WO2005014818A1 - 癌高発現遺伝子 - Google Patents

癌高発現遺伝子 Download PDF

Info

Publication number
WO2005014818A1
WO2005014818A1 PCT/JP2004/011650 JP2004011650W WO2005014818A1 WO 2005014818 A1 WO2005014818 A1 WO 2005014818A1 JP 2004011650 W JP2004011650 W JP 2004011650W WO 2005014818 A1 WO2005014818 A1 WO 2005014818A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
gene
protein
expression
seq
Prior art date
Application number
PCT/JP2004/011650
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Aburatani
Yoshitaka Hippo
Hirokazu Taniguchi
Yong Xin Chen
Shumpei Ishikawa
Shin-Ichi Fukumoto
Takahiro Shimamura
Naoko Kamimura
Ying Qiu Guo
Shogo Yamamoto
Yukio Ito
Hirotaka Ito
Toshihiko Ohtomo
Original Assignee
Perseus Proteomics Inc.
Chugai Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Perseus Proteomics Inc., Chugai Seiyaku Kabushiki Kaisha filed Critical Perseus Proteomics Inc.
Priority to AT04771625T priority Critical patent/ATE528397T1/de
Priority to JP2005513023A priority patent/JP4643450B2/ja
Priority to US10/568,471 priority patent/US20080153104A1/en
Priority to EP04771625A priority patent/EP1652923B1/en
Publication of WO2005014818A1 publication Critical patent/WO2005014818A1/ja
Priority to US11/584,793 priority patent/US20070037204A1/en
Priority to US12/229,750 priority patent/US7812128B2/en
Priority to US12/384,165 priority patent/US9434775B2/en
Priority to US12/807,314 priority patent/US9376475B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/711Natural deoxyribonucleic acids, i.e. containing only 2'-deoxyriboses attached to adenine, guanine, cytosine or thymine and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/82Translation products from oncogenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds

Definitions

  • the present invention relates to a gene associated with cancer, a protein encoded by the gene, and an antibody recognizing the protein.
  • the gene, protein and antibody of the present invention can be used in the diagnosis and treatment of cancer, and in the development of therapeutic agents for cancer. Background art
  • Prior art document information relevant to the present invention includes: EP1033401;
  • An object of the present invention is to provide genes and proteins that can be used as cancer diagnostic and therapeutic agents.
  • DISCLOSURE OF THE INVENTION The present inventors have found that the expression of a specific gene is advanced in cancer tissues, and have completed the present invention. That is, the present invention provides a protein encoded by a gene having the nucleotide sequence set forth in any one of SEQ ID NOs: 1 to 65, or a fragment thereof.
  • the present invention provides SEQ ID Nos: 1, 2, 28, 29, 30, 31,
  • a gene having the nucleotide sequence described in any of 32, 51, 52, 60 and 61, and a protein encoded by the gene or a fragment thereof are provided.
  • the gene has the nucleotide sequence set forth in any of SEQ ID NOs: 1, 2, 28, 29, 30, 31 and 32, more preferably the nucleotide sequence set forth in SEQ ID NOs: 1 or 2.
  • proteins and fragments are useful as compositions for diagnosing or treating lung cancer.
  • the present invention provides SEQ ID NOs: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 22, 23, 24, 25, 26, 27, 33, 34 , 35, 36, 37, 38, 39, 40, 41, 42, 53, 54 and 55, and a gene encoded by the gene or a fragment thereof.
  • the gene is set forth in any of SEQ ID NOs: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 22, 23, 24, 25, and 26 Having a nucleotide sequence.
  • proteins and fragments are useful as compositions for diagnosing or treating gastric cancer.
  • the present invention relates to SEQ ID NOs: 3, 7, 20, 21, 46, 47,
  • a gene having the nucleotide sequence described in any of 48, 49 and 50, and a protein encoded by the gene or a fragment thereof are provided.
  • the gene is SEQ ID NO: 3, 7, 20, 21, 46, 49 and
  • proteins and fragments are useful as compositions for diagnosing or treating colorectal cancer.
  • the present invention provides SEQ ID NOs: 14, 15, 16, 17, 18, 19, 43, 44, 45, 56, 57, 58, 59, 62, 63, 64 and 65.
  • the gene is a nucleotide sequence described in any of SEQ ID NOs: 14, 15, 16, 17, 18, 19, 45, 56, 57, 58, 64 and 65, more preferably SEQ ID NO: 14, It has the nucleotide sequence described in any of 15, 16, 17, 18, 19, 64 and 65.
  • proteins and fragments are useful as compositions for diagnosing or treating liver cancer.
  • the gene is selected from the group consisting of SEQ ID NOs: 1, 9, 10, 14, 20, 22, 24, 25, 26, 27, 28, 29, 32, 38, 39, 40, 44, 51, 52, 53, 54 and 58, more preferably any of SEQ ID NOs: 1, 9, 10, 14, 20, 22, 24, 25 and 26 Having a nucleotide sequence.
  • the gene is SEQ ID NO: 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 15, 16, 17, 18, 19, 21, 2 3, 30, 31, 33 ', 34, 35, 36, 37, 41, 42, 43, 45, 46, 47, 48, 49, 50, 55, 56, 57, 59, 60, 61, 62 and And SEQ ID NOS: 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 15, 16, 17, 18, 19, 21 And 23.
  • the present invention provides a cell or vector expressing the above-described gene or a fragment thereof. These cells and vectors are useful for production of the protein of the present invention, production of antibodies against the protein, diagnosis and treatment of cancer, and the like.
  • the present invention provides a protein having the amino acid sequence set forth in SEQ ID NOs: 66 to 123 or a fragment thereof. These proteins or fragments thereof are useful as antigens in the production of antibodies or for diagnosis and treatment of cancer.
  • the present invention provides an antibody or an antigen-binding fragment thereof that recognizes the above-described protein or a fragment thereof.
  • the present invention also provides a cell that produces such an antibody.
  • the present invention relates to a polynucleotide having the nucleotide sequence set forth in any one of SEQ ID NOs: 1 to 65 or a nucleotide having a nucleotide sequence complementary thereto, or a condition in which these polynucleotides are highly stringent. Provided are polynucleotides that can be hybridized below.
  • the present invention relates to a polynucleotide having at least 12 consecutive nucleotide sequences of the nucleotide sequence set forth in any one of SEQ ID NOs: 16 to 65 or a nucleotide sequence complementary thereto, or Provided is an oligonucleotide having a length of at least 12 nucleotides, which is capable of hybridizing under high stringency conditions to a polynucleotide having the nucleotide sequence described in any one of 1 to 65.
  • polynucleotides are useful for cancer diagnosis, protein production, primers, antisense siRNA for inhibiting gene expression, and the like.
  • the invention provides a method of identifying a compound having anti-cancer activity, comprising contacting a cultured human cell with a test compound, and wherein the cell comprises any of SEQ ID NOs: 1-65. And c) identifying a compound that causes a change in the expression level of the gene containing the nucleotide sequence described in (a) as a compound having anticancer activity. .
  • the present invention provides a method for diagnosing cancer, comprising detecting the C20orfl02 protein.
  • the cancer is lung, liver, or cancer.
  • the C20orfl02 protein secreted extracellularly is preferably detected. Also preferably, the method of the present invention
  • C20orfl02 protein in blood, serum, or plasma, or C20orfl02 protein isolated from cells is detected.
  • the invention provides the following step:
  • FIG. 1 shows the results of expression analysis of the cancer-related gene TEG1
  • FIG. 2 shows the results of expression analysis of the cancer-related gene TEG2.
  • FIG. 3 shows the results of expression analysis of the cancer-related gene TEG2.
  • FIG. 4 shows the results of expression analysis of the cancer-related gene TEG3.
  • FIG. 5 shows the results of expression analysis of the cancer-related gene TEG4.
  • FIG. 6 shows the results of expression analysis of the cancer-related gene TEG5.
  • FIG. 7 shows the results of expression analysis of the cancer-related gene TEG6.
  • FIG. 8 shows the results of expression analysis of the cancer-related gene TEG6.
  • FIG. 9 shows the results of expression analysis of the cancer-related gene TEG7.
  • FIG. 10 shows the results of expression analysis of the cancer-related gene TEG8.
  • FIG. 11 shows the results of expression analysis of the cancer-related gene TEG9.
  • FIG. 12 shows the results of expression analysis of the cancer-related gene TEG10.
  • FIG. 13 shows the results of expression analysis of the cancer-related gene TEG11.
  • FIG. 14 shows the results of expression analysis of the cancer-related gene TEG12.
  • FIG. 15 shows the results of expression analysis of the cancer-related gene TEG13.
  • FIG. 16 shows the results of expression analysis of the cancer-related gene TEG14.
  • FIG. 17 shows the results of expression analysis of the cancer-related gene TEG15.
  • FIG. 18 shows the results of expression analysis of the cancer-related gene TEG16.
  • FIG. 19 shows the results of expression analysis of the cancer-related gene TEG17.
  • FIG. 20 shows the results of expression analysis of the cancer-related gene TEG18.
  • FIG. 21 shows the results of expression analysis of the cancer-related gene TEG19.
  • FIG. 22 shows the results of expression analysis of the cancer-related gene TEG20.
  • FIG. 23 shows the results of expression analysis of the cancer-related gene TEG21.
  • FIG. 24 shows the results of expression analysis of the cancer-related gene TEG22.
  • FIG. 25 shows the results of expression analysis of the cancer-related gene TEG23.
  • FIG. 26 shows the results of expression analysis of the cancer-related gene TEG24.
  • FIG. 27 shows the results of expression analysis of the cancer-related gene TEG25.
  • FIG. 28 shows the results of expression analysis of the cancer-related gene TEG26.
  • FIG. 29 shows the results of expression analysis of the cancer-related gene TEG27.
  • FIG. 30 shows the results of expression analysis of the cancer-related gene TEG28.
  • FIG. 31 shows the results of expression analysis of the cancer-related gene TEG29.
  • FIG. 32 shows the results of expression analysis of the cancer-related gene TEG30.
  • FIG. 33 shows the results of expression analysis of the cancer-related gene TEG31.
  • FIG. 34 shows the results of expression analysis of the cancer-related gene TEG32.
  • FIG. 35 shows the results of expression analysis of the cancer-related gene TEG33.
  • FIG. 36 shows the results of expression analysis of the cancer-related gene TEG34.
  • FIG. 37 shows the results of expression analysis of the cancer-related gene TEG35.
  • FIG. 38 shows the results of expression analysis of the cancer-related gene TEG36.
  • FIG. 39 shows the results of expression analysis of the cancer-related gene TEG37.
  • FIG. 40 shows the results of expression analysis of the cancer-related gene TEG38.
  • FIG. 41 shows the results of expression analysis of the cancer-related gene TEG39.
  • FIG. 42 shows the results of expression analysis of the cancer-related gene TEG40.
  • FIG. 43 shows the results of expression analysis of the cancer-related gene TEG41.
  • FIG. 44 shows the results of expression analysis of the cancer-related gene TEG42.
  • FIG. 45 shows the results of expression analysis of the cancer-related gene TEG43.
  • FIG. 46 shows the results of expression analysis of the cancer-related gene TEG44.
  • FIG. 47 shows the results of expression analysis of the cancer-related gene TEG45.
  • FIG. 48 shows the result of expression analysis of the cancer-related gene TEG46.
  • FIG. 49 shows the results of expression analysis of the cancer-related gene TEG47.
  • FIG. 50 shows the results of expression analysis of the cancer-related gene TEG48.
  • FIG. 51 shows the results of expression analysis of the cancer-related gene TEG49.
  • FIG. 52 shows the results of expression analysis of the cancer-related gene TEG50.
  • FIG. 53 shows the results of expression analysis of the cancer-related gene TEG51.
  • FIG. 54 shows the results of expression analysis of the cancer-related gene TEG52.
  • FIG. 55 shows the results of expression analysis of the cancer-related gene TEG53.
  • FIG. 56 shows the result of expression analysis of the cancer-related gene TEG5.
  • FIG. 57 shows the results of expression analysis of the cancer-related gene TEG55.
  • FIG. 58 shows the results of expression analysis of the cancer-related gene TEG56.
  • FIG. 59 shows the results of expression analysis of the cancer-related gene TEG57.
  • FIG. 60 shows the results of expression analysis of the cancer-related gene TEG58.
  • FIG. 61 shows the results of expression analysis of the cancer-related gene TEG59.
  • FIG. 62 shows the results of expression analysis of the cancer-related gene TEG60.
  • FIG. 63 shows the results of expression analysis of the cancer-related gene TEG61.
  • FIG. 64 shows the results of expression analysis of the cancer-related gene TEG62.
  • FIG. 65 shows the results of expression analysis of the cancer-related gene TEG63.
  • FIG. 66 shows the results of expression analysis of the cancer-related gene TEG64.
  • FIG. 67 shows the nucleotide sequence and amino acid sequence of the novel gene K # 1.
  • FIG. 68 shows an alignment between the novel gene K # 1 and GenBank No. XM-067369.
  • FIG. 69 shows the results of analyzing the amino acid sequence motif of the novel gene K # 1.
  • FIG. 70 shows the nucleotide sequence and amino acid sequence of the novel gene # 2 (clone 11).
  • FIG. 71 shows the nucleotide sequence and amino acid sequence of novel gene # 2 (clone 18).
  • Figure 72 shows the amino acid sequences of the novel gene ⁇ # 2 (clone 11) and the human LIN-28, nematode LIN-28, African linac LIN-28, Drosophila LIN-28 and mouse LIN-28 2 shows a comparison.
  • FIG. 73 shows the expression of the C20orfl02 gene in lung squamous cell carcinoma.
  • FIG. 74 shows detection of C20orfl02 protein molecules in various cancer cell lines and their culture supernatants using an anti-C20orfl02 antibody.
  • FIG. 75 shows the results of expression analysis of C20orfl02 protein in lung adenocarcinoma tissue using an anti-C20orfl02 antibody.
  • Figure 76 shows the detection of hNotum protein molecules in various cancer cell lines and their culture supernatants using anti-hNotum antibodies.
  • FIG. 77 shows the expression of hNotum protein in liver cancer tissue using anti-hNotum antibody.
  • FIG. 78 shows the detection of ⁇ # 2 protein molecule in ⁇ # 2 forced expression cell lines and various cancer cell lines using an anti-K # 2 antibody.
  • FIG. 79 shows the results of the use of anti-antibodies for the expression of ⁇ # 2 protein in liver cancer tissue.
  • FIG. 80 shows detection of KIAA1359 protein molecules in KIAA1359 forced expression cell lines and various cancer cell lines using an anti-KIAA1359 antibody.
  • FIG. 81 shows the results of expression analysis of KIAA1359 protein in gastric cancer tissues using an anti-KIAA1359 antibody.
  • FIG. 82 shows the detection of PEG10 protein molecules in PEG10 forced expression cell lines and various cancer cell lines using an anti-PEG10 / ORF2 antibody.
  • FIG. 83 shows the results of analysis of the expression of PEG10 protein in hepatocellular carcinoma tissue using the anti-PEG10 / ORF2 antibody.
  • FIG. 84 shows detection of DUSP9 protein molecule in a DUSP9 forced expression cell line and various cancer cell lines using an anti-DUSP9 antibody.
  • FIG. 85 shows the results of analysis of the expression of DUSP9 protein in hepatocellular carcinoma tissue using the anti-DUSP9 antibody.
  • FIG. 86 shows the results of analyzing the expression of Cystatin SN protein in colorectal cancer tissues using an anti-Cystatin SN antibody.
  • FIG. 87 shows the results of expression analysis of SFRP4 protein in gastric pole tissue using an anti-SFRP4 antibody.
  • FIG. 88 shows detection of SFRP4 protein in the culture supernatant of COS7 cells in which SFRP4 was forcibly expressed using an anti-SFRP4 antibody. Detailed description of the invention.
  • the present invention provides a gene for which the expression of a specific gene is enhanced in a cancer tissue, and a composition for diagnosing and treating cancer using the protein encoded by the gene.
  • the present invention provides a protein encoded by the cancer-associated gene set forth in SEQ ID NOs: 1-65 or a fragment thereof.
  • the composition of the present invention comprises a protein having the amino acid sequence set forth in SEQ ID NOs: 66-123 or a fragment thereof.
  • the protein of the present invention or a fragment thereof is useful as an antigen in diagnosis and treatment of cancer and in antibody production.
  • the protein or a fragment thereof is a mutant in which one or several amino acid residues have been deleted, substituted or added from the above-mentioned sequence, as long as it has the desired immunogenicity. There may be.
  • Such a variant preferably has at least 80%, preferably 90% or more, More preferably, it has an amino acid sequence having 95% or more identity.
  • Amino acid sequence identity is expressed by dividing the number of residues that are identical in the two sequences to be compared by the total number of residues and multiplying by 100.
  • the amino acid residue to be mutated is desirably mutated to another amino acid that preserves the properties of the amino acid side chain.
  • the properties of amino acid side chains include hydrophobic amino acids (A, I, L, M, F, P, W, Y, V), hydrophilic amino acids (R, D, N, C, E, Q, G, H, K, S, T), amino acids with aliphatic side chains (G, A, V, L, I, P), amino acids with hydroxyl-containing side chains (S, ⁇ , ⁇ ), sulfur-containing side chains Amino acids (C, M) having carboxylic acid and amide-containing side chains (D, N, E, Q), amino groups having base-containing side chains (R, K, ⁇ ), aromatic-containing side chains (H, F, Y, W) having an amino acid (each parenthesis represents a single letter of the amino acid).
  • Enzymol. 100, 468.500, Kramer, W. et al. (1984) Nucleic Acids Res. 12, 9441-9456, Kramer W, and Fritz HJ (1987) Methods.Enzymol. 154, 350-367, Kunkel, TA (l985 ) Proc Natl Acad Sci USA. 82, 488.492, Kunkel (1988) Methods Enzymol. 85, 2763-2766) can be used to appropriately introduce mutations into amino acids to prepare a protein equivalent to the protein.
  • the protein of the present invention may vary in amino acid sequence, molecular weight, isoelectric point, presence / absence and form of sugar chains, etc., depending on the cell, host, or purification method that produces the protein described below.
  • the protein of the present invention when expressed in a prokaryotic cell, for example, Escherichia coli, a methionine residue is added to the N-terminal of the amino acid sequence of the original protein.
  • the proteins of the present invention also include such proteins.
  • the protein of the present invention can be prepared as a recombinant protein or a natural protein by methods known to those skilled in the art.
  • a DNA encoding the protein of the present invention was incorporated into an appropriate expression vector, and the resulting transformant was introduced into an appropriate host cell, and a transformant was recovered to obtain an extract.
  • chromatography such as ion exchange, reverse phase, gel filtration, or the like, or by applying an antibody to the protein of the present invention to an affinity chromatography on a column immobilized on a column, or a combination of two or more of these columns Purification and preparation are possible.
  • the protein of the present invention when expressed in a host cell (for example, an animal cell or Escherichia coli) as a fusion protein with a dalubithione S-transferase protein or as a recombinant protein to which a plurality of histidines are added.
  • a host cell for example, an animal cell or Escherichia coli
  • the expressed recombinant protein can be purified using a Dalphin thione column or a nickel column. After purification of the fusion protein, if necessary, regions other than the target protein in the fusion protein can be cleaved with thrombin or Factor-Xa and removed.
  • the antibody may be a polyclonal antibody or a monoclonal antibody.
  • the present invention also includes fragments (partial peptides) of the protein of the present invention.
  • the fragment of the present invention can be used, for example, for producing an antibody against the protein of the present invention, for screening for a compound that binds to the protein of the present invention, and for screening for a promoter or inhibitor of the protein of the present invention.
  • the protein of the present invention Quality gonzo ⁇ can be a competitive inhibitor.
  • the fragment of the present invention When used as an immunogen, the fragment of the present invention has an amino acid sequence of at least 7 amino acids or more, preferably 8 amino acids or more, and more preferably 9 amino acids or more. When used as a competitive inhibitor of the protein of the present invention, it contains an amino acid sequence of at least 100 amino acids or more, preferably 200 amino acids or more, more preferably 300 amino acids or more.
  • the fragment of the present invention can be produced by a genetic engineering technique, a known peptide synthesis method, or by cleaving the protein of the present invention with an appropriate peptidase.
  • the peptide may be synthesized by, for example, either a solid phase synthesis method or a liquid phase synthesis method.
  • the present invention also provides a vector into which the DNA of the present invention has been introduced.
  • the vector of the present invention is useful for retaining the DNA of the present invention in host cells or expressing the protein of the present invention.
  • the vector is amplified in Escherichia coli (e.g., JM109, DH5a, HB101, XLlBlue), etc. It is preferable that the gene has "ori" and further has a transformed gene of Escherichia coli (for example, a drug resistance gene that can be identified by any drug (ampicillin-tetracycline, kanamycin, chloramphenicol)).
  • Escherichia coli e.g., JM109, DH5a, HB101, XLlBlue
  • the gene has "ori” and further has a transformed gene of Escherichia coli (for example, a drug resistance gene that can be identified by any drug (ampicillin-tetracycline, kanamycin, chloramphenicol)).
  • vectors examples include M13-based vectors, pUC-based vectors, pBR322, pBluescript, pCR-Script, and the like.
  • pGEM-T For sub-cloning and excision of cDNA, in addition to the above vectors, for example, pGEM-T,
  • an expression vector is particularly useful.
  • an expression vector for example, in the case of expression in E. coli, in addition to having the above-mentioned characteristics such that the vector is amplified in E. coli, the host may be JM109, DH5a, HB101, XLl-Blue, etc.
  • promoters that can be efficiently expressed in Escherichia coli, such as the lacZ promoter—Evening ( Ward et al., Nature ( 1989 ) 341, 544-546; FASEB J.
  • the vector may contain a signal sequence for protein content.
  • a signal sequence for protein secretion a pelB signal sequence (Lei, SP, et al J. Bacteriol. (1987) 169, 4379) may be used for production in E. coli periplasm.
  • the introduction of the vector into the host cell can be carried out using, for example, a calcium chloride method or an electoral poration method.
  • a mammalian expression vector for example, pcDNA3 (manufactured by Invitrogen) or pEGF-BOS (Nucleic Acids. Res.
  • insect cell-derived expression vector eg, “Bac-to-BAC baculovairus expression system” (manufactured by Gibco BRL), P BacPAK8), plant-derived expression vector (Eg, ⁇ 1, pMH2), an animal virus-derived expression vector (eg, pHSV, pMV, pAdexLcw), a retrovirus-derived expression vector (eg, pZIPneo), a yeast-derived expression vector (eg, “ Pichia Expression Kit "(manufactured by Invitrogen), pNVll, SP-Q01), and an expression vector derived from Bacillus subtilis (eg, pPL608, pKTH50).
  • Bacillus subtilis eg, pPL608, pKTH50.
  • promoters required for expression in cells for example, SV40 promoter (Mulligan et al., Nature (1979) 277, 108), MMLV-LTR promoter, EFla promoter, Ichiichi (Mizushima et al., Nucleic Acids Res. (1990) 18, 5322), CMV promoter, etc. It is more preferable to have a gene for selecting transformation (for example, a drug resistance gene that can be identified by a drug (neomycin, G418, etc.)).
  • a gene for selecting transformation for example, a drug resistance gene that can be identified by a drug (neomycin, G418, etc.
  • Examples of the vector to have a such property for example, P MAM, pDR2, pBK- RSV, pBK_CMV, pOPRSV, pOP13 , and the like.
  • a vector having a DHFR gene that complements the nucleic acid synthesis pathway-deficient CHO cells is used.
  • pCHOI a vector having a DHFR gene that complements the nucleic acid synthesis pathway-deficient CHO cells
  • MTX methotrexate
  • COS cells having a gene expressing the SV40 T antigen on the chromosome are transformed with a vector having a replication origin of SV40 (such as pcD).
  • a replication origin those derived from poliovirus, adenovirus, ⁇ papilloma virus (BPV) and the like can also be used.
  • the expression vector should be selected in order to amplify the number of copies of the gene in the host cell system, such as aminoglycoside transferase (APH) gene, thymidine kinase (TK) gene, and Escherichia coli xanthinguanine phospholiposyltransferase. (Ecogpt) gene, dihydrofolate reductase (dhfr) gene and the like.
  • APH aminoglycoside transferase
  • TK thymidine kinase
  • Escherichia coli xanthinguanine phospholiposyltransferase Escherichia coli xanthinguanine phospholiposyltransferase.
  • Escherichia coli xanthinguanine phospholiposyltransferase Escherichia coli xanthinguanine phospholiposyltransferase.
  • the present invention also provides a host cell into which the vector of the present invention has been introduced.
  • the host cell into which the vector of the present invention is introduced is not particularly limited, and for example, Escherichia coli and various animal cells can be used.
  • the host cell of the present invention can be used, for example, as a production system for producing and expressing the protein of the present invention.
  • Production systems for protein production include in vitro and in vivo production systems. Examples of the in vitro production system include a production system using eukaryotic cells and a production system using prokaryotic cells. '
  • animal cells for example, animal cells, plant cells, and fungal cells can be used as hosts.
  • animal cells include mammalian cells, for example, CHO (J. Exp. Med. (1995) 108, 945), COS, 3T3, Kazuma Mie, BHK (baby hamster kidney), HeLa, Vero, amphibian cells, for example. African omega oocyte
  • CHO cells in particular, DHFR-deficient CHO cells such as dhfr-CHO (Proc. Natl. Acad. Sci. USA (1980) 77, 4216-4220) and CHO Kl (Proc. Natl. Acad. Sci. USA (1968) 60, 1275) can be preferably used.
  • CHO cells are particularly preferred for large-scale expression in animal cells.
  • Vector vectors can be introduced into host cells by, for example, the calcium phosphate method, the DEAE dextran method, the method using catonic ribosome DOTAP (manufactured by Berlin-Germanheim), the electroporation method, It can be performed by a method such as ribofection.
  • a cell derived from Nicotiana tabacum is known as a protein production system, which may be callus cultured.
  • Fungal cells include yeast, for example, the genus Saccharomyces, for example, Saccharomyces cerevisiae, filamentous fungi, for example, the genus Aspergillus, for example, Aspergillus niger niger (Aspergillus niger). Has been.
  • E. coli Escherichia coli
  • JM109 JM109
  • DH5a> HB101 Bacillus subtilis
  • the protein is obtained by transforming these cells with the desired DNA and culturing the transformed cells in vitro.
  • Culture can be performed according to a known method.
  • a culture solution of animal cells for example, DMEM, MEM, RPMI1640, IMDM can be used.
  • fetal bovine serum for example, fetal bovine serum
  • a serum replacement solution such as (FCS) may be used in combination, or serum-free culture may be performed.
  • the pH during cultivation is preferably about 6-8.
  • Culture is usually performed at about 30 to 40 C for about 15 to 200 hours, and the medium is replaced, aerated, and agitated as necessary.
  • examples of a system for producing a protein in vivo include a production system using animals and a production system using plants.
  • the target DNA is introduced into these animals or plants, and proteins are produced and recovered in the animals or plants.
  • the “host” in the present invention includes these animals and plants.
  • mice When using animals, there are production systems using mammals and insects. As mammals, goats, bushes, hidges, mice and mice can be used (Vicki).
  • the target DNA is prepared as a fusion gene with a gene encoding a protein that is specifically produced in milk, such as goat / 3 casein.
  • a DNA fragment containing the fusion gene is injected into a goat embryo, and the embryo is transplanted into a female goat.
  • the target protein can be obtained from milk produced by the transgenic goat born from the goat that has received the embryo or its offspring. Hormones may be used in transgenic animals as appropriate to increase the amount of milk containing proteins produced by transgenic animals (Ebert, KM. Et al, Bio / Technology (1994) 12, 699-702).
  • silkworms can be used as insects, for example.
  • a place to use silkworms the target protein can be obtained from the body fluid of the silkworm by infecting the silkworm with a baculovirus containing DNA encoding the target protein (Susumu, M. et al., Nature (1985). ) 315, 592-594).
  • tobacco when using a plant, for example, tobacco can be used.
  • DNA encoding the protein of interest is introduced into a plant expression vector, such as PMON 530, and the vector is used, such as Agrobacterium tmnefaciens. Introduce the bacteria.
  • This bacteria is infected with tobacco, for example, Nicotiana tabacum, and the desired protein can be obtained from the leaves of this tobacco (Julian K.-C. Ma et al., Eur. J. Immunol. (1994) 24, 131-138).
  • the protein of the present invention thus obtained can be isolated from the inside or outside of the host cell (such as a medium) and purified as a substantially pure and homogeneous protein.
  • the separation and purification of the protein may be performed by using the separation and purification methods used in ordinary protein purification, and is not limited in any way.
  • Chromatographic column, Filfil, ultrafiltration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, electrophoresis, dialysis, recrystallization Proteins can be separated and purified by appropriately selecting and combining them.
  • the chromatography include affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, P-phase chromatography, and the like (Strategies for chromatography).
  • the protein before or after purification of the protein, the protein can be arbitrarily modified or partially removed by the action of an appropriate protein modification enzyme.
  • the protein modifying enzyme for example, trypsin, chymotrypsin, lysyl peptidase, protein kinase, dalcosidase and the like are used.
  • the cancer-related residue shown in SEQ ID NO: 116 PCR primers are designed based on the gene sequence of the gene (see Table 1), and quantification of the expression level of cancer-related genes in human tissues by quantitative PCR using cDNA obtained from human normal and cancer tissues. As a result, it was found that the expression of the cancer-related gene of the present invention was enhanced in specific human cancer tissues.
  • Genes having the nucleotide sequences set forth in SEQ ID NOs: 1, 2, 28, 29, 30, 31, 32, 51, 52, 60, and 61 have been found to be upregulated in lung cancer.
  • the protein encoded by the gene having the nucleotide sequence described in SEQ ID NO: 1, 2, 28, 29, 30, 31, 32, 51, 52, 60 and 61 or a fragment thereof can be used for diagnosis of lung cancer or Useful in therapy.
  • the political gene has the nucleotide sequence set forth in any of SEQ ID NOs: 1, 2, 28, 29, 30, 31, 31 and 32, and more preferably the nucleotide sequence set forth in SEQ ID NOs: 1 or 2. .
  • the protein encoded by the gene having the nucleotide sequence set forth in 38, 39, 40, 41, 42, 53, 54 and 55 or a fragment thereof is useful in the diagnosis or treatment of gastric cancer.
  • the gene has a nucleotide sequence as set forth in any one of SEQ ID NOs: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 22, 23, 24, 25 and 26. Having.
  • Genes having the nucleotide sequences set forth in SEQ ID NOs: 3, 7, 20, 21, 46, 47, 48, 49 and 50 were found to be upregulated in colorectal cancer. That is, the protein encoded by the gene having the nucleotide sequence set forth in SEQ ID NOs: 3, 7, 20, 21, 46, 47, 48, 49 and 50 or a fragment thereof is useful in the diagnosis or treatment of colorectal cancer. is there.
  • the gene has a nucleotide sequence as set forth in any of SEQ ID NOs: 3, 7, 20, 21, 46, 49 and 50, more preferably any of the nucleotide sequences set forth in SEQ ID NOs: 3, 7, 20, 20 and 21 Has the nucleotide sequence described.
  • the gene having the nucleotide sequence set forth in SEQ ID NOs: 14, 15, 16, 17, 18, 19, 43, 44, 45, 56, 57, 58, 59, 62, 63, 64, and 65 has The expression was found to be upregulated. That is, by the gene having the nucleotide sequence described in SEQ ID NO: 14, 15, 16, 17, 18, 19, 43, 44, 45, 56, 57, 58, 59, 62, 63, 64 and 65
  • the encoded protein or fragment thereof is useful in diagnosing or treating liver cancer.
  • the gene is a nucleotide sequence described in any of SEQ ID NOs: 14, 15, 16, 17, 18, 19, 45, 56, 57, 58, 64 and 65, more preferably SEQ ID NO: 14 , 15, 16, 17, 18, 19, 64 and 65.
  • composition of the present invention containing the protein encoded by the cancer-related gene described in SEQ ID NOs: 1 to 65 or a fragment thereof can be used as a vaccine against cancer.
  • the human or animal is administered.
  • the composition of the present invention may be administered in the form of cells expressing the above-mentioned cancer-related gene or a fragment thereof.
  • composition of the present invention determines whether a subject has a specific cancer by measuring whether or not the subject has an antibody against a protein encoded by the cancer-associated gene described in SEQ ID NOS: 1-65. It can be used to diagnose whether or not it is. ⁇ body
  • the present invention provides an antibody or an antigen-binding fragment thereof that recognizes a protein or a fragment thereof encoded by a cancer-related gene having a nucleotide sequence set forth in any of SEQ ID NOS: 1-65. I do.
  • a composition for diagnosing or treating cancer comprising the antibody or the binding fragment thereof.
  • the antibody of the present invention can preferably recognize a protein having an amino acid sequence represented by SEQ ID NOs: 66 to 123 or a fragment thereof.
  • the present invention also provides a cell that produces such an antibody.
  • Recognition means that an antibody binds under specific conditions to a protein or fragment thereof encoded by the above-mentioned cancer-associated gene with a higher affinity for binding to another polypeptide. Means
  • Antibodies of the present invention include monoclonal and polyclonal antibodies, as well as antibody variants and derivatives, such as antibodies and T-cell receptor fragments that retain the ability to specifically bind antigenic determinants. It is.
  • the body type of the present invention is not particularly limited, and may be a mouse antibody, a human antibody, a rat antibody, a heron antibody, a hidge antibody, a camel antibody, etc.
  • a genetically modified recombinant antibody for example, a chimeric antibody, a humanized antibody, or the like can be used as appropriate.
  • Recombinant antibodies can be produced using known methods.
  • a chimeric antibody is an antibody consisting of a heavy chain and light chain variable region of a non-human mammal, such as a mouse antibody, and a heavy chain and light chain constant region of a human antibody, and DNA encoding the mouse antibody variable region. Can be obtained by ligating this to DNA encoding the constant region of a human antibody, inserting this into an expression vector, and introducing it into a host to produce it.
  • Humanized antibodies are reconstituted
  • a complementarity determining region (CDR) of a non-human mammal such as a mouse antibody
  • CDR complementarity determining region
  • Recombinant techniques are also known. Specifically, a DNA sequence designed to link the CDR of a mouse antibody and the framework region (FR) of a human antibody was prepared by preparing several DNA fragments having overlapping portions at the ends. It is synthesized by PCR from oligonucleotides. The obtained DNA is ligated to DNA encoding the constant region of a human antibody, then inserted into an expression vector, and introduced into a host to produce it (European Patent Application Publication No.
  • EP 239400 International Patent Application Publication Number WO 96/02576
  • the human antibody FR linked via CDR is selected so that the complementarity-determining region forms a favorable antigen-binding site. If necessary, amino acids in the framework region of the antibody variable region may be substituted so that the complementarity determining region of the reshaped human antibody forms an appropriate antigen-binding site (Sato, et al., Cancer Res. : 1993, 53, 851-856.).
  • a method for obtaining a human antibody is known.
  • human lymphocytes are sensitized in vitro with a desired antigen or cells expressing the desired antigen, and the sensitized lymphocytes
  • the desired human antibody having an antigen-binding activity can be obtained by fusing it with an erotic cell, for example, U266 (see Japanese Patent Publication No. 1-59878).
  • a desired human antibody can be obtained by immunizing a transgenic animal having the entire repertoire of human antibody genes with a desired antigen (International Patent Application Publication No. WO
  • a technique for obtaining a human antibody by panning using a human antibody library is also known.
  • a phage that binds to an antigen can be selected by expressing the variable region of a human antibody as a single-chain antibody (scFv) on the surface of a phage by the phage display method.
  • scFv single-chain antibody
  • a human antibody can be obtained by preparing an appropriate expression vector for the sequence.
  • These methods are already well known and can be referred to WO 92/01047, WO 92/20791, WO 93/06213, WO 93/11236, WO 93/19172, WO 95/01438, WO 95/15388. it can.
  • the antibody may be a low-molecular-weight antibody such as an antibody fragment (fragment) or a modified product of the antibody, as long as the antibody can bind to the antigen.
  • Specific examples of the antibody fragment include Fab, Fab ', F (ab,) 2, Fv, and Diabody.
  • a gene encoding these antibody fragments may be constructed, introduced into an expression vector, and then expressed in a suitable host cell (eg, Co, MS et al.). ., J. Immunol. (1994) 152, 2968-2976; Better, M. and Horwitz, AH, Methods Enzymol. (1989) 178, 476-496; Plckthun, A. and Skerra, A., Methods Enzymol. (1989) 178, 497-515; Lamoyi, E., Methods Enzymol.
  • an antibody bound to various molecules such as polyethylene glycol (PEG) can be used. It is also possible to bind a radioactive isotope, a chemotherapeutic agent, a cytotoxic substance such as a bacterial toxin, etc. to the antibody, and a radiolabeled antibody is particularly useful.
  • PEG polyethylene glycol
  • an antibody having a modified sugar chain can be used.
  • Antibody sugar chain modification technology is already known
  • the present invention also includes multispecific antibodies having specificity for two or more different antigens. Usually such molecules bind two antigens (i.e., bispecific body), but a "multispecific antibody" in the present invention is more specific (e.g., three types) of antigens. Includes antibodies that have specificity for.
  • a multispecific antibody can be a full-length antibody, or a fragment of such an antibody (eg, an F (ab ') 2 bispecific antibody).
  • the constant domain sequence preferably includes at least part of the hinge, CH2 and CH3 regions of the constant region of the heavy chain of immunoglobulin.
  • a heavy chain CH1 region required for binding to the light chain is further included.
  • the DNA encoding the immunoglobulin heavy chain fusion and, if desired, the DNA encoding the immunoglobulin light chain are inserted into separate expression vectors, and transformed into an appropriate host organism. By inserting each gene into a separate expression vector, if the abundance ratio of each chain is not the same, the yield of the obtained antibody can be increased, and the expression ratio of each chain can be adjusted, which is convenient. However, it goes without saying that genes encoding a plurality of chains can be inserted into one vector and used.
  • a heavy chain having a first binding property is present as one arm of an octibride immunoglobulin and a heavy-light chain complex of another binding property is present as the other arm.
  • Specific antibodies are preferred.
  • the presence of the light chain in only one arm allows the bispecific antibody to separate from other immunoglobulins. It can be done easily. See WO94 / 04690 for the separation method.
  • For the method of preparing a bispecific antibody see the method of Suresh et al. (Methods in Enzymology 121: 210 (1986)).
  • One way to reduce homodimers and increase the proportion of heterodimers in the final product obtained from recombinant cell culture is to include the antibody constant domain, CH3, in one antibody molecule to bind to the other molecule.
  • several small side chain amino acids are changed to larger side chain amino acids (eg, tyrosine or tributophan), and the corresponding portion of the other antibody molecule is replaced with a smaller side chain amino acid (eg, alanine ⁇ threonine).
  • a method of providing a cavity corresponding to the large side chain of the first antibody molecule is known (WO96 / 27011).
  • Bispecific antibodies include, for example, heteroconjugate antibodies in which one antibody is bound to avidin and the other is bound to piotin or the like (U.S. Pat.No. 4,676,980; WO91 / 00360; WO92 / 00373; EP03089).
  • Cross-linking agents used to make such heteroconjugate antibodies are well known, and such examples are described, for example, in US Pat. No. 4,676,980.
  • a method for producing a bispecific antibody from an antibody fragment has been reported.
  • it can be manufactured using a chemical bond.
  • an F (ab ') 2 fragment is first prepared, and the fragment is reduced in the presence of the dithiol complexing agent arsanyl sodium in order to prevent disulfide formation in the same molecule.
  • the F (ab ') 2 fragment is converted to a thionite oral benzoate (TNB) derivative.
  • TAB thionite oral benzoate
  • VH heavy chain variable domain
  • VL light chain variable domain
  • the “antibody” in the present invention also includes these antibodies.
  • the antibodies and antibody fragments of the present invention can be produced by any appropriate method, for example, in vivo, cultured cells, in vitro translation reaction, and a recombinant DNA expression system.
  • immunization can be performed by subcutaneously or intraperitoneally injecting any animal known to produce antibodies (mouse, egret, etc.). can do.
  • Adjuvants may be used for immunization, and such adjuvants are well known in the art.
  • Polyclonal antibodies can be obtained by isolating antisera containing the antibody from the immunized animal and using a well-known method in the art, such as ELISA assay, Western blot analysis, or radioimmunoassay, to obtain the desired specificity. It can be obtained by screening for the presence of an antibody having
  • Monoclonal antibodies can be obtained by excising the spleen cells from the immunized animal and fusing the spleen cells with myeoma cells to produce hybridoma cells that produce monoclonal antibodies.
  • Hybridoma cells producing an antibody recognizing the desired protein or a fragment thereof can be obtained by using a well-known method in the art such as ELISA, Western blot analysis, or radioimmunoassay. select.
  • a hybridoma that secretes the desired antibody is cloned, cultured under appropriate conditions, and the secreted antibody is recovered. Purification can be performed using a well-known method, for example, an ion exchange column, affinity chromatography and the like.
  • a humanized monoclonal antibody may be produced using a xenomouse strain (Green, J. Immunol. Methods 231: 11-23, 1999; We11s, Eek, ChemB). io 1 2000 Aug; 7 (8): see R185-6).
  • DNA encoding a monoclonal antibody can be readily isolated by conventional methods (e.g., using an oligonucleotide probe that can specifically bind to the genes encoding the heavy and light chains of the monoclonal antibody). Can be sequenced. VIII Hybrid cells are a preferred starting material for such DNA.
  • the DNA is inserted into an expression vector, and host cells such as E. coli cells, monkey COS cells, Chinese worm ovary (CHO) cells, or myeloma cells that do not produce immunoglobulins unless transformed.
  • host cells such as E. coli cells, monkey COS cells, Chinese worm ovary (CHO) cells, or myeloma cells that do not produce immunoglobulins unless transformed.
  • host cells such as E. coli cells, monkey COS cells, Chinese worm ovary (CHO) cells, or myeloma cells that do not produce immunoglobulins unless transformed.
  • antibodies or antibody fragments can be isolated from antibody phage libraries produced
  • Labels include radioactive isotopes, affinity labels (eg, biotin, avidin, etc.), enzyme labels (eg, horseradish peroxidase, alkaline phosphatase, etc.), fluorescent labels (eg, FITC or And a paramagnetic atom. Methods for performing such labeling are well-known in the art.
  • the above-mentioned antibodies may be immobilized on a solid support. Examples of such solid supports include plastic, agarose, sepharose, polyacrylamide, latex beads, and the like. Techniques for attaching antibodies to such solid supports are well known in the art.
  • the cancer-associated gene of the present invention exhibits enhanced expression in specific cancer tissues, and thus the antibody of the present invention is useful as a cancer diagnostic marker.
  • the antibody of the present invention can be used in techniques such as Western blotting, ELISA, and tissue staining to detect the expression of a protein encoded by a cancer-related gene in a tissue or cell.
  • a sample derived from a subject's tissue eg, a biopsy sample, a blood sample, etc.
  • the composition of the present invention is brought into contact with the composition of the present invention under conditions such that an immune complex is formed, and whether the antibody binds to the sample is determined.
  • the diagnostic composition of the present invention can be provided as a kit for detecting the presence of a protein encoded by the above-mentioned cancer-related gene in a sample.
  • kits may include, in addition to the antibodies described above, a washing reagent and a reagent capable of detecting the presence of bound antibody, such as a labeled second antibody, a chromophore capable of reacting with the labeled antibody, an enzyme, or It can include antibody binding reagents, as well as guidelines for use.
  • the antibody against the protein encoded by the cancer-related gene of the present invention has specificity for a specific cancer cell, and thus is used as a therapeutic agent for cancer or in missile therapy in which the drug is specifically targeted to cancer tissue. be able to.
  • the composition of the present invention is used in the diagnosis and treatment of lung cancer, stomach cancer, colon cancer and liver cancer.
  • the therapeutic agent of the present invention can be formulated by mixing, dissolving, granulating, tableting, emulsifying, encapsulating, freeze-drying, etc., together with a pharmaceutically acceptable carrier well known in the art. it can.
  • the therapeutic agent of the present invention may be used together with pharmaceutically acceptable solvents, excipients, binders, stabilizers, dispersants, and the like, together with tablets, pills, dragees, soft capsules, and hard capsules. It can be formulated into dosage forms such as solutions, suspensions, emulsions, gels, syrups and slurries.
  • the therapeutic agent of the present invention may be used together with a pharmaceutically acceptable solvent, excipient, binder, stabilizer, dispersant, etc., together with an injection solution, suspension, emulsion, or cream.
  • a pharmaceutically acceptable solvent such as water, Ringer's solution, or physiological saline buffer.
  • the compositions can take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles.
  • the therapeutic agent may be manufactured in powder form, and an aqueous solution or suspension may be prepared using sterile water or the like before use.
  • the therapeutic agents of the invention can be powdered and made into a powder mixture with a suitable base, such as lactose or starch.
  • Suppository formulations can be made by mixing the therapeutic agents of the present invention with conventional suppository bases such as cocoa butter.
  • the therapeutic agent of the present invention can be encapsulated in a polymer matrix or the like and treated as a sustained-release preparation.
  • the dosage and frequency of administration will vary depending on the dosage form and route of administration, and the condition, age, and weight of the patient, but in general, the therapeutic agents of the present invention will range from about 0.001 mg / kg of body weight per day. It may be administered once to several times daily in a range of 100 mg, preferably about 0.1 mg.
  • Therapeutic agents are usually administered by parenteral administration route, for example, injection (subcutaneous injection, intravenous injection, intramuscular injection, intraperitoneal injection, etc.), transdermal, transmucosal, nasal, pulmonary, etc. Alternatively, oral administration may be used.
  • parenteral administration route for example, injection (subcutaneous injection, intravenous injection, intramuscular injection, intraperitoneal injection, etc.), transdermal, transmucosal, nasal, pulmonary, etc.
  • oral administration may be used.
  • the present invention relates to a polynucleotide having the nucleotide sequence set forth in any one of SEQ ID NOs: 1 to 65 or a polynucleotide having a nucleotide sequence complementary thereto, or a condition in which these polynucleotides are highly stringent.
  • polynucleotides that can be hybridized below.
  • the present invention relates to a polynucleotide having at least 12 consecutive nucleotide sequences of the nucleotide sequence described in any of SEQ ID NO: 116 or a nucleotide sequence complementary thereto, or A composition comprising an oligonucleotide having a length of at least 12 nucleotides capable of hybridizing under high stringency conditions to a polynucleotide having the nucleotide sequence of any of Nos. 1 to 65. .
