WO2005019338A1 - フェノール樹脂成形材料及び樹脂製摺動部品 - Google Patents

フェノール樹脂成形材料及び樹脂製摺動部品 Download PDF

Info

Publication number
WO2005019338A1
WO2005019338A1 PCT/JP2004/011893 JP2004011893W WO2005019338A1 WO 2005019338 A1 WO2005019338 A1 WO 2005019338A1 JP 2004011893 W JP2004011893 W JP 2004011893W WO 2005019338 A1 WO2005019338 A1 WO 2005019338A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
molding material
mass
phenolic resin
resin molding
Prior art date
Application number
PCT/JP2004/011893
Other languages
English (en)
French (fr)
Inventor
Takuya Kodama
Kiyoshi Miyata
Keiji Asai
Original Assignee
Asahi Organic Chemicals Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co., Ltd. filed Critical Asahi Organic Chemicals Industry Co., Ltd.
Priority to EP04771854A priority Critical patent/EP1661950A4/en
Priority to US10/568,277 priority patent/US20070060701A1/en
Publication of WO2005019338A1 publication Critical patent/WO2005019338A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass

Definitions

  • the present invention relates to a phenol resin molding material suitable for substituting various metal parts such as automobile parts.
  • Phenol resin molding materials are widely used in various fields as materials excellent in heat resistance, dimensional accuracy, abrasion resistance, mechanical strength and cost. While
  • novolak-type phenolic resins used in conventional phenolic resin molding materials are generally obtained by reacting phenols and aldehydes under an acidic catalyst such as oxalic acid. Due to the large amount of low molecular weight components mainly composed of phenolic monomers, moldability problems such as the generation of gas during molding, clouding of the mold and poor mold releasability occurred.
  • a phenolic resin molding material using a novolak-type phenolic resin having a small amount of unreacted phenols obtained by subjecting a phenol and an aldehyde to a condensation reaction using an oxycarboxylic acid as a catalyst has been proposed (Patent Document 1).
  • Patent Document 1 a phenolic resin molding material using a novolak-type phenolic resin having a small amount of unreacted phenols obtained by subjecting a phenol and an aldehyde to a condensation reaction using an oxycarboxylic acid as a catalyst.
  • Patent Document 1 JP-A-8-59769
  • the present invention has been made in view of the above problems, and has as its object to provide a phenolic resin molding material having excellent moldability, heat resistance, dimensional accuracy, and mechanical strength.
  • Another object of the present invention is to provide a phenolic resin molding material that is excellent in moldability, heat resistance, dimensional accuracy, and mechanical strength, and is further excellent in wear resistance.
  • the present inventors have conducted intensive studies to overcome the above-mentioned problems, and as a result, have found that a novolak-type phenol resin having a small content of phenolic monomers and phenolic dimers and a narrow molecular weight distribution, and an inorganic filler. It has been found that the desired molding material can be obtained by blending at a specific ratio, and the present invention has been completed.
  • the phenolic resin molding material of the present invention has a total content of phenolic monomers and phenolic dimers of 10% or less as measured by gel filtration chromatography area method, and a weight average by gel filtration chromatography measurement.
  • Nobleak-type phenolic resin with a dispersion ratio (Mw / Mn) of 1.1 to 3.0 between the molecular weight (Mw) and the number average molecular weight (Mn) is used. It is characterized by being blended.
  • the phenolic resin molding material of the present invention is excellent in moldability, heat resistance, dimensional accuracy, and mechanical strength. Therefore, molded parts obtained from this molding material are suitably used for substituting various metallic parts such as automobile parts requiring heat resistance and dimensional accuracy.
  • the phenolic resin molding material of the present invention in which a fibrous filler is blended as an inorganic filler has good moldability despite the reduced amount of resin, and has heat resistance, dimensional accuracy, and mechanical properties. Excellent in strength and also in abrasion resistance.
  • the amount of resin it is possible to increase the filling of the wear-resistant inorganic fiber-like filler, which leads to an improvement in the wear resistance due to the effect of improving the hardness of the product surface and the effect of reinforcing the resin part. It is suitable for the resinization of the sliding parts.
  • FIG. 1 is a view showing a shape of a piston model for a thermal shock test.
  • the novolak-type phenol resin used in the present invention has a total content of a phenol monomer and a phenol dimer of 10% or less, preferably 5% or less, as measured by an area method of gel filtration chromatography.
  • the novolak phenol resin used in the present invention has a dispersion ratio (MwZMn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) determined by gel filtration chromatography, which is 1.3 to 1.3. 0, preferably 1.5-2.
  • the weight average molecular weight (Mw) is not particularly limited, and is S, preferably 800-3700, and more preferably 900-3500.
  • the novolak type phenol resin used in the present invention is not particularly limited.
  • a phenol and an aldehyde of 0.80 to 1.00 moles per mole of the phenol may be used. It can be produced by a production method having a step of performing a heterogeneous reaction in the presence of 5 parts by mass or more of phosphoric acid per 100 parts by mass of phenols.
  • phenols and aldehydes are required as raw materials, and phosphoric acids are required as an acid catalyst, and the two-phase separation state formed from these is stirred and mixed by mechanical stirring, ultrasonic waves, or the like to obtain a mixture.
  • the phases organic phase and aqueous phase
  • the reaction between phenols and aldehydes is advanced to synthesize a condensate (resin).
  • a water-insoluble organic solvent eg, methyl ethyl ketone, methyl isobutyl ketone, etc.
  • aqueous phase phosphoric acid aqueous solution phase
  • the organic phase can be produced by washing and / or neutralizing the organic phase, and then distilling and recovering the organic solvent.
