WO2005019106A1 - シリコン製造装置 - Google Patents

シリコン製造装置 Download PDF

Info

Publication number
WO2005019106A1
WO2005019106A1 PCT/JP2004/011774 JP2004011774W WO2005019106A1 WO 2005019106 A1 WO2005019106 A1 WO 2005019106A1 JP 2004011774 W JP2004011774 W JP 2004011774W WO 2005019106 A1 WO2005019106 A1 WO 2005019106A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction tube
silicon
coil
temperature
heated
Prior art date
Application number
PCT/JP2004/011774
Other languages
English (en)
French (fr)
Inventor
Junichirou Nakashima
Hiroyuki Oda
Original Assignee
Tokuyama Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corporation filed Critical Tokuyama Corporation
Priority to US10/569,149 priority Critical patent/US7993455B2/en
Priority to AU2004266934A priority patent/AU2004266934B2/en
Priority to EP04771735A priority patent/EP1666414A4/en
Priority to CA002517764A priority patent/CA2517764C/en
Priority to JP2005513280A priority patent/JP4597863B2/ja
Publication of WO2005019106A1 publication Critical patent/WO2005019106A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/029Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of monosilane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/03Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of silicon halides or halosilanes or reduction thereof with hydrogen as the only reducing agent
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0218Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components of ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0227Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components of graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0272Graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1004Apparatus with means for measuring, testing, or sensing

Definitions

  • the present invention relates to a silicon manufacturing apparatus for manufacturing polycrystalline silicon. More specifically, in the present invention, a raw material gas is supplied to a reaction tube heated by a high-frequency heating coil to precipitate silicon on the inner surface of the reaction tube, and at least a part including the lower end of the reaction tube is made of silicon.
  • the present invention relates to an apparatus for producing silicon, in which, while being heated to a temperature higher than its melting point, precipitated silicon is dropped and collected into a collecting section provided below a reaction tube.
  • Siemens method a method called the Siemens method.
  • a silicon rod heated to the deposition temperature of silicon by energization is placed inside a bell jar, and trichlorosilane (SiHCl) or monosilane (SiH ) With a reducing gas such as hydrogen.
  • the silicon manufacturing apparatus 100 includes a reaction tube 102, a gas supply port 103 for supplying chlorosilanes and hydrogen, and a high-frequency heating coil 104 installed on the outer periphery of the reaction tube 102 in a closed vessel 111. .
  • the reaction tube 102 is heated by electromagnetic waves from the high-frequency heating coil 104 on the outer periphery thereof, and the inner surface of the reaction tube 102 is heated to a temperature at which the temperature is equal to or higher than the melting point of silicon or lower than the melting point of silicon. Then, chlorosilanes supplied from the gas supply port 103 are brought into contact with the inner surface of the heated reaction tube 102 to deposit silicon.
  • the silicon melt deposited in a molten state is continuously discharged from the opening of the lower end portion 102a of the reaction tube 102. And collected by the silicon recovery unit 105 installed in the falling direction.
  • silicon is once deposited as a solid on the inner surface of the reaction tube 102. Thereafter, the inner surface is heated to a temperature equal to or higher than the melting point of silicon, and part or all of the precipitate is melted and dropped, and is collected by the silicon collecting unit 105 provided in the falling direction.
  • a region in the reactor 100 for example, a gap 107 between the reaction tube 102 and the gas supply tube 106, in which deposition of silicon must be prevented, is filled with a sealing gas such as hydrogen. Further, the exhaust gas after the reaction in the reaction tube 102 is discharged to the outside from a gas discharge tube 108 provided in the closed container 111.
  • Reference numeral 110 denotes a partition wall made of quartz or the like for shielding the high-frequency heating coil 104 from the reaction gas atmosphere.
  • Patent Document 1 JP 2003-2627 A
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-29726
  • the deposited silicon is melted, dropped, and collected by the silicon recovery unit 105 installed below.
  • the molten silicon or the like that has flowed down the inner surface of the tube 102 and reached the lower end portion 102a is cooled, and a part thereof is solidified. If the molten silicon is solidified at the lower end 102a in this manner, the silicon lump is formed to extend downward from the tip of the lower end 102a in an icicle-like manner.
  • a heat insulating member may be wound around the outer surface of the reaction tube 102 to suppress heat radiation from the reaction tube 102.
  • the current heat insulating member it is difficult to ensure sufficient heat insulation at the lower end portion 102a.
  • the heat insulating member may be deteriorated. .
  • the present invention has been made to solve the above-mentioned problems in the prior art, and an object of the present invention is to recover the precipitated silicon downward by setting the inner surface of the reaction tube to a temperature equal to or higher than the melting point of silicon.
  • An object of the present invention is to provide a silicon production apparatus capable of preventing solidification of molten silicon at a lower end of a reaction tube when the liquid is dropped and collected at a lower end of the reaction tube.
  • the silicon production apparatus of the present invention comprises: a reaction tube having a carbon material as a base material;
  • a gas supply port for supplying chlorosilanes and hydrogen from an upper portion of the reaction tube, and a high-frequency heating coil provided on an outer peripheral side of the reaction tube;
  • An apparatus for producing polycrystalline silicon wherein at least a part including a lower end of the reaction tube can be heated to a temperature equal to or higher than the melting point of silicon by the high-frequency heating coil,
  • It is characterized by comprising a temperature drop prevention means for preventing a temperature drop at the lower end of the reaction tube during heating by the high frequency heating coil.
  • the temperature decrease prevention means prevents the temperature decrease at the lower end of the reaction tube when the reaction tube is heated by the high-frequency heating coil. Therefore, the inner surface of the reaction tube The solidification of the molten silicon at the lower end of the reaction tube can be prevented when the deposited silicon is dropped to the lower collecting part and collected at a temperature equal to or higher than the melting point of silicon.
  • the temperature drop prevention means is an infrared radiation device that heats an outer periphery of a lower end portion of the reaction tube with infrared light.
  • the inner surface of the reaction tube is heated to a temperature equal to or higher than the melting point of silicon, and the precipitated silicon is dropped into the lower collecting section to be collected. This prevents a temperature drop in the section and prevents solidification of the molten silicon at the lower end of the reaction tube.
  • the infrared radiation device an infrared radiation member having a carbon material as a base material, which is provided on an outer peripheral side of a lower end portion of the reaction tube so as to be spaced apart from the lower end portion,
  • the high-frequency heating coil may be arranged on the outer peripheral side of the infrared radiation member so as to heat the infrared radiation member.
  • the infrared radiation member is installed on the outer peripheral side of the lower end portion of the reaction tube, and the infrared radiation member is simultaneously heated by the high-frequency heating coil that heats the silicon deposition region of the reaction tube.
  • the lower end of the tube is sufficiently heated by the infrared radiation of the infrared radiation member, and a temperature drop at the lower end of the reaction tube can be prevented.
  • the temperature lowering prevention means has a higher heating strength than a coil formed near the lower end of the high-frequency heating coil and located above the lower end. This is the lower end coil.
  • the inner surface of the reaction tube is brought to a temperature equal to or higher than the melting point of silicon, and when the precipitated silicon is dropped and collected in the lower collecting section, the reaction tube is recovered. This prevents the lowering of the temperature at the lower end of the reaction tube and prevents solidification of the molten silicon at the lower end of the reaction tube.
  • the lower end side coil is preferably formed with a coil pitch shorter than the coil pitch of the coil above it.
  • the lower end side coil is composed of a plurality of coils wound in multiple directions in the diameter increasing direction.
  • the lower end of the reaction tube is heated by the high frequency from each coil wound in multiple layers.
  • the heating intensity for the part is selectively enhanced, and a temperature drop at the lower end of the reaction tube can be prevented.
  • the lower end side coil is a coil whose radio frequency power is controlled independently of the coil above it.
  • the lower end coil is divided from the coil above it, and for example, the power to supply high frequency power to the lower end coil with a power source different from the upper coil, or tap using the same power source as the upper coil
  • the power to supply high frequency power to the lower end coil with a power source different from the upper coil, or tap using the same power source as the upper coil
  • a heat retaining member for suppressing heat radiation from the reaction tube may be provided on the outer peripheral side of the reaction tube.
  • the lower end of the reaction tube depends on its shape and the like, but, for example, from the intersection of the horizontal plane contacting the lowermost end of the reaction tube and the central axis of the reaction tube, A straight line in the direction in which the formed angle is 45 degrees,
  • the upper limit is an intersection point between a shortest straight line of the straight line that equally divides the opening shape of the reaction tube into two and a perpendicular that is directed in the axial direction along the inner peripheral surface of the reaction tube.
  • the silicon production apparatus of the present invention when the inner surface of the reaction tube is set to a temperature equal to or higher than the melting point of silicon and the precipitated silicon is dropped to the lower collecting portion and collected, the temperature at the lower end of the reaction tube is reduced. It is possible to prevent the solidification of the molten silicon at the lower end due to the decrease.
  • FIG. 1 is a sectional view showing an embodiment of the silicon manufacturing apparatus of the present invention. Note that the conventional silicon The parts corresponding to the members and the like of the manufacturing equipment are abbreviated with reference numeral 100.
  • the silicon manufacturing apparatus 1 includes a reaction vessel 2, a gas supply port 3 for supplying chlorosilanes and hydrogen, and a high-frequency heating coil provided on the outer periphery of the reaction pipe 2 in a closed vessel 11. 4 and a carbon tube 21 provided near the outer peripheral surface of the reaction tube 2 from the upper side to the vicinity of the lower end 2a.
  • chlorosilanes used in the reaction include, for example, trichlorosilane (SiHCl, tetrachlorosilane (SiCl), dichlorosilane (SiH C1), monochlorosilane (SiH C1), or hexachlorodisilane (Si C1). And chlorotrisilanes such as octachlorotrisilane (SiC1), etc. These chlorosilanes may be used alone or in combination of two or more. Good.
  • the reaction tube 2 is formed in a cylindrical shape such as a cylindrical shape, and is opened downward from the opening of the lower end 2a.
  • a carbon material such as graphite, which can be heated by high frequency and has a resistance at the melting point of silicon, is preferably used.
  • Chlorosilanes and hydrogen are supplied to the inside of the reaction tube 2 simultaneously or separately from the gas supply port 3 of the gas supply tube 6 installed above the reaction tube 2.
  • the gas supply pipe 6 is preferably provided with a cooling means for cooling the gas supply pipe 6 in order to prevent thermal deterioration of the pipe and prevent decomposition of chlorosilanes in the pipe.
  • the gas supply pipe 6 is cooled by, for example, providing a flow path for supplying a refrigerant liquid such as water or heat transfer oil in the gas supply pipe 6 to cool the gas supply pipe 6.
  • These nozzles are installed approximately concentrically to supply the reaction gas from the gas supply pipe 6 and supply (purge) the cooling gas to the gap between the gas supply pipe 6 and each nozzle on the outer periphery of the nozzle to cool the gas.
  • the cooling is performed by an air-cooled jacket system in which the gas supply pipe 6 is cooled.
  • a region where the inner surface of the reaction tube 2 and the outer surface of the gas supply tube 6 overlap in the lateral direction in the upper part of the reaction tube 2 is a low temperature region, and the deposited solid silicon is heated to a melting point or higher. Since it is difficult to melt, hydrogen gas and aluminum gas are filled in the gap 7 between the reaction tube 2 and the gas supply tube 6. Gap gas or the like is supplied to fill the gap 7 with a seal gas atmosphere, thereby preventing a mixed gas of chlorosilanes and hydrogen from entering the gap 7.
  • a reactant such as hydrogen chloride which reacts with silicon to generate a raw material gas may be supplied to the gap 7 alone or together with the seal gas.
  • a sealing gas or the like is similarly supplied to fill the region. I have.
  • the reaction tube 2 is heated by electromagnetic waves (high frequency) from the high-frequency heating coil 4 on the outer periphery, and the inner surface of the reaction tube 2 can be heated to a temperature higher than or equal to the melting point of silicon, or silicon can be deposited therebelow. Heated to a suitable temperature.
  • This heating region is usually a region extending from the lower end 2a in the tube direction and having a length of 30 90% of the total length of the reaction tube 2 in the closed vessel 11.
  • the inner surface of the reaction tube 2 is set to a temperature equal to or higher than the melting point of silicon (approximately 1410 to 1430 ° C). Silicon is deposited in a molten state.
  • the temperature of the inner surface of the reaction tube 2 is set to, for example, 950 ° C. or higher, preferably 1200 ° C.
  • the silicon is deposited at a temperature of at least C, more preferably at least 1300 ° C.
  • the high-frequency heating coil 4 generates an electromagnetic wave when the coil 4 is energized from a power supply (not shown) to heat the reaction tube 2.
  • the frequency of this electromagnetic wave is set to an appropriate value in accordance with the material or shape of the reaction tube 2 or the like to be heated, for example, from several tens Hz to several tens GHz.
  • the silicon deposited on the inner surface of the reaction tube 2 is dropped from the opening of the lower end 2a of the reaction tube 2 and collected by the silicon recovery unit 5 provided in the falling direction.
  • Metal, ceramics, glass, etc. can be used as a material for forming the cooling recovery chamber in the silicon recovery section 5.
  • a metal The inner surface of the cooling and recovery chamber is preferably lined with silicon, Teflon (registered trademark), quartz glass, tantalum, tungsten, molybdenum, or the like. Silicon particles may be spread on the bottom of the cooling and recovery chamber.
  • the solidified solid from the cooling and recovery chamber An outlet for continuously or intermittently extracting the recon may be provided.
  • the silicon that has reached the cooling and recovery chamber is cooled by installing a force S for cooling by contact with the above materials, a cooling jacket through which the coolant liquid flows, and a cooling gas supply pipe through which the cooling gas is supplied. May be used.
  • the silicon melt precipitated in a molten state is continuously dropped from the opening of the lower end 2 a of the reaction tube 2, and is recovered by the silicon recovery unit 5 installed in the falling direction. I do.
  • the precipitated silicon melt flows downward along the inner surface of the reaction tube 2, falls naturally from the lower end 2 a as droplets, and solidifies during or after dropping.
  • silicon is once deposited as a solid on the inner surface of the reaction tube 2, and then the inner surface is heated and heated until the temperature becomes equal to or higher than the melting point of silicon.
  • silicon is deposited on the inner surface of the reaction tube 2 and the silicon is deposited on the inner surface of the reaction tube 2 until the inner surface becomes higher than the melting point of silicon.
  • the steps of heating, raising the temperature, dropping the precipitate, and collecting the precipitate in the silicon collecting section 5 are repeated.
  • the plate-like body is slid laterally between the space above the apparatus including the reaction tube 2 and the recovery unit 5 therebelow.
  • the silicon 9 recovered in the recovery unit 5 can be taken out of the apparatus while maintaining the reaction gas atmosphere in the space above the apparatus and continuing the precipitation reaction.
  • the heating for raising the inner surface of the reaction tube 2 to the melting point of silicon or more is performed by adjusting the power output of the high-frequency heating coil 4.
  • the gas flowing inside the silicon manufacturing apparatus 1 is also used. This heating can be performed by reducing the flow rate of the gas.
  • the conditions for producing silicon are not particularly limited, but chlorosilanes and hydrogen are mixed so that silicon is produced under conditions where the conversion of chlorosilanes to silicon is 20% or more, preferably 30% or more. It is desirable to determine the supply ratio, supply amount, stay time, etc.
  • the mole fraction of chlorosilanes in the feed gas is from preferably from 0.1 99.9 mole 0/0 device Preferably it is 5 to 50 mol%. Also, higher reaction pressure has the advantage that the device can be downsized. , 0—IMPaG is easy to implement industrially.
  • the residence time of the gas varies depending on the conditions of pressure and temperature for a reaction vessel of a fixed volume, but under the reaction conditions, the average residence time of the gas in the reaction tube 2 is 0.00160 seconds, If it is preferably set to 0.0110 seconds, it is possible to obtain a sufficiently economical conversion rate of chlorosilanes.
  • the reaction tube 2 When the inner surface of the reaction tube 2 is set to a temperature equal to or higher than the melting point of silicon and silicon is dropped from the lower end 2a of the reaction tube 2 and collected by the silicon recovery unit 5, the reaction tube 2 is heated by the high-frequency heating coil 4.
  • the lower end portion 2a is not able to sufficiently raise the temperature due to particularly large heat radiation, and the temperature is lower than that of the pipe inner surface above the lower end portion 2a. Therefore, the molten silicon is cooled at the lower end 2a, and a part thereof is solidified.
  • the silicon lump is formed to extend downward from the tip of the lower end 2a in an icicle-like manner, which hinders recovery by an appropriate drop to the silicon recovery section 5. Will be done.
  • a temperature lowering preventing means for preventing a lowering of the temperature of the lower end portion 2a is provided.
  • the means for preventing the temperature from decreasing is, specifically, an apparatus for heating the lower end 2a of the reaction tube 2 so that the lower end 2a has a temperature equal to or higher than the melting point of silicon, preferably 1430 ° C. to 1500 ° C. , Members and the like. Excessive heating of the lower end portion 2a by the temperature lowering preventing means is not preferable because silicon fine powder is generated.
  • the range of the lower end 2a to be heated by the temperature lowering prevention means depends on the shape and the like, but is as follows. That is, as shown in FIG. 9 (a), the angle between the horizontal surface (opening surface) 71 contacting the lowermost end of the reaction tube 2 and the central axis of the reaction tube 2 and the opening surface 71 is 45 degrees. Of the reaction tube 2 from the shortest straight line (for example, if the opening surface 71 has an elliptical shape) on the straight line heading in the direction Direction force in the axial direction along the inner peripheral surface Range force up to the horizontal plane 72 passing through the intersection 74 with the vertical line The lower end 2a to be heated by the above-mentioned temperature reduction prevention means.
  • the opening shape of the reaction tube 2 may be other shapes such as an elliptical shape in addition to a circular shape.
  • This opening The shape of the lower end portion 2a in the vicinity of the mouth is not limited to the case where the thickness of the silicon melt is adjusted so that the silicon particle diameter is small and uniform, in addition to the case where the thickness is uniform from above to the lowermost end.
  • the outer peripheral portion may be cut obliquely so that the diameter of the outer peripheral portion gradually decreases toward the lower end, or the opening may have a wavy shape.
  • the opening surface of the reaction tube 2 may be slightly inclined from a horizontal plane.
  • the range of the lower end 2a to be heated by the above-mentioned temperature drop prevention means is defined by the intersection 73 between the opening surface 71 of the reaction tube 2 and the central axis of the reaction tube 2.
  • the range where the distance from these intersections 74a and 74b is equal and the upper limit is the parallel surface 72 parallel to the opening surface 71 is heated by the above-mentioned temperature drop prevention means.
  • the lower end 2a should be.
  • the range of heating by the above-mentioned temperature reduction prevention means is a region of the lower end portion 2a (the lowermost force of the reaction tube 2 is also a length range up to the distance r in the tube axis direction). It is indispensable, and if necessary, it is desirable to heat the length range (4r) up to four times this distance r by the above-mentioned temperature drop prevention means.
  • silicon fine powder may be generated.
  • D is 2 or more, preferably 3 or more.
  • the heat retaining member 23 is not necessarily required and may be kept warm.
  • the member 23 may be omitted. Even when the lower end 2a of the reaction tube 2 is covered to the lowermost end by the heat retaining member 23, the temperature of the lower end 2a decreases due to heat radiation from the inner surface of the lower end 2a, and the heat retaining member 23 When the lower end 2a is not covered, the temperature drop of the lower end 2a is larger.
  • the lower end 2a is A carbon tube 21 is provided to cover the outer periphery in the vicinity.
  • the carbon tube 21 is formed using a carbon material, such as graphite, which can be heated by high frequency from the high frequency heating coil 4 as a base material.
  • the lower end 2a of the reaction tube 2 is directly heated by the high-frequency heating coil 4 and simultaneously heated by infrared rays emitted from the carbon tube 21 heated by the high-frequency heating coil 4.
  • the lower end 2a is sufficiently heated and heated to a temperature equal to or higher than the melting point of silicon.
  • the molten silicon which does not form a lump, falls along the inner surface of the reaction tube 2 and smoothly falls from the lower end 2a, and is collected by the silicon collecting unit 5.
  • the carbon tube 21 is installed so as to separate the reaction tube 2 from a heat insulating member 23 formed of a carpon fiber, a ceramic sintered body, or the like provided on the outer periphery of the reaction tube 2.
  • a heat insulating member 23 is wound around the heat insulating member.
  • a sealing gas such as hydrogen is supplied to a gap 24 between the reaction tube 2 and the carbon tube 21 to prevent silicon deposition in this region.
  • a tubular member separating the reaction tube 2 and the heat retaining member 23 as in the carbon tube 21 of FIG. 1 a part including a lower end thereof is formed of a carbon material, and an upper portion thereof is formed of a ceramic or the like.
  • a coil formed of a material that is not heated by the high frequency from the high frequency heating coil 4 may be used. That is, if the tubular member is formed of a carbon material near the lower end 2a of the reaction tube 2, infrared heating can be performed on the lower end 2a, and other portions of the tubular member are made of a material other than the carbon material. It is formed of
  • a heat retaining member 23 may be wound around the outer surface of the reaction tube 2, and the carbon tube 21 may be installed only near the lower end 2a of the reaction tube 2.
  • the thickness of the carbon tube 21 in the radial direction is determined in consideration of the penetration depth by the frequency and the strength, etc., in order for the high frequency from the high frequency heating coil 4 to efficiently reach the lower end 2a of the reaction tube 2. It is desirable that the thickness be as thin as possible.
  • FIGS. 3 and 4 are cross-sectional views showing the vicinity of the lower end of the reaction tube in another embodiment of the silicon manufacturing apparatus of the present invention.
  • a ring-shaped heating element 31 is arranged near the lower end 2a of the reaction tube 2, and a current is supplied to the ring-shaped heating element 31 from a power supply (not shown) to heat and heat the ring-shaped heating element 31.
  • a power supply not shown
  • Infrared from ring-shaped heating element 31 to lower end 2a The lower end 2a is heated by irradiating a line.
  • a plurality of rods 41 made of quartz glass are arranged near the lower end 2 a of the reaction tube 2, and infrared light from the light bulb 42 is transmitted to the base 4 of the rod 41.
  • the light is introduced from la into the inside of the rod-shaped body 41 and guided to the tip 41b.
  • the lower end 2a is heated by spot irradiation of infrared light from the front end 41b to the lower end 2a.
  • the tip portion 41b of the rod-shaped body 41 made of quartz glass is desirably formed in a lens shape in order to converge emitted infrared light.
  • the lower end 2a of the reaction tube 2 is heated by infrared rays to prevent the temperature from lowering.
  • the infrared rays are irradiated over the entire circumference of the lower end 2a to be heated. It is desirable.
  • FIG. 5 is a cross-sectional view showing the vicinity of the lower end of a reaction tube in another embodiment of the silicon manufacturing apparatus of the present invention.
  • the high-frequency heating coil 4 is formed with a coil pitch P1 shorter than the coil pitch P2 of the coil 4U above the coil in the region near the lower end 2a of the reaction tube 2 (lower end coil 4L) t. (See Figure 1 for the overall layout of the lower coil 4L and coil 4U).
  • a single power supply As a power supply for supplying power to the high-frequency heating coil 4, a single power supply is provided.
  • the lower coil 2L emits a high frequency higher than the high frequency from the coil 4U above the lower coil 4L, and the lower end 2a of the reaction tube 2 is selectively and strongly heated.
  • the lower end portion 2a of the reaction tube 2 and the upper portion thereof can be heated by the same power supply, so that a relatively simple device configuration can be achieved.
  • FIG. 6 is a sectional view showing a modification of the embodiment of FIG.
  • a carbon tube 21 is provided near the lower end 2 a of the reaction tube 2.
  • the carbon tube 21 is heated by the lower end coil 4L having a high winding density, and the lower end 2a of the reaction tube 2 is heated by infrared rays radiated from the heated carbon tube 21.
  • the lower end 2a of the reaction tube 2 is selectively and strongly heated by the lower end coil 4L having a high winding density, and further heated by infrared rays from the carbon tube 21 heated by the high frequency from the lower end coil 4L. Therefore, it is possible to effectively prevent a temperature drop at the lower end 2a of the reaction tube 2.
  • FIG. 7 is a cross-sectional view showing the vicinity of the lower end of the reaction tube in another embodiment of the silicon manufacturing apparatus of the present invention.
  • the coil (lower end coil 4L) of the high-frequency heating coil 4 in the region near the lower end 2a of the reaction tube 2 is formed of two coils that are wound twice in the diameter increasing direction.
  • the lower end coil 4L is wound twice as described above, when the reaction tube 2 is heated by the high-frequency heating coil 4, the lower end 2a of the reaction tube 2 becomes the inner coil and the outer coil of the lower end coil 4L. It is heated by the high frequency waves from both of them, and is heated more strongly than the heating from the coil 4U above it. Therefore, the lower end 2a of the reaction tube 2 is selectively and strongly heated, and a temperature drop at the lower end 2a is prevented.
  • the lower end coil 4L may be a double wound coil or a multiple wound coil wound three or more times in the diameter expanding direction.
  • a single power supply can be used when the lower end coil 4L is formed by winding one coil in a multiplex manner.
  • FIG. 8 is a cross-sectional view showing the vicinity of the lower end of the reaction tube in another embodiment of the silicon manufacturing apparatus of the present invention.
  • the high-frequency heating coil 4 is composed of two divided coils to which power is supplied by different systems.
  • One coil 4U is installed on the outer peripheral side of the entire deposition region above the vicinity of the lower end 2a of the reaction tube 2, and the other lower end coil 4L is installed in the vicinity of the lower end 2a of the reaction tube 2.
  • These coils 4U and 4L at the lower end have a high frequency by an independent control system of another system.
  • the wave power is controlled, the deposition region above the lower end 2a of the reaction tube 2 is heated by the coil 4U, and the lower end 2a is heated by the coil 4L.
  • each control system When melting the silicon, each control system is set so that the heating intensity of the lower end coil 4L to the lower end 2a of the reaction tube 2 is higher than the heating intensity of the upper coil 4L to the reaction tube 2.
  • To control the high frequency power Thereby, the lower end 2a of the reaction tube 2 is selectively and strongly heated by the strong high frequency generated by the lower end coil 4L, and the lowering of the temperature at the lower end 2a is prevented.
  • a power supply for supplying power to the coil 4U and a power supply for supplying power to the lower coil 4L are provided.
  • a method of supplying high frequency power to each coil independently from each power source there is a method of supplying high frequency power to each coil independently from each power source.
  • the power supply for supplying power to the coil 4U and the power supply for supplying power to the lower coil 4L are the same power supply, and the power supply system is made independent by taps, thyristors, etc., and high-frequency power is supplied to these coils by separate systems. You may make it supply.
  • the supply of the high-frequency power to the lower end coil 4L is adjusted by measuring the temperature of the lower end 2a of the reaction tube 2 and visually confirming the feedback control force or the operating state.
  • a reaction tube having a carbon material, dimensions of 100 mm in outer diameter, 70 mm in inner diameter, and 1000 mm in length was attached to a polycrystalline silicon manufacturing apparatus.
  • a carbon tube (21) is installed on the outer peripheral side of the lower end of the reaction tube as shown in Fig. 2, and the lower end of the reaction tube is heated by infrared rays from the carbon tube heated by the high-frequency heating coil. I made it.
  • a mixed gas of 20 kg / H of trichlorosilane and 40 Nm 3 / H of hydrogen is passed through the inside of the reaction tube, and heated by a high-frequency heating coil wound at a uniform coil pitch, so that the temperature at the bottom and bottom of the reaction tube was raised to 1450 ° C. or higher to deposit polycrystalline silicon in a molten state. After the continuous reaction for 100 hours, the state of the lower end of the reaction tube was observed, but the silicon lump was not solidified at the lower end of the reaction tube.
  • a reaction tube having a carbon material, dimensions of 100 mm in outer diameter, 70 mm in inner diameter, and 1000 mm in length was attached to a polycrystalline silicon manufacturing apparatus.
  • the high-frequency heating coil of this silicon manufacturing apparatus used a lower-end coil (a coil having a shorter pitch of 4U and a higher winding density.
  • the pitch P1 of the lower-end coil (4L) was used.
  • High-frequency power was supplied from the same power supply to these successively wound coils with a pitch P2 of 10 mm and a pitch P2 of the upper coil (4U) of 30 mm.
  • a mixed gas of 20 kg / H of trichlorosilane and 40 Nm 3 / H of hydrogen is passed through the inside of the reaction tube, and heated by the high-frequency heating coil to a temperature of 1450 ° C at the lower end of the reaction tube and at a temperature other than the lower end.
  • the temperature was raised as described above, and polycrystalline silicon was precipitated in a molten state. After the continuous reaction for 100 hours, the state of the lower end of the reaction tube was observed. At the lower end of the reaction tube, no silicon lump was solidified.
  • a reaction tube having a carbon material, dimensions of 100 mm in outer diameter, 70 mm in inner diameter, and 1000 mm in length was attached to a polycrystalline silicon manufacturing apparatus.
  • the high-frequency heating coil of the silicon manufacturing apparatus used was a coil in which the lower end side coil (4L) was wound twice in the diameter increasing direction.
  • a mixed gas of 20 kg / H of trichlorosilane and 40 Nm 3 / H of hydrogen is passed through the inside of the reaction tube, and heated by the high-frequency heating coil to raise the temperature at the lower end of the reaction tube and at a temperature other than the lower end to 1450 ° C.
  • the temperature was raised as described above, and polycrystalline silicon was precipitated in a molten state. After the continuous reaction for 100 hours, the state of the lower end of the reaction tube was observed. At the lower end of the reaction tube, no silicon lump was solidified.
  • a reaction tube having a carbon material, dimensions of 100 mm in outer diameter, 70 mm in inner diameter, and 1000 mm in length was attached to a polycrystalline silicon manufacturing apparatus.
  • the high-frequency heating coil of this silicon manufacturing equipment separates the high-frequency power to the lower coil (4L) and the high-frequency power to the upper coil (4U) in separate systems.
  • the power supply for the lower coil (4L) and the power supply for the coil The power supply to each of these divided coils is independently controlled.
  • a mixed gas of 20 kg / H of trichlorosilane and 40 Nm 3 / H of hydrogen is passed through the inside of the reaction tube, and heated by the high-frequency heating coil to raise the temperature at the lower end of the reaction tube and at a temperature other than the lower end to 1450 ° C.
  • the temperature was raised as described above, and polycrystalline silicon was precipitated in a molten state. After the continuous reaction for 100 hours, the state of the lower end of the reaction tube was observed. At the lower end of the reaction tube, no silicon lump was solidified.
  • a continuous reaction was carried out under the same conditions as in Example 1 except that the carbon tube (21) was not provided, but a silicon lump solidified at the lower end of the reaction tube and formed an icicle-like extension. This silicon lump made it impossible to continue the reaction.
  • FIG. 1 is a cross-sectional view showing an embodiment of a silicon manufacturing apparatus of the present invention.
  • FIG. 2 is a cross-sectional view of the vicinity of the lower end of a reaction tube, showing a modification of the embodiment of FIG. 1.
  • FIG. 3 is a cross-sectional view showing a periphery of a lower end portion of a reaction tube in another embodiment of the silicon manufacturing apparatus of the present invention.
  • FIG. 4 is a cross-sectional view showing a periphery of a lower end portion of a reaction tube in another embodiment of the silicon manufacturing apparatus of the present invention.
  • FIG. 5 is a cross-sectional view showing the periphery of the lower end of a reaction tube in another embodiment of the silicon manufacturing apparatus of the present invention.
  • FIG. 6 is a cross-sectional view of the vicinity of a lower end portion of a reaction tube showing a modification of the embodiment of FIG. 5.
  • FIG. 7 is a cross-sectional view showing a periphery of a lower end portion of a reaction tube in another embodiment of the silicon manufacturing apparatus of the present invention.
  • FIG. 8 is a cross-sectional view showing the periphery of the lower end of a reaction tube in another embodiment of the silicon manufacturing apparatus of the present invention.
  • Fig. 9 is a diagram for explaining the range of the lower end of the reaction tube to be heated by the temperature lowering prevention means.
  • FIG. 10 is a diagram illustrating a range of heating by a temperature drop prevention unit.
  • FIG. 11 shows the length L of the silicon deposition portion of the reaction tube and the reaction tube in the apparatus of the present invention.
  • Fig. 9 is a diagram for explaining a ratio L / D to an inner diameter D at the lowermost end of the graph c.
  • FIG. 12 is a cross-sectional view showing a conventional manufacturing apparatus. Explanation of symbols

Abstract

 多結晶シリコンの製造装置において、反応管の内面をシリコンの融点以上の温度にして析出シリコンを下方の回収部へ落下させて回収する際に、反応管の下端部での温度低下に伴う該下端部での溶融シリコンの固化を防止することができるシリコン製造装置を提供する。反応管2の下端部2aの外周を赤外線で加熱する赤外線放射装置、あるいは高周波加熱コイル4における下端部近傍のコイルで構成された、該下端部近傍よりも上方のコイル4Uに比して加熱強度を高めた下端側コイル4Lなどの温度低下防止手段を設け、この温度低下防止手段により、高周波加熱コイル4で反応管2を加熱した際における下端部2aの温度低下を防止するようにした。

Description

明 細 書
シリコン製造装置
技術分野
[0001] 本発明は、多結晶シリコンを製造するためのシリコン製造装置に関する。さらに詳し くは、本発明は、高周波加熱コイルで加熱された反応管へ原料ガスを供給して、反 応管の内面にシリコンを析出させ、反応管の下端部を含む少なくとも一部をシリコン の融点以上に加熱した状態で、析出したシリコンを反応管の下方に設けた回収部へ 落下させて回収するシリコンの製造装置に関する。
^景技術
[0002] 従来から、半導体、太陽光発電用電池などの原料として使用されるシリコンを製造 するための種々の方法が知られており、これらのうちで、幾つかの方法は既に工業的 に実施されている。
例えば、その一つはジーメンス法と呼ばれる方法であり、この方法では、通電により シリコンの析出温度に加熱したシリコン棒をベルジャーの内部に配置し、このシリコン 棒にトリクロロシラン (SiHCl )やモノシラン(SiH )を、水素等の還元性ガスとともに接
3 4
触させてシリコンを析出させる。
この方法では高純度なシリコンが得られ、最も一般的な方法として工業的に実施さ れているが、バッチ式でシリコンの析出を行うため、種となるシリコン棒の設置、シリコ ン棒の通電加熱、析出、冷却、取り出し、ベルジャーの洗浄などの一連の過程を、バ ツチごとに繰り返す必要があり、煩雑な操作を要する。
[0003] 一方、連続的に多結晶シリコンを製造可能な方法として、図 12に示した装置による 方法が提案されている(例えば特許文献 1、 2を参照)。このシリコン製造装置 100は 、密閉容器 111内に、反応管 102と、クロロシラン類と水素とを供給するガス供給口 1 03と、反応管 102の外周に設置した高周波加熱コイル 104とを備えている。
反応管 102は、その外周の高周波加熱コイル 104からの電磁波で加熱され、反応 管 102の内面はシリコンの融点以上の温度カ あるいはこれ未満のシリコンが析出可 能な温度に加熱される。 そして、この加熱された反応管 102の内面へ、ガス供給口 103から供給されたクロ ロシラン類を接触させてシリコンを析出させる。
反応管 102の内面をシリコンの融点以上の温度にしてシリコン析出を行う場合 (第 1 の方法)では、溶融状態で析出したシリコン融液を、反応管 102の下端部 102aの開 口から連続的に落下させて、落下方向に設置されたシリコン回収部 105で回収する
[0004] また、反応管 102の内面をシリコンが析出可能な融点未満の温度にしてシリコン析 出を行う場合 (第 2の方法)では、反応管 102の内面に一度シリコンを固体として析出 させた後、この内面をシリコンの融点以上に加熱して、析出物の一部または全部を溶 融させて落下させ、落下方向に設置されたシリコン回収部 105で回収する。
なお、反応装置 100内における、例えば反応管 102とガス供給管 106との間隙 10 7などの、シリコンの析出を防止する必要がある領域には水素等のシールガスを供給 して満たしている。また、反応管 102での反応後の排ガスは、密閉容器 111に設けら れたガス排出管 108から外部へ排出される。 110は、高周波加熱コイル 104を反応 ガス雰囲気から遮断するための、石英等で形成される隔壁である。
特許文献 1 :特開 2003 - 2627号公報
特許文献 2:特開 2002 - 29726号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、反応管 102の内面の、シリコン析出を行う領域を高周波加熱コイル 1 04でシリコンの融点以上に昇温しょうとしても、反応管 102の下端部 102aでは放熱 が特に大きいために、その上方の管面温度に比してその温度が低下してしまう。 このため、上記した反応管 102の内面をシリコンの融点以上の温度にしてシリコン 析出を行う第 1の方法、反応管 102の内面をシリコンが析出可能な融点未満の温度 にしてシリコン析出を行う第 2方法のいずれにおいても、反応管 102の内面をシリコン の融点以上の温度にして、析出したシリコンを溶融、落下させて下方に設置したシリ コン回収部 105で回収しょうとする際に、例えば反応管 102の内面を下方へ流れて 下端部 102aへ到達した溶融シリコンなどが冷やされて、その一部が固化してしまう。 このように下端部 102aで溶融シリコンが固化してしまうと、下端部 102aの先端から 下方へつらら状にシリコン塊が延長形成されるため、シリコン回収部 105への適切な 落下による回収が阻害されてしまう。
[0006] 一方、この下端部 102aにおける溶融シリコンの固化を防止するために、高周波加 熱コイル 104で下端部 102aを充分に加熱しょうとすると、これに伴って反応管 102の 下端部 102aより上方の部分が昇温され過ぎてしまい、シリコン微粉ゃシラン類オリゴ マー等の副生物が発生し易くなり、 目的とするシリコンの収率低下やエネルギーの損 失が大きくなる。
また、反応管 102の外面に保温部材を卷装して反応管 102からの放熱を抑制する こともある力 現状の保温部材では、下端部 102aの保温を充分に確保することは困 難である。さらに、下端部 102aの表面を、管内面側から開口を出て管外面側まで伝 つてくる溶融シリコンが保温部材の下端部近傍と接触すると、保温部材が劣化してし まう等の問題がある。
[0007] 本発明は、上記したような従来技術における問題点を解決するためになされたもの であり、その目的は、反応管の内面をシリコンの融点以上の温度にして析出シリコン を下方の回収部へ落下させて回収する際に、反応管の下端部における温度低下に 伴う該下端部での溶融シリコンの固化を防止することができるシリコン製造装置を提 供することにある。
課題を解決するための手段
[0008] 本発明のシリコン製造装置は、炭素材料を基材とする反応管と、
前記反応管の上部から、クロロシラン類と水素とを供給するガス供給口と、 前記反応管の外周側に設けた高周波加熱コイルとを備え、
前記高周波加熱コイルにより前記反応管の下端部を含む少なくとも一部をシリコン の融点以上に加熱可能とした多結晶シリコンの製造装置であって、
前記高周波加熱コイルによる加熱時における前記反応管の下端部の温度低下を 防止する温度低下防止手段を備えることを特徴とする。
上記の発明では、温度低下防止手段により、高周波加熱コイルで反応管を加熱し た際における反応管の下端部の温度低下を防止している。従って、反応管の内面を シリコンの融点以上の温度にして析出シリコンを下方の回収部へ落下させて回収す る際に、反応管の下端部における溶融シリコンの固化を防止することができる。
[0009] 本発明の好ましい態様では、前記温度低下防止手段は、前記反応管の下端部の 外周を赤外線で加熱する赤外線放射装置である。
赤外線放射装置により反応管の下端部を赤外線で加熱することによって、反応管 の内面をシリコンの融点以上の温度にして析出シリコンを下方の回収部へ落下させ て回収する際に、反応管の下端部における温度低下が防止され、反応管の下端部 における溶融シリコンの固化を防止することができる。
前記赤外線放射装置は、前記反応管の下端部の外周側に該下端部から離間して 周設された、炭素材料を基材とする赤外線放射部材と、
前記赤外線放射部材の外周側に、該赤外線放射部材を加熱するように配置された 前記高周波加熱コイルとから構成することができる。
[0010] このように、反応管の下端部の外周側に赤外線放射部材を設置し、反応管のシリコ ン析出領域を加熱する高周波加熱コイルでこの赤外線放射部材を同時に加熱する ことにより、反応管の下端部は赤外線放射部材力 の赤外線で充分に加熱され、反 応管の下端部における温度低下を防止することができる。
本発明の他の好ましい態様では、前記温度低下防止手段は、前記高周波加熱コィ ルにおける下端部近傍のコイルで構成された、該下端部近傍よりも上方のコイルに 比して加熱強度を高めた下端側コイルである。
下端側コイルにより反応管の下端部を選択的に強く加熱することによって、反応管 の内面をシリコンの融点以上の温度にして析出シリコンを下方の回収部へ落下させ て回収する際に、反応管の下端部における温度低下が防止され、反応管の下端部 における溶融シリコンの固化を防止することができる。
[0011] 前記下端側コイルは、その上方のコイルのコイルピッチに比して短いコイルピッチで 形成されてレ、ることが好ましレ、。
このように、間隔を狭めて卷回したコイルで下端側コイルを構成することにより、反応 管の下端部に対する加熱強度が選択的に強めることができ、反応管の下端部におけ る温度低下を防止することができる。 前記下端側コイルは、拡径方向へ多重に卷回された複数のコイルからなることが好 ましい。
このように、多重に卷回された複数のコイルで下端側コイルを構成することにより、 多重に卷回された各コイルからの高周波で反応管の下端部が加熱されるので、反応 管の下端部に対する加熱強度が選択的に強められ、反応管の下端部における温度 低下を防止することができる。
[0012] 前記下端側コイルは、その上方のコイルとは独立に高周波電力が制御されるコイル 力 なることが好ましい。
このように、下端側コイルをその上方のコイルから分割し、例えば上方のコイルとは 別の電源で下端側コイルに高周波電力を供給する力 あるいは、上方のコイルと同 一の電源を用いてタップ、サイリスタ等により上方のコイルとは別系統で下端側コィノレ に高周波電力を供給し、反応管の下端部に対する加熱強度を選択的に強めるように 下端側コイルへの高周波電力を制御することによって、反応管の下端部における温 度低下を防止することができる。
本発明において、前記反応管の外周側には、該反応管からの放熱を抑制する保 温部材を設置してもよい。
[0013] 本発明において、前記反応管の下端部は、その形状等にもよるが、例えば、該反 応管の最下端と接する水平面と該反応管の中心軸との交点から、該水平面と成す角 度が 45度となる方向に向力 直線と、
前記反応管の開口形状を均等に 2分割する直線のうち最短となる直線上から該反 応管の内周面に沿って軸方向に向力う垂線との交点を上限とする範囲である。 発明の効果
[0014] 本発明のシリコン製造装置によれば、反応管の内面をシリコンの融点以上の温度 にして析出シリコンを下方の回収部へ落下させて回収する際に、反応管の下端部に おける温度低下に伴う該下端部での溶融シリコンの固化を防止することができる。 発明を実施するための最良の形態
[0015] 以下、図面を参照しながら本発明の実施形態について説明する。図 1は、本発明 のシリコン製造装置の実施形態を示した断面図である。なお、前述した従来のシリコ ン製造装置の部材等と対応する部分は符号 100を略して示す。
図示したように、このシリコン製造装置 1は、密閉容器 11内に、反応管 2と、クロロシ ラン類と水素とを供給するガス供給口 3と、反応管 2の外周に設けられた高周波加熱 コイル 4と、反応管 2の外周面に近接して、その上部側から下端部 2a近傍に渡り設け られたカーボン管 21とを備えている。
反応に使用するクロロシラン類としては、例えば、トリクロロシラン(SiHCl、四塩ィ匕 ケィ素(SiCl )、ジクロロシラン(SiH C1 )、モノクロロシラン(SiH C1)、あるいはへキ サクロロジシラン(Si C1 )などのクロロジシラン類、ォクタクロロトリシラン(Si C1 )など のクロロトリシラン類を挙げることができる。これらのクロロシラン類は、単独で用いても よぐまたは 2種以上を組み合わせて用いてもよい。
[0016] 反応管 2は、円筒状等の筒状に形成され、その下端部 2aの開口から下方へ開放さ れている。その形成材料としては、高周波による加熱が可能で、シリコンの融点で耐 性がある、グラフアイトなどの炭素材料が好適に使用される。
析出するシリコンと直接に接触する管内面を、シリコンの融液に対して比較的耐性 の高い窒化珪素、炭化珪素、熱分解炭素などで被覆することが、反応管 2の耐久性 を向上し、シリコン製品の純度を向上する点から好ましい。
反応管 2の内部には、その上部に設置されたガス供給管 6のガス供給口 3から、クロ ロシラン類と水素とが同時にもしくは別々に供給される。このガス供給管 6は、管の熱 劣化を防止し、管内でクロロシラン類が分解することを防止するために、ガス供給管 6 を冷却するための冷却手段を備えることが望ましい。ガス供給管 6の冷却は、例えば 、水、熱媒油等の冷媒液体を供給する流路をガス供給管 6に設けて冷却する液体ジ ャケット方式、ガス供給管 6の外周に 1または 2以上のノズルを略同心円状に設置して 、ガス供給管 6から反応ガスを供給するとともに、ガス供給管 6およびその外周の各ノ ズノレ間の間隙に冷却ガスを供給 (パージ)してガスによる冷却でガス供給管 6を冷却 する空冷ジャケット方式などにより行われる。
[0017] 反応管 2の上部における、反応管 2の内面とガス供給管 6の外面とが横方向で重な る領域は、低温領域であり、析出した固体状シリコンを融点以上に加熱して溶融させ ることが困難であるため、この反応管 2とガス供給管 6との間隙 7には水素ガス、アル ゴンガス等のシールガスを供給して、間隙 7をシールガス雰囲気で満たし、これにより クロロシラン類と水素との混合ガスが間隙 7へ侵入することを防止している。この他、 シリコンと反応して原料ガスを生成する、塩化水素等の反応試剤を単独で、またはシ ールガスとともに間隙 7へ供給してもよレヽ。
この他、製造装置 1内における、例えば反応管 2とカーボン管 21との間隙 24などの 、シリコンの析出を防止する必要がある領域には、同様にシールガス等を供給して満 たしている。
[0018] 反応管 2は、その外周の高周波加熱コイル 4からの電磁波(高周波)で加熱され、反 応管 2の内面はシリコンの融点以上の温度力、、あるいはこれ未満のシリコンが析出可 能な温度に加熱される。この加熱領域は通常、下端部 2aから管方向へ、密閉容器 1 1内における反応管 2の全長に対して 30 90%の長さの領域である。
反応管 2の内面をシリコンの融点以上の温度にしてシリコン析出を行う方法(第 1の 方法)では、反応管 2の内面の温度をシリコンの融点 (概ね 1410— 1430°C)以上と してシリコンを溶融状態で析出させる。
反応管 2の内面をシリコンが析出可能な融点未満の温度にしてシリコンを析出させ る方法(第 2の方法)では、反応管 2内面の温度を、例えば 950°C以上、好ましくは 12 00°C以上、さらに好ましくは 1300°C以上としてシリコンを析出させる。
[0019] 高周波加熱コイル 4は、図示しない電源からコイル 4へ通電することにより電磁波を 発生して反応管 2を加熱する。この電磁波の周波数は、反応管 2等の、加熱対象の 材質もしくは形状に応じて適切な値に設定され、例えば、数十 Hz—数十 GHz程度 に設定される。
反応管 2の内面に析出したシリコンは、反応管 2の下端部 2aの開口から落下させて 、落下方向に設置されたシリコン回収部 5で回収する。
シリコン回収部 5における冷却回収室の形成材料としては、金属、セラミックス、ガラ ス等が使用できるが、工業装置としての頑丈さと、高純度のシリコンを回収することを 両立するために、金属製の冷却回収室の内面に、シリコン、テフロン (登録商標)、石 英ガラス、タンタル、タングステン、モリブテン等でライニングを施すことが好ましい。冷 却回収室の底部にはシリコン粒子を敷いてもよい。また、冷却回収室から固化したシ リコンを連続的あるいは断続的に抜き出す取出口を設けてもよい。冷却回収室に達 したシリコンは、上記の材料と接することにより冷却される力 S、冷媒液体が通液される 冷却ジャケット、冷却ガスが供給される冷却ガス供給管などを設置して冷却するように してもよい。
[0020] 前述した第 1の方法では、溶融状態で析出したシリコン融液を、反応管 2の下端部 2aの開口から連続的に落下させて、落下方向に設置されたシリコン回収部 5で回収 する。この場合、析出したシリコン融液は、反応管 2の内面に沿って下方へ流れ、下 端部 2aから液滴として自然落下し、落下中もしくは落下後に固化する。
また、前述した第 2の方法では、反応管 2の内面に一度シリコンを固体として析出さ せた後、この内面をシリコンの融点以上となるまで加熱、昇温して、析出物の一部ま たは全部を溶融させて落下させ、落下方向に設置されたシリコン回収部 5で回収する この場合、シリコンを反応管 2の内面に析出させる工程と、この内面をシリコンの融 点以上となるまで加熱、昇温して、析出物を落下させてシリコン回収部 5で回収する 工程とが繰り返される。回収部 5から装置外部へシリコン 9を取り出す際には、例えば 、反応管 2を含む装置上部の空間とその下側の回収部 5との間に、板状体を横方向 ヘスライドさせてこれらの空間を仕切り、これにより装置上部の空間では反応ガス雰 囲気を保って析出反応を継続させながら、回収部 5で回収したシリコン 9を装置外部 へ取り出すことができる。また、反応管 2の内面をシリコンの融点以上まで昇温するた めの加熱は、高周波加熱コイル 4の電源出力を調整して行うことができる力 この他、 シリコン製造装置 1の内部で流れるガスの流量を減少させることで、この加熱を行うこ とあできる。
[0021] シリコンの製造条件は、特に限定されないが、クロロシラン類からシリコンへの転化 率が 20%以上、好ましくは 30%以上となる条件下でシリコンを生成させるように、クロ ロシラン類と水素との供給比率、供給量、滞在時間等を決定することが望ましい。反 応容器の大きさに対して経済的なシリコンの製造速度を得るためには、供給ガス中の クロロシラン類のモル分率は、 0.1 99. 9モル0 /0とすることが好ましぐより好ましくは 5— 50モル%である。また、反応圧力は高い方が装置を小型化できるメリットがあるが 、 0— IMPaG程度が工業的に実施し易い。
ガスの滞在時間については、一定容量の反応容器に対して圧力と温度の条件によ つて変化するが、反応条件下において、反応管 2内でのガスの平均的な滞在時間を 0.001 60秒、好ましくは 0.01 10秒に設定すれば、充分に経済的なクロロシラン 類の転化率を得ることが可能である。
[0022] 反応管 2の内面をシリコンの融点以上として、反応管 2の下端部 2aからシリコンを落 下させてシリコン回収部 5で回収する際に、高周波加熱コイル 4で反応管 2を加熱し ても、その下端部 2aでは放熱が特に大きいために充分に昇温することができず、そ の上方の管内面に比して温度が低下してしまう。このため、この下端部 2aで溶融シリ コンが冷やされて、その一部が固化してしまう。
このように下端部 2aで溶融シリコンが固化してしまうと、下端部 2aの先端から下方 へつらら状にシリコン塊が延長形成されるため、シリコン回収部 5への適切な落下に よる回収が阻害されてしまう。
そこで本発明では、反応管 2をシリコンの融点以上に加熱した際に、その下端部 2a の温度低下を防止する温度低下防止手段を設けている。この温度低下防止手段は 、具体的には、反応管 2の下端部 2aを、下端部 2aがシリコンの融点以上、好ましくは 1430°C— 1500°Cとなるように下端部 2aを加熱する装置、部材等である。下端部 2a を温度低下防止手段により過剰に昇温するのは、シリコン微粉が発生する等のため 好ましくない。
[0023] この温度低下防止手段で加熱すべき下端部 2aの範囲は、その形状等にもよるが、 次のとおりである。即ち図 9 (a)に示したように、反応管 2の最下端と接する水平面(開 口面) 71と反応管 2の中心軸との交点 73から、開口面 71と成す角度が 45度となる方 向に向かう直線と、開口面 71を均等に 2分割する直線のうち最短となる直線上 (例え ば開口面 71が楕円形状である場合には、その短軸上)から反応管 2の内周面に沿つ て軸方向に向力 垂線との交点 74を通る水平面 72を上限とする範囲力 上記の温 度低下防止手段で加熱すべき下端部 2aとなる。反応管 2の開口径が大きくなるほど 下端部 2aからの放熱が大きくなり、加熱すべき下端部 2aの高さ範囲も長くなる。 反応管 2の開口形状は、円状の他、楕円状などの他の形状であってもよい。この開 口近傍における下端部 2aの形状は、上方から最下端まで均一な厚みである場合の 他、シリコン粒子の粒径が小さく且つ均一となるようにシリコン融液の液滴を調整する ために、最下端へ向かって外周部の径が徐々に小さくなるように外周部を斜方に切り 出した形状、あるいは開口周縁を波状とした形状にしてもよい。
[0024] また、反応管 2の開口面は水平面からやや傾いていてもよい。この場合図 9 (b)に 示したように、上記の温度低下防止手段で加熱すべき下端部 2aの範囲は、反応管 2 の開口面 71と反応管 2の中心軸との交点 73から、開口面 71と成す角度が 45度とな る方向に向かう直線と、開口面 71を均等に 2分割する直線のうち最短となる直線上か ら反応管 2の内周面に沿って軸方向に向力 垂線との交点 74a, 74bについて、これ らの交点 74aおよび 74bからの距離が等しく且つ開口面 71と平行な平行面 72を上 限とする範囲が、上記の温度低下防止手段で加熱すべき下端部 2aとなる。
反応管 2の下端部 2aの形状が複雑な場合であっても、加熱すべき下端部 2aの高さ 範囲は概ね図 9 (a) , (b)に基づいて規定される。
また、上記の温度低下防止手段で加熱する範囲は、図 10に示したように、下端部 2 aの領域 (反応管 2の最下端力も管軸方向への距離 rまでの長さ範囲)が必須であり、 必要に応じて、この距離 rの 4倍までの長さ範囲(4r)を上記の温度低下防止手段に より加熱することが望ましい。上記の温度低下防止手段により反応管 2の距離 4rよりも 上方の領域まで加熱すると、シリコン微粉が発生することがある。
[0025] また本発明の装置では、反応管 2のシリコンを析出させる領域であるシリコン析出部 の長さ L (図 11を参照)と、反応管 2の最下端における内径 Dとの比 L/Dは 2以上、 好ましくは 3以上である。
本発明の装置には、反応管 2の外周に、加熱時に反応管 2からの放熱を抑制する 保温部材 23を設置することが好ましいが、保温部材 23は必須ではなぐ場合によつ ては保温部材 23は無くてもよい。なお、保温部材 23で反応管 2の下端部 2aの最下 端まで覆った場合でも、下端部 2aの内面からの熱放射により下端部 2aの温度低下 が起こり、保温部材 23が反応管 2の下端部 2aまで覆っていない場合では、下端部 2 aの温度低下はより大きくなる。
図 1の実施形態では、この下端部 2aでの温度低下を防止するために、下端部 2aの 近傍でその外周を覆うカーボン管 21を設けている。このカーボン管 21は、グラフアイ トなどの、高周波加熱コイル 4からの高周波で加熱可能である炭素材料を基材として 形成される。
[0026] 反応管 2の下端部 2aは、高周波加熱コイル 4で直接に加熱されるとともに、高周波 加熱コイル 4で加熱されたカーボン管 21から発する赤外線で同時に加熱される。 このように下端部 2aをカーボン管 21から発する赤外線でさらに加熱することにより、 下端部 2aは充分に加熱されてシリコンの融点以上に昇温されるため、溶融シリコンが この部分で冷やされてシリコン塊を生成することがなぐ溶融シリコンは、反応管 2の 内面を伝って下端部 2aから円滑に落下してシリコン回収部 5で回収される。
本実施形態では、カーボン管 21を、反応管 2と、その外周に設置したカーポンファ ィバー、セラミック焼結体等で形成される保温部材 23とを仕切るように設置して、カー ボン管 21の外面に保温部材 23を卷装している。そして、反応管 2とカーボン管 21と の間隙 24に水素等のシールガスを供給して、この領域におけるシリコンの析出を防 止している。この場合、図 1のカーボン管 21のように反応管 2と保温部材 23とを仕切 る管状部材として、その下端部を含む一部を炭素材料で形成して、その上部をセラミ ックス等の、高周波加熱コイル 4からの高周波で加熱されない材料で形成したものを 用いてもよい。すなわち、反応管 2の下端部 2aの近傍において管状部材が炭素材料 で形成されていれば下端部 2aへの赤外加熱を行うことができ、管状部材のそれ以外 の部分は炭素材料以外の材料で形成されてレ、てもよレ、。
[0027] なお、例えば図 2に示したように、反応管 2の外面に保温部材 23を卷装して、カー ボン管 21を反応管 2の下端部 2a近傍にのみ設置するようにしてもよい。また、カーボ ン管 21の径方向の厚みは、高周波加熱コイル 4からの高周波を反応管 2の下端部 2 aへ効率よく到達させるためには、周波数による浸透深さを考慮し、強度等を損なわ なレ、範囲で薄くすることが望ましレ、。