  • polynucleotides are useful for cancer diagnosis, protein production, primers, antisense siRNA for inhibiting gene expression, and the like.
  • the cancer is preferably selected from lung, stomach, colon and liver cancer.
  • composition of the present invention can be used as an agent such as an antisense oligonucleotide for silencing the expression of a related gene, a lipozyme, siRNA or the like, and a probe or primer for detecting a cancer-related gene.
  • an agent such as an antisense oligonucleotide for silencing the expression of a related gene, a lipozyme, siRNA or the like, and a probe or primer for detecting a cancer-related gene.
  • Polynucleotides or oligonucleotides contained in the composition of the present invention include: It may be single-stranded or double-stranded, and may be DNA, RNA, or a mixture thereof, or a derivative such as PNA. These polynucleotides or oligonucleotides may be chemically modified at internucleoside linkages, bases and Z or sugars, and may have modifying groups at the 5, terminal and Z or 3 'terminal. Examples of the modification of the internucleoside bond include phosphorothioate, phosphorodithioate, phosphoramidate, phosphoramidate, phosphordiamidate, methylphosphonate, alkyl phosphotriester, and formacetal.
  • Examples of base modifications include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-, o-douracil, hypoxanthine, xanthine, 4-acetylcytosine, and 5- (potoxyhydroxyethyl). ⁇ Rasil and the like.
  • Examples of sugar modifications include 2,1-alkyl, 2, -O-alkyl-O-alkyl or 2,1-fluoro modifications. Also, sugars such as arabinose, 2-fluoroarabinose, xylulose and hexose may be used.
  • the polynucleotide of the present invention may be a polynucleotide having the nucleotide sequence set forth in any of SEQ ID NOs: 1-65 or a nucleotide sequence complementary to a fin, or a condition under which these polynucleotides are highly stringent. Is a polynucleotide that can be hybridized. Polynucleotides that can be hybridized under high stringency conditions usually have a high degree of identity.
  • the high identity means that the nucleotide sequence has 70% or more identity, preferably 80% or more identity, and more preferably the nucleotide sequence described in any of SEQ ID NOS: 1 to 65. Means 90% or more identity.
  • the present invention encodes the amino acid sequence of SEQ ID NO: 66-123.
  • composition of the present invention may be provided as a nucleic acid construct capable of producing desired antisense, lipozyme, and siRNA in cells into which the composition has been introduced.
  • the polynucleotide or oligonucleotide of the present invention is used as an antisense, liposome, siRNA, or the like, the polynucleotide or oligonucleotide preferably has a chain length of at least 12 nucleotides or more, and more preferably. Is 12 to 50 nucleotides, particularly preferably 12 to 25 nucleotides.
  • polynucleotides or oligonucleotides are mutants in which one or several bases are deleted, substituted or added from the above-mentioned nucleotide sequence, as long as they have the desired antisense, lipozyme or siRNA activity. You may.
  • Such variants preferably have a nucleotide sequence that is at least 70%, preferably 90% or more, more preferably 95% or more, identical to the nucleotide sequence described above.
  • such polynucleotides or oligonucleotides can hybridize under high stringency conditions to a polynucleotide having the nucleotide sequence set forth in any of SEQ ID NOs: 1-65.
  • hybridization means that DNA or the corresponding RNA binds to another DNA or RNA molecule in a solution or on a solid support by hydrogen bonding interactions.
  • the strength of such an interaction can be evaluated by changing the stringency of the hybridization conditions.
  • various stringency hybridization conditions can be used, and the stringency can be adjusted by varying the salt or denaturant concentration.
  • Such methods of regulating stringency are well known in the art and are described, for example, in "Mocular C 1 oning: AL abo rato ry Manual", Second Edition. Cold Spring Harbor Labo. ratory, S amb ro ok, Frits ch, & M aniatis r ed s., 1 9 89).
  • Stringent hybridization conditions are those conditions in the presence of 50% formamide in 700 mM NaCl at 42 ° C or equivalent.
  • An example of the scan stringent Haiburidize one Deployment conditions 50% formamide, 5XSSC, 50mMNaH 2 PO 4, pH6. 8, 0. 5% SDS, 0. lm g / mL sonicated salmon sperm DNA, and 5 X Denhardt's Hybridization overnight at 42 ° C in solution; 2XSSC, 0.1% SDS wash at 45 ° C; and 0.2XSSC, 0.1% SDS wash at 45 ° C.
  • the polynucleotide and the oligonucleotide of the present invention can be produced by a method known to those skilled in the art. For example, it can be synthesized with a commercially available DNA synthesizer (for example, 394 synthesizer, manufactured by Applied Biosystems) using a protocol known in the art. Alternatively, based on the sequence information disclosed herein, it can be produced by a PCR amplification technique well known in the art, using a combination of an appropriate template and a primer.
  • a DNA synthesizer for example, 394 synthesizer, manufactured by Applied Biosystems
  • cDNA library can be prepared by preparing a cDNA library from cells expressing the polypeptide of the present invention, and performing hybridization using a part of the sequence of the polynucleotide of the present invention as a probe.
  • the cDNA library can be obtained from, for example, Bunnan Dog (Sambrook, J. et al., Molecular Clomng, Cold Spring Harbor
  • UNA is prepared from cells expressing the polypeptide of the present invention, cDNA is synthesized using reverse transcriptase, and then oligo DNA is synthesized based on the sequence of the DNA of the present invention (for example, SEQ ID NO: 1). However, it can also be prepared by performing a PCR reaction using this as a primer and amplifying a cDNA encoding the polypeptide of the present invention.
  • Genomic DNA can also be isolated by screening a genomic DNA library using the obtained cDNA as a probe.
  • mRNA is isolated from cells or tissues that express the protein of the present invention (for example, lung cancer cells, colon cancer cells, liver cancer cells, and gastric cancer cells).
  • mRNA can be isolated by known methods, for example, guanidine ultracentrifugation (Chirgwin, JM et al., Biochemistry (1979) 18, 5294-5299), and the AGPC method (Chomczynski, P. and Sacchi, N., Anal. Prepare whole UNA using Biochem. (1987) 162, 156-159) and purify mRNA from total RNA using mRNA Purification Kit (Pharmacia).
  • mRNA can be directly prepared by using the QuickPrep mRNA Purification Kit (Pharmacia).
  • CDNA is synthesized from the obtained mRNA using reverse transcriptase.
  • the cDNA can also be synthesized using AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (manufactured by Iidaigaku Kogyo). Also, 5'-Ampli FINDER RACE Kit
  • the target DNA fragment from the obtained PCR product and ligate it with the vector DNA. Further, a recombinant vector is prepared from this, introduced into E. coli, etc., and colonies are selected to prepare a desired recombinant vector.
  • the nucleotide sequence of the target DNA can be confirmed by a known method, for example, the dideoxynucleotide chain-one-minute method.
  • a nucleotide sequence with higher expression efficiency can be designed in consideration of the codon usage of the host used for expression (Grantham, R. et al., Nucelic Acids Research ( 1981) 9, r43-74).
  • the DNA of the present invention can be modified by a commercially available kit or a known method. Modifications include, for example, digestion with restriction enzymes, insertion of synthetic oligonucleotides or appropriate DNA fragments, addition of a linker, initiation codon (ATG) and Z or stop codon.
  • TAA TGA, TGA, or TAG
  • the oligonucleotide of the present invention can be used as a nucleic acid probe for detecting a cancer-related gene in a sample.
  • the probe of the present invention has a sequence of at least 12 bases, 20 bases, 30 bases, 50 bases or 100 bases or more of the base sequence represented by SEQ ID NO: 165 or a base sequence complementary thereto. And selected to specifically hybridize to a specific region of a cancer-related gene. Extract DNA from tissues, blood, etc., or extract mRNA and combine cDNA By contacting the probe with the probe under conditions that would result in hybridization, and detecting the presence or amount of the probe bound to the sample to detect the presence of the cancer-related gene or its transcript in the sample. Or the amount or mutation can be detected.
  • the probe may be immobilized on a solid support.
  • solid supports include, but are not limited to, plastic, agarose, sepharose, polyacrylamide, latex beads, nitrocellulose, and the like. Techniques for attaching probes to such solid supports are well known in the art. Probes should be visualized by labeling using standard labeling techniques, for example, radiolabeling, enzyme labeling (horseradish peroxidase, alkaline phosphatase), fluorescent labeling, biotin-avidin labeling, chemiluminescence, etc. Can be. That is, the composition of the present invention can be provided as a kit for detecting the presence of a cancer-related gene or a transcription product thereof in a sample. Such kits can include, in addition to the probe described above, a washing reagent, a reagent capable of detecting the presence of bound probe, and guidelines for use.
  • the 'diagnostic composition' of the present invention may comprise a set of primers capable of amplifying the nucleotide sequence set forth in any of SEQ ID NOs: 1-65.
  • primers capable of amplifying the nucleotide sequence set forth in any of SEQ ID NOs: 1-65.
  • PCR polymerase chain reaction
  • a technique such as hybridization or nucleotide sequencing, and The presence or amount or mutation of the cancer-related gene or its transcript therein can be detected.
  • PCR techniques are well known in the art and are described, for example, in "PGR Protocols, A Guide to Methods and Applications on s' ⁇ Acdc e mic Press, Michael". , et al., eds. 1990.
  • the oligonucleotide of the present invention is preferably a nucleotide sequence represented by any one of SEQ ID NOs: 1 to 65 or a sequence complementary thereto. It has a sequence of at least 12 bases, preferably 12 to 50 bases, more preferably 12 to 20 bases in a continuous base sequence.
  • the polynucleotide or oligonucleotide of the present invention is an antisense molecule that binds to mRNA encoded by a cancer-related gene and inhibits its expression, or m It can be used as a ribozyme or siRNA that cleaves RNA to silence cancer-related genes.
  • Methods for controlling gene expression using antisense, lipozyme, and siRNA technologies are well known in the art.
  • the compositions of the invention may be administered with a suitable carrier, or the expression of these may be induced in vivo by administration of a vector encoding antisense, lipozyme or siRNA.
  • lipozyme refers to a nucleic acid molecule that has the catalytic activity of cleaving mRNA. Liposomes generally exhibit endonuclease, ligase or polymerase activity. Various types of trans-acting liposomes are known, such as the mmermar head and hairpin type liposomes.
  • Antisense refers to a nucleic acid molecule or derivative thereof that specifically hybridizes to genomic DNA and / or mRNA and inhibits its protein expression by inhibiting its transcription and Z or translation. Binding may be by general base pair complementarity or, for example, in the case of binding to a DNA duplex, by specific interaction in the major groove of the double helix.
  • the target site of the antisense nucleic acid is preferably the 5 'end of the mRNA, for example, the 5' untranslated sequence up to and including the AUG start codon, but the 3, untranslated sequence of the mRNA or the sequence of the coding region is also preferred for translation of the mRNA. It is known to be effective for inhibition.
  • siRNA refers to a double-stranded nucleic acid capable of performing RNA interference (RNA i) (for example, Basss, 2001, Nature, 411, 428-429; E 1 bashiretal., 2001, Na). ture, 411, 494-498). siRNA degrades mRNA in a sequence-specific manner, which can suppress gene expression.
  • the siRNA is typically a 20-25 base pair long double stranded RNA containing a sequence complementary to the target sequence.
  • the si RNA molecules may contain chemically modified nucleotides and non-nucleotides.
  • the polynucleotide of the present invention can be used for producing the protein of the present invention.
  • screening provides a method for identifying a compound having anti-cancer activity. The method comprises contacting cultured human cells with a test compound, and eliciting a compound that causes a change in the expression level of a gene comprising a nucleotide sequence set forth in any one of SEQ ID NOs: 1-65 in said cells. And identifying the compound as
  • test compound any natural or synthetic compound can be used, and a combinatorial library may be used.
  • the expression level of the cancer-related gene in the cell can be easily measured, for example, by the above-described quantitative PCR method, but any other method known in the art may be used. Inspection methods
  • the present invention provides a method for detecting cancer, comprising a step of measuring the expression level of the gene or protein of the present invention. Specific embodiments of the inspection method are described below, but the inspection method of the present invention is not limited to those methods.
  • an NA sample is prepared from a subject.
  • the amount of RNA encoding the protein of the present invention contained in the RNA sample is measured.
  • the amount of RNA is compared to a control.
  • a cDNA sample is prepared from a subject.
  • the amount of cDNA encoding the protein of the present invention contained in the cDNA sample is measured.
  • the measured amount of cDNA is then compared to a control.
  • Examples of such methods include methods well known to those skilled in the art, such as Northern blotting, RPCR, and DNA array.
  • a cDNA sample is prepared by using RNA prepared from a subject as a type II, and brought into contact with a substrate on which the oligonucleotide of the present invention is immobilized, and the cDNA sample and a nucleotide probe immobilized on the substrate are used.
  • the expression level of the gene of the present invention contained in the cDNA sample is measured.
  • the measured expression level of the gene of the present invention is compared with a control.
  • Preparation of a cDNA sample from a subject can be performed by methods well known to those skilled in the art.
  • total RNA is extracted from cells or tissues (eg, lung, large intestine, stomach, liver, etc.) of a subject.
  • the extraction of total RNA can be performed by a method well known to those skilled in the art, for example, as follows.
  • existing methods and kits can be used as long as high-purity total RNA can be prepared.
  • total RNA is extracted using “Isogen” from Futaba Gene. The specific method may be in accordance with those attached protocols.
  • cDNA is synthesized using reverse transcriptase with the extracted total RNA as type III to prepare a cDNA sample.
  • Synthesis of cDNA from total RNA can be performed by methods known to those skilled in the art. Label the prepared cDNA sample for detection, if necessary.
  • the labeling substance is not particularly limited as long as it is detectable, and examples thereof include a fluorescent substance and a radioactive element. Labeling can be performed by a method commonly used by those skilled in the art (L Luo et al., Gene expression profiles of laser-capture dadjacent neuronal subtypes. Nat Med. 1999, 117-122).
  • the detection of the intensity of the hybridization between the nucleotide probe and the cDNA can be appropriately performed by those skilled in the art according to the type of the substance that has labeled the cDNA sample. For example, if the cDNA is labeled with a fluorescent substance, it can be detected by reading the fluorescent signal with a scanner.
  • test method of the present invention first, a protein sample is prepared from cells or tissues of a subject. Next, the amount of the protein of the present invention contained in the protein sample is measured. The measured amount of protein is then compared to a control. Examples of such methods include SDS polyacrylamide electrophoresis, Western blotting, dot blotting, immunoprecipitation, enzyme-linked immunosorbent assay (ELISA) using the antibodies of the present invention, And immunofluorescence. Alternatively, cancer can be diagnosed by measuring the expression level of the protein of the present invention instead of measuring the expression level of the gene of the present invention.
  • the subject when the expression level of the gene or protein of the present invention is significantly increased as compared to the control, the subject is likely to have, or is likely to develop, cancer. Is determined.
  • the present invention also provides a test agent for use in a method for testing cancer.
  • a test agent for use in a method for testing cancer.
  • examples of such a test agent include a test agent containing the oligonucleotide of the present invention (including a substrate to which an oligonucleotide probe is immobilized) and a test agent containing the antibody of the present invention.
  • the antibody is not particularly limited as long as it can be used for the test.
  • Antibodies Labeled as needed.
  • oligonucleotides and antibodies that are active ingredients for example, sterile water, physiological saline, vegetable oil, surfactants, lipids, solubilizers, buffers, protein stabilizers (such as BSA and gelatin) ), Preservatives and the like may be mixed as necessary.
  • the present invention features detecting a C20orfl02 protein; providing a diagnostic method for @.
  • the method of the present invention is characterized by detecting C20orfl02 protein.
  • C20orfl02 is a secretory protein having a secretory signal at the N-terminus, and its amino acid sequence and the gene sequence and amino acid sequence encoding it are disclosed in GenBank No. NM_080607 (SEQ ID NOs: 2 and 66).
  • the C20orfl02 protein is meant to include both the full-length protein and its fragments.
  • the fragment is a polypeptide containing an arbitrary region of the C20orfl02 protein, and may not have the function of the natural C20orfl02 protein.
  • the secretion signal of the C20orfl02 protein corresponds to the 1st to 24th amino acids in the amino acid sequence of SEQ ID NO: 66 (Psort prediction: http: ⁇ psort.nibb.ac.jp /).
  • C20orfl02 is highly expressed at the protein level in cancer cells, particularly in lung cancer, liver cancer (eg, moderately differentiated liver cancer), and Teng cancer.
  • immunohistodiagnosis was possible by using a monoclonal antibody specific to C20orfl02.
  • the C20orfl02 protein detected by the present invention is preferably, but not limited to, human C20orfl02 protein, such as dog C20orfl02, cat C20orfl02, and mouse.
  • C20orfl02 such as C20orfl02 and hamster C20orfl02 may be used.
  • C20orfl02 detected in the present invention may be C20orfl02 before secretion, but is preferably C20orfl02 after secretion.
  • C20orfl02 is a secretory protein that has a secretory signal at the N-terminus and is secreted extracellularly after being produced intracellularly.
  • C20orfl02 after secretion refers to C20orfl02 existing extracellularly.
  • detection includes quantitative or non-quantitative detection.
  • non-quantitative detection includes simply measuring whether or not C20orfl02 protein is present, Measurement of whether or not C20orfl02 protein is present in a certain amount or more, and measurement of the amount of C20orfl02 protein compared with other samples (for example, control samples, etc.). Examples thereof include measurement of the concentration of C20orfl02 protein and measurement of the amount of C20orfl02 protein.
  • test sample is not particularly limited as long as it is a sample that may contain the C20orfl02 protein, but is preferably a sample collected from the body of an organism such as a mammal, and more preferably a sample collected from a human.
  • test samples include, for example, cells, cell lysates, blood, interstitial fluid, plasma, extravascular fluid, cerebrospinal fluid, synovial fluid, pleural fluid, serum, lymph, saliva, urine, etc. Preferred are blood, serum, or plasma.
  • a sample obtained from a test sample such as a culture solution of cells collected from the body of an organism, is also included in the test sample of the present invention.
  • the cancer to be diagnosed is not particularly limited and may be any cancer. Specifically, liver cancer, kidney cancer, lung cancer, colon cancer, breast cancer, kidney cancer, brain tumor, uterine cancer, lung cancer, stomach cancer, prostate cancer, leukemia And lymphoma. Preferred are lung cancer, liver cancer, and victory cancer.
  • Liver cancer is classified into poorly differentiated hepatocarcinoma, moderately differentiated hepatocarcinoma, highly differentiated hepatocellular carcinoma, and the like.
  • the detection according to the present invention may be any liver cancer, but detection of moderately differentiated liver cancer is preferred.
  • Lung cancer is further classified into lung adenocarcinoma, lung squamous cell carcinoma, small cell lung cancer, large cell lung cancer, and the like.
  • the detection according to the present invention may be any type of lung cancer, but the detection of lung adenocarcinoma is preferred.
  • C20orfl02 protein when C20orfl02 protein is detected in a test sample, it is determined that the amount of C20orfl02 protein detected in the test sample is larger than that in a negative control or a healthy subject. It is determined that the subject has cancer or is highly likely to have cancer.
  • a preferred embodiment of the diagnostic method of the present invention includes a diagnostic method characterized by detecting a C20orfl02 protein released from cells and present in blood. Particularly preferably, C20orfl02 protein or a fragment thereof present in blood is detected.
  • the method for detecting the C20oi'fl02 protein contained in the test sample is not particularly limited, but is preferably detected by an immunological method using an anti-C20orfl02 antibody.
  • the immunological method include, for example, radioimmunoassay, enzymatic immunoassay, fluorescent immunoassay, luminescent immunoassay, immunoprecipitation, immunoturbidimetry, and Wesmann Examples include immunoblotting, immunostaining, and immunodiffusion methods. Enzyme immunoassay is preferred, and enzyme-linked immunosorbent assay is particularly preferred.
  • ELISA enzyme-liiiKed immunosorbent assay
  • the C20orfl02 antibody was immobilized on the support, the test sample was added thereto, incubated, and the anti-C20orfl02 antibody and the C20orfl02 protein were allowed to bind, followed by washing, and the C20orfl02 antibody bound to the support via the anti-C20orfl02 antibody.
  • a method for detecting C20orfl02 protein in a test sample by detecting the protein can be cited.
  • Examples of the support used to immobilize the anti-C20orfl02 antibody in the present invention include, for example, agarose, insoluble polysaccharides such as cellulose, silicone resin, polystyrene resin, polyacrylamide resin, nylon resin, and polyacrylamide. Synthetic resins such as one-ponate resin and insoluble supports such as glass can be used. These supports can be used in the form of a bead plate or the like. In the case of beads, a column filled with these can be used. In the case of a plate, a multiwell plate (eg, a 96-well multiwell plate) or a biosensor chip can be used.
  • the binding between the anti-C20orfl02 antibody and the support can be achieved by a commonly used method such as chemical bonding or physical adsorption. Commercially available supports can be used for all of these supports.
  • the binding between the anti-C20orfl02 antibody and the C20orfl02 protein is usually performed in a buffer.
  • a buffer for example, a phosphate buffer, a Tds buffer, a citrate buffer, a borate buffer, a carbonate buffer, and the like are used.
  • Incubation conditions include conditions that are already used, for example, incubation at 4 to room temperature for 1 to 24 hours. Washing after the incubation is not particularly limited as long as it does not prevent the binding between the C20orfl02 protein and the anti-C20orfl02 antibody.
  • a buffer containing a surfactant such as Tween20 is used.
  • a control sample may be provided in addition to the test sample from which C20orfl02 protein is to be detected.
  • Control samples include negative control samples without C20orfl02 protein and There is a positive control sample containing C20orfl02 protein. In this case, the results obtained with the negative control sample without C20orfl02 protein,
  • a preferred embodiment of detection of C20orfl02 protein bound to the support via the anti-C20orfl02 antibody includes a method using an anti-C20orfl02 antibody labeled with a labeling substance. For example, a test sample is brought into contact with an anti-C20orfl02 antibody immobilized on a support, washed, and then detected using a labeled antibody that specifically recognizes the C20orfl02 protein.
  • Labeling of the anti-C20orfl02 antibody can be performed by a generally known method.
  • a labeling substance known to those skilled in the art such as a fluorescent dye, an enzyme, a coenzyme, a chemiluminescent substance, and a radioactive substance, can be used.
  • radioisotopes 32 P, 14 C, 12 3 ⁇ 4, 3H, 1311, etc.
  • Examples include lysozyme, saccharide oxidase, microperoxidase, and biotin.
  • biotin When using biotin as a labeling substance, it is preferable to add avidin to which an enzyme such as alkaline phosphatase is bound after adding the biotin-labeled antibody.
  • avidin For binding of the labeling substance to the anti-C20orfl02 antibody, a known method such as a dartalaldehyde method, a maleimide method, a pyridyl disulfide method, and a periodate method can be used.
  • a solution containing an anti-C20orfl02 antibody is added to a support such as a plate, and the anti-C20orfl02 body is immobilized on the support.
  • a support such as a plate
  • the anti-C20orfl02 body is immobilized on the support.
  • Block it with, for example, BSA, gelatin, or albumin to prevent nonspecific binding of proteins.
  • Play after a moderate incubation Wash the plate and detect labeled anti-C20orfl02 antibody remaining on the plate.
  • Detection can be performed by a method known to those skilled in the art. For example, in the case of labeling with a radioactive substance, detection can be performed by liquid scintillation or the RIA method.
  • a substrate is added, and enzymatic change of the substrate, for example, color development can be detected by an absorptiometer.
  • the substrate include 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 1,2-phenylenediamine (ortho-phenylenediamine), 3,3 ', 5,5'-tetramethylbenzidine
  • TMB TMB
  • a fluorescent substance it can be detected by a fluorometer.
  • a particularly preferred embodiment of the C20orfl02 protein detection method of the present invention includes a method using an anti-C20orfl02 antibody labeled with piotin and avidin.
  • a solution containing the anti-C20orfl02 body is added to a support such as a plate, and the anti-C20orfl02 antibody is immobilized. After washing the plate, block with, for example, BSA to prevent nonspecific binding of proteins. Wash again and add the test sample to the plate. After incubation, wash and add biotin-labeled anti-C20orfl02 antibody. After a suitable incubation, wash the plate and add avidin conjugated to alkaline phosphatase, peroxidase and other enzymes. After incubation, wash the plate, add the substrate corresponding to the enzyme bound to avidin, and detect the C20orfl02 protein based on the enzymatic change of the substrate.
  • the C20orfl02 protein detection method of the present invention one or more primary antibodies specifically recognizing C20orfl02 protein, and one or more secondary antibodies specifically recognizing the primary antibody are provided. The method used can be mentioned.
  • test sample is contacted with one or more anti-C20orfl02 antibodies immobilized on a support, incubated, washed, and bound after washing.
  • the C20orfl02 protein is detected with a primary anti-C20orfl02 antibody and one or more secondary antibodies that specifically recognize the primary antibody.
  • the secondary antibody is preferably labeled with a labeling substance.
  • Another embodiment of the method for detecting C20orfl02 protein of the present invention includes a detection method utilizing an agglutination reaction.
  • C20orfl02 can be detected using a carrier sensitized with an anti-C20orfl02 antibody.
  • Sensitize antibodies Any carrier may be used as long as it is insoluble, does not cause nonspecific reaction, and is stable.
  • latex particles, bentonite, collodion, kaolin, fixed sheep erythrocytes and the like can be used, but latex particles are preferably used.
  • polystyrene latex particles for example, polystyrene latex particles, styrene-butadiene copolymer latex particles, polyvinyl toluene latex particles and the like can be used, and it is preferable to use polystyrene latex particles.
  • the higher the concentration of anti-C20orfl02 antibody in the sample the greater the degree of aggregation of the particles. Therefore, C20oi'fl02 can be detected by visual inspection of the aggregation. Further, it can be detected by measuring the turbidity due to aggregation with a spectrophotometer or the like.
  • Another embodiment of the method for detecting the C20orfl02 protein of the present invention includes, for example, a method using a biosensor utilizing the surface plasmon resonance phenomenon.
  • a biosensor using the surface plasmon resonance phenomenon can observe the interaction between protein and protein in real time as a surface plasmon resonance signal without labeling with a small amount of protein.
  • the binding between C20orfl02 protein and anti-C20orfl02 antibody can be detected by using a biosensor such as BIAcore (manufactured by Amersham Bioscience).
  • a test sample is brought into contact with a sensor chip on which an anti-C20orfl02 antibody is immobilized, and C20orfl02 protein binding to the anti-C20orfl02 antibody can be detected as a change in resonance signal.
  • the detection method of the present invention can be automated using various automatic inspection devices, and it is possible to inspect a large number of samples at once.
  • the present invention also aims to provide a diagnostic agent or kit for detecting C20orfl02 protein in a test sample for cancer diagnosis, and the diagnostic agent or kit contains at least an anti-C20orfl02 antibody.
  • the diagnostic agent or kit may include a carrier for immobilizing the antibody, or the antibody may be bound to the carrier in advance.
  • the diagnostic agent or kit may include a carrier to which an antibody is adsorbed.
  • the kit may appropriately contain a blocking solution, a reaction solution, a reaction stop solution, a reagent for treating a sample, and the like.
  • the anti-C20orfl02 antibody used in the present invention may be specifically bound to C20oi'fl02 protein, regardless of its origin, type (monoclonal or polyclonal) and shape. Specifically, known antibodies such as mouse antibodies, rat antibodies, human antibodies, chimeric antibodies, and humanized antibodies can be used.
  • the antibody may be a polyclonal antibody, but is preferably a monoclonal antibody.
  • the C20orfl02 antibody may recognize the same epitope of the C20orfl02 molecule, but preferably recognizes a different epitope, and the site is not particularly limited.
  • the anti-C20orfl02 body used in the present invention can be obtained as a polyclonal or monoclonal antibody using known means.
  • a mammal-derived monoclonal antibody is particularly preferable.
  • Mammal-derived monoclonal antibodies include those produced in hybridomas and those produced in hosts transformed with expression vectors containing antibody genes by genetic engineering techniques.
  • a monoclonal antibody-producing hybridoma can be basically produced using a known technique as follows. That is, C20orfl02 was used as a sensitizing antigen, and immunized according to a usual immunization method. The obtained immunocytes were fused with a known parent cell by a normal cell fusion method, and were subjected to a monoclonal screening by a normal screening method. It can be prepared by screening for null antibody-producing cells.
  • a monoclonal antibody may be prepared as follows.
  • C20orfl02 used as a sensitizing antigen for obtaining an antibody is obtained by expressing the Z amino acid sequence of the C20orfl02 gene disclosed in GenBank accession number: NM-080607. That is, after inserting a gene sequence encoding C20orfl02 into a known expression vector system and transforming an appropriate host cell, the target human C20orfl02 protein is isolated from the host cell or culture supernatant by a known method. Purify. In addition, natural C20orfl02 can be purified and used.
  • this purified C20orfl02 protein is used as a sensitizing antigen.
  • a partial peptide of C20orfl02 can be used as a sensitizing antigen.
  • the partial peptide may be obtained by chemical synthesis from the amino acid sequence of human C20orfl02.
  • it can be obtained by incorporating a part of the C20orfl02 gene into an expression vector, and can also be obtained by degrading natural C20orfl02 with a protease.
  • the portion and size of C20orfl02 used as a partial peptide are not limited.
  • the mammal to be immunized with the sensitizing antigen is not particularly limited, but is preferably selected in consideration of compatibility with the parent cell used for cell fusion.
  • rodents Animals, for example, mice, rats, hamsters, or egrets and salmon are used.
  • Immunization of an animal with a sensitizing antigen is performed according to a known method.
  • a sensitizing antigen is injected intraperitoneally or subcutaneously into a mammal.
  • the sensitizing antigen is diluted and suspended in an appropriate amount with PBS (Phosphate-Buffered Saline) or physiological saline, and then mixed with an appropriate amount of a normal adjuvant, for example, Freund's complete adjuvant, if desired, and emulsified.
  • a suitable carrier can be used during immunization of the sensitizing antigen.
  • immunization is preferably performed by binding to a carrier protein such as albumin or keyhole rind hemosinin.
  • immunocytes are collected from the mammal and subjected to cell fusion. Splenocytes.
  • Mammalian myeloma cells are used as the other parent cells fused with the immune cells.
  • This myeloid cell is composed of various known cell lines, for example, P3
  • the cell fusion between the immune cells and the myeloma cells is basically performed by a known method.
  • Koera and G. Milstein, C. are known methods.
  • the cell fusion is performed, for example, in a normal nutrient medium in the presence of a cell fusion promoter.
  • a cell fusion promoter for example, polyethylene glycol (PEG), Sendai virus (HVJ) or the like is used, and if necessary, an auxiliary agent such as dimethyl sulfoxide can be added to increase the fusion efficiency.
  • PEG polyethylene glycol
  • HVJ Sendai virus
  • an auxiliary agent such as dimethyl sulfoxide can be added to increase the fusion efficiency.
  • the usage ratio of the immune cells and the myeloma cells can be arbitrarily set. For example, it is preferable that the number of immune cells be 1 to 10 times the number of myeloid cells.
  • the culture medium used for the cell fusion for example, RPMI1640 culture medium, MEM culture medium suitable for the growth of the myeloma cell line, and other ordinary culture medium used for this kind of cell culture can be used. Further, a serum replacement solution such as fetal calf serum (FCS) can be used together.
  • FCS fetal calf serum
  • a predetermined amount of the immune cells and myeloma cells are mixed well in the culture solution, and a PEG solution (for example, having an average molecular weight of about 1000 to 6000) which has been heated to about 37 ° C. in advance is usually used for 30 to 60 minutes. % (w / v) and mix to form the desired fusion cells (ibri'doma).
  • a PEG solution for example, having an average molecular weight of about 1000 to 6000
  • % (w / v) and mix to form the desired fusion cells (ibri'doma).
  • an appropriate culture solution is added successively, and the operation of removing the supernatant by centrifugation is repeated to remove a cell fusion agent or the like that is unfavorable for the growth of the hybridoma.
  • the hybridoma thus obtained is selected by culturing it in a normal selective culture solution, for example, a HAT culture solution (a culture solution containing hypoxanthine, aminopterin and thymidine).
  • a HAT culture solution a culture solution containing hypoxanthine, aminopterin and thymidine.
  • the culturing in the HAT culture solution is continued for a time (usually several days to several weeks) sufficient for cells other than the target hybridoma (non-fused cells) to die.
  • a conventional limiting dilution method is performed to screen for hybridomas producing the desired antibody and to perform single screening.
  • the screening and single-cloning of the target antibody may be performed by a screening method based on a known antigen-antibody reaction.
  • an antigen is bound to a carrier such as beads made of polystyrene or a commercially available 96-well microtiter plate, reacted with the culture supernatant of the hybridoma, and the enzyme-labeled secondary antibody is washed after washing the carrier.
  • the reaction can be performed to determine whether or not the culture supernatant contains the target antibody that reacts with the sensitizing antigen.
  • Hybridomas producing the desired antibody can be cloned by a limiting dilution method or the like. In this case, the antigen is exempt What was used for the epidemic may be used.
  • the hybridoma producing the monoclonal antibody thus produced can be subcultured in a normal culture solution, and can be stored for a long time in liquid nitrogen.
  • the monoclonal antibody can be obtained from the eight hybridomas by culturing the eight hybridomas according to a conventional method and obtaining the culture supernatant, or by administering the hybridoma to a mammal compatible with the same. Then, a method of obtaining ascites is used.
  • the former method is suitable for obtaining high-purity antibodies, while the latter method is suitable for mass production of antibodies.
  • a recombinant antibody produced by cloning an antibody gene from a hybridoma, incorporating the gene into an appropriate vector, introducing this into a host, and using a gene recombination technique.
  • Vandamme AM et al "Eur. J. Biochem. (1990) 192, 767-775, 1990.
  • the mRNA encoding the variable (V) region of the C20orfl02 antibody is isolated by a known method, for example, guanidine ultracentrifugation (Chirgwin, JM et al., Biochemistry (1979) 18, 5294-5299). ), The total RNA is prepared by the AGPC method (Chomczynski, Ret al., Anal. Biochem. (1987) 162, 156-159), etc., and the target mRNA is purified using the mRNA Purification Kit (Pharmacia). To be prepared.
  • MRNA can also be directly prepared by using QuickPrep mRNA Purification Kit (Pharmacia).
  • cDNA for the antibody V region is synthesized using reverse transcriptase.
  • cDNA is synthesized using AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (manufactured by Seikagaku Corporation) or the like.
  • AMV Reverse Transcriptase First-strand cDNA Synthesis Kit manufactured by Seikagaku Corporation
  • 5'-Ampli FINDER RACE Kit Clontech
  • 5'-RACE method using PCR Frohman, MA et al., Pi'oc. Natl. Acad. Sci. USA (1988) 85, 8998-9002, Belyavsky, A. et al., Nucleic Acids Res. (1989) 17, 2919-2932) and the like can be used.
  • the antibody gene is incorporated into an expression vector so that the antibody gene is expressed under the control of an expression control region, for example, an enpanther or a promoter.
  • host cells are transformed with the expression vector to express the antibody.
  • Antibody gene expression can be performed by co-transforming host cells by separately incorporating DNA encoding the antibody heavy chain (H chain) or light chain (L chain) into an expression vector, or DNA encoding the chain and L chain may be incorporated into a single expression vector to transform host cells (see WO 94/11523).
  • transgenic animals For the production of recombinant antibodies, not only the above host cells but also transgenic animals can be used.
  • an antibody gene is prepared as a fusion gene by inserting it into the middle of a gene encoding a protein (eg, goat 3 casein) that is specifically produced in milk.
  • a DNA fragment containing the fusion gene into which the antibody gene has been inserted is injected into a goat embryo, and the embryo is introduced into a female goat.
  • the desired antibody is obtained from the milk produced by the transgenic goat produced from the goat that has received the embryo or its progeny.
  • Hormones may be used in transgeneic goats as appropriate to increase the amount of milk containing the desired antibody produced from transgeneic goats (Ebert, KM et al., Bio / Technology). (1994) 12, 699-702).
  • artificially modified genetically modified antibodies for example, chimeric antibodies and humanized antibodies can be used. These modified antibodies can be produced using known methods.
  • the chimeric antibody can be obtained by ligating the DNA encoding the antibody V region obtained as described above with the DNA encoding the human antibody C region, incorporating the DNA into an expression vector, introducing the protein into a host, and producing the antibody. Using this known method, a chimeric antibody useful in the present invention can be obtained.
  • a humanized antibody is also called a reshaped human antibody, which transfers the complementarity determining region (CDR) of a non-human mammal, such as a mouse antibody, to the complementarity determining region of a human antibody.
  • CDR complementarity determining region
  • the general method of gene recombination is also known (see European Patent Application Publication No. EP 125023, WO 96/02576).
  • the framework region of the human antibody to be linked via CDR is selected so that the complementarity-determining region forms a favorable antigen-binding site. If necessary, framework region amino acids in the variable region of the antibody may be substituted so that the complementarity determining region of the reshaped human antibody forms an appropriate antigen-binding site (Sato, K. et al. ., Cancer Res. (1993) 53, 851-856).
  • C region of chimeric and humanized antibodies those of a human bovine are used.
  • C rl, C a 2, C r 3> C a 4 for the H chain, and C ⁇ , C ⁇ can be used.
  • the human antibody C region may be modified to improve the stability of the antibody or its production.
  • a chimeric antibody comprises a variable region of an antibody derived from a mammal other than human and a constant region derived from a human antibody.
  • a humanized antibody is composed of a complementarity determining region of an antibody derived from a mammal other than human, a framework region and a C region derived from a human antibody. Since the humanized antibody has reduced antigenicity in the human body, it is useful as an effective component of the therapeutic agent of the present invention.
  • the antibody used in the present invention is not limited to the whole antibody molecule, and may be an antibody fragment or a modified product thereof as long as it binds to C20orfl02, and includes both bivalent antibodies and monovalent antibodies.
  • antibody fragments include Fab, F (ab2, Fv, Fab / c having one Fab and complete Fc, or single chain Fv in which Hv or L chain Fv are linked by an appropriate linker.
  • an antibody is treated with an enzyme such as papain or pepsin to generate an antibody fragment, or a gene encoding these antibody fragments is constructed and expressed in an expression vector.
  • expression is performed in a suitable host cell (for example, Co, MS et al., J. Immunol. (1994) 152, 2968-2976, Better, M. & Horwitz, AH Methods in Enzymology (1989). ) 178, 476-496, Academic Press, Inc. ⁇ Plueckthun, A. & Skerra, A. Methods in
  • scFv can be obtained by linking the H chain V region and L chain V region of the antibody.
  • the H chain V region and L chain V region are linked via a linker, preferably a peptide linker (Huston, JS et al., Proc. Natl. Acad. Sci. USA (1988) 85 , 5879-5883).
  • the H chain V region and L chain V region in the scFv may be from any of those described herein as antibodies.
  • the peptide linker connecting the V regions for example, any single-chain peptide consisting of 12 to 19 amino acids is used.
  • the DNA encoding the scFv may be any of the DNA encoding the H chain or the V region of the H chain and the DNA encoding the L chain or the V region of the L chain of the antibody.
  • the DNA portion encoding the desired amino acid sequence is designated as type II, amplified by the PCR method using a primer pair defining both ends, and then the DNA encoding the peptide linker portion, and both ends thereof are It can be obtained by combining and amplifying a pair of primers defined so as to be linked to the H chain and the L chain.
  • DNAs encoding scFv are prepared, expression vectors containing them and a host transformed with the expression vector can be obtained in accordance with a conventional method. To obtain scFv in the usual way You can.
  • antibody fragments can be obtained and expressed in the same manner as described above, and produced by a host.
  • the “antibody” in the present invention includes these antibody fragments.
  • an anti-C20orfl02 antibody bound to various molecules such as a labeling substance can also be used.
  • the “antibody” in the present invention also includes these modified antibodies.
  • Such a modified body can be obtained by chemically modifying the obtained antibody. Methods for modifying antibodies have already been established in this field.
  • the antibody used in the present invention may be a bispecific antibody.
  • the bispecific antibody may be a bispecific antibody having an antigen-binding site recognizing a different epitope on the C20orfl02 molecule.
  • One antigen-binding site may recognize C20orfl02, and the other The antigen binding site may recognize a labeling substance or the like.
  • Bispecific antibodies can be produced by combining the HL pairs of two types of antibodies, or by fusing hybridomas producing different monoclonal antibodies to produce bispecific antibody-producing fusion cells. You can also get.
  • bispecific antibodies can be produced by genetic engineering techniques.
  • the antibody gene constructed as described above can be expressed and obtained by a known method.
  • a useful promoter commonly used an antibody gene to be expressed, and a polyA signal operably linked to the 3 ′ downstream thereof can be expressed.
  • virus promoters such as retroviruses, polioviruses, adenoviruses, simian virus 40 (SV40), etc.
  • Promoters / enhancers derived from mammalian cells such as SHILLFACTOR-1 (HEFla).
  • a useful promoter commonly used, a signal sequence for antibody secretion, and an antibody gene to be expressed can be operably linked to express the gene.
  • the promoter include the lacz promoter and the araB promoter. The method of Ward et al. (Nature (1098) 341, 544-546; FASEB J. (1992) 6, 2422-2427) when using the lacz promoter overnight, or Better et al. when using the araB promoter (Science (1988) 240, 1041-1043).
  • a pelB signal sequence (Lei, SP et al J. Bacteriol. (1987) 169, 4379) may be used for production in E. coli periplasm. Then, after separating the antibody produced in the periplasm, the antibody structure is appropriately refolded and used.
  • the origin of replication those derived from SV40, poliovirus, adenovirus, dys-pipilloma virus (BPV), etc. can be used.
  • the expression vector must be used to amplify the gene copy number in the host cell system.
  • an aminoglycoside transferase (APH) gene, a thymidine kinase (TK) gene, an Escherichia coli xanthinguanine phospholiposyltransferase (Ecogpt) gene, a dihydrofolate reductase (dhfr) gene and the like can be included.
  • Eukaryotic cells include, for example, established mammalian cell lines, insect cell lines, animal cells such as fungal cells and yeast cells, and prokaryotic cells include, for example, bacterial cells such as Escherichia coli. No.
  • the antibodies used in the present invention are expressed in mammalian cells, such as CHO, COS, myeloma, BHK, Vero, HeLa cells.
  • mammalian cells such as CHO, COS, myeloma, BHK, Vero, HeLa cells.
  • the transformed host cells are cultured in vitro or in vivo to produce the desired antibody.
  • Culture of the host cell is performed according to a known method.
  • DMEM, MEM, RPMI1640, IMDM can be used as a culture solution
  • a serum replacement solution such as fetal calf serum (FCS) can be used in combination.
  • FCS fetal calf serum
  • Antibodies expressed and produced as described above can be separated from cells and host animals and purified to homogeneity. Separation and purification of the antibody used in the present invention can be carried out using an affinity column. For example, color using a protein A column Examples include Hyper D, POROS, Sepharose FF (Pharmacia) and the like. In addition, the separation and purification methods used for ordinary proteins may be used, and there is no limitation. For example, antibodies can be separated and purified by appropriately selecting and combining a mouth chromatography column other than the above affinity column, a filter, ultrafiltration, salting out, dialysis, etc. (Antibodies A Laboratory Manual. Ed Harlow, David Lane, Cold Spring Harbor Laooratory, 1988). The cancer-related gene of the present invention
  • Table 1 shows a list of names of cancer-related genes identified in the present invention, cancer tissues whose expression is advanced, and the sequence numbers of these genes and the encoded proteins.
  • TEG38 ubiauitinD NM 006398 Gastric cancer, colorectal cancer, lung cancer, moderately poorly differentiated liver cancer, lung cancer, tunnel cancer 37 97
  • TEG50 T0P1 T AW592604 NM 052963 Colorectal cancer, poorly differentiated liver cancer, metastatic tissue from colon cancer (liver), II extracted cancer 49 109
  • TEG1 (SEQ ID NO: 2; SEQ ID NO: 66) encodes C20orfl02.
  • GenBank accession number for this gene is AA206763 (reference sequence NM—080607). This gene was found to be upregulated in lung cancer, moderately differentiated liver cancer, and cancer. It is not known that the expression of this gene is associated with cancer.
  • TEG2 (SEQ ID NO: 3; SEQ ID NO: 67) encodes EST (ASCL2).
  • GenBank accession number for this gene is AI393930.
  • the expression of this gene was found to be upregulated in gastric, colorectal, lung, lung cancer and metastatic tissues (liver) of the colon. It is not known that the expression of this gene is associated with cancer.
  • TEG3 (SEQ ID NO: 4) encodes EST (EPSTlisoform).
  • GenBank accession number for this gene is BE645480. This gene was found to be upregulated in gastric cancer, moderately differentiated liver cancer, colon cancer, lung cancer, Teng cancer, and metastatic tissue (liver) of colon cancer. It is not known that the expression of this gene is associated with cancer.
  • TEG4 (SEQ ID NO: 5) encodes EST.
  • GenBank accession number for this gene is AA447317. This gene was found to be upregulated in gastric, colon and metastatic tissues (liver) of the colon. It is not known that the expression of this gene is associated with cancer. -
  • TEG5 (SEQ ID NO: 6) encodes EST.
  • GenBank accession number for this gene is ⁇ 2 ⁇ 7375.
  • the expression of this gene was found to be upregulated in stomach cancer and cancer.
  • the expression of this gene is not known to be associated with cancer.
  • TEG6 (SEQ ID NO: 7; SEQ ID NO: 68) encodes OK / SW-CL30.
  • GenBank accession number for this gene is ⁇ 2 ⁇ 7375. This gene was found to be upregulated in lung, stomach, colorectal and moderately differentiated liver cancers. It is not known that expression of this gene is associated with cancer.
  • TEG7 (SEQ ID NO: 8) encodes DKFZp686L1533.
  • GenBank accession number for this gene is BG492359.
  • the expression of this gene was found to be upregulated in lung cancer, stomach cancer, colorectal cancer, medium- and low-grade liver cancer, and metastatic tissue (liver) of colorectal cancer. It is not known that the expression of this gene is associated with cancer.
  • TEG8 (SEQ ID NO: 10; SEQ ID NO: 69) encodes EST (Gene # 30).
  • the protein encoded by this gene is a membrane protein.
  • the accession number 0611: 6 & 111 ⁇ for this gene is 8825703. This gene is used in gastric cancer, poorly differentiated Expression was found to be advanced in liver cancer and lung cancer. It is not known that the expression of this gene is associated with cancer.
  • TEG9 (SEQ ID NO: 11; SEQ ID NO: 70) encodes BC012317.
  • GenBank accession number for this gene is AL389981.1.
  • the expression of this gene was found to be upregulated in metastatic tissues (liver) of gastric, poorly differentiated liver, Teng, and colorectal cancer. It is not known that the expression of this gene is associated with cancer.
  • TEG10 (SEQ ID NO: 12) encodes EST242881.
  • GenBank accession number for this gene is BG285837.
  • the expression of this gene was found to be upregulated in gastric cancer, moderately and poorly differentiated liver cancer, and lung cancer. It is not known that the expression of this gene is related to.
  • TEG11 (SEQ ID NO: 13; SEQ ID NO: 71) encodes FLJ11041.
  • GenBank accession number for this gene is AI343467.
  • the expression of this gene was found to be upregulated in gastric cancer, colon cancer, moderately differentiated liver cancer, lung cancer, ⁇ cancer, and metastatic tissue (liver) of colon cancer. It is not known that the expression of this gene is associated with cancer.
  • TEG12 (SEQ ID NO: 15; SEQ ID NO: 72) encodes EST.
  • GenBank accession number for this gene is BF057073.
  • the full-length sequence of this gene has been elucidated in the present invention. This gene was found to be upregulated in liver cancer. It is not known that the expression of this gene is associated with cancer.
  • TEG13 (SEQ ID NO: 16) codes for EST.
  • GenBank accession number for this gene is H66658. This gene was found to be upregulated in liver cancer. It is not known that the expression of this gene is associated with cancer.
  • TEG14 (SEQ ID NO: 17; SEQ ID NO: 73) encodes ASPM.
  • GenBank accession number for this gene is NM-018123.1. This gene was found to be upregulated in gastric, colon, liver and lung cancers. Expression of this gene is not known to be associated with cancer.
  • TEG15 (SEQ ID NO: 18; SEQ ID NO: 74) encodes Sp5.
  • GenBank accession number for this gene is AI380207. This gene was found to be up-regulated in gastric, colon, liver and lung cancers. The expression of this gene It is not known to be associated with cancer.
  • TEG16 (SEQ ID NO: 19) encodes IMAGE: 297403.
  • GenBank accession number for this gene is AF339813.1.
  • the expression of this gene was found to be upregulated in liver, lung, Teng and colon cancer metastatic tissues (liver). It is not known that expression of this gene is associated with cancer.
  • TEG17 (SEQ ID NO: 20; SEQ ID NO: 75) codes for DKFZp434k2435.
  • the protein encoded by this gene is a membrane protein.
  • GenBank accession number for this gene is AL136855.1 (reference sequence NM_032256). This gene was found to be upregulated in gastric, colon, lung, and ⁇ cancers. It is not known that the expression of this gene is associated with cancer.
  • TEG18 (SEQ ID NO: 22; SEQ ID NO: 76) encodes CBRC7TM-249.
  • the protein encoded by this gene is a membrane protein.
  • the accession number for this gene is 06118 & 111 ⁇ , _ ⁇ 1694413. This gene was found to be upregulated in gastric cancer, colorectal cancer, moderately and poorly differentiated liver cancer, ⁇ cancer, and metastatic tissue (liver) of colorectal cancer. It is not known that the expression of this gene is associated with cancer.
  • TEG19 (SEQ ID NO: 1; SEQ ID NO: 77) encodes VLGR1.
  • the protein encoded by this gene is a membrane protein.
  • GenBank accession number for this gene is AF055084.1 (reference sequence NM-032119). This gene was found to be upregulated in lung pain and knee cancer. It is not known that expression of this gene is associated with cancer.
  • TEG20 (SEQ ID NO: 9; SEQ ID NO: 78) encodes C20orf54.
  • the protein encoded by this gene is a membrane protein.
  • GenBank accession number for this gene is AA903862 (reference sequence NM_033409). This gene was found to be up-regulated in gastric, colon, lung and metastatic tissues (liver) of the colon. It is not known that the expression of this gene is associated with cancer.
  • TEG21 (SEQ ID NO: 14; SEQ ID NO: 79) encodes RHBG.
  • the protein encoded by this gene is a membrane protein.
  • GenBank accession number of this gene is NM_020407.1 (reference sequence NM_020407). This gene was found to be upregulated in liver cancer. It is not known that expression of this gene is associated with cancer.
  • TEG22 (SEQ ID NO: 21; SEQ ID NO: 80) encodes COPG2. This The GenBank accession number of the gene is AB047847.1 (reference sequence NM-012133). This gene was found to be upregulated in colorectal and lung cancers. It is not known that the expression of this gene is associated with cancer.
  • TEG23 (SEQ ID NOs: 64, 65; SEQ ID NOs: 81, 82) encodes EST.
  • GenBank accession number for this gene is AL039884.
  • the full-length sequence of this gene has been clarified in the present invention.
  • the expression of this gene was found to be upregulated in poorly differentiated liver cancer and lung cancer. It is not known that the expression of this gene is associated with cancer.
  • TEG24 (SEQ ID NO: 23; SEQ ID NO: 83) encodes BE670584.
  • GenBank accession number for this gene is BE670584. This gene was found to be upregulated in gastric, lung and colon cancer metastatic tissues (liver). It is not known that the expression of this gene is associated with cancer.
  • TEG25 (SEQ ID NO: 24; SEQ ID NO: 84) encodes GRP49.
  • the protein encoded by this gene is a membrane protein.
  • the GenBank accession number for this gene is AL524520 (reference sequence NMJ303667). This gene was found to be upregulated in gastric, colorectal, moderately differentiated liver, lung and metastatic tissues (liver). It is not known that the expression of this gene is associated with cancer.
  • TEG26 (SEQ ID NO: 25; SEQ ID NO: 85) encodes MUC17.
  • the protein encoded by this gene is a membrane protein.
  • GenBank accession number for this gene is AK026404.1. This gene was found to be upregulated in gastric and ⁇ cancers. The expression of this gene is not known to be associated with gastric cancer.
  • TEG27 (SEQ ID NO: 26; SEQ ID NO: 86) encodes EPHB2.
  • the protein encoded by this gene is a membrane protein.
  • GenBank accession number for this gene is AF025304.1 (reference sequence NM-004442). This gene was found to be upregulated in gastric, colon, lung, and metastatic tissues (liver) of the colon. It is not known that the expression of this gene is associated with colorectal cancer.
  • TEG28 (SEQ ID NO: 27; SEQ ID NO: 87) is a copy of GPCR41 (FLJ11856).
  • the protein encoded by this gene is a membrane protein.
  • GenBank accession number of the gene is AK021918.1 (reference sequence NM-024531). This gene was found to be upregulated in stomach cancer, colon cancer, lung cancer, colon cancer metastatic tissue (liver), and ⁇ cancer. It is not known that the expression of this gene is associated with gastric cancer.
  • TEG29 (SEQ ID NO: 28; SEQ ID NO: 88) encodes HS6ST2.
  • the protein encoded by this gene is a membrane protein.
  • GenBank accession number for this gene is AI767756.
  • the expression of this gene was found to be upregulated in lung cancer, colon cancer, hypoxic liver cancer, and cancer. It is not known that the expression of this gene is associated with lung cancer.
  • TEG30 (SEQ ID NO: 29; SEQ ID NO: 89) encodes PCDHB2.
  • the protein encoded by this gene is a membrane protein.
  • GenBank accession number for this gene is NM-018936.1 (reference sequence NM-018936). This gene was found to be up-regulated in pulmonary pain and caves. It is not known that the expression of this gene is associated with lung cancer.
  • TEG31 (SEQ ID NO: 30; SEQ ID NO: 90) encodes WFDC3 (C20orfl67).
  • GenBank accession number for this gene is AL050348. This gene was found to be up-regulated in lung cancer,)! It is not known that the expression of this gene is associated with lung cancer.
  • TEG32 (SEQ ID NO: 31; SEQ ID NO: 91) encodes C20orf42.
  • GenBank accession number for this gene is NM-017671.1 (reference sequence NM_017671). This gene was found to be upregulated in lung, stomach, colorectal and metastatic tissues (liver) of colorectal cancer. It is not known that the expression of this gene is associated with lung cancer.
  • TEG33 (SEQ ID NO: 32; SEQ ID NO: 92) encodes PIGR.
  • the protein encoded by this gene is a membrane protein.
  • GenBank accession number for this gene is NM-002644.1 (reference sequence NM-002644). This gene was found to be upregulated in lung and colorectal cancer. The expression of this gene is not known to be associated with lung cancer.
  • TEG34 (SEQ ID NO: 33; SEQ ID NO: 93) encodes 2FE2L3.
  • GenBank accession number for this gene is M-0044289.3 (reference sequence M-004289).
  • This gene originates in stomach cancer, colon cancer, lung cancer, colon cancer metastatic tissue (liver), ⁇ ⁇ cancer It has been found that the reality is exacerbated. It is not known that the expression of this gene is associated with gastric cancer.
  • TEG35 (SEQ ID NO: 34; SEQ ID NO: 94) encodes TRAG3.
  • GenBank accession number for this gene is NM_004909.1 (reference sequence NM_p04909).
  • the expression of this gene was found to be upregulated in gastric, lung and cancer cells. It is not known that the expression of this gene is associated with gastric cancer.
  • TEG36 (SEQ ID NO: 35; SEQ ID NO: 95) encodes TRIM31.
  • GenBank accession number for this gene is NM-007028.
  • the expression of this gene was found to be upregulated in gastric, Xue, and lung cancers. It is not known that the expression of this gene is associated with gastric cancer.
  • TEG37 (SEQ ID NO: 36; SEQ ID NO: 96) encodes KIAA1359.
  • the GeenBank accession number for this gene is AB037780. This gene was found to be upregulated in stomach, lung, colorectal, colorectal and metastatic tissues (liver) of the colon. It is not known that the expression of this gene is associated with gastric cancer.
  • TEG38 (SEQ ID NO: 37; SEQ ID NO: 97) encodes ubiqutinD.
  • GenBank accession number for this gene is NM-006398. This gene was found to be upregulated in stomach cancer, colon cancer, lung cancer, moderately and poorly differentiated liver cancer, lung cancer, and ⁇ cancer. It is not known that the expression of this gene is associated with gastric cancer.
  • TEG39 (SEQ ID NO: 38; SEQ ID NO: 98) encodes Hephaestin.
  • the protein encoded by this gene is a membrane protein.
  • GenBank accession number for this gene is NM-014799.1 (reference sequence NM-014799). This gene was found to be upregulated in gastric cancer, colorectal cancer metastatic tissue (liver), and cancer. It is not known that the expression of this gene is associated with gastric cancer.
  • TEG40 (SEQ ID NO: 39; SEQ ID NO: 99) encodes KIAA0152.
  • the protein encoded by this gene is a membrane protein.
  • GenBank accession number for this gene is BC000371.1 (reference sequence NM-014730). This gene was found to be upregulated in gastric, colorectal, glioblastoma and lung cancers. It is not known that the expression of this gene is associated with gastric cancer.
  • TEG41 (SEQ ID NO: 40; SEQ ID NO: 100) encodes KIAA0703.
  • the protein encoded by this gene is a membrane protein.
  • the accession number for this gene is 06] 18 & 111 ⁇ , marauder-014861.1 (reference sequence NM-014861). This was found to be upregulated in gastric, lung and colon metastases (liver). It is not known that the expression of this gene is associated with gastric cancer.
  • TEG42 (SEQ ID NO: 41; SEQ ID NO: 101) encodes MEST / PEG1.
  • GenBank accession number for this gene is NM-002402.1 (reference sequence
  • NM—002402 The expression of this gene was found to be upregulated in gastric, colon and lung cancers. It is not known that the expression of this gene is associated with gastric cancer.
  • TEG43 (SEQ ID NO: 42; SEQ ID NO: 102) encodes KIAA1199.
  • GenBAnk accession number for this gene is AB033025.1. This gene was found to be up-regulated in stomach cancer, lung cancer, colon healing, and cancer. The expression of this gene is not known to be associated with gastric cancer.
  • TEG44 (SEQ ID NO: 43; SEQ ID NO: 103) encodes ELOVL2.
  • GenBank accession number for this gene is BF508639 (reference sequence NM-017770). This gene was found to be upregulated in liver, glioblastoma, and lung cancers.
  • TEG45 (SEQ ID NO: 44; SEQ ID NO: 104) encodes ROB01.
  • the protein encoded by this gene is a membrane protein.
  • GenBank accession number for this gene is BF059159 (reference sequence NM-133631). This gene was found to be up-regulated in liver cancer, glioblastoma, and lung cancer.
  • TEG46 (SEQ ID NO: 45; SEQ ID NO: 105) encodes FLJ10504MISATO.
  • the G EnBank accession number for this gene is BC002535.1 (reference sequence NM_018116). This gene was found to be upregulated in liver cancer, lung cancer, and fl. It is not known that the expression of this gene is associated with liver cancer.
  • TEG47 (SEQ ID NO: 46; SEQ ID NO: 106) encodes cystatinSN.
  • accession number for this gene is NM— 001898.1 (reference sequence
  • NM_0018978 This gene was found to be upregulated in colorectal and lung cancers. It is not known that the expression of this gene is associated with colorectal cancer.
  • TEG48 (SEQ ID NO: 47; SEQ ID NO: 107) encodes LOC116238.
  • GenBank accession number for this gene is BE328850 (reference sequence NM138463). is there. The expression of this gene was found to be upregulated in gastric, colon, lung, poorly differentiated liver and Teng cancer.
  • TEG49 (SEQ ID NO: 48; SEQ ID NO: 108) encodes MRPL50.
  • GenBank accession number for this gene is BG028213 (reference sequence NM_019051). This gene was found to be upregulated in stomach cancer, colorectal cancer, moderately and poorly differentiated liver cancer, glioblastoma and lung cancer.
  • TEG50 (SEQ ID NO: 49; SEQ ID NO: 109) codes for TOPlmt.
  • GenBAnk accession number for this gene is AW592604 (reference sequence NM-052963).
  • the expression of this gene was found to be upregulated in colon cancer, poorly differentiated liver cancer, metastatic tissue (liver) of colon cancer, and Teng cancer. It is not known that the expression of this gene is associated with colorectal cancer.
  • TEG51 (SEQ ID NO: 50; SEQ ID NO: 110) encodes FKSG14.
  • the Gene Bank accession number for this gene is BC005400.1 (reference sequence NM_022145). This gene was found to be upregulated in gastric, colon, lung and knee cancers. It is not known that the expression of this gene is associated with colorectal cancer.
  • TEG52 (SEQ ID NO: 51; SEQ ID NO: 111) encodes CDH3.
  • the protein encoded by this gene is a membrane protein.
  • GenBank accession number for this gene is NM-001793.1 (reference sequence NM-00-793). This gene was found to be up-regulated in lung, stomach, colon and cancer.
  • TEG53 (SEQ ID NO: 52; SEQ ID NO: 112) encodes NRP2.
  • the protein encoded by this gene is a membrane protein.
  • GenBank accession number for this gene is N90777 (reference sequence. NM-003872). This gene was found to be up-regulated in lung cancer, glioblastoma, metastatic tissue from colon cancer (liver), and Teng cancer.
  • TEG54 (SEQ ID NO: 53; SEQ ID NO: 113) encodes CLDN3.
  • the protein encoded by this gene is a membrane protein.
  • the GenBank accession number for this gene is BE791251 (reference sequence NM_001306). This gene was found to be upregulated in gastric, lung, colorectal and metastatic tissues (liver) of colorectal cancer. It is not known that the expression of this gene is associated with gastric cancer.
  • TEG55 (SEQ ID NO: 54; SEQ ID NO: 114) encodes CLDN4.
  • the protein encoded by this gene is a membrane protein.
  • G of this gene The accession number for e n Bank is NM-001305.1 (reference sequence NM-001305). This gene was found to be upregulated in stomach cancer, lung cancer, colon cancer, metastatic tissue (liver) of colon cancer, and Teng cancer. It is not known that the expression of this gene is associated with gastric cancer.
  • TEG56 (SEQ ID NO: 55; SEQ ID NO: 115) encodes sfrp4.
  • GenBank accession number for this gene is AW089415 (reference sequence NM-003014). This gene was found to be upregulated in lung, stomach, glioblastoma and S-extracted cancers. It is not known that the expression of this gene is associated with gastric cancer.
  • TEG57 (SEQ ID NO: 56; SEQ ID NO: 116) encodes ASPSCR1.
  • GenBank accession number for this gene is NM—024083.1 (reference sequence
  • NM-024083 This gene was found to be upregulated in liver and lung cancers. It is not known that the expression of this gene is associated with liver cancer.
  • TEG58 (SEQ ID NO: 57; SEQ ID NO: 117) encodes GAGEC1.
  • GenBank accession number for this gene is NM-007003.1 (reference sequence
  • NM—007003 This gene was found to be upregulated in liver cancer. It is not known that the expression of this gene is associated with liver cancer.
  • TEG59 (SEQ ID NO: 58; SEQ ID NO: 118) encodes RHAMM.
  • the protein encoded by this gene is a membrane protein.
  • GenBank accession number for this gene is NM-012485.1 (reference sequence NM-012484).
  • the expression of this gene was found to be upregulated in gastric, colon, liver and cancers. It is not known that the expression of this gene is associated with liver cancer.
  • TEG60 (SEQ ID NO: 59; SEQ ID NO: 119) encodes PEG10.
  • GenBank accession number for this gene is BE858180 (reference sequence NM-015068).
  • the expression of this gene was found to be upregulated in liver cancer, lung cancer, and hepatoblastoma.
  • TEG61 (SEQ ID NO: 60; SEQ ID NO: 120) encodes PAEP.
  • GenBank accession number for this gene is NM-002571.1 (reference sequence NM-002571). This gene was found to be upregulated in lung and ⁇ cancers.
  • TEG62 (SEQ ID NO: 61; SEQ ID NO: 121) encodes MGC10981.
  • Gen Bank accession number for this gene is BC004397.1 (reference sequence NM-032654). This gene was found to be upregulated in lung and ⁇ cancers.
  • TEG 63 (SEQ ID NO: 62; SEQ ID NO: 122) encodes DUSP9.
  • the Gen Bank accession number for this gene is NM-001395.1 (reference sequence NM-001395). This gene was found to be upregulated in liver cancer.
  • TEG64 (SEQ ID NO: 63; SEQ ID NO: 123) encodes KIAA1089.
  • GenBank accession number for this gene is AB029012.1.
  • the expression of this gene was found to be upregulated in liver, lung and Teng cancers.
  • the contents of all patents and references explicitly cited herein are hereby incorporated by reference.
  • the entire contents of the description and drawings of Japanese Patent Application No. 2003-290704, which is the application on which the priority claim of the present application is based, are incorporated herein by reference in their entirety. To quote. Example
  • mRNA expression analysis was performed as described below.
  • RNA was prepared from 12 lung adenocarcinoma-excised tissues including various stages of differentiation and 1 normal lung using ISOGEN (Nippon Gene) according to the attached method.
  • ISOGEN Natural Gene
  • mRNA expression in lung adenocarcinoma and normal lung was analyzed using GeneChip TM HG-U133A, B (Affymetryx).
  • GeneChip TM HG-U133A, B Affymetryx
  • Gene expression analysis was performed according to the Expression Analysis Technical Manual (Affymetryx II). The average value of the expression scores of all genes in each analysis was set to 100, and the expression level of each gene was set to a relative value.
  • mRNA expression analysis was performed by the same method as described above.
  • total RNA was prepared in the same manner as above from 3 cases of stomach cancer extirpated tissue and 1 normal stomach, and 5 pg of the cancer site was mixed with equal amounts of 3 cases of total RNA, and 5 pg was used as control.
  • mRNA expression was analyzed using GeneCipTM HG "U133A, B (Affymetryx). Expression of all genes in each analysis The average score was set to 100, and the expression level of each gene was set to a relative value.
  • total RNA was prepared in the same manner as above from the cancer site of 3 cases of excised tissue of large adenocarcinoma and 1 case of normal colon tissue, and the same amount of the total RNA of 3 cases was mixed for the cancer site.
  • MRNA was analyzed using GeneChipTM HG- ui33A, B (manufactured by Affymetryx), using 5 pg of total RNA prepared from a normal stomach of one case as a control as a sample.
  • the average value of the expression scores of all genes in each analysis was set to 100, and the expression level of each gene was set to a relative value.
  • RNA and mix 5 pg of total RNA from 3 cases for each cancer site with different degrees of differentiation 5 pg of total RNA prepared from 1 normal liver sample as control MRNA expression was analyzed using GeneChip TM HG-U133A, B (Affymetryx). The average value of the expression scores of all genes in each analysis was set to 100, and the expression level of each gene was calculated as a relative value. did.
  • total RNA was prepared in the same manner as described above from the cancer site of the excised tissue of 5 cases of Daryablastoma and 1 normal brain tissue, and the same amount of the total RNA of 5 cases was mixed for the cancer site.
  • mRNA expression was analyzed using GeneChip TM HG-U133A, B (Affymetryx). The average of the expression scores of all genes in each analysis was set to 100, and the expression level of each gene was set to a relative value.
  • TEG1 C20orf102 Lung cancer moderately differentiated liver cancer 32 299.3 98.6 50.3 95.2 18.4 39.1 104.9 13 834.4 90.8
  • TEG3 EST Gastric cancer, moderately differentiated liver cancer 65.1 74.6 92.1 440.8 112.9 107.6 142.3 216 164.4 53.2 86.9
  • TEG4 EST Gastric cancer, colorectal cancer 50.9 25.1 41.4 117.2 52.5 106.8 12 38.5 12.5 31.2 61.1
  • liver cancer 84.1 118.9 55.6 537.1 98.5 734.1 157.7 1781.4 160.8 78.7 106
  • TEG8 EST Gastric cancer, poorly differentiated liver cancer 59.1 50.8 37.5 260.7 36.3 22.7 58.7 26.8 20 68.7 17.4
  • TEG9 LOC93082 Gastric cancer, poorly differentiated liver cancer 107.3 34.5 14.5 1030.1 89.2 21.9 130 155.6 448.1 18.5 105.4
  • TEG10 EST Gastric cancer, moderately poorly differentiated liver 38.1 37.8 32.8 385.8 20.3 20.5 28.2 103.9 356.5 60.2 63.5
  • TEG29 Lung cancer colorectal cancer, poorly differentiated
  • liver cancer 89.7 31 1.5 44.2 1172.8 60.1 605.7 269.2 1460.9 2542.8 42.1 69
  • TEG45 R0B01 Liver cancer, glioblastoma 58.5 49.1 32.4 38 21.4 123.2 9.1 236.4 563 64.3 152.3
  • TEG49 Gastric cancer colorectal cancer, medium-low
  • glioblast 77.8 86.1 98.1 191.2 43.8 256.5 72 155.3 200.8 47.7 100
  • TEG56 SFRP4 Lung cancer gastric cancer
  • glioblast 153.6 244.9 66.9 153.1 69.4 87.8 51.1 49.2 49.3 53.4 250.3
  • TEG1-TEG18 up-regulation of TEG1-TEG18 has not been clarified in any cancer cells so far, and the present analysis showed that the expression is increased by 7 ⁇ in certain cancers.
  • GeneChipTM HG-U133A, B (Affymetryx) and Gene Chip TM HG-Ul33plus2 (Ametryx) were used.
  • Total RNA was prepared in the same manner as described above. Then, mRNA expression analysis of 5 pg of the total RNA was performed using GeneChip TM HG-U133A, B.
  • RNA prepared from various excised cancer tissues was analyzed collectively, and in order to confirm the results of Gene chip analysis, the mRNA of each gene in individual cancer samples and normal tissues in non-cancerous parts was examined.
  • the expression level was analyzed by the R "PCR method, and the degree of expression enhancement and the frequency of expression enhancement were examined.
  • Single-stranded cDNA to be used as type I DNA for PCR was prepared from various human cancer tissues and normal tissues as follows.
  • RNA for lung adenocarcinoma, from 12 cases of lung adenocarcinoma tissue and 4 cases of normal lung tissue, and for human colorectal cancer, 10 cases of human colorectal cancer tissue and from normal colorectal tissue of non-cancerous part of the removed tissue, human gastric cancer
  • 12 cases of human stomach cancer extirpated tissues and normal stomach tissues of non-cancerous parts of the extirpated tissues and 9 cases of human liver cancers from human extirpated hepatocarcinoma tissues and non-cancerous parts of the extirpated tissues
  • single-stranded cDNA was synthesized from total RNA using the reverse transcriptase Superscripffl (GIBCO BRL). The single-stranded cDNA thus prepared was used as type I DNA in the PCR described below.
  • mRNA expression levels of each gene shown in Table 2 were analyzed by RT-PCR. That is, 25 pL of the PCR reaction solution was 500 mM KC1, 100 mM Tris-
  • the expression level of the human; 8-actin gene in each RNA was also determined by the sense primer specific to human i3-actin (SEQ ID NO: 252:. AGAAGGAGATCACTGCCCTGGCACC) and antisense primers (SEQ ID NO: 253: CCTGCTTGCTGATCCACATCTGCTG) were used for analysis in the same manner as described above.
  • the product amplified by the PCR method was subjected to 1.0% agarose gel electrophoresis and then confirmed by ethidium promide staining, or the amount of mRNA was quantified using an iCyclei'Q real-time PCR analysis system (BIO-RAD).
  • Gene expression was compared by quantitative RTPCR using RNA prepared from 12 cases of lung adenocarcinoma tissue and 4 cases of normal lung tissue.
  • TEG1 gene mRNA was not observed in normal lung tissue, whereas high expression of TEG1 gene was clearly confirmed in 10 of 12 lung adenocarcinoma tissues analyzed (Fig. 1).
  • R PCR was performed using RNA prepared from 5 cases of colorectal cancer tissue and normal colorectal tissue as non-cancerous part of the same sample, and RNA prepared from il gastric cancer tissue and normal gastric tissue as non-healing part of the same sample. The gene expression was compared by the method.
  • TEG2 gene mRNA was clearly upregulated in 3 out of 5 cases of colorectal cancer and 3 out of 11 cases of gastric cancer analyzed in the cancerous part (Figs. 2 and 3). .
  • TEG3 gene mRNA was found to be clearly upregulated in cancerous sites in 9 out of 11 gastric cancers analyzed (FIG. 4).
  • RNA prepared from 11 cases of stomach cancer tissue and normal stomach tissue which is a non-cancerous part of the same sample was compared by the RT-PCR method.
  • TEG4 gene mRNA was clearly found to be upregulated in the cancerous part in 7 out of 11 gastric cancers analyzed (FIG. 5).
  • TEG5 Gene expression was compared by RT-PCR using RNA prepared from 11 cases of stomach cancer tissue and normal stomach tissue as a non-cancerous part of the same sample.
  • TEG6 gene mRNA was confirmed to be clearly upregulated in 3 of 9 cases of colorectal cancer analyzed in the cancerous part, and was completely expressed in all normal stomachs analyzed in gastric cancer. In contrast, very strong mRNA expression was confirmed in two cases (FIGS. 7 and 8).
  • Gene expression was compared by RPCR using RNA prepared from 11 cases of stomach cancer tissue and normal stomach tissue as a non-cancerous part of the same sample.
  • Gene expression was compared by RPCR using RNA prepared from 11 cases of stomach cancer tissue and normal stomach tissue as a non-cancerous part of the same sample.
  • Gene expression was compared by RT-PCR using RNA prepared from 11 cases of stomach cancer tissue and normal stomach tissue as a non-cancerous part of the same sample.
  • RNA prepared from 11 cases of stomach cancer tissue and normal stomach tissue which is a non-cancerous part of the same Sangare gene expression was compared by R "PCR method.
  • TEG11 gene mRNA was clearly found to be upregulated in cancerous sites in 10 out of 11 gastric cancers analyzed (FIG. 13).
  • Gene expression was compared by PCR using RNA prepared from 9 cases of liver cancer tissue and non-cancerous part of the same sample.
  • Gene expression was compared by PCR using RNA prepared from 9 cases of liver cancer tissue and non-cancerous part of the same sample.
  • TEG13 gene mRNA was clearly confirmed to be upregulated in the cancer site in 4 out of 9 cases of liver cancer analyzed (FIG. 15).
  • Gene expression was compared by RT-PCR using RNA prepared from 9 cases of liver cancer tissue and non-cancerous part of the same sample.
  • Gene expression was compared by PGR method using RNA prepared from 9 cases of liver cancer tissue and non-cancerous part of the same sample.
  • RNA prepared from 9 cases of liver cancer tissue and non-cancerous part of the same sample RT- Gene expression was compared by PGR method.
  • Gene expression was compared by RTXPCR using RNA prepared from 10 cases of colorectal cancer tissue and normal colorectal tissue as a non-cancerous part of the same sample.
  • TEG17 gene mRNA was found to be upregulated in cancerous sites in all of the 10 cases analyzed, and in particular, was clearly highly expressed in 5 cases (FIG. 19).
  • Gene expression was compared by RPCR using RNA prepared from 11 cases of stomach cancer tissue and normal stomach tissue as a non-cancerous part of the same sample.
  • Gene expression was compared by quantitative RT-PCR using RNA prepared from 12 cases of lung adenocarcinoma tissue and 4 cases of normal lung tissue.
  • Gene expression was compared by RPCR using RNA prepared from 11 cases of stomach cancer tissue and normal stomach tissue as a non-cancerous part of the same sample.
  • Gene expression was compared by PCR using RNA prepared from 9 cases of liver cancer tissue and non-cancerous part of the same sample.
  • TEG22 Gene expression was compared by quantitative RT-PCR using RNA prepared from six cases of colorectal cancer tissue and non-cavity normal colorectal tissue of the same sample.
  • TEG22 gene mRNA was found to be upregulated in cancer sites in 3 of 6 cases analyzed (Fig. 24).
  • Gene expression was compared by PCR using RNA prepared from 9 cases of liver cancer tissue and non-cancerous part of the same sample.
  • Gene expression was compared by RPCR using RNA prepared from 11 cases of stomach cancer tissue and normal stomach tissue as a non-cancerous part of the same sample.
  • TEG24 gene mRNA was clearly found to be upregulated in the cancer site in 5 of 11 gastric cancers analyzed (FIG. 26).
  • Gene expression was compared by RPCR using RNA prepared from 11 cases of stomach cancer tissue and normal stomach tissue as a non-cancerous part of the same sample.
  • TEG25 gene mRNA was clearly found to be upregulated in cancerous sites in ⁇ of 11 gastric cancers analyzed (FIG. 27).
  • Gene expression was compared by RPCR using RNA prepared from 11 cases of stomach cancer tissue and non-cave normal stomach tissue of the same sample.
  • TEG26 gene mRNA was clearly found to be upregulated in cancerous sites in 4 of 11 gastric cancers analyzed (FIG. 28).
  • Gene expression was compared by RT-PCR using RNA prepared from 11 cases of stomach cancer tissue and normal stomach tissue as a non-cancerous part of the same sample.
  • Gene expression was compared by quantitative RT-PGR using RNA prepared from 12 cases of lung adenocarcinoma tissue and 4 cases of normal lung tissue.
  • Gene expression was compared by quantitative RT-PCR using RNA prepared from 12 cases of lung adenocarcinoma tissue and 4 cases of normal lung tissue.
  • Gene expression was compared by quantitative RT-PCR using RNA prepared from 12 cases of lung adenocarcinoma tissue and 4 cases of normal lung tissue.
  • TEG34 gene mRNA was found to be upregulated in the cancerous area in 8 out of 11 cases analyzed (FIG. 36).
  • Gene expression was compared by RT-PCR using RNA prepared from 11 cases of stomach cancer tissue and normal stomach tissue as a non-cancerous part of the same sample.
  • TEG35 gene mRNA was clearly found to be upregulated in cancer sites in 7 of 11 cases analyzed (FIG. 37).
  • TEG36 gene mRNA was clearly found to be upregulated in cancerous sites in 8 of 11 cases analyzed (FIG. 38).
  • Gene expression was compared by RTHPCR using RNA prepared from 11 cases of stomach cancer tissue and normal stomach tissue as a non-cancerous part of the same sample.
  • RNA prepared from 11 cases of stomach cancer tissue and normal stomach tissue which is a non-cancerous part of the same sample was compared by the T-PCR method.
  • Gene expression was compared by RT-PCR using RNA prepared from 11 cases of stomach cancer tissue and normal stomach tissue as a non-cancerous part of the same sample.
  • TEG41 gene mRNA was clearly confirmed to be upregulated in the cancer site in 4 of 11 cases analyzed (FIG. 43).
  • Gene expression was compared by RPCli method using RNA prepared from 11 cases of stomach cancer tissue and normal stomach tissue as a non-cancerous part of the same sample.
  • RNA prepared from 11 cases of stomach cancer tissue and normal stomach tissue was compared by the method using RNA prepared from 11 cases of stomach cancer tissue and normal stomach tissue as a non-cancerous part of the same sample.
  • Gene expression was compared by PCR using RNA prepared from 9 cases of liver cancer tissue and non-cancerous part of the same sample.
  • TEG45 Gene expression was compared by RT-PCR using RNA prepared from 11 cases of liver cancer tissue and non-cancerous part of the same sample.
  • TEG45 gene mRNA was found to be clearly upregulated in the cancerous area in ⁇ of 11 cases of liver cancer analyzed (FIG. 47).
  • Gene expression was compared by PGR method using RNA prepared from 9 cases of liver cancer tissue and non-cancerous part of the same sample.
  • TEG46 gene mRNA showed higher values in the cancerous part in all nine cases of liver cancer analyzed, and remarkably advanced expression in the cancerous part was confirmed in particularly six cases (Fig. 4). 8).
  • TEG47 gene mRNA was clearly upregulated in the cancerous part in 8 out of 10 analyzed samples as compared to normal colon tissue (Fig. 49).
  • Gene expression was compared by RTWPCR using RNA prepared from 10 cases of colorectal cancer tissue and normal colorectal tissue as a non-cancerous part of the same sample.
  • TEG48 gene mRNA was found to be upregulated in cancer in 9 out of 10 cases analyzed (FIG. 50).
  • Gene expression was compared by quantitative RT-PCR using RNA prepared from 6 cases of colorectal cancer tissue and normal colorectal tissue as a non-cancerous part of the same sample.
  • Gene expression was compared by RT-PCR using RNA prepared from 6 cases of colorectal cancer tissue and normal colorectal tissue as a non-cancerous part of the same sample.
  • Gene expression was compared by RPCR using RNA prepared from 6 cases of colorectal cancer tissue and normal colorectal tissue as a non-cancerous part of the same sample.
  • TEG51 gene mRNA was not amplified by PCR in any of the normal colon tissues, while TEG51 gene was clearly amplified in 5 of the 6 colorectal cancer tissues analyzed. As a result, it was confirmed that expression was enhanced in colorectal cancer (Fig. 53).
  • Gene expression was compared by quantitative RT-PCR using RNA prepared from 12 cases of lung adenocarcinoma tissue and 4 cases of normal lung.
  • Gene expression was compared by quantitative PCR using RNA prepared from 8 cases of lung adenocarcinoma tissue and 4 cases of normal lung tissue.
  • Gene expression was compared by RTPCR using RNA prepared from 11 cases of stomach cancer tissue and normal stomach tissue as a non-cancerous part of the same sample.
  • Gene expression was compared by RT ⁇ PCR using RNA prepared from 11 cases of stomach cancer tissue and normal stomach tissue of non-cancerous part of the same sample.
  • Gene expression was compared by PCR using RNA prepared from 9 cases of liver cancer tissue and non-cancerous part of the same sample.
  • Gene expression was compared by PCR using RNA prepared from 9 cases of liver cancer tissue and non-cancerous part of the same sample.
  • Gene expression was compared by RT-PCR using RNA prepared from 9 cases of liver cancer tissue and non-cancerous part of the same sample.
  • Gene expression was compared by RT-PGR method using RNA prepared from 9 cases of hepatoblastoma tissue and 2 cases of normal liver.
  • Gene expression was compared by quantitative R "PCR using RNA prepared from 12 cases of lung adenocarcinoma tissue and 4 cases of normal lung tissue.
  • Gene expression was compared by quantitative RT-PCR using RNA prepared from 12 cases of lung adenocarcinoma tissue and 4 cases of normal lung tissue.
  • Gene expression was compared by PCR using RNA prepared from 9 cases of liver cancer tissue and non-cancerous part of the same sample.
  • RNA prepared from 9 cases of liver cancer tissue and non-cancerous part of the same sample was compared by R ′′ PCR method.
  • GenBank; BF057073: SEQ ID NO: 254 An EST (GenBank; BU844373) existing near the gene was extracted from GenBank, a primer to be hybridized to each EST, and a primer to be designed were designed and cDNA was amplified by PCR. PCR was performed using single strands of UNA prepared from human liver cancer cell lines Hep3B, HuH6, and HepG2 in equal amounts. Using cDNA as type III, PCR was performed using 5 pmole of each of PCR primers LS557 (ATCCGCCAGG TGAAAGCCAA GTC: SEQ ID NO: 255) and LS589 (GGGATTCACA TTACCACGGC AGTGC: SEQ ID NO: 256).
  • the PCR was performed using a LA-PCR kit (Takara Shuzo Co., Ltd.) for 35 cycles consisting of 94 ° C for 30 seconds, 63 ° C for 30 seconds, and 72 ° C for 5 minutes. The band was amplified. After the PCR amplification product was introduced into pGEM-T easy Vector-1 (Promega), the base sequence of the amplified gene was analyzed by a standard method.
  • the gene was found to contain a sequence in the upstream region 5 'to the DNA sequence.
  • the DNA sequence amplified by PCR is shown in SEQ ID NO: 257.
  • PCR was carried out using a PCR primer designed based on another EST sequence (BU859386) considered to be in the vicinity of BF057073 and the sequence of the gene isolated and identified as described above. 5 pmole LS858 for each PCR primer
  • LS859 (GAAGACGAGG ATTCGATTGT TGCCAAAGT CCACC: SEQ ID NO: 259)
  • a 35-cycle reaction consisting of 95 ° C for 30 seconds and 68 ° C for 3 minutes was performed.
  • a band of about 2,500 bp was amplified.
  • the PCR amplification product was introduced into the pGEM-T easy vector in the same manner as described above, the nucleotide sequence was identified. As a result, it was revealed that the PCR amplification product further contained the 5'-side sequence.
  • the DNA sequence amplified by PCR is shown in SEQ ID NO: 260.
  • Rat BERP which has the same structure as TRIM 3 like K # l isolated this time, is localized in the cell, conjugated with myosin V, etc., and is involved in the intracellular transport of proteins. It has been suggested to be involved in the extension of projections (El-Husseini, A et al., Biochem. Biophys. Res. Commun., 267, 906-911, 2000, El. Husseini'A et al., J, Biol. Chem. 274, 19771-19777, 1999). Based on the above, it is thought that the K # l protein identified in this study belongs to the TRIM family, and may be involved in cell morphogenesis and proliferation, etc. by participating in intracellular protein transport etc. like rat BERP. Therefore, it was suggested that it may play an important role in the pathological condition in which the expression of liver cancer and the like is enhanced, and that the drug may be used as an overnight get molecule.
  • 5′-RACE analysis was carried out using a SMART RACE cDNA Amplification Kit (Clontech) to identify the sequence on the 5, side from the probe sequence (229349-at_ul33B) in Gene chip analysis.
  • a SMART RACE cDNA Amplification Kit (Clontech) to identify the sequence on the 5, side from the probe sequence (229349-at_ul33B) in Gene chip analysis.
  • the primer LS900 SEQ ID NO: 262: GGGTTCACTT TGGTCTCTAG TACGG
  • the primer LS900 designed based on the sequence of the human EST (GenBank Accession No. AL039884: SEQ ID NO: 261) from which the probe was derived
  • Hepatoma cell lines HepG2, HuH6, and Hep.3B Single-stranded cDNA was synthesized from 1000 ng of total RNA mixed with equal amounts of all UNAs according to the method attached to the kit.
  • cDNA containing the 5'-side sequence was amplified by PCR. That is, using 1.25 single-stranded cDNA and 5 pmole LS900 as PCR primers, a PCR reaction was performed according to the method attached to the kit. The PCR was first organized at 94 ° C for 1 minute, followed by 35 cycles of a 98-second 10-second, 68 ° C 3-minute cycle, and a 5-minute incubation at 72 ° C. About 5,000 13 ⁇ 4)? 01 product 0 £] ⁇ -6 & 8 vector
  • clone-11 or an open reading frame encoding 210 amino acids (clone-18) (Fig. 70, 71).
  • the amino acid sequence deduced from clone-11 is shown in SEQ ID NO: 81
  • the amino acid sequence deduced from clone-18 is shown in SEQ ID NO: 82. Comparing the amino acid sequences deduced from the two clones obtained this time, clone-11 was found to be 40 amino acids longer N-terminal than clone-18. It was predicted that this could be a different splicing variant of the exon used. Based on the above results, a novel gene whose expression was enhanced in liver cancer cells was isolated'identified and named K # 2.
  • LIN-28 has been shown to be a protein involved in the control of cell fate during development by binding to mRNA and participating in translation from mRNA and stability of mRNA (Moss, EG et al.
  • K # 2 protein may have a function similar to that of LIN-28, and is involved in the control of human nascent stage, or the development and proliferation of cancer cells, or the replication of viruses such as hepatitis virus. It was expected to give.
  • an anti- # 2 antibody was prepared.
  • K # 2 cDNA clone-18 was type III
  • K # 2 (l-210aa) was obtained by PCR using primer F (SEQ ID NO: 278) and primer R (SEQ ID NO: 279).
  • primer F SEQ ID NO: 278
  • primer R SEQ ID NO: 279
  • pGEM-II vector Promega
  • EcoRI-Notl was inserted into pDEST15 (manufactured by Invitrogen) to construct an expression vector pDEST15-K # 2.
  • SEQ ID NO: 2 7 8 (F): CACCATGGGATTTGGATTCATCTCCATGAT
  • SEQ ID NO: 27 9 (R): TGTCTTTTTCCTTTTTTTTTTTTTTGAACTGAAGGCCCC
  • the expression vector pDEST15-K # 2 was prepared in the same manner as above, and the GST-linked antigen protein (k # 2 (l-210aa)) was prepared in the same manner as above, and the K # 2 polyclonal was prepared.
  • a rabbit herb antiserum immunized with k # 2 (l-210aa) -GST-fused protein was prepared. That is, 100 pg / 0.5 mL / mouse of K # 2-GST fusion protein suspended in PBS in New Zealand White Heron (10-week-old female, Nippon Clea) was combined with 0.5 mL of Freund's complete adjuvant (DIFCO).
  • the emulsion was mixed and administered by subcutaneous injection to perform the first immunization. At intervals of 2 weeks thereafter, 100 pg / 0.5 mL / mouse of K # 2-GST fusion protein suspended in PBS was incomplete Freund's adjuvant. The resulting emulsion was mixed with 0.5 mL of the solution to give an emulsion, and administered by subcutaneous injection to carry out immunization a total of four times. Blood was collected before the immunization, three times, and after the fourth immunization, and the increase in the antibody titer to the K # 2_GST-fused protein was confirmed by ELISA. After confirming an increase in antibody titer, whole blood was collected to obtain K # 2 immunized rabbit herb antiserum. This was designated as anti- # 2 polyclonal antibody.
  • # 2 was detected using a cell line of a # 2 forced expression cell line and various cancer cell lines.
  • the cDNA encoding the above # 2 was inserted into pcDNA3.1 to obtain a K # 2 gene expression vector pcDNA3.1_K # 2. Then, 1] ig expression vector pcDNA3.1-K # 2 was introduced into 2 x 10 5 HEK293 cells using FuGene6 reagent (manufactured by Roche Diagnostics), and K # 2 was removed. Transient expression.
  • the cells were collected, and the cultured cells were cultured in RIPA buffer (150 mM sodium chloride, 1% 4040, 0.5% dexocholic acid, 0.1% SDS, 50 mM trishydroxyaminoaminohydrochloride ( pH8.0)) to prepare a cell lysate.
  • RIPA buffer 150 mM sodium chloride, 1% 4040, 0.5% dexocholic acid, 0.1% SDS, 50 mM trishydroxyaminoaminohydrochloride ( pH8.0)
  • an anti-C20orfl02 monoclonal antibody was produced.
  • cDNA of C20orfl02 was first isolated as follows.
  • a single-stranded cDNA was prepared from the lung adenocarcinoma tissue according to the method described above, and used as type ⁇ for primers F (SEQ ID NO: 269) and R (SEQ ID NO: 269) having EcoRI or XhoI restriction enzyme sites.
  • SEQ ID NO: 270 primers F (SEQ ID NO: 269) and R (SEQ ID NO: 269) having EcoRI or XhoI restriction enzyme sites.
  • SEQ ID NO: 270 a band around about 615 bp that matches the C20orfl02 predicted sequence was successfully detected by PCR.
  • the enzymes and reagents for PCR include Advantage HF Polymerase Mix (Clontech), Advantage HF PCR buffer (Advantage HF PCR buffer), and 20 ⁇ deoxynucleotide triphosphate.
  • PCR with acid, 0.2 ⁇ primer and cDNA l pL type (94 ° C for 30 seconds, 68 ° C for 30 seconds, 72 ° C for 3 minutes, 35 cycles) was done. Obtained by PCR method The specific amplified fragment obtained was introduced into pGEM-T easy vector (Promega) using a DNA ligation kit (Takara), and the nucleotide sequence was confirmed by a standard method. Was found to correspond to C20orfl02. Primer F was designed to hybridize to the 5'-end of the C20orfl02 gene (GenBank: NM-080607), and R was designed to hybridize to the 3'-end.
  • the pGEM-T easy vector containing the PCR product was transformed into a competent cell XL-1 Blue (Stratagene), and 5_bromo-4-chloro-3-3-jS-indolyl-galactopyrano Color selection was performed using Sid (5-Bromo-4-Cliloro-3-Indolyl-] 3 ⁇ Galactopyranoside; X-gal), and only one vector incorporating the PCR product was selected.
  • 10 pL of the ligation reaction product was added to the competent cells, and after ice-cooling for 30 minutes, heat-shock at 42 ° C for 45 seconds, followed by ice-cooling for 2 minutes to initiate transformation.
  • Plasmid DNA was recovered from a portion of the grown cells by extraction with phenol / cloth form, 0.5 pL of EcoRI (8 UZL), 2 pL of 1 OxH buffer, and 7.5 pL of distilled water. Digestion was performed at 37 ° C for 1 hour. Electrophoresis on a 0.8% agarose gel confirmed that the size of the digest was the same as the size of the desired PCR product.
  • the cut gene fragment was recombined into pET41a vector (Novagen), a vector for expressing E. coli protein.
  • the gene integrated into pET41 is translated as a GST fusion protein.
  • PET41 was digested with restriction enzymes (EcoRI and Xhol), electrophoresed, and purified using a quick gel extraction kit.
  • the fragment having the sequence of C20orfl02 amplified by pGEM-Teasy was incorporated into pET41 using a DNA ligation kit.
  • the plasmid DNA was transformed into XL-1B1ue, and shaken in an LB medium containing kanamycin for 16 hours to grow the cells. Plasmids were purified from the grown Escherichia coli using a Quantumprep plasmid miniprep kit. In order to confirm the insertion of C20orfl02 into pET41, sequencing was performed with the primers (SEQ ID NOs: 271 and 272) for the sequence possessed by pET.
  • SEQ ID NO: 271 TTCGAACGCCAGCACATGGAC
  • SEQ ID NO: 272 GCTAGTTATTGCTCAGCGGTG
  • C20orfl02 integrated into the pET41 vector was transformed into a competent cell BL21 Codon PLUS RIL (Novagen) having a T7 promoter.
  • Transformation was performed according to the following procedure. l O OpL of BL21 Codon PL USR I L was added with 1 pET-C20orfl02-FL at a concentration of 1 pgZpL, and the mixture was ice-cooled for 5 minutes. After that, they were immersed in a constant temperature layer at 42 ° C for 20 seconds and subjected to heat shock. After further cooling on ice for 2 minutes, 900 pL of LB without antibiotics was added, incubated at 37 ° C for 10 minutes, and centrifuged (1000 xg, 5 minutes). After discarding the supernatant, the competent cells were resuspended, spread on an LB plate containing kanamycin, and subjected to selective culture at 37 for 16 hours.
  • the GST fusion protein of C20orfl02 expressed using Escherichia coli was purified by affinity purification using the binding between GST and dalhithione.
  • Escherichia coli cells were collected by centrifuging the culture at 600 Oxg and 4 ° C for 10 minutes.
  • Bacterial lysis A digestion buffer (5 OmM sodium chloride, ImM EDTA, ImM dithiothreitol (DTT), 5 OmM trishydroxyaminomethane hydrochloride, pH 8.0) was added, and sonication was performed on ice.
  • Triton X-100 was added to a final concentration of 1%, and the mixture was centrifuged at 1340 Oxg and 4 ° C for 45 minutes to collect the supernatant.
  • 500 pL of daltathione Sepharose (manufactured by Amersham Biosciences) was added to the supernatant, and the mixture was mixed by inversion at 4 ° C for 1 hour to adsorb the GST-C20orfl02 fusion protein.
  • Collect daltathione sepharose by centrifugation (300 Oxg, 4 ° C, 5 minutes), wash with 1 OmL of PBS-T (PBS containing 0.5 Triton X_100), then elute buffer (5 OmM reduced dalhithione, 20 OmM sodium chloride ImM EDTA, lmMDTT, 20 OmM Tris-HC1, pH 8.0) were added and mixed by inversion at 4 ° C for 1 hour to elute the GST fusion protein. By centrifugation (300 Oxg, 4 ° C, 5 minutes), dalhithion sepharose was removed to obtain a purified GST-fused C20orfl02 protein.
  • a mouse with an increased antibody titer was finally immunized with 25 ⁇ l of the mouse, and 72 hours later, spleen cells were collected and fused with myeloma cells (P3ZNS I-1—Ag4-1)
  • Mouse ascites was obtained by inoculating a BALB / c mouse with the antibody-producing hybrid.
  • the monoclonal antibody in the ascites was purified by ammonium sulfate precipitation to prepare a purified antibody.
  • an anti-C20orfl02 antibody H9615 was produced.
  • C20orf! 02 protein molecule using C20orfl02 monoclonal antibody To confirm the reactivity of the anti-C20orfl02 monoclonal antibody H9615 prepared as described above, use a C20orfl02 forced expression cell line and various cancer cell lines. C20orfl02 was detected using the cell lysate of this Example.
  • the reactivity of the anti-C20orfl02 monoclonal antibody H9615 was confirmed by Western blot analysis using C20orfl02 forced expression COS7 cells.
  • the cDNA coding for C20orfl02 is pcDNA4Mys_His
  • the lpg expression vector was introduced into 5 ⁇ 10 4 COS7 cells using FuGene6 reagent (manufactured by Roche Diagnostics) to transiently express C20orfl02.
  • the cells 3 days after the introduction of the expression vector are collected, and the cultured cells are washed with RIPA buffer (150 mM sodium chloride, 1% ⁇ -40, 0.5% dexcholate, 0.1% SDS, 50 mM trishydroxyaminoaminohydrochloride ( A cell lysate was prepared by solubilization in PH 8.0)).
  • the C20orfl02 gene has a secretory signal as a predicted sequence, it was confirmed whether or not secretory C20orfl02 could be detected in the culture supernatant in a C20orfl02-expressing cancer cell line.
  • a band having the same molecular weight as that of the culture supernatant of the forced expression cells was detected by the anti-C20orfl02 monoclonal antibody (Fig. 74).
  • a 15% polyacrylamide gel was prepared, an extract sample was applied at 10 pg each, and SDS-PAGE was performed.
  • a Western blot analysis was carried out using the anti-C20orfl02 monoclonal antibody H9615 in the same manner as described above, a specific band around 22.5 kDa was specifically detected in the cancerous part (FIG. 75).
  • TEG6 For OK / SW-CL..30, to determine whether it is possible to detect cancer using anti-OK / SW-CL..30 antibody, Fabrication was performed. 8- 1. Isolation of hNotum cDNA
  • hNotum Since it showed a homology of 42.7% with (NM-168642), it was named hNotum as a novel gene, and the following analysis was performed.
  • the hNotum cDNA was isolated as follows. Prepare single-stranded cDNA from HepG2 cells according to the method described above, convert it to type I, and use primers WT164 (SEQ ID NO: 275) and LS746 (SEQ ID NO: 276) to perform PCR on hNotum. A band around 1.5 kbp consistent with the predicted sequence was successfully detected.
  • DMSO equivalent to 5% of the total reaction solution was added to the reaction solution prepared according to the protocol of the KOD plus kit (manufactured by TOYOBO).
  • the primer WT164 was designed to hybridize to the 5'-end of the hNotum gene (GenBank: NM-178493), and LS746 was designed to hybridize to the 3'-end.
  • SEQ ID NO: 27 (WT164): CACCGAATTCATGGGCCGAGGGGTGCGCGTG SEQ ID NO: 27 (LS746): CTCGAGGCTTCCGTTGCTCAGCATCCCCAG 8-2.
  • Amino acid partial sequence (143aa-496aa) was GS-conjugated as an antigen for hNotum immunization. Recombinants were prepared as combined proteins. That is, the above hNotm cDNA was transformed into type I, and the gene encoding hNotum (I43aa-496aa) was amplified by PCR using LS695 primer 1 (SEQ ID NO: 277) and LS746 (SEQ ID NO: 276). Subsequently, insertion into pGEM-T Easy Vector-1 (Promega) was performed. After confirming the nucleotide sequence by a conventional method, the gene fragment cut with the restriction enzyme EcoM-XhoI was inserted into pET41a vector-1 (Novagen) to construct an expression vector.
  • SEQ ID NO: 277 (LS695): Preparation of GAATTCATGCGGCGCCTCATGAGCTCCCGGGA GST fusion antigen protein (including hNortmn 143aa-496aa) and preparation of a monoclonal antibody by mouse immunization were performed in the same manner as described above. As a result, the hNotum monoclonal antibody H9541 was prepared.
  • Example 9 the hNotum monoclonal antibody H9541 was prepared.
  • hNotmn was detected using cell lysates of hNotum forced expression cell lines and various cancer cell lines.
  • a vector having the above-described antigen site 143aa-496aa inserted into pcDNA4 was used as a control.
  • the predicted molecular weight is 39.9kDa.
  • Western plot analysis was performed in the same manner as above, and the primary antibody H9541 was performed at a final concentration of 100 g / mL.
  • the hNotum gene has a secretory signal as a predicted sequence, it was confirmed whether hNotum expressing hNotum could be detected in the culture supernatant in cancer cell lines expressing hNotum.
  • a band having the same molecular weight as that of the culture supernatant of the forced expression cells was detected by the anti-hNotum antibody (FIG. 76). From the above results, it was revealed that the hNotum monoclonal antibody H9541 can specifically detect hNotum, and that the degree of mRNA expression by GeneChip analysis matches the degree of hNotum protein expression.
  • an anti-KIAA1359 antibody was prepared in order to clarify whether cancer could be detected using the anti-KIAA1359 antibody. That is, a peptide sequence was synthesized by a conventional method using a partial sequence of amino acids (76 aa to 88 aa) as an antigen for immunization of KIAA1359 as a peptide protein.
  • C A cysteine residue was added to the N-terminus of the peptide and conjugated to Keyhole limpet hemocyanin (KLH) to obtain an immunogen.
  • KLH Keyhole limpet hemocyanin
  • the monoclonal antibody was used in the same manner as described above. Then, the monoclonal antibody A8409A was successfully isolated.
  • PEAETRGAKRISPA SEQ ID NO: 280
  • cDNA of KIAA1359 was first isolated as follows. A single-stranded cDNA was prepared from MKN74 cells, which are KIAA1359 expressing cells, according to the method described above, and the resulting single-stranded cDNA was subjected to PCR using primers F (SEQ ID NO: 28 1) and R (SEQ ID NO: 28 2) as a ⁇ -type. A band around 1.6 kbp, which coincides with the predicted sequence of KIAA1359, was successfully detected. PCR method is Advanvtede HF2 kit
  • NM_152673 was designed to hybridize to the 5'-end, and R was designed to hybridize to the 3'-end.
  • SEQ ID NO: 28 1 (F) i GGATCCATGGGCTGTCTCTGGGGTCTGGCTCTGC SEQ ID NO: 28 2 (R): CTCGAGGCCTCTCCTGACACGCAGTAAGGAGACC 11-3.
  • TEG60 PEG10 is translated by ordinary codon message and ORF1 and a frame shift occurs in the termination codon region of ORF1, and the presence of newly translated ORF2 was confirmed by Shigemoto et al., Nucleic Acids Research, 29, 4079-4088, 2001.
  • Mouse PEG10, or a prediction from the genomic sequence of human PEG10 in Ono et al., Genomics, 73, 232-237, 2001 suggests that experimental proof of ORF2 for human PEG10 was found. Not. Therefore, we tested the ORF2 amino acid sequence based on the predicted ORF2 amino acid sequence to prove whether frameshifting of the ORF2 part actually occurred and whether the newly translated region was present in the healing tissue. An attempt was made to produce and prove PEG10 / ORF2 monoclonal antibody.
  • cDNA of PEG10 was first isolated as follows.
  • a single-stranded cDNA was prepared from human fetal liver tissue according to the method described above, and used as a template to predict PEG10 by PCR using primers F1 (SEQ ID NO: 284) and R1 (SEQ ID NO: 285).
  • a band around 2200 kbp corresponding to the sequence was successfully detected.
  • the PCR method consists of preparing a reaction solution according to the protocol of the Advantage2 cDNA PCR kit (Clontech), first performing primary denaturation at 94 ° C for 1 minute, then 30 seconds at 94 ° C and 3 minutes at 68. After 35 cycles, the last extension reaction was performed at 68 ° C for 10 minutes.
  • the specific amplified fragment obtained by the PCR method was inserted into pGEM-T easy (Promega) by the TA cloning method, and the nucleotide sequence was confirmed by a standard method. It was clear that the isolated cDNA was PEG10. It became.
  • the primer F1 was designed to hybridize to the 5- and -ends of the PEG10 gene (GenBank: AB049834), and R1 was designed to hybridize to the 3'-end. ""
  • PEG10 (ORF2 / 51aa-251aa) is encoded by PCR using F2 primer (SEQ ID NO: 286) and R2 primer (SEQ ID NO: 287) with the above PEG10 cDNA as type II.
  • the gene was amplified, and then inserted into pGEM'T easy vector (Promega). After confirming the nucleotide sequence by a standard method, the gene fragment digested with the restriction enzyme BamHI-XhoI was inserted into the pET41c vector.
  • SEQ ID NO: 2 8 7 (R2): CTCGAGTGCCATTTCAGGTTCGGACAGTG
  • PEG10 was detected using a cell lysate of a PEG10 forced expression cell line and various cancer cell lines.
  • the reactivity of the anti-PEG10 / ORF2 antibody B0000A was confirmed by Western blot analysis using PEG10 forced expression COS7 cells.
  • the PEG10 gene expression vector pcDNA4 / HisMax-PEGIO-Full in which the cDNA encoding the full-length PEG10 described above was inserted into pcDNA4HisMaxC (Invitrogen), was used. It is a construct in which an Xpress tag sequence has been inserted into the N-terminal of PEG10.
  • lpg expression vector pcDNA4 / HisMax-PEG10-Full, or pcDNA4 (Mock) as a negative control was added to 5 x 10 4 COS7 cells and Hep3B cells using FuGene6 reagent (Roche Diagnostics, Inc.). ) was used to transiently express PEG10.
  • RIPA buffer 150 mM sodium chloride, 1% NP'40, 0.5% dexcholate, 0.1% SDS, 50 mM trishydroxyaminomethane hydrochloride.
  • TEG63 DUSP9
  • anti-DUSP9 antibody was produced to clarify whether it is possible to detect cancer using a monoclonal antibody.
  • Recombinants were prepared using the DUSP9 full-length sequence as a GST-fused protein as an antigen for DUSP9 immunization. That is, HepG2 cDNA was transformed into type II, and Ls772 A gene encoding DUSP9 (385aa) was amplified by PCR using Lima-1 (SEQ ID NO: 288) and Ls773 primer (SEQ ID NO: 289), followed by pGEM-Te vector (Promega). ). After confirming the nucleotide sequence by a conventional method, the gene fragment cut with the restriction enzyme EcoRI-Hindlll was inserted into pET41a vector (Novagen) to construct an expression vector pET41a_DUSP9. SEQ ID NO: 2 8 8 (F): GAATTCATGGAGGGTCTGGGCCGCTC
  • GST-fused DUSP9 (1-385aa) protein was prepared in the same manner as described above using the expression vector pET41a-DUSP9, and a monoclonal antibody was prepared by mouse immunization. Then, an anti-DUSP9 antibody # 8901 was prepared.
  • DUSP9 was detected using DUSP9 forced expression cell lines and cell lysates of various cancer cell lines.
  • the animal cell expression vector used was a DUSP9 gene expression vector pcDNA4-DUSP9 in which cDNA encoding DUSP9 was inserted into pcDNA4Mys-His (Invitrogen). That is, 1 expression vector pcDNA4-DUSP9 was introduced into 5 ⁇ 10 4 COS7 cells using FuGene6 reagent (Roche Diagnostics) to transiently express DUSP9.
  • the cells three days after the introduction of the expression vector are collected, and the cultured cells are cultured in RIPA buffer (150 mM sodium chloride, 1% ⁇ -40, 0.5% dexcholate, 0.1% SDS, 50 mM trishydroxyaminoaminohydrochloride (The cell lysate was prepared by solubilization at pH 8.0)). The lysate equivalent to 3 mg protein was applied to an SDS-polyacrylamide gel, proteins were separated by SDS-PAGE, and then transferred to Hybond-P (Amersham Biosciences).
  • DUSP9 antibody (l ng / mL) as the primary antibody and HRP-labeled anti-mouse IgG antibody (Jackson) as the secondary antibody
  • ECL Plus Amplitude-labeled anti-mouse IgG antibody
  • CystatinSN an anti-CystatinSN antibody was prepared in order to clarify whether cancer can be detected using the anti-CystatinSN antibody.
  • a peptide sequence was synthesized by a conventional method using a partial sequence of amino acids (60 aa to 75 aa) as a peptide protein as an antigen for immunization of Cystatin SN (see GenBank No .: NM_001898).
  • C cysteine residue to N-terminal of peptide, conjugate to Keyhole limpet hemocyanin (KLH) and immunogen
  • KLH Keyhole limpet hemocyanin
  • the monoclonal antibody was prepared in the same manner as described above. They succeeded in isolating a monoclonal antibody.
  • Western blot analysis was performed using an anti-Cystatin SN antibody using a colon cancer tissue extract. Preparation of human tissue extract and Western blot analysis were performed as described above. Western blot analysis with anti-Cystatin SN antibody (4 g / mL) revealed a specific band around 15 kDa, specifically in the cancerous area.
  • anti-SFRP4 antibody was produced to clarify whether cancer can be detected using the anti-SFRP4 antibody.
  • cDNA of SFRP4 was isolated as follows.
  • a single-stranded cDNA was prepared from gastric cancer tissue according to the method described above, and used as type III primers GC898 (SEQ ID NO: 291) and GC899 (SEQ ID NO: 292) with EcoRI or Xhol restriction enzyme sites.
  • GC898 SEQ ID NO: 291
  • GC899 SEQ ID NO: 292
  • Enzymes and reagents for PGR include Advantage HF Polymerase Mix (Clontech) and Advantage HF PCR buffer, 20 ⁇ l deoxynucleotide triphosphate, Perform PCR (94 ° C for 30 seconds, 68 ° C for 30 seconds, 72C for 3 minutes, and 35 cycles) using a 0.2 ⁇ primer to convert the DNA pL into a type.
  • Specific amplification fragments obtained by the PCR method were analyzed using a DNA ligase kit (Yukara Co., Ltd.) using the pGEM-T easy vector. -(Promega), and the nucleotide sequence was confirmed by a standard method. As a result, it was found that the isolated cDNA corresponded to SFRP4.
  • the primer GC898 was designed to hybridize to the 5-end of the SFR4-ORF gene (GenBank: NM_003014), and the GC899 was designed to hybridize to the 3-end.
  • Recombinants were prepared using the full-length SFRP4 sequence as a GST-linked protein as an antigen for immunizing SFRP4. That is, the SFRP4 sequence inserted into the above pGEM-T was digested with the restriction enzyme EcoRI-XhoI, and inserted into pET41a Yuichi (Novagen) to express the expression vector GS SFRP4. It was constructed.
  • SFRP4j cDNA4His-Myc (Invitrogen 3 ⁇ 4) was forcibly expressed in COS7 cells, and Western plot analysis was performed with an anti-Myc antibody (5,000-fold dilution, Invitrogen) against the cell lysate. Bands of the same size were detected (Fig. 88). Therefore, the band of 50 kDa detected by the anti-SFRP4 monoclonal antibody in the clinical sample was considered to be SFRP4, and it was clarified that SFRP4 was specifically detected in cancerous areas by the monoclonal antibody.
  • SFRP4j cDNA4His-Myc
  • genes, proteins and antibodies of the present invention can be used in the diagnosis and treatment of cancer, and in the development of therapeutic agents for cancer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oncology (AREA)
  • Genetics & Genomics (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Epidemiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Hematology (AREA)
  • Zoology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Mycology (AREA)

Abstract

配列番号1−65のいずれかに記載されるヌクレオチド配列を有する遺伝子によりコードされるタンパク質またはそのフラグメント、これらを認識する抗体またはその抗原結合性フラグメント、または配列番号1−65のいずれかに記載されるヌクレオチド配列の少なくとも12個の連続するヌクレオチド配列もしくはこれに相補的なヌクレオチド配列を有するポリヌクレオチドが開示される。本発明の遺伝子およびタンパク質は、癌の診断および治療剤として有用である。

Description

明細書
癌高発現遺伝子 技術分野
本発明は、 癌に関連する遺伝子、 この遺伝子によりコ一ドされるタンパク質、 およびこのタンパク質を認識する抗体に関する。 本発明の遺伝子、 タンパク質お よび抗体は、 癌の診断および治療、 ならびに癌の治療薬の開発において用いるこ とができる。 背景技術
これまでに、 細胞の癌化と関連してその発現量が変化する遺伝子や、 癌のマ一 力一となりうる抗原が多数見いだされており、 多くの研究が行われている。 しか し、 特定の癌を特異的に検出または治療することは依然として困難である。 した がって、 当該技術分野においては、 癌の診断および治療に用いることができる、 さらに別の癌関連遺伝子およびタンパク質を同定することが求められている。 本発明に関連する先行技術文献情報としては以下のものがある: EP1033401;
US2002022248; US2002042096; US200208150; US6337195; US6362321;
WO9738098; WO9920764; W09929729; WO0006698; WO0012702;
WO0034477; WO0036107; WO0037643; WO0055174; WO0055320;
WO0055351; WO0055633; WO0058473; WO0073509; WO0100828;
WO0109317; WO0121653; WO0122920; WO0151513; WO0151628;
WO0154733; WO0155355; WO0157058; WO0159111; WO0160860;
WO0164835; WO0164886; WO0166719; WO0170976; WO0173027;
WO0175177; WO0177168; WO0192578; WO0194629; WO0200677;
WO0200889; WO0200939; WO0204514; WO0210217; WO0212280;
WO0220598; WO0229086; WO0229103; WO0258534; WO0260317;
Figure imgf000003_0001
本発明は、 癌の診断および治療剤として用いることができる遺伝子およびタン パク質を提供することを目的とする。 一発明の開示 本発明者らは、 癌組織において特定の遺伝子の発現が宂進していることを見い だし、 本発明を完成させた。 すなわち、 本発明は、 配列番号 1一 65のいずれか に記載されるヌクレオチド配列を有する遺伝子によりコードされるタンパク質ま たはそのフラグメントを提供する。
1つの観点においては、 本発明は、 配列番号 1、 2、 28、 29、 30、 31、
32、 51、 52、 60および 61のいずれかに記載されるヌクレオチド配列を 有する遺伝子、 および該遺伝子によりコ一ドされるタンパク質またはそのフラグ メントを提供する。 好ましくは、 該遺伝子は、 配列番号 1、 2、 28、 29、 3 0、 31および 32のいずれかに記載されるヌクレオチド配列、 より好ましくは 配列番号 1または 2に記載されるヌクレオチド配列を有する。
これらのタンパク質やフラグメントは肺癌の診断または治療のための組成物と して有用である。
別の観点においては、 本発明は、 配列番号 3、 4、 5、 6、 7、 8、 9、 10、 1 1、 12、 13、 22、 23、 24、 25、 26、 27、 33、 34、 35、 36、 37、 38、 39、 40、 41、 42、 53、 54および 55のいずれか に記載されるヌクレオチド配列を有する遺伝子、 および該遺伝子によりコードさ れるタンパク質またはそのフラグメント提供する。 好ましくは、 該遺伝子は、 配 列番号 3、 4、 5、 6、 7、 8、 9、 10、 1 1、 12、 13、 22、 23、 2 4、 25および 26のいずれかに記載されるヌクレオチド配列を有する。
これらのタンパク質やフラグメントは胃癌の診断または治療のための組成物と して有用である。
別の観点においては、 本発明は、 配列番号 3、 7、 20、 21、 46、 47、
48、 49および 50のいずれかに記載されるヌクレオチド配列を有する遺伝子、 および該遺伝子によりコードされるタンパク質またはそのフラグメントを提供す る。 好ましくは、 該遺伝子は、 配列番号 3、 7、 20、 21、 46、 49および
50のいずれかに記載されるヌクレオチド配列、 より好ましくは配列番号 3、 7、 20および 21のいずれかに記載されるヌクレオチド配列を有する。
これらのタンパク質やフラグメントは大腸癌の診断または治療のための組成物 として有用である。
別の観点においては、 本発明は、 配列番号 14、 15、 16、 17、 18、 1 9、 43、 44、 45、 56、 57、 58、 59、 62、 63、 64および 65 のいずれかに記載されるヌクレオチド配列を有する遺伝子、 および該遺伝子によ りコードされるタンパク質またはそのフラグメントを提供する。 好ましくは、 該 遺伝子は、 配列番号 14、 15、 16、 17、 18、 19、 45、 56、 57、 58、 64および 65のいずれかに記載されるヌクレオチド配列、 より好ましく は、 配列番号 14、 15、 16、 17、 18、 19、 64および 65のいずれか に記載されるヌクレオチド配列を有する。
これらのタンパク質やフラグメントは肝癌の診断または治療のための組成物と して有用である。
好ましくは、 本発明の組成物において、 該遺伝子は、 配列番号 1、 9、 10、 14、 20、 22、 24、 25、 26、 27、 28、 29、 32、 38、 39、 40、 44、 51、 52、 53、 54および 58のいずれかに記載されるヌクレ ォチド配列、 より好ましくは、 配列番号 1、 9、 10、 14、 20、 22、 24、 25および 26のいずれかに記載されるヌクレオチド配列を有する。
また好ましくは、 本発明の組成物において、 該遺伝子は、 配列番号 2、 3、 4、 5、 6、 7、 8、 11、 12、 13、 15、 16、 17、 18、 19、 21、 2 3、 30、 31、 33'、 34、 35、 36、 37、 41、 42、 43、 45、 4 6、 47、 48、 49、 50、 55、 56、 57、 59、 60、 61、 62およ び 63のいずれかに記載されるヌクレオチド配列、 より好ましくは、 配列番号 2、 3、 4、 5、 6、 7、 8、 11、 12、 13、 15、 16、 17、 18、 19、 21および 23のいずれかに記載されるヌクレオチド配列を有する。
別の観点においては、 本発明は、 上述の遺伝子またはそのフラグメントを発現 する細胞またはべクタ一を提供する。 これらの細胞やベクターは、 本発明のタン パク質の製造、 該タンパク質に対する抗体の製造、 癌の診断 ·治療などに有用で ある。
また別の観点においては、 本発明は、 配列番号 66- 123に記載されるアミ ノ酸配列を有するタンパク質またはそのフラグメントを提供する。 これらのタン パク質またはそのフラグメントは、 抗体の製造の際の抗原として、 または癌の診 断 ·治療に有用である。
さらに別の観点においては、 本発明は、 上述のタンパク質またはそのフラグメ ントを認識する抗体またはその抗原結合性フラグメントを提供する。 本発明はま た、 このような抗体を産生する細胞を提供する。 さらに別の観点においては、 本発明は、 配列番号 1 - 6 5のいずれかに記載さ れるヌクレオチド配列もしくはこれに相補的なヌクレオチド配列を有するポリヌ クレオチド、 あるいはこれらのポリヌクレオチドに高ストリンジェントな条件下 でハイプリダイズすることができるポリヌクレオチドを提供する。
さらに、 本発明は、 配列番号 1一 6 5のいずれかに記載されるヌクレオチド配 列の少なくとも 1 2個の連続するヌクレオチド配列もしくはこれに相補的なヌク レオチド配列を有するポリヌクレオチド、 あるいは、 配列番号 1—6 5のいずれ かに記載されるヌクレオチド配列を有するポリヌクレオチドに高ストリンジェン トな条件下でハイブリダィズすることができる少なくとも 1 2ヌクレオチドの長 さのオリゴヌクレオチドを提供する。
これらのポリヌクレオチドは、 癌の診断、 タンパク質の製造、 プライマー、 遺 伝子発現阻害の為のアンチセンス · siRNAなどに有用である。
さらに別の観点においては、 本発明は、 抗癌活性を有する化合物を同定する方 法であって、 培養ヒト細胞を試験化合物と接触させ、 そして前記細胞において配 列番号 1 - 6 5のいずれかに記載されるヌクレオチド配列を含む遺伝子の発現量 の変化を引き起こす化合物を抗癌活性を有する化合物として同定する、 の各工程 を含む方法を提供する。 .
さらに別の観点においては、 本発明は、 C20orfl02タンパク質を検出するこ とを特徴とする癌の診断方法を提供する。 好ましくは、 癌は、 肺癌、 肝癌、 また は勝癌である。 本発明の方法においては、 好ましくは、 細胞外に分泌された C20orfl02タンパク質が検出される。 また好ましくは、 本発明の方法は
C20orfl02タンパク質を認識する抗体を用いて行われる。 好ましくは、 本発明 の方法においては、 血液中、 血清中、 または血漿中の C20orfl02タンパク質、 あるいは細胞から分離した C20orfl02タンパク質が検出される。
別の態様においては、 本発明は、 以下の工程:
( a ) 被験者から試料を採取する工程;
( b ) 採取された試料に含まれる C20orfl02タンパク質を検出する工程 を含む癌の診断方法を提供する。 図面の簡単な説明
図 1は、 癌関連遺伝子 T E G 1の発現解析の結果を示す, 図 2は、 癌関連遺伝子 T EG2の発現解析の結果を示す。 図 3は、 癌関連遺伝子 T EG2の発現解析の結果を示す。 図 4は、 癌関連遺伝子 T E G 3の発現解析の結果を示す。 図 5は、 癌関連遺伝子 TEG 4の発現解析の結果を示す。 図 6は、 癌関連遺伝子 T EG5の発現解析の結果を示す。 図 7は、 癌関連遺伝子 T EG6の発現解析の結果を示す。 図 8は、 癌関連遺伝子 T EG6の発現解析の結果を示す。 図 9は、 癌関連遺伝子 TEG 7の発現解析の結果を示す。 図 10は、 癌関連遺伝子 T EG8の発現解析の結果を示す。 図 11は、 癌関連遺伝子 TEG 9の発現解析の結果を示す。 図 12は、 癌関連遺伝子 T EG10の発現解析の結果を示す。 図 13は、 癌関連遺伝子 T EG11の発現解析の結果を示す。 図 14は、 癌関連遺伝子 T EG12の発現解析の結果を示す。 図 15は、 癌関連遺伝子 TEG13の発現解析の結果を示す。 図 16は、 癌関連遺伝子 T EG14の発現解析の結果を示す。 図 17は、 癌関連遺?云子 T EG15の発現解析の結果を示す。 図 18は、 癌関連遺伝子 T EG16の発現解析の結果を示す。 図 19は、 癌関連遺伝子 T EG17の発現解析の結果を示す。 図 20は、 癌関連遺伝子 T EG18の発現解析の結果を示す。 図 21は、 癌関連遺伝子 TEG19の発現解析の結果を示す。 図 22は、 癌関連遺伝子 T EG20の発現解析の結果を示す。 図 23は、 癌関連遺伝子 T EG21の発現解析の結果を示す。 図 24は、 癌関連遺伝子 T EG22の発現解析の結果を示す。 図 25は、 癌関連遺伝子 T E G 23の発現解析の結果を示す。 図 26は、 癌関連遺伝子 T EG24の発現解析の結果を示す。 図 27は、 癌関連遺伝子 T EG25の発現解析の結果を示す。 図 28は、 癌関連遺伝子 T EG26の発現解析の結果を示す。 図 29は、 癌関連遺伝子 T EG27の発現解析の結果を示す。 図 30は、 癌関連遺伝子 T EG28の発現解析の結果を示す。 図 31は、 癌関連遺伝子 T EG29の発現解析の結果を示す。 図 32は、 癌関連遺伝子 T EG30の発現解析の結果を示す。 図 33は、 癌関連遺伝子 TEG31の発現解析の結果を示す。 図 3 4は、 癌関連遺伝子 TEG3 2の発現解析の結果を示す。 図 3 5は、 癌関連遺伝子 TEG3 3の発現解析の結果を示す。 図 3 6は、 癌関連遺伝子 TEG3 4の発現解析の結果を示す。 図 3 7は、 癌関連遺伝子 TEG3 5の発現解析の結果を示す。 図 3 8は、 癌関連遺伝子 TEG3 6の発現解析の結果を示す。 図 3 9は、 癌関連遺伝子 TEG3 7の発現解析の結果を示す。 図 4 0は、 癌関連遺伝子 TEG3 8の発現解析の結果を示す。 図 4 1は、 癌関連遺伝子 TEG3 9の発現解析の結果を示す。 図 4 2は、 癌関連遺伝子 TEG4 0の発現解析の結果を示す。 図 4 3は、 癌関連遺伝子 TEG4 1の発現解析の結果を示す。 図 4 4は、 癌関連遺伝子 TEG4 2の発現解析の結果を示す。 図 4 5は、 癌関連遺伝子 TEG4 3の発現解析の結果を示す。 図 4 6は、 癌関連遺伝子 T EG44の発現解析の結果を示す。 図 4 7は、 癌関連遺伝子 TEG4 5の発現解析の結果を示す。 図 4 8は、 癌関連遺伝子 TEG4 6の発現解析の結果を示す。 図 4 9は、 癌関連遺伝子 TEG4 7の発現解析の結果を示す。 図 5 0は、 癌関連遺伝子 TEG4 8の発現解析の結果を示す。 図 5 1は、 癌関連遺伝子 TEG4 9の発現解析の結果を示す。 図 5 2は、 癌関連遺伝子 TEG5 0の発現解析の結果を示す。 図 5 3は:癌関連遺伝子 TEG5 1の発現解析の結果を示す。 図 5 4は、 癌関連遺伝子 TEG5 2の発現解析の結果を示す。 図 5 5は、 癌関連遺伝子 TEG5 3の発現解析の結果を示す。 図 5 6は、 癌関連遺伝子 TEG5 の発現解析の結果を示す。 図 5 7は、 癌関連遺伝子 TEG5 5の発現解析の結果を示す。 図 5 8は、 癌関連遺伝子 TEG5 6の発現解析の結果を示す。 図 5 9は、 癌関連遺伝子 T EG5 7の発現解析の結果を示す。 図 6 0は、 癌関連遺伝子 TEG5 8の発現解析の結果を示す。 図 6 1は、 癌関連遺伝子 TEG5 9の発現解析の結果を示す。 図 6 2は、 癌関連遺伝子 TEG6 0の発現解析の結果を示す。 図 6 3は、 癌関連遺伝子 TEG6 1の発現解析の結果を示す。 図 6 4は、 癌関連遺伝子 T E G 6 2の発現解析の結果を示す。
図 6 5は、 癌関連遺伝子 T E G 6 3の発現解析の結果を示す。
図 6 6は、 癌関連遺伝子 T E G 6 4の発現解析の結果を示す。
図 6 7は、 新規遺伝子 K#lの塩基配列およびアミノ酸配列を示す。
図 6 8は、 新規遺伝子 K#lと GenBank No. XM— 067369とのァライメントを 示す。
図 6 9は、 新規遺伝子 K#lのアミノ酸配列モチーフの解析結果を示す。
図 7 0は、 新規遺伝子 Κ#2 (クローン 1 1 ) の塩基配列およびアミノ酸配列 を示す。
図 7 1は、 新規遺伝子 Κ#2 (クローン 1 8 ) の塩基配列およびアミノ酸配列 を示す。
図 7 2は、 新規遺伝子 Κ#2 (クローン 1 1 ) と、 ヒト LIN-28、 線虫 LIN-28、 アフリカッメガエル LIN-28、 ショウジョゥバエ LIN-28およびマウス LIN-28 のアミノ酸配列の比較を示す。
図 7 3は、 C20orfl02遺伝子の肺扁平上皮癌における発現を示す。
図 7 4は、 抗 C20orfl02抗体を用いる、 各種癌細胞株およびその培養上清に おける C20orfl02タンパク質分子の検出を示す。
図 7 5は、 抗 C20orfl02抗体を用いる、 肺腺癌組織における C20orfl02夕ン パク質の発現解析の結果を示す。
図 7 6は、 抗 hNotum抗体を用いる、 各種癌細胞株およびその培養上清にお ける hNotumタンパク質分子の検出を示す。
図 7 7は、 抗 hNotum抗体を用いる、 肝癌組織における hNotum夕ンパク質 の発現角科斤の結果を示す。
図 7 8は、 抗 K#2抗体を用いる、 Κ#2強制発現細胞株および各種癌細胞株に おける Κ#2タンパク質分子の検出を示す。
図 7 9は、 抗 抗体を用いる、 肝癌組織における Κ#2タンパク質の発現解 祈の結果を示す。
図 8 0は、 抗 KIAA1359抗体を用いる、 KIAA1359強制発現細胞株および各 種癌細胞株における KIAA1359タンパク質分子の検出を示す。
図 8 1は、 抗 KIAA1359抗体を用いる、 胃癌組織における KIAA1359タンパ ク質の発現解析の結果を示す。 . 図 8 2は、 抗 PEG10/ORF2抗体を用いる、 PEG10強制発現細胞株および各 種癌細胞株における PEG10タンパク質分子の検出を示す。
図 8 3は、 抗 PEG10/ORF2抗体を用いる、 肝細胞癌組織における PEG10夕 ンパク質の発現解析の結果を示す。
図 8 4は、 抗 DUSP9抗体を用いる、 DUSP9強制発現細胞株および各種癌細 胞株における DUSP9タンパク質分子の検出を示す。
図 8 5は、 抗 DUSP9抗体を用いる、 肝細胞癌組織における DUSP9夕ンパク 質の発現解析の結果を示す。
図 8 6は、 抗 CystatinSN抗体を用いる、 大腸癌組織における CystatinSN夕 ンパク質の発現解析の結果を示す。
図 8 7は、 抗 SFRP4抗体を用いる、 胃極組織における SFRP4タンパク質の 発現解析の結果を示す。
図 8 8は、 抗 SFRP4抗体を用いる、 SFRP4を強制発現させた COS7細胞の 培養上清おける SFRP4タンパク質の検出を示す。 発明の詳細な説明 .
本発明は、 癌組織において特定の遺伝子の発現が亢進している遺伝子、 および この遺伝子によりコードされるタンパク質を利用する、 癌の診断および治療のた めの組成物を提供する。 蛋白質
第 1の観点においては、 本発明は、 配列番号 1— 6 5に記載される癌関連遺伝 子によりコードされるタンパク質またはそのフラグメントを提供する。 好ましく は、 本発明の組成物は、 配列番号 6 6— 1 2 3に記載されるアミノ酸配列を有す るタンパク質またはそのフラグメントを含む。
本発明のタンパク質またはそのフラグメントは、 癌の診断,治療や、 抗体作製 の際の抗原として有用である。
本発明の組成物においては、 タンパク質またはそのフラグメントは、 所望の免 疫原性を有する限り、 上述の配列から、 1または数個のアミノ酸残基が欠失、 置 換または付加された変異体であってもよい。 このような変異体は、 好ましくは、 上述のアミノ酸配列と、 少なくとも 8 0 %、 好ましくは 9 0 %またはそれ以上、 より好ましくは 95%またはそれ以上の同一性を有するァミノ酸配列を有する。 アミノ酸配列の同一性は、 比較すべき 2つの配列において、 同一である残基の 数を残基の総数で割り、 100を乗ずることにより表される。 標準的なパラメ一 夕を用いて配列の同一性を決定するためのいくつかのコンピュータプログラム、 例えば、 Gappe d B L AS Tまたは P S I— B L AS T (A 1 t s c h u 1 , e t a 1. (1997) Nuc l e i c Ac i d s Re s. 25 : 3 389— 3402) , BLAST (A l t s chu l, e t a 1. (199 0) J. Mo 1. B i o l. 215 : 403— 410) 、 およびスミス—ウォー ターマン (Sm i t h— Wa t e rma n) (Smi t h, e t a 1. (19 81) J. Mo 1. B i o l. 147 : 195-197) が利用可能である。 あるアミノ酸配列に対する 1または複数個のアミノ酸残基の欠失、 付加および zまたは他のアミノ酸による置換により修飾されたアミノ酸配列を有するタンパ ク質がその生物学的活性を維持することはすでに知られている (Mark, D. F. et al., Proc. Natl. Acad. Sci. USA (1984) 81, 5662-5666、 Zoller, M. J. & Smith, M. Nucleic Acids Research (1982) 10, 6487-6500、 Wang, A. et al., Science 224, 1431-1433、 Dalbadie-McFarland, G. et al" Proc. Natl. Acad. Sci. USA (1982) 79, 6409-6413) 。
変異するアミノ酸残基においては、 アミノ酸側鎖の性質が保存されている別の アミノ酸に変異されることが望ましい。 例えばアミノ酸側鎖の性質としては、 疎 水性アミノ酸 (A、 I、 L、 M、 F、 P、 W、 Y、 V) 、 親水性アミノ酸 (R、 D、 N、 C、 E、 Q、 G、 H、 K、 S、 T) 、 脂肪族側鎖を有するアミノ酸 (G、 A、 V、 L、 I、 P) 、 水酸基含有側鎖を有するアミノ酸 (S、 Τ、 Υ) 、 硫黄原子含有側鎖を 有するアミノ酸 (C、 M) 、 カルボン酸およびアミド含有側鎖を有するアミノ酸 (D、 N、 E、 Q) 、 塩基含有側鎖を有するアミノ離 (R、 K、 Η) 、 芳香族含有 側鎖を有するアミノ酸 (H、 F、 Y、 W) を挙げることができる (括弧内はいず れもアミノ酸の一文字標記を表す) 。
当業者であれば公知の方法、 例えば、 部位特異的変異誘発法 (Gotoh,T.etal. (1995) Gene 152, 271-275、 Zoller, MJ, and Smith, M.(1983) Methods
Enzymol.100, 468.500、 Kramer, W. et al. (1984) Nucleic Acids Res.12, 9441- 9456、 Kramer W, and Fritz HJ(1987) Methods. Enzymol.154, 350-367、 Kunkel,TA(l985) Proc Natl Acad Sci USA.82, 488.492、 Kunkel (1988) Methods Enzymol. 85, 2763-2766) などを用いて、 アミノ酸に適宜変異を導入 することにより、 該夕ンパク質と同等な夕ンパク質を調製することが可能である。 本発明のタンパク質は、 後述するタンパク質を産生する細胞や宿主あるいは精 製方法により、 アミノ酸配列、 分子量、 等電点または糖鎖の有無や形態などが異 なり得る。 例えば、 本発明のタンパク質を原核細胞、 例えば大腸菌で発現させた 場合、 本来のタンパク質のアミノ酸配列の N末端にメチォニン残基が付加され る。 本発明のタンパク質はこのようなタンパク質も包含する。
本発明のタンパク質は、 当業者に公知の方法により、 組み換えタンパク質とし て、 また天然のタンパク質として調製することが可能である。 組み換えタンパク 質であれば、 本発明のタンパク質をコードする DNAを、 適当な発現べクタ一に 組み込み、 これを適当な宿主細胞に導入して得た形質転換体を回収し、 抽出物を 得た後、 イオン交換、 逆相、 ゲル濾過などのクロマトグラフィー、 あるいは本発 明のタンパク質に対する抗体をカラムに固定したァフィ二ティーク口マトグラフ ィ一にかけることにより、 または、 さらにこれらのカラムを複数組み合わせるこ とにより精製し、 調製することが可能である。
また、 本発明のタンパク質をダル夕チオン S-トランスフェラーゼタンパク質 との融合タンパク質として、 あるいはヒスチジンを複数付加させた組み換えタン パク質として宿主細胞 (例えば、 動物細胞や大腸菌など) 内で発現させた場合に は、 発現させた組み換えタンパク質はダル夕チオンカラムあるいはニッケルカラ ムを用いて精製することができる。 融合タンパク質の精製後、 必要に応じて融合 タンパク質のうち、 目的のタンパク質以外の領域を、 トロンビンまたはファクタ —Xaなどにより切断し、 除去することも可能である。
天然のタンパク質であれば、 当業者に周知の方法、 例えば、 本発明のタンパク 質を発現している組織や細胞の抽出物に対し、 後述する本発明のタンパク質に結 合する抗体が結合したァフィニテ ーカラムを作用させて精製することにより単 離することができる。 抗体はポリク口一ナル抗体であってもモノク口一ナル抗体 であってもよい。
本発明は、 また、 本発明のタンパク質のフラグメント (部分ペプチド) を包含 する。 本発明のフラグメントは、 例えば、 本発明のタンパク質に対する抗体の作 製、 本発明のタンパク質に結合する化合物のスクリーニングや、 本発明のタンパ ク質の促進剤や阻害剤のスクリーニングに利用し得る。 また、 本発明のタンパク 質のアン夕ゴニストゃ競合阻害剤になり得る。
本発明のフラグメントは、 免疫原とする場合には、 少なくとも 7アミノ酸以 上、 好ましくは 8アミノ酸以上、 さらに好ましくは 9アミノ酸以上のアミノ酸 配列からなる。 本発明のタンパク質の競合阻害剤として用いる場合には、'少なく とも 100アミノ酸以上、 好ましくは 200アミノ酸以上、 さらに好ましくは 300 アミノ酸以上のァミノ酸配列を含む。
本発明のフラグメントは、 遺伝子工学的手法、 公知のペプチド合成法、 あるい は本発明の夕ンパク質を適切なぺプチダ一ゼで切断することによって製造するこ とができる。 ペプチドの合成は、 例えば、 固相合成法、 液相合成法のいずれによ つてもよい。
本発明は、 また、 本発明の DNAが揷入されたべクタ一を提供する。 本発明の ベクタ一は、 宿主細胞内において本発明の DNAを保持させたり、 本発明のタン パク質を発現させるために有用である。
ベクタ一としては、 例えば、 大腸菌を宿主とする場合には、 ベクターを大腸菌 (例えば、 JM109、 DH5a、 HB101、 XLlBlue) などで大量に増幅させ大量調 製するために、 大腸菌で増幅されるための 「ori」 をもち、 さらに形質転換され た大腸菌の選抜遺伝子 (例えば、 なんらかの薬剤 (アンピシリンゃテトラサイク リン、 カナマイシン、 クロラムフエ二コール) により判別できるような薬剤耐性 遺伝子) を有していることが好ましい。
ベクターの例としては、 M13系ベクター、 pUC系ベクター、 pBR322、 pBluescript, pCR-Scriptなどが挙げられる。 また、 cDNAのサブクロ一ニング、 切り出しを目的とした場合、 上記べクタ一の他に、 例えば、 pGEM-T、
pDIRECT、 pT7などが挙げられる。
本発明のタンパク質を生産する目的においてベクターを使用する場合には、 特 に、 発現べクタ一が有用である。 発現べクタ一としては、 例えば、 大腸菌での発 現を目的とした場合は、 ベクターが大腸菌で増幅されるような上記特徴を持つほ かに、 宿主を JM109、 DH5a、 HB101、 XLl-Blueなどの大腸菌とした場合に おいては、 大腸菌で効率よく発現できるようなプロモーター、 例えば、 lacZプ ロモ—夕— (Wardら, Nature (1989) 341, 544-546; FASEB J. (1992) 6, 2422- 2427) 、 araBプロモー夕一 (Betterら, Science (1988) 240, 1041-1043 ) 、 ま たは T7プロモーターなどを持っていることが不可欠である。 このようなベクタ —としては、 上記ベクターの他に pGEX-5X-l (フアルマシア社製) 、
「QIAexpress system」 (キアゲン社製) 、 pEGFP、 または pET (この場合、 宿 主は T7 RNAポリメラーゼを発現している BL21が好ましい)などが挙げられる。 また、 ベクターには、 タンパク質分 、のためのシグナル配列が含まれていても よい。 タンパク質分泌のためのシグナル配列としては、 大腸菌のペリブラズムに 産生させる場合、 pelBシグナル配列 (Lei, S. P. et al J. Bacteriol. (1987) 169, 4379 ) を使用すればよい。 宿主細胞へのベクターの導入は、 例えば塩化カルシ ゥム法、 エレクト口ポレーシヨン法を用いて行うことができる。
大腸菌以外にも、 例えば、 本発明のタンパク質を製造するためのベクターとし ては、 哺乳動物由来の発現ベクター (例えば、 pcDNA3 (インビトロゲン社製) や、 pEGF-BOS (Nucleic Acids. Res.1990, 18(17),p5322)、 pEF、 pCDM8) 、 昆虫細胞由来の発現べクタ一 (例えば 「Bac-to-BAC baculovairus expression system」 (ギブコ BRL社製) 、 PBacPAK8) 、 植物由来の発現べクタ一 (例え ば ρΜΗ1、 pMH2) 、 動物ウィルス由来の発現べクタ一 (例えば、 pHSV、 pMV、 pAdexLcw) 、 レトロウイルス由来の発現べクタ一 (例えば、 pZIPneo) 、 酵母由来の発現ベクター (例えば、 「Pichia Expression Kit」 (インビトロゲ ン社製) 、 pNVll 、 SP-Q01) 、 枯草菌由来の発現べクタ一 (例えば、 pPL608、 pKTH50) が挙げられる。
CHO細胞、 COS細胞、 NIH3T3細胞等の動物細胞での発現を目的とした場 合には、 細胞内で発現させるために必要なプロモー夕一、 例えば SV40プロモー 夕一 (Mulliganら, Nature (1979) 277, 108) 、 MMLV-LTRプロモータ一、 EFlaプロモ一夕一 (Mizushimaら, Nucleic Acids Res. (1990) 18, 5322) 、 CMVプロモ一ターなどを持っていることが不可欠であり、 細胞への形質転換を 選抜するための遺伝子 (例えば、 薬剤 (ネオマイシン、 G418など) により判別 できるような薬剤耐性遺伝子) を有すればさらに好ましい。 このような特性を有 するベクターとしては、 例えば、 PMAM、 pDR2、 pBK-RSV, pBK_CMV、 pOPRSV, pOP13などが挙げられる。
さらに、 遺伝子を安定的に発現させ、 かつ、 細胞内での遺伝子のコピ一数の増 幅を目的とする場合には、 核酸合成経路を欠損した CHO細胞にそれを相補する DHFR遺伝子を有するベクター (例えば、 pCHOIなど) を導入し、 メトトレキ セ一ト (MTX) により増幅させる方法が挙げられ、 また、 遺伝子の一過性の発 現を目的とする場合には、 SV40 T抗原を発現する遺伝子を染色体上に持つ COS細胞を用いて SV40の複製起点を持つベクター (pcDなど) で形質転換す る方法が挙げられる。 複製開始点としては、 また、 ポリオ一マウィルス、 アデノ ウィルス、 ゥシパピローマウィルス (BPV) 等の由来のものを用いることもで きる。 さらに、 宿主細胞系で遺伝子コピ一数増幅のため、 発現ベクターは選択マ 一力一として、 アミノグリコシドトランスフェラーゼ (APH) 遺伝子、 チミジ ンキナ一ゼ (TK) 遺伝子、 大腸菌キサンチングァニンホスホリポシルトランス フェラ一ゼ (Ecogpt) 遺伝子、 ジヒドロ葉酸還元酵素 (dhfr) 遺伝子等を含む ことができる。
また、 本発明は、 本発明のベクタ一が導入された宿主細胞を提供する。 本発明 のべクタ一が導入される宿主細胞としては特に制限はなく、 例えば、 大腸菌や 種々の動物細胞などを用いることが可能である。 本発明の宿主細胞は、 例えば、 本発明の夕ンパク質の製造や発現のための産生系として使用することができる。 タンパク質製造のための産生系は、 in vitroおよび in vivo の産生系がある。 in vitroの産生系としては、 真核細胞を使用する産生系や原核細胞を使用する産生 系が挙げられる。 '
真核細胞を使用する場合、 例えば、 動物細胞、 植物細胞、 真菌細胞を宿主に用 いることができる。 動物細胞としては、 哺乳類細胞、 例えば、 CHO (J. Exp. Med. (1995) 108, 945) 、 COS、 3T3、 ミエ口一マ、 BHK (baby hamster kidney) 、 HeLa、 Vero、 両生類細胞、 例えばアフリカッメガエル卵母細胞
(Valle, et al., Nature (1981) 291, 358-340) 、 あるいは昆虫細胞、 例えば、 Sf9、 Sm, Tn5が知られている。 CHO細胞としては、 特に、 DHFR遺伝子を欠損 した CHO細胞である dhfr-CHO (Proc. Natl. Acad. Sci. USA (1980) 77, 4216- 4220) や CHO K-l (Proc. Natl. Acad. Sci. USA (1968) 60, 1275) を好適に使 用することができる。 動物細胞において、 大量発現を目的とする場合には特に CHO細胞が好ましい。 宿主細胞へのベクタ一の導入は、 例えば、 リン酸カルシ ゥム法、 DEAEデキストラン法、 カチォニックリボソーム DOTAP (ベ一リン ガーマンハイム社製) を用いた方法、 エレクトロボ一レ一シヨン法、 リボフェク シヨンなどの方法で行うことが可能である。
植物細胞としては、 例えば、 ニコチアナ ·タパカム (Nicotiana tabacum) 由 来の細胞が夕ンパク質生産系として知られており、 これをカルス培養すればよい。 真菌細胞としては、 酵母、 例えば、 サッカロミセス (Saccharomyces) 属、 例 えば、 サッカロミセス ·セレビシェ (Saccharomyces cerevisiae) 、 糸状菌、 例 えば、 ァスペルギルス (Aspergillus) 属、 例えば、 ァスペルギルス ·二ガー (Aspergillus niger) が知られている。
原核細胞を使用する場合、 細菌細胞を用いる産生系がある。 細菌細胞としては、 大腸菌 (E. coli) 、 例えば、 JM109、 DH5a> HB101等が挙げられ、 その他、 枯草菌が知られている。
これらの細胞を目的とする DNAにより形質転換し、 形質転換された細胞を in vitroで培養することによりタンパク質が得られる。 培養は、 公知の方法に従 い行うことができる。 例えば、 動物細胞の培養液として、 例えば、 DMEM、 MEM、 RPMI1640, IMDMを使用することができる。 その際、 牛胎児血清
(FCS) 等の血清補液を併用することもできるし、 無血清培養してもよい。 培 養時の pHは、 約 6〜8であるのが好ましい。 培養は、 通常、 約 30〜40 Cで約 15〜200時間行い、 必要に応じて培地の交換、 通気、 攪拌を加える。
一方、 in vivoでタンパク質を産生させる系としては、 例えば、 動物を使用す る産生系や植物を使用する産生系が挙げられる。 これらの動物または植物に目的 とする DNAを導入し、 動物または植物の体内でタンパク質を産生させ、 回収す る。 本発明における 「宿主」 とは、 これらの動物、 植物を包含する。
動物を使用する場合、 哺乳類動物、 昆虫を用いる産生系がある。 哺乳類動物と しては、 ャギ、 ブ夕、 ヒッジ、 マウス、 ゥシを用いることができる (Vicki
Glaser, SPECTRUM Biotechnology Applications, 1993) 。 また、 哺乳類動物を 用いる場合、 トランスジェニック動物を用いることができる。
例えば、 目的とする DNAを、 ャギ /3カゼインのような乳汁中に固有に産生さ れるタンパク質をコードする遺伝子との融合遺伝子として調製する。 次いで、 こ の融合遺伝子を含む DNA断片をャギの胚へ注入し、 この胚を雌のャギへ移植す る。 胚を受容したャギから生まれるトランスジエニックャギまたはその子孫が産 生する乳汁から、 目的のタンパク質を得ることができる。 トランスジエニックャ ギから産生されるタンパク質を含む乳汁量を増加させるために、 適宜ホルモンを トランスジエニックャギに使用してもよい (Ebert, KM. et al, Bio/Technology (1994) 12, 699-702) 。
また、 昆虫としては、 例えばカイコを用いることができる。 カイコを用いる場 合、 目的のタンパク質をコ一ドする DNAを揷入したバキュロウィルスをカイコ に感染させることにより、 このカイコの体液から目的のタンパク質を得ることが できる (Susumu, M. et al., Nature (1985) 315, 592-594) 。
さらに、 植物を使用する場合、 例えばタバコを用いることができる。 タバコを 用いる場合、 目的とするタンパク質をコ一ドする DNAを植物発現用べクタ一、 例えば PMON 530に揷入し、 このべクタ一をァグロパクテリゥム 'ッメファシ エンス (Agrobacterium tmnefaciens) のようなバクテリアに導入する。 このバ クテリアをタバコ、 例えば、 ニコチアナ'夕バカム (Nicotiana tabacum) に感 染させ、 本タバコの葉より所望のタンパク質を得ることができる (Julian K.-C. Ma et al., Eur. J. Immunol. (1994) 24, 131-138) 。
これにより得られた本発明のタンパク質は、 宿主細胞内または細胞外 (培地な ど) から単離し、 実質的に純粋で均一なタンパク質として精製することができる。 タンパク質の分離、 精製は、 通常のタンパク質の精製で使用されている分離、 精 製方法を使用すればよく、 何ら限定されるものではない。 例えば、 クロマトダラ フィ一カラム、 フィル夕一、 限外濾過、 塩析、 溶媒沈殿、 溶媒抽出、 蒸留、 免疫 沈降、 SDS-ポリアクリルアミドゲル電気泳動、 等電点電気、泳動法、 透析、 再結 晶等を適宜選択、 組み合わせればタンパク質を分離、 精製することができる。 クロマ卜グラフィ一としては、 例えばァフィ二ティ一クロマトグラフィー、 ィ オン交換クロマトグラフィー、 疎水性クロマトグラフィー、 ゲル濾過、 逆相クロ マトグラフィー、 P及着クロマトグラフィー等が挙げられる (Strategies for
Protein Purification and Characterization: A Laboratory Course Manual. Ed - Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 199bノ 。 こ れらのクロマトグラフィーは、 液相クロマトグラフィー、 例えば HPLC、 FPLC 等の液相クロマトグラフィーを用いて行うことができる。 本発明は、 これらの精 製方法を用い、 高度に精製されたタンパク質も包含する。
なお、 タンパク質を精製前または精製後に適当なタンパク質修飾酵素を作用さ せることにより、 任意に修飾を加えたり、 部分的にペプチドを除去することもで きる。 タンパク質修飾酵素としては、 例えば、 トリプシン、 キモトリブシン、 リ シルェンドぺプチダーゼ、 プロティンキナ一ゼ、 ダルコシダ一ゼなどが用いられ る。
後述の実施例において示されるように、 配列番号 1一 6 5に示される癌関連遺 伝子の遺伝子配列 (表 1を参照) を元に PCRプライマーを設計し、 ヒトの正常 および癌組織から得た cDNAを用いて、 定量 PCRによりヒト組織における癌関 連遺伝子の発現量の定量化を行ったところ、 本発明の癌関連遺伝子は特定のヒ卜 癌組織においてその発現が亢進されていることが見いだされた。
配列番号 1、 2、 28、 29、 30、 31、 32、 51、 52、 60,および 6 1に記載されるヌクレオチド配列を有する遺伝子は、 肺癌においてその発現が亢 進していることが見いだされた。 すなわち、 配列番号 1、 2、 28、 29、 30、 31、 32、 51、 52、 60および 61に記載されるヌクレオチド配列を有す る遺伝子によりコードされるタンパク質またはそのフラグメントは、 肺癌の診断 または治療において有用である。 好ましくは、 政遺伝子は、 配列番号 1、 2、 2 8、 29、 30、 31および 32のいずれかに記載されるヌクレオチド配列、 よ り好ましくは配列番号 1または 2に記載されるヌクレオチド配列を有する。
配列番号 3、 4、 5、 6、 7、 8、 9、 10、 1 1、 12、 13、 22、 23、 24、 25、 26、 27、 33、 34、 35、 36、 37、 38、 39、 40、 41、 42、 53、 54および 55に記載されるヌクレオチド配列を有する遺伝 子は、 胃癌においてぞの発現が亢進していることが見いだされた。 すなわち、 配 列番号 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13、 22、 23、 2 4、 25、 26、 27、 33、 34、 35、 36、 37、 38、 39、 40、 4 1、 42、 53、 54および 55に記載されるヌクレオチド配列を有する遺伝子 によりコードされるタンパク質またはそのフラグメントは、 胃癌の診断または治 療において有用である。 好ましくは、 該遺伝子は、 配列番号 3、 4、 5、 6、 7、 8、 9、 10、 1 1、 12、 13、 22、 23、 24、 25および 26のいずれ かに記載されるヌクレオチド配列を有する。
配列番号 3、 7、 20、 21、 46、 47、 48、 49および 50に記載され るヌクレオチド配列を有する遺伝子は、 大腸癌においてその発現が亢進している ことが見いだされた。 すなわち、 配列番号 3、 7、 20、 21、 46、 47、 4 8, 49および 50に記載されるヌクレオチド配列を有する遺伝子によりコード されるタンパク質またはそのフラグメントは、 大腸癌の診断または治療において 有用である。 好ましくは、 該遺伝子は、 配列番号 3、 7、 20、 21、 46、 4 9および 50のいずれかに記載されるヌクレオチド配列、 より好ましくは配列番 号 3、 7、 20および 21のいずれかに記載されるヌクレオチ.ド配列を有する。 配列番号 14、 15、 16、 17、 18、 19、 43、 44、 45、 56、 5 7、 58、 59、 62、 63、 64および 65に記載されるヌクレオチド配列を 有する遺伝子は、 肝癌においてその発現が亢進していることが見いだされた。 す なわち、 配列番号 14、 15、 16、 17、 18、 19、 43、 44、 45、 5 6、 57、 58、 59、 62、 63、 64および 65に記載されるヌクレオチド 配列を有する遺伝子によりコードされるタンパク質またはそのフラグメントは、 肝癌の診断または治療において有用である。 好ましくは、 該遺伝子は、 配列番号 14、 15、 16、 17、 18、 19、 45、 56、 57、 58、 64および 6 5のいずれかに記載されるヌクレオチド配列、 より好ましくは、 配列番号 14、 15、 16、 17、 18、 19、 64および 65のいずれかに記載されるヌクレ ォチド配列を有する。
配列番号 1— 65に記載される癌関連遺伝子によりコードされるタンパク質ま たはそのフラグメントを含む本発明の組成物は、 癌に対するワクチンとして用い ることができる。 上述のタンパク質またはその免疫原性フラグメントを、 適当な アジュバントとともに、 あるいは他の適当なポリペプチドとの融合タンパク質と して、 対象となるヒトまたはその他の動物に投与することにより、 そのヒトまた は動物の体内で免疫応答を生じさせることができる。 あるいは、 本発明の組成物 は、 上述の癌関連遺伝子またはそのフラグメントを発現する細胞の形で投与して もよい。
また、 本発明の組成物は、 被検者が配列番号 1-65に記載される癌関連遺伝 子によりコードされるタンパク質に対する抗体を有するか否かを測定することに より、 特定の癌に罹患しているか否かを診断するために用いることができる。 饥体
別の観点においては、 本発明は、 配列番号 1—65のいずれかに記載されるヌ クレオチド配列を有する癌関連遺伝子によりコードされるタンパク質またはその フラグメントを認識する抗体またはその抗原結合性フラグメントを提供する。 さ らに、 該抗体またはその結合フラグメントを含む、 癌を診断または治療するため の組成物を提供する。 本発明の抗体は、 好ましくは、 配列番号 66—123で表 されるァミノ酸配列を有するタンパク質またはそのフラグメントを認識すること ができる。 本発明はまた、 このような抗体を産生する細胞を提供する。 ' 認識するとは、 抗体が、 特定の条件下において、 上述の癌関連遺伝子によりコ ードされるタンパク質またはそのフラグメントに対して、 他のポリペプチドに結 合するより高い親和性をもつて結合することを意味する。
本発明の抗体には、 モノクローナル抗体およびポリクロ一ナル抗体、 ならびに 抗原決定基に特異的に結合する能力を保持している抗体および T—細胞レセプ夕 —フラグメント等の、 抗体の変種および誘導体が含まれる。
又、 本発明のお体の種類は特に制限されず、 マウス抗体、 ヒト抗体、 ラット抗 体、 ゥサギ抗体、 ヒッジ抗体、 ラクダ抗体等や、 ヒトに対する異種抗原性を低下 させること等を目的として人為的に改変した遺伝子組換え型抗体、 例えば、 キメ ラ抗体、 ヒト化抗体、 等を適宜用いることができる。 遺伝子組換え型抗体は、 既 知の方法を用いて製造することができる。 キメラ抗体は、 ヒト以外の哺乳動物、 例えば、 マウス抗体の重鎖、 軽鎖の可変領域とヒト抗体の重鎖、 軽鎖の定常領域 からなる抗体であり、 マウス抗体の可変領域をコードする DNAをヒト抗体の定 常領域をコ一ドする DNAと連結し、 これを発現ベクターに組み込んで宿主に導 入し産生させることにより得ることができる。 ヒト化抗体は、 再構成
(reshaped) ヒト抗体とも称され、 ヒト以外の哺乳動物、 たとえばマウス抗体 の相補性決定領域 (CDR; complementarity determining region) をヒト抗体の 相補性決定領域へ移植したものであり、 その一般的な遺伝子組換え手法も知られ ている。 具体的には、 マウス抗体の CDRとヒト抗体のフレームワーク領域 (framework region; FR) を連結するように設計した DNA配列を、 末端部に オーバ一ラップする部分を有するように作製した数個のオリゴヌクレオチドから PCR法により合成する。 得られた DNAをヒト抗体定常領域をコードする DNA と連結し、 次いで発現ベクターに組み込んで、 これを宿主に導入し産生させるこ とにより得られる (欧州特許出願公開番号 EP 239400、 国際特許出願公開番号 WO 96/02576参照) 。 CDRを介して連結されるヒト抗体の FRは、 相補性決定 領域が良好な抗原結合部位を形成するものが選択される。 必要に応じ、 再構成ヒ ト抗体の相補性決定領域が適切な抗原結合部位を形成するように抗体の可変領域 のフレームワーク領域のアミノ酸を置換してもよい (Sato, et al., Cancer Res: 1993, 53, 851-856.) 。
また、 ヒト抗体の取得方法も知られている。 例えば、 ヒトリンパ球を in vitro で所望の抗原または所望の抗原を発現する細胞で感作し、 感作リンパ球をヒトミ エロ一マ細胞、 例えば U266と融合させ、 抗原への結合活性を有する所望のヒト 抗体を得ることもできる (特公平 1-59878参照) 。 また、 ヒト抗体遺伝子の全 てのレパートリ一を有するトランスジエニック動物を所望の抗原で免疫すること で所望のヒト抗体を取得することができる (国際特許出願公開番号 WO
93/12227, WO 92/03918, WO 94/02602, WO 94/25585, WO 96/34096, WO 96/33735参照) 。 さらに、 ヒト抗体ライブラリ一を用いて、 パンニングにより ヒト抗体を取得する技術も知られている。 例えば、 ヒト抗体の可変領域を一本鎖 抗体 (scFv) としてファージディスプレイ法によりファ一ジの表面に発現させ、 抗原に結合するファージを選択することができる。 選択されたファージの遺伝子 を解析すれば、 抗原に結合するヒト抗体の可変領域をコードする DNA配列を決 定することができる。 抗原に結合する scFvの DNA配列が明らかになれば、 当 該配列を適当な発現ベクターを作製し、 ヒト抗体を取得することができる。 これ らの方法は既に衆知であり、 WO 92/01047, WO 92/20791, WO 93/06213, WO 93/11236, WO 93/19172, WO 95/01438, WO 95/15388を参考にすることができ る。
また、 抗体は抗原に'結合することができれば、 抗体断片 (フラグメント) 等の 低分子化抗体や抗体の修飾物などであってもよい。 抗体断片の具体例としては、 例えば、 Fab、 Fab'、 F(ab,)2、 Fv、 Diabodyなどを挙げることができる。 この ような抗体断片を得るには、 これら抗体断片をコ一ドする遺伝子を構築し、 これ を発現ベクターに導入した後、 適当な宿主細胞で発現させればよい (例えば、 Co, M. S. et al., J. Immunol. (1994) 152, 2968-2976; Better, M. and Horwitz, A. H., Methods Enzymol. (1989) 178, 476-496; Pl ckthun, A. and Skerra, A., Methods Enzymol. (1989) 178, 497-515; Lamoyi, E., Methods Enzymol.
(1986) 121, 652-663; Rousseaux, J. et al, Methods Enzymol. (1986) 121, 663- 669; Bird, R. E. and Walker, B. W., Trends Biotechnol. (1991) 9, 132-137参 照) 。
抗体の修飾物として、 ポリエチレングリコール (PEG) 等の各種分子と結合 した抗体を使用することもできる。 又、 抗体に放射性同位元素、 化学療法剤、 細 菌由来トキシン等の細胞傷害性物質などを結合することも可能であり、 特に放射 性標識抗体は有用である。 このような抗体修飾物は、 得られた抗体に化学的な修 飾を施すことによって得ることができる。 なお、 抗体の修飾方法はこの分野にお いてすでに確立されている。
又、 本発明においては、 細胞傷害活性を増強する目的などで、 糖鎖を改変した 抗体などを用いることも可能である。 抗体の糖鎖改変技術は既に知られている
(例えば、 WO00/61739、 WO02/31140など) 。
又、 本発明においては、 2種以上の異なる抗原に対して特異性を有する多特異 性抗体も含まれる。 通常このような分子は 2個の抗原を結合するものであるが (即ち、 二重特異性お体)、 本発明における 「多特異性抗体」 は、 それ以上 (例えば、 3種類の)抗原に対して特異性を有する抗体を包含するものである。 多特異性抗 体は全長からなる抗体、 またはそのような抗体の断片 (例えば、 F(ab')2二特異性 抗体)であり得る。
当分野において多特異性抗体の製造法は公知である。 全長の二特異性抗体の産 生は、 異なる特異性を有する 2つの免疫グロプリン重鎖-軽鎖の共発現を含むも のである (Millstein et al., Nature 305:537-539 (1983))。 免疫グロプリンの重鎖 および軽鎖はランダムに取り合わされるので、 共発現を行う得られた複数のハイ プリドーマ (クヮドロ一マ)は、 各々異なる抗体分子を発現するハイプリドーマの 混合物であり、 このうち正しい二特異性抗体を産生するものを選択する必要があ る。 選択はァフィ二ティ一クロマトグラフィ一等の方法により行うことができる。 また、 別な方法では所望の結合特異性を有する抗体の可変領域を免疫グロプリン の定常ドメイン配列に融合する。 該定常ドメイン配列は、 好ましくは免疫グロブ リンの重鎖の定常領域の内、 ヒンジ、 CH2および CH3領域の一部を少なくとも 含むものである。 好ましくは、 さらに軽鎖との結合に必要な重鎖の CH1領域が 含まれる。 免疫グロブリン重鎖融合体をコードする DNA、 および、 所望により 免疫グロプリン軽鎖をコ一ドする DNAをそれぞれ別々の発現べクタ一に挿入し、 適当な宿主生物に形質転換する。 別々の発現ベクターに各遺伝子を挿入すること により、 それぞれの鎖の存在割合が同じでない方が、 得られる抗体の収量が上が る場合に、 各鎖の発現割合の調節が可能となり都合が良いが、 当然ながら、 複数 の鎖をコードする遺伝子を一つのベクタ一に揷入して用いることも可能である。 好ましい態様においては、 第一の結合特性を有する重鎖が八イブリッド免疫グ ロブリンの一方の腕として存在し、 別の結合特性の重鎖-軽鎖複合体がもう一方 の腕として存在する二重特異性抗体が望ましい。 このように一方の腕のみに軽鎖 を存在させることにより、 二重特異性抗体の他の免疫グロプリンからの分離を容 易に行うことができる。 該分離方法については、 WO94/04690参照。 二特異性 抗体の作成方法については、 さらに、 Sureshら (Methods in Enzymology 121:210 (1986)) の方法を参照することができる。 組換細胞培養物から得られる 最終産物中のホモダイマーを減らしへテロダイマーの割合を増加させる方法とし て、 抗体の定常ドメインの CH3を含み、 一方の抗体分子において、 他方の分子 と結合する表面の 1若しくは複数の小さな側鎖のアミノ酸を大きな側鎖のアミ ノ酸 (例えば、 チロシンやトリブトファン) に変え、 他方の抗体分子の対応する 部分の大きさ側鎖のアミノ酸を小さなもの (例えば、 ァラニンゃスレオニン) に 変えて第一の抗体分子の大きな側鎖に対応する空洞を設ける方法も知られている (WO96/27011) 。
二重特異性抗体には、 例えば、 一方の抗体がアビジンに結合され、 他方がピオ チン等に結合されたようなへテロ共役抗体が含まれる (米国特許第 4,676,980 号; WO91/00360;WO92/00373;EP03089) 。 このようなへテロ共役抗体の作成に 利用される架橋剤は周知であり、 例えば、 米国特許第 4,676,980号にもそのよう な例が記載されている。
また、 抗体断片より二特異性抗体を製造する方法も報告されている。 例えば、 化学結合を利用して製造することができる。 例えば、 まず F(ab')2断片を作成し、 同一分子内でのジフルフィド形成を防ぐため断片をジチオール錯化剤アルサニル ナトリゥムの存在化で還元する。 次に F(ab')2断片をチォニト口安息香酸塩 (TNB)誘導体に変換する。 メルカプトェチルアミンを用いて一方の F(ab')2-TNB 誘導体を Fab'-チオールに再還元した後、 F(ab')2-TNB誘導体および Fab'-チォー ルを等量混合し二特異性抗体を製造する。
組換細胞培養物から直接、 二重特異性抗体を製造し、 単離する方法も種々、 報 告されている。 例えば、 ロイシンジッパーを利用した二重特異性抗体の製造方法 が報告されている (Kostelny et al., JJmmunol. 148(5):1547-1553 (1992))。 まず、 Fosおよび Junタンパク質のロイシンジッパーぺプチドを、 遺伝子融合により 異なる抗体の Fab'部分に連結させ、 ホモダイマ一の抗体をヒンジ領域において モノマーを形成するように還元し、 抗体へテロダイマ一となるように再酸化する。 また、 軽鎖可変ドメイン (VL)に重鎖可変ドメイン (VH)を、 これら 2つのドメィ ン間での対形成できない位に短いリンカ一を介して連結し、 相補的な別の VLお よび VHドメンと対を形成させ、 それにより 2つの抗原結合部位を形成させる 方法もある (Hollinger et al" Proc.Natl.Acad.Sci.USA 90:6444-6448 (1993))。 ま た、 一本鎖 Fv(sFV)を用いたダイマ一についても報告されてレ る (Gruger et al., J.Imm皿 ol.152:5368 (1994))。 さらに、 二重特異性ではなく三重特異性の抗体 についても報告されている (Tutt et al., J.Immunol.147:60 (1991))。
本発明における 「抗体」 にはこれらの抗体も包含される。
本発明の抗体および抗体フラグメントは、 任意の適当な方法、 例えば、 インビ ポ、 培養細胞、 インビトロ翻訳反応、 および組換え DN A発現系により製造する ことができる。
モノクローナル抗体および八ィプリドーマを製造する手法は当該技術分野にお いてよく知られている (Campbe l 1, "Mono l ona l An t i b o d y Te c hno l ogy : Labo r a t o ry Te c hn i que s i n B i o chemi s t ry and Mo l e c u l a r B i o 1 o g y"、 E l s e v i e r S c i e nc e Pub l i s he r s, Am s t e r d am, T e Ne t he r l and s, 1984 ; S t . Gr o t h e t a 1. 、 J. Immun o 1. Me t od s 35 : 1 -21, 198 0) 。 上述の癌関連遺 fe子によりコードされるタンパク質またはフラグメントを 免疫原として用いて、 抗体を生成することが知られている任意の動物 (マウス、 ゥサギ等) に皮下または腹膜内注射することにより免疫することができる。 免疫 に際してアジュバントを用いてもよく、 そのようなアジュバントは当該技術分野 においてよく知られている。
ポリクローナル抗体は、 免疫した動物から抗体を含有する抗血清を単離し、 E L I SAアツセィ、 ウエスタンプロット分析、 またはラジオィムノアッセィ等の 当該技術分野においてよく知られる方法を用いて、 所望の特異性を有する抗体の 存在についてスクリ一ニングすることにより得ることができる。
モノクローナル抗体は、 免疫した動物から脾臓細胞を切除し、 ミエ口一マ細胞 と融合させ、 モノクロ一ナル抗体を産生するハイプリドーマ細胞を作製すること により得ることができる。 EL I SAアツセィ、 ウエスタンプロット分析、 また はラジオィムノアッセィ等の当該技術分野においてよく知られる方法を用いて、 目的とする夕ンパク質またはそのフラグメントを認識する抗体を産生するハイブ リドーマ細胞を選択する。 所望の抗体を分泌するハイブリド一マをクロ一ニング し、 適切な条件下で培養し、 分泌された抗体を回収し、 当該技術分野においてよ く知られる方法、 例えばイオン交換カラム、 ァフィ二ティークロマトグラフィー 等を用いて精製することができる。 あるいは、 ゼノマウス株を用いてヒト型モノ クローナル抗体を製造してもよい (Gr e e n, J. Immuno l. Me t h od s 231 : 11-23, 1999 ; We 1 1 s, E e k, Ch em B i o 1 2000 Aug ; 7 (8) : R185-6を参照) 。
モノクローナル抗体をコードする DNAは、 慣用な方法 (例えば、 モノクロ一 ナル抗体の重鎖および軽鎖をコードする遺伝子に特異的に結合することができる オリゴヌクレオチドプローブを用いて)により容易に単離、 配列決定できる。 八 イブリド一マ細胞はこのような DNAの好ましい出発材料である。 一度単離した ならば、 DNAを発現ベクターに挿入し、 E.coli細胞、 サル COS細胞、 チヤィ ニーズノ\ムスター卵巣 (CHO)細胞または形質転換されなければ免疫グロブリン を産生しないミエローマ細胞等の宿主細胞へ組換え、 組換え宿主細胞からモノク 口一ナル抗体を産生させる。 また別の態様として、 McCaffertyら (Nature 348:552-554 (1990))により記載された技術を用いて製造された抗体ファージラ イブラリーより抗体、 または抗体断片は単離することができる。
上述の抗体は、 検出'可能なように標識することができる。 標識としては、 放射 性同位体、 ァフィ二ティー標識 (例えばピオチン、 アビジン等) 、 酵素標識 (例 えば西洋ヮサビペルォキシダ一ゼ、 アルカリホスファターゼ等) 、 蛍光標識 (例 えば F I TCまたは口一ダミン等) 、 常磁性原子等が挙げられる。 そのような標 識を行う方法は当該技術分野においてよく知られている。 上述の抗体は、 固体支 持体上に固定化してもよい。 そのような固体支持体の例には、 プラスチック、 ァ ガロース、 セファロ一ス、 ポリアクリルアミドおよびラテックスビーズ等が含ま れる。 抗体をそのような固体支持体に結合させる技術は当該技術分野においてよ く知られている。
後述の実施例において記載されるように、 本発明の癌関連遺伝子は、 特定の癌 組織において亢進された発現を示すため、 本発明の抗体は、 癌診断マーカ一とし て有用である。 本発明の抗体を、,ウエスタンブロット法、 EL I SA法、 組織染 色法などの手法において用いて、 組織または細胞における、 癌関連遺伝子により コードされるタンパク質の発現を検出することができる。 被験者の組織に由来す る試料 (例えば、 生検サンプル、 血液サンプル等) と本発明の組成物とを免疫複 合体が形成されるような条件下で接触させ、 該試料に抗体が結合するか否かを判 定することにより、 該試料中の癌関連遺伝子によりコードされるタンパク質の存 在または量を判定することができ、 このことにより癌の診断、 癌の進行または治 癒のモニタリング、 および予後の予測を行うことができる。 本発明の診断用組成 物は、 試料中で上述の癌関連遺伝子によりコ一ドされるタンパク質の存在を検出 するためのキットとして提供することができる。 このようなキットは、 上述の抗 体に加えて、 洗浄試薬および結合した抗体の存在を検出しうる試薬、 例えば、 標 識第 2抗体、 標識された抗体と反応しうる発色団、 酵素、 または抗体結合試薬、 ならびに使用の指針を含むことができる。
さらに、 本発明の癌関連遺伝子によりコードされるタンパク質に対する抗体は、 特定の癌細胞に対する特異性を有するため、 癌の治療剤として、 あるいは、 薬剤 を癌組織に特異的にターゲティングさせるミサイル療法において用いることがで きる。 好ましくは、 本発明の組成物は、 肺癌、 胃癌、 大腸癌および肝癥の診断お よび治療において用いられる。
本発明の治療剤は、 当該技術分野においてよく知られる薬学的に許容しうる担 体とともに、 混合、 溶解、 顆粒化、 錠剤化、 乳化、 カプセル封入、 凍結乾燥等に より、 製剤化することができる。
経口投与用には、 本発明の治療剤を、 薬学的に許容しうる溶媒、 賦形剤、 結合 剤、 安定化剤、 分散剤等とともに、 錠剤、 丸薬、 糖衣剤、 軟カプセル、 硬カプセ ル、 溶液、 懸濁液、 乳剤、 ゲル、 シロップ、 スラリー等の剤形に製剤化すること ができる。
非経口投与用には、 本発明の治療剤を、 薬学的に許容しうる溶媒、 賦形剤、 結 合剤、 安定化剤、 分散剤等とともに、 注射用溶液、 懸濁液、 乳剤、 クリーム剤、 軟膏剤、 吸入剤、 座剤等の剤形に製剤化することができる。 注射用の処方におい ては、 本発明の治療剤を水性溶液、 好ましくはハンクス溶液、 リンゲル溶液、 ま たは生理的食塩緩衝液等の生理学的に適合性の緩衝液中に溶解することができる。 さらに、 組成物は、 油性または水性のべヒクル中で、 懸濁液、 溶液、 または乳濁 液等の形状をとることができる。 あるいは、 治療剤を粉体の形態で製造し、 使用 前に滅菌水等を用いて水溶液または懸濁液を調製してもよい。 吸入による投与用 には、 本発明の治療剤を粉末化し、 ラクト一スまたはデンプン等の適当な基剤と ともに粉末混合物とすることができる。 座剤処方は、 本発明の治療剤をカカオバ ター等の慣用の坐剤基剤と混合することにより製造することができる。 さらに、 本発明の治療剤は、 ポリマ一マトリクス等に封入して、 持続放出用製剤として処 方することができる。
投与量および投与回数は、 剤形および投与経路、 ならびに患者の症状、 年齢、 体重によって異なるが、 一般に、 本発明の治療剤は、 1日あたり体重 l k gあた り、 約 0. 0 0 l m gから 1 0 0 O m gの範囲、 好ましくは約 0. O l m g力ら 1 O m gの範囲となるよう、 1日に 1回から数回投与することができる。
治療剤は通常非経口投与経路で、 例えば注射剤 (皮下注、 静注、 筋注、 腹腔内 注など) 、 経皮、 経粘膜、 経鼻、 経肺などで投与されるが、 特に限定されず、 経 口投与でもよい。 ポリヌクレオチド
さらに別の観点においては、 本発明は、 配列番号 1— 6 5のいずれかに記載さ れるヌクレオチド配列もしくはこれに相補的なヌクレオチド配列を有するポリヌ クレオチド、 あるいはこれらのポリヌクレオチドに高ストリンジェントな条件下 でハイプリダイズすることができるポリヌクレオチドを提供する。
さらに、 本発明は、 ¾列番号 1一 6 5のいずれかに記載されるヌクレオチド配 列の少なくとも 1 2個の連続するヌクレオチド配列もしくはこれに相補的なヌク レオチド配列を有するポリヌクレオチド、 あるいは、 配列番号 1 - 6 5のいずれ かに記載されるヌクレオチド配列を有するポリヌクレオチドに高ストリンジェン トな条件下でハイブリダィズすることができる少なくとも 1 2ヌクレオチドの長 さのォリゴヌクレオチドを含む組成物を提供する。
これらのポリヌクレオチドは、 癌の診断、 タンパク質の製造、 プライマー、 遺 伝子発現阻害の為のアンチセンス ' siRNAなどに有用である。 癌は、 好ましく は、 肺癌、 胃癌、 大腸癌および肝癌から選択される。
配列番号 1一 6 5に示される本発明の癌関連遺伝子は、 後述の実施例において 示されるように、 特定のヒト癌組織においてその発現が亢進されている。 したが つて、 本発明の組成物は、 «関連遺伝子の発現をサイレンシングするためのアン チセンスオリゴヌクレオチド、 リポザィム、 s i R NA等の薬剤として、 および 癌関連遺伝子を検出するためのプローブまたはプライマ一として用いることがで きる。 又、 本発明のタンパク質を製造する際に用いることも可能である。
本発明の組成物に含まれるポリヌクレオチドまたはオリゴヌクレオチドは、 一 本鎖であっても二本鎖であってもよく、 DNA、 R NA、 またはこれらの混合物、 あるいは P NA等の誘導体であってもよい。 これらのポリヌクレオチドまたはォ リゴヌクレオチドは、 ヌクレオシド間結合、 塩基および Zまたは糖において化学 的に修飾されていてもよく、 5,末端および Zまたは 3 '末端に修飾基を有してい てもよい。 ヌクレオシド間結合の修飾の例としては、 ホスホロチォェ一ト、 ホス ホロジチォエート、 ホスホルアミドチォェ一ト、 ホスホルアミデート、 ホスホル ジアミデート、 メチルホスホネート、 アルキルホスホ卜リエステル、 およびホル ムァセタール等が挙げられる。 塩基修飾の例としては、 5—フルォロウラシル、 5—ブロモウラシル、 5—クロロウラシル、 5—、ョ一ドウラシル、 ヒポキサンチ ン、 キサンチン、 4一ァセチルシトシン、 および 5— (力ルポキシヒドロキシェ チル) ゥラシル等が挙げられる。 糖修飾の例としては、 2,一〇一アルキル、 2, — O—アルキル— O—アルキルまたは 2,一フルォロ修飾等が挙げられる。 また、 ァラビノース、 2—フルォロアラビノース、 キシルロースおよびへキソース等の 糖を用いてもよい。
本発明のポリヌクレオチドは、 配列番号 1—6 5のいずれかに記載されるヌク レオチド配列もしくはヒれに相補的なヌクレオチド配列を有するポリヌクレオチ ド、 あるいはこれらのポリヌクレオチドに高ストリンジェントな条件下でハイブ リダイズすることができるポリヌクレオチドである。 高ストリンジェントな条件 下で八イブリダィズすることが可能なポリヌクレオチドは、 通常、 高い同一性を 有する。 ここで、 高い同一性とは、 配列番号 1—6 5のいずれかに記載されるヌ クレオチド配列と 7 0 %以上の同一性を有し、 好ましくは、 8 0 %以上の同一性、 さらに好ましくは 9 0 %以上の同一性を有することを言う。
塩基配列の同一性は、 Karlin and Altschulによるァルゴリズム BLAST(Proc. Natl. Acad. Sci. USA 90:5873-5877, 1993)によって決定することができる。 こ のァルゴリズムに基づいて、 BLASTNや BLASTXと呼ばれるプログラムが開 発されている (Altschul et al. J. Mol. Biol.215:403'410, 1990)。 BLASTに基づい て BLASTNによって塩基配列を解析する場合には、 パラメ一夕一はたとえば score = 100、 wordlength = 12とする。 BLASTと Gapped BLASTプログラム を用いる場合には、 各プログラムのデフォルトパラメーターを用いる。 これらの 解析方法の具体的な手法は公知である (http://www.ncbi.nlm.nih.gov.)。
さらに、 本発明は、 配列番号 6 6— 1 2 3に記載のアミノ酸配列をコードする ポリヌクレオチドを含む。 これらのポリヌクレオチドは本発明のタンパク質を製 造する際に用いることができ、 又、 配列番号 1—65のいずれかに記載されるヌ クレオチド配列またはその相補的な配列を有するポリヌクレオチドが癌細胞で高 発現していることから、 それらのポリヌクレオチドを検出して癍の診断を行う際 のプローブとして用いること等が可能である。
又、 本発明の組成物は、 これを導入した細胞内で所望のアンチセンス、 リポザ ィム、 s i RNAを生成させることができる核酸構築物として提供してもよい。 本発明のポリヌクレオチドまたはォリゴヌクレオチドをアンチセンス、 リポザ ィム、 siRNAなどとして用いる場合、 ポリヌクレオチドまたはオリゴヌクレオ チドは少なくとも 12ヌクレオチド以上の鎖長を有していることが好ましく、 さ らに好ましくは 12— 50ヌクレオチドであり、 特に好ましくは 12— 25ヌク レオチドである。 これらのポリヌクレオチドまたはオリゴヌクレオチドは、 所望 のアンチセンス、 リポザィムまたは s i RNAの活性を有する限り、 上述したヌ クレオチド配列から、 1または数個の塩基が欠失、 置換または付加された変異体 であってもよい。 このような変異体は、 好ましくは、 上述のヌクレオチド配列と、 少なくとも 70%、 好ましくは 90%またはそれ以上、 より好ましくは 95%ま たはそれ以上の同一性を有するヌクレオチド配列を有する。 あるいは、 このよう なポリヌクレオチドまたはオリゴヌクレオチドは、 配列番号 1—65のいずれか に記載されるヌクレオチド配列を有するポリヌクレオチドに高ストリンジェント な条件下でハイプリダイズすることができる。
ハイブリダィゼ一ションとの用語は、 DNAまたはこれに対応する RNAが、 , 溶液中でまたは固体支持体上で、 別の DNAまたは RNA分子と水素結合相互作 用により結合することを意味する。 このような相互作用の強さは、 ハイブリダィ ゼーション条件のストリンジエンシーを変化させることにより評価することがで きる。 所望の特異性および選択性によって、 種々のストリンジエンシーのハイブ リダィゼーシヨン条件を用いることができ、 ストリンジエンシーは、 塩濃度また は変性剤の濃度を変化させることにより調節することができる。 そのようなスト リンジエンシーの調節方法は当該技術分野においてよく知られており、 例えば、 "Mo l e c u l a r C 1 o n i n g: A L abo r a t o ry M a n u a l"、 第 2版. Co l d Sp r i ng Ha r bo r Labo r a t o r y, S amb r o ok, F r i t s ch, &M a n i a t i s r e d s. 、 1 9 89) に記載されている。
ストリンジェントなハイブリダィゼ一シヨン条件とは、 50%ホルムアミドの 存在下で、 700mMのNaC 1中 42°C、 またはこれと同等の条件をいう。 ス トリンジェントなハイブリダィゼ一ション条件の一例は、 50 %ホルムアミド、 5XSSC、 50mMNaH2PO4、 pH6. 8、 0. 5%SDS、 0. lm g/mL超音波処理サケ精子 DNA、 および 5 Xデンハルト溶液中で 42 °Cで一 夜のハイプリダイゼーシヨン; 2XSSC、 0. 1 %SDSで 45°Cでの洗浄; および 0. 2XS SC、 0. 1 %SDSで 45 での洗浄である。
本発明のポリヌクレオチドおよびオリゴヌクレオチドは、 当業者に公知の方法 で製造することが可能である。 例えば、 当該技術分野において知られるプロトコ ルを用いて、 市販の DNA合成機 (例えば 394合成器、 App l i e d B i o s y s t ems社製) で合成することができる。 あるいは、 本明細書に開示さ れる配列情報に基づいて、 適当なテンプレートとプライマ一とを組み合わせて用 いて、 当該技術分野においてよく知られる P C R増幅技術により製造することが できる。
さらに、 本発明のポリペプチドを発現している細胞より cDNAライブラリー を作製し、 本発明のポリヌクレオチドの配列の一部をプローブにしてハイプリダ ィゼ一シヨンを行うことにより調製できる。 cDNAライブラリ一は、 例えば、 文南犬 (Sambrook, J. et al., Molecular Clomng、 Cold Spring Harbor
Laboratory Press (1989)) に記載の方法により調製してもよいし、 市販の DNA ライブラリーを用いてもよい。 また、 本発明のポリペプチドを発現している細胞 より UNAを調製し、 逆転写酵素により cDNAを合成した後、 本発明の DNAの 配列 (例えば、 配列番号: 1) に基づいてオリゴ DNAを合成し、 これをプライ マ一として用いて PCR反応を行い、 本発明のポリペプチドをコードする cDNA を増幅させることにより調製することも可能である。
また、 得られた cDNAの塩基配列を決定することにより、 それがコードする 翻訳領域を決定でき、 本発明のタンパク質のアミノ酸配列を得ることができる。 また、 得られた cDNAをプローブとしてゲノム DNAライブラリーをスクリ一 ニングすることにより、 ゲノム DNAを単離することも可能である。
より具体的には、 例えば、 まず本発明のタンパク質を発現する細胞、 組織 (例 えば、 肺癌細胞、 大腸癌細胞、 肝癌細胞、 胃癌細胞) などから、 mRNAを単離 する。 mRNAの単離は、 公知の方法、 例えば、 グァニジン超遠心法 (Chirgwin, J. M. et al., Biochemistry (1979) 18, 5294-5299)、 AGPC法(Chomczynski, P. and Sacchi, N., Anal. Biochem. (1987) 162, 156-159)等により全 UNAを調製 し、 mRNA Purification Kit (Pharmacia社)等を使用して全 RNAから mRNA を精製する。 また、 QuickPrep mRNA Purification Kit (Pharmacia社) を用い ることにより mRNAを直接調製することもできる。
得られた mRNAから逆転写酵素を用いて cDNAを合成する。 cDNAの合成は、 AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (生ィ匕学工業 社) 等を用いて行うこともできる。 また、 5'-Ampli FINDER RACE Kit
(Clontech製)およびポリメラ一ゼ連鎖反応 (polymerase chain reaction; PGR) を用いた 5'-RACE法 (Frohman, M. A. et al., Proc. Natl. Acad. Sci. U.S.A.
(1988) 85, 8998-9002; Belyavsky, A. et al., Nucleic Acids Res. (1989) 17, 2919- 2932) に従い、 cDNAの合成および増幅を行うことができる。
得られた PCR産物から目的とする DNA断片を調製し、 ベクター DNAと連 結する。 さらに、 これより組換えベクターを作製し、 大腸菌等に導入してコロニ —を選択して所望の組換えべクタ一を調製する。 目的とする DNAの塩基配列は、 公知の方法、 例えば、 ジデォキシヌクレオチドチェイン夕一ミネーシヨン法によ り確認することができる。
また、 本発明の DNAにおいては、 発現に使用する宿主のコドン使用頻度を考 慮して、 より発現効率の高い塩基配列を設計することができる (Grantham, R. et al., Nucelic Acids Research (1981) 9, r43-74 ) 。 また、 本発明の DNAは、 市販のキットや公知の方法によって改変することができる。 改変としては、 例え ば、 制限酵素による消化、 合成オリゴヌクレオチドや適当な DNAフラグメント の挿入、 リンカ一の付加、 開始コドン (ATG) および Zまたは終止コドン
(TAA、 TGA、 または TAG) の挿入等が挙げられる。
本発明のオリゴヌクレオチドは、 試料中において癌関連遺伝子を検出するため の核酸プローブとして用いることができる。 本発明のプローブは、 配列番号 1一 6 5に記載される塩基配列またはこれと相補的な塩基配列の少なくとも 1 2塩基、 2 0、 3 0、 5 0または 1 0 0塩基またはそれ以上の連続する塩基配列を有し、 癌関連遺伝子の特定の領域に特異的にハイブリダィズするよう選択される。 組織、 血液等の資料から D N Aを抽出するか、 または mR NAを抽出.して c D N Aを合 成し、 これをハイブリダィゼ一シヨンが生じるような条件下でプローブと接触さ せ、 試料に結合したプローブの存在または量を検出することにより、 試料中にお ける癌関連遺伝子またはその転写産物の存在または量または変異を検出すること ができる。
プロ一ブは、 固体支持体上に固定化してもよい。 そのような固体支持体の例と しては、 限定されないが、 プラスチック、 ァガロース、 セファロ一ス、 ポリアク リルアミド、 ラテックスビ一ズおよびニトロセルロース等が含まれる。 プロ一ブ をそのような固体支持体に結合させる技術は当該技術分野においてよく知られて いる。 プローブは、 標準的な標識技術、 例えば放射性標識、 酵素標識 (西洋ヮサ ビペルォキシダーゼ、 アルカリホスファターゼ) 、 蛍光標識、 ピオチン—ァビジ ン標識、 化学発光等を用いて標識することにより可視化することができる。 すな わち、 本発明の組成物は、 試料中の癌関連遺伝子またはその転写産物の存在を検 出するためのキットとして提供することができる。 このようなキットは、 上述の プローブに加えて、 洗浄試薬、 結合したプローブの存在を検出することができる 試薬、 ならびに使用の指針を含むことができる。
あるいは、 本発明の'診断用組成物は、 配列番号 1—65のいずれかに記載され るヌクレオチド配列を増幅することができる 1組のプライマ一を含んでいてもよ い。 このようなプライマーを用いて、 適当な cDNAライブラリをテンプレート として、 ポリメラーゼ連鎖反応 (PCR) により目的とする配列を増幅した後、 ハイプリダイゼーションまたは塩基配列決定などの手法により P C R産物を分析 し、 試料中の癌関連遺伝子またはその転写産物の存在または量または変異を検出 することができる。 このような P C R手法は当該技術分野においてよく知られて おり、 例えば、 "PGR P r o t o c o l s, A Gu i de t o Me t hod s and App l i c a t i on s'^ Ac ad emi c P r e s s, M i c hae l, e t a l . , e d s. 1990に記載されている。 プライマ一として用いるためには、 本発明のオリゴヌクレオチドは、 好ましく は、 配列番号 1—65のいずれかに示される塩基配列、 またはこれと相補的な塩 基配列中の連続する少なくとも 12塩基、 好ましくは 12— 50塩基、 より好ま しくは 12— 20塩基の配列を有する。
本発明のポリヌクレオチドまたはオリゴヌクレオチドは、 癌関連遺伝子により コ一ドされる mRNAに結合しその発現を阻害するアンチセンス分子、 または m RNAを切断するリボザィムまたは s i RNAとして用いて、'癌関連遺伝子をサ ィレンシングすることができる。 アンチセンス、 リポザィムおよび s i RNA技 術を用いて遺伝子発現を制御する方法は当該技術分野においてよく知られている。 例えば、 本発明の組成物を適当な担体とともに投与してもよく、 あるいは、 アン チセンス、 リポザィムまたは s i RNAをコードするべクタ一を投与してインビ ポでこれらの発現を誘導してもよい。
"リポザィム"との用語は、 mRNAを切断する触媒活性を有する核酸分子を表 す。 リポザィムは、 一般に、 エンドヌクレア一ゼ、 リガ一ゼまたはポリメラ一ゼ 活性を示す。 種々のタイプのトランス作用性リポザィム、 例えば八ンマーへッド およびヘアピンタイプのリポザィムが知られている。
"アンチセンス"とは、 ゲノム D N Aおよび/または m R N Aと特異的にハイブ リダイズし、 その転写および Zまたは翻訳を阻害することによりその夕ンパク質 の発現を阻害する、 核酸分子またはその誘導体を表す。 結合は一般的な塩基対相 補性によるものでもよく、 または、 例えば、 DNAデュープレックスへの結合の 場合には、 二重ヘリックスの主溝における特異的相互作用によるものでもよい。 アンチセンス核酸の標的部位としては、 mRNAの 5'末端、 例えば AUG開始 コドンまでおよびこれを含む 5'非翻訳配列が好ましいが、 mRNAの 3,非翻訳 配列またはコーディング領域の配列も mRNAの翻訳の阻害に有効であることが 知られている。
s i RNAとは、 RNA干渉 (RNA i) を行うことができる二本鎖核酸を意 味する (例えば、 Ba s s, 2001, Na t u r e, 411, 428-42 9 ; E 1 b a s h i r e t a l . , 2001, Na t u r e, 411, 49 4— 498を参照) 。 s i RNAは、 配列特異的に mRNAを分解し、 このこと により遺伝子の発現を抑制することができる。 s i RNAは、 典型的には、 標的 とする配列に相補的な配列を含む 20-25塩基対の長さの二本鎖 RNAである。 s i RNA分子は、 化学的に修飾されたヌクレオチドおよび非ヌクレオチドを含 んでいてもよい。
さらに、 本発明のポリヌクレオチドは、 本発明のタンパク質を製造する際に用 いることも可能である。 スクリーニング さらに別の観点においては、 本発明は、 抗癌活性を有する化合物を同定する方 法を提供する。 この方法は、 培養ヒト細胞を試験化合物と接触させ、 そして前記 細胞において配列番号 1 - 6 5のいずれかに記載されるヌクレオチド配列を含む 遺伝子の発現量の変ィヒを引き起こす化合物を抗癌活性を有する化合物として同定 する工程を含む。
試験化合物としては、 天然または合成の任意の化合物を用いることができ、 コ ンビナトリアルライブラリを用いてもよい。 細胞における癌関連遺伝子の発現量 は、 例えば、 上述した定量的 P C R法により簡便に測定することができるが、 当 該技術分野において知られる他のいずれの方法を用いてもよい。 検査方法
本発明は、 本発明の遺伝子またはタンパク質の発現量を測定する工程を含む、 癌の検査方法を提供する。 以下に検査方法の具体的な態様を記載するが、 本発明 の検査方法は、 それらの方法に限定されるものではない。
本発明の検査方法の 1つの態様としては、 まず、 被検者から: NA試料を調製 する。 次いで、 該 RNA試料に含まれる本発明のタンパク質をコードする RNA の量を測定する。 次いで、 測定された: RNAの量を対照と比較する。 別の態様と しては、 まず、 被検者から cDNA試料を調製する。 次いで、 該 cDNA試料に含 まれる本発明のタンパク質をコードする cDNAの量を測定する。 次いで、 測定 された cDNAの量を対照と比較する。
これらのような方法としては、 当業者らに周知の方法、 例えばノーザンブロッ ティング法、 R PCR法、 DNAアレイ法等を挙げることができる。
DNAアレイ法においては、 被検者から調製した RNAを鍀型として cDNA試 料を調製し、 本発明のオリゴヌクレオチドが固定された基板と接触させ、 該 cDNA試料と該基板に固定されたヌクレオチドプローブとのハイブリダイズの 強度を検出することにより、 該 cDNA試料に含まれる本発明の遺伝子の発現量 を測定する。 次いで、 測定された本発明の遺伝子の発現量を対照と比較する。 被検者からの cDNA試料の調製は、 当業者に周知の方法で行うことができる。 cDNA試料の調製の好ましい態様においては、 まず被検者の細胞あるいは組織 (例えば、 肺、 大腸、 胃、 肝臓、 など) から全 RNAの抽出を行う。 全 RNAの 抽出は、 当業者にとって周知の方法、 例えば次のようにして行うことができる。 全 RNA抽出には純度の高い全 RNAが調製できる方法であれば、 既存の方法お よびキット等を用いることが可能である。 例えば Ambion社 "RNAlater"を用 い前処理を行った後、 二ツボンジーン社" Isogen "を用いて全 RNAの抽出を行う。 具体的方法にはそれらの添付プロトコールに従えばよい。
次いで、 抽出した全 RNAを铸型として、 逆転写酵素を用いて cDNAの合成 を行い、 cDNA試料を調製する。 全 RNAからの cDNAの合成は、 当業者に周 知の方法で実施することができる。 調製した cDNA試料には、 必要に応じて、 検出のための標識を施す。 標識物質としては、 検出可能なものであれば特に制限 はなく、 例えば、 蛍光物質、 放射性元素等を挙げることができる。 標識は、 当業 者によつて一般的に行われる方法 (L Luo et al., Gene expression profiles of laser-capturedadjacent neuronal subtypes. Nat Med. 1999, 117- 122)で実施" 5 ることができる。
ヌクレオチドプローブと該 cDNAとのハイプリダイズの強度の検出は、 cDNA試料を標識した物質の種類に応じて当業者においては適宜行うことがで きる。 例えば、 cDNAが蛍光物質によって標識された場合、 スキャナーによつ て蛍光シグナルを読み ¾ることによって検出することができる。
本発明の検査方法の別の態様としては、 まず、 被検者の細胞あるいは組織から タンパ 質試料を調製する。 次いで、 該タンパク質試料に含まれる本発明のタン パク質の量を測定する。 次いで、 測定されたタンパク質の量を対照と比較する。 このような方法としては、 SDSポリアクリルァミド電気泳動法、 並びに本発 明の抗体を用いた、 ウエスタンブロッテイング法、 ドットブロッテイング法、 免 疫沈降法、 酵素結合免疫測定法 (ELISA)、 および免疫蛍光法を例示することがで きる。 又、 本発明の遺伝子の発現量の測定のかわりに、 本発明のタンパク質の発 現量を測定することによつても、 癌の診断を行うことが可能である。
上記の方法において、 対照と比較して、 本発明の遺伝子またはタンパク質の発 現量が有意に上昇していた場合、 被検者は、 癌を発症している、 もしくは発症す る可能性が高いと判定される。
本発明はまた、 癌の検査方法に用いるための検査薬を提供する。 このような検 査薬としては、 本発明のオリゴヌクレオチドを含む検査薬 (オリゴヌクレオチド プローブが固定された基板を含む) 、 本発明の抗体を含む検査薬が挙げられる。 上記抗体は、 検査に用いることが可能な抗体であれば、 特に制限はない。 抗体は 必要に応じて標識される。
上記の検査薬においては、 有効成分であるオリゴヌクレオチドゃ抗体以外に、 例えば、 滅菌水、 生理食塩水、 植物油、 界面活性剤、 脂質、 溶解補助剤、 緩衝剤、 タンパク質安定剤 (BSAやゼラチンなど) 、 保存剤等が必要に応じて混合され ていてもよい。
C20orfl02の検出
別の観点においては、 本発明は、 C20orfl02タンパク質を検出することを特 徴とする; @の診断方法を提供する。 本発明の方法は、 C20orfl02タンパク質を 検出することを特徴とする。 C20orfl02は N末端に分泌シグナルを有する分泌 タンパク質であり、 そのアミノ酸配列およびこれをコ一ドする遺伝子配列および アミノ酸配列は、 GenBank番号 NM_080607 (配列番号 2および 6 6 ) に開示 されている。 本発明において、 C20orfl02タンパク質とは、 全長タンパク質お よびその断片の両方を含むことを意味する。 断片とは、 C20orfl02タンパク質 の任意の領域を含むポリぺプチドであり、 天然の C20orfl02夕ンパク質の機能 を有していなくてもよい。 C20orfl02タンパク質の分泌シグナルは配列番号 6 6のァミノ酸配列において 1—24番目 (Psort予測: http:〃 psort.nibb.ac.jp/) が相当する。
本発明においては、 癌細胞、 特に肺癌、 肝癌 (例えば、 中分化型肝癌) 、 滕癌 において、 非常に高頻度で C20orfl02がタンパク質レベルで発現宂進している ことが見いだされた。 また、 C20orfl02に特異的なモノクローナル抗体を用い ることにより、 免疫組織診断が可能であることが示された。
本発明で検出する C20orfl02タンパク質はヒト C20orfl02タンパク質が好ま しいが、 それに限定されず、 ィヌ C20orfl02、 ネコ C20orfl02、 マウス
C20orfl02、 ハムスター C20orfl02などいかなる C20orfl02でもよい。
本発明において検出される C20orfl02は分泌前の C20orfl02でもよいが、 分 泌後の C20orfl02が好ましい。 C20orfl02は N末端に分泌シグナルを有する分 泌タンパク質であり、 細胞内で産生された後に細胞外に分泌される。 分泌後の C20orfl02とは、 細胞外に存在する C20orfl02のことをいう。
本発明において検出とは、 定量的または非定量的な検出を含み、 例えば、 非定 量的な検出としては、 単に C20orfl02夕ンパク質が存在するか否かの測定、 C20orfl02夕ンパク質が一定の量以上存在するか否かの測定、 C20orfl02夕ン パク質の量を他の試料 (例えば、 コントロール試料など) と比較する測定などを 挙げることができ、 定量的な検出としては、 C20orfl02タンパク質の濃度の測 定、 C20orfl02夕ンパク質の量の測定などを挙げることができる。
被検試料としては、 C20orfl02タンパク質が含まれる可能性のある試料であ れば特に制限されないが、 哺乳類などの生物の体から採取された試料が好ましく、 さらに好ましくはヒトから採取された試料である。 被検試料の具体的な例として は、 例えば、 細胞、 細胞破砕物、 血液、 間質液、 血漿、 血管外液、 脳脊髄液、 滑 液、 胸膜液、 血清、 リンパ液、 唾液、 尿などを挙げることができるが、 好ましい のは血液、 血清、 または血漿である。 又、 生物の体から採取された細胞の培養液 などの、 被検試料から得られる試料も本発明の被検試料に含まれる。
診断される癌は、 特に制限されず如何なる癌でもよいが、 具体的には、 肝癌、 塍臓癌、 肺癌、 大腸癌、 乳癌、 腎癌、 脳腫瘍、 子宮癌、 肺癌、 胃癌、 前立腺癌、 白血病、 リンパ腫などを挙げることができる。 好ましいものは肺癌、 肝癌、 勝癌 である。
肝癌は、 低分化型肝'癌、 中分化型肝癌、 高分化型肝癌などに分類され、 本発明 による検出は如何なる肝癌でもよいが、 中分化形肝癌の検出が好ましい。
肺癌は、 さらに肺腺癌、 肺扁平上皮癌、 肺小細胞癌、 肺大細胞癌などに分類され、 本発明による検出は如何なる肺癌でもよいが、 肺腺癌の検出が好ましい。
本発明においては、 被験試料中に C20orfl02夕ンパク質が検出された場合、 陰性コント口一ルまたは健常者と比較して被験試料中に検出される C20orfl02 タンパク質の量が多いと判断される場合に、 被験者が癌であるまたは癌になる可 能性が高いと判定される。
本発明の診断方法の好ましい態様としては、 細胞から遊離し、 血中に存在する C20orfl02タンパク質を検出することを特徴とする診断方法を挙げることがで きる。 特に好ましくは、 血中に存在する C20orfl02タンパク質またはその断片 を検出する。
被検試料に含まれる C20oi'fl02 タンパク質の検出方法は特に限定されないが、 抗 C20orfl02抗体を用いた免疫学的方法により検出することが好ましい。 免疫 学的方法としては、 例えば、 ラジオィムノアツセィ、 ェンザィムィムノアツセィ、 蛍光ィムノアツセィ、 発光ィムノアツセィ、 免疫沈降法、 免疫比濁法、 ウェス夕 ンブロット、 免疫染色、 免疫拡散法などを挙げることができるが、 好ましくはェ ンザィムィムノアッセィであり、 特に好ましいのは酵素結合免疫吸着定量法
(enzyme-liiiKed immunosorbent assay: ELISA) (例んば、 sandwich ELiSA) である。 ELISAなどの上述した免疫学的方法は当業者に公知の方法により行う ことが可能である。
抗 C20orfl02抗体を用いた一般的な検出方法としては、 例えば、 抗
C20orfl02抗体を支持体に固定し、 ここに被検試料を加え、 インキュベートを 行い抗 C20orfl02抗体と C20orfl02夕ンパク質を結合させた後に洗浄して、 抗 C20orfl02抗体を介して支持体に結合した C20orfl02夕ンパク質を検出するこ とにより、 被検試料中の C20orfl02タンパク質の検出を行う方法を挙げること ができる。
本発明において抗 C20orfl02抗体を固定するために用いられる支持体として は、 例えば、 ァガ口一ス、 セルロースなどの不溶性の多糖類、 シリコン樹脂、 ポ リスチレン樹脂、 ポリアクリルアミド樹脂、 ナイロン樹脂、 ポリ力一ポネイト樹 脂などの合成樹脂や、 ガラスなどの不溶性の支持体を挙げることができる。 これ らの支持体は、 ビーズ プレートなどの形状で用いることが可能である。 ビーズ の場合、 これらが充填されたカラムなどを用いることができる。 プレートの場合、 マルチウエルプレート (96穴マルチウエルプレート等) や、 バイオセンサーチ ップなどを用いることができる。 抗 C20orfl02抗体と支持体との結合は、 化学 結合や物理的な吸着などの通常用いられる方法により結合することができる。 こ れらの支持体はすべて市販のものを用いることができる。
抗 C20orfl02抗体と C20orfl02夕ンパク質との結合は、 通常、 緩衝液中で行 われる。 緩衝液としては、 例えば、 リン酸緩衝液、 Tds緩衝液、 クェン酸緩衝 液、 ホウ酸驢衝液、 炭酸塩緩衝液、 などが使用される。 また、 インキュベーシ ヨンの条件としては、 すでによく用いられている条件、 例えば、 4 〜室温にて 1時間〜 24時間のィンキュベーションが行われる。 ィンキュベ一ト後の洗浄は、 C20orfl02タンパク質と抗 C20orfl02抗体の結合を妨げないものであれば何で もよく、 例えば、 Tween20等の界面活性剤を含む緩衝液などが使用される。
本発明の C20orfl02夕ンパク質検出方法においては、 C20orfl02タンパク質 を検出したい被検試料の他に、 コントロール試料を設置してもよい。 コント口一 ル試料としては、 C20orfl02タンパク質を含まない陰性コントロール試料や C20orfl02夕ンパク質を含む陽性コントロール試料などがある。 この場合、 C20orfl02タンパク質を含まない陰性コントロール試料で得られた結果、
C20orfl02夕ンパク質を含む陽性コント口一ル試料で得られた結果と比較する ことにより、 被検試料中の C20orfl02 タンパク質を検出することが可能である。 また、 濃度を段階的に変化させた一連のコントロール試料を調製し、 各コント口 ール試料に対する検出結果を数値として得て、 標準曲線を作成し、 被検試料の数 値から標準曲線に基づいて、 被検試料に含まれる C20orfl02タンパク質を定量 的に検出することも可能である。
抗 C20orfl02抗体を介して支持体に結合した C20orfl02タンパク質の検出の 好ましい態様として、 標識物質で標識された抗 C20orfl02抗体を用いる方法を 挙げることができる。 例えば、 支持体に固定された抗 C20orfl02抗体に被検試 料を接触させ、 洗浄後に、 C20orfl02タンパク質を特異的に認識する標識抗体 を用いて検出する。
抗 C20orfl02抗体の標識は通常知られている方法により行うことが可能であ る。 標識物質としては、 蛍光色素、 酵素、 補酵素、 化学発光物質、 放射性物質な どの当業者に公知の標識物質を用いることが可能であり、 具体的な例としては、 ラジオアイソトープ (32P、 14C、 12¾、 3H、 1311など)、 フルォレセイン、 ローダ ミン、 ダンシルク口リド、 ゥンベリフエロン、 ルシフェラーゼ、 ペルォキシダー ゼ、 アルカリホスファターゼ、 ]8 -ガラクトシダーゼ、 /3 -ダルコシダーゼ、 ホー スラディッシュパーォキシダーゼ、 ダルコアミラーゼ、 リゾチーム、 サッカリド ォキシダーゼ、 マイクロペルォキシダーゼ、 ピオチンなどを挙げることができる。 標識物質としてピオチンを用いる場合には、 ピオチン標識抗体を添加後に、 アル カリホスファターゼなどの酵素を結合させたァビジンをさらに添加することが好 ましい。 標識物質と抗 C20orfl02抗体との結合には、 ダルタルアルデヒド法、 マレイミド法、 ピリジルジスルフイド法、 過ヨウ素酸法、 などの公知の方法を用 いることができる。
具体的には、 抗 C20orfl02抗体を含む溶液をプレートなどの支持体に加え、 抗 C20orfl02お体を支持体に固定する。 プレートを洗浄後、 タンパク質の非特 異的な結合を防ぐため、 例えば BSA、 ゼラチン、 アルブミンなどでブロッキン グする。 再び洗浄し、 被検試料をプレートに加える。 インキュベートの後、 洗浄 し、 標識抗 C20orfl02抗体を加える。 適度なインキュべ一ショ.ンの後、 プレー トを洗浄し、 プレートに残った標識抗 C20orfl02抗体を検出する。 検出は当業 者に公知の方法により行うことができ、 例えば、 放射性物質による標識の場合に は液体シンチレ一シヨンや RIA法により検出することができる。 酵素による標 識の場合には基質を加え、 基質の酵素的変化、 例えば発色を吸光度計により検出 することができる。 基質の具体的な例としては、 2,2-アジノビス (3-ェチルベン ゾチアゾリン- 6-スルホン酸) ジアンモニゥム塩 (ABTS) 、 1,2-フエ二レンジァ ミン (オルソ-フエ二レンジァミン) 、 3,3',5,5'-テトラメチルベンジジン
(TMB) などを挙げることができる。 蛍光物質の場合には蛍光光度計により検 出することができる。
本発明の C20orfl02タンパク質検出方法の特に好ましい態様として、 ピオチ ンで標識された抗 C20orfl02抗体およびアビジンを用いる方法を挙げることが できる。
具体的には、 抗 C20orfl02坊体を含む溶液をプレートなどの支持体に加え、 抗 C20orfl02抗体を固定する。 プレートを洗浄後、 タンパク質の非特異的な結 合を防ぐため、 例えば BSAなどでブロッキングする。 再び洗浄し、 被検試料を プレートに加える。 インキュベートの後、 洗浄し、 ピオチン標識抗 C20orfl02 抗体を加える。 適度なインキュベーションの後、 プレートを洗浄し、 アルカリホ スファタ一ゼ、 ペルォキシダーゼなどの酵素と結合したアビジンを加える。 イン キュベーシヨン後、 プレートを洗浄し、 アビジンに結合している酵素に対応した 基質を加え、 基質の酵素的変化などを指標に C20orfl02 タンパク質を検出する。 本発明の C20orfl02夕ンパク質検出方法の他の態様として、 C20orfl02夕ン パク質を特異的に認識する一次抗体を一種類以上、 および該一次抗体を特異的に 認識する二次抗体を一種類以上用いる方法を挙げることができる。
例えば、 支持体に固定された一種類以上の抗 C20orfl02抗体に被検試料を接 触させ、 インキュベーションした後、 洗浄し、 洗浄後に結合している
C20orfl02タンパク質を、 一次抗 C20orfl02抗体および該一次抗体を特異的に 認識する一種類以上の二次抗体により検出する。 この場合、 二次抗体は好ましく は標識物質により標識されている。
本発明の C20orfl02夕ンパク質の検出方法の他の態様としては、 凝集反応を 利用した検出方法を挙げることができる。 該方法においては、 抗 C20orfl02抗 体を感作した担体を用いて C20orfl02を検出することができる。 抗体を感作す る担体としては、 不溶性で、 非特異的な反応を起こさず、 かつ安定である限り、 いかなる担体を使用してもよい。 例えば、 ラテックス粒子、 ベントナイト、 コロ ジオン、 カオリン、 固定羊赤血球等を使用することができるが、 ラテックス粒子 を使用するのが好ましい。 ラテックス粒子としては、 例えば、 ポリスチレンラテ ックス粒子、 スチレン-ブタジエン共重合体ラテックス粒子、 ポリビニルトルェ ンラテックス粒子等を使用することができるが、 ポリスチレンラテックス粒子を 使用するのが好ましい。 感作した粒子を試料と混合し、 一定時間攪拌する。 試料 中に抗 C20orfl02抗体が高濃度で含まれるほど粒子の凝集度が大きくなるので、 凝集を肉眼でみることにより C20oi'fl02を検出することができる。 また、 凝集 による濁度を分光光度計等により測定することによっても検出することが可能で ある。
本発明の C20orfl02タンパク質の検出方法の他の態様としては、 例えば、 表 面プラズモン共鳴現象を利用したバイオセンサーを用いた方法を挙げることがで きる。 表面プラズモン共鳴現象を利用したバイオセンサーはタンパク質一タンパ ク質間の相互作用を微量のタンパク質を用いてカ^)標識することなく、 表面ブラ ズモン共鳴シグナルとしてリアルタイムに観察することが可能である。 例えば、 BIAcore (アマ一シャムバイオサイエンス社製) 等のバイオセンサーを用いるこ とにより C20orfl02夕ンパク質と抗 C20orfl02抗体の結合を検出することが可 能である。 具体的には、 抗 C20orfl02抗体を固定化したセンサ一チップに、 被 検試料を接触させ、 抗 C20orfl02抗体に結合する C20orfl02夕ンパク質を共鳴 シグナルの変化として検出することができる。
本発明の検出方法は、 種々の自動検査装置を用いて自動化することもでき、 一 度に大量の試料について検査を行うことも可能である。
本発明は、 癌の診断のための被検試料中の C20orfl02タンパク質を検出する ための診断薬またはキットの提供をも目的とするが、 該診断薬またはキットは少 なくとも抗 C20orfl02抗体を含む。 該診断薬またはキットが ELISA法等の EIA法に基づく場合は、 抗体を固相化する担体を含んでいてもよく、 抗体があ らかじめ担体に結合していてもよい。 該診断薬またはキットがラテックス等の担 体を用いた凝集法に基づく場合は抗体が吸着した担体を含んでいてもよい。 また、 該キットは、 適宜、 ブロッキング溶液、 反応溶液、 反応停止液、 試料を処理する ための試薬等を含んでいてもよい。 抗 C20oi'f!02抗体の作製
本発明で用いられる抗 C20orfl02抗体は C20oi'fl02夕ンパク質に特異的に結 合すればよく、 その由来、 種類 (モノクローナル、 ポリクローナル) および形状 を問わない。 具体的には、 マウス抗体、 ラット抗体、 ヒト抗体、,キメラ抗体、 ヒ ト化抗体などの公知の抗体を用いることができる。 抗体はポリクロ一ナル抗体で もよいが、 モノクローナル抗体であることが好ましい。
又、 支持体に固定される抗 C20orfl02抗体と標識物質で標識される抗
C20orfl02抗体は C20orfl02分子の同じェピ 1 プを認識してもよいが異なる ェピトープを認識することが好ましく、 部位は特に制限されない。
本発明で使用される抗 C20orfl02坊体は、 公知の手段を用いてポリクロ一ナ ルまたはモノク口一ナル抗体として得ることができる。 本発明で使用される抗 C20orfl02抗体として、 特に哺乳動物由来のモノクローナル抗体が好ましい。 哺乳動物由来のモノクローナル抗体は、 ハイプリドーマに産生されるもの、 およ び遺伝子工学的手法により抗体遺伝子を含む発現ベクターで形質転換した宿主に 産生されるものを含む。
モノクローナル抗体産生ハイブリド一マは、 基本的には公知技術を使用し、 以 下のようにして作製できる。 すなわち、 C20orfl02 を感作抗原として使用して、 これを通常の免疫方法にしたがって免疫し、 得られる免疫細胞を通常の細胞融合 法によって公知の親細胞と融合させ、 通常のスクリーニング法により、 モノクロ 一ナルな抗体産生細胞をスクリーニングすることによって作製できる。
具体的には、 モノクローナル抗体を作製するには次のようにすればよい。
まず、 抗体取得の感作抗原として使用される C20orfl02を、 GenBank受託番 号: NM— 080607に開示された C20orfl02遺伝子 Zアミノ酸配列を発現するこ とによって得る。 すなわち、 C20orfl02をコードする遺伝子配列を公知の発現 ベクター系に挿入して適当な宿主細胞を形質転換させた後、 その宿主細胞中また は培養上清中から目的のヒト C20orfl02タンパク質を公知の方法で精製する。 また、 天然の C20orfl02を精製して用いることもできる。
次に、 この精製 C20orfl02タンパク質を感作抗原として用いる。 あるいは、 C20orfl02の部分ペプチドを感作抗原として使用することもできる。 この際、 部分べプチドはヒト C20orfl02のアミノ酸配列より化学合成により得ることも できるし、 C20orfl02遺伝子の一部を発現ベクターに組込んで得ることもでき、 さらに天然の C20orfl02をタンパク質分解酵素により分解することによつても 得ることができる。 部分ペプチドとして用いる C20orfl02の部分および大きさ は限られない。
感作抗原で免疫される哺乳動物としては、 特に限定されるものではないが、 細 胞融合に使用する親細胞との適合性を考慮して選択するのが好ましく、 一般的に はげつ歯類の動物、 例えば、 マウス、 ラッ卜、 ハムスター、 あるいはゥサギ、 サ ル等が使用される。
感作抗原を動物に免疫するには、 公知の方法にしたがって行われる。 例えば、 一般的方法として、 感作抗原を哺乳動物の腹腔内または皮下に注射することによ り行われる。 具体的には、 感作抗原を PBS (Phosphate-Buffered Saline) や生 理食塩水等で適当量に希釈、 懸濁したものに所望により通常のアジュバント、 例 えばフロイント完全アジュバントを適量混合し、 乳化後、 哺乳動物に 4〜21日 毎に数回投与する。 また、 感作抗原免疫時に適当な担体を使用することもできる。 特に分子量の小さい部分ペプチドを感作抗原として用いる場合には、 アルブミン、 キーホールリンぺットへモシァニン等の担体タンパク質と結合させて免疫するこ とが望ましい。
このように哺乳動物を免疫し、 血清中に所望の抗体レベルが上昇するのを確認 した後に、 哺乳動物から免疫細胞を採取し、 細胞融合に付されるが、 好ましい免 疫細胞としては、 特に脾細胞が挙げられる。
前記免疫細胞と融合される他方の親細胞として、 哺乳動物のミエローマ細胞を 用いる。 このミエ口一マ細胞は、 公知の種々の細胞株、 例えば、 P3
(P3x63Ag8.653) (J. Immnol. (1979) 123, 1548-1550) 、 P3x63Ag8U.l (Current Topics in Microbiology and Immunology (1978) 81, 1-7) 、 NS"1 (Kohler. G. and MHstein, C. Eur. J. Immunol (1976) 6, 511-519) 、 MPC- 11 (Margulies. D.H. et al., Cell (1976) 8, 405-415) 、 SP2/0 (Shulman, M. et al., Nature (1978) 276, 269-270) 、 FO (de St. Groth, S. E et al., J.
Immunol. Methods (1980) 35, 1-21) 、 S194 (Trowbridge, I. S. J. Exp. Med. (1978) 148, 313-323) 、 R210 (Galfre, G. et al., Nature (1979) 277, 131- 133) 等が好適に使用される。
前記免疫細胞とミエローマ細胞との細胞融合は、 基本的には公知の方法、 たと えば、 ケーラ一とミルスティンらの方法 (KoMer. G. and Milstein, C.、
Methods Enzymol. (1981) 73, 3-46) 等に準じて行うことができる。
より具体的には、 前記細胞融合は、 例えば細胞融合促進剤の存在下に通常の栄 養培養液中で実施される。 融合促進剤としては、 例えばポリエチレングリコール (PEG) 、 センダイウィルス (HVJ) 等が使用され、 更に所望により融合効率 を高めるためにジメチルスルホキシド等の補助剤を添加使用することもできる。 免疫細胞とミエローマ細胞との使用割合は任意に設定することができる。 例え ば、 ミエ口一マ細胞に対して免疫細胞を 1〜10倍とするのが好ましい。 前記細 胞融合に用いる培養液としては、 例えば、 前記ミエローマ細胞株の増殖に好適な RPMI1640培養液、 MEM培養液、 その他、 この種の細胞培養に用いられる通 常の培養液が使用可能であり、 さらに、 牛胎児血清 (FCS) 等の血清補液を併 用することもできる。
細胞融合は、 前記免疫細胞とミエローマ細胞との所定量を前記培養液中でよく 混合し、 予め 37°C程度に加温した PEG溶液 (例えば平均分子量 1000〜6000程 度) を通常 30〜60% (w/v) の濃度で添加し、 混合することによって目的とす る融合細胞 ひ、イブリ 'ドーマ) を形成する。 続いて、 適当な培養液を逐次添加し、 遠心して上清を除去する操作を繰り返すことによりハイプリドーマの生育に好ま しくない細胞融合剤等を除去する。
このようにして得られたハイブリド一マは、 通常の選択培養液、 例えば HAT 培養液 (ヒポキサンチン、 アミノプテリンおよびチミジンを含む培養液) で培養 することにより選択される。 上記 HAT培養液での培養は、 目的とするハイプリ ド一マ以外の細胞 (非融合細胞) が死滅するのに十分な時間 (通常、 数日〜数週 間) 継続する。 ついで、 通常の限界希釈法を実施し、 目的とする抗体を産生する ハイブリド一マのスクリーニングおよび単一ク口一ニングを行う。
目的とする抗体のスクリーニングおよび単一クロ一ニングは、 公知の抗原抗体 反応に基づくスクリーニング方法で行えばよい。 例えば、 ポリスチレン等ででき たビーズや市販の 96ゥエルのマイクロタイタ一プレ一ト等の担体に抗原を結合 させ、 ハイプリドーマの培養上清と反応させ、 担体を洗浄した後に酵素標識第 2 次抗体等を反応させることにより、 培養上清中に感作抗原と反応する目的とする 抗体が含まれるかどうか決定できる。 目的とする抗体を産生するハイブリド一マ を限界希釈法等によりクロ一ニングすることができる。 この際、 抗原としては免 疫に用いたものを用いればよい。
また、 ヒト以外の動物に抗原を免疫して上記ハイブリド一マを得る他に、 ヒト リンパ球を in vitroで C20orfl02に感作し、 感作リンパ球をヒト由来の永久分 裂能を有するミエローマ細胞と融合させ、 C20orfl02への結合活性を有する所 望のヒト抗体を得ることもできる (特公平 1-59878号公報参照) 。 さらに、 ヒ ト抗体遺伝子の全てのレパ一トリ一を有するトランスジエニック動物に抗原とな る C20orfl02を投与して抗 C20orfl02抗体産生細胞を取得し、 これを不死化さ せた細胞から C20orfl02に対するヒト抗体を取得してもよい (国際特許出願公 開番号 WO 94/25585号公報、 WO 93/12227号公報、 WO 92/03918号公報、 WO 94/02602号公報参照) 。
このようにして作製されるモノクローナル抗体を産生するハイプリドーマは、 通常の培養液中で継代培養することが可能であり、 また、 液体窒素中で長期保存 することが可能である。
当該八イブリドーマからモノクローナル抗体を取得するには、 当該八イブリド —マを通常の方法に従い培養し、 その培養上清として得る方法、 あるいはハイブ リドーマをこれと適合性がある哺乳動物に投与して増殖させ、 その腹水として得 る方法などが採用される。 前者の方法は、 高純度の抗体を得るのに適しており、 一方、 後者の方法は、 抗体の大量生産に適している。
本発明では、 モノクローナル抗体として、 抗体遺伝子をハイブリド一マからク 口一ニングし、 適当なベクタ一に組み込んで、 これを宿主に導入し、 遺伝子組換 え技術を用いて産生させた組換え型のものを用いることができる (例えば、 Vandamme, A. M. et al" Eur. J. Biochem. (1990) 192, 767-775, 1990参照) 。 具体的には、 抗 C20orfl02抗体を産生するハイブリドーマから、 抗 C20orfl02 抗体の可変 (V) 領域をコードする mRNAを単離する。 mRNAの単離は、 公知 の方法、 例えば、 グァニジン超遠心法 (Chirgwin, J. M. et al., Biochemistry (1979) 18, 5294-5299) 、 AGPC法 (Chomczynski, Ret al., Anal. Biochem. (1987) 162, 156-159) 等により行って全 RNAを調製し、 mRNA Purification Kit (Pharmacia製) 等を使用して目的の mRNAを調製する。 また、
QuickPrep mRNA Purification Kit (Pharmacia製) を用いることにより mRNAを直接調製することもできる。
得られた mRNAから逆転写酵素を用いて抗体 V領域の cDNAを合成する。 cDNAの合成は、 AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (生化学工業社製) 等を用いて行う。 また、 cDNAの合成および増幅を行う には、 5'-Ampli FINDER RACE Kit (Clontech製) および PCRを用いた 5'- RACE法 (Frohman, M. A. et al., Pi'oc. Natl. Acad. Sci. USA (1988) 85, 8998-9002、 Belyavsky, A.et al., Nucleic Acids Res. (1989) 17, 2919-2932) 等 を使用することができる。
得られた PCR産物から目的とする DNA断片を精製し、 ベクタ一 DNAと連 結する。 さらに、 これより組換えべクタ一を作製し、 大腸菌等に導入してコロニ —を選択して所望の組換えべクタ一を調製する。 そして、 目的とする DNAの塩 基配列を公知の方法、 例えば、 ジデォキシヌクレオチドチェインタ一ミネ一ショ ン法等により確認する。
目的とする抗 C20orfl02抗体の V領域をコ一ドする DNAを得たのち、 これ を、 所望の抗体定常領域 (C領域) をコードする DNAを含有する発現べクタ一 へ組み込む。
本発明で使用される抗 C20orfl02抗体を製造するには、 抗体遺伝子を発現制 御領域、 例えば、 ェンパンサー、 プロモータ一の制御のもとで発現するよう発現 ベクターに組み込む。 次に、 この発現べクタ一により、 宿主細胞を形質転換し、 抗体を発現させる。
抗体遺伝子の発現は、 抗体重鎖 (H鎖) または軽鎖 (L鎖) をコ一ドする DNAを別々に発現べクタ一に組み込んで宿主細胞を同時形質転換させてもよい し、 あるいは H鎖および L鎖をコ一ドする DNAを単一の発現べクタ一に組み 込んで宿主細胞を形質転換させてもよい (WO 94/11523号公報参照) 。
また、 組換え型抗体の産生には上記宿主細胞だけではなく、 トランスジェニッ ク動物を使用することができる。 例えば、 抗体遺伝子を、 乳汁中に固有に産生さ れるタンパク質 (ャギ ]3カゼインなど) をコ一ドする遺伝子の途中に挿入して融 合遺伝子として調製する。 抗体遺伝子が挿入された融合遺伝子を含む DNA断片 をャギの胚へ注入し、 この胚を雌のャギへ導入する。 胚を受容したャギから生ま れるトランスジェニックャギまたはその子孫が産生する乳汁から所望の抗体を得 る。 また、 トランスジエニックャギから産生される所望の抗体を含む乳汁量を増 加させるために、 適宜ホルモンをトランスジエニックャギに使用してもよい (Ebert, K.M. et al., Bio/Technology (1994) 12, 699-702) 。 . 本発明では、 上記抗体のほかに、 人為的に改変した遺伝子組換え型抗体、 例え ば、 キメラ抗体、 ヒト化 (Humanized) 抗体を使用できる。 これらの改変抗体 は、 既知の方法を用いて製造することができる。
キメラ抗体は、 前記のようにして得た抗体 V領域をコードする DNAをヒト 抗体 C領域をコードする DNAと連結し、 これを発現ベクターに組み込んで宿 主に導入し産生させることにより得られる。 この既知の方法を用いて、 本発明に 有用なキメラ抗体を得ることができる。
ヒト化抗体は、 再構成 (reshaped) ヒト抗体とも称され、 これは、 ヒト以外 の哺乳動物、 例えばマウス抗体の相補性決定領域 (CDR; complementarity determining region) をヒト抗体の相補性決定領域へ移植したものであり、 その 一般的な遺伝子組換え手法も知られている (欧州特許出願公開番号 EP 125023 号公報、 WO 96/02576号公報参照) 。
具体的には、 マウス抗体の CDRとヒト抗体のフレームワーク領域
(framework region; FR) とを連結するように設計した DNA配列を、 CDRお よび FR両方の末端領域にオーバーラップする部分を有するように作製した数個 のオリゴヌクレオチドをプライマーとして用いて PCR法により合成する
(W098/13388号公報に記載の方法を参照)。
CDRを介して連結されるヒト抗体のフレームワーク領域は、 相補性決定領域 が良好な抗原結合部位を形成するものが選択される。 必要に応じ、 再構成ヒト抗 体の相補性決定領域が適切な抗原結合部位を形成するように、 抗体の可変領域に おけるフレームワーク領域のアミノ酸を置換してもよい (Sato, K.et al., Cancer Res. (1993) 53, 851-856) 。
キメラ抗体およびヒト化抗体の C領域には、 ヒト坊体のものが使用され、 例え ば H鎖では、 C r l、 Cァ 2、 C r 3 > Cァ 4を、 L鎖では C κ、 C λを使用す ることができる。 また、 抗体またはその産生の安定性を改善するために、 ヒト抗 体 C領域を修飾してもよい。
キメラ抗体は、 ヒト以外の哺乳動物由来抗体の可変領域とヒト抗体由来の定常 領域とからなる。 一方、 ヒ卜化抗体は、 ヒト以外の哺乳動物由来抗体の相補性決 定領域と、 ヒト抗体由来のフレームワーク領域および C領域とからなる。 ヒト化 抗体はヒト体内における抗原性が低下されているため、 本発明の治療剤の有効成 分として有用である。 本発明で使用される抗体は、 抗体の全体分子に限られず、 C20orfl02に結合 する限り、 抗体の断片またはその修飾物であってもよく、 二価抗体も一価抗体も 含まれる。 例えば、 抗体の断片としては、 Fab、 F (ab 2、 Fv、 1個の Fabと 完全な Fcを有する Fab/c、 または H鎖若しくは L鎖の Fvを適当なリンカーで 連結させたシングルチェイン Fv (scFv) が挙げられる。 具体的には、 抗体を酵 素、 例えばパパイン、 ペプシンで処理し抗体断片を生成させるか、 または、 これ ら抗体断片をコードする遺伝子を構築し、 これを発現べクタ一に導入した後、 適 当な宿主細胞で発現させる (例えば、 Co, M.S. et al., J. Immunol. (1994) 152, 2968-2976、 Better, M. & Horwitz, A. H. Methods in Enzymology (1989) 178, 476-496, Academic Press, Inc.ゝ Plueckthun, A. & Skerra, A. Methods in
Enzymology (1989) 178, 476-496, Academic Press, Inc.¾ Lamoyi, E.,
Methods in Enzymology (1989) 121, 652.663、 ousseaux, J. et al., Methods in Enzymology (1989) 121, 663.669、 Bird, R. E. et al., TIBTECH (1991) 9, 132-137参照) 。
scFvは、 抗体の H鎖 V領域と L鎖 V領域とを連結することにより得られる。 この scFvにおいて、 H鎖 V領域と L鎖 V領域は、 リンカ一、 好ましくはぺプ チドリンカーを介して連結される (Huston, J. S. et al.、 Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 5879-5883) 。 scFvにおける H鎖 V領域および L鎖 V領域 は、 本明細書に抗体として記載されたもののいずれの由来であってもよい。 V領 域を連結するペプチドリンカ一としては、 例えばアミノ酸 12〜19残基からなる 任意の一本鎖べプチドが用いられる。
scFvをコ一ドする DNAは、 前記抗体の H鎖または H鎖 V領域をコ一ドす る DNA、 および L鎖または L鎖 V領域をコードする DNAのうち、 それらの配 列のうちの全部または所望のアミノ酸配列をコ一ドする DNA部分を铸型とし、 その両端を規定するプライマー対を用いて PCR法により増幅し、 次いで、 さら にべプチドリンカ一部分をコードする DNA、 およびその両端が各々 H鎖、 L鎖 と連結されるように規定するプライマ一対を組み合せて増幅することにより得ら れる。
また、 一旦 scFvをコードする DNAが作製されると、 それらを含有する発現 ベクタ一、 および該発現べクタ一により形質転換された宿主を常法に従って得る ことができ、 また、 その宿主を用いることにより、 常法に従って scFvを得るこ とができる。
これら抗体の断片は、 前記と同様にしてその遺伝子を取得し発現させ、 宿主に より産生させることができる。 本発明における 「抗体」 にはこれらの抗体の断片 あ包含される。
抗体の修飾物として、 標識物質等の各種分子と結合した抗 C20orfl02抗体を 使用することもできる。 本発明における 「抗体」 にはこれらの抗体修飾物も包含 される。 このようなお体修飾物は、 得られた抗体に化学的な修飾を施すことによ つて得ることができる。 なお、 抗体の修飾方法はこの分野においてすでに確立さ れている。
さらに、 本発明で使用される抗体は、 二重特異性抗体 (bispecific antibody) であってもよい。 二重特異性抗体は C20orfl02分子上の異なるェピ ] ^一プを認 識する抗原結合部位を有する二重特異性抗体であってもよいし、 一方の抗原結合 部位が C20orfl02を認識し、 他方の抗原結合部位が標識物質等を認識してもよ い。 二重特異性抗体は 2種類の抗体の HL対を結合させて作製することもでき るし、 異なるモノクローナル抗体を産生するハイプリドーマを融合させて二重特 異性抗体産生融合細胞'を作製し、 得ることもできる。 さらに、 遺伝子工学的手法 により二重特異性抗体を作製することも可能である。
前記のように構築した抗体遺伝子は、 公知の方法により発現させ、 取得するこ とができる。 哺乳類細胞の場合、 常用される有用なプロモーター、 発現させる抗 体遺伝子、 その 3'側下流にポリ Aシグナルを機能的に結合させて発現させるこ とができる。 例えばプロモ一夕一 Ζェンハンサ一としては、 ヒトサイトメガロウ ィ Jレス BiJ期ブロモータ一 / Xノノヽノサ一 (human cytomegalovirus immediate early romoter/enhancer) を 4sけるしとができる。
また、 その他に本発明で使用される抗体発現に使用できるプロモー夕一ノエン ハンサ一として、 レトロウイルス、 ポリオ一マウィルス、 アデノウイルス、 シミ アンウィルス 40 (SV40) 等のウィルスプロモーターノエンハンサー、 あるいは ヒトェロンゲ一シヨンファクタ一 1ひ (HEFl a ) などの哺乳類細胞由来のプロ モータ一/ェンハンサ一等が挙げられる。
SV40プロモーター/ェンハンサ一を使用する場合は Mulliganらの方法 (Nature (1979) 277, 108) により、 また、 HEF1 αプロモ一夕一 Zェンハン サーを使用する場合は Mizushimaらの方法 (Nucleic Acids Res. (1990) 18, 5322) により、 容易に遺伝子発現を行うことができる。
大腸菌の場合、 常用される有用なプロモーター、 抗体分泌のためのシグナル配 列および発現させる抗体遺伝子を機能的に結合させて当該遺伝子を発現させるこ とができる。 プロモータ一としては、 例えば laczプロモ一夕一、 araBプロモー ターを挙げることができる。 laczプロモ一夕一を使用する場合は Wardらの方 法 (Nature (1098) 341, 544-546; FASEB J. (1992) 6, 2422-2427) により、 あるいは araBプロモーターを使用する場合は Betterらの方法 (Science (1988) 240, 1041-1043) により発現することができる。
抗体分泌のためのシグナル配列としては、 大腸菌のペリブラズムに産生させる 場合、 pelBシグナル配列 (Lei, S. P. et al J. Bacteriol. (1987) 169, 4379) を 使用すればよい。 そして、 ペリブラズムに産生された抗体を分離した後、 抗体の 構造を適切に組み直して (refold) 使用する。
複製起源としては、 SV40、 ポリオ一マウィルス、 アデノウイルス、 ゥシパピ ローマウィルス (BPV) 等の由来のものを用いることができ、 さらに、 宿主細 胞系で遺伝子コピー数増幅のため、 発現べクタ一は、 選択マーカーとしてアミノ グリコシドトランスフェラーゼ (APH) 遺伝子、 チミジンキナーゼ (TK) 遺伝 子、 大腸菌キサンチングァニンホスホリポシルトランスフェラーゼ (Ecogpt) 遺伝子、 ジヒドロ葉酸還元酵素 (dhfr) 遺伝子等を含むことができる。
本発明で使用される抗体の製造のために、 任意の発現系、 例えば真核細胞また は原核細胞系を使用することができる。 真核細胞としては、 例えば樹立された哺 乳類細胞系、 昆虫細胞系、 真糸状菌細胞および酵母細胞などの動物細胞等が挙げ られ、 原核細胞としては、 例えば大腸菌細晦等の細菌細胞が挙げられる。
好ましくは、 本発明で使用される抗体は、 哺乳類細胞、 例えば CHO、 COS, ミエローマ、 BHK、 Vero、 HeLa細胞中で発現される。
次に、 形質転換された宿主細胞を in vitroまたは in vivoで培養して目的とす る抗体を産生させる。 宿主細胞の培養は公知の方法に従い行う。 例えば、 培養液 として、 DMEM、 MEM、 RPMI1640、 IMDMを使用することができ、 牛胎児 血清 (FCS) 等の血清補液を併用することもできる。
前記のように発現、 産生された抗体は、 細胞、 宿主動物から分離し均一にまで 精製することができる。 本発明で使用される抗体の分離、 精製はァフィ二ティ一 カラムを用いて行うことができる。 例えば、 プロテイン Aカラムを用いたカラ ムとして、 Hyper D、 POROS、 Sepharose F.F. (Pharmacia ) 等が挙げられ る。 その他、 通常のタンパク質で使用されている分離、 精製方法を使用すればよ く、 何ら限定されるものではない。 例えば、 上記ァフイエティ一カラム以外のク 口マトグラフィ一カラム、 フィルター、 限外濾過、 塩析、 透析等を適宜選択、 組 み合わせることにより、 抗体を分離、 精製することができる (Antibodies A Laboratory Manual. Ed Harlow, David Lane, Cold Spring Harbor Laooratory, 1988) 。 本発明の癌関連遺伝子
本発明において同定された癌関連遺伝子の名称、 発現が宂進している癌組織、 ならびにこれらの遺伝子の配列およびコードされるタンパク質の配列を示す配列 番号の一覧を表 1に示す。
表 1
Figure imgf000052_0001
表 1 se. 退伝十
遺伝子名 GenBank Ref.ID 発現が亢進している癌種
配列番号配列番号
TEG33 PIGR NM 002644.1 NM 002644 肺提、大腸癌 32 92
TEG34 NFE2L3 NM 004289.3 NM 004289 胃癌、大腸癌、肺癌、大腸癌転移組織 (肝臓)、隧癌 33 93
TEG35 TRAG3 NM 004909.1 NM 004909 fe flrn—¾e β-ίΐΞ 34 94
TEG36 TRIM31 NM 007028 胃 、塍 3 、肺瘤 35 95
TEG37 KIAA1359 AB037780 胃癌、肺癌、大腸癌、塍癌、大腸癌転移組織 (肝臓) 36 96
TEG38 ubiauitinD NM 006398 胃癌、大腸癌、肺癌、中 ·低分化型肝癌、肺癌、隧癌 37 97
TEG39 Hephaestin NM 014799.1 NM 014799 胃癌、大腸癌転移組織 (肝臓)、)]萃癌 38 98
TEG40 KIAA01 52 BC000371.1 ■ 014730 胃癌、大腸癌、グリア芽腫、肺癌 39 99
TEG41 KIAA0703 NM 014861.1 NM 014861 胃癌、 fl市癌、大腸癌転移組織 (肝臓) 40 100
TEG42 MEST/PEG1 NM 002402.1 NM 002402 胃 3§、大 Η¾ϋΕ、肺 3¾ 41 . 101
TEG43 KIAA1 1 99 AB033025.1 胃癌、肺癌、大腸癌、膝癌 42 102
TEG44 Eし 0VL2 BF508639 NM 017770 肝癌、グリア芽細胞腫、肺癌 43 103
TEG45 R0B01 BF0591 59 NM 133631 肝癌、グリア芽細胞腫、肺癌 44 104
TEG46 FLJ10504/misato BC002535.1 NM 0181 16 肝癌、肺癌、 m 45 105
TEG47 cvstatin SN NM 001 898.1 NM 001898 大腸癌、肺癌 46 106
TEG48 LOG" 6238 BE328850 NM 138463 胃癌、大腸癌、肺癌、低分化型肝癌、塍癌 47 107
TEG49 MRPL50 BG02821 3 NM 019051 胃癌、大腸癌、中 ·低分化型肝癌、グリア芽腫、肺癌、 )]萃癌 48 108
TEG50 T0P1 T AW592604 NM 052963 大腸癌、低分化型肝癌、大腸癌転移組織 (肝臓)、 II萃癌 49 109
TEG51 FKSG14 BC005400.1 NM 022145 ¾3 大 fe&3〜肺 ¾3 藤¾3 50 1 10
TEG52 CDH3 NM 001793.1 NM 001793 肺癌、胃癌、大腸癌、 fl萃癌 51 1 1 1
TEG53 NRP2 N90777 NM 003872 肺癌、グリア芽腫、大腸癌転移組織 (肝臓)、隧癌 52 1 12
TEG54 CLDN3 BE791251 NM 001306 胃癌、肺癌、大腸癌、大腸癌転移組織 (肝臓) 53 1 13
TEG55 Gし DN4 NM 001305.1 NM 001305 胃癌、肺癌、大腸癌、大腸癌転移組織 (肝臓)、 fi 癌 54 1 14
TEG56 SFRP4 AW089415 NM 003014 肺癌、胃癌、グリア芽腫、膝癌 55 1 1 5
TEG57 ASPSCR1 NM, 024083.1 NM 024083 肝癌、肺癌 56 1 16
TEG58 GAGEC1 NM 007003.1 NM 007003 肝癌 57 1 17
TEG59 RHAMM NM 012485.1 NM 012484 fts-.大 feiss-肝 ¾S B萃 ¾3 58 1 1 8
TEG60 PEG10 BE8581 80 NM 015068 肝癌、肺癌、肝芽腫 59 1 1 9
TEG61 PAEP NM 002571.1 NM 002571 肺 ¾、腾癌 60 120
TEG62 MGC10981 BC004397.1 NM 032654 肺 fe te¾ 61 121
TEG63 DUSP9 NM 001395.1 NM 001395 肝癌 62 122
TEG64 EST1 B AB029012.1 肝 ί &、肺癌、 tefe 63 123
TEG1 (配列番号 2 ;配列番号 66) は、 C20orfl02をコードする。 この 遺伝子の G e nB an k受託番号は AA206763 (参照配列 NM— 080607) である。 この遺伝子は、 肺癌、 中分化型肝癌、 塍癌で発現が宂進していることが見いださ れた。 この遺伝子の発現が癌と関連していることは知られていない。
TEG2 (配列番号 3 ;配列番号 67) は、 EST(ASCL2)をコードする。 この 遺伝子の Ge nB ank受託番号は AI393930である。 この遺伝子は、 胃癌、 大 腸癌、 肺癌、 塍癌、 大腸癌転移組織 (肝臓) で発現が亢進していることが見いだ された。 この遺伝子の発現が癌と関連していることは知られていない。
TEG3 (配列番号 4) は、 EST(EPSTlisoform)をコードする。 この遺伝子 の Ge nB ank受託番号は BE645480である。 この遺伝子は、 胃癌、 中分化 型肝癌、 大腸癌、 肺癌、 滕癌、 大腸癌転移組織 (肝臓) で発現が亢進しているこ とが見いだされた。 この遺伝子の発現が癌と関連していることは知られていない。
TEG4 (配列番号 5) は、 ESTをコードする。 この遺伝子の GenB an k受託番号は AA447317である。 この遺伝子は、 胃癌、 大腸癌、 大腸癌転移組 織 (肝臓) で発現が亢進していることが見いだされた。 この遺伝子の発現が癌と 関連していることは知'られていない。 -
TEG5 (配列番号 6) は、 ESTをコードする。 この遺伝子の GenB an k受託番号は ΑΙ2Γ7375である。 この遺伝子は、 胃癌、 勝癌で発現が亢進してい ることが見いだされた。 この遺伝子の発現が癌と関連していることは知られてい ない。
TEG6 (配列番号 7 ;配列番号 68) は、 OK/SW-CL30をコードする。 こ の遺伝子の G e nBan k受託番号は ΑΙ2Γ7375である。 この遺伝子は、 肺癌、 胃癌、 大腸癌、 中分化型肝癌、 で発現が亢進していることが見いだされた。 この 遺伝子の発現が癌と関連していることは知られていない。
TEG7 (配列番号 8) は、 DKFZp686L1533をコードする。 この遺伝子の Ge nB ank受託番号は BG492359である。 この遺伝子は、 肺癌、 胃癌、 大 腸癌、 中 ·低分ィ匕型肝癌、 大腸癌転移組織 (肝臓) で発現が亢進していることが 見いだされた。 この遺伝子の発現が癌と関連していることは知られていない。
TEG8 (配列番号 10 ;配列番号 69) は、 EST(Gene#30) をコードする。 この遺伝子によりコードされるタンパク質は膜タンパク質である。 この遺伝子の 0611:6 & 111^受託番号は8 825703でぁる。 この遺伝子は、 .胃癌、 低分化型 肝癌、 肺癌で発現が宂進していることが見いだされた。 この遺伝子の発現が癌と 関連していることは知られていない。
TEG9 (配列番号 1 1 ;.配列番号 70) は、 BC012317をコードする。 こ の遺伝子の G e nB an k受託番号は AL389981.1である。 この遺伝子は、 胃 癌、 低分化型肝癌、 滕癌、 大腸癌転移組織 (肝臓) で発現が亢進していることが 見いだされた。 この遺伝子の発現が癌と関連していることは知られていない。
TEG10 (配列番号 12) は、 EST242881をコードする。 この遺伝子の G e nB an k受託番号は BG285837である。 この遺伝子は、 胃癌、 中 ·低分化 型肝癌、 肺癌で発現が亢進していることが見いだされた。 この遺伝子の発現が と関連していることは知られていない。
TEG1 1 (配列番号 13 ;配列番号 71) は、 FLJ11041をコードする。 こ の遺伝子の G e nB an k受託番号は AI343467である。 この遺伝子は、 胃癌、 大腸癌、 中分化型肝癌、 肺癌、 塍癌、 大腸癌転移組織 (肝臓) で発現が亢進して いることが見いだされた。 この遺伝子の発現が癌と関連していることは知られて いない。
TEG12 (配列番号 15 ;配列番号 72) は、 ESTをコードする。 この遺 伝子の G e nB an k受託番号は BF057073である。 後述の実施例に記載され るように、 本発明においてこの遺伝子の全長配列が明らかになった。 この遺伝子 は、 肝癌で発現が亢進していることが見いだされた。 この遺伝子の発現が癌と関 連していることは知られていない。
TEG13 (配列番号 16) は、 ESTをコードする。 この遺伝子の Ge nB ank受託番号は H66658である。 この遺伝子は、 肝癌で発現が亢進している ことが見いだされた。 この遺伝子の発現が癌と関連していることは知られていな い。
TEG14 (配列番号 17 ;配列番号 73) は、 ASPMをコ一ドする。 この 遺伝子の G e nB an k受託番号は NM— 018123.1である。 この遺伝子は、 胃癌、 大腸癌、 肝癌、 肺癌で発現が亢進していることが見いだされた。 この遺伝子の発 現が癌と関連していることは知られていない。
TEG15 (配列番号 18 ;配列番号 74) は、 Sp5をコードする。 この遺 伝子の G e nB an k受託番号は AI380207である。 この遺伝子は、 胃癌,大腸 癌、 肝癌、 肺癌で発現が亢進していることが見いだされた。 この遺伝子の発現が 癌と関連していることは知られていない。
TEG16 (配列番号 19) は、 IMAGE:297403をコードする。 この遺伝子 の G e n B a n k受託番号は AF339813.1 である。 この遺伝子は、 肝癌、 肺癌、 滕癌、 大腸癌転移組織 (肝臓) で発現が亢進していることが見いだされた。 この 遺伝子の発現が癌と関連していることは知られていない。
TEG17 (配列番号 20 ;配列番号 75) は、 DKFZp434k2435をコ一ド する。 この遺伝子によりコードされるタンパク質は膜タンパク質である。 この遺 伝子の G e nB an k受託番号は AL136855.1 (参照配列 NM_032256) である。 この遺伝子は、 胃癌、 大腸癌、 肺癌、 塍癌で発現が亢進していることが見いださ れた。 この遺伝子の発現が癌と関連していることは知られていない。
TEG18 (配列番号 22 ;配列番号 76) は、 CBRC7TM— 249をコードす る。 この遺伝子によりコードされるタンパク質は膜タンパク質である。 この遺伝 子の06118 & 111^受託番号は_^1694413でぁる。 この遺伝子は、 胃癌、 大腸癌、 中 ·低分化型肝癌、 塍癌、 大腸癌転移組織 (肝臓) で発現が亢進していることが 見いだされた。 この遺伝子の発現が癌と関連していることは知られていない。
TEG19 (配列番号 1 ;配列番号 77) は、 VLGR1をコードする。 この遺 伝子によりコードされるタンパク質は膜タンパク質である。 この遺伝子の Ge n B ank受託番号は AF055084.1 (参照配列 NM— 032119) である。 この遺伝子 は、 肺痛、 膝癌で発現が宂進していることが見いだされた。 この遺伝子の発現が 癌と関連していることは知られていない。
TEG20 (配列番号 9 ;配列番号 78) は、 C20orf54をコードする。 この 遺伝子によりコードされるタンパク質は膜タンパク質である。 この遺伝子の Ge nB ank受託番号は AA903862 (参照配列 NM_033409) である。 この遺伝子 は、 胃癌、 大腸癌、 肺癌、 大腸癌転移組織 (肝臓) で発現が亢進していることが 見いだされた。 この遺伝子の発現が癌と関連していることは知られていない。
TEG21 (配列番号 14;配列番号 79) は、 RHBGをコードする。 この 遺伝子によりコードされるタンパク質は膜タンパク質である。 この遺伝子の Ge nB a n k受託番号は NM_020407.1 (参照配列 NM_020407) である。 この遺 伝子は、 肝癌で発現が亢進していることが見いだされた。 この遺伝子の発現が癌 と関連していることは知られていない。
TEG22 (配列番号 21 ;配列番号 80) は、 COPG2をコードする。 この 遺伝子の G e nB an k受託番号は AB047847.1 (参照配列 NM— 012133) であ る。 この遺伝子は、 大腸癌、 肺癌で発現が亢進していることが見いだされた。 こ の遺伝子の発現が癌と関連していることは知られていない。
TEG23 (配列番号 64、 65 ;配列番号 81、 82) は、 ESTをコ一ド する。 この遺伝子の Ge nB an k受託番号は AL039884である。 後述の実施 例に記載されるように、 本発明において、 この遺伝子の全長配列が明らかになつ た。 この遺伝子は、 低分化型肝癌、 肺癌で発現が亢進していることが見いだされ た。 この遺伝子の発現が癌と関連していることは知られていない。
TEG24 (配列番号 23 ;配列番号 83) は、 BE670584をコードする。 この遺伝子の G e nB an k受託番号は BE670584である。 この遺伝子は、 胃 癌、 肺癌、 大腸癌転移組織 (肝臓) で発現が亢進していることが見いだされた。 この遺伝子の発現が癌と関連していることは知られていない。
TEG25 (配列番号 24 ;配列番号 84) は、 GRP49をコードする。 この 遺伝子によりコードされるタンパク質は膜タンパク質である。 この遺伝子の G e nBank受託番号は AL524520 (参照配列 NMJ303667) である。 この遺伝子 は、 胃癌、 大腸癌、 中分化型肝癌、 肺癌、 大腸癌転移組織 (肝臓) で発現が亢進 していることが見いだされた。 この遺伝子の発現が癌と関連していることは知ら れていない。
TEG26 (配列番号 25 ;配列番号 85) は、 MUC17をコードする。 この 遺伝子によりコードされるタンパク質は膜タンパク質である。 この遺伝子の Ge nBank受託番号は AK026404.1である。 この遺伝子は、 胃癌、 塍癌で発現 が亢進していることが見いだされた。 この遺伝子の発現が胃癌と関連しているこ とは知られていない。
TEG27 (配列番号 26 ;配列番号 86) は、 EPHB2をコードする。 この 遺伝子によりコードされるタンパク質は膜タンパク質である。 この遺伝子の Ge nB ank受託番号は AF025304.1 (参照配列 NM— 004442) である。 この遺伝 子は、 胃癌、 大腸癌、 肺癌、 大腸癌転移組織 (肝臓) で発現が亢進していること が見いだされた。 この遺伝子の発現が大腸癌と関連していることは知られていな い。
TEG28 (配列番号 27 ;配列番号 87) は、 GPCR41 (FLJ11856) をコ
—ドする。 この遺伝子によりコードされるタンパク質は膜タンパク質である。 こ の遺伝子の G e nB an k受託番号は AK021918.1 (参照配列 NM— 024531) で ある。 この遺伝子は、 胃癌、 大腸癌、 肺癌、 大腸癌転移組織 (肝臓) 、 塍癌で発 現が亢進していることが見いだされた。 この遺伝子の発現が胃癌と関連している ことは知られていない。
TEG29 (配列番号 28 ;配列番号 88) は、 HS6ST2をコードする。 こ の遺伝子によりコードされるタンパク質は膜タンパク質である。 この遺伝子の G e nB ank受託番号は AI767756である。 この遺伝子は、 肺癌、 大腸癌、 低分 化型肝癌、 勝癌で発現が亢進していることが見いだされた。 この遺伝子の発現が 肺癌と関連していることは知られていない。
TEG30 (配列番号 29 ;配列番号 89) は、 PCDHB2をコードする。 こ の遺伝子によりコードされるタンパク質は膜タンパク質である。 この遺伝子の G e nB an k受託番号は NM— 018936.1 (参照配列 NM— 018936) である。 この 遺伝子は、 肺痛、 勝窟で発現が宂進していることが見いだされた。 この遺伝子の 発現が肺癌と関連していることは知られていない。
TEG31 (配列番号 30 ;配列番号 90) は、 WFDC3 (C20orfl67)をコー ドする。 この遺伝子の G e nB an k受託番号は AL050348である。 この遺伝 子は、 肺癌、 )!萃癌で発現が 進していることが見いだされた。 この遺伝子の発現 が肺癌と関連していることは知られていない。
TEG32 (配列番号 31 ;配列番号 91 ) は、 C20orf42をコ一ドする。 こ の遺伝子の GenBank受託番号は NM— 017671.1 (参照配列 NM_017671) である。 この遺伝子は、 肺癌、 胃癌、 大腸癌、 大腸癌転移組織 (肝臓) で発現が 宂進していることが見いだされた。 この遺伝子の発現が肺癌と関連していること は知られていない。
TEG33 (配列番号 32 ;配列番号 92) は、 PIGRをコ一ドする。 この遺 伝子によりコードされるタンパク質は膜タンパク質である。 この遺伝子の Gen B ank受託番号は NM— 002644.1 (参照配列 NM— 002644) である。 この遺伝 子は、 肺癌、 大腸癌で発現が亢進していることが見いだされた。 この遺伝子の発 現が肺癌と関連していることは知られていない。
TEG34 (配列番号 33 ;配列番号 93) は、 2FE2L3をコードする。 この 遺伝子の Ge nB an k受託番号は M— 004289.3 (参照配列 M— 004289) で ある。 この遺伝子は、 胃癌、 大腸癌、 肺癌、 大腸癌転移組織 (肝臓) 、 塍癌で発 現が亢進していることが見いだされた。 この遺伝子の発現が胃癌と関連している ことは知られていない。
TEG35 (配列番号 34;配列番号 94) は、 TRAG3をコードする。 この 遺伝子の G e n B a n k受託番号は NM_004909.1 (参照配列 NM_p04909) で ある。 この遺伝子は、 胃癌、 肺癌、 勝癌で発現が亢進していることが見いだされ た。 この遺伝子の発現が胃癌と関連していることは知られていない。
TEG36 (配列番号 35 ;配列番号 95) は、 TRIM31をコードする。 こ の遺伝子の GenB an k受託番号は NM— 007028である。 この遺伝子は、 胃 癌、 薛癌、 肺癌で発現が亢進していることが見いだされた。 この遺伝子の発現が 胃癌と関連していることは知られていない。
TEG37 (配列番号 36 ;配列番号 96) は、 KIAA1359をコードする。 この遺伝子の G e n B a n k受託番号は AB037780である。 この遺伝子は、 胃 癌、 肺癌、 大腸癌、 塍癌、 大腸癌転移組織 (肝臓) で発現が亢進していることが 見いだされた。 この遺伝子の発現が胃癌と関連していることは知られていない。
TEG38 (配列番号 37 ;配列番号 97) は、 ubiqutinDをコ一ドする。 こ の遺伝子の Ge nB an k受託番号は NM— 006398である。 この遺伝子は、 胃 癌、 大腸癌、 肺癌、 中,低分化型肝癌、 肺癌、 腾癌で発現が亢進していることが 見いだされた。 この遺伝子の発現が胃癌と関連していることは知られていない。
TEG39 (配列番号 38 ;配列番号 98) は、 Hephaestinをコードする。 この遺伝子によりコードされるタンパク質は膜タンパク質である。 この遺伝子の GenB an k受託番号は NM— 014799.1 (参照配列 NM— 014799) である。 こ の遺伝子は、 胃癌、 大腸癌転移組織 (肝臓) 、 塍癌で発現が亢進していることが 見いだされた。 この遺伝子の発現が胃癌と関連していることは知られていない。
TEG40 (配列番号 39 ;配列番号 99) は、 KIAA0152をコードする。 この遺伝子によりコ一ドされるタンパク質は膜タンパク質である。 この遺伝子の Ge nB an k受託番号は BC000371.1 (参照配列 NM— 014730) である。 この 遺伝子は、 胃癌、 大腸癌、 グリア芽腫、 肺癌で発現が亢進していることが見いだ された。 この遺伝子の発現が胃癌と関連していることは知られていない。
TEG41 (配列番号 40 ;配列番号 100) は、 KIAA0703 をコードする。 この遺伝子によりコードされるタンパク質は膜タンパク質である。 この遺伝子の 06 ]18&111^受託番号は匪—014861.1 (参照配列 NM— 014861) である。 こ の遺伝子は、 胃癌、 肺癌、 大腸癌転移組織 (肝臓) で発現が亢進していることが 見いだされた。 この遺伝子の発現が胃癌と関連していることは知られていない。
TEG42 (配列番号 41 ;配列番号 101) は、 MEST/PEG1をコードす る。 この遺伝子の Ge nB an k受託番号は NM— 002402.1 (参照配列
NM— 002402) である。 この遺伝子は、 胃癌、 大腸癌、 肺癌で発現が亢進してい ることが見いだされた。 この遺伝子の発現が胃癌と関連していることは知られて いない。
TEG43 (配列番号 42 ;配列番号 102) は、 KIAA1199 をコードする。 この遺伝子の G e n B a n k受託番号は AB033025.1である。 この遺伝子は、 胃癌、 肺癌、 大腸癒、 塍癌で発現が宂進していることが見いだされた。 この遺伝 子の発現が胃癌と関連していることは知られていない。
TEG44 (配列番号 43 ;配列番号 103) は、 ELOVL2をコ一ドする。 この遺伝子の G e nB a n k受託番号は BF508639 (参照配列 NM— 017770) で ある。 この遺伝子は、 肝癌、 グリア芽細胞腫、 肺癌で発現が亢進していることが 見いだされた。
TEG45 (配列番号 44;配列番号 104) は、 ROB01をコードする。 こ の遺伝子によりコードされるタンパク質は膜タンパク質である。 この遺伝子の G e nB ank受託番号は BF059159 (参照配列 NM— 133631) である。 この遺伝 子は、 肝癌、 グリア芽細胞腫、 肺癌で発現が宂進していることが見いだされた。
TEG46 (配列番号 45 ;配列番号 105) は、 FLJ10504MISATOをコ 一ドする。 この遺伝子の G e n B a n k受託番号は BC002535.1 (参照配列 NM_018116) である。 この遺伝子は、 肝癌、.肺癌、 fl萃癌で発現が亢進している ことが見いだされた。 この遺伝子の発現が肝癌と関連していることは知られてい ない。
TEG47 (配列番号 46 ;配列番号 106) は、 cystatinSNをコードする。 この遺伝子の G e nB a n k受託番号は NM— 001898.1 (参照配列
NM_001898) である。 この遺伝子は、 大腸癌、 肺癌で発現が亢進していること が見いだされた。 この遺伝子の発現が大腸癌と関連していることは知られていな い。
TEG48 (配列番号 47 ;配列番号 107) は、 LOC116238 をコードする。 この遺伝子の Ge nB a n k受託番号は BE328850 (参照配列 NM 138463) で ある。 この遺伝子は、 胃癌、 大腸癌、 肺癌、 低分化型肝癌、 滕癌で発現が亢進し ていることが見いだされた。
TEG49 (配列番号 48 ;配列番号 108) は、 MRPL50をコードする。 この遺伝子の G e nB an k受託番号は BG028213 (参照配列 NM_019051) で ある。 この遺伝子は、 胃癌、 大腸癌、 中 ·低分化型肝癌、 グリア芽腫、 肺齓 塍 癌で発現が亢進していることが見いだされた。
TEG50 (配列番号 49 ;配列番号 109) は、 TOPlmtをコ一ドする。 この遺伝子の G e n B a n k受託番号は AW592604 (参照配列 NM— 052963) である。 この遺伝子は、 大腸癌、 低分化型肝癌、 大腸癌転移組織 (肝臓) 、 滕癌 で発現が亢進していることが見いだされた。 この遺伝子の発現が大腸癌と関連し ていることは知られていない。
TEG51 (配列番号 50 ;配列番号 1 10) は、 FKSG14をコードする。 この遺伝子の G e n B a n k受託番号は BC005400.1 (参照配列 NM_022145) である。 この遺伝子は、 胃癌、 大腸癌、 肺癌、 膝癌で発現が亢進していることが 見いだされた。 この遺伝子の発現が大腸癌と関連していることは知られていない。
TEG52 (配列審号 51 ;配列番号 111) は、 CDH3をコードする。 こ の遺伝子によりコードされるタンパク質は膜タンパク質である。 この遺伝子の G e nB ank受託番号は NM—001793.1 (参照配列 NM— 00Γ793) である。 この 遺伝子は、 肺癌、 胃癌、 大腸癌、 勝癌で発現が宂進していることが見いだされた。
TEG53 (配列番号 52 ;配列番号 112) は、 NRP2をコードする。 こ の遺伝子によりコードされるタンパク質は膜タンパク質である。 この遺伝子の G e nB a n k受託番号は N90777 (参照配列. NM— 003872) である。 この遺伝子 は、 肺癌、 グリア芽腫、 大腸癌転移組織 (肝臓) 、 滕癌で発現が亢進しているこ とが見いだされた。
TEG54 (配列番号 53 ;配列番号 1 13) は、 CLDN3をコードする。 こ の遺伝子によりコードされるタンパク質は膜タンパク質である。 この遺伝子の G e nB an k受託番号は BE791251 (参照配列 NM_001306) である。 この遺伝 子は、 胃癌、 肺癌、 大腸癌、 大腸癌転移組織 (肝臓) で発現が亢進していること が見いだされた。 この遺伝子の発現が胃癌と関連していることは知られていない。
TEG55 (配列番号 54 ;配列番号 114) は、 CLDN4をコ一ドする。 こ の遺伝子によりコードされるタンパク質は膜タンパク質である。 この遺伝子の G e nB a n k受託番号は NM— 001305.1 (参照配列 NM— 001305) である。 この 遺伝子は、 胃癌、 肺癌、 大腸癌、 大腸癌転移組織 (肝臓) 、 滕癌で発現が亢進し ていることが見いだされた。 この遺伝子の発現が胃癌と関連していることは知ら れていない。
TEG56 (配列番号 55 ;配列番号 115) は、 sfrp4をコードする。 この 遺伝子の G e nB an k受託番号は AW089415 (参照配列 NM— 003014) であ る。 この遺伝子は、 肺癌、 胃癌、 グリア芽腫、 S萃癌で発現が亢進していることが 見いだされた。 この遺伝子の発現が胃癌と関連していることは知られていない。
TEG57 (配列番号 56 ;配列番号 116) は、 ASPSCR1をコードする。 この遺伝子の Ge nB a n k受託番号は NM— 024083.1 (参照配列
NM— 024083) である。 この遺伝子は、 肝癌、 肺癌で発現が亢進していることが 見いだされた。 この遺伝子の発現が肝癌と関連していることは知られていない。
TEG58 (配列番号 57 ;配列番号 117) は、 GAGEC1をコードする。 この遺伝子の G e n B a n k受託番号は NM— 007003.1 (参照配列
NM— 007003) である。 この遺伝子は、 肝癌で発現が亢進していることが見いだ された。 この遺伝子の発現が肝癌と関連していることは知られていない。
TEG59 (配列番号 58 ;配列番号 118) は、 RHAMMをコードする。 この遺伝子によりコードされるタンパク質は膜タンパク質である。 この遺伝子の GenBan k受託番号は NM— 012485.1 (参照配列 NM— 012484) である。 こ の遺伝子は、 胃癌、 大腸癌、 肝癌、 塍癌で発現が亢進していることが見いだされ た。 この遺伝子の発現が肝癌と関連していることは知られていない。
TEG60 (配列番号 59 ;配列番号 119) は、 PEG10をコードする。 こ の遺伝子の G e nB an k受託番号は BE858180 (参照配列 NM— 015068) であ る。 この遺伝子は、 肝癌、 肺癌、 肝芽腫で発現が亢進していることが見いだされ た。
TEG61 (配列番号 60 ;配列番号 120) は、 PAEPをコードする。 この 遺伝子の G e nB an k受託番号は NM— 002571.1 (参照配列 NM— 002571) で ある。 この遺伝子は、 肺癌、 塍癌で発現が亢進していることが見いだされた。
TEG62 (配列番号 61 ;配列番号 121) は、 MGC10981 をコードする。 この遺伝子の G e n B a n k受託番号は BC004397.1 (参照配列 NM— 032654) である。 この遺伝子は、 肺癌、 塍癌で発現が亢進していることが見いだされた。 T E G 6 3 (配列番号 6 2 ;配列番号 1 2 2 ) は、 DUSP9をコ一ドする。 こ の遺伝子の G e n B a n k受託番号は NM— 001395.1 (参照配列 NM— 001395) である。 この遺伝子は、 肝癌で発現が宂進していることが見いだされた。
T E G 6 4 (配列番号 6 3 ;配列番号 1 2 3 ) は、 KIAA1089 をコ ドする。 この遺伝子の G e n B a n k受託番号は AB029012.1である。 この遺伝子は、 肝癌、 肺癌、 滕癌で発現が亢進していることが見いだされた。 本明細書において明示的に引用される全ての特許および参考文献の内容は全て 本明細書の一部としてここに引用する。 また, 本出願が有する優先権主張の基礎 となる出願である日本特許出願 2 0 0 3 - 2 9 0 7 0 4号の明細書および図面に 記載の内容は全て本明細書の一部としてここに引用する。 実施例
以下に実施例により本発明をより詳細に説明するが, これらの実施例は本発明 の範囲を制限するものではない。 実施例 1
ヒト癌組織において発現が亢進する遺伝子の同定
ヒトの各種癌組織 (肺腺癌、 胃癌、 大腸癌、 肝細胞癌、 脳腫瘍) において正常 組織に比べ発現が亢進する遺伝子の同定を行うために、 ヒト各種癌摘出組織にお ける mRNAの発現解析を GeneChip (Gene ChipTM HG"133A,B Target; Affymetryx社製) を用いて実施した。
1.1. ヒト肺腺癌において発現が亢進する遺伝子の同定
ヒト肺腺癌においてヒト正常肺組織に比べ発現が亢進する遺伝子を同定するた めに、 下記のようにして mRNAの発現解析を実施した。
すなわち、 初めに各種分化度■ステージを含む 12例の肺腺癌摘出組織の癌部 位、 および 1例の正常肺より、 ISOGEN (日本ジーン社) を用いて添付の方法 に従い全 RNAを調製した。 続いて、 肺腺癌ならびに正常肺における mRNAの 発現を GeneChip™ HG-U133A,B (Affymetryx社製) を用いて解析した。 す なわち、 癌部位に関しては 12例分より調製した全 RNAをそれぞれ等量ずつ混 合したもの 5μ を、 また対照として 1例の正常肺より調製した全 RNA 5pgを試 料として用レ Expression Analysis Technical Manual (Affymetryx ¾) に準 じて遺伝子発現解析を行った。 それぞれの解析における全遺伝子の発現スコアの 平均値を 100とし、 各遺伝子の発現量は相対値とした。
1.2. ヒト胃癌において発現が亢進する遺伝子の同定
ヒト胃癌においてヒト正常胃組織に比べ発現が亢進する遺伝子を同定するため に、 上記と同様の方法により mRNAの発現解析を実施した。
すなわち、 3例の胃癌摘出組織、 および 1例の正常胃より上記と同様に全 RNAを調製し、 癌部位に関しては 3例分の全 RNAをそれぞれ等量ずつ混合し たもの 5pgを、 また対照として 1例分の正常胃より調製した 5 gの全 RNAを 試料として用い、 GeneC ipTM HG"U133A,B (Affymetryx社製) を用いて mRNAの発現を解析した。 それぞれの解析における全遺伝子の発現スコアの平 均値を 100とし、 各遺伝子の発現量は相対値とした。
1.3. ヒト大腸癌において発現が亢進する遺伝子の同定
ヒト大腸癌においてヒト正常大腸組織に比べ発現が亢進する遺伝子の同定を上 記と同様に実施した。
すなわち、 3例の大腺癌摘出組織の癌部位および 1例の正常大腸組織より上記 と同様に全 RNAを調製し、 癌部位に関しては 3例分の全 RNAをそれぞれ等量 ずつ混合したもの 5pgを、 また対照として 1例分の正常胃より調製した 5pgの 全 RNAを試料として用い、 GeneChipTM HG-ui33A,B (Affymetryx社製) を 用いて mRNAの発現を解析した。 それぞれの解析における全遺伝子の発現スコ ァの平均値を 100とし、 各遺伝子の発現量は相対値とした。
1.4. ヒト肝細胞癌において発現が亢進する遺伝子の同定
ヒト肝細胞癌においてヒト正常肝臓に比べ発現が亢進する遺伝子の同定を上記 と同様に実施した。
すなわち、 3例の C型肝炎ウィルス感染型の中分化型肝細胞癌、 3例の C型 肝炎ウィルス感染型の低分化型肝細胞癌部位および 1例の正常肝臓組織より上 記と同様に全 RNAを調製し、 各種分化度の異なる癌部位に関しては各 3例分の 全 RNAを等量ずつ混合したもの 5pgを、 また対照として 1例分の正常肝臓よ り調製した 5pgの全 RNAを試料として用い、 GeneChipTM HG-U133A,B (Affymetryx社製) を用いて mRNAの発現を解析した。 それぞれの解析にお ける全遺伝子の発現スコアの平均値を 100とし、 各遺伝子の発現量は相対値と した。
1.5. ヒトグリア芽腫において発現が亢進する遺伝子の同定
ヒトダリァ芽腫においてヒト正常脳組織に比べ発現が宂進する遺伝子の同定を 上記と同様に実施した。
すなわち、 5例のダリァ芽腫摘出組織の癌部位および 1例の正常脳組織より上 記と同様に全 RNAを調製し、 癌部位に関しては 5例分の全 RNAをそれぞれ等 量ずつ混合したもの 5pgを、 また対照として 1例分の正常脳組織より調製した 5pgの全 RNAを試料として用い、 GeneChip™ HG-U133A,B (Affymetryx社 製) を用いて mRNAの発現を解析した。 それぞれの解析における全遺伝子の発 現スコアの平均値を 100とし、 各遺伝子の発現量は相対値とした。
以上の解析の結果、 表 2に示す遺伝子がそれぞれ対応する正常組織に比べ mRNAの発現が宂進していることが明らかとなつた。
表 2
3 ϊ目 " l^i^l Gene chip解 ί結果
?S
名称 £ΐ¾ X*5)
中分化 低分化 グリア 肺 肺 ¾ 大腸 大腕 肝臓
型肝癌 型肝瘙 芽腫
TEG1 C20orf102 肺癌、中分化型肝癌 32 299.3 98.6 50.3 95.2 18.4 39.1 104.9 13 834.4 90.8
TEG2 ASCL2 . 目 '¾2、大 癌 66.1 27.4 6 .406.9 79.1 738.8 19.5 5.9 31.2 3.6 10.7
TEG3 EST 胃癌、中分化型肝癌 65.1 74.6 92.1 440.8 112.9 107.6 142.3 216 164.4 53.2 86.9
TEG4 EST 胃癌、大腸癌 50.9 25.1 41.4 117.2 52.5 106.8 12 38.5 12.5 31.2 61.1
TEG5 EST 胃癌 79.7 85 58.7 248.2 73.9 63.5 11.3 59.7 96.9 44 87.2 肺 ise fe、大 feile
TEG6 OK/SW- Cし 30
中分化型肝癌 84.1 118.9 55.6 537.1 98.5 734.1 157.7 1781.4 160.8 78.7 106
TEG7 肺提、 )&,大
DKFZp686L1533 fe¾
中 ·低分化型肝癌 79.2 173.3 ■14.6 588.5 89.2 750.3 22.7 158 309.6 15.5 87.1
TEG8 EST 胃癌、低分化型肝癌 59.1 50.8 37.5 260.7 36.3 22.7 58.7 26.8 20 68.7 17.4
TEG9 LOC93082 胃癌、低分化型肝癌 107.3 34.5 14.5 1030.1 89.2 21.9 130 155.6 448.1 18.5 105.4
TEG10 EST 胃癌、中 ·低分化型肝 38.1 37.8 32.8 385.8 20.3 20.5 28.2 103.9 356.5 60.2 63.5
TEG" 胃癌、大腸癌、中分化
FLJ 1041
型肝癌 607.1 481.8 16.9 261.5 19.2 522.1 97.9 128.1 56.2 43.2 49.2
TEG12 EST 肝癌 60.8 65.2 91 38.6 44.5 62.2 16.2 194.3 527 66.2 47.7
TEG13 EST 肝瘙 38 10.3 35.5 17 16.3 4.6 26.1 493.7 177.7 4.6 14.7
TEGU ASPM 胃癌、大腸癌、肝癌 1.3 45.1 3.8 107.3 18.2 99.6 3.6 111.3 246.1 1.5 83.8
TEG15 Sp5 胃癌、大腸癌、肝癌 8 15.8 57.9 219.2 14.5 270.1 11.2 288.7 219.2 12 6.8
TEG 16 IMAG&297403 肝癌 5.7 12.7 25 11.5 20.2 17.8 34.4 273.1 159.7 16.2 66.8
TEG 17 DKFZp434K2435 大 feifes 11.1 5.9 16.1 183.1 16.6 98.1 8.4 17.3 9.5 14.5 18.8
TEG18 CBRC7TM.249 胃癌、大腸癌、中 ·低
分化型肝瘙 13.6 86.6 45 240.4 19.6 175.4 158.8 669 949 13.5 47.9
TEG19 MASS1/VLGR1 肺癌 23.6 254.4 17.1 5.3 18 4.3 133.6 77.4 21.2 21.8 111.8
TEG20 C20orf54 胃癌、大腸癌、肺癌 21.7 69.6 22.8 261.1 22.4 50.5 8.4 8.2 24.4 6.6 15.5
TEG21 RHBG 肝癌 8.7 13.4 19.1 5.4 15.6 8.6 17.4 792.6 57.1 15.5 9.3
TEG22 COPG2 大腸癌 77 66.9 83.1 47.5 21.7 178.4 52.8 8.7 22.6 40.9 78.7
TEG23 EST 低分化型肝癌 35.1 81.2 2 21.1 28 5.9 9.3 33.7 539.9 22.9 42.2
TEG24 EST 胃癌 28.9 19.4 35.6 197.1 44.8 80.1 5.2 15.5 31.1 57.6 58.8
TEG25 胃癌、大腸癌、中分化
GPR49
型肝癌 23.9 15.8 24.3 538.3 41.6 135.3 16.7 233.8 78.8 33.5 11.2
TEG26 MUC17 胃癌 73.4 59.1 89.4 565.2 113.3 102.8 34.7 67.6 113.8 100 56.3
TEG27 EphB2 胃癌、大腸癌 23.2 47.5 6.8 218.7 62.8 189.4 6.6 55.1 13.6 28.7 49
FLJ11856/GPCR
TEG28 胃癌、大腸癌
41 22.2 35.2 9.1 229.5 63.8 197.5 2.7 5.1 67.3 4.4 78.3
TEG29 肺癌、大腸癌、低分化
HS6ST2
型肝癌 20.8 472.6 3.6 2.3 37.2 164.9 4.5 6.5 191.4 104 69.