  • phenols used as a raw material include phenol, cresol, xylenol And butyl phenol, phenyl phenol and the like.
  • aldehydes include formaldehyde, formalin, paraformaldehyde, and acetoaldehyde. These raw materials are not limited to the examples, and may be used alone or in combination of two or more.
  • the mixing ratio (F / P) of the aldehydes (F) and the phenols (P) is in the range of 0.80 or more and 1.0 or less on a molar basis, the novolak-type phenol resin used in the present invention. The ability to produce high yields.
  • phosphoric acids used as an acid catalyst play an important role of forming a phase separation reaction field with phenols in the presence of water, and are therefore preferably of an aqueous solution type, for example, Force of using 89% by mass of phosphoric acid, 75% by mass of phosphoric acid, etc.
  • polyphosphoric acid, phosphoric anhydride, or the like may be used as necessary.
  • the amount of the phosphoric acid compound greatly affects the control of the phase separation effect, but is generally 5 parts by mass or more, preferably 25 parts by mass or more, more preferably 100 parts by mass of the phenols. 50 parts by mass or more. If the compounding amount is less than 5 parts by mass, the production of high molecular weight components is promoted without reducing the low molecular weight components, and the molecular weight distribution tends to be wide. When 70 parts by mass or more of phosphoric acid is used, it is desirable to ensure safety by reducing the heat generation at the beginning of the reaction by dividing and charging into the reaction system.
  • reaction auxiliary solvent it is preferable to use at least one selected from the group consisting of alcohols, polyhydric alcohol ethers, cyclic ethers, polyhydric alcohol esters, ketones, and sulfoxides.
  • alcohols examples include monohydric alcohols such as methanol, ethanol, and propanol, butanediol, pentanediol, hexanediol, ethylene glycol, propylene glycol, trimethylene glycol, diethylene glycol, dipropylene glycol, and the like. And dihydric alcohols such as triethylene glycolone, tripropylene glycolone, and polyethylene glycolone, and trihydric alcohols such as glycerin.
  • monohydric alcohols such as methanol, ethanol, and propanol, butanediol, pentanediol, hexanediol, ethylene glycol, propylene glycol, trimethylene glycol, diethylene glycol, dipropylene glycol, and the like.
  • dihydric alcohols such as triethylene glycolone, tripropylene glycolone, and polyethylene glycolone
  • trihydric alcohols such as glycerin.
  • polyhydric alcohol ether examples include, for example, ethylene glycol monomethyl ether, ethylene glycol monomethyl ethylene glycol, and ethylene glycol monomethyl ethylene glycol.
  • glycol ethers such as ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol dimethyl ether, ethylene glycol ethyl methyl ether, and ethylene glycol monophenyl ether.
  • Examples of the cyclic ethers include 1,3-dioxane and 1,4 dioxane, and examples of the polyhydric alcohol esters include glycol esters such as ethylene glycol acetate.
  • Ketones include, for example, acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • Sulfoxides include, for example, dimethyl sulfoxide, getyl sulfoxide, and the like.
  • methanol ethylene glycol monomethyl ether, polyethylene glycol, 1,4-dioxane and the like are particularly preferable.
  • the reaction auxiliary solvent is not limited to the above examples, and may be a solid as long as it has the above characteristics and exhibits a liquid form during the reaction. Two or more kinds may be used in combination.
  • the amount of the reaction auxiliary solvent is not particularly limited, but is 5 parts by mass or more, preferably 10-200 parts by mass, per 100 parts by mass of the phenols.
  • the amount of water in the reaction system affects the phase separation effect and the production efficiency, but is generally 40% or less on a mass basis. If the amount of water exceeds 40%, production efficiency may decrease for a lifetime.
  • the reaction temperature of the phenols and aldehydes is important for enhancing the phase separation effect, and is generally 40 ° C-reflux temperature, preferably 80 ° C-reflux temperature, more preferably This is the return temperature. If the reaction temperature is lower than 40 ° C, the reaction time becomes extremely long, and low molecular weight components cannot be reduced.
  • the reaction time varies depending on the reaction temperature, the amount of phosphoric acid, the water content in the reaction system, and the like, but is generally about 110 hours.
  • the reaction environment is preferably normal pressure, but the reaction may be carried out under increased or reduced pressure as long as the heterogeneous reaction characteristic of the present invention is maintained.
  • the inorganic filler used in the present invention is not particularly limited, and any one can be used as long as it is mixed with a conventional phenolic resin molding material.
  • a conventional phenolic resin molding material for example, calcium carbonate, clay, Tanorek, silica, aramide fiber, carbon fiber, glass fiber, etc. These may be used alone or in combination of two or more, but it is preferable to use glass fibers and other inorganic fillers in combination.
  • the blending amount of the inorganic filler is 350 to 900 parts by mass, preferably 400 to 800 parts by mass with respect to 100 parts by mass of the novolak phenol resin, from the viewpoint of improving mechanical strength and heat resistance. It is preferable to contain 100 to 200 parts by mass of glass fiber. If the amount of the inorganic filler is less than 350 parts by mass, the dimensional accuracy tends to decrease because the shrinkage ratio increases, and if the amount of the inorganic filler is more than 900 parts by mass, the flowability decreases and the injection moldability deteriorates. Therefore, it is not preferable.
  • the inorganic fibrous filler used in the present invention is not particularly limited, and includes various carbon fibers such as pitch-based and PAN-based carbon fibers, including fibrous ones among the aforementioned inorganic fillers.
  • Lastinite (wollastonite) and fibrous fillers such as potassium titanate and aluminum borate can be used.
  • Wollastonite (wollastonite) is selected from the viewpoint of improving abrasion resistance and heat resistance. It is preferable to select glass fibers from the viewpoint of improving mechanical strength, heat resistance, and not reducing wear resistance, and to combine both. This combination also favors the cost-puff omance perspective.
  • the compounding amount of the inorganic fibrous filler is 450 to 900 parts by mass, preferably 600 to 800 parts by mass, based on 100 parts by mass of the novolac phenol resin. More preferably, it is a combination of wollastonite and glass fiber, wherein wollastonite is 350 to 800 parts by mass, preferably 450 to 700 parts by mass, and glass fiber is 100 to 200 parts by mass, preferably 110 to 150 parts by mass. It is.
  • the amount of the inorganic fibrous filler is less than 450 parts by mass, the wear resistance decreases due to an increase in the resin amount, and the thermal shock resistance (heat resistance) due to a rapid temperature change tends to decrease due to an increase in the linear expansion coefficient. If the amount is more than 900 parts by mass, the fluidity is lowered, and the problem that the stable formability is deteriorated arises, which is not preferable.
  • the phenolic resin molding material of the present invention may optionally contain various additives conventionally used in conventional phenolic resin molding materials, for example, curing agents such as hexamethylenetetramine, and mold release agents such as calcium stearate and zinc stearate. , A curing accelerator such as magnesium oxide, a coupling agent, a solvent, and the like.
  • the method for producing the phenolic resin molding material of the present invention is not particularly limited. It is manufactured by pulverizing a kneaded material heated and kneaded with a power mill, a twin screw extruder, a Henschel mixer, a mixing roll or the like. Further, the molding material thus obtained can be applied to any of injection molding, transfer molding, compression molding and the like.
  • the molding material of the present invention is excellent in moldability, heat resistance, dimensional accuracy, mechanical strength, and abrasion resistance is that the phenol monomer and dimer components are small, and the novolak phenol having a small dispersion ratio.
  • the melt viscosity of the molding material at the time of kneading can be reduced, which makes it possible to reduce the ratio of the resin component in the molding material and relatively increase the ratio of the inorganic filler compared to the conventional case. It is probably because it has become possible.
  • a product obtained from the molding material of the present invention in which a fibrous filler is blended as an inorganic filler has excellent dimensional accuracy and a low thermal expansion coefficient because of a small amount of organic components that are easily affected by heat. Since it is small, it is good for temperature change environments, and when it actually slides, there are few organic components that cause wear phenomena, so it shows excellent wear resistance under oil-water lubrication.
  • Thermometer, stirrer, into a reaction vessel equipped with a condenser, 193 parts of Fuwenoru (P), 92 0/0 Nono ° Rahonoremu the (F) 57 Sound (F / P 0. 85) , 89 0/0
  • 116 phosphoric acid 60 ⁇ / ⁇ / ⁇
  • 96.5 parts 50% ⁇
  • the temperature was raised to the reflux temperature, and the condensation reaction was further performed at the same temperature for 10 hours, and then the reaction was stopped.
  • methyl isobutyl ketone is added while stirring and mixing to dissolve the condensate.
  • the dispersion ratio (Mw / Mn) was calculated by determining the weight average molecular weight (Mw) and number average molecular weight (Mn) in terms of standard polystyrene by measurement at 1 ml / min and column temperature: 38 ° C.
  • the area of the phenolic monomer and the phenolic dimer relative to the total area of the molecular weight distribution was measured by an area method in which the area was expressed in percentage.
  • novolak type phenol resin (1) 100 parts of novolak type phenol resin (1), 133 parts of glass fiber (manufactured by NEC Corporation, standard fiber diameter: 10 ⁇ m, average fiber length: 3 mm) as fused filler, and fused silica 433 parts (made by Denki Kagaku Kogyo, FS-90), 12 parts of hexamethylenetetramine, 13 parts of a release agent and others were blended and uniformly mixed. Thereafter, the mixture was heated and kneaded uniformly with a hot roll to form a sheet, cooled, and then pulverized with a power mill to obtain a granular molding material. The obtained molding material was injection-molded under the following conditions to obtain a JIS bending test piece (80 ⁇ 10 ⁇ 4 mm).
  • Cylinder temperature 85 ° C front, 40 ° C rear
  • test pieces were subjected to after-curing at 180 ° C for 3 hours, and evaluated for shrinkage, bending strength, and shrinkage after boiling for 24 hours, and were further subjected to long-term heat resistance at 250 ° C for 500 hours.
  • the test was performed. The results are shown in Table 2. Various characteristics were evaluated based on the following.
  • a molding material was produced and evaluated in the same manner as in Example 1 except that the mixing ratio was changed as shown in Table 2.
  • Table 2 shows the results. In Comparative Example 2, a molding material having poor roll workability was not obtained.
  • a molding material was produced in the same manner as in Example 1 except that the mixing ratio was changed as shown in Table 3.
  • the used inorganic fibrous filler is as follows.
  • Wollastonite made by Tomoe Industries, Nyayard 400, standard fiber diameter: 7 x m, aspect ratio: 4
  • Glass fiber manufactured by Nitto Boseki Co., Ltd., standard fiber diameter: 11 ⁇ m, average fiber length: 3 mm
  • the obtained molding material was injection-molded under the same conditions as in Example 1 to obtain a JIS shrinkage test piece, a JIS bending test piece (80 ⁇ 10 ⁇ 4 mm), and a ring test piece for abrasion test. After-hour curing was performed, and the following characteristics were evaluated. The results are shown in Table 3.
  • the test is performed under the following conditions, and the wear amount of the wear test ring test piece and the mating material is measured.
  • Formula test load 60kg / cm
  • Example 3 Example 4 Comparative Example 4 Comparative Example 5 Comparative Example 6 Noho "Rack-type phenol resin (1) 100 100--100 Toriko Noho" Rack-type phenol resin (2)--100 100-

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sliding-Contact Bearings (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 ゲル濾過クロマトグラフの面積法による測定で、フェノール類モノマーとフェノール類ダイマーの合計含有量が10%以下、かつゲル濾過クロマトグラフ測定による重量平均分子量(Mw)と数平均分子量(Mn)との分散比(Mw/Mn)が1.3~3.0であるノボラック型フェノール樹脂100質量部に対し、無機充填材350~900質量部を配合してなり、成形性、耐熱性、寸法精度及び機械的強度に優れるフェノール樹脂成形材料。

Description

明 細 書
フエノール樹脂成形材料及び樹脂製摺動部品
技術分野
[0001] 本発明は、 自動車部品をはじめとする各種金属製部品の代替化に好適なフエノー ル樹脂成形材料に関するものである。
背景技術
[0002] フエノール樹脂成形材料は、耐熱性、寸法精度、耐摩耗性、機械的強度及びコスト のバランスに優れた材料として、各分野において幅広く用いられている。し力 ながら
、特に近年の自動車産業においては、高温雰囲気で使用されるトランスミッション部 品やエンジン.ブレーキ付近の部品等のプラスチックへの代替化への要求がますま す厳しくなつており、従来のフエノール樹脂成形材料ではその性能が限界のところま できているのが実状である。
[0003] 特に、例えばブレーキピストン、エンジン.オイルポンプ用バルブなどのエンジン 'ブ レーキ付近の金属部品の樹脂化には耐熱性、寸法精度及び耐摩耗性の向上が要 求され、樹脂量の低減が有効的な手段ではあるが、同時に樹脂量の低減は成形性 を低下させるため、成形性と耐熱性、寸法精度、耐摩耗性、機械的強度などの特性 を同時に満足するものが求められていた。
[0004] また、従来のフヱノール樹脂成形材料に用いられているノボラック型フヱノール樹脂 は、フエノール類とアルデヒド類とを蓚酸等の酸性触媒下で反応させたものが一般的 であるが、未反応のフヱノール類モノマーを主とする低分子量成分が多量に含まれ ているため、成形時にガスが発生しやすぐ金型の曇りや離型性が悪くなるなど成形 '性の問題が起こっていた。
[0005] これらの解決策として、例えば、ォキシカルボン酸を触媒としてフエノール類とアル デヒド類とを縮合反応させて得られた未反応フエノール類が少ないノボラック型フエノ ール樹脂を用いたフエノール樹脂成形材料が提案されている(特許文献 1)。しかし ながら、この成形材料では金型曇りの問題は解消されているものの、機械的強度や 耐熱性といった特性は十分に改善されていないため、成形性と耐熱性、寸法精度、 機械的強度、更に用途によっては耐摩耗性などの特性を同時に満足するものが求 められていた。
[0006] 特許文献 1 :特開平 8 - 59769号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、以上のような問題点に鑑みなされたものであり、成形性、耐熱性、寸法 精度及び機械的強度に優れたフエノール樹脂成形材料を提供することを目的とする
[0008] また、本発明は、成形性、耐熱性、寸法精度及び機械的強度に優れると共に、更 に耐摩耗性にも優れたフエノール樹脂成形材料を提供することを目的とする。
課題を解決するための手段
[0009] 本発明者らは、前記課題を克服するために鋭意研究した結果、フエノール類モノマ 一及びフエノール類ダイマーの含有量が少なぐかつ分子量分布の狭いノボラック型 フエノール樹脂と無機充填材とを特定の割合で配合することによって、 目的とする成 形材料が得られることを見出し、本発明を完成するに至った。
[0010] すなわち、本発明のフエノール樹脂成形材料は、ゲル濾過クロマトグラフの面積法 による測定でフエノール類モノマーとフエノール類ダイマーの合計含有量が 10%以 下、かつゲル濾過クロマトグラフ測定による重量平均分子量 (Mw)と数平均分子量( Mn)との分散比(Mw/Mn)が 1 · 1一 3· 0であるノボラック型フエノール樹脂 100質 量部に対し、無機充填材 350— 900質量部を配合してなることを特徴とする。
発明の効果
[0011] 本発明のフエノール樹脂成形材料は、成形性,耐熱性,寸法精度及び機械強度に 優れている。したがって、この成形材料から得られる成形部品は、耐熱性及び寸法精 度の要求される自動車部品をはじめとする各種金属製部品の代替化に好適に使用 される。
[0012] 特に、無機充填材として繊維状充填材を配合した本発明のフエノール樹脂成形材 料は、樹脂量低減にもかかわらず成形性が良好であり、耐熱性、寸法精度、機械的 強度、更には耐摩耗性に優れている。特に樹脂量低減化によって耐摩耗性無機繊 維状充填材の高充填化が可能となり、製品表面の硬度向上効果および樹脂部分の 補強効果により耐摩耗性向上につながり、油潤滑もしくは水潤滑下での摺動部品の 樹脂化に好適である。
図面の簡単な説明
[0013] [図 1]熱衝撃性試験用のピストンモデルの形状を示す図である。
発明を実施するための最良の形態
[0014] 本発明において用いられるノボラック型フエノール樹脂は、ゲル濾過クロマトグラフ の面積法による測定でフエノール類モノマーとフエノール類ダイマーの合計含有量が 10%以下、好ましくは 5%以下である。
[0015] また、本発明で用いられるノボラック型フエノール樹脂は、ゲル濾過クロマトグラフ測 定による重量平均分子量 (Mw)と数平均分子量 (Mn)との分散比(MwZMn)が 1. 1-3. 0、好ましくは 1. 5-2. 0である。また、重量平均分子量 (Mw)は特に限定は されなレヽカ S、好ましくは 800— 3700、より好ましくは 900 3500である。
[0016] 本発明で用いられるノボラック型フエノール樹脂は、特に限定はされないが、例えば 、フエノール類と、フエノール類 1モルに対して 0. 80モノレ以上 1. 00モル以下のアル デヒド類とを、フエノール類 100質量部に対して 5質量部以上のリン酸類の存在下で 不均一系反応させる工程を有する製造方法により製造することができる。
[0017] 具体的には、原料としてフエノール類及びアルデヒド類、酸触媒としてリン酸類を必 須とし、これらから形成される二相分離状態を機械的攪拌、超音波等によりかき混ぜ 混合して、二相(有機相と水相)が交じり合った白濁状の不均一反応系において、フ ェノール類とアルデヒド類との反応を進めて縮合物(樹脂)を合成する。次に、例えば 非水溶性有機溶剤(例えばメチルェチルケトン、メチルイソプチルケトン等)を添加混 合して該縮合物を溶解し、かき混ぜ混合を止めて静置し、有機相(有機溶剤相)と水 相(リン酸水溶液相)とに分離させる。その後水相を除去して回収を図る一方、有機 相については湯水洗及び/又は中和した後、有機溶剤を蒸留回収することによって 製造すること力 Sできる。
[0018] 原料として用いるフエノール類としては、例えばフエノール、クレゾール、キシレノー ノレ、ブチルフエノール、フエニルフエノール等が挙げられる。一方、アルデヒド類として は、例えばホルムアルデヒド、ホルマリン、パラホルムアルデヒド、ァセトアルデヒド等 が挙げられる。これらの原料は、いずれも例示に限定はされず、またそれぞれ、単独 で又は 2種以上を併用してもよい。
[0019] アルデヒド類(F)とフエノール類(P)の配合比(F/P)がモル基準で 0. 80以上 1. 0 0以下の範囲であれば、本発明で用いられるノボラック型フエノール樹脂を高収率で 製造すること力 Sできる。
[0020] また、酸触媒として用いるリン酸類は、水の存在下、フエノール類との間で相分離反 応の場を形成する重要な役割を果すものであるため、好ましくは水溶液タイプ、例え ば 89質量%リン酸、 75質量%リン酸などが用いられる力 必要に応じて例えばポリリ ン酸、無水リン酸などを用いてもよい。
[0021] リン酸類の配合量は、相分離効果の制御に大きく影響を与えるが、一般的にはフエ ノール類 100質量部に対して 5質量部以上、好ましくは 25質量部以上、より好ましく は 50質量部以上である。配合量が 5質量部未満では、低分子量成分が低減されず に高分子量成分の生成が促進されるため、分子量分布幅が広くなる傾向がある。な お、 70質量部以上のリン酸を使用する場合には、反応系への分割投入により、反応 初期の発熱を抑えて安全性を確保することが望ましい。
[0022] 相分離反応の促進とレ、う観点から、反応補助溶媒としての非反応性含酸素有機溶 媒を用いることが好ましい。反応補助溶媒としては、アルコール類、多価アルコール 系エーテル、環状エーテル類、多価アルコール系エステル、ケトン類、スルホキシド 類からなる群から選ばれる少なくとも 1種を用いることが好ましい。
[0023] アルコール類としては、例えば、メタノーノレ、エタノール、プロパノール等の一価アル コール、ブタンジオール、ペンタンジオール、へキサンジオール、エチレングリコール 、プロピレングリコーノレ、 トリメチレングリコーノレ、ジエチレングリコーノレ、ジプロピレング リコーノレ、 トリエチレングリコーノレ、 トリプロピレングリコーノレ、ポリエチレングリコーノレ等 の二価アルコール、グリセリン等の三価アルコールが挙げられる。
[0024] 多価アルコール系エーテルとしては、例えば、エチレングリコールモノメチルエーテ ノ エチレングリコーノレモノェチノレエーテノレ エチレングリコーノレモノプロピノレエーテ ノレ、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテ ノレ、エチレングリコールジメチルエーテル、エチレングリコールェチルメチルエーテル 、エチレングリコールモノフエニルエーテル等のグリコールエーテル類が挙げられる。
[0025] 環状エーテル類としては、例えば、 1 , 3—ジォキサン、 1 , 4ージォキサン等が挙げら れ、多価アルコール系エステルとしては、例えば、エチレングリコールアセテート等の グリコールエステル類等が挙げられ、ケトン類としては、例えば、アセトン、メチルェチ ノレケトン、メチルイソプチルケトン等が挙げられ、スルホキシド類としては、例えば、ジ メチルスルホキシド、ジェチルスルホキシド等が挙げられる。
[0026] これらの中でも、メタノーノレ、エチレングリコールモノメチルエーテル、ポリエチレング リコーノレ、 1 , 4一ジォキサンなどが特に好ましい。
[0027] 反応補助溶媒は、上記の例示に限定されず、上記の特質を有し、かつ反応時に液 体を呈するものであれば固体でも使用することができるし、またそれぞれを単独で又 は 2種以上を併用してもよい。反応補助溶媒の配合量としては特に限定はされない 、フエノール類 100質量部に対して 5質量部以上、好ましくは 10— 200質量部であ る。
[0028] また、反応系中の水の量は、相分離効果、生産効率に影響を与えるが、一般的に は質量基準で 40%以下である。水の量が 40%を超えると生産効率が低下する可能 十生がある。
[0029] また、フエノール類とアルデヒド類との反応温度は、相分離効果を高める上で重要 であり、一般的には 40°C—還流温度、好ましくは 80°C—還流温度、より好ましくは還 流温度である。反応温度が 40°C未満であると反応時間が極めて長くなる上、低分子 量成分の低減化ができなレ、。なお、反応時間としては、反応温度、リン酸の配合量、 反応系中の含水量などにより異なるが、一般的には 1一 10時間程度である。また、反 応環境としては、常圧が好適であるが、本発明の特徴である不均一反応を維持する ならば、加圧下又は減圧下で反応を行なってもよい。
[0030] 本発明で用いられる無機充填材は特に限定されるものではなぐ従来のフエノール 樹脂成形材料に配合されてレ、るものであれば何れも使用可能であり、例えば、炭酸 カルシウム、クレー、タノレク、シリカ、ァラミド繊維、カーボン繊維、ガラス繊維等が挙げ られ、これらを単独で用いても、二種以上を併用してもよいが、ガラス繊維と他の無機 充填材とを併用することが好ましい。
[0031] 無機充填材の配合量は、ノボラック型フエノール樹脂 100質量部に対して 350— 9 00質量部、好ましくは 400— 800質量部であり、機械的強度と耐熱性の向上という観 点からガラス繊維を 100— 200質量部含有することが好ましい。無機充填材が 350 質量部より少ないと収縮率が大きくなるため寸法精度が低下する傾向があり、 900質 量部より多くなると流動性が低下するため射出成形性が悪くなるという問題が生じてく るため好ましくない。
[0032] また、本発明で用いられる無機繊維状充填材は特に限定されるものではなぐ前述 の無機充填材のうちの繊維状のものを含め、ピッチ系、 PAN系などの各種カーボン 繊維、ウォラストナイト(珪灰石)、チタン酸カリウムやホウ酸アルミ等の繊維状充填材 等を用いることができるが、耐摩耗性と耐熱性の向上という観点からウォラストナイト( 珪灰石)を選択し、機械的強度と耐熱性向上及び耐摩耗性を低下させない観点から ガラス繊維を選択し、両者を組合せることが好ましい。この組み合わせは、コストパフ オーマンスの観点力らも好ましレ、。
[0033] 無機繊維状充填材の配合量は、ノボラック型フエノール樹脂 100質量部に対して 4 50— 900質量部、好ましくは 600— 800質量部である。より好ましくは、ウォラストナイ トとガラス繊維の組合せであって、ウォラストナイトが 350— 800質量部、好ましくは 45 0— 700質量部、ガラス繊維が 100— 200質量部、好ましくは 110— 150質量部であ る。無機繊維状充填材が 450質量部より少ないと樹脂量が増えることにより耐摩耗性 の低下、線膨張係数が大きくなることにより急激な温度変化による熱衝撃性 (耐熱性) が低下する傾向があり、 900質量部より多くなると流動性が低下するため安定した成 形性の確保が悪くなるという問題が生じてくるため好ましくない。
[0034] 本発明のフエノール樹脂成形材料には、所望により従来フエノール樹脂成形材料 において慣用されている各種添加剤、例えば、へキサメチレンテトラミンなどの硬化 剤、ステアリン酸カルシウムゃステアリン酸亜鉛などの離型剤、酸化マグネシウムなど の硬化促進剤、カップリング剤、溶剤等を配合することができる。
[0035] 本発明のフエノール樹脂成形材料の製造方法は特に限定はされないが、加圧ニー ダー、二軸押出機、ヘンシェルミキサー、ミキシングロール等で加熱混練した混練物 をパワーミル等を用いて粉碎して製造される。また、こうして得られた成形材料は射出 成形、トランスファー成形及び圧縮成形等のいずれにも適用することができる。
[0036] 本発明の成形材料が、成形性、耐熱性、寸法精度及び機械的強度、更には耐摩 耗性に優れている理由としては、フエノールモノマー及びダイマー成分が少なく分散 比の小さいノボラック型フエノール樹脂を用いることによって混練時の成形材料の溶 融粘度を下げることができ、このことで従来に比べて成形材料における樹脂成分の 割合を低減しかつ無機充填材の割合を相対的に増やすことが可能になったからで はないかと思われる。
