustion engine
US2202227A (en) * 1939-04-28 1940-05-28 Leroy E Noland Internal combustion engine
US2644436A (en) * 1950-10-21 1953-07-07 American Locomotive Co Valve actuating mechanism
US3257797A (en) * 1963-11-14 1966-06-28 Nordberg Manufacturing Co Tandem supercharging system
DE3124668A1 (de) * 1981-06-24 1983-01-13 Daimler-Benz Ag, 7000 Stuttgart "gemischverdichtende, fremdgezuendete viertakt-brennkraftmaschine, insbesondere fuer kraftfahrzeuge"
US5970929A (en) * 1996-01-26 1999-10-26 Maurice Tacquet Turbocharged 4 stroke diesel engine with a variable camshaft timing system
US6234123B1 (en) * 1998-08-21 2001-05-22 Nissan Motor Co., Ltd. Four-cycle internal combustion engine and valve timing control method thereof
US6575129B2 (en) * 1999-10-25 2003-06-10 Volvo Car Corporation Method of reducing emissions in the exhaust gases of an internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10036336B2 (en) 2006-09-08 2018-07-31 Hawar Technologies Limited Apparatus to improve the efficiency of internal combustion engines, and method therefor
DE102007033175A1 (de) * 2007-07-17 2009-01-22 Volkswagen Ag Brennkraftmaschine
WO2010118847A1 (fr) * 2009-04-17 2010-10-21 Behr Gmbh & Co. Kg Canal d'air de suralimentation pour moteur à combustion interne
US8733327B2 (en) 2009-04-17 2014-05-27 Behr Gmbh & Co. Kg Charge air duct for an internal combustion engine
US8813729B2 (en) 2009-04-17 2014-08-26 Behr Gmbh & Co. Kg Charge air duct for an internal combustion engine

Also Published As

Publication number Publication date
US20050039711A1 (en) 2005-02-24

Similar Documents

Publication Publication Date Title
CA2696038C (fr) Moteur a cycle divise resistant au cognement et procede
US6279550B1 (en) Internal combustion engine
US7281527B1 (en) Internal combustion engine and working cycle
US7222614B2 (en) Internal combustion engine and working cycle
US8215292B2 (en) Internal combustion engine and working cycle
EP1127218B1 (fr) Moteur a combustion
US9074526B2 (en) Split cycle engine and method with increased power density
US20160160745A1 (en) Split-cycle engines with direct injection
US20110108012A1 (en) Internal combustion engine and working cycle
AU743600B2 (en) Improved internal combustion engine and working cycle
WO1998002653A1 (fr) Moteur a combustion interne et cycle de travail ameliores
US6606970B2 (en) Adiabatic internal combustion engine with regenerator and hot air ignition
WO2009102722A2 (fr) Moteurs à combustion interne à systèmes de surcharge et de supra-allumage
US20050039711A1 (en) Internal combustion engine and working cycle
US7004115B2 (en) Internal combustion engine with regenerator, hot air ignition, and supercharger-based engine control
WO2012030356A1 (fr) Système et procédé permettant de faire fonctionner un moteur à combustion interne
US6434939B1 (en) Rotary piston charger
JP2820793B2 (ja) ポンプシリンダと動力シリンダを備えたレシプロエンジン
EP0057591B1 (fr) Moteur à combustion interne
US8875672B2 (en) Engine system having dedicated cylinder-to-cylinder connection
WO1996001939A1 (fr) Moteur a explosion a pistons alternatifs a aspiration limitee
EP1522690A2 (fr) Moteur à combustion interne et cycle de fonctionnement améliorés
JPH10246116A (ja) 圧縮行程をシリンダー外で行う2サイクルエンジン
WO2020164395A1 (fr) Moteur à deux temps ayant une chambre de combustion indépendante et un piston spécial et à amplification synchrone
WO2005116416A1 (fr) Moteur a induction a air froid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase