WO2005014898A1 - ウエーハの製造方法 - Google Patents

ウエーハの製造方法 Download PDF

Info

Publication number
WO2005014898A1
WO2005014898A1 PCT/JP2004/011145 JP2004011145W WO2005014898A1 WO 2005014898 A1 WO2005014898 A1 WO 2005014898A1 JP 2004011145 W JP2004011145 W JP 2004011145W WO 2005014898 A1 WO2005014898 A1 WO 2005014898A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
wafer
ingot
single crystal
bmd
Prior art date
Application number
PCT/JP2004/011145
Other languages
English (en)
French (fr)
Inventor
Takeshi Kobayashi
Original Assignee
Shin-Etsu Handotai Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003292558A external-priority patent/JP2005060168A/ja
Priority claimed from JP2003292539A external-priority patent/JP2005064254A/ja
Priority claimed from JP2003292596A external-priority patent/JP2005064256A/ja
Application filed by Shin-Etsu Handotai Co.,Ltd. filed Critical Shin-Etsu Handotai Co.,Ltd.
Priority to US10/567,488 priority Critical patent/US7211141B2/en
Publication of WO2005014898A1 publication Critical patent/WO2005014898A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a method for manufacturing wafers, and more particularly to a method for manufacturing wafers at low cost, in which oxygen precipitates for providing IG (Intrinsic Gettering) capability and BMDs (Bulk Micro Defects) have been formed.
  • IG Intrinsic Gettering
  • BMDs Bulk Micro Defects
  • the present invention also relates to a method for producing annealed wafers, and particularly to an oxygen outward diffusion heat treatment for forming a DZ (Denuded Zone) layer which is a defect-free region on a surface, an oxygen precipitate for imparting IG capability, and an oxygen precipitate for providing IG capability.
  • the present invention relates to a method for producing an anneal wafer which performs a heat treatment for generating a micro defect BMD.
  • the present invention relates to a method of manufacturing an epitaxial wafer, and more particularly to a method of efficiently manufacturing an epitaxial wafer having excellent gettering effect, having a small number of defects in the epitaxial layer, and a method of manufacturing the epitaxial wafer.
  • a silicon single crystal wafer used as a substrate of a semiconductor integrated circuit element is mainly manufactured by the Czochralski method (CZ method).
  • CZ method a silicon single crystal seed crystal is immersed in a silicon melt melted at a high temperature of 1420 ° C or more in a quartz crucible, and the seed crystal is gradually pulled up while rotating the crystal crucible and the seed crystal.
  • the surface of the quartz crucible in contact with the silicon melt is melted, and oxygen dissolves into the silicon melt and is taken into the growing crystal.
  • the oxygen atoms aggregate during crystal growth and cooling, and become oxygen precipitation nuclei.
  • the crystal force as grown is subjected to a heat treatment at a temperature of 700 ° C and a temperature of 1050 ° C, and the nuclei grow to form oxygen precipitates and BMD.
  • the oxygen precipitate has a beneficial role in capturing metal contamination that occurs during the process of forming integrated circuit elements (device process). So-called intrinsic gettering (IG).
  • Ordinary BMD formation is performed by subjecting a silicon single crystal to a wafer processing and then heat-treating the wafer.
  • a heat treatment called DZ-IG heat treatment is known. This is because the mirror-finished ⁇ wafer processed at ⁇ wafers is treated at a high temperature of about 1200 ° C. from 1100 ° C. to diffuse out oxygen near the ⁇ wafer surface, thereby forming interstices that serve as nuclei for micro defects. Oxygen is reduced to form a defect-free DZ (Denude d Zone) layer in the device active region.
  • a two-stage high-temperature and low-temperature heat treatment of forming a BMD in an evaporator at a low temperature of 600 ° C to 900 ° C has been performed.
  • a low-temperature treatment is first performed to sufficiently form a BMD, and a subsequent high-temperature heat treatment forms a DZ layer on the wafer surface.
  • Such a wafer that has been heat-treated in a wafer state and added with a DZ layer and IG capability is called an annealed wafer.
  • silicon single crystals grown by the CZ method usually contain oxygen impurities as described above, and if used in a device manufacturing process as it is, supersaturated oxygen will precipitate during the process. Sometimes. Oxygen precipitates may generate secondary dislocations, stacking faults, etc. due to strain due to volume expansion. These oxygen precipitates and their secondary defects have a large effect on the characteristics of semiconductor devices. If such defects are present on the wafer surface and device active layer, leakage current increases, oxide film breakdown voltage failure, etc. There is power S.
  • CZ method silicon has not been regarded as a problem until now.
  • Grown-in defects introduced during the pulling of the single crystal significantly deteriorate the oxide breakdown voltage characteristics, so the quality of the crystallinity near the surface of the silicon single crystal substrate greatly affects the reliability and yield of the device. .
  • a crystal composed of a region having an excess of vacancies but no crystal growth introduction defect a crystal defect such as COP
  • a region having an interstitial silicon atom excess but having no crystal growth introduction defect This can be obtained by controlling the pulling speed of the crystal and the like, and the wafer can be made to have almost no crystal defects.
  • a crystal consisting of such a region with excess vacancies but no crystal growth introduction defects and a region with excess interstitial silicon atoms but no crystal growth introduction defects is called a near perfect crystal.
  • NPC near perfect crystal.
  • an anneal wafer having a wide defect-free region (DZ layer) on the surface can be effectively produced (for example, see Japanese Patent Application Laid-Open No. 11-199387). Further, even when epitaxial growth is performed on a wafer using such a crystal, a high-quality wafer can be effectively manufactured.
  • DZ layer defect-free region
  • the wafer W is held in a grooved wafer mounting part 43 provided on a plurality of columns 42 connected by a connecting part 41.
  • the number of pieces that can be set for a wafer is limited to at most about 100 pieces. Therefore, in order to produce large quantities of anneal wafers, it is necessary to prepare many heat treatment equipment or shorten the anneal time.
  • epitaxy wafers having a single crystal layer grown on the surface are often used.
  • Epitaxy wafers have the advantage of good crystallinity near the surface.
  • it is relatively easy to form a steep impurity concentration gradient inside the wafer or to form a low concentration layer inside the high concentration layer. It is an indispensable wafer for the fabrication of 'transistors and Schottky' barriers. In forming such an epitaxial layer, a high-temperature process of 1000 ° C. or more is performed.
  • the high-temperature process of 1000 ° C or more includes the epitaxy growth itself and a pretreatment performed before the epitaxy growth.
  • the epitaxial growth of silicon crystal thin films is typically carried out in an H atmosphere by using silicon compound gas such as SiCl, SiHCI, SiH C1, Si
  • Supply gas such as H and dopant gas such as BH gas and PH etc.
  • the pretreatment is an operation for removing a natural oxide film, particles, and the like existing on the surface of the silicon single crystal substrate.
  • the surface of the silicon single crystal substrate is cleaned. Conversion is an indispensable process.
  • a commonly used method for removing natural oxide films and particles is to use 1100 H 2 or H ZHC1 mixed gas atmosphere.
  • This is a method of performing a heat treatment on the substrate at a high temperature of around ° C.
  • Other methods that can be performed near room temperature include wet etching using dilute hydrofluoric acid solution, a combination of hydrogen fluoride gas and water vapor, and Ar plasma treatment.
  • problems such as growth, substrate surface roughening, and corrosion of processing equipment.
  • the above-mentioned high-temperature heat treatment is considered to be optimal.
  • the gettering effect of the epitaxy wafer as described above was sometimes insufficient. This is because when the substrate to be an epitaxial wafer goes through a high-temperature process at 1000 ° C or higher, most of the oxygen precipitation nuclei and oxygen precipitates disappear, and the gettering function cannot be performed. With conventional methods, it is difficult to sufficiently remove the native oxide film at temperatures below 1000 ° C by pre-treatment before epitaxial growth. Therefore, the pretreatment had to be performed in a temperature range of 1000 ° C or higher, and the gettering efficiency of the epitaxy wafer was unavoidably reduced.
  • the first object of the present invention is to provide a method for manufacturing a wafer, which can shorten the heat treatment for imparting IG capability in the manufacture of a wafer and can produce a large number of wafers having a high IG performance.
  • the purpose is.
  • the present invention provides a very time-consuming and cost-intensive heat treatment such as the above-described oxygen outward diffusion heat treatment for forming a DZ layer, and heat treatment for generating a BMD for imparting IG capability.
  • the second object of the present invention is to provide a method for manufacturing wafers which efficiently heat-treats and increases the production number of annealed wafers.
  • the present invention provides a method for producing an epitaxy wafer which efficiently performs heat treatment in the production of the epitaxy wafer as described above and improves the productivity of the epitaxy wafer having an excellent gettering effect.
  • the present invention for achieving the first object is a method for manufacturing an e-wafer, comprising at least an ingot heat treatment step of performing a heat treatment on a silicon single crystal in an ingot state; A method of manufacturing an e-wafer, characterized by having an e-wafer processing step.
  • BMD internal minute defect
  • the present invention provides a method for manufacturing an aerial machine, which comprises an aerial processing step for processing an ingot into an aerial hammer.
  • the silicon single crystal in the ingot state is subjected to a heat treatment in advance as the ingot heat treatment step (this may be referred to as a BMD forming step or a first heat treatment step in the present invention).
  • a heat treatment in advance as the ingot heat treatment step (this may be referred to as a BMD forming step or a first heat treatment step in the present invention).
  • the heat treatment can be performed more efficiently as compared to the conventional method of applying a heat treatment for forming a BMD to a silicon single crystal in a wafer state. Therefore, a BMD can be formed efficiently and a large number of wafers having high IG capability can be produced.
  • a wafer with a high IG capability can be supplied to a post-process such as a device process from the beginning.
  • a wafer heat treatment step of heat-treating the wafer there may be provided a wafer heat treatment step of heat-treating the wafer.
  • the present invention for achieving the second object is a method for producing an annealing wafer, which comprises at least an ingot heat treatment step of performing a heat treatment on a silicon single crystal in an ingot state, and processing the heat-treated ingot into a wafer.
  • a heat treatment step for heat treating the wafer in the present invention, this may be a second heat treatment step.
  • the silicon single crystal in the ingot state is preliminarily subjected to the heat treatment in the ingot heat treatment step, and the ingot is processed into the wafer in the wafer processing step, and the heat treatment is performed on the wafer in the wafer heat treatment step.
  • the heat treatment can be performed more efficiently as compared with the conventional method of performing two-stage heat treatment on the wafer.
  • the heat treatment time in the wafer state can be shortened, metal contamination of the wafer can be reduced.
  • the heat-treated ingot is preferably processed into a mirror-finished wafer.
  • the thickness of the DZ layer decreases after the wafer heat treatment step of forming the DZ layer. Since there is no need to perform mirror polishing, the thick DZ layer obtained in the wafer heat treatment process can be used as it is in the device fabrication area.
  • the present invention for achieving the third object is a method for producing an epitaxial wafer, which comprises at least a heat treatment step of subjecting a silicon single crystal in an ingot to a heat treatment;
  • a method of manufacturing an epitaxy wafer comprising: a wafer processing step of processing into a wafer having a shape; and an epitaxy growth step of forming an epitaxy layer on the wafer.
  • the silicon single crystal in the ingot state is preliminarily heat-treated in the heat treatment step, the ingot is processed into the wafer in the wafer processing step, and the epitaxial layer is formed on the wafer in the epitaxial growth step.
  • the heat treatment can be performed more efficiently than in the conventional method in which the heat treatment is performed on the wafer.
  • the silicon single crystal in the ingot state is preferably subjected to heat treatment at 700 ° C or more.
  • the ingot heat treatment step it is preferable to perform heat treatment at a heat treatment temperature of 1100 ° C or less for 30 minutes or more and 8 hours or less.
  • the heat treatment By performing the heat treatment at a heat treatment temperature of 1100 ° C. or less, the heat treatment can be performed without causing dislocation or slip in the single crystal. By performing the heat treatment for 30 minutes or more and 8 hours or less, good IG capability can be provided.
  • the ingot heat treatment step is performed at a heat treatment temperature of 700 ° C or more and 1100 ° C or less.
  • the ingot heat treatment step includes:
  • the BMD exposed on the surface of the substrate and the wafer does not cause epitaxy layer defects and a sufficient BMD can be formed. Can be.
  • good IG capability can be provided.
  • the heat treatment is preferably performed at a temperature rising rate of 0.5 ° C / min to 10 ° C / min.
  • the temperature may be raised at a relatively high speed of about 10 ° C / min for processing.
  • a defect-free region (DZ layer) is formed on the wafer surface.
  • the formation of a DZ layer on the wafer surface As a result, a DZ wafer with excellent crystallinity near the wafer surface can be manufactured.
  • the silicon single crystal in the ingot state is heat-treated in advance to form the BMD, so that the heat treatment for forming the DZ layer can be performed in a simple sequence in a short time.
  • heat treatment is preferably performed at 900 ° C. or more and 1300 ° C. or less for 5 minutes to 16 hours.
  • a DZ layer having a sufficient thickness can be formed without causing a slip on the ⁇ wafer.
  • the temperature is preferably raised at a temperature rising rate of 5 ° CZmin or more.
  • the temperature rise rate is increased from the beginning in the eah heat treatment step performed on ⁇ circle around (8) ⁇ .
  • the heat treatment time can be shortened. Since the ingot heat treatment step is performed, an annealing wafer having a sufficient BMD density and a DZ layer can be obtained even at such a heating rate.
  • the epitaxial growth step after performing the pretreatment at a temperature of 1000 ° C or more, the epitaxial growth can be performed at a temperature of 1000 ° C or more.
  • the natural oxide film is sufficiently removed by the pre-treatment, thereby achieving high quality.
  • the precipitation nuclei of BMD are formed sufficiently in the ingot state at first, even if the epitaxy layer is formed by such a high-temperature process, good IG performance can be obtained without lowering the gettering effect. It is possible to produce epitaxy wafers with power.
  • the silicon single crystal is preferably a crystal doped with nitrogen.
  • the silicon single crystal may be a crystal in a quasi-perfect crystal (NPC) region manufactured by the Czochralski method.
  • NPC quasi-perfect crystal
  • the silicon single crystal in the ingot state is an ingot in a shape as it is pulled up by a single crystal pulling apparatus by the Czochralski method, or an ingot in a state of being cylindrically ground after being pulled up and cut into a block shape. Can be.
  • such a silicon single crystal in an ingot state is subjected to a heat treatment to form a BMD inside, so that a BMD can be efficiently formed in a single crystal.
  • the ingot of the shape as it is pulled by the single crystal pulling apparatus according to the present invention is a crystal immediately after being pulled by the Chiyoklarski method, as well as a cone and a tail cut from the pulled ingot. And those cut into several blocks.
  • a wafer having a high IG capability can be supplied to a subsequent process such as a device process.
  • the heat treatment for forming the BMD can be efficiently performed by performing a large amount of heat treatment at one time, and the heat treatment time for imparting IG capability can be significantly reduced, thereby improving the productivity of wafer manufacturing. be able to.
  • the heat treatment for forming the BMD in the state of the ingot is performed first, the heat treatment for forming the BMD can be efficiently performed, and the DZZ to be performed later is performed.
  • the heat treatment for forming the layer can significantly reduce the heat treatment time. Thereby, the productivity of the annealing process can be improved.
  • the heat treatment time in the state of ewa can be shortened, metal contamination to eha can be reduced.