[0037] 特に、無機充填材として繊維状充填材を配合した本発明の成形材料により得られ た製品は、熱の影響を受けやすい有機成分が少ないため、寸法精度に優れ、熱膨 張係数も小さいことから、温度変化環境に対して良好で、また、実際に摺動する場合 、摩耗現象を引き起こす有機成分が少ないことから、油 ·水潤滑下において優れた耐 摩耗性を示す。
実施例
[0038] 以下、実施例により本発明を具体的に説明するが、本発明はこの実施例によって 限定されるものではなレ、。なお、実施例に記載の「部」及び「%」は、特に断らない限 り「質量部」及び「質量%」を示す。
[0039] [ノボラック型フヱノール樹脂( 1 )の製造]
温度計、攪拌装置、コンデンサーを備えた反応容器内に、フヱノール (P)を 193部 、 920/0ノヽ°ラホノレム(F)を 57音 (F/P = 0. 85)、 890/0リン酸を 116き (60ο/ο/Ρ)、ェ チレングリコール 96. 5部(50%ΖΡ)を仕込んだ後、攪拌混合により形成される白濁 状態(二相混合物)のもとで、徐々に還流温度まで昇温し、さらに同温度で 10時間縮 合反応を行なってから反応を停止した。次いで、攪拌混合しながらメチルイソブチル ケトンを添加して縮合物を溶解した後、攪拌混合を停止して内容物を分液フラスコ内 に移して静置し、メチルイソプチルケトン溶液層(上層)とリン酸水溶液層(下層)に分 離させた。次いで、リン酸水溶液層を除去し、メチルイソプチルケトン溶液を数回水洗 してリン酸を除いた後、再び内容物を反応容器内に戻し、減圧蒸留によりメチルイソ プチルケトンを完全に除去してノボラック型フエノール樹脂(1) 213. 5部を得た。
[0040] [ノボラック型フエノール樹脂(2)の製造]
温度計、攪拌装置、コンデンサーを備えた反応容器内に、フエノールを 193g、 37 質量%ホルマリンを 142g (F/P = 0. 85)、蓚酸を 0. 97g (0. 5%/P)を仕込んだ 後、徐々に還流温度(98 102°C)まで昇温して同温度で 6時間縮合反応を行い、 減圧濃縮してノボラック型フヱノール樹脂(2) 199g (収率 103%/P)を得た。
[0041] [ノボラック型フエノール樹脂の特性]
得られたノボラック型フヱノール樹脂の特性を下記の試験法により測定した。結果を 表 1に示す。
[0042] (I)分散比
東ソー株式会社製ゲル濾過クロマトグラフ SC— 8020シリーズビルドアップシステム (カラム: G2000H +G4000H、検出器: UV254nm、キヤリヤー:テトラヒドロフラ
xl xl
ン lml/min、カラム温度: 38°C)測定による標準ポリスチレン換算の重量平均分子 量 (Mw)及び数平均分子量 (Mn)を求めて分散比(Mw/Mn)を算出した。
[0043] (II)フエノール類モノマー及びフエノール類ダイマーの含有量(%)
分子量分布の全面積に対するフエノール類モノマーとフエノール類ダイマーの面積 を百分率で表示する面積法によって測定した。
[0044] [表 1]
Figure imgf000010_0001
<実施例 1 >
表 2に示す様に、ノボラック型フエノール樹脂(1) 100部、無機充填材として、ガラス 繊維(日本電気ガラス製、基準繊維径: 10 μ m、平均繊維長: 3mm) 133部及び溶 融シリカ(電気化学工業製、 FS-90) 433部、へキサメチレンテトラミン 12部、離型剤 その他 13部を配合し均一混合した。その後、熱ロールにて均一に加熱混練してシー ト状にし、冷却後パワーミルで粉碎しグラニュール状の成形材料を得た。 [0046] 得られた成形材料を以下の条件で射出成形し、 JIS曲げ試験片(80 X 10 X 4mm) を得た。
[0047] シリンダー温度:前 85°C、後部 40°C
金型温度: 175°C
硬化時間: 60秒
[0048] 得られた試験片について、 180°C X 3時間のアフターキュアを行レ、、収縮率、曲げ 強度、 24時間煮沸後の収縮率について評価し、さらに 250°C X 500時間の長期耐 熱性試験を行った。その結果を表 2に示す。なお各種特性評価については、下記に 基づいて実施した。
[0049] (1)収縮率
JISK6911規格に準じて測定。
[0050] (2)曲げ強度
JISK7203規格に準じて測定。
[0051] <実施例 2、比較例 1一 3 >
配合割合を表 2に示すように変えた以外は実施例 1と同様にして実施し、成形材料 を製造し、評価した。結果を表 2に示す。尚、比較例 2については、ロール作業性が 悪ぐ成形材料が得られなかった。
[0052] [表 2]
Figure imgf000011_0001
表 2から明ら力、なように、実施例 1一 2で得られたフエノール樹脂成形材料は、低収 縮率に優れ、かつ強度,耐熱性のバランスのとれた特性を示した。 [0054] <実施例 3, 4、比較例 4一 6 >
配合割合を表 3に示すように変えた以外は実施例 1と同様にして実施し、成形材料 を製造した。使用した無機繊維状充填材は、以下の通りである。
ウォラストナイト(巴工業製、ナイヤード 400、基準繊維径: 7 x m、アスペクト比: 4) ガラス繊維 (日東紡績 (株)製、基準繊維径: 11 μ m、平均繊維長: 3mm)
[0055] 尚、比較例 5については、ロール作業性が悪ぐ成形材料が得られなかった。
[0056] 得られた成形材料を実施例 1と同じ条件で射出成形し、 JIS収縮試験片、 JIS曲げ 試験片(80 X 10 X 4mm)、摩耗試験用リング試験片を得、 210°C X 20時間のァフ ターキュアを行い、以下の特性について評価を行った。その結果を表 3に示す。
[0057] (1)曲げ強度
JISK7203規格に準じて測定。
[0058] (2)熱衝撃性
図 1に示す寸法'形状のピストンモデルを 300°C X 30分加熱し、取り出し後直ちに 23°Cの水中に投入し、試験片の外観を確認し、これを 5サイクル繰り返す。 5サイクル 後もクラックのないものを良好とする。
[0059] (3)耐熱水性
JIS収縮試験片を 80°C熱水中に 500時間浸漬し、浸漬前との寸法変化率を測定す る。
[0060] (4)耐摩耗性
下記条件で試験を行い、摩耗試験用リング試験片と相手材の摩耗量を測定する。 式験荷鱼: 60kg/ cm
試験速度: 0. lm/s
試験時間:2時間
相手材質: FCD450
試験環境:ブレーキ油中(常温)
[0061] [表 3] 実施例 3 実施例 4 比較例 4 比較例 5 比較例 6 ノホ"ラック型フエノ―ル樹脂 ( 1 ) 100 100 ― ― 100 酉己 ノホ"ラック型フエノ―ル樹脂 (2) ― ― 100 100 ―
へキサメ 1 5 16 16 16
s チレン亍トラミン 16
ウォラスけ仆 400 750 200 400 200 成
力"ラス繊維 167 100 100 167 100 部 ス亍アリン酉変カルシウム 5 5 5 5 5
力—ホンフラック フ フ 7 7 7 酸化マゲネシゥム 3 ― 3 ― 3
D—ル作業性 O o O X O
曲げ強度 (Mpa) 150 120 130 ― 135
1サイクルで
熱衝撃性 良好 良好
性 クラック発生 ― 1サイクルで
クラック発生 能 耐熱水性 (%) +0.03 +0.02 +0.18 ― +0.1 7
耐摩 S趣片 tmg) 3 2 12 ― 18
1 相手材 (mg) 1 0 4 ― 6 表 3から明らかなように、実施例 3— 4で得られたフエノール樹脂成形材料は耐熱性 (耐熱衝撃性)、耐摩耗性、寸法精度、機械的強度のバランスに優れた特性を示した