図 3および図 4は、本発明のシリコン製造装置の他の実施形態における反応管下 端部周辺を示した断面図である。図 3の実施形態では、反応管 2の下端部 2a近傍に リング状発熱体 31を配置して、このリング状発熱体 31に図示しない電源から電流を 供給することにより通電加熱して、これによりリング状発熱体 31から下端部 2aへ赤外 線を照射して下端部 2aを加熱している。
[0028] 図 4の実施形態では、反応管 2の下端部 2a近傍に石英ガラスで形成した棒状体 41 を複数配置して、電球 42からの赤外光を、棒状体 41の基端部 4 laから棒状体 41の 内部へ導入し、先端部 41bまで導光している。そして、この先端部 41bから下端部 2a へ赤外光をスポット照射して下端部 2aを加熱している。この石英ガラスで形成した棒 状体 41の先端部 41bは、発せられる赤外光を収束させるためにはレンズ状に形成す ることが望ましい。
上記した各実施形態では、赤外線により反応管 2の下端部 2aを加熱してその温度 低下を防止するようにしたが、この場合、赤外線を下端部 2aの全周に渡り照射して加 熱することが望ましい。
図 5は、本発明のシリコン製造装置の他の実施形態における反応管下端部周辺を 示した断面図である。本実施形態では、高周波加熱コイル 4の、反応管 2の下端部 2 a近傍領域のコイル(下端部コイル 4L) t その上方のコイル 4Uのコイルピッチ P2よ りも短いコイルピッチ P1で形成されている(下端部コイル 4Lおよびコイル 4Uの全体 配置については図 1を参照)。
[0029] このように下端部コイル 4Lの卷き密度を高くしているので、高周波加熱コイル 4で反 応管 2を加熱した際に、反応管 2の下端部 2aは卷き密度が高い下端部コイル 4Lから 選択的に強く加熱され、下端部 2aにおける温度低下が防止される。
高周波加熱コイル 4へ電力を供給する電源としては、単一の電源が設けられている 。 1本のコイルの卷き密度を変化させて下端部コイル 4Lとその上方のコイル 4Uとを 形成した高周波加熱コイル 4の一端力 他端へ、この電源から通電した際に、コイル ピッチの短い下端部コイル 4Lからは、その上方のコイル 4Uからの高周波よりも高強 度の高周波が発せられ、反応管 2の下端部 2aが選択的に強く加熱される。このように 、反応管 2の下端部 2aとその上方とを同一の電源で加熱できるので、比較的簡易な 装置構成とすることができる。
[0030] 下端部コイル 4Lのコイルピッチ P1と、その上方のコイル 4Uのコイルピッチ P2は、 反応管 2の下端部 2aでのシリコン塊の生成を防止する点から、装置構成にもよるが、 コイルピッチの比率 P2/P1が 3以上であることが望ましい。 図 6は、図 5の実施形態の変形例を示した断面図である。図示したように、カーボン 管 21が反応管 2の下端部 2a近傍に設けられている。このカーボン管 21は、卷き密度 の高い下端部コイル 4Lにより加熱され、加熱されたカーボン管 21から放射された赤 外線により反応管 2の下端部 2aが加熱される。
反応管 2の下端部 2aは、卷き密度の高い下端部コイル 4Lにより選択的に強く加熱 されるとともに、この下端部コイル 4Lからの高周波により加熱されたカーボン管 21か らの赤外線でさらに加熱されるので、反応管 2の下端部 2aにおける温度低下を有効 に防止することができる。
[0031] 図 7は、本発明のシリコン製造装置の他の実施形態における反応管下端部周辺を 示した断面図である。本実施形態では、高周波加熱コイル 4の、反応管 2の下端部 2 a近傍領域のコイル(下端部コイル 4L)† 拡径方向へ 2重に卷回された 2つのコイル 力 構成されている。
このように下端部コイル 4Lを 2重に卷回しているので、高周波加熱コイル 4で反応 管 2を加熱した際に、反応管 2の下端部 2aは、下端部コイル 4Lにおける内側コイルと 外側コイルの両方からの高周波により加熱され、その上方のコイル 4Uからの加熱より も強く加熱される。したがって、反応管 2の下端部 2aは選択的に強く加熱され、下端 部 2aにおける温度低下が防止される。
下端部コイル 4Lは、 2重卷きの他、拡径方向へ 3重卷き以上に卷回した多重卷きコ ィルであってもよレ、。
[0032] 高周波加熱コイル 4へ電力を供給する電源としては、下端部コイル 4Lを 1本のコィ ルを多重に卷回して形成する場合には単一の電源を用いることができる。
図 8は、本発明のシリコン製造装置の他の実施形態における反応管下端部周辺を 示した断面図である。本実施形態では、高周波加熱コイル 4が、それぞれ別系統で 電力が供給される分割された 2つのコイルで構成されている。
一方のコイル 4Uは、反応管 2の下端部 2a近傍よりも上方の析出領域全体の外周 側に設置され、他方の下端部コイル 4Lは反応管 2の下端部 2a近傍領域に設置され ている。
これらのコイル 4Uおよび下端部コイル 4Lは、別系統の独立した制御系により高周 波電力が制御されており、反応管 2の下端部 2aよりも上方の析出領域はコイル 4Uに より加熱され、下端部 2aはコイル 4Lにより加熱される。
[0033] シリコンを溶融させる際には、下端部コイル 4Lによる反応管 2の下端部 2aに対する 加熱強度が、その上方のコイル 4Lによる反応管 2に対する加熱強度よりも強くなるよ うに、各制御系による高周波電力を制御する。これにより、反応管 2の下端部 2aは、 下端部コイル 4Lによる強い高周波によって選択的に強く加熱され、下端部 2aにおけ る温度低下が防止される。
コイル 4Uへの高周波電力と下端部コイル 4Lへの高周波電力とを別系統で独立に 制御する方法としては、コイル 4Uへ電力を供給する電源と、下端部コイル 4Lへ電力 を供給する電源とを別の電源として、各電源から独立に各コイルへ高周波電力を供 給する方法が挙げられる。
あるいは、コイル 4Uへ電力を供給する電源と、下端部コイル 4Lへ電力を供給する 電源とを同一電源として、タップ、サイリスタ等により電力供給系統を独立させ、これら のコイルへ別系統で高周波電力を供給するようにしてもよい。
[0034] 下端部コイル 4Lへの高周波電力の供給は、反応管 2の下端部 2aの温度を計測し 、フィードバック制御する力、あるいは運転状態を目視で確認しながら調整する。 以下、実施例により本発明を説明するが、本発明はこれらの実施例に限定されるも のではない。
[実施例 1]
材質がカーボンであり、円筒形で寸法が外径 100mm、内径 70mm、長さ 1000m mである反応管を多結晶シリコン製造装置に装着した。反応管の下端部の外周側に は、図 2に示したようにカーボン管(21)を設置し、高周波加熱コイルで加熱されたこ のカーボン管からの赤外線で反応管の下端部を加熱するようにした。
トリクロロシラン 20kg/Hと水素 40Nm3/Hとの混合ガスを反応管内部に流通させ 、均一なコイルピッチで卷回された高周波加熱コイルにより加熱して反応管の下端部 および下端部以外の温度を 1450°C以上に昇温させ、多結晶シリコンを溶融状態で 析出させた。 100時間の連続反応を行った後、反応管の下端部の状態を観察したが 、反応管の下端部においてシリコン塊は固化していなかった。 [実施例 2]
材質がカーボンであり、円筒形で寸法が外径 100mm、内径 70mm、長さ 1000m mである反応管を多結晶シリコン製造装置に装着した。このシリコン製造装置の高周 波加熱コイルには、図 5に示したように下端側コイル (4Uのピッチが短く卷き密度を 高くしたものを用いた。下端側コイル(4L)のピッチ P1を 10mmとし、その上方のコィ ノレ(4U)のピッチ P2を 30mmとして、これらの連続して卷回されたコイルへ同一の電 源から高周波電力を供給した。
[0035] トリクロロシラン 20kg/Hと水素 40Nm3/Hとの混合ガスを反応管内部に流通させ 、上記の高周波加熱コイルにより加熱して反応管の下端部および下端部以外の温度 を 1450°C以上に昇温させ、多結晶シリコンを溶融状態で析出させた。 100時間の連 続反応を行った後、反応管の下端部の状態を観察したが、反応管の下端部におい てシリコン塊は固ィ匕してレ、なかった。
[実施例 3]
材質がカーボンであり、円筒形で寸法が外径 100mm、内径 70mm、長さ 1000m mである反応管を多結晶シリコン製造装置に装着した。このシリコン製造装置の高周 波加熱コイルには、図 7に示したように下端側コイル (4L)を拡径方向に 2重に卷回し たものを用いた。
[0036] トリクロロシラン 20kg/Hと水素 40Nm3/Hとの混合ガスを反応管内部に流通させ 、上記の高周波加熱コイルにより加熱して反応管の下端部および下端部以外の温度 を 1450°C以上に昇温させ、多結晶シリコンを溶融状態で析出させた。 100時間の連 続反応を行った後、反応管の下端部の状態を観察したが、反応管の下端部におい てシリコン塊は固ィ匕してレ、なかった。
[実施例 4]
材質がカーボンであり、円筒形で寸法が外径 100mm、内径 70mm、長さ 1000m mである反応管を多結晶シリコン製造装置に装着した。このシリコン製造装置の高周 波加熱コイルは、図 8に示したように、下端側コイル (4L)への高周波電力と、その上 方のコイル (4U)への高周波電力とを別系統で独立に制御するようにした。すなわち 、下端側コイル (4L)の電源と、その上方のコイル (4U)の電源をそれぞれ別の電源 として、これらの分割された各コイルへの電力供給を独立に制御するようにした。
[0037] トリクロロシラン 20kg/Hと水素 40Nm3/Hとの混合ガスを反応管内部に流通させ 、上記の高周波加熱コイルにより加熱して反応管の下端部および下端部以外の温度 を 1450°C以上に昇温させ、多結晶シリコンを溶融状態で析出させた。 100時間の連 続反応を行った後、反応管の下端部の状態を観察したが、反応管の下端部におい てシリコン塊は固ィ匕してレ、なかった。
[比較例 1]
カーボン管(21)を設置しなかった以外は、実施例 1と同条件にて連続反応を行つ たが、反応管の下端部にシリコン塊が固化し、つらら状に延長形成した。このシリコン 塊により、反応継続が不可能となった。
図面の簡単な説明
[0038] [図 1]図 1は、本発明のシリコン製造装置の実施形態を示した断面図である。
[図 2]図 2は、図 1の実施形態の変形例を示した反応管下端部周辺の断面図である。
[図 3]図 3は、本発明のシリコン製造装置の他の実施形態における反応管下端部周 辺を示した断面図である。
[図 4]図 4は、本発明のシリコン製造装置の他の実施形態における反応管下端部周 辺を示した断面図である。
[図 5]図 5は、本発明のシリコン製造装置の他の実施形態における反応管下端部周 辺を示した断面図である。
[図 6]図 6は、図 5の実施形態の変形例を示した反応管下端部周辺の断面図である。
[図 7]図 7は、本発明のシリコン製造装置の他の実施形態における反応管下端部周 辺を示した断面図である。
[図 8]図 8は、本発明のシリコン製造装置の他の実施形態における反応管下端部周 辺を示した断面図である。
[図 9]図 9は、温度低下防止手段で加熱すべき反応管下端部の範囲を説明する図で める。
[図 10]図 10は、温度低下防止手段で加熱する範囲を説明する図である。
[図 11]図 11は、本発明の装置における、反応管のシリコン析出部の長さ Lと、反応管 の最下端における内径 Dとの比 L/Dを説明する図である c
[図 12]図 12は、従来 製造装置を示した断面図である。 符号の説明
1 シリコン製造装置
2 反応管
2a 下端部
3 ガス供給口
4 高周波加熱コイル
4L 下端側コイル
4U 上方のコィノレ
5 回収部
6 ガス供給管
7 間隙
8 ガス排出口
9 回収シリコン
10
11 密閉容器
21 カーボン管
23 保温部材
24 間隙
31 リング状発熱体
41 棒状体
41a 基端部
41b 先端部
42 電球
51 下端部
52 基部
61 下端部加熱コイル 71 開口面
72 水平面(平行面)
73 交点
74 父
74a 父点
74b 父点
100 シリコン製造装置
102 反応管
102a 下端部
103 ガス供給口
104 高周波加熱コイル
105 回収部
106 ガス供給管
107 間隙
108 ガス排出口
109 回丄
110
111 密閉容器
PI コ
P2 コ
L 析出部長さ
D 反応管下端の内径