  • the BM is in the state of an ingot. Since D is formed in advance, even if an epitaxy layer is formed after e-wafer processing, the BMD does not disappear, and an epitaxy e-ha with high IG capability with high-density BMD deposited can be manufactured.
  • the heat treatment for forming the BMD is a heat treatment in the ingot state, rather than a heat treatment in the ae state, it is possible to process a large amount of ae at a time (in terms of ea), thereby improving productivity.
  • FIG. 1 is a flow chart showing one example of a wafer manufacturing process of the present invention.
  • FIG. 2 is a flowchart showing another example of the wafer manufacturing process of the present invention.
  • FIG. 3 is an explanatory view showing an example of a horizontal heat treatment furnace used in an ingot heat treatment step in the present invention.
  • FIG. 4 is an explanatory view showing an example of a vertical heat treatment furnace used in the ingot heat treatment step in the present invention.
  • FIG. 5 is a view showing a silicon single crystal ingot cut in a block shape after being pulled up.
  • FIG. 6 is an explanatory view showing an example of a vertical heat treatment apparatus used for heat treatment of wafers
  • FIG. 7 is an explanatory view showing an example of a heat treatment boat used for heat treatment of wafers.
  • FIG. 8 is a flowchart showing one example of a wafer processing step in the present invention.
  • FIG. 9 is a flow chart showing an outline of a process for producing an anneal A eight of the present invention.
  • FIG. 10 is a flowchart showing an outline of a manufacturing process of an epitaxy wafer of the present invention.
  • FIG. 11 is an explanatory view showing an example of an epitaxial growth apparatus.
  • the present inventor has found that when manufacturing a wafer having a high IG capability, a BMD for improving the IG effect is formed by performing a heat treatment in an ingot state, and the BMD is formed by performing the wafer processing to form the BMD.
  • High-performance wafers can be manufactured efficiently, and the BMD density is sufficiently maintained in the subsequent DZ layer formation and epitaxy layer formation processes. We found that we could have.
  • anneal in an ingot state is a technique mainly used for compound semiconductors, for example, GaAs, and is mainly used for uniformly improving electric characteristics.
  • ingot anneal is a technique mainly used for compound semiconductors, for example, GaAs, and is mainly used for uniformly improving electric characteristics.
  • JP-A-6-196430 and JP-A-6-31854 See, for example, JP-A-6-196430 and JP-A-6-31854.
  • the method of manufacturing an e-aperture according to the present invention is characterized in that a BMD is formed inside a silicon single crystal in an ingot state, and thereafter, the e-afer processing is performed.
  • the BMD is formed in the state of the ingot in this manner, and the BMD is formed into a wafer and processed with an AIG to produce an AIG with an added IG capability.
  • the heat treatment under the condition of adding the IG capability can be omitted or simplified, and the heat treatment time can be shortened.
  • the heat treatment time can be shortened.
  • by forming an epitaxial layer on such a wafer a wafer having a high gettering effect can be obtained even when an epitaxial wafer is manufactured.
  • heat treatment since heat treatment is performed in the ingot state, it is not necessary to use an e-heater boat compared with the conventional heat treatment for forming BMDs in the e-wafer state. And the efficiency of the heat treatment can be greatly improved.
  • a heat treatment at 700 ° C. or more is performed on the silicon single crystal in the ingot state, and thereafter, the wafer is subjected to an eave processing.
  • a heat treatment temperature of 700 ° C to 1100 ° C for 30 minutes to 8 hours it is preferable to perform a heat treatment at a heat treatment temperature of 700 ° C to 1100 ° C for 30 minutes to 8 hours.
  • a stable BMD can be formed by heat treatment at a heating rate of 0.5 ° C / min to 10 ° C / min.
  • a sufficient BMD can be formed by performing a constant-temperature holding or a plurality of stages of constant-temperature holding heat treatment on the ingot, for example, for 30 minutes to 8 hours, and in the subsequent steps, the BMD can be formed. Since the IG remains without disappearing, good IG capability can be imparted.
  • the processing time is not particularly limited. This processing time may be long, but the above range is appropriate for obtaining a time advantage and good IG capability. At this time, it is preferable to increase the temperature by setting the heating rate to 0.5 ° CZmin and 10 ° CZmin.
  • the ingot is preferably a crystal in which nitrogen is doped in a silicon single crystal, or a crystal in an NPC region.
  • the crystal in the NPC region is also preferably a wafer having a wide defect-free region.
  • the crystal in the NPC region has an excess of vacancies but no crystal growth introduction defect (sometimes called Nv region) and an interstitial silicon atom excess, but a crystal growth introduction defect This is a crystal grown in the shape of a layer (which may be a Ni region).
  • the oxygen precipitation behavior differs between the Nv region and the Ni region in the NPC region.
  • the temperature is slowly increased from a low temperature range of 300-500 ° C at the ingot stage at a slow heating rate of about 0.5-2 ° C / min.
  • Growing the BMD is preferable because the oxygen precipitation behavior in the Nv and Ni regions can be made uniform and a stable BMD can be formed in the plane without depending on the Nv or Ni region.
  • the productivity is remarkably reduced, so that it has not been practically possible.
  • the productivity even if such a slow heat treatment is performed, a large amount of processing can be performed at a time, so that a high level and high productivity can be maintained.
  • the ingot-state silicon single crystal is referred to as being pulled by a single crystal pulling apparatus. It is a shaped ingot or an ingot in a state where it is cylindrically ground after being pulled up and cut into blocks.
  • the silicon single crystal pulled by the single crystal pulling device is the force that forms the cone, tail, and tip, and the tang is formed.
  • the state of such an ingot (the state where the cone and tail are removed, and the multiple blocks) Ingot anneal can be performed.
  • the ingot before abrasion (before slicing), the ingot is usually cylindrically ground and then divided into a plurality of blocks. Heat treatment is possible even with such cylindrically grounded blocks. In this case, since metal contamination occurs in the surface layer of the block by cylindrical grinding, it is preferable to perform heat treatment after removing about 100 to 500 ⁇ m of the surface layer by acid etching.
  • the present inventor in the production of annealed Eight, heat-treats the ingot as it is to form a BMD for improving the IG effect, then performs e-wafer processing, and further heat-treats in the wafer state. It was found that heat treatment can be performed efficiently by performing the method, and it is possible to manufacture an anneal wafer in which the BMD is sufficiently formed and the DZ layer is also sufficiently formed.
  • the method for producing annealed wafers of the present invention comprises a first heat treatment step of heat-treating a silicon single crystal in an ingot state, a wafer processing step of processing the heat-treated ingot into a wafer, and a second heat treatment step of heat treating the wafer. It is characterized by having a heat treatment step.
  • the first heat treatment step for heat treatment of the silicon single crystal in the ingot state is a heat treatment step for forming a BMD
  • the second heat treatment step for heat treatment of an ae-wafer is a heat treatment step of forming a defect-free region (DZ layer) on the surface of the ea-er Process.
  • DZ layer defect-free region
  • the heat treatment for forming the BMD is performed in the ingot stage, and the final wafer state is obtained.
  • the heat treatment for forming the BMD is shortened by omitting or simplifying the heat treatment for forming the BMD.
  • the heat treatment for forming the BMD is performed in the ingot state, so that the heat treatment is performed as in the conventional method. Since it is not necessary to use a processing boat, it is possible to perform a large number of batches to several tens of batches in a single heat treatment in the state of e-chamber, which can greatly improve the efficiency of the heat treatment.
  • the heat treatment time can be reduced to about one-half that of the conventional heat treatment, greatly improving the productivity of the annealing agent. be able to.
  • An annealing in a wafer state (second heat treatment step) for forming a DZ layer is performed by a conventional method.
  • heat treatment may be performed mainly under the conditions for forming the DZ layer. Specifically, heat treatment is performed by heating and holding at 900 ° C or higher and 1300 ° C or lower for 5 minutes to 16 hours. Particularly, the temperature is preferably 1100 ° C or more. The heat treatment time may be appropriately set according to the required width of the DZ layer.
  • an annealing wafer having a wide defect-free region and a high IG effect can be effectively manufactured. become able to.
  • the present inventor in the production of an epitaxial wafer, for example, heat-treating the ingot as it is, to sufficiently form a BMD for improving the IG effect, and then perform the wafer processing, It has been found that by performing epitaxy growth on the surface, heat treatment can be performed efficiently, BMD is sufficiently formed, gettering effect is high, and epitaxy wafers can be manufactured efficiently.
  • the method of manufacturing an epitaxial wafer of the present invention includes a heat treatment step of performing a heat treatment on the silicon single crystal in the ingot state, a wafer processing step of processing the heat-treated ingot into a mirror-finished wafer, and a mirror-polished surface. ⁇ It is characterized by having an epitaxy growth step of forming an epitaxy layer on the wafer.
  • the heat treatment step for heat-treating the silicon single crystal in the ingot state is a heat treatment step for forming a BMD.
  • the present inventor has found that, if ingot anneal is applied to a silicon single crystal ingot as a raw material for an epitaxy wafer, a good epitaxy wafer can be efficiently obtained.
  • a heat treatment to form a BMD on the silicon single crystal in the e-a state.
  • the heat treatment equipment and e-heat treatment boat used for heat treatment of c were limited to about 100 at most, and the heat treatment efficiency was low.
  • the heat treatment can be performed in a single heat treatment, and the heat treatment efficiency can be greatly improved.
  • a BMD by performing a heat treatment at 700 ° C or higher and 900 ° C or lower in an ingot state.
  • a heat treatment at 700 ° C or higher and 900 ° C or lower in an ingot state.
  • dislocations and slips can be prevented from occurring on the entire ingot, and BMD can be prevented from being exposed on the surface of the evaporator, thereby preventing defects from being generated on the epitaxial layer.
  • by performing the heat treatment at a temperature of 700 ° C. or more it is possible to prevent the BMD formed in the state of the ingot from disappearing in the epitaxy growth process.
  • the BMD can be sufficiently formed inside the ingot. Specifically, heat treatment at a temperature of 700 ° C or more and 900 ° C or less is performed at a constant temperature for 30 minutes to 8 hours, or a multi-stage heat treatment at a constant temperature, and the rate of temperature rise is 0.5 ° C / A stable BMD can be formed by heat treatment at min-10 ° C / min.
  • the ingot is preferably a crystal in which nitrogen is doped into a silicon single crystal, or a crystal in an NPC region.
  • the method of forming the epitaxial layer may be a conventional method. For example, pretreatment with a high-temperature process of 1000 ° C or more is performed, and then, at a temperature of 1000 ° C or more. A good way to do the growth. Specifically, epitaxial growth of a silicon crystal thin film is performed by using a silicon compound gas such as SiCl, SiHCl, SiH CI, SiH, etc. in an H atmosphere.
  • a silicon compound gas such as SiCl, SiHCl, SiH CI, SiH, etc. in an H atmosphere.
  • the pretreatment performed before the epitaxial growth is an operation for removing a natural oxide film and particles existing on the surface of the silicon single crystal substrate.
  • the silicon single crystal is preferably used before performing the epitaxial growth. Cleaning the surface of the crystal substrate is an indispensable treatment. Common methods for removing native oxides and particles are H or H / HC1 mixed
  • the substrate is heat-treated in a gas atmosphere at a high temperature between 1000 ° C and 1300 ° C, especially around 1100 ° C.
  • FIG. 1 and 2 are flowcharts showing the outline of the manufacturing process of the wafer of the present invention.
  • a silicon single crystal ingot is grown by adjusting the oxygen concentration (or nitrogen concentration), resistivity, etc. by CZ method.
  • This pulling method is not particularly limited, and a method that has been conventionally used can be used. In particular, it is preferable to raise the ingot under conditions that reduce defects such as COP caused by crystals.
  • a silicon single crystal in which a DZ layer and a BMD can be easily formed can be grown.
  • a nitride is put in a quartz crucible in advance, or Nitrogen can be doped into the silicon single crystal by introducing nitride into the silicon or by setting the atmospheric gas to an atmosphere containing nitrogen. At this time, it is necessary to control the amount of nitrogen doping in the crystal by adjusting the amount of nitride, the concentration of nitrogen gas, or the introduction time. Can be done.
  • the silicon single crystal in a quasi-perfect crystal (NPC) region it is possible to manufacture an anneal wafer having a thick DZ layer when anneal is performed later in the ⁇ state.
  • the pulling speed V when growing a single crystal by the Chiochralsky method and the crystal temperature gradient G in the pulling axis direction near the solid-liquid interface are considered.
  • the silicon single crystal in the quasi-perfect crystal (NPC) region can be pulled over the entire crystal cross section.
  • the thus grown ingot is heat-treated in the form of an ingot to form a BMD inside. That is, the heat treatment is performed before the slicing step for processing into an ae-shape (before the ea processing step). In this case, heat treatment is performed under the condition that BMD is formed.
  • the ingot annealing is performed in a state where the ingot is pulled up by a single crystal manufacturing apparatus (an ingot pulling apparatus) or in a state where the ingot is pulled up and then cylindrically ground and cut into blocks. That is, it can be performed either before or after cylindrical grinding of the ingot outer peripheral portion.
  • the ingot is put into a heat treatment furnace and heat-treated to form BMD without being divided into multiple blocks.
  • a horizontal heat treatment furnace as shown in FIG. 3 is preferable because a heat treatment apparatus capable of performing heat treatment in the state of such an ingot mass is preferable.
  • Fig. 3 shows the outline of a horizontal heat treatment furnace.
  • This heat treatment furnace 10 is a quartz or SiC chamber 11 in which an ingot 1 that is not divided into a plurality of blocks without removing a cone or a tail can be directly charged.
  • a heat treatment means such as a heater 12 is provided on the outside thereof.
  • the ingot 1 is held by a support portion 13 that can support the cone portion and the tail portion (a support portion may be arranged at the center of the ingot as necessary).
  • heat treatment is performed under the heat treatment conditions for forming the BMD.
  • heat treatment can be performed in a state where contamination or the like is as small as possible or in a state where distortion or the like is not formed.
  • the ingot is heat-treated at once, it is possible to process a very large amount of ewa in terms of eha.
  • the following example shows an ingot anneal of an ingot that has been cylindrically ground and then cut into a block shape after pulling, instead of the shape that has been pulled up (Fig. 2).
  • the side surface of the ingot raised in the ingot growing process is cylindrically ground.
  • the cone part 2 and the tail part 3 of the ingot 1 are cut and further cut into a plurality of blocks 4 to obtain an ingot block.
  • heat treatment is performed on the block-shaped ingot. If block processing is performed as described above, heat treatment may cause contamination or cracks.
  • the entire ingot surface is first etched with an etchant several hundred times / im. To remove metal impurities and the like adhering to the surface of the ingot.
  • an acidic etching solution having a HF / HNO 3 power is used as this etching solution.
  • the heat treatment apparatus is not particularly limited, but an example as shown in FIG. 4 is preferable as an example in which an ingot block of such a form can be heat-treated as a lump.
  • a force S which is a device capable of performing heat treatment with the ingot block 4 placed vertically, and the ingot block 4 are put into a chamber 21 made of quartz or SiC from below the heat treatment furnace 20.
  • This is a form in which heat treatment is performed by a heat treatment means such as a heater 22 arranged outside, and is a so-called vertical heat treatment furnace.
  • heat treatment is performed under heat treatment conditions under which a BMD is formed.