Claims

請求の範囲
[1] ゲル濾過クロマトグラフの面積法による測定でフヱノール類モノマーとフヱノール類 ダイマーの合計含有量が 10%以下、かつゲル濾過クロマトグラフ測定による重量平 均分子量(Mw)と数平均分子量(Mn)との分散比(MwZMn)が 1. 1一 3. 0である ノボラック型フヱノール樹脂 100質量部に対し、無機充填材 350— 900質量部を配 合してなることを特徴とするフエノール樹脂成形材料。
[2] 前記無機充填材が、ガラス繊維を 100— 200質量部含有することを特徴とする請 求項 1に記載のフエノール樹脂成形材料。
[3] フエノール類モノマーとフエノール類ダイマーの合計含有量が 5%以下であることを 特徴とする請求項 1または 2に記載のフエノール樹脂成形材料。
[4] 前記ノボラック型フエノール樹脂力 フエノール類と、フエノール類 1モルに対して 0.
80モノレ以上 1. 00モル以下のアルデヒド類とを、フエノール類 100質量部に対して 5 質量部以上のリン酸類の存在下で不均一系反応させて得られたものであることを特 徴とする請求項 1一 3のいずれかに記載のフエノール樹脂成形材料。
[5] 前記無機充填材が無機繊維状充填材であって、該無機繊維状充填材の配合量が 450— 900質量部であることを特徴とする請求項 1一 4のいずれかに記載のフエノー ル樹脂成形材料。
[6] 前記無機繊維状充填材がウォラストナイトとガラス繊維の組み合わせであって、ゥォ ラストナイトの配合量が 350 800質量部、ガラス繊維の配合量が 100 200質量部 であることを特徴とする請求項 5に記載のフエノール樹脂成形材料。
[7] 請求項 5または 6に記載のフエノール樹脂成形材料を成形してなることを特徴とする 油潤滑下または水潤滑下で使用される樹脂製摺動部品。
PCT/JP2004/011893 2003-08-22 2004-08-19 フェノール樹脂成形材料及び樹脂製摺動部品 WO2005019338A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04771854A EP1661950A4 (en) 2003-08-22 2004-08-19 MOLDING MATERIAL COMPRISING A PHENOL RESIN AND SLIDING PIECE MADE THEREFROM
US10/568,277 US20070060701A1 (en) 2003-08-22 2004-08-19 Phenolic resin molding material and resin sliding part

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-298117 2003-08-22
JP2003298117 2003-08-22
JP2004-176348 2004-06-15
JP2004176348A JP4723822B2 (ja) 2003-08-22 2004-06-15 摺動部品製造用フェノール樹脂成形材料及び樹脂製摺動部品

Publications (1)

Publication Number Publication Date
WO2005019338A1 true WO2005019338A1 (ja) 2005-03-03

Family

ID=34220709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011893 WO2005019338A1 (ja) 2003-08-22 2004-08-19 フェノール樹脂成形材料及び樹脂製摺動部品

Country Status (5)