Claims

請求の範囲
[1] 炭素材料を基材とする反応管と、
前記反応管の上部から、クロロシラン類と水素とを供給するガス供給口と、 前記反応管の外周側に設けた高周波加熱コイルとを備え、
前記高周波加熱コイルにより前記反応管の下端部を含む少なくとも一部をシリコン の融点以上に加熱可能とした多結晶シリコンの製造装置であって、
前記高周波加熱コイルによる加熱時における前記反応管の下端部の温度低下を 防止する温度低下防止手段を備えることを特徴とするシリコン製造装置。
[2] 前記温度低下防止手段が、前記反応管の下端部の外周を赤外線で加熱する赤外 線放射装置であることを特徴とする請求項 1に記載のシリコン製造装置。
[3] 前記赤外線放射装置が、前記反応管の下端部の外周側に該下端部から離間して 周設された、炭素材料を基材とする赤外線放射部材と、
前記赤外線放射部材の外周側に、該赤外線放射部材を加熱するように配置された 前記高周波加熱コイルとを備えることを特徴とする請求項 2に記載のシリコン製造装 置。
[4] 前記温度低下防止手段が、前記高周波加熱コイルにおける下端部近傍のコイルで 構成された、該下端部近傍よりも上方のコイルに比して加熱強度を高めた下端側コィ ルであることを特徴とする請求項 1に記載のシリコン製造装置。
[5] 前記下端側コイルが、その上方のコイルのコイルピッチに比して短いコイルピッチで 形成されていることを特徴とする請求項 4に記載のシリコン製造装置。
[6] 前記下端側コイルが、拡径方向へ多重に卷回された複数のコイルからなることを特 徴とする請求項 4に記載のシリコン製造装置。
[7] 前記下端側コイルが、その上方のコイルとは独立に高周波電力が制御されるコィノレ 力 なることを特徴とする請求項 4に記載のシリコン製造装置。
[8] 前記反応管の外周側に、該反応管からの放熱を抑制する保温部材を設けたことを 特徴とする請求項 1一 7のいずれかに記載のシリコン製造装置。
[9] 前記反応管の下端部が、該反応管の最下端と接する水平面と該反応管の中心軸 との交点から、該水平面と成す角度が 45度となる方向に向力う直線と、 前記反応管の開口形状を均等に 2分割する直線のうち最短となる直線上から該反 応管の内周面に沿って軸方向に向力う垂線との交点を上限とする範囲であることを 特徴とする請求項 1一 8のいずれかに記載のシリコン
PCT/JP2004/011774 2003-08-22 2004-08-17 シリコン製造装置 WO2005019106A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/569,149 US7993455B2 (en) 2003-08-22 2004-08-17 Silicon manufacturing apparatus
AU2004266934A AU2004266934B2 (en) 2003-08-22 2004-08-17 Silicon manufacturing apparatus
EP04771735A EP1666414A4 (en) 2003-08-22 2004-08-17 DEVICE FOR PRODUCING SILICON
CA002517764A CA2517764C (en) 2003-08-22 2004-08-17 Silicon production apparatus
JP2005513280A JP4597863B2 (ja) 2003-08-22 2004-08-17 シリコン製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-298641 2003-08-22
JP2003298641 2003-08-22

Publications (1)

Publication Number Publication Date
WO2005019106A1 true WO2005019106A1 (ja) 2005-03-03

Family

ID=34213722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011774 WO2005019106A1 (ja) 2003-08-22 2004-08-17 シリコン製造装置

Country Status (7)

Country Link
US (1) US7993455B2 (ja)
EP (1) EP1666414A4 (ja)
JP (1) JP4597863B2 (ja)
CN (1) CN100347083C (ja)
AU (1) AU2004266934B2 (ja)
CA (1) CA2517764C (ja)
WO (1) WO2005019106A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061847A1 (ja) * 2009-11-20 2011-05-26 Kaneko Kyojiro シリコン電磁鋳造装置
RU2550863C2 (ru) * 2009-12-25 2015-05-20 Консарк Корпорейшн Установка для электромагнитного литья кремния
AU2013204598B2 (en) * 2009-11-20 2015-12-24 Consarc Corporation Electromagnetic casting apparatus for silicon

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727483B2 (en) * 2004-08-19 2010-06-01 Tokuyama Corporation Reactor for chlorosilane compound
KR100768147B1 (ko) * 2006-05-11 2007-10-18 한국화학연구원 혼합된 코어수단을 이용한 다결정 실리콘 봉의 제조방법과그 제조장치
WO2009084627A1 (ja) * 2007-12-28 2009-07-09 Tokuyama Corporation シリコン製造装置
RU2388690C2 (ru) * 2008-05-22 2010-05-10 Общество с ограниченной ответственностью "Группа СТР" Способ получения поликристаллического кремния
US20110070370A1 (en) * 2008-05-28 2011-03-24 Aixtron Ag Thermal gradient enhanced chemical vapour deposition (tge-cvd)
JP5334490B2 (ja) * 2008-08-06 2013-11-06 株式会社トクヤマ シリコン製造装置
CN103787336B (zh) 2008-09-16 2016-09-14 储晞 生产高纯颗粒硅的方法
NO334785B1 (no) 2009-05-29 2014-05-26 Dynatec Engineering As Reaktor og fremgangsmåte for fremstilling av silisium
KR101708058B1 (ko) * 2009-07-15 2017-02-17 미쓰비시 마테리알 가부시키가이샤 다결정 실리콘의 제조 방법, 다결정 실리콘의 제조 장치, 및 다결정 실리콘
JP5655429B2 (ja) 2009-08-28 2015-01-21 三菱マテリアル株式会社 多結晶シリコンの製造方法、製造装置及び多結晶シリコン
US20110097495A1 (en) * 2009-09-03 2011-04-28 Universal Display Corporation Organic vapor jet printing with chiller plate
JP5500953B2 (ja) * 2009-11-19 2014-05-21 株式会社ニューフレアテクノロジー 成膜装置および成膜方法
KR101329030B1 (ko) * 2010-10-01 2013-11-13 주식회사 실리콘밸류 유동층 반응기
KR101356391B1 (ko) * 2011-04-20 2014-02-03 주식회사 실리콘밸류 다결정 실리콘 제조장치
TWI506261B (zh) * 2014-01-27 2015-11-01 Vacuum desorption device after sample gas concentration
KR101821006B1 (ko) 2014-05-13 2018-01-22 주식회사 엘지화학 수평형 반응기를 이용한 폴리실리콘 제조 장치 및 제조 방법
WO2018051304A1 (en) 2016-09-19 2018-03-22 King Abdullah University Of Science And Technology Susceptor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002628A (ja) * 2001-06-21 2003-01-08 Tokuyama Corp シリコン製造装置および製造方法
JP2003002627A (ja) * 2001-06-21 2003-01-08 Tokuyama Corp シリコンの製造方法
JP2003020217A (ja) * 2001-07-03 2003-01-24 Tokuyama Corp シリコンおよびトリクロロシランの製造法
JP2003020216A (ja) * 2001-07-03 2003-01-24 Tokuyama Corp シリコンの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4022707C2 (de) * 1989-07-18 2002-01-31 Hemlock Semiconductor Corp Isolierungssystem für einen Chlorsilan- und Wasserstoff-Reaktor
JP3216322B2 (ja) 1993-04-12 2001-10-09 住友金属鉱山株式会社 単結晶育成装置
JP3467960B2 (ja) * 1996-02-29 2003-11-17 信越半導体株式会社 半導体単結晶薄膜の製造方法および装置
US6277436B1 (en) * 1997-11-26 2001-08-21 Advanced Technology Materials, Inc. Liquid delivery MOCVD process for deposition of high frequency dielectric materials
JP4157281B2 (ja) * 2000-05-11 2008-10-01 株式会社トクヤマ シリコン生成用反応装置
CA2377892C (en) * 2000-05-11 2009-02-03 Tokuyama Corporation Polycrystalline silicon, method and apparatus for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002628A (ja) * 2001-06-21 2003-01-08 Tokuyama Corp シリコン製造装置および製造方法
JP2003002627A (ja) * 2001-06-21 2003-01-08 Tokuyama Corp シリコンの製造方法
JP2003020217A (ja) * 2001-07-03 2003-01-24 Tokuyama Corp シリコンおよびトリクロロシランの製造法
JP2003020216A (ja) * 2001-07-03 2003-01-24 Tokuyama Corp シリコンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1666414A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061847A1 (ja) * 2009-11-20 2011-05-26 Kaneko Kyojiro シリコン電磁鋳造装置
JP4846070B2 (ja) * 2009-11-20 2011-12-28 恭二郎 金子 シリコン電磁鋳造装置
RU2548982C2 (ru) * 2009-11-20 2015-04-20 Консарк Корпорейшн Установка для электромагнитного литья кремния
AU2013204598B2 (en) * 2009-11-20 2015-12-24 Consarc Corporation Electromagnetic casting apparatus for silicon
US10766777B2 (en) 2009-11-20 2020-09-08 Consarc Corporation Method for electromagnetic casting of silicon in a conductive crucible using a highest- and lowest-disposed induction coil
RU2550863C2 (ru) * 2009-12-25 2015-05-20 Консарк Корпорейшн Установка для электромагнитного литья кремния

Also Published As

Publication number Publication date
CN100347083C (zh) 2007-11-07
US20070034146A1 (en) 2007-02-15
CA2517764C (en) 2009-10-13
CA2517764A1 (en) 2005-03-03
AU2004266934B2 (en) 2010-03-11
EP1666414A4 (en) 2009-07-15
AU2004266934A1 (en) 2005-03-03
US7993455B2 (en) 2011-08-09
CN1771195A (zh) 2006-05-10
JP4597863B2 (ja) 2010-12-15
EP1666414A1 (en) 2006-06-07
JPWO2005019106A1 (ja) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4597863B2 (ja) シリコン製造装置
JP4290647B2 (ja) シリコン製造用反応装置
US9764960B2 (en) Method and apparatus for preparation of granular polysilicon
JP5291282B2 (ja) 管型反応容器および該反応容器を用いたシリコンの製造方法
JP4157281B2 (ja) シリコン生成用反応装置
JP2002508294A (ja) 多結晶シリコン棒製造用化学的蒸気析着方式
US20170372902A1 (en) Crystal production systems and methods
JP4805155B2 (ja) シリコン製造装置
JP2011520760A (ja) スカル反応炉
TWI579419B (zh) 製備顆粒狀多晶矽的反應器和方法
JP3958092B2 (ja) シリコン生成用反応装置
JP4639004B2 (ja) シリコン製造装置および製造方法
KR101768279B1 (ko) 수평형 반응기를 이용한 폴리실리콘 제조 장치 및 제조 방법
JP2003002626A (ja) シリコン生成用反応装置
CN107973300B (zh) 液态硅生产装置及方法
KR101821006B1 (ko) 수평형 반응기를 이용한 폴리실리콘 제조 장치 및 제조 방법
KR20170108881A (ko) 폴리실리콘 제조를 위한 초고온 석출 공정
JP2003002627A (ja) シリコンの製造方法
WO2011071032A1 (ja) 多結晶シリコンの製造方法及び多結晶シリコン製造用の反応炉
KR101938772B1 (ko) 폴리실리콘 제조용 반응 장치 및 그에 의한 폴리실리콘 제조 방법
WO2011071030A1 (ja) 多結晶シリコンの製造方法及び多結晶シリコン製造用の反応炉
JP2013071881A (ja) 多結晶シリコンの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513280

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2517764

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 20048093439

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004266934

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004771735

Country of ref document: EP

Ref document number: 2007034146

Country of ref document: US

Ref document number: 10569149

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2004266934

Country of ref document: AU

Date of ref document: 20040817

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004266934

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004771735

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10569149

Country of ref document: US