  • Such a heat treatment in which a silicon single crystal is made into a block shape is preferable because the heat treatment furnace can be downsized.
  • the desired BMD is sufficiently generated.
  • the temperature is raised at a high rate of about 10 ° C / min from room temperature to around 500 ° C, then slowed down to 0.5 ° C / min-5 ° to the set temperature. Raise the temperature at about C / min.
  • the temperature is gradually raised to the set temperature (for example, 1000 ° C), and is maintained at this set temperature for an arbitrary time (for example, 1 hour).
  • BMDs that do not disappear even after thermal treatment at about 1000 ° C and epitaxial growth at about 1000 ° C to form a DZ layer later in an ae state are formed at a high density in the ingot.
  • the ingot thus ingot-annealed is subjected to e-ha processing.
  • the process is not particularly limited as long as at least a wafer with high flatness can be obtained.
  • a single crystal silicon ingot is sliced to produce a thin plate ( ⁇ A wafer) (FIG. 8 (A)), and then the silicon wafer is chamfered (FIG. 8 (B)).
  • Flattening (lapping) (FIG. 8 (C)
  • etching FIG. 8 (D)
  • polishing FIG. 8 (E)
  • the conditions of each step are not particularly limited.
  • FIG. 9 is a flow chart showing the outline of the manufacturing process of the anneal wafer of the present invention.
  • the step of improving the state of the wafer surface can also be performed after the second heat treatment step described later.
  • Such a mirror-polished wafer is heat-treated.
  • Aehanil can use conventional equipment as it is.
  • a vertical heat treatment furnace 30 as shown in FIG. 6 can be used.
  • the heat treatment furnace 30 heats the inside of the chamber 31 with a heater 32 arranged around the chamber 31.
  • an inert gas such as argon is introduced from a gas introduction pipe 33, and unnecessary heat is supplied from a gas exhaust pipe 34.
  • the gas is exhausted.
  • the plurality of wafers W to be heat-treated are set on the heat-treatment boat 40 and placed in the chamber 31.
  • As the heat treatment boat 40 for example, one shown in FIG. 7 is used.
  • the heat treatment boat 40 includes a plurality of columns 42 and a connecting portion 41 connecting the columns at both ends.
  • the support column 42 is provided with a groove-shaped wafer mounting portion 43 so that the wafer W can be set thereon, and the wafer W can be held.
  • ingot annealing is performed in the ingot heat treatment step (first heat treatment step)
  • heat treatment can be performed in a sequence that is simpler than conventional heat treatment conditions. As a result, it is possible to shorten the time and produce an excellent wafer with high productivity.
  • the heat treatment conditions in the wafer heat treatment step are mainly intended to form a defect-free region (DZ layer) on the wafer surface, and are preferably 900 ° C to 1300 ° C. Heat treatment for 5 minutes to 16 hours to grow the DZ layer. If the temperature is 900 ° C or higher, the formation of the DZ layer can be completed in a short time, and a sufficient DZ width can be obtained. Further, when the temperature is 1300 ° C. or less, slip is unlikely to occur due to the deformation of the pump. Also, the heat treatment time may be appropriately set according to the required width of the DZ layer. The longer the setting, the easier the DZ width becomes.
  • the annealing time is short, metal contamination and the like can be reduced, and a good annealing time can be obtained.
  • FIG. 10 is a flowchart showing an outline of the manufacturing process of the epitaxial wafer of the present invention.
  • the silicon single crystal may be grown by the CZ method in the same manner as described above.
  • the silicon single crystal can be doped with nitrogen to form a BMD and to reduce defects in the epitaxial layer immediately. Crystals can be grown.
  • an epitaxy wafer having extremely few epitaxy layer defects can be manufactured.
  • the specific heat treatment conditions for the ingot heat treatment step may be set as appropriate according to the required specifications. Particularly, if the heat treatment at 700 ° C to 900 ° C in an oxygen atmosphere is performed for about 30 minutes to 8 hours, the target is achieved. BMD is sufficiently generated. Actually, the temperature rises from room temperature to around 500 ° C at a high speed of about 10 ° CZmin, and then slows down the temperature to reach the set temperature. Up to 0.5 ° C / min- 5 ° C / min. In this way, the temperature is gradually raised to the set temperature (for example, 800 ° C), and maintained at this set temperature for an arbitrary time (for example, 4 hours).
  • BMDs are formed at a high density that will not be lost by a short-time heat treatment such as an epitaxy layer formation process.
  • the ingot thus ingot-annealed is subjected to e-ha processing.
  • polishing is performed so that at least the main surface of the wafer is mirror-finished, and the process is not particularly limited as long as the wafer has a high flatness.
  • a mirror-polished wafer can be obtained according to the procedure shown in FIG.
  • An epitaxy layer is formed on the surface of such a mirror-polished wafer.
  • the formation of the epitaxial layer removes a natural oxide film and particles existing on the surface of the silicon single crystal substrate as a pretreatment.
  • a substrate is heat-treated in a H or H / HC1 mixed gas atmosphere at a high temperature around 1100 ° C.
  • a conventional method may be used for forming the epitaxial layer.
  • a gas such as silicon compound gas such as SiCl, SiHCl, SiH CI,
  • Supply gas such as BH gas and PH, which are gases, and process in the temperature range of 1000-1300 ° C
  • the apparatus used for the epitaxial growth may be a conventional apparatus.
  • an epitaxy growth apparatus for performing pretreatment and epitaxy growth in the same processing chamber as shown in FIG. 11 can be used.
  • This epitaxy growth apparatus 50 accommodates Eha W in a processing chamber 51.
  • one wafer W is a force that accommodates one sheet, and a plurality of sheets may be used.
  • the gas introduced from one end of the processing chamber 51 is exhausted from the other end of the processing chamber 51 after coming into contact with the wafer W.
  • the above gases flowing in the processing chamber 51 include pretreatment and epitaxy layers such as H gas alone, HF gas diluted with H gas, HC1 gas diluted with H gas, and SiHCl gas diluted with H gas.
  • Each component gas is introduced into the processing chamber 51 while the flow rate is precisely controlled by the mass flow controller 53. Since HF is a liquid at room temperature and has a large vapor pressure and is easily vaporized, the vaporized component is mixed with H and supplied to the processing chamber 51. Outside processing chamber 51
  • an infrared lamp 52 is arranged along one main surface thereof, and the heating temperature of the wafer W is controlled in accordance with the amount of electricity. Further, a radiation thermometer 54 is provided on the other main surface side of the processing chamber 51, so that the temperature of the wafer during the process can be monitored.
  • the pre-processing section and the epitaxial growth section may be in separate processing chambers.
  • a silicon single crystal ingot having an oxygen concentration of 13-15 ⁇ 10 17 atoms / cm 3 [oldASTM layer and a nitrogen concentration of 5-9 ⁇ 10 12 atoms / cm 3 was grown by the CZ method. This ingot was cylindrically ground and cut into a plurality of blocks to obtain an ingot about 300 mm in diameter and about 30 cm in length.
  • the above ingot was subjected to a heat treatment in the state of the ingot to perform a BMD forming step of forming a BMD inside.
  • the entire surface of the ingot is acidified with HF / HNO
  • the metal impurities contaminating the surface were removed by etching about 200 ⁇ m with an etchant.
  • the ingot was placed in a heat treatment furnace shown in FIG. 4 and heat-treated.
  • the temperature was raised from room temperature to 500 ° C at a heating rate of 10 ° CZmin, then to 1000 ° C at a heating rate of l ° CZmin, and maintained at 1000 ° C for 2 hours. Then, it was cooled down to 600 ° C at a rate of about 5 ° C / min, and then dropped to room temperature at about 2 ° C / min. This heat treatment At that time, oxygen gas was used.
  • a silicon single crystal ingot having an oxygen concentration of 13—15 ⁇ 10 17 atoms / cm 3 [oldASTM] was grown by the CZ method.
  • the crystal growth rate was controlled and the crystal in the NPC region was grown.
  • This ingot was cylindrically ground and cut into multiple blocks to obtain an ingot with a diameter of about 300 mm and a length of about 30 cm.
  • each wafer was subjected to wafer processing without performing the BMD forming step of performing heat treatment in the state of the ingot.
  • the BMD was evaluated for BMD density under the same conditions as in Examples 1 and 2 above.
  • the BMD was not formed by performing only the abrasion processing without performing the BMD forming step in the ingot state, so that the BMD was hardly detected even if the above evaluation was performed. Was not done. Therefore, when this wafer is used as an annealing wafer, for example, a heat treatment must be performed to form and grow the BMD in the wafer state.
  • a silicon single crystal ingot having an oxygen concentration of 13-15 ⁇ 10 17 atoms / cm 3 [oldASTM layer and a nitrogen concentration of 5-9 ⁇ 10 12 atoms / cm 3 was grown by the CZ method. This ingot was cylindrically ground and cut into multiple blocks to obtain an ingot about 300 mm in diameter and about 30 cm in length.
  • the first heat treatment step was performed on the ingot in a state of the ingot. First, the entire surface of the ingot is etched by about 200 ⁇ m with an acid etching solution such as HF / HNO.
  • the surface was contaminated to remove metal impurities.
  • the ingot was placed in a heat treatment furnace shown in FIG. 4 and heat-treated.
  • the temperature was raised from room temperature to 500 ° C at a temperature rising rate of 10 ° CZmin, and then to 1000 ° C at a temperature rising rate of l ° CZmin, and maintained at 1000 ° C for 2 hours. Then, it was cooled down to 600 ° C at a rate of about 5 ° C / min, and then dropped to room temperature at about 2 ° C / min.
  • the atmosphere during this heat treatment was oxygen gas.
  • the processing was performed in the step shown in FIG. In the slicing process (Fig. 8 (A)), cut with a wire saw, after the chamfering process (Fig. 8 (B)), and in the flattening process (Fig. 8 (C)), lapping using # 1500 free abrasive Then, in the etching step (FIG. 8 (D)), etching was performed using an alkaline solution using 50% NaOH. Thereafter, in the polishing step (FIG. 8 (E)), three steps of polishing, double-side polishing, single-side polishing, and single-side polishing, were performed to obtain a mirror-finished wafer with high flatness. Thereafter, washing was performed. From the 30 cm ingot, about 300 silicon wafers having a diameter of 300 mm were obtained.
  • Heat treatment was performed on 75 sheets per batch.
  • a vertical heat treatment furnace shown in FIG. 6 was used, and the wafer was transferred to a heat treatment boat shown in FIG. 7 and heat treated.
  • a heat treatment boat in which a wafer was set was transferred to a furnace maintained at 700 ° C in an argon atmosphere, and the temperature was raised to 1000 ° C at a relatively high rate of 5 ° C / min. After 1000 ° C, the temperature was raised at 2 ° C / min, and heat treatment was performed at 1200 ° C for 1 hour. Then, the temperature was lowered at 2 ° C / min to 1000 ° C, and at 1000 ° C or lower, the temperature was lowered at 4 ° C / min.
  • Heavy metal levels are as low as Fe: 1 X 10 9 atoms / cm 2 , Cu: 9 X 10 8 atoms / cm 2 , and Ni: 8 X 10 8 a toms / cm 2 . By shortening the heat treatment time, the metal contamination level on the wafer surface could be kept low. (Comparative Example 2)
  • the wafer is a wafer having a diameter of 300 mm that has undergone the same soldering process as in the third embodiment.
  • the oxygen concentration and the nitrogen concentration are the same as in the third embodiment.
  • Ahanil was transferred in a furnace maintained at 500 ° C in a furnace maintained at 500 ° C in an argon atmosphere, and heat-treated up to 1000 ° C at a very slow heating rate of l ° C / min.
  • the BMD was formed sufficiently. Thereafter, the temperature was raised at 2 ° CZmin, and a heat treatment was performed at 1200 ° C for 1 hour to form a DZ layer. Then, the temperature was lowered at 2 ° C / min to 1000 ° C, and at 1000 ° C or less, the temperature was lowered at 4 ° CZmin, and the furnace heat treatment boat (wafer) was taken out at 700 ° C.
  • the heat treatment time was about 14 hours in total.
  • the heat treatment for efficiently forming BMD can be performed with ingot annealing, and the annealing time can be greatly shortened. ⁇ C
  • the heat treatment time was reduced from about 14 hours to about 6.5 hours. As a result, the productivity was significantly improved.
  • the heat treatment process was performed on the ingot in the state of the ingot. First, the entire surface of the ingot was etched about 200 ⁇ m with an acid etching solution with HF / HNO power.
  • the surface was contaminated to remove metal impurities.
  • the ingot was placed in a heat treatment furnace shown in FIG. 4 and heat-treated.
  • the temperature was raised from room temperature to 500 ° C at a rate of 10 ° CZmin, and then to 800 ° C at a rate of 1 ° CZmin, and maintained at 800 ° C for 4 hours. After that, it was cooled down to 600 ° C at a rate of about 5 ° C / min, and then dropped to room temperature at about 2 ° C / min.
  • the atmosphere during this heat treatment was oxygen gas.
  • the processing was performed in the step shown in FIG. In the slicing process (Fig. 8 (A)), cut with a wire saw, after the chamfering process (Fig. 8 (B)), and in the flattening process (Fig. 8 (C)), lapping using # 1500 free abrasive Then, in the etching step (FIG. 8 (D)), etching was performed using an alkaline solution using 50% NaOH. Thereafter, in the polishing step (FIG. 8 (E)), three steps of polishing, double-side polishing, single-side polishing, and single-side polishing, were performed to obtain a mirror-finished wafer with high flatness. Thereafter, washing was performed. From the 30 cm ingot, about 300 silicon wafers having a diameter of 300 mm were obtained.
  • An epitaxy layer was formed on this wafer using an epitaxy apparatus as shown in FIG. First, pre-treatment was performed on AHA. The wafer was placed in a processing chamber maintained at 23 ° C and 1 atm. First, a 1% HF mixed gas diluted with H gas was supplied at a flow rate of 100 liters.
  • the natural oxide film on the surface of the wafer was removed at a supply speed of 3 minutes / minute.
  • power was supplied to a resistance heating furnace provided on the outer peripheral portion of the processing chamber, and the temperature of the wafer was raised to 1000 ° C. When the temperature stabilizes, flow 100 l of 1% HC1 mixed gas diluted with H gas.
  • the organic thin film was removed at a rate of 1 minute / minute. Next, epitaxial growth was performed. An H gas atmosphere was set in the processing chamber, the amount of electricity supplied to the infrared lamp provided above was adjusted, and the temperature of the wafer was raised to 1100 ° C. After the temperature was stabilized, 2% SiHCl diluted with H was immediately 100 liter / min mixed gas flow
  • An epitaxy wafer was obtained in which a silicon single crystal thin film (epitaxial layer) with a cm and boron concentration of 1 ⁇ 10 15 / cm was grown.
  • the BMD density on the substrate side was confirmed.
  • the BMD density was measured by performing heat treatment at 1000 ° C for 2 hours, and exposing the BMD.
  • a high BMD density of about 6 ⁇ 10 9 atoms Zcm 3 was obtained. Therefore, it can be seen that the method of the present invention can produce an epitaxy wafer by forming many BMDs serving as gettering sites despite the high-temperature epi-growth heat treatment.
  • Epitaxial wafers were manufactured in a conventional manner without heat-treating the silicon single crystal in the ingot stage. After forming a silicon single crystal ingot with the same oxygen concentration and nitrogen concentration as in the example, a wafer processing step similar to that in Example 4 was performed to produce about 300 wafers having a diameter of 300 mm. Subsequently, an epitaxy layer was formed on the wafer under the same epitaxy growth conditions as in Example 4.
  • the BMD density was confirmed in the same manner as in Example 4. As a result, the BMD density was 1 ⁇ 10 8 particles / cm 3 on average. When the annealing is not performed at the ingot stage, the BMD density is very low. Therefore, in order to obtain sufficient gettering ability, it is necessary to perform a long-time heat treatment for forming a BMD on the wafer.
  • the present invention is not limited to the above embodiment.
  • the above embodiment is an example It is to be noted that those having substantially the same structure as the technical idea described in the claims of the present invention and having the same effect can be achieved by the present invention. Is included in the technical scope.
  • the ingot is divided into a plurality of blocks, and the ingot annealing force is applied in the state of the blocks. good. In this way, ingots with minimal contamination can be treated at once.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 ウエーハの製造方法であって、少なくとも、インゴット状態のシリコン単結晶に熱処理を行ない内部に内部微小欠陥(BMD)を形成するBMD形成工程と、前記内部微小欠陥(BMD)を形成したインゴットをウエーハに加工するウエーハ加工工程を有するウエーハの製造方法。これにより、ウエーハの製造でIG能力を付与するための熱処理が短縮でき、IG能力の高いウエーハを大量に生産することができるウエーハの製造方法が提供される。さらに、加工後のウエーハを熱処理するウエーハ熱処理工程を有し、あるいは、ウエーハ上にエピタキシャル層を形成するエピタキシャル成長工程を有することもでき、これにより、ゲッタリング効果の優れたアニールウエーハやエピタキシャルウエーハの生産性が向上する。

Description

明 細 書
ゥエーハの製造方法
技術分野
[0001] 本発明はゥエーハの製造方法に関し、特に IG (Intrinsic Gettering)能力を付与 するための酸素析出物および内部微小欠陥 BMD (Bulk Micro Defect)を生成 したゥエーハを低コストで製造する方法に関する。
また、本発明はァニールゥエーハの製造方法に関し、特に、表面に無欠陥領域で ある DZ (Denuded Zone)層を形成するための酸素外方拡散熱処理、 IG能力を付 与するための酸素析出物および内部微小欠陥 BMDを生成する熱処理を行なうァニ ールゥエーハの製造方法に関する。
さらに、本発明はェピタキシャルゥエー八の製造方法に関し、特に、ゲッタリング効 果に優れ、ェピタキシャル層欠陥の少なレ、ェピタキシャルゥエーハを効率良く製造す る製造方法に関する。 背景技術
[0002] 半導体集積回路素子の基板として用レ、られるシリコン単結晶ゥエーハは、主にチヨ クラルスキー法(CZ法)によって製造されている。 CZ法とは、石英ルツボ内で 1420 °C以上の高温で溶融されたシリコン融液にシリコン単結晶の種結晶を浸漬させ、石 英ルツボと種結晶を回転させながら徐々に種結晶を引き上げることによって、円柱状 のシリコン単結晶を育成する方法である。この時、シリコン融液と接触する石英ルツボ 表面は溶融し、酸素がシリコン融液中に溶け込み、育成中の結晶の中に取り込まれ る。その酸素原子は結晶育成中および冷却中に凝集し、酸素析出核となる。そのた め育成されたままの結晶力 採取されたシリコンゥエー八に 700°C力 1050°Cの温 度帯で熱処理を施すとこの核が成長し酸素析出物および BMDを形成する。この酸 素析出物は、集積回路素子形成の過程 (デバイスプロセス)で起こる金属汚染を捕 獲するという有益な役割を担う。いわゆるイントリンシック'ゲッタリング (IG)である。
[0003] すなわち、デバイス工程では、高温での熱処理プロセス等で、 Fe, Ni, Cuに代表 される重金属汚染があり、これら重金属汚染により、ゥエーハ表面近傍に欠陥や電気 的な準位が形成されると、デバイスの特性が劣化するため、この重金属汚染をゥエー ハ表面近傍から取り除く必要から、 IGや各種の EG (Extrinsic Gettering)のゲッタ リング手法が従来から用いられている。特に今後のデバイスプロセスは、更なる高集 積化と高エネルギー 'イオン注入を用いたプロセスの低温ィ匕が進むことが明らかで、 その場合、デバイスプロセス途中における BMDの形成力 S、プロセス低温化のために 困難になることが予測される。従って、低温プロセスでは、高温プロセスに比べ十分 な IG効果を得ることが困難となる。また、デバイスプロセスが低温ィ匕しても、高工ネル ギー 'イオン注入等での重金属汚染は避け難ぐゲッタリング技術は必須と考えられ る。またスリップの発生を抑制するには高密度な BMDが存在することが好ましい。
[0004] 通常の BMDの形成は、シリコン単結晶をゥエーハ加工した後にゥエーハを熱処理 することで行なわれている。例えば DZ-IG熱処理といわれる熱処理などが知られて いる。これはゥエーハ加工した鏡面状のゥエーハを 1100°C力ら 1200°C程度の温度 で高温処理をすることにより、ゥエーハ表面近傍の酸素を外方に拡散させて微小欠 陥の核となる格子間酸素を減少させ、デバイス活性領域に欠陥の無レ、DZ (Denude d Zone)層を形成させる。その後、 600°Cから 900°Cの低温熱処理で、ゥエーハバ ルク中に BMDを形成するという高温 +低温の二段の熱処理が行われている。また初 めに低温処理を行ない、 BMDを十分に形成しつつ、その後の高温熱処理でゥエー ハ表層の DZ層を形成することもある。このようなゥエーハ状態で熱処理し DZ層や IG 能力を付カ卩したゥエーハはァニールゥエーハ等といわれる。
[0005] 一方、 CZ法で育成されるシリコン単結晶には、前記したように、通常酸素不純物が 含まれており、そのままの状態でデバイス製造工程に使用すると、工程中で過飽和な 酸素が析出することがある。酸素析出物は、体積膨張による歪みで二次的に転位や 積層欠陥等を発生させることがある。これらの酸素析出物及びその二次欠陥は半導 体デバイスの特性に大きな影響を及ぼすもので、ゥエーハ表面及びデバイス活性層 にこのような欠陥がある場合、リーク電流の増大、酸化膜耐圧不良等を引き起すこと 力 Sある。
[0006] また、デバイスの高集積化、微細化に伴レ、今まで問題視されなかった CZ法シリコン 単結晶引上げ時に導入された Grown— in欠陥が酸化膜耐圧特性を著しく劣化させ ることから、シリコン単結晶基板の表面近傍における結晶性の良否がデバイスの信頼 性及び歩留りを大きく左右することになる。
[0007] その対策として、ゥエーハに熱処理を施しゥエーハ表面の欠陥を消滅させる技術が ある。このゥエーハ熱処理としては、シリコン基板を水素雰囲気下、又は水素含有雰 囲気中で 950°Cから 1200°Cの温度で 5分間以上加熱してシリコンゥエーハ表層部 に酸素外方拡散促進による DZ層を形成する方法がある(例えば、特開昭 60—2313 65号公報、特開昭 61—193456号公報、特開昭 61—193458号公報参照)。
[0008] また、近年では、ゥエーハ(インゴット)の中に、窒素をドープし、 COP (Crystal Or iginated Particle)等の結晶起因の欠陥が消滅しやすぐかつ、酸素析出物が得ら れやすレ、ようにする工夫もされてレ、る。これにより無欠陥領域の広レヽァニールゥエー ハが効果的に製造できるようになつている。また、このような基板を用い後述するェピ タキシャルゥエーハを製造した場合、高品質のゥエーハが効果的に製造できるように なっている。
[0009] 更には、原子空孔過剰であるが結晶成長導入欠陥(COP等の結晶欠陥)のない領 域と格子間シリコン原子過剰であるが結晶成長導入欠陥のない領域からなる結晶が 知られている。これは結晶の引上げ速度等を制御することによって得られ、結晶欠陥 がほとんどないゥエーハとすることができる。このような原子空孔過剰であるが結晶成 長導入欠陥のない領域と格子間シリコン原子過剰であるが結晶成長導入欠陥のな い領域からなる結晶は準完全結晶(Nearly perfect crystal)と呼ばれ、以下 NPCと呼 ぶこと力 Sある。このような結晶を用いても表面の無欠陥領域 (DZ層)の広いァニール ゥエーハが効果的に製造できる(例えば、特開平 11—199387号公報参照)。また、 このような結晶を用いたゥエーハ上にェピタキシャル成長させても高品質のゥエーハ が効果的に製造できる。
[0010] し力、し、例えば上記のような DZ— IG熱処理と呼ばれるァニールでは、ゥエーハに D Z層形成と BMD形成という目的の異なる 2段の熱処理を行なうことから大変時間がか かるものであった。特に高密度に BMDを形成するには、低温で十分な時間をかけ熱 処理することが必要である。 [0011] シリコンゥエーハに加工されたゥエーハ状態で熱処理する場合には、図 6に示すよ うな縦型の熱処理装置 30が用いられ、熱処理ボート 40にセットされたゥエーハ Wを チャンバ 31内でヒータ 32により加熱する。また、ゥエーハのセットには、図 7に示すよ うな熱処理ボート 40が用いられ、連結部 41で連結された複数の支柱 42に設けた溝 状のゥエーハ載置部 43にゥエーハ Wを保持する。しかし、ゥエーハをセットできる枚 数は、多くても 100枚程度に限られてしまう。そのため、ァニールゥエーハを大量に 生産するには、熱処理装置を多く用意するか、ァニール時間を短縮する必要がある
[0012] しかし、ゥエーハが大口径化することで、このような熱処理を行なう装置も大型化し、 それに用レ、られる熱処理ボートなども大型化することで、設備的に大変高価な装置 が必要となってしまう。従って、装置を多く導入するにはコスト的に限界があり、効率よ く熱処理装置を運用することが重要である。
[0013] 一方、現在では表面に単結晶層を成長させたェピタキシャルゥエーハが用いられ ることも多レ、。ェピタキシャルゥエーハは表面近傍における結晶性が良好であるという 利点がある。また、ェピタキシャル成長技術によれば、ゥエーハ内部に急峻な不純物 濃度勾配を形成したり、高濃度層の内部に低濃度層を形成することが比較的容易に 行えるため、ェピタキシャルゥエーハはバイポーラ 'トランジスタやショットキ 'バリア 'ダ ィオードの作製には必須のゥエーハである。このようなェピタキシャル層の形成では、 1000°C以上の高温プロセスが行われる。
[0014] なお、ここで言う 1000°C以上の高温プロセスには、ェピタキシャル成長自体とェピ タキシャル成長前に行われる前処理がある。シリコン結晶薄膜のェピタキシャル成長 は、典型的には H雰囲気中に珪素化合物ガスである SiCl , SiHCI , SiH C1 , Si
2 4 3 2 2
H 等のガスとドーパント'ガスである B Hガスや PH等のガスを供給し、 1000 12
4 2 6 3
oo°cの温度域で行われる。
[0015] 一方、前処理とはシリコン単結晶基板の表面に存在する自然酸化膜やパーテイク ル等を除去する操作であり、特にェピタキシャル成長を行なう前には、シリコン単結晶 基板の表面の清浄化は欠かせなレ、処理である。 自然酸化膜やパーティクルを除去 するためによく用いられる方法は、 Hまたは H ZHC1混合ガス雰囲気中にて、 1100
2 2 °C付近の高温で基板の熱処理を行なう方法である。この他に、室温近傍で実施可能 な方法として、希フッ酸溶液を用いたウエット 'エッチング、フッ化水素ガスと水蒸気と の組合せ、 Arプラズマ処理が知られている力 処理後直ちに酸化膜が再成長してし まうこと、基板の表面荒れが起こること、処理設備が腐食すること等の問題があり、現 状では前述の高温熱処理が最適であると考えられている。
[0016] し力、し上記のような、ェピタキシャルゥエーハではゲッタリング効果が不十分な場合 があった。これは、ェピタキシャルゥエーハとなる基板が 1000°C以上の高温プロセス を経ると、酸素析出核や酸素析出物のほとんどが消滅してしまい、ゲッタリングの機 能を果たせなくなるためである。従来の方法ではェピタキシャル成長前の前処理で 自然酸化膜を 1000°C未満の温度域で十分に除去することは難しい。したがって、前 処理については 1000°C以上の温度域で行なわざるを得ず、従来、このためにェピタ キシャルゥエーハのゲッタリング効率の低下は免れなかった。
[0017] このような基板に対しゲッタリング効果を得るためには、ェピタキシャル層を形成す る前又は後に BMDを形成する為の熱処理を行なう必要があることがあり大変時間が かかるものであった。特にゲッタリング効果を得るために必要な BMDを形成するには 、ゥエーハを低温で十分な時間をかけ熱処理することが必要である。
発明の開示
[0018] 本発明は、ゥエー八の製造で IG能力を付与するための熱処理が短縮でき、また IG 能力の高いゥエーハを大量に生産することができるゥエーハの製造方法を提供する ことを第 1の目的としている。
また、本発明は、上記のような DZ層形成のための酸素外方拡散熱処理、 IG能力を 付与するための BMDを生成する熱処理など熱処理に大変時間とコストの力、かるァニ ールゥエーハの製造において効率的に熱処理を行ないァニールゥエー八の生産枚 数を増大させるゥエーハの製造方法の提供を第 2の目的としている。
さらに、本発明は、上記のようなェピタキシャルゥエーハの製造において効率的に 熱処理を行ないゲッタリング効果の優れたェピタキシャルゥエーハの生産性を向上さ せるェピタキシャルゥエーハの製造方法の提供を第 3の目的としている。 [0019] 前記第 1の目的を達成するための本発明は、ゥエーハの製造方法であって、少なく とも、インゴット状態のシリコン単結晶に熱処理を行なうインゴット熱処理工程と、該熱 処理したインゴットをゥエーハに加工するゥエーハ加工工程を有することを特徴とす るゥエーハの製造方法である。
このようにインゴット状態のシリコン単結晶に熱処理を行なって IG能力を付与するこ とにより、従来はゥエー八に加工した後で行われていた熱処理を予め効率的に行な うことができ、生産性を大幅に向上させることができる。
[0020] この場合、前記インゴット熱処理工程において、前記シリコン単結晶に内部微小欠 陥(BMD)を形成することが好ましレ、。
すなわち、ゥエーハの製造方法であって、少なくとも、インゴット状態のシリコン単結 晶に熱処理を行ない内部に内部微小欠陥(BMD)を形成する BMD形成工程と、前 記内部微小欠陥(BMD)を形成したインゴットをゥエーハに加工するゥエーハ加工ェ 程を有することを特徴とするゥエーハの製造方法である。
[0021] このように、インゴット熱処理工程(本発明では、 BMD形成工程、第 1の熱処理ェ 程という場合がある。 )としてインゴット状態のシリコン単結晶に予め熱処理を行なうこ ととし、ゥエーハ加工工程でインゴットをゥエーハに加工することにより、従来のように ゥエーハ状態のシリコン単結晶に対して BMDを形成する熱処理を加える方法に比 ベて効率良く熱処理を行なうことができる。従って効率良く BMDを形成することがで き、 IG能力の高いゥエーハを大量に生産することができる。また、初めから IG能力の 高いゥエーハをデバイス工程などの後工程に供給することができる。
[0022] また、前記ゥエーハ加工工程後、前記ゥエーハを熱処理するゥエーハ熱処理工程 を有することもできる。
すなわち、前記第 2の目的を達成するための本発明は、ァニールゥエーハの製造 方法であって、少なくとも、インゴット状態のシリコン単結晶に熱処理を行なうインゴッ ト熱処理工程と、前記熱処理したインゴットをゥエーハに加工するゥエーハ加工工程 と、前記ゥエーハを熱処理するゥエーハ熱処理工程 (本発明では、第 2の熱処理ェ 程とレ、う場合がある。 )を有することを特徴とするァニールゥエー八の製造方法である [0023] このように、インゴット熱処理工程でインゴット状態のシリコン単結晶に予め熱処理を 行なっておき、ゥエーハ加工工程でインゴットをゥエーハに加工してから、ゥエーハ熱 処理工程でそのゥエーハに熱処理を行なうことにより、従来のようにゥエーハに対し て 2段の熱処理をカ卩える方法に比べて効率良く熱処理を行なうことができる。また、ゥ エーハ状態での熱処理時間を短縮できるため、ゥエーハへの金属汚染も低減できる
[0024] 前記ゥエーハ加工工程において、前記熱処理したインゴットを鏡面状のゥエーハに 加工することが好ましい。
このようにゥエーハ加工工程において、インゴット熱処理工程で熱処理したインゴッ トを鏡面状のゥエー八に加工しておくことにより、 DZ層を形成するゥエーハ熱処理工 程をした後に、 DZ層の厚さが減少してしまう鏡面研磨をする必要がないため、ゥエー ハ熱処理工程で得られた厚い DZ層をそのままデバイス作製領域に用いることができ る。
[0025] この場合、前記鏡面状のゥエーハに加工した後、該ゥエーハ上にェピタキシャル層 を形成するェピタキシャル成長工程を有することもできる。
すなわち、前記第 3の目的を達成するための本発明は、ェピタキシャルゥエーハの 製造方法であって、少なくとも、インゴット状態のシリコン単結晶に熱処理を行なう熱 処理工程と、前記熱処理したインゴットを鏡面状のゥエーハに加工するゥエーハ加工 工程と、前記ゥエーハ上にェピタキシャル層を形成するェピタキシャル成長工程を有 することを特徴とするェピタキシャルゥエーハの製造方法である。
[0026] このように、熱処理工程でインゴット状態のシリコン単結晶に予め熱処理を行なって おき、ゥエーハ加工工程でインゴットをゥエーハに加工してから、ェピタキシャル成長 工程でそのゥエーハ上にェピタキシャル層を形成することにより、従来のようにゥエー ハに対して熱処理を加える方法に比べて効率良く熱処理を行なうことができる。
[0027] 前記インゴット熱処理工程は、インゴット状態のシリコン単結晶に 700°C以上の熱処 理を行なうことが好ましい。
このようにインゴット状態のシリコン単結晶に 700°C以上の熱処理を行なうことにより 、内部に十分な BMDを形成することができる。 [0028] また、前記インゴット熱処理工程は、 1100°C以下の熱処理温度で 30分以上 8時間 以内の熱処理を行なうことが好ましい。
1100°C以下の熱処理温度で熱処理することにより、単結晶に転位やスリップを発 生させることなく熱処理を行なうことができる。また、 30分以上 8時間以内の熱処理を 行なうことにより、良好な IG能力を付与することができる。
[0029] 従って、前記インゴット熱処理工程は、 700°C以上 1100°C以下の熱処理温度で 3
0分以上 8時間以内の熱処理を行なうことが好ましい。
このような温度範囲でインゴット熱処理工程を行なうことにより、シリコン単結晶イン ゴットに転位やスリップを発生させることなぐ十分な BMDを形成することができる。ま た、このような時間でインゴット熱処理工程を行なうことにより、良好な IG能力を付与 すること力 Sできる。
[0030] 特に、ェピタキシャルゥヱーハを製造する場合には、前記インゴット熱処理工程は、
700°C以上 900°C以下の熱処理温度で 30分以上 8時間以内の熱処理を行なうこと が好ましい。
このような温度範囲で熱処理工程を行なうことにより、後にェピタキシャル層を形成 した場合に、基板ゥエーハ表面に露出した BMDからェピタキシャル層欠陥が発生す ることがなく、十分な BMDを形成することができる。また、このような時間で熱処理ェ 程を行なうことにより、良好な IG能力を付与することができる。
[0031] 前記インゴット熱処理工程は、昇温速度を 0. 5°C/min— 10°C/minとして熱処 理することが好ましい。
このような昇温速度で熱処理することによりインゴット中に安定した BMDを形成する こと力 Sできる。なお高密度に BMDを析出させるためには、 BMD析出核が生成する 温度帯領域、例えば 500°C以上において 5°CZmin以下にゆっくり昇温することが好 ましレ、。これより低い領域(500°C未満)では 10°C/min程度と比較的高速に昇温し て処理すれば良い。
[0032] 前記ゥエーハ熱処理工程にぉレ、て、前記ゥエーハ表面に無欠陥領域 (DZ層)を形 成することが好ましい。
このように、ゥエーハ熱処理工程において、ゥエーハ表面に DZ層を形成することに より、ゥエーハ表面近傍の結晶性に優れた DZゥエーハを製造することができる。特 に本発明では、インゴット熱処理においてインゴット状態のシリコン単結晶に予め熱 処理を行なって BMDを形成させてあるため、 DZ層を形成する熱処理を簡略なシー ケンスで短時間で行なうことができる。
[0033] 前記ゥエーハ熱処理工程は、 900°C以上 1300°C以下で、 5分以上 16時間以内の 熱処理を行なうことが好ましい。
このような温度範囲と熱処理時間でゥエーハ熱処理工程を行なうことにより、ゥエー ハにスリップを発生させずに、十分な厚さの DZ層を形成することができる。
[0034] 前記ゥエーハ熱処理工程は、昇温速度を 5°CZmin以上として昇温することが好ま しい。
このように、本発明ではインゴット熱処理工程でインゴット状態のシリコン単結晶に予 め熱処理を行なっているため、ゥエー八に対して行なうゥエーハ熱処理工程では、初 めから昇温速度を従来方法より速くすることができ、熱処理時間を短縮することがで きる。そして、インゴット熱処理工程を行なっているため、このような昇温速度でも十分 な BMD密度と DZ層を有するァニールゥエーハを得ることができる。
[0035] 前記ェピタキシャル成長工程は、 1000°C以上の温度で前処理を行なった後に 10 00°C以上の温度でェピタキシャル成長を行なうことができる。
このように本発明では、 1000°C以上の温度で前処理を行なった後に 1000°C以上 の温度でェピタキシャル成長を行なうことにより、前処理で十分に自然酸化膜を除去 して、高品質のェピタキシャル成長を効率良く行なうことができる。特に、初めにイン ゴットの状態で十分に BMDの析出核を形成しておくため、このような高温プロセスに よりェピタキシャル層を形成しても、ゲッタリング効果が低下することなく良好な IG能 力を持つェピタキシャルゥエーハを製造することができる。
[0036] 前記シリコン単結晶は、窒素がドープされている結晶であることが好ましい。
このようにシリコン単結晶に窒素をドープしておくことにより、熱処理により DZ層や B
MDを形成しやすくすることができる。
また、このようにシリコン単結晶に窒素をドープしておくことにより、ェピタキシャル成 長工程後にェピタキシャル層の欠陥が少なぐ IG効果の高いゥエーハを効率良く製 造すること力 Sできる。
[0037] 前記シリコン単結晶は、チヨクラルスキー法により製造された準完全結晶(NPC)領 域の結晶とすることができる。
このような結晶であれば、例えば後の工程でァニールゥエーハとした場合に DZ層 の厚い、より高品質のゥエーハとすることができる。
また、このような結晶であれば、ェピタキシャルゥエーハとした場合にェピタキシャル 層の欠陥が少ない、より高品質のゥエーハとすることができる。
[0038] 前記インゴット状態のシリコン単結晶は、チヨクラルスキー法による単結晶引上装置 で引き上げられたままの形状のインゴット、又は引上げ後に円筒研削されブロック状 に切断された状態のインゴットとすることができる。
本発明では、このようなインゴット状態のシリコン単結晶に熱処理を行ない内部に B MDを形成するため、効率良く単結晶に BMDを形成することができる。
なお、本発明でいう単結晶引上装置で引上げられたままの形状のインゴットとは、 チヨクラルスキー法により引上げられた直後の結晶の他、引上げられたインゴットから コーン部、テール部を切断したもの、あるいはそれらを数個のブロックに切断したもの も含む。
[0039] 本発明によるゥエーハの製造方法によれば、初めにインゴットの状態で BMDを形 成する熱処理を行なうため、 IG能力の高いゥエーハをデバイス工程などの後工程に 供給すること力できる。また BMDを形成する熱処理を一度に大量に行なうことにより 効率良く行なうことができ、 IG能力を付与するための熱処理時間を大幅に短縮するこ とができ、これによりゥエーハ製造の生産性を向上させることができる。
[0040] また、本発明によるァニールゥエーハの製造方法によれば、初めにインゴットの状 態で BMDを形成する熱処理を行なうため、 BMDを形成する熱処理を効率良く行な うことができ、後に行なう DZ層を形成する熱処理で熱処理時間を大幅に短縮するこ とができる。これにより、ァニールゥエーハ製造の生産性を向上させることができる。さ らに、ゥエーハ状態での熱処理時間を短縮できるため、ゥエーハへの金属汚染も低 減できる。
[0041] さらに、本発明によるゥエーハの製造方法によれば、初めにインゴットの状態で BM Dを形成しておく為、ゥエーハ加工後にェピタキシャル層を形成しても BMDが消滅 することなぐ高密度の BMDが析出した IG能力の高いェピタキシャルゥエーハが製 造できる。また、 BMDを形成する熱処理がゥエーハ状態での熱処理ではなぐインゴ ット状態での熱処理であるため、(ゥエーハ換算にすると)大量のゥエーハを一度に 処理でき、生産性が向上する。 図面の簡単な説明
[0042] [図 1]本発明のゥエーハの製造工程の一例を示したフロー図である。
[図 2]本発明のゥエーハの製造工程の別の例を示したフロー図である。
[図 3]本発明におけるインゴット熱処理工程で用いられる横型熱処理炉の一例を示し た説明図である。
[図 4]本発明におけるインゴット熱処理工程で用いられる縦型熱処理炉の一例を示し た説明図である。
[図 5]引上げ後にブロック状に切断された状態のシリコン単結晶のインゴットを示した 図である。
[図 6]ゥエーハの熱処理で用いられる縦型熱処理装置の一例を示した説明図である
[図 7]ゥエーハの熱処理で用いられる熱処理ボートの一例を示した説明図である。
[図 8]本発明におけるゥエーハ加工工程の一例を示したフロー図である。
[図 9]本発明のァニールゥエー八の製造工程の概略を示したフロー図である。
[図 10]本発明のェピタキシャルゥエーハの製造工程の概略を示したフロー図である。
[図 11]ェピタキシャル成長装置の一例を示した説明図である。
発明を実施するための最良の形態
[0043] 以下、本発明について詳細に説明する。
本発明者は、 IG能力の高いゥエーハの製造に際して、インゴット状態で熱処理をし て IG効果を上げるための BMDを形成しておき、それをゥエーハ加工することによつ て、 BMDが形成され IG能力の高いゥエーハを効率良く製造することができ、その後 の DZ層形成ゃェピタキシャル層形成のプロセスにおいても、 BMD密度が十分に維 持できることを知見した。
[0044] 従来インゴット状態のァニール (以下インゴットァニールということがある)は、化合物 半導体、例えば GaAsにおいて主に行なわれている技術で、もっぱら電気特性を均 一に改善する為に行なわれているものである(例えば特開平 6— 196430号公報、特 開平 6—31854号公報参照)。本発明では、このような熱処理とは異なり、シリコン単 結晶に対し BMDを形成する熱処理をインゴットの状態で施しておくことで、 IG能力 の高いゥエーハを短時間で大量に生産する。すなわち、本発明のゥエーハの製造方 法は、インゴット状態のシリコン単結晶の内部に BMDを形成し、その後ゥエーハ加工 を行なうことを特徴とする。
[0045] 本発明は、このようにインゴットの状態で BMDを形成しておき、これをゥエーハ加工 して IG能力を付加したゥエーハを製造することによって、例えば、その後にァニール ゥエーハを製造する際にも、この IG能力を付加する条件の熱処理を省略または簡略 化することができ熱処理時間を短くすることができるものである。また、例えば、このよ うなゥエーハにェピタキシャル層を形成することでェピタキシャルゥエーハを作製する 場合においてもゲッタリング効果の高いゥエーハとすることができる。またインゴット状 態での熱処理であることから、従来のゥエーハ状態での BMDを形成する熱処理に 比べ、ゥエーハ熱処理ボートを用いる必要がないため、(ゥエーハ換算にすると)一 度に大量に熱処理することができ、熱処理の効率を大幅に向上させることができる。
[0046] 具体的には、インゴット状態のシリコン単結晶に 700°C以上の熱処理を行なレ、、そ の後ゥエーハ加工を行なう。特にインゴット状態のシリコン単結晶に熱処理を行ない インゴット内部に BMDを形成する熱処理工程は、 700°C以上 1100°C以下の熱処理 温度で 30分以上 8時間以内の熱処理を行なうと良い。また昇温速度も 0. 5°C/min 一 10°C/minとして熱処理することで安定した BMDを形成することができる。
[0047] インゴットの状態で 1100。C以下の温度で熱処理を行なうことによりインゴット全体に 転位やスリップが発生することを防ぐことができる。また、 700°C以上の温度で熱処理 をすることにより、十分な BMDを形成することができる。さらに、 700°C以上の温度で 熱処理をすることにより、後の工程 (例えばゥエーハ状態でのァニール工程)で消滅 しなレ、ような BMDを形成することができる。 [0048] このような温度範囲で、インゴットに例えば 30分以上 8時間以内の定温保持または 複数段の定温保持熱処理を行なうと十分な BMDを形成することができ、その後のェ 程においてもこの BMDは消失せず残留するため、良好な IG能力を付与させることが できる。処理時間は特に限定するものではなぐこの処理時間はもつと長くてもかまわ ないが、時間的メリット及び良好な IG能力を得るには上記範囲程度が適当である。こ のとき、昇温速度を 0. 5°CZmin 10°CZminとして昇温すると好ましい。
[0049] また、インゴットは、シリコン単結晶に窒素がドープされている結晶、又は NPC領域 の結晶であることが好ましレ、。
特に窒素ドープしたシリコン単結晶を用い熱処理した場合、結晶内部で酸素析出 物が得られやすくなり、かつ、 COP等の結晶起因の欠陥が熱処理により消滅しやす くなる。このようなシリコン単結晶を用いることにより、例えば、 DZ層を形成する工程を 後に行なう場合において無欠陥領域が広く IG効果の高いゥエーハを効果的に製造 できるようになる。
[0050] また、 NPC領域の結晶についても同様に無欠陥領域の広いゥエーハとなり好まし レ、。 NPC領域の結晶は、結晶引上げ条件を制御することで、原子空孔過剰であるが 結晶成長導入欠陥のない領域 (Nv領域ということがある)と格子間シリコン原子過剰 であるが結晶成長導入欠陥のなレ、領域 (Ni領域とレ、うことがある)で成長させた結晶 である。
特に、 NPC領域では Nvと Ni領域で、酸素析出挙動が異なることが知られている。 このような異なる酸素析出挙動を示す場合、例えばインゴット段階で 300— 500°Cと いった低温領域から、 0. 5— 2°C/min程度の遅い昇温速度で低温からゆっくり昇 温して BMDを成長させることにより、 Nvや Ni領域での酸素析出挙動が均一化され、 Nvや Ni領域に依存することなく面内で安定した BMDの形成を行なうことができるの で好ましい。従来は、ゥエーハ状態でこのような熱処理を行なうと生産性が著しく低下 するため、現実的には実施することができなかった。しかしインゴット段階であれば、 このようなゆっくりした熱処理を行なっても一度に大量の処理を行なうことが出来るの で高レ、生産性を維持することができる。
[0051] なお、インゴット状態のシリコン単結晶とは単結晶引上装置で引き上げられたままの 形状のインゴット又は引上げ後に円筒研削しブロック状に切断した状態のインゴット である。単結晶引上装置により引き上げたシリコン単結晶は、コーン及びテールとレ、 つた部分が形成されている力 このようなインゴットの状態(この他にコーン部および テール部を除去した状態、および複数ブロックに分割した状態を含む)で、インゴット ァニールをすることができる。
またゥエーハ加工前 (スライス前)に、通常はインゴットを円筒研削してから複数のブ ロックに分ける力 このような円筒研削されたブロックの状態で熱処理しても良レ、。こ の場合は、ブロックの表層に円筒研削での金属汚染が発生するため、表層 100— 50 0 μ m程度を酸エッチングにより除去してから、熱処理を行なうことが好ましい。
[0052] また、本発明者は、ァニールゥエー八の製造に際して、インゴットのまま熱処理し IG 効果を上げるための BMDを形成しておき、その後にゥエーハ加工をし、さらにゥェ ーハ状態での熱処理を行なうことによって、効率良く熱処理を行なうことができ、 BM Dが十分に形成され、かつ DZ層も十分に形成されたァニールゥエーハを製造するこ とが可能であることを知見した。
[0053] つまり本発明のァニールゥエーハの製造方法は、インゴット状態のシリコン単結晶 に熱処理を行なう第 1の熱処理工程と、熱処理したインゴットをゥエーハに加工するゥ エーハ加工工程と、ゥエーハを熱処理する第 2の熱処理工程を有することを特徴とす る。特にインゴット状態のシリコン単結晶に熱処理を行なう第 1の熱処理工程が BMD を形成する熱処理工程であり、ゥエーハを熱処理する第 2の熱処理工程はゥエーハ 表面に無欠陥領域 (DZ層)を形成する熱処理工程であることを特徴とする。
[0054] このようなインゴットァニールを、ァニールゥエーハの原料となるシリコン単結晶のィ ンゴットに適応すれば良好なァニールゥエーハが得られることがわかった。特にイン ゴット状態で 700°C以上の熱処理を施し BMDを形成しておくと好ましい。
[0055] すなわち、本発明は、従来ゥエーハに加えられていた DZ層及び BMDを形成する 為の 2段の熱処理のうち、 BMDを形成する熱処理をインゴット段階で行なっておき、 最終的なゥエーハ状態での熱処理では、 BMDを形成する熱処理を省略または簡略 化することによりゥエーハに施す熱処理時間を短くするものである。つまり、 BMDを 形成する熱処理をインゴット状態で行なうことにより、従来方法のようにゥエーハ熱処 理ボートを用いる必要がないため、ゥエーハ状態なら数バッチから十数バッチ分はか 力る熱処理を一回の熱処理で行なうことができ、熱処理の効率を大幅に向上させるこ とができる。そしてゥエーハ状態での熱処理では BMDを形成する熱処理を省略また は簡略化することにより、熱処理時間を従来の約 2分の 1程度の時間に短縮でき、ァ ニールゥエー八の生産性を大幅に向上することができる。
[0056] DZ層を形成する為の、ゥエーハ状態でのァニール(第 2の熱処理工程)は、従来の
2段の熱処理を簡略化したもので、主に DZ層を形成するための条件で熱処理を行 なえば良い。具体的には、 900°C以上 1300°C以下で 5分以上 16時間以内で加熱 保持して熱処理する。特に 1100°C以上が好ましい。熱処理時間は要求される DZ層 の幅等により適宜設定すれば良い。
[0057] このようにインゴット状態で熱処理したシリコン単結晶をゥエーハ加工し、さらにゥェ ーハ状態で熱処理することで、無欠陥領域が広ぐまた IG効果の高いァニールゥェ ーハが効果的に製造できるようになる。
[0058] さらに、本発明者は、ェピタキシャルゥエーハの製造に際して、例えば、インゴットの まま熱処理し IG効果を上げるための BMDを十分に形成しておき、その後にゥエー ハ加工をし、更にその表面にェピタキシャル成長をすることによって、効率良く熱処 理を行なうことができ、 BMDが十分に形成されゲッタリング効果の高レ、ェピタキシャ ルゥエーハを効率よく製造可能であることを知見した。
[0059] つまり本発明のェピタキシャルゥエーハの製造方法は、インゴット状態のシリコン単 結晶に熱処理を行なう熱処理工程と、熱処理したインゴットを鏡面状態のゥエーハに 加工するゥエーハ加工工程と、鏡面研磨されたゥエーハ上にェピタキシャル層を形 成するェピタキシャル成長工程を有することを特徴とする。特にインゴット状態のシリ コン単結晶に熱処理を行なう熱処理工程が BMDを形成する熱処理工程であること を特徴とする。
[0060] 本発明者は、インゴットァニールを、ェピタキシャルゥエーハの原料となるシリコン単 結晶のインゴットに適応すれば良好なェピタキシャルゥエー八が効率良く得られるこ とがわかった。従来は、ェピタキシャル層を形成する前又は後にゥエーハ状態のシリ コン単結晶に BMDを形成する為の熱処理を行なう必要があった。ところが、ゥエー ハの熱処理に用いられる熱処理装置及びゥエーハ熱処理ボートは、一度にゥエーハ をセットできる枚数が多くても 100枚程度に限られてしまレ、、熱処理の効率が低いも のであった。し力し、 BMDを形成する熱処理をインゴット状態で行なうことにより、従 来方法のようにゥエーハ熱処理ボートを用いる必要がないため、ゥエーハ状態なら数 バッチから十数バッチ分は力、かる熱処理を一回の熱処理で行なうことができ、熱処理 の効率を大幅に向上させることができる。
[0061] 特にインゴット状態で 700°C以上 900°C以下の熱処理を施し BMDを形成しておく と好ましレ、。 900°C以下の温度で熱処理を行なうことにより、インゴット全体に転位や スリップが発生するのを防ぎ、ゥエーハ表面に BMDが露出してェピタキシャル層に 欠陥が発生するのを防ぐことができる。また、 700°C以上の温度で熱処理をすること により、インゴットの状態で形成した BMDがェピタキシャル成長工程で消滅すること を防ぐことができる。
[0062] 従って、インゴット状態のシリコン単結晶に 700°C以上 900°C以下の熱処理を行な うことにより、ェピタキシャル層欠陥を発生させないとともに、ェピタキシャル工程で消 滅しない適当な大きさの BMDをインゴット内部に十分に形成することができる。具体 的には、 700°C以上 900°C以下の熱処理温度で、 30分以上 8時間以内の定温保持 、または複数段の定温保持熱処理を行い、また、昇温速度も 0. 5°C/min— 10°C/ minとして熱処理することで安定した BMDを形成することができる。
[0063] また、インゴットは、シリコン単結晶に窒素がドープされている結晶、又は NPC領域 の結晶であることが好ましレ、。
特に窒素ドープしたシリコン単結晶を用い熱処理した場合、 COP等の結晶起因の 欠陥が消滅しやすぐかつ、結晶内部で酸素析出物が得られやすくなる。このような シリコン単結晶を用いることにより、ェピタキシャル成長工程においても欠陥の少ない ゥエーハおよび IG効果の高いゥエーハが効果的に製造できる。
[0064] また、 NPC領域の結晶についても同様にェピタキシャル層欠陥の少ないゥエーハ が得られる。
[0065] ェピタキシャル層を形成する方法は、特に従来の方法でかまわない。例えば、 100 0°C以上の高温プロセスを有する前処理を行レ、、その後に 1000°C以上の温度でェ ピタキシャル成長を行なう方法で良レ、。具体的にはシリコン結晶薄膜のェピタキシャ ル成長は、 H雰囲気中に珪素化合物ガスである SiCl , SiHCl , SiH CI , SiH等
2 4 3 2 2 4 のガスとドーパント'ガスである B Hガスや PH等のガスを供給し、 1000— 1300°C
2 6 3
の温度域で行われる。
[0066] 一方、ェピタキシャル成長前に行なう前処理はシリコン単結晶基板の表面に存在す る自然酸化膜とパーティクルを除去する操作であり、特にェピタキシャル成長を行な う前には、シリコン単結晶基板の表面の清浄化は欠かせない処理である。 自然酸化 膜やパーティクルを除去するためによく用いられる方法は、 Hまたは H /HC1混合
2 2
ガス雰囲気中にて、 1000°C— 1300°C、特に 1100°C付近の高温で基板の熱処理 を行なう方法である。
[0067] このようなシリコン単結晶の状態で熱処理したインゴットをゥエーハ加工し、ェピタキ シャルゥエーハの原材料とすることで、欠陥もなく IG効果の高いェピタキシャルゥェ ーハを効率良く製造できるようになる。
[0068] 以下、本発明のゥエーハの製造方法について図面を参照してさらに詳しく説明す る。図 1および図 2は本発明のゥエーハの製造工程の概略を示すフロー図である。
[0069] (インゴットの育成)
先ず初めに CZ法により、酸素濃度 (や窒素濃度)、抵抗率等を調節しシリコン単結 晶インゴットを成長する。この引上げ方法は特に限定されるものではなぐ従来から行 なわれている方法を用いれば良レ、。特に COP等の結晶起因の欠陥が少なくなるよう な条件でインゴットを引き上げると好ましい。
[0070] 特にシリコン単結晶中に窒素をドープすることにより、 DZ層、 BMDを形成しやすい シリコン単結晶を成長させることができる。本発明において、窒素をドープしたシリコ ン単結晶インゴットを育成するには、チヨクラルスキー法でシリコン単結晶を育成する 場合に、あらかじめ石英ルツボ内に窒化物を入れておくか、シリコン融液中に窒化物 を投入するか、雰囲気ガスを窒素を含む雰囲気等とすることによって、シリコン単結 晶中に窒素をドープすることができる。この際、窒化物の量あるいは窒素ガスの濃度 あるいは導入時間等を調整することによって、結晶中の窒素ドープ量を制御すること が出来る。
[0071] また、準完全結晶(NPC)領域のシリコン単結晶を用いることにより、後にゥエーハ 状態でァニールを行なった場合に DZ層の厚いァニールゥエーハを製造することが できる。この準完全結晶領域のシリコン単結晶を製造するには、例えば、チヨクラルス キー法により単結晶を成長させるときの引上速度 Vと、固液界面近傍の引上軸方向 の結晶温度勾配 Gとの比である V/Gを制御しつつ結晶引上を行なうことにより、結 晶横断面全面で、準完全結晶(NPC)領域のシリコン単結晶を引上げることができる
[0072] (インゴットァニール: BMD形成工程、第 1の熱処理工程)
次にこのように育成されたインゴットをインゴットの形態で熱処理して内部に BMDを 形成する。つまりゥエーハ形状に加工するスライス工程前(ゥエーハ加工工程前)に 熱処理を行なう。この場合 BMDが形成される条件で熱処理する。この時、インゴット ァニールは、単結晶製造装置 (インゴット引上げ装置)で引き上げられたままの形状 のインゴット又は引上げ後に円筒研削しブロック状に切断した状態で行なう。つまりィ ンゴット外周部を円筒研削する前又は後どちらでも実施することができる。
[0073] まず、引き上げられたままの形状でのインゴットァニールについて、その一実施形 態を説明する(図 1)。
この例では、単結晶製造装置で引上げられたインゴットのコーン部やテール部を除 去せず、複数ブロックに分割しなレ、状態でインゴットを熱処理炉に入れ BMDを形成 する熱処理をする。
この場合の熱処理装置は特に限定するものではなレ、が、このようなインゴットの塊の 状態で熱処理できるものが好ましぐ図 3に示すような横型の熱処理炉が好適である 。図 3は横型熱処理炉の概略を示すもので、この熱処理炉 10は、コーン部やテール 部を除去せず、複数ブロックに分割しないインゴット 1をそのまま投入することができる 石英や SiC製のチャンバ 11を有し、その外側にヒータ 12等の熱処理手段が具備され ているものである。インゴット 1はコーン部及びテール部を支持できる支持部 13で保 持される(必要によりインゴット中心部にも支持部を配置しても良い)。このような装置 を用い BMDが形成される熱処理条件で熱処理を行なう。 [0074] このような引上げられたままの形状のインゴットを熱処理すると汚染等が極力少ない 状態または、歪み等が形成されていない状態で熱処理でき好ましい。また、インゴット を一度に熱処理することによりゥエーハ換算にすると大変大量のゥエーハが処理でき る。
[0075] 次に、別な形態の例を示す。以下の例では引き上げられたままの形状ではなぐ引 上げ後に円筒研削されブロック状に切断された状態にしたインゴットをインゴットァニ ールする例を示す(図 2)。
[0076] インゴットの育成工程で引き上げられたインゴットの側面を円筒研削し、その後、図
5に示すようにインゴット 1のコーン部 2及びテール部 3を切断し、さらに複数のブロッ ク 4に切断することでインゴットブロックを得る。
[0077] その後、このブロック状のインゴットに熱処理を行なう。なお、このような円筒研肖 1」·ブ ロック加工を行なった場合、熱処理により汚染や割れが生じる可能性があるため、先 ず初めにインゴット表面全体をエッチング液により、数百/ i mエッチングしてインゴット 表面に付着している金属不純物等を除去する。このエッチング液は例えば、 HF/H NO力 なる酸性のエッチング液などが用いられる。
3
[0078] その後、ブロックの状態のまま、熱処理炉に入れ熱処理する。熱処理装置は特に限 定するものではないが、このような形態のインゴットブロックを塊のまま熱処理できる例 えば、図 4のようなものが好ましい。図 4の熱処理炉 20は、インゴットのブロック 4を縦 置きにして熱処理できる装置である力 S、インゴットのブロック 4を熱処理炉 20の下方か ら石英や SiCからなるチャンバ 21内に投入し、その外側に配置されたヒータ 22等の 熱処理手段により熱処理する形態のものであり、いわゆる縦型の熱処理炉である。こ のような熱処理炉を用い BMDが形成される熱処理条件で熱処理を行なう。このよう なシリコン単結晶をブロック状にした熱処理では、熱処理炉も小型化でき好ましい。
[0079] このように引上げ後に円筒研削されブロック状に切断された状態にしたインゴットを 熱処理する場合においても、ゥエーハ用の熱処理ボートが不要になるため、一度に 大量のシリコン単結晶を熱処理でき、ゥエーハ状態で熱処理した場合に換算すると、 きわめて多くのゥエーハを一度に熱処理できることになる。
[0080] 以上のようなインゴット熱処理工程(BMD形成工程、第 1の熱処理工程)の具体的 な熱処理条件は、要求される仕様により適宜設定すれば良いが、特に酸素雰囲気中
、 700°C— 1100°Cの熱処理を 30分から 8時間程度行なえば、 目的とする BMDが十 分に生成される。実際には室温から 500°C付近までは昇温速度 10°C/min程度の 高速で昇温し、その後昇温速度を遅くして、設定温度までは 0. 5°C/min-5°C/ min程度で昇温する。このような方法で設定温度(例えば 1000°C)まで徐々に昇温 させ、この設定温度で任意の時間(例えば 1時間)保持する。その後、 600°Cまでは 5 °C/min程度の降温速度で冷却し、その後 2°C/min程度で室温まで落とし熱処理 を終了する。こうすることで、後にゥエーハ状態で DZ層を形成する 1000°C程度の熱 処理ゃェピタキシャル成長を行なっても消失しない BMDがインゴット中に高密度に 形成される。
[0081] (ゥエーハ加工工程)
次にこのようにインゴットァニールしたインゴットをゥエーハ加工する。ゥエーハ加工 では、少なくとも高平坦度なゥエーハが得られればその工程は特に限定するもので はない。この実施の形態では図 8に示すように単結晶シリコンインゴットをスライスして 薄板(ゥエーハ)を作製した後(図 8 (A) )、このシリコンゥエーハに対して面取り(図 8 ( B) )、平坦ィ匕 (ラッピング)(図 8 (C) )、エッチング(図 8 (D) )、研磨(図 8 (E) )等の各 工程を順次実施し、最終的に鏡面研磨ゥエーハを得る。各工程の条件は特に限定 するものではなレ、がスライス工程(図 8 (A) )ではワイヤーソーを用いた切断、平坦ィ匕 工程(図 8 (C) )ではラッピング(工程)または平面研削(工程)などにより行なう。例え ばラッピング工程であれば # 1500以上の遊離砥粒を用いたラッピングを行なう。次 にエッチング工程(図 8 (D) )ではアルカリ溶液を用いたエッチング、研磨工程(図 8 ( E) )では両面研磨、片面研磨を組み合わせた複数段の研磨で実施すると良い。また 面取り工程(図 8 (B) )についても平坦化前の粗面取りや面取り部の鏡面化 (鏡面面 取り)等を実施している。この他に研磨後や各工程間に洗浄工程が入っても良い。 このように、インゴットァニールを行なった後、ゥエーハ加工することで IG能力の高 レ、ゥエー八が容易に製造できる。
[0082] ァニールゥエーハの製造 次に、本発明のァニールゥエーハの製造方法について図面を参照し説明する。図
9は本発明のァニールゥエーハの製造工程の概略を示すフロー図である。
[0083] (インゴットの育成、インゴットァニール、ゥエーハ加工)
前記と同様にしてインゴットを育成し、インゴットァニールを行なった後、ゥエーハ加 ェすることで IG能力の高いゥエー八が容易に製造できる。なお、鏡面研磨等のゥェ ーハ表面の状態を改善する工程は、後述する第 2の熱処理工程の後に行なうことも できる。
[0084] (ゥエーハァニール:第 2の熱処理工程)
このような鏡面研磨ゥエーハを熱処理する。ゥエーハのァニールは従来の装置など をそのまま利用できる。例えば図 6に示すような縦型熱処理炉 30を用いることができ る。この熱処理炉 30は、チャンバ 31の周りに配置されたヒータ 32でチャンバ 31内を 加熱するもので、熱処理時にはガス導入管 33からアルゴン等の不活性ガスを導入し 、ガス排気管 34から不要なガスを排気するようにされている。被熱処理物である複数 枚のゥエーハ Wは、熱処理ボート 40にセットされ、チャンバ 31内に配置される。熱処 理ボート 40は、例えば図 7に示すようなものが用いられる。この熱処理ボート 40は、 複数の支柱 42と、支柱 42の両端でそれらを連結する連結部 41から成る。支柱 42に は、ゥエーハ Wをセットできるように、溝状のゥエーハ載置部 43が設けられており、ゥ エーハ Wを保持できるようにされてレ、る。
本発明では、インゴット熱処理工程(第 1の熱処理工程)でインゴットァニールを行な うため、従来の熱処理条件より簡便なシーケンスで熱処理を実施することができる。こ のため時間が短縮され生産性の良いァニールゥエーハの製造を行なうことができる。
[0085] ゥエーハ熱処理工程(第 2の熱処理工程)の熱処理条件は、ゥエーハ表面に無欠 陥領域(DZ層)を形成することを主な目的とし、好ましくは、 900°C以上 1300°C以下 で、 5分以上 16時間以内の熱処理を行ない、 DZ層を成長させる。 900°C以上であ れば DZ層の形成が短時間で済み、さらに十分な DZ幅を得ることができる。また 130 0°C以下とすれば、ゥエー八の変形等によるスリップの発生が生じにくい。また熱処理 時間は、要求される DZ層の幅により適宜設定すれば良レ、。長時間に設定するほど D Z幅は広くなりやすい。 [0086] 特に低温熱処理の後に高温熱処理を連続して行なうような従来の DZ— IG熱処理 では、 BMDを形成し、かつ消滅させないようにするためにゥ ハァニール時に昇 温をゆっくりする必要があった力 本発明のようにインゴットの状態で予め熱処理して おけば、このゥ ハァニール段階での昇温は速く実施することができ、例えば 5°C /min以上の昇温速度で処理しても BMD密度が十分なァニールゥエーハを得るこ とができる。
[0087] このようなゥエーハ製造工程とすることで、インゴットァニールでの熱処理を効率良く 行なうことができることに加えて、ゥ ハァニールでの昇温時間を著しく短くすること ができ、ゥエーハァニール時間を短縮できる。
さらにゥエーハァニール時間が短くなれば、金属汚染等も低減でき、良好なァニー ルゥ ハが得られる。
[0088] ェピタキシャルゥエーハの製造
次に、本発明のェピタキシャルゥ ハの製造方法について図面を参照し説明す る。図 10は本発明のェピタキシャルゥ ハの製造工程の概略を示すフロー図であ る。
[0089] (インゴットの育成)
初めにインゴットの育成を行なう。前記と同様に CZ法によりシリコン単結晶を育成す ればよいが、この場合も、特にシリコン単結晶中に窒素をドープすることにより、 BMD を形成しやすぐェピタキシャル層欠陥を少なくできるシリコン単結晶を成長させるこ とができる。
また、準完全結晶(NPC)領域のシリコン単結晶を用いることにより、ェピタキシャ 層欠陥の極めて少ないェピタキシャルゥ ハを製造することができる。
[0090] (インゴットァニール)
インゴット熱処理工程の具体的な熱処理条件は、要求される仕様により適宜設定す れば良いが、特に酸素雰囲気中、 700°C— 900°Cの熱処理を 30分から 8時間程度 行なえば、 目的とする BMDが十分に生成される。実際には室温から 500°C付近まで は昇温速度 10°CZmin程度の高速で昇温し、その後昇温速度を遅くして、設定温 度までは 0. 5°C/min— 5°C/min程度で昇温する。このような方法で設定温度(例 えば 800°C)まで徐々に昇温させ、この設定温度で任意の時間(例えば 4時間)保持 する。その後、 600°Cまでは 5°C/min程度の降温速度で冷却し、その後 2°C/min 程度で室温まで落とし熱処理を終了する。この段階で 1200°C程度の温度でも、ェピ タキシャル層形成処理のような短時間の熱処理であれば消失しない BMDが高密度 に形成される。
[0091] (ゥエーハ加工工程)
次にこのようにインゴットァニールしたインゴットをゥエーハ加工する。ゥエーハ加工 では、少なくともゥエーハのー主面を鏡面化する研磨が施され、高平坦度なゥエーハ が得られればその工程は特に限定するものではなレ、。例えば、前記したように図 8に 示す手順に従って鏡面研磨ゥエーハを得ることができる。
[0092] (ェピタキシャル成長工程)
このような鏡面研磨ゥエーハの表面にェピタキシャル層を形成する。ェピタキシャル 層の形成は、前処理としてシリコン単結晶基板の表面に存在する自然酸化膜とパー ティクルを除去する。これは H または H /HC1混合ガス雰囲気中にて、 1100°C付 近の高温で基板の熱処理を行なう。
[0093] 次にェピタキシャル層を形成する方法は、従来の方法でかまわない。例えば H 雰 囲気中に珪素化合物ガスである SiCl , SiHCl , SiH CI , SiH等のガスとドー
2 2
ト 'ガスである B Hガスや PH等のガスを供給し、 1000— 1300°Cの温度域で処理
2 6 3
が行なわれる。
[0094] なお、ェピタキシャル成長に用いる装置は、従来の装置でかまわない。例えば図 11 に示すような前処理とェピタキシャル成長とを同一の処理室内で行なうェピタキシャ ル成長装置を用レ、ることができる。このェピタキシャル成長装置 50は処理室 51の中 にゥエーハ Wを収容する。図 11ではゥエーハ Wは 1枚収容されている力 複数枚で あっても構わない。上記処理室 51の一端から導入されたガスは、ゥエーハ Wに接触 後、該処理室 51の他端から排気される。処理室 51内を流れる上記ガスは、 Hガス単 独、 Hガスで希釈された HFガス、 Hガスで希釈された HC1ガス、 Hガスで希釈され た SiHClガス等、前処理およびェピタキシャル層を成長させるために必要なガスの いずれかであり、各成分ガスはいずれもマスフローコントローラ 53で精密に流量制御 されながら処理室 51内へ導入される。 HFは常温で液体である力 蒸気圧が大きく容 易に気化するため、気化成分を Hと混合して処理室 51へ供給する。処理室 51の外
2
側には、その一方の主面に沿って赤外線ランプ 52が配されており、通電量に応じて ゥエーハ Wの加熱温度を制御するようにされている。また、処理室 51の他方の主面 側には放射温度計 54が配されており、プロセス中のゥエーハ温度をモニタ可能とな されている。もちろん前処理部とェピタキシャル成長部が別の処理室になっていても 良い。
[0095] 以上のようにェピタキシャルゥエーハを製造することにより、ェピタキシャル層欠陥 が少なぐ高密度の BMDを持つェピタキシャルゥエーハを効率良く製造することが でき、生産性を大幅に向上させることができる。
[0096] 以下、実施例及び比較例について説明する。
(実施例 1)
(インゴットの育成)
CZ法により、酸素濃度 13— 15 X 1017atoms/cm3[oldASTMコ、窒素濃度 5— 9 X 1012atoms/cm3のシリコン単結晶インゴットを成長した。このインゴットを円筒研 削し複数のブロックに切断することで、直径約 300mm、長さ約 30cmのインゴットを 得た。
[0097] (インゴットァニール: BMD形成工程)
上記インゴットを、インゴットの状態のまま熱処理を行ない内部に BMDを形成する B MD形成工程を行なった。先ず初めにインゴット表面全体を HF/HNO力 なる酸
3
エッチング液により約 200 μ mエッチングして表面を汚染している金属不純物を除去 した。
その後、インゴットの状態のまま、図 4に示す熱処理炉に入れて熱処理した。
[0098] 熱処理は、室温から昇温速度 10°CZminで 500°Cまで、その後昇温速度 l°CZmi nで 1000°Cまで昇温し、 1000°Cで 2時間保持した。その後、 600°Cまで 5°C/min 程度の降温速度で冷却し、その後 2°C/min程度で室温まで落とした。この熱処理 時の雰囲気は酸素ガスを用いた。
これにより、ゥエーハに換算すると通常のゥエーハ熱処理ボート 4バッチ分の熱処 理力 1回の熱処理で実施することができた。
[0099] (ゥエーハ加工工程)
ゥエーハ加工工程では、 BMD形成工程後のインゴットを図 8に示す工程で処理し た。スライス工程(図 8 (A) )ではワイヤーソーを用いて切断し、面取り工程後(図 8 (B ) )、平坦ィ匕工程(図 8 (C) )では # 1500の遊離砥粒を用いてラッピングし、エツチン グ工程(図 8 (D) )では濃度 50%Na〇Hを用いたアルカリ溶液によりエッチングした。 その後研磨工程(図 8 (E) )では両面研磨、片面研磨、片面研磨の 3段の研磨を行な レ、、高平坦度で鏡面化されたゥエーハを得た。その後洗浄を行なった。上記 30cm のインゴットから約 300枚の直径 300mmのシリコンゥエーハが得られた。
[0100] このようにして得られたゥエー八について、 BMD密度を赤外線トモグラフ法で評価 した結果、 3 X 109個/ cm3と十分な BMD密度であった。つまり IG能力の高いゥェ ーハが得られた。従って、このようなゥエーハを用いて後工程で例えば DZ層を形成 するようなァニールゥエーハの作製を行なった場合、 BMDを形成するような低温の 熱処理を行なう必要がなくなるため、ゥエーハ状態での熱処理は主に DZ層を形成す る為の熱処理を行なうだけで良いことになり、熱処理時間を大幅に短縮することがで きる。
[0101] (実施例 2)
CZ法により、酸素濃度 13— 15 X 1017atoms/cm3[oldASTM]のシリコン単結晶 インゴットを成長した。このシリコン単結晶は、結晶の成長速度を制御し NPC領域の 結晶を成長させた。このインゴットは円筒研削し複数のブロックに切断することで、直 径約 300mm、長さ約 30cmのインゴットを得た。
[0102] その後、実施例 1と同様に、 BMD形成工程、ゥエーハ加工工程を行ない、約 300 枚の直径 300mmのシリコンゥエーハを得た。このようにして得られたゥエーハについ て、 BMD密度を赤外線トモグラフ法で評価した結果、 3 X 109個/ cm3と十分な BM D密度であり、 IG能力の高いゥエーハが得られた。 [0103] (比較例 1)
実施例 1および 2と同様にインゴットを製造した後、インゴットの状態で熱処理を行な う BMD形成工程を行なわないで、それぞれゥエーハ加工を行なった。このゥエー,、 を、上記実施例 1および 2と同じ条件で BMD密度を評価した。
[0104] 上記インゴットから得られたゥエー八について、インゴット状態で BMD形成工程を 行なわずゥエーハ加工しただけでは、 BMDが形成されていない為、上記のような評 価を行なっても BMDはほとんど検出されなかった。従って、このゥエーハを例えばァ ニールゥエーハとして用いる場合、ゥエーハ状態で BMDを形成及び成長させるよう な熱処理を行なわなくてはならなレ、。
[0105] (実施例 3)
(インゴットの育成)
CZ法により、酸素濃度 13— 15 X 1017atoms/cm3[oldASTMコ、窒素濃度 5— 9 X 1012atoms/cm3のシリコン単結晶インゴットを成長した。このインゴットは円筒研 削し複数のブロックに切断することで、直径約 300mm、長さ約 30cmのインゴットを 得た。
[0106] (インゴットァニール:第 1の熱処理工程)
上記インゴットを、インゴットの状態のまま第 1の熱処理工程を行なった。先ず初め にインゴット表面全体を HF/HNO力らなる酸エッチング液により約 200 μ mエッチ
3
ングして表面を汚染してレ、る金属不純物を除去した。
その後、インゴットの状態のまま、図 4に示す熱処理炉に入れ熱処理した。
[0107] 熱処理は、室温から昇温速度 10°CZminで 500°Cまで、その後昇温速度 l°CZmi nで 1000°Cまで昇温し、 1000°Cで 2時間保持した。その後、 600°Cまで 5°C/min 程度の降温速度で冷却し、その後 2°C/min程度で室温まで落とした。この熱処理 時の雰囲気は酸素ガスを用いた。
これにより、ゥエーハに換算すると後述するゥエーハ熱処理ボート 4バッチ分の熱処 理カ 1回の熱処理で実施することができた。 [0108] (ゥエーハ加工工程)
ゥエーハ加工工程では、図 8に示す工程で処理した。スライス工程(図 8 (A) )では ワイヤーソーを用いて切断し、面取り工程後(図 8 (B) )、平坦化工程(図 8 (C) )では # 1500の遊離砥粒を用いてラッピングし、エッチング工程(図 8 (D) )では濃度 50% NaOHを用いたアルカリ溶液によりエッチングした。その後研磨工程(図 8 (E) )では 両面研磨、片面研磨、片面研磨の 3段の研磨を行ない、高平坦度で鏡面化されたゥ エーハを得た。その後洗浄を行なった。上記 30cmのインゴットから約 300枚の直径 3 00mmのシリコンゥエー八が得られた。
[0109] (ゥエーハァニール:第 2の熱処理工程)
1バッチ 75枚で熱処理した。
熱処理装置は図 6に示す縦型の熱処理炉を用レ、、図 7に示す熱処理ボートに上記ゥ エーハを移載し熱処理した。
[0110] 熱処理はアルゴン雰囲気中、 700°Cに保持された炉内にゥエーハがセットされた熱 処理ボートを移載し 1000°Cまで 5°C/minの比較的速い速度で昇温した。 1000°C 後は 2°C/minで昇温し、 1200°C1時間の熱処理を行なった。その後、 1000°Cまで 2°C/minで降温し、 1000°C以下は 4°C/minで降温し 700°Cで炉内力ら熱処理ボ ート(ゥエーノ、)を取り出した。
ゥエーハァニールに要した時間は約 6. 5時間であった。
[0111] このようにして得られたァニールゥエーハについて、ゥエーハ 3枚を抜き取り、 DZ層 および BMD密度を確認した。その結果、 DZ幅は平均 10. 4 μ ΐη、 BMD密度は平 均 5 X 109個/ cm3レベルであった。
またこれらのゥエーハに対しスリップ転位の発生状況を X線トモグラフィー(XRT)に より確認した。スリップ転位の発生は観察されなかった。
[0112] またゥエーハ表面の重金属レベルを熱処理後のゥエーハ 3枚に対して行なった。
重金属レベルは Fe: 1 X 109atoms/cm2、 Cu : 9 X 108atoms/cm2、 Ni : 8 X 108a toms/cm2程度と低いレベルの金属汚染であり、ゥエーハ状態での熱処理時間を 短縮化することによって、ゥエーハ表面の金属汚染レベルを低く保つことができた。 [0113] (比較例 2)
従来のゥ ハ状態にしてから、熱処理により DZ層および BMDを形成するァ ルゥエーハの製造方法を行なった。
ゥ ハは実施例 3と同様なゥ ハ加工工程を経た直径 300mmのゥ ハで ある。酸素濃度や窒素濃度も実施例 3と同様である。
[0114] ゥエーハァニールは、アルゴン雰囲気中、 500°Cに保持された炉内にゥエーハが セットされた熱処理ボートを移載し 1000°Cまで l°C/minの大変遅い昇温速度で熱 処理し、 BMDが十分形成されるようにした。その後、 2°CZminで昇温し、 DZ層を形 成するための 1200°C1時間の熱処理を行なった。その後、 1000°Cまで 2°C/min で降温し、 1000°C以下は 4°CZminで降温し 700°Cで炉内力 熱処理ボート(ゥェ ーハ)を取り出した。
ゥ ハを熱処理する時間は全体で約 14時間力、力、つた。
[0115] このようにして得られたァニールゥ ハについて、 DZ層および BMD密度を確認 した。その結果、 DZ幅 9. 5 μ ΐη, BMD密度平均 2 X 109個/ cm3レベルであった。 このような条件で、実施例 3とほぼ同程度のゥ ハ品質を得られる力 S、ゥ ハの 熱処理時間は非常に力かってしまい生産性が悪レ、。またゥエーハ表面の重金属レべ も Fe : 5 X 10 atoms/ cm Cu : 1 X 10 atoms/ cm Ni : 1 X 10 atoms/ cm 2程度と実施例 3に比べ悪かった。
[0116] 本発明では、インゴットァニールで、効率良く BMDを形成する熱処理が行なえるこ とに加えて、ゥ ハァニールの時間を大変短くすることができ、上記のような条件で 実施することでゥ ハ熱処理時間を従来の約 14時間から約 6. 5時間に短縮する ことができた。これにより生産性を大幅に向上することができた。
[0117] (実施例 4)
(インゴットの育成)
CZ法により、酸素濃度 13 15 X 1017atoms/cm3 [oldASTMコ、窒素濃度 5 9 X 1012atoms/cm3のシリコン単結晶インゴットを成長した。このインゴットは円筒研 削し複数のブロックに切断することで、直径約 300mm、長さ約 30cmのインゴットを 得た。
[0118] (インゴットァニール:熱処理工程)
上記インゴットを、インゴットの状態のまま熱処理工程を行なった。先ず初めにイン ゴット表面全体を HF/HNO力 なる酸エッチング液により約 200 μ mエッチングし
3
て表面を汚染してレ、る金属不純物を除去した。
その後、インゴットの状態のまま、図 4に示す熱処理炉に入れ熱処理した。
[0119] 熱処理は、室温から昇温速度 10°CZminで 500°Cまで、その後昇温速度 l°CZmi nで 800°Cまで昇温し、 800°Cで 4時間保持した。その後、 600°Cまで 5°C/min程度 の降温速度で冷却し、その後 2°C/min程度で室温まで落とした。この熱処理時の 雰囲気は酸素ガスを用いた。
これにより、ェピタキシャルゥエーハの基板となるゥエーハを、 1回の熱処理で大量 に製造することができる。
[0120] (ゥエーハ加工工程)
ゥエーハ加工工程では、図 8に示す工程で処理した。スライス工程(図 8 (A) )では ワイヤーソーを用いて切断し、面取り工程後(図 8 (B) )、平坦化工程(図 8 (C) )では # 1500の遊離砥粒を用いてラッピングし、エッチング工程(図 8 (D) )では濃度 50% NaOHを用いたアルカリ溶液によりエッチングした。その後研磨工程(図 8 (E) )では 両面研磨、片面研磨、片面研磨の 3段の研磨を行ない、高平坦度で鏡面化されたゥ エーハを得た。その後洗浄を行なった。上記 30cmのインゴットから約 300枚の直径 3 00mmのシリコンゥエーハが得られた。
[0121] (ェピタキシャル成長)
このゥエーハを図 11に示すようなェピタキシャル装置を用いェピタキシャル層を形 成した。まず、ゥエー八に前処理を行なった。このゥエーハを 23°C、 1気圧に維持さ れた処理室内に載置し、まず Hガスで希釈された 1%HF混合ガスを流量 100リット
2
ル/分にて 3分間供給し、該ゥエーハ表面の自然酸化膜を除去した。次に、処理室 の外周部に設けられた抵抗加熱炉に通電し、ゥエーハの温度を 1000°Cに昇温した 。温度が安定化したところで、 Hガスで希釈された 1%HC1混合ガスを流量 100リット
2
ル/分にて 1分間導入し、有機物薄膜を除去した。 [0122] 次に、ェピタキシャル成長を行なった。処理室内に Hガス雰囲気とし、上部に設け られた赤外線ランプの通電量を調整し、ゥエーハの温度を 1100°Cに昇温し、温度が 安定化した後、直ちに H で希釈された 2%SiHCl 混合ガスを流量 100リットル/分
2 3
にて極微量の B H と共に 1分間注入した。これにより厚さが 3 x m、抵抗率が 15 Ω ·
2 6
cm、ボロン濃度が 1 X 1015/cm のシリコン単結晶薄膜 (ェピタキシャル層)が成長 されたェピタキシャルゥエーハが得られた。
[0123] このようにして得られたェピタキシャルゥエーハについて、基板側の BMD密度を確 認した。 BMD密度は 1000°C2時間の熱処理を行レ、、 BMDを顕在化させて測定し た。赤外線トモグラフ法で評価した結果、約 6 X 109atomsZcm3の高レ、 BMD密度 が得られた。よって、本発明の方法により、高温のェピ成長熱処理がなされているに もかかわらず、ゲッタリングサイトとなる BMDが多く形成されてレ、るェピタキシャルゥェ ーハを製造できることがわかる。
またこれらのゥエーハに対しェピ層欠陥の観察を行なった。ェピ層欠陥は観察され なかった。
[0124] (比較例 3)
シリコン単結晶をインゴット段階で熱処理することなぐ通常の方法でェピタキシャル ゥエーハの製造を行なった。酸素濃度や窒素濃度を実施例と同様にしてシリコン単 結晶インゴットを形成した後、実施例 4と同様なゥエーハ加工工程を行い直径 300m mのゥエーハを約 300枚製造した。続いて、実施例 4と同じェピタキシャル成長条件 でゥエーハ上にェピタキシャル層を形成した。
[0125] このようにして得られたェピタキシャルゥエーハについて、実施例 4と同様にして B MD密度を確認した。その結果、 BMD密度は平均 1 X 108個/ cm3であった。このよ うにインゴット段階でァニールしない場合、大変少ない BMD密度であった。したがつ て、十分なゲッタリング能力を得るには、この後、ゥエー八に BMDを形成する長時間 の熱処理を施す必要がある。
[0126] なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例 示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構 成を有し、同様な作用効果を奏するものは、レ、かなるものであっても本発明の技術的 範囲に包含される。
例えば、上記実施例では、インゴットを複数のブロックに分割し、ブロックの状態でィ ンゴットァニールをしている力 このような切断を行なわない、引き上げた状態のイン ゴットのままの形態で処理しても良い。このようにすれば、汚染等が極力少ないインゴ ットを一度に処理できる。