Country Link
US (1) US20070060701A1 (ja)
EP (1) EP1661950A4 (ja)
JP (1) JP4723822B2 (ja)
TW (1) TWI362399B (ja)
WO (1) WO2005019338A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5634211B2 (ja) * 2009-10-26 2014-12-03 旭有機材工業株式会社 フェノール樹脂成形材料及び摺動部材
EP2568002B1 (en) * 2011-09-06 2014-04-30 Sumitomo Bakelite Co., Ltd. Phenolic resin molding compound
JP5964174B2 (ja) * 2012-08-10 2016-08-03 旭有機材株式会社 摺動部材用成形材料、その製造方法及び摺動部材
JP6831175B2 (ja) * 2015-10-29 2021-02-17 住友ベークライト株式会社 フェノール樹脂成形材料
CN111976242B (zh) * 2020-08-22 2022-10-28 中塑新材料科技(杭州)有限公司 一种抗介质高阻隔共挤膜及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167248A (ja) * 1989-11-27 1991-07-19 Sumitomo Bakelite Co Ltd フェノール樹脂成形材料
JPH0649159A (ja) * 1992-07-29 1994-02-22 Sumitomo Durez Co Ltd 摩擦材用ノボラック型フェノール樹脂組成物
JPH08159244A (ja) * 1994-12-07 1996-06-21 Sumitomo Bakelite Co Ltd 樹脂プーリー
JPH08231859A (ja) * 1994-12-16 1996-09-10 Showa Highpolymer Co Ltd 摺動部材用熱硬化性樹脂組成物
JP2000219796A (ja) * 1999-02-02 2000-08-08 Fudow Co Ltd 耐衝撃性フェノール樹脂成形材料組成物
JP2002220507A (ja) * 2001-01-29 2002-08-09 Sumitomo Bakelite Co Ltd フェノール樹脂成形材料
WO2003042267A1 (fr) * 2001-11-16 2003-05-22 Asahi Organic Chemicals Industry Co., Ltd. Novolaques phenoliques et leur procede de production
JP2003268196A (ja) * 2002-03-19 2003-09-25 Sumitomo Bakelite Co Ltd コンミテーター用フェノール樹脂成形材料

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265151A (ja) * 1986-05-12 1987-11-18 ニチアス株式会社 成形材料
JPH03179077A (ja) * 1989-12-07 1991-08-05 Hitachi Chem Co Ltd 摩擦材組成物及び該組成物を用いた摩擦材の製造法
JPH03179078A (ja) * 1989-12-07 1991-08-05 Hitachi Chem Co Ltd 摩擦材組成物及び該組成物を用いた摩擦材の製造方法
JPH05194936A (ja) * 1992-01-23 1993-08-03 Jidosha Denki Kogyo Co Ltd 摩擦材組成物
EP0747444B1 (en) * 1994-12-16 2003-03-26 Otsuka Kagaku Kabushiki Kaisha Thermosetting resin composition for sliding member
US5932389A (en) * 1998-02-20 1999-08-03 Shipley Company, L.L.C. Controlled alternating and block copolymer resins
EP1649322A4 (en) * 2003-07-17 2007-09-19 Honeywell Int Inc PLANARIZATION FILMS FOR ADVANCED MICROELECTRONIC DEVICES AND APPLICATIONS AND METHODS FOR PRODUCING SAID FILMS

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167248A (ja) * 1989-11-27 1991-07-19 Sumitomo Bakelite Co Ltd フェノール樹脂成形材料
JPH0649159A (ja) * 1992-07-29 1994-02-22 Sumitomo Durez Co Ltd 摩擦材用ノボラック型フェノール樹脂組成物
JPH08159244A (ja) * 1994-12-07 1996-06-21 Sumitomo Bakelite Co Ltd 樹脂プーリー
JPH08231859A (ja) * 1994-12-16 1996-09-10 Showa Highpolymer Co Ltd 摺動部材用熱硬化性樹脂組成物
JP2000219796A (ja) * 1999-02-02 2000-08-08 Fudow Co Ltd 耐衝撃性フェノール樹脂成形材料組成物
JP2002220507A (ja) * 2001-01-29 2002-08-09 Sumitomo Bakelite Co Ltd フェノール樹脂成形材料
WO2003042267A1 (fr) * 2001-11-16 2003-05-22 Asahi Organic Chemicals Industry Co., Ltd. Novolaques phenoliques et leur procede de production
JP2003268196A (ja) * 2002-03-19 2003-09-25 Sumitomo Bakelite Co Ltd コンミテーター用フェノール樹脂成形材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1661950A4 *

Also Published As

Publication number Publication date
JP4723822B2 (ja) 2011-07-13
EP1661950A4 (en) 2011-08-03
TW200512228A (en) 2005-04-01
JP2005097535A (ja) 2005-04-14
US20070060701A1 (en) 2007-03-15
EP1661950A1 (en) 2006-05-31
TWI362399B (en) 2012-04-21

Similar Documents

Publication Publication Date Title
TW200808860A (en) Liquid crystalling polymer composition and use thereof
WO2005019338A1 (ja) フェノール樹脂成形材料及び樹脂製摺動部品
JP4528151B2 (ja) フェノール樹脂成形品
JP3034886B2 (ja) 衝撃強度に優れるフェノール樹脂組成物
JP5437053B2 (ja) 熱硬化性成形材料および成形品
JP2653574B2 (ja) 衝撃強度に優れるフェノール樹脂組成物
JP5336032B2 (ja) フェノール樹脂成形材料
EP1847568B1 (en) Thermosetting resin composition, thermosetting-resin molding material, and cured object obtained therefrom
JP5089862B2 (ja) フェノール樹脂成形材料
JPS61243039A (ja) ヘミホルマ−ル基を有する高オルトフエノ−ル−ホルムアルデヒドレゾ−ル
JP2007169457A (ja) シートモールディングコンパウンド用フェノール樹脂及びその製造方法並びにそれを用いて得られたシートモールディングコンパウンド
JPH06136082A (ja) フェノール系樹脂の製造法
JP2014156557A (ja) フェノール樹脂組成物、硬化物、フェノール樹脂成形材料及び成形物
JP4961679B2 (ja) 熱硬化性樹脂組成物及びその硬化物
JP2006096778A (ja) フェノール樹脂成形材料
JPH06228256A (ja) フェノール樹脂組成物及び成形材料
JPH0726116A (ja) 熱硬化性樹脂成形材料
JP3139762B2 (ja) 熱硬化性樹脂組成物
JP2007332254A (ja) 熱硬化性樹脂組成物、熱硬化性樹脂成形材料及びその硬化物
JP2010031130A (ja) 熱硬化性樹脂組成物、熱硬化性樹脂成形材料及び硬化物
JP2007186670A (ja) 熱硬化性樹脂組成物、熱硬化性樹脂成形材料及びその硬化物
JPH0881614A (ja) 熱硬化性樹脂成形材料
JPH06107902A (ja) フェノール樹脂組成物
JPH1045859A (ja) 熱硬化性樹脂成形材料
JPH08157692A (ja) フェノール樹脂組成物及び成形材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480023399.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004771854

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 2004771854

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007060701

Country of ref document: US

Ref document number: 10568277

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10568277

Country of ref document: US