Claims

請求の範囲
[1] ゥエーハの製造方法であって、少なくとも、インゴット状態のシリコン単結晶に熱処 理を行なうインゴット熱処理工程と、該熱処理したインゴットをゥエー八に加工するゥ エーハ加工工程を有することを特徴とするゥエー八の製造方法。
[2] 前記インゴット熱処理工程において、前記シリコン単結晶に内部微小欠陥(BMD) を形成することを特徴とする請求項 1に記載のゥエーハの製造方法。
[3] 前記ゥエーハ加工工程後、前記ゥエーハを熱処理するゥエーハ熱処理工程を有 することを特徴とする請求項 1又は請求項 2に記載のゥエーハの製造方法。
[4] 前記ゥエーハ加工工程において、前記熱処理したインゴットを鏡面状のゥエーハに 加工することを特徴とする請求項 1ないし請求項 3のいずれか 1項に記載のゥエーハ の製造方法。
[5] 前記鏡面状のゥエーハに加工した後、該ゥエーハ上にェピタキシャル層を形成す るェピタキシャル成長工程を有することを特徴とする請求項 4に記載のゥエーハの製 造方法。
[6] 前記インゴット熱処理工程は、インゴット状態のシリコン単結晶に 700°C以上の熱処 理を行なうことを特徴とする請求項 1ないし請求項 5のいずれ力、 1項に記載のゥエー ハの製造方法。
[7] 前記インゴット熱処理工程は、 1100°C以下の熱処理温度で 30分以上 8時間以内 の熱処理を行なうことを特徴とする請求項 1なレ、し請求項 6のレ、ずれか 1項に記載の ゥエーハの製造方法。
[8] 前記インゴット熱処理工程は、 700°C以上 900°C以下の熱処理温度で 30分以上 8 時間以内の熱処理を行なうことを特徴とする請求項 1ないし請求項 7のいずれ力 1項 に記載のゥエーハの製造方法。
[9] 前記インゴット熱処理工程は、昇温速度を 0. 5°C/min— 10°C/minとして熱処 理することを特徴とする請求項 1ないし請求項 8のいずれか 1項に記載のゥエーハの 製造方法。
[10] 前記ゥエーハ熱処理工程にぉレ、て、前記ゥエーハ表面に無欠陥領域 (DZ層)を形 成することを特徴とする請求項 1ないし請求項 9のいずれ力 4項に記載のゥエーハの 製造方法。
[11] 前記ゥエーハ熱処理工程は、 900°C以上 1300°C以下で、 5分以上 16時間以内の 熱処理を行なうことを特徴とする請求項 1ないし請求項 10のいずれ力 1項に記載のゥ エーハの製造方法。
[12] 前記ゥエーハ熱処理工程は、昇温速度を 5°C/min以上として昇温することを特徴 とする請求項 1ないし請求項 11のいずれ力 1項に記載のゥエーハの製造方法。
[13] 前記ェピタキシャル成長工程は、 1000°C以上の温度で前処理を行なった後に 10 00°C以上の温度でェピタキシャル成長を行なうことを特徴とする請求項 5ないし請求 項 12のいずれか 1項に記載のゥエーハの製造方法。
[14] 前記シリコン単結晶は、窒素がドープされている結晶であることを特徴とする請求項
1ないし請求項 13のいずれ力、 1項に記載のゥエーハの製造方法。
[15] 前記シリコン単結晶は、チヨクラルスキー法により製造された準完全結晶(NPC)領 域の結晶であることを特徴とする請求項 1なレ、し請求項 14のレ、ずれか 1項に記載の ゥエーハの製造方法。 [16] 前記インゴット状態のシリコン単結晶は、チヨクラルスキー法による単結晶引上装置 で引き上げられたままの形状のインゴット、又は引上げ後に円筒研削されブロック状 に切断された状態のインゴットであることを特徴とする請求項 1ないし請求項 15のい ずれ力、 1項に記載のゥエーハの製造方法。
PCT/JP2004/011145 2003-08-12 2004-08-04 ウエーハの製造方法 WO2005014898A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/567,488 US7211141B2 (en) 2003-08-12 2004-08-04 Method for producing a wafer

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003292558A JP2005060168A (ja) 2003-08-12 2003-08-12 ウエーハの製造方法
JP2003292539A JP2005064254A (ja) 2003-08-12 2003-08-12 アニールウエーハの製造方法
JP2003-292558 2003-08-12
JP2003292596A JP2005064256A (ja) 2003-08-12 2003-08-12 エピタキシャルウエーハの製造方法
JP2003-292539 2003-08-12
JP2003-292596 2003-12-08

Publications (1)

Publication Number Publication Date
WO2005014898A1 true WO2005014898A1 (ja) 2005-02-17

Family

ID=34139384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011145 WO2005014898A1 (ja) 2003-08-12 2004-08-04 ウエーハの製造方法

Country Status (3)

Country Link
US (1) US7211141B2 (ja)
KR (1) KR20060040733A (ja)
WO (1) WO2005014898A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261632A (ja) * 2005-02-18 2006-09-28 Sumco Corp シリコンウェーハの熱処理方法
US7435294B2 (en) * 2005-04-08 2008-10-14 Sumco Corporation Method for manufacturing silicon single crystal, and silicon wafer
JP4853237B2 (ja) * 2006-11-06 2012-01-11 株式会社Sumco エピタキシャルウェーハの製造方法
JP5275585B2 (ja) * 2007-06-18 2013-08-28 Sumco Techxiv株式会社 エピタキシャルシリコンウェハの製造方法
EP2241657A4 (en) * 2007-12-21 2011-05-11 Sumco Corp PROCESS FOR PREPARING AN EPITACTIC SILICON WAFERS
JP4582149B2 (ja) * 2008-01-10 2010-11-17 信越半導体株式会社 単結晶製造装置
JP4947384B2 (ja) * 2008-08-07 2012-06-06 大学共同利用機関法人 高エネルギー加速器研究機構 超伝導高周波加速空洞の製造方法
JP2010098105A (ja) * 2008-10-16 2010-04-30 Sumco Corp 固体撮像素子用エピタキシャル基板の製造方法、固体撮像素子用エピタキシャル基板
TWI419203B (zh) 2008-10-16 2013-12-11 Sumco Corp 具吸附槽之固態攝影元件用磊晶基板、半導體裝置、背照式固態攝影元件及其製造方法
JP2011054821A (ja) * 2009-09-03 2011-03-17 Sumco Corp エピタキシャルウェーハの製造方法及びエピタキシャルウェーハ
KR101024322B1 (ko) * 2009-10-30 2011-03-23 네오세미테크 주식회사 태양전지용 웨이퍼 제조 방법, 그 방법으로 제조된 태양전지용 웨이퍼 및 이를 이용한 태양전지 제조 방법
US9945048B2 (en) * 2012-06-15 2018-04-17 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structure and method
DE102015224983B4 (de) 2015-12-11 2019-01-24 Siltronic Ag Halbleiterscheibe aus einkristallinem Silizium und Verfahren zu deren Herstellung
JP6711320B2 (ja) 2017-06-26 2020-06-17 株式会社Sumco シリコンウェーハ
KR102466888B1 (ko) * 2017-12-21 2022-11-11 글로벌웨이퍼스 씨오., 엘티디. Lls 링/코어 패턴을 개선하기 위해 단결정 실리콘 잉곳을 처리하는 방법
KR102236396B1 (ko) 2020-05-29 2021-04-02 에스케이씨 주식회사 탄화규소 잉곳의 제조방법 및 탄화규소 잉곳 제조용 시스템
KR102235858B1 (ko) 2020-04-09 2021-04-02 에스케이씨 주식회사 탄화규소 잉곳의 제조방법 및 탄화규소 잉곳 제조용 시스템
EP3929335A1 (en) 2020-06-25 2021-12-29 Siltronic AG Semiconductor wafer made of single-crystal silicon and process for the production thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322490A (ja) * 1998-03-09 1999-11-24 Shin Etsu Handotai Co Ltd シリコン単結晶ウエ―ハの製造方法およびシリコン単結晶ウエ―ハ
JP2000211995A (ja) * 1998-11-17 2000-08-02 Shin Etsu Handotai Co Ltd シリコン単結晶ウエ―ハおよびシリコン単結晶ウエ―ハの製造方法
JP2001053078A (ja) * 1999-08-11 2001-02-23 Mitsubishi Materials Silicon Corp シリコンウェーハのig処理法及びこれにより作られたigウェーハ並びにこれに用いるシリコン単結晶インゴット
JP2001077120A (ja) * 1999-09-02 2001-03-23 Sumitomo Metal Ind Ltd エピタキシャルシリコンウェーハの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231365A (ja) 1984-04-27 1985-11-16 Sony Corp 半導体装置の製造方法
JPS61193458A (ja) 1985-02-21 1986-08-27 Toshiba Corp シリコンウエハの処理方法
JPS61193456A (ja) 1985-02-21 1986-08-27 Toshiba Corp 半導体素子の製造方法
JPH06196430A (ja) 1992-12-22 1994-07-15 Showa Denko Kk InP単結晶のアニール方法
JP3955375B2 (ja) 1998-01-19 2007-08-08 信越半導体株式会社 シリコン単結晶の製造方法およびシリコン単結晶ウエーハ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322490A (ja) * 1998-03-09 1999-11-24 Shin Etsu Handotai Co Ltd シリコン単結晶ウエ―ハの製造方法およびシリコン単結晶ウエ―ハ
JP2000211995A (ja) * 1998-11-17 2000-08-02 Shin Etsu Handotai Co Ltd シリコン単結晶ウエ―ハおよびシリコン単結晶ウエ―ハの製造方法
JP2001053078A (ja) * 1999-08-11 2001-02-23 Mitsubishi Materials Silicon Corp シリコンウェーハのig処理法及びこれにより作られたigウェーハ並びにこれに用いるシリコン単結晶インゴット
JP2001077120A (ja) * 1999-09-02 2001-03-23 Sumitomo Metal Ind Ltd エピタキシャルシリコンウェーハの製造方法

Also Published As

Publication number Publication date
KR20060040733A (ko) 2006-05-10
US7211141B2 (en) 2007-05-01
US20060150894A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
EP1501122B1 (en) High resistance silicon wafer and method for production thereof
US7211141B2 (en) Method for producing a wafer
KR20100014191A (ko) 실리콘 웨이퍼, 실리콘 웨이퍼의 제조방법, 및 실리콘 웨이퍼의 열처리 방법
JPH11150119A (ja) シリコン半導体基板の熱処理方法とその装置
JP2002043318A (ja) シリコン単結晶ウエーハの製造方法
JP2003502836A (ja) イントリンシックゲッタリングを有するエピタキシャルシリコンウエハの製造方法
KR100847925B1 (ko) 어닐웨이퍼의 제조방법 및 어닐웨이퍼
EP1420440B1 (en) An epitaxial wafer and a method for producing it
JP2005060168A (ja) ウエーハの製造方法
WO2010131412A1 (ja) シリコンウェーハおよびその製造方法
JPH06295912A (ja) シリコンウエハの製造方法およびシリコンウエハ
EP0973190A2 (en) Silicon wafer and method for producing it
JP2003086597A (ja) シリコン半導体基板およびその製造方法
JP2006040980A (ja) シリコンウェーハおよびその製造方法
JP2005064254A (ja) アニールウエーハの製造方法
JPH10223641A (ja) 半導体シリコンエピタキシャルウェーハ及び半導体デバイスの製造方法
US11761118B2 (en) Carbon-doped silicon single crystal wafer and method for manufacturing the same
JP7207204B2 (ja) 炭素ドープシリコン単結晶ウェーハの製造方法
JP5211550B2 (ja) シリコン単結晶ウェーハの製造方法
JPH06295913A (ja) シリコンウエハの製造方法及びシリコンウエハ
JP2005064256A (ja) エピタキシャルウエーハの製造方法
JPH0897222A (ja) シリコンウェーハの製造方法およびシリコンウェーハ
JP4235760B2 (ja) シリコンウェーハの製造方法
CN115135817B (zh) 半导体硅晶片的制造方法
KR20030056659A (ko) 실리콘 웨이퍼의 게터링 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480023198.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067002778

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006150894

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10567488

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067002778

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10567488

Country of ref document: US

122 Ep: pct application non-entry in european phase