TEG30 PCDHB2 肺癌 11.9 228.5 55.2 37.7 32.2 58.9 14.4 13.4 27.7 80.4 78
TEG31 WFDC3 肺癌 30.1 304.2 110.6 287 32.2 27.8 46.4 29.9 30.4 28.7 28.9
TEG32 C20orf42 肺瘙、胃癌、大腸癌 11.6 43.8 2X7 365.4 175.8 535.2 7 17.3 44 23.5 15.4
TEG33 PIGR 肺 3S 63.2 382.6 129.9 149.3 520.1 423.7 102.3 101.8 96 65.2 77.7
表 2
-rr Gene chip解析結果
杳 名称 グリア 種 肺 肺瘙 大腸 大 re 中分化 低分化
提 肝臓
型肝瘙 型肝癌 芽腫
TEG34 NFE2L3 胃癌、大腸癌 37 62.4 55.2 144.9 22 216.8 27.4 18.6 37.3 13.7 27.8
TEG35 TRAG3 胃癌 1.8 1.7 1.9 74.4 1.2 1.3 1.7 1.6 1.4 1.4 1.9 j
TEG36 TRIM31 16.9 13.2 14.6 155.2 67.3 52.7 21 41.4 31 4.6 26.8
TEG37 ΚΙΑΑ1359 提、 、大 22.8 190.3 7.5 521.1 196.8 196.7 37.9 5.7 9.1 3.5 40.6
胃 fe、大 ftsfe、肺 fe»
TEG38 ubiqukmD
中 ·低分化型肝癌 89.7 31 1.5 44.2 1172.8 60.1 605.7 269.2 1460.9 2542.8 42.1 69
TEG39 Hephaestin 97.6 97.3 75.8 341.5 568.8 419.1 34.6 50.6 27 126.1 91.6
胃癌、大腸癌、グリア
TEG40 KIAA0152
芽腫 32.5 82.1 .36.2 214.9 58.2 233.5 25.1 45.8 94 22.6 109.4
TEG41 KIAA0703 胃癌 84.6 46.3 20.1 214.3 195.3 77.4 13.1 3.5 4.7 24.9 5.9
TEG42 MEST/PEG1 胃癌、大腸癌 235.9 406.2 92.6 524.3 178.4 640.8 423 248.4 455.9 207.2 771.4
TEG43 KIAA1199 胃癌、肺瘙、大腸癌 53.6 162.4 26.2 80.7 28.9 185 68.5 63.5 44.3 89.1 69.4
TEG44 EL0VL2 肝癌、グリア芽細胞腫 10.1 0.8 2.8 3 15.5 1.9 68.8 224.9 233.5 76.5 121.2
TEG45 R0B01 肝癌、グリア芽細胞腫 58.5 49.1 32.4 38 21.4 123.2 9.1 236.4 563 64.3 152.3
TEG46 FLJ10504/misato肝癌 53.8 38.8 6.5 49.5 5.6 21.5 5.1 105.2 106.8 27.4 41.6
TEG47 cystatin SN 大 toき 2.7 53.6 4.4 98.1 9.4 804.5 6.1 27.6 24.1 15.5 2.3
胃癌、大腸癌、肺癌、
TEG48 LOC116238
低分化型肝癌 6.9 159.3 45.6 122.8 10.1 136.9 43.3 63.2 220.2 80 60.5
TEG49 胃癌、大腸癌、中-低
MRPL50
分化型肝癌、グリア芽 77.8 86.1 98.1 191.2 43.8 256.5 72 155.3 200.8 47.7 100
TEG50 TOP1 MT 大腸癌、低分化型肝癌 16.5 30.8 19.1 49.7 31.3 206.4 24.9 31.9 306.2 25.5 19
TEG51 FKSG14 3 & lafes 23.1 38.1 11.1 1 14.8 32.2 65 14 37.8 31.9 2.6 82.6
TEG52 CDH3 肺癌、胃癌、大腸癌 24.1 172.5 5.8 64.5 5.4 131.3 4.1 3.7 2.3 14.1 5.9
TEG53 NRP2 肺癌 26.4 171.1 40.4 25.8 88 79.1 89.9 19.1 43.6 22.4 155.2
TEG54 CLDN3 胃癌、肺癌 3.2 147.6 0.8 624.4 1206.9 738.3 40.2 42.3 4.1 1.8 0.6
TEG55 CLDN4 胃癌、肺 3¾ 70.1 193.6 3.9 364.8 258.4 325.8 7.1 37.4 45.4 3.3 2.5
TEG56 SFRP4 肺癌、胃癌、グリア芽 153.6 244.9 66.9 153.1 69.4 87.8 51.1 49.2 49.3 53.4 250.3
TEG57 ASPSCR1 肝癌 42.4 45.4 41.5 75.1 28.4 102.3 58.3 285.1 78.3 46.1 44.5
TEG58 GAGEC1 肝癌 6.1 17.9 31.7 4.2 4.8 1 1.6 5.8 2014.7 45.9 8.2 12.1
TEG59 RHAMM 胃癌、大腸癌、肝癌 19.6 46.1 35.6 115.3 36.2 158.6 10.6 103.2 84.5 7.4 55.4
TEG60 PEG10 肝瘙、肺癌、肝芽腫 42.9 216.9 45.7 21.4 28.6 36.7 40.6 389.8 174.7 80.9 64.5
TEG61 PAEP 肺 4.1 96.4 9.6 7.5 6.4 5.5 4.4 6.2 6 6.5 4.4
TEG62 MGC 0981 肺癌 58.1 459 59.7 44.9 91 71.6 98.6 87.7 8.1 56.8 34
TEG63 DUSP9 肝癌 20 33.7 25.9 28.9 30.9 24 46.4 212.7 687 49.4 24.1
TEG64 EST1 B 肝癌 52.6 18.7 20.8 34.9 24.3 25.5 16 82 83.2 24.2 42.3
特に TEG1—TEG18に関しては今までにいかなる癌細胞においてもその発現 亢進が明らかになっておらず、 今回の解析によりある種の癌において発現が 7ΐ進 することが示された。 また、 TEG19— TEG60の各遺伝子に関しては、 今までに 報告されていた癌種以外に、 今回新たな癌種で発現が亢進することが明らかとな つ/こ。
1.6. 各種癌組織において発現が宂進する遺伝子の同定
TEG1-TEG6 の各遺伝子の、 それぞれの癌種における発現解析を、
GeneChipTM HG-U133A,B (Affymetryx社製) 、 および Gene Chip™ HG- Ul33plus2 (A metryx社製) を用いて実施した。 すなわち、 肺小細胞肺癌 10 例、 肺扁平上皮癌 5例、 肺腺癌 5例、 大腸癌 7例、 大腸癌肝転移組織 8例、 腎 癌 2例、 および勝癌 4例の各検体を個々に上項と同様に全 RNAを調製した。 そ して、 その全 RNA5pgを、 GeneChipTM HG-U133A,Bを用いて mRNAの発現 解析を実施した。 肺小細胞癌、 大腸癌および大腸癌肝転移組織の一部については U-133Aチップのみの解析である。 それぞれの解析における全遺伝子の発現スコ 'ァの平均値を 100とし、 各遺伝子の発現量は相対値とした。 また、 小細胞癌 22 例、 および勝癌 27例ほ、 GeneChipTM HG-U133 plus 2を用いて、 同様に解析 を実施した。
その結果、 表 3および 4に示すように、 TEG1— TEG64の各遺伝子が各癌種 においても発現亢進していることが明らかとなった。
Figure imgf000069_0001
Figure imgf000070_0001
Figure imgf000071_0001
セ拏
69
0S9ll0/l700Zdf/X3d 8I8 0/S00Z OAV
Figure imgf000072_0001
01
osnio/poozdr/ LDd 8T8M0/S00Z OAV
Figure imgf000073_0001
S9ll0/l700Zdf/X3d 8I8 0/S00Z OAV 実施例 2
RT-PCRを用いた発現宂進頻度の確認
上記の Gene chip解析では各種摘出癌組織より調製した RNAをまとめて解析 した点、 ならびに Gene chip解析の結果を確認するために、 個々の癌サンプル ならびに非癌部の正常組織における各遺伝子の mRNAの発現量を R "PCR法に より解析し、 発現宂進の程度、 ならびに発現亢進頻度を検討した。
2.1.各種癌組織からの一本鎖 cDNAの調製
各種ヒト癌組織、 ならびに正常組織より以下のようにして PCRの際の铸型 DNAとして用いる一本鎖 cDNAを調製した。
すなわち、 肺腺癌に関しては肺腺癌組織 12例ならびに正常肺組織 4例より、 ヒト大腸癌に関しては 10例のヒト大腸癌組織ならびに同摘出組織中の非癌部の 正常大腸組織より、 ヒト胃癌に関しては 12例のヒト胃癌摘出組織、 ならびに同 摘出組織中の非癌部の正常胃組織より、 ならびにヒト肝癌に関しては 9例のヒ ト摘出肝癌組織ならびに同摘出組織中の非癌部よりそれぞれ全 RNAを上記と同 様の方法を用いて調製した後、 全 RNAより逆転写酵素 Superscripffl (GIBCO BRL社製) を用いて一本鎖 cDNAを合成した。 このようにして調製した一本鎖 cDNAは後述の PCRの際に錶型 DNAとして用いた。
2.2. T-PCRを用いた発現解析
続いて、 表 2に示す各遺伝子に関して RT-PCR法により mRNAの発現量を解 析した。 すなわち、 25pLの PCR反応液は、 500mM KC1, 100 mM Tris-
HCl(pH8.3), 20mM MgCl2, 0.1% Gelatin, 各 1.25 mM dNTPs (dATP, dCTP, dGTP, dTTP) 、 l Lの一本鎖 cDNA、 5 pmoleずつの各遺伝子に特異的なセン スプライマー、 アンチセンスプライマーのセット、 0.75 pLの SYBR Green I (1000倍希釈溶液,宝酒造社製)、 0.25 Lの recombinant Taq polymerase Mix (FG Pluthero, Rapia purification of high- activity Taq DNA polymerase ^
N cl. Acids. Res. 1993 21: 4850-4851.) を含むように調製した後、 初めに 94°C で 3分間一次変性を行い、 94°Cで 15秒、 で 15秒、 72°Cで 30秒からなる サイクルを 30回行なった。 各遺伝子の RT-PCRに用いたプライマーは表 5に示 すものをそれぞれデザインし解析に用いた。
また、 個々の RNA中のヒト ;8 -ァクチン遺伝子発現量もヒト i3 -ァクチンに特 異的なセンスプライマ一 (配列番号 2 5 2 : . AGAAGGAGATCACTGCCCTGGCACC) ならびにァンチセンスプライマー (配列番号 2 5 3 : CCTGCTTGCTGATCCACATCTGCTG) を用い上記と同様 に解析を行った。
寸卜
Figure imgf000076_0001
/ OS0SAV/D/STId 0S9U0さ O
C93 丄 053丄 0上 V3V00丄 VE)丄 031X03丄 00 zsz OOVOSS上 000Ό丄 ovo上 vsvsswsv ベ
1 2 0上 W03DVE)丄 03V3E)VSE 3 St- 60Sャ 092 OVOVSEiWVSVOSVOEISE)丄 DVO Z - 90 z iz
6Π D±VW0V0VD0101D0DDV0V ε9οζ- εκ« adsna OELLSSDVE)丄 OVQISJLLLO丄 OD 8881-8981- ddsna 96S 1001A1N LLL5QZ
L Z 00W0丄丄丄 VOODE)丄 3V0VDD 6 ι.-οεε ι 8661V 9Π OOVDDVOVODQVOIVOVOVOOWO ん 661V 6LL2ZZ
IVDIIDVIVIDOOVOOOOIIDOIOO L£- IS81V z JLLSO丄 VDVE)ELL00W0VE)E)VD0C)d3 692-5^ 0S81V S200 WN 69890Z zn 00丄 SO丄 0丄 DOQiailOOllO丄 V 201Z-LWZ SiSlV zvz SQWOOO丄 OOVOVOSWOOVSV 066 I--696 I. WS1V 890S 1-0 W Z60Z
IVZ SWOVD丄 VSVOE)丄 上 丄〇E) msz- z y剛 v O Z D11101001V001000V110JLLDD iZLZ-^QLZ J剛 VHU 99 U02
6CZ 0丄 03丄丄 0丄 00丄 CULVOOVS丄 00丄 00 awn 00D011011V011000JJL010JJ.0 8Z-9 eooz.oowN M9903
LZZ 。0丄 D丄 000丄 0丄 DSOVOWV。丄〇 ddSV 9ε2 DVDDVDlDOllOVDVDODllOVDO 29ει.-6εει. ddSV 80681-2
ODIVOIOIIODDIVIOVOOVIOO 3LH-9Q I OZ.CST ητ DOVOVllOOllOVDOOllOVDVDD 69CS1 lOSOO WN εεζ 1D101O1100DW10VDD00D 06L-0LL a aio zzz 0100丄 V±100SE)00DE)JLL0丄 I-09-Z89 d \Ό10 SOS LOO WN
ΪΖΖ 001DWDV1011D0DD0V00V000 ZS9-8Z9 u εαιο VSOVSEJVOS丄 E)OD丄 0W00V03丄 9Ζ9- 09 d εαιο 9οε mo刚 ε56εοζ
6ZZ WSVOEIULEISVE)丄 OOOVEIVO 6ZSZ-60S2 Sん 8丄 V szz DDDVIVOIOVODDVOOJLLDIO H81V Zん 8S00 IMN
LZZ VOOVOVO丄 DVOISDV丄 E)丄 OVO LS3Z-L9 Z 9S81V 9ZZ VOSVOllOVDlllSVODDE)上 ½8丄 V S6ん tOO WN 992C0Z szz DOOVOOWOO丄 V011E)丄 OS丄 Z9SS1 nz OOQ丄 WO丄 OVO丄 OWE)丄 0。00 88 — 9 t99ST
zzz OS丄 0〇3J_LL0丄丄 00上 30丄 00 809S1 zzz 000WO00VD00WOV1001V Z.09S1 S96290 IMN Z08S2Z vzz VOOD丄丄 0丄 3丄 VE)VD。E)VOO丄 Z-LLZ 90SS1 ozz 0OV0OVOV0V±V0DV0O0DV H.Z-061 S0SS1 150610 ΙΛ1Ν
6 (.Z 0VW00W0V0V0D0000V1 8Z.81V D丄 0丄 VDSDOCIIE)丄 5D11V00丄 ζοε- 8ζ ZZ.81V £9 8S L WN
L IZ 丄 DW3W530丄 SOV丄 0丄 OOVOOOE) け ε - 6 ΐ·ε 09ZS1 nz OOVOODVOOVODIIIOIDIVIOD Ζ0Ζ-6Ζ. Ι 69ZS1 868 LOO WN
Q IZ OIOWOWDDOIVDVODVODVO nz OV0100VOOOWOVOV0001V j in j geszoooa zzznz nz V000丄 0上 0丄 SOVOOEIOV丄丄 aaoH z vz OVSS丄 丄 0 9ε ε-6 ε daoa n uz 0Ε)丄 0000V0丄 00丄 SVW丄 SE) ζη-ζζζ QYZ 0 1V0010V101D1000100DV - 06 6C9809dS z i z
60Z OOVOVWllOOlllODJLLDOOVD 9899-9999 802 OODVDWOOVOJ-LVOOVWIOOI szossoav
LOZ SDVO丄 V丄 DE)VD丄 OVOOW丄 0110D丄 880Z-t90Z 98SS1 903 SVSVOOE E)丄 OIVOEIV丄 WOOVO Z.00Z-9861. S8CST ZOZOO WN 9 I.0Z0Z
90Z DVIOVQDOVODVOOOOVDDIVD ο ε - 6 ε εο服 VOZ' - 01100V01VD0VD0V00V000 οζοε-οοοε d εο細 no隱-
20Z VOV丄 30丄 WO lVOOOE)丄 00V30 εΖ.9-1.99 zoz V001IB0S丄 00丄 W003丄 OV d zs刚 91-900Z
10Z DOVIDVOVOVOOIVODVDIVOOIOV 6SSZ-SS9Z d"Hd3H ooz " VSVOOVOS丄 0VE)SW03£)E)0 J"Hd3H 66 10 WN εοθεοζ
661 3VD丄 OVOOE)丄 S丄丄 OVQ丄 110E)丄 69ε-8½ 861· OOOViJ-OOVOOlVOOVOWDVOW OQt'SI 86S900 WN 06890Z
L61 SDE)VE)11CI11E)WE)丄 OSSSWE)丄 0丄 58 ΐε-ι.9ΐε 6 S, 961 OSVODVO丄 0上 EIVW〇1E)0V11E)VV0Q 69οε-εκ)ε 8 US1 08"eoav
S6 I- OVOlVOOlllllOOllOVODDVO 8691-Ζ.Ζ.91 06ZS1 t-61. 00丄丄 SSVD丄 E)丄丄 11DS±10E)E)E) 6/.ε ι.-89ε ΐ- 68ZST 8Z0ん 00 WN m
M
— ^^^ べ 一
PCR法により増幅された産物は 1.0%ァガロースゲル電気泳動後、 ェチジゥム プロマイド染色にて確認を行う、 または iCyclei'Qリアルタイム PCR解析シス テム (BIO-RAD社) により mRNA量を定量した。
TEG1の発現解析
肺腺癌組織 12例および正常肺組織 4例より調製した RNAを用い、 定量的 RTPCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG1遺伝子の mRNAは正常肺組織での発現は認められなか つたのに対し、 解析した 12例の肺腺癌組織の内 10例で明らかに TEG1遺伝子 の高発現が確認された (図 1 ) 。
同様にして、 正常肺 5例と肺扁平上皮癌 9例の定量的 PCR解析を実施した。 PCRの結果、 TEG1遺伝子の mRNAは正常肺組織での発現は認められなかつ たのに対し、 解析した 9例の肺扁平上皮癌組織の内 3例で TEG1遺伝子の発現 亢進が確認された (図 7 3 ) 。
TEG2の発現解析
5例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製 した RNA、 ならびに il例の胃癌組織および同一サンプルの非癒部である正常 胃組織より調製した RNAを用い、 R PCR法により遺伝子発現比較を行った。
PGRの結果、 TEG2遺伝子の mRNAは解析した大腸癌においては 5例中 3 例において、 また胃癌においては 11例中全てで明らかに癌部において発現の亢 進が確認された (図 2、 3 ) 。
TEG3の発現解析
11例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNAを用い、 RI^PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG3遺伝子の mRNAは解析した胃癌においては 11例中 9例 で明らかに癌部において発現の亢進が確認された (図 4 ) 。
TEG4の発現解析
11例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNAを用い、 : RT-PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG4遺伝子の mRNAは解析した胃癌においては 11例中 7例 で明らかに癌部において発現の亢進が確認された (図 5 ) 。
TEG5の発現解析 11例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNAを用い、 RT-PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG5遺伝子の mRNAは解析した胃癌においては 11例中 7例 で明らかに癌部において発現の宂進が確認された (図 6 ) 。
TEG6の発現解析
9例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製し た RNA、 ならびに 11例の胃癌組織および同一サンプルの非癌部である正常胃 組織より調製した RNAを用い、 R PCR法により遺伝子発現比較を行った。
PCRの結果、 TEG6遺伝子の mRNAは解析した大腸癌においては 9例中 3 例で明らかに癌部において発現の亢進が確認され、 また胃癌においては解析した 全ての正常胃においては全く発現が認められなかったのに対し、 2例で非常に強 い mRNAの発現が確認された (図 7、 8 ) 。
TEG7の発現解析
11例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNAを用い、 R PCR法により遺伝子発現比較を行った。
PCRの結果、 TEG7遺伝子の mRNAは解析した胃癌においては 11例中 6例 で明らかに癌部において発現の宂進が確認された (図 9 ) 。
TEG8の発現解析
11例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNAを用い、 R PCR法により遺伝子発現比較を行った。
PCRの結果、 TEG8遺伝子の mRNAは解析した正常胃においてはほとんど 発現が認められないのに対し、 胃癌においては 11例中 1例で顕著な mRNAの 発現が確認された (図 1 0 ) 。
TEG9の発現解析
11例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNAを用い、 RT-PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG9遺伝子の mRNAは解析した胃癌においては 11例中 6例 で明らかに癌部において発現の宂進が確認された (図 1 1 ) 。
TEG1Qの発現解析
11例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNAを用い、 RT-PCR法により遺伝子発現比較を行った。 PCRの結果、 TEG10遺伝子の mRNAは解析した胃癌においては 11例中 10 例で明らかに癌部において発現の亢進が確認された (図 1 2 ) 。
TEG11の発現解析
11例の胃癌組織および同一サンカレの非癌部である正常胃組織より調製した RNAを用い、 R "PCR法により遺伝子発現比較を行った。
PCRの結果、 TEG11遺伝子の mRNAは解析した胃癌においては 11例中 10 例で明らかに癌部において発現の亢進が確認された (図 1 3 ) 。
TEG12の発現解析
9例の肝癌組織および同一サンプルの非癌部より調製した RNAを用い、 PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG12遺伝子の mRNAは解析した肝癌 9例中 6例で明らかに 癌部において発現の亢進が確認され、 特に中分化型肝癌 (#21、 29、 32) および 低分化型肝癌 (#22、 111、 115) において顕著な発現亢進が認められた (図 1 4) 。
TEG13の発現解析
9例の肝癌組織および同一サンプルの非癌部より調製した RNAを用い、 PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG13遺伝子の mRNAは解析した肝癌 9例中 4例で明らかに 癌部において発現の亢進が確認された (図 1 5 ) 。
TEG14の発現解析
9例の肝癌組織および同一サンプルの非癌部より調製した RNAを用い、 RT- PCR法により遺伝子発現比較を行った。
PGRの結果、 TEG14遺伝子の mRNAは解析した肝癌 9例全てで癌部におい て顕著な発現の亢進が確認された (図 1 6 ) 。
TEG15の発現解析
9例の肝癌組織および同一サンプルの非癌部より調製した RNAを用い、 PGR法により遺伝子発現比較を行った。
PGRの結果、 TEG15遺伝子の mRNAは解析した肝癌 9例中 6例で癌部にお いて顕著な発現の亢進が確認された (図 1 7 ) 。
TEG16の発現解析
9例の肝癌組織および同一サンプルの非癌部より調製した RNAを用い、 RT- PGR法により遺伝子発現比較を行った。
PCRの結果、 TEG16遺伝子の mRNAは解析した肝癌 9例中 5例で癌部にお いて顕著な発現の宂進が確認された (図 1 8 ) 。
TEG17の発現解析
10例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製 した RNAを用い、 RTXPCR法により遺伝子発現比較を行つた。
PGRの結果、 TEG17遺伝子の mRNAは解析した 10例全てにおいて癌部で の発現亢進が確認され、 特に 5例において明らかに高発現していた (図 1 9 ) 。 TEG18の発現解析
11例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNAを用い、 R PCR法により遺伝子発現比較を行つた。
PGRの結果、 TEG18遺伝子の mRNAは解析した胃癌においては 11例中 7 例で明らかに癌部において発現の亢進が確認された (図 2 0 ) 。
TEG19の発現解析
肺腺癌組織 12例および正常肺組織 4例より調製した RNAを用い、 定量的 RT-PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG19遺伝子の mRNAは正常肺組織での発現は認められなか つたのに対し、 解析した 12例の肺腺癌組織の内 3例で明らかに発現が亢進する ことが確認された (図 2 1 ) 。
TEG20の発現解析
11例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNAを用い、 R PCR法により遺伝子発現比較を行った。
PCRの結果、 TEG20遺伝子の mRNAは解析した胃癌においては 11例中 6 例で明らかに癌部において発現の亢進が確認された (図 2 2 ) 。
TEG21の発現解析
9例の肝癌組織および同一サンプルの非癌部より調製した RNAを用い、 PCR法により遺伝子発現比較を行った。
PCRの結果、 TEG21遺伝子の mRNAは解析した肝癌 9例中 5例で明らかに 癌部において発現の亢進が確認され、 特に中分化型肝癌 (#21、 27、 29、 32) において顕著な発現亢進が認められた (図 2 3 ) 。
TEG22の発現解析 6例の大腸癌組織および同一サンプルの非窟部である正常大腸組織より調製し た RNAを用い、 定量的 RT-PCR法により遺伝子発現比較を行つた。
PC の結果、 TEG22遺伝子の mRNAは解析した 6例中 3例で癌部での発現 亢進が確認された (図 2 4 ) 。
TEG23の発現解析
9例の肝癌組織および同一サンプルの非癌部より調製した RNAを用い、 PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG23遺伝子の mRNAは解析した肝癌 9例中 6例で明らカ に 癌部において発現の亢進が確認された (図 2 5 ) 。
TEG24の発現解析
11例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNAを用い、 R PCR法により遺伝子発現比較を行った。
PCRの結果、 TEG24遺伝子の mRNAは解析した胃癌においては 11例中 5 例で明らかに癌部において発現の亢進が確認された (図 2 6 ) 。
TEG25の発現解析
11例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNAを用い、 R PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG25遺伝子の mRNAは解析した胃癌においては 11例中 Ί 例で明らかに癌部において発現の亢進が確認された (図 2 7 ) 。
TEG26の発現解析
11例の胃癌組織および同一サンプルの非窟部である正常胃組織より調製した RNAを用い、 R PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG26遺伝子の mRNAは解析した胃癌においては 11例中 4 例で明らかに癌部において発現の亢進が確認された (図 2 8 ) 。
TEG27の発現解析
11例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNAを用い、 RT-PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG27遺伝子の mRNAは解析した胃癌においては 11例中 8 例で明らかに癌部において発現の亢進が確認された (図 2 9 ) 。
TEG28の発現解析
8例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNAを用い、 RTPCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG28遺伝子の mRNAは解析した胃癌においては 8例中 5例 で明らかに癌部において発現の亢進が確認された (図 3 0 ) 。
TEG29の発現解析
肺腺癌組織 8例および正常肺組織 4例より調製した: RNAを用い、 定量的 RT- PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG29遺伝子の mRNAは正常肺組織での発現は認められなか つたのに対し、 解析した 8例の肺腺癌組織の内 7例で明らかに発現が 進する ことが確認された (図 3 1 ) 。
TEG30の発現解析
肺腺癌組織 12例および正常肺組織 4例より調製した RNAを用い、 定量的 RT-PGR法により遺伝子発現比較を行つた。
PCRの結果、 TEG30遺伝子の mRNAは正常肺組織での発現はほとんど認め られなかったのに対し、 解析した 12例の肺腺癌組織の内 11例で mRNAの発現 が確認され、 さらにそれらの内 4例で正常肺に比べ明らかに発現が亢進するこ とが確認された (図 3 ' 2 ) 。
TEG31の発現解析
肺腺癌組織 12例および正常肺組織 4例より調製した RNAを用い、 定量的 RT-PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG31遺伝子の mRNAは正常肺組織での発現はほとんど認め られなかったのに対し、 解析した 12例の肺腺癌組織の内 7例で明らかに発現が 亢進することが確認された (図 3 3 ) 。
TEG32の発現解析
肺腺癌組織 12例および正常肺組織 4例より調製した RNAを用い、 定量的 RT-PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG32遺伝子の mRNAは正常肺組織での発現に比べ、 解析し た 12例の肺腺癌組織の内 4例で明らかに明らかに発現が亢進することが確認さ れた (図 3 4 ) 。
TEG33の発現解析
上記と同様に肺腺癌組織 12例および正常肺組織 4例より調製した RNAを用 い、 定量的 R PCR法により遺伝子発現比較を行った。 PGRの結果、 TEG33遺伝子の mRNAは正常肺組織での発現は認められなか つたのに対し、 解析した 12例の肺腺癌組織の内 9例で mRNAの発現が確認さ れ、 特に 4例において極めて高い mRNAの発現が確認された (図 3 5 ) 。 TEG34の発現解析
11例の胃癌組織および同一サンカレの非癌部である正常胃組織より調製した RNAを用い、 R PCR法により遺伝子発現比較を行った。
PCRの結果、 TEG34遺伝子の mRNAは解析した 11例中 8例において明ら カ こ癌部において発現の亢進が確認された (図 3 6 ) 。
TEG35の発現解析
11例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNAを用い、 RT-PCR法により遺伝子発現比較を行った。
PCRの結果、 TEG35遺伝子の mRNAは解析した 11例中 7例において明ら かに癌部において発現の亢進が確認された (図 3 7 ) 。
TEG36の発現解析
11例の胃癌組織および同一サンカレの非癌部である正常胃組織より調製した RNAを用い、 : PCH'法により遺伝子発現比較を行つた。
PCRの結果、 TEG36遺伝子の mRNAは解析した 11例中 8例において明ら かに癌部において発現の亢進が確認された (図 3 8 ) 。
TEG37の発現解析
11例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNAを用い、 RTHPCR法により遺伝子発現比較を行った。
PCRの結果、 TEG37遺伝子の mRNAは解析した 11例中 7例において明ら かに癌部において発現の宂進が確認された (図 3 9 ) 。
TEG38の発現解析
11例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNAを用い、 : T-PCR法により遺伝子発現比較を行った。
PGRの結果、 TEG38遺伝子の mRNAは解析した 11例中 8例において明ら かに癌部において発現の亢進が確認された (図 4 0 ) 。
TEG39の発現解析
11例の胃癌組織および同一サンカレの非癌部である正常胃組織より調製した UNAを用い、 RT"PCR法により遺伝子発現比較を行った。 PCRの結果、 TEG39遺伝子の mRNAは解析した全体的に癌部での発現が高 い傾向が認められ、 特に 11例中 6例で癌部において発現の亢進が確認された
(図 4 1 ) 。
TEG40の発現解析
11例の胃癌組織および同一サンカレの非癌部である正常胃組織より調製した RNAを用い、 RT-PCR法により遺伝子発現比較を行つた。
PGRの結果、 TEG40遺伝子の mRNAは解析した 11例中 4例において明ら かに癌部において発現の亢進が確認された (図 4 2 ) 。
TEG41の発現解析
11例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNAを用い、 RT-PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG41遺伝子の mRNAは解析した 11例中 4例において明ら かに癌部において発現の亢進が確認された (図 4 3 ) 。
TEG42の発現解析
11例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNAを用い、 R PCli法により遺伝子発現比較を行つた。
PCRの結果、 TEG42遺伝子の mRNAは正常胃においては全体的に発現が低 いのに対し、 解析した 11例中 6例において明らかに癌部において発現の亢進が 確認された (図 4 4) 。
TEG43の発現解析
11例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNAを用い、 法により遺伝子発現比較を行つた。
PCRの結果、 TEG43遺伝子の mRNAは正常胃ではほとんど mRNAの発現 が認められなかったのに対し、 癌部においては解析した 11例中 9例で mRNA の発現が確認された (図 4 5 ) 。
TEG44の発現解析
9例の肝癌組織および同一サンプルの非癌部より調製した RNAを用い、 PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG44遺伝子の mRNAは解析した肝癌 9例中 5例で癌部にお いて明らかに発現の亢進が確認された (図 4 6 ) 。
TEG45の発現解析 11例の肝癌組織および同一サンプルの非癌部より調製した RNAを用い、 RT- PCR法により遺伝子発現比較を行った。
PCRの結果、 TEG45遺伝子の mRNAは解析した肝癌 11例中 Ί例で癌部に おいて明らかに発現の亢進が確認された (図 4 7 ) 。
TEG46の発現解析
9例の肝癌組織および同一サンプルの非癌部より調製した RNAを用い、 PGR法により遺伝子発現比較を行った。
PCRの結果、 TEG46遺伝子の mRNAは解析した肝癌 9例全てにおいて癌部 での発現の方が高い値を示し、 特に 6例で癌部において顕著な発現の宂進が確 認された (図 4 8 ) 。
TEG47の発現解析
10例の大腸癌組織および同一サンカレの非癌部である正常大腸組織より調製 した RNAを用い、 定量的 R PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG47遺伝子の mRNAは解析した 10例中 8例のサンプルに おいて正常大腸組織に比較し、 明らかに癌部での発現亢進が認められた (図 4 9 ) 。
TEG48の発現解析
10例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製 した RNAを用い、 RTWPCR法により遺伝子発現比較を行った。
PCRの結果、 TEG48遺伝子の mRNAは解析した 10例中 9例において癌部 での発現亢進が確認された (図 5 0 ) 。
TEG49の発現解析
6例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製し た RNAを用い、 定量的 RT-PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG49遺伝子の mRNAは解析した 6例中 3例において非癌部 に比べ癌部において発現が亢進していることが確認された (図 5 1 ) 。
TEG50の発現解析
6例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製し た RNAを用い、 RT-PCR法により遺伝子発現比較を行った。
PCRの結果、 解析した 6例全ての正常大腸組織では TEG50由来のバンドの 増幅は認められなかったのに対し、 癌部では 6例中 4例においてバンドの増幅 が認められ、 癌部において発現が亢進することが確認された (図 5 2 ) 。
TEG51の発現解析
6例の大腸癌組織および同一サンプルの非癌部である正常大腸組織より調製し た RNAを用い、 R PCR法により遺伝子発現比較を行った。
PCRの結果、 TEG51遺伝子の mRNAはいずれの正常大腸組織でも PCRに よる増幅が認められなかったのに対し、 解析した 6例の大腸癌組織の内 5例で TEG51遺伝子の明らかな増幅が確認されたことより、 大腸癌において発現が亢 進していることが確認された (図 5 3 ) 。
TEG52の発現解析
肺腺癌組織 12例および正常肺 « 4例より調製した RNAを用い、 定量的 RT-PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG52遺伝子の mRNAは正常肺組織に比べ解析した 12例中 7 例で明らかに肺癌において発現が亢進することが確認された (図 5 4 ) 。
TEG53の発現解析
肺腺癌組織 8例および正常肺組織 4例より調製した RNAを用い、 定量的 PCR法により遺伝子発現比較を行った。
PCRの結果、 TEG53遺伝子の mRNAは正常肺組織での発現は認められなか つたのに対し、 解析した 8例の肺腺癌組織の全てで発現の宂進が確認された (図 5 5 ) 。
TEG54の発現解析
11例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNAを用い、 RTPCR法により遺伝子発現比較を行つた。
PGRの結果、 TEG54遺伝子の mRNAは正常胃においては解析した 11例中 9 例において明らかに癌部において発現の宂進が確認された (図 5 6 ) 。
TEG55の発現解析
11例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNAを用い、 RT^PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG55遺伝子の mRNAは解析した 11例中 6例において明ら かに癌部において発現の亢進が確認された (図 5 7 ) 。
TEG56の発現解析
11例の胃癌組織および同一サンプルの非癌部である正常胃組織より調製した RNAを用い、 R PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG56遺伝子の mRNAは正常胃においては全体的に発現が低 いのに対し、 解析した 11例中 9例において明らかに癌部において発現の宂進が 確認された (図 5 8 ) 。
TEG57の発現解析
9例の肝癌組織および同一サンプルの非癌部より調製した RNAを用い、 PCR法により遺伝子発現比較を行つた。
PGRの結果、 TEG57遺伝子の mRNAは解析した肝癌 9例中 5例で癌部にお いて明らかに発現の亢進が確認された (図 5 9 ) 。
TEG58の発現解析
9例の肝癌組織および同一サンプルの非癌部より調製した RNAを用い、 PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG58遺伝子の mRNAは解析した肝癌 9例中 5例で癌部にお いて明らかに発現の亢進が確認された (図 6 0 ) 。
TEG59の発現解析
9例の肝癌組織および同一サンプルの非癌部より調製した RNAを用い、 RT- PCR法により遺伝子発現比較を行つた。
PGRの結果、 TEG59遺伝子の mRNAは解析した非癌部 9例においては発現 量が全体的に少ないのに対し、 解析した肝癌 9例全てで癌部において明らかに 発現の亢進が確認された (図 6 1 ) 。
TEG60の発現解析
9例の肝芽腫組織および 2例の正常肝臓より調製した RNAを用い、 RT-PGR 法により遺伝子発現比較を行った。
PCRの結果、 TEG60遺伝子の mRNAは解析した正常肝臓においてはほとん ど発現が認められないのに対し、 解析した ffF芽腫 9例の内 8例において明らか に発現の亢進が確認された (図 6 2 ) 。
TEG61の発現解析
肺腺癌組織 12例および正常肺組織 4例より調製した RNAを用い、 定量的 R "PCR法により遺伝子発現比較を行った。
その結果、 TEG61遺伝子の mRNAは正常肺組織での発現は認められなかつ たのに対し、 解析した 12例の肺腺癌組織の内 3例で PAEP遺伝子の高発現が確 認された (図 6 3 ) 。
TEG62の発現解析
肺腺癌組織 12例および正常肺組織 4例より調製した RNAを用い、 定量的 RT-PCR法により遺伝子発現比較を行つた。
PCRの結果、 TEG62遺伝子の mRNAは正常肺組織での発現に比べ、 解析し た 12例の肺腺瘟組織の内 8例で明らかに発現が亢進することが確認された (図 6 4) 。
TEG63の発現解析
9例の肝癌組織および同一サンプルの非癌部より調製した RNAを用い、 ΙΙ · PCR法により遺伝子発現比較を行った。
PCRの結果、 TEG63遺伝子の mRNAは解析した非癌部 9例においては発現 がほとんど認められないのに対し、 解析した肝癌 9例中 8例で明らかに発現の 亢進が確認された (図 6 5 ) 。
TEG64の発現解析
9例の肝癌組織および同一サンプルの非癌部より調製した RNAを用い、 R " PCR法により遺伝子発現比較を行った。
PCRの結果、 TEG64遺伝子の mRNAは解析した肝癌 9例中 8例で癌部にお いて明らかに発現の亢進が確認された (図 6 6 ) 。
以上の結果より、 これらの遺伝子、 または蛋白の現量量を測定することで癌の 診断に用いられることが明らかになった。 実施例 3
肝癌発現遺伝子 TEG12の全長 cDNAの単離、 同定
上記の Gene chip解析ならびに RT-PCR解析の結果、 肝癌において発現が亢 進することが明らかになった TEG12の cDNA配列を明らかにするために、 cDNAの単離、同定を試みた。
すなわち、 Gene chip解析の際にプローブ配列の由来となった EST
(GenBank; BF057073:配列番号 2 5 4 ) の近傍に存在する EST (GenBank; BU844373) を GenBankより抽出し各 ESTにハイプリダイス、するプライマ一 をデザィンし PCRによる cDNAの増幅を行つた。 PCRはヒト肝癌細胞株であ る Hep3B、 HuH6、 HepG2より調製した UNAを等量ずつ用い作製した一本鎖 cDNAを錶型とし、 各 5 pmoleの PCRプライマ一 LS557 (ATCCGCCAGG TGAAAGCCAA GTC:配列番号 2 5 5 ) ならびに LS589 (GGGATTCACA TTACCACGGC AGTGC:配列番号 2 5 6 ) を用い実施した。 なお、 PCRは LA-PCRキット (宝酒造社製) を用い、 94°Cで 30秒、 63°Cで 30秒、 そして 72°Cで 5分からなるサイクルを 35サイクル実施した結果、 約 2000 bpのバンド が増幅された。 PCR増幅産物を pGEM-T easyベクタ一 (Promega社製) に揷 入した後、 増幅遺伝子の塩基配列を定法により解析した結果、 元々の EST
(BF057073) の DNA配列より 5'側の上流領域の配列を含む遺伝子であること が明らかになった。 なお、 PCRにより増幅された DNA配列は配列番号 2 5 7 に示す。
続いて、 BF057073の近傍にあると考えられる別の EST配列 (BU859386) と上記により単離 ·同定された遺伝子の配列を元にデザインした PCRプライマ 一を用い PCRを実施した。 PCRプライマーとしては各 5 pmoleの LS858
(ATGGCTTCG TCCCCGAGAC CGATTC:酉己列番号 2 5 8 ) ならびに
LS859 (GAAGACGAGG ATTCGATTGT TGCCAAAGT CCACC:配列番号 2 5 9 ) を用い、 95°C 30秒、 68°Cで 3分のサイクルからなる反応を 35サイク ル行った以外は上記と同様の条件にて実施した結果、 約 2,500bpのバンドが増 幅された。 PCR増幅産物は上記と同様に pGEM-T easyベクターに揷入した後、 塩基配列の同定を行った結果、 さらに 5'-側の配列を含むことが明らかになった。 なお、 PCRにより増幅された DNA配列は配列番号 2 6 0に示す。
以上の PCR法により得られた 2つの増幅産物の配列を基に全長 3,401 bpか らなる新規 cDNAを同定し、 一つのオープン ·リーディング'フレームが見出さ れた (図 6 7 ) 。 その塩基配列を配列番号 1 5に、 また塩基配列から類推される アミノ酸配列を配列番号 7 2に示した。 今回単離,同定された配列を基に Blast 検索を実施した結果、 GenBank No. XM_067369 (配列番号 2 6 3 ) と相同性 を示すことが明らかになったものの、 一部配列が異なっている領域が認められた (図 6 8 ) 。 以上の結果より肝癌細胞において特異的に発現が亢進する新規遺伝 子を単離 ·同定し、 iと命名した。
今回単離した塩基配列より類推されるアミノ酸配列を元に既知蛋白との相同性 検索を行った結果、 ヒト TRIM3ct (Tripartite motif- containing 3, GenBank 番号 NM— 006458) と 28.6%の相同性を、 ヒト TRIM2と 27.5%の相同性をそれ ぞれ示した。 TRIMファミリ一は現在までに 37種が報告されており、 いくつか の特徴的なモチーフをもつことが知られている (ReymondA., ら、 EMBO J. (2001) 20. 2140-2151) 。 そこで、 K#lのアミノ酸配列を基にモチーフ解析を行 つた結果、 アミノ酸配列の相同性と同様に ΊΈΙΜ3ならびに TRIM2と比較的類 似したモチーフ構造を持つことが明らかになり、 実際に ΊΈΙΜ3αとは図 6 9に 示すように特徴的なモチーフが保存されていた。 しかしながら、 既知の TRIM ファミリーには完全に K#lの示すモチーフ構造と同一の構造を示す分子は存在 していないことより、 今回単離'同定した K#lは TRIM2および TRIM3に比較 的類似した新規 TRIM分子であることが強く示唆された。 また、 今回単離した K# lと同様に TRIM 3と同様の構造を示すラッ卜 BERPは、 細胞内に局在し、 ミオシン V等と共役し蛋白の細胞内輸送に関与すること、 あるいは神経突起の 伸展に関与することが示唆されている (El-Husseini,Aら、 Biochem. Biophys. Res. Commun., 267、 906-911、 2000、 El.Husseini'Aら、 J, Biol. Chem. 274、 19771-19777、 1999) 。 以上のことより、 今回同定した K#l蛋白は TRIMファ ミリーに属し、 さらにラット BERPと同様に細胞内の蛋白輸送などに関与する ことで細胞の形態形成や増殖などに関与する可能性が考えられ、 肝癌等の発現が 亢進する病態において重要な役割を示すこと、 ならびに医薬品の夕一ゲット分子 としての可能性が考えられた。 実施例 4
4-1. 肝癌発現遺伝子 (TEG23) の全長 cDNAの単離、 同定
上記の Gene chip解析ならびに RT-PCR解析の結果、 肝癌において発現が亢 進することが明らかになった TEG23の全長 cDNA配列を明らかにするために、 RACE (Rapid amplification of cDNAends) 法を用い cDNAの単離、同定を試 みた。
すなわち、 Gene chip解析の際のプローブ配列 (229349— at_ul33B) より 5,- 側の配列を同定するために SMART RACE cDNA Amplification Kit (Clontech 社製) を用いて 5'-RACE解析を実施した。 初めに、 プローブの由来となったヒ ト EST (GenBank Accession No.AL039884:配列番号 2 6 1 ) の配列を元に設 計したプライマ一 LS900 (配列番号 2 6 2 : GGGTTCACTT TGGTCTCTAG TACGG) を用い、 肝癌細胞株 HepG2、 HuH6、 ならびに Hep.3Bより調製した 全 UNAをそれぞれ等量ずつ混合した 1000 ngの全 RNAよりキット添付の方法 に従い一本鎖 cDNAを合成した。 続いて、 合成した一本鎖 cDNAを铸型として PCRにより 5'-側の配列を含む cDNAを増幅した。 すなわち、 1.25 の一本鎖 cDNA、 5 pmoleの LS900 を PCRプライマーとして用い、 キット添付の方法に 従い PCR反応を行った。 PCRは初めに 94°Cで 1分間編成を行った後、 98 で 10秒、 68°Cで 3分のサイクルからなる反応を 35サイクル、 そして 72°Cで 5分 間インキュベートした。 約5,000 1¾)の?01産物を 0£]^- 6&8 べクタ一
(Promega社製) に挿入し、 常法により大腸菌 DH5a (東洋紡社製) を形質転 換後、 得られた形質転換体よりプラスミド DNAを調製した。 プラスミド DNA 中の挿入遺伝子の塩基配列を解析した結果、 二種類の塩基配列持つ clone-11と clone-18を得た。 それぞれの配列の 3'側にヒト EST (GenBank Accession No.AL039884) の配列を付加したものを配列番号 6 4と配列番号 6 5に示す。 今回単離された二種類のクローンいずれにおいてもそれぞれ 250アミノ酸
(clone-11) 、 または 210アミノ酸 (clone-18) をコードするオープン ·リ一デ イング ·フレームを持つことが明らかになった (図 7 0、 7 1 ) 。 なお、 clone- 11より類推されるアミノ酸配列を配列番号 8 1に、 clone-18より類推されるァ ミノ酸配列を配列番号 8 2に示す。 今回得られた二種のクローンにおいて類推さ れるアミノ酸配列を比較すると、 clone-11は clone-18より N末側に 40ァミノ 酸長いことより、 今回単離された二種のクローンは 5,-側の使用しているェクソ ンの異なるスプライシング ·バリアントである可能性が予測された。 以上の結果 より肝癌細胞において発現が亢進する新規遺伝子を単離'同定し、 K#2と命名し た。
K#2 (clone-11) のアミノ酸配列を基に Blast検索を実施し、 類縁の蛋白を同 定した結果、 ヒト LIN-28 (GenBank No. NM— 024674) (配列番号 2 6 4 ) と 71.8%の相同性、 線虫 LIN-28とは (GenBank No. NM_059880) (配列番号 2 6 5 ) と 33.1%の相同性を示すことが明らかになった。 LIN-28ホモログは線虫 やショウジヨウバエに加えマウス、 ヒトといった高等生物においても保存されて いる蛋白であることより (Moss, E.G.ら、 Dev. Biol.、 258、 432-442, 2003) 、 ヒト LIN-28、 線虫 LIN-28に加え、 さらにアフリカッメガエル LIN-28
(GenBank No.AF521098) (配列番号 2 6 6 ) 、 ショウジヨウバエ LIN'28 (GenBank No.AF521096) (配列番号 2 6 7 ) 、 マウス LIN-28 (GenBank No.NM— 145833) (配列番号 2 6 8 ) を加え、 それぞれのアミノ酸配列を比較 したところ、 いずれにおいてもコールド ·ショック · ドメインおよび Znフィン ガー · ドメインを保持することが明らかとなったことより (図 7 2 ) 、 今回単 離 '同定した K#2は新たなヒト LIN-28ホモログである可能性が強く示唆された。 なお、 LIN-28は mRNAに結合し mRNAからの翻訳や mRNAの安定性に関与 することで、 発生期の細胞運命の制御に関わるタンパク質であることが明らかに なっている (Moss,E.G.ら、 Cell、 88、 637-646、 1997) 。 以上のことより、 K#2蛋白も LIN-28と同様の機能を有する可能性が考えられ、 ヒト発生期の制御、 あるいは癌細胞の発生、 増殖、 あるいは肝炎ウィルス等のウィルスの複製等に関 与することが予測された。
4-2. 抗 Κ#2抗体の作製
抗 Κ#2抗体を用いた癌の検出が可能かどうかを明らかにするために、 抗 Κ#2 抗体の作製を行った。
Κ#2の免疫用抗原として K#2 (clone-18) のアミノ酸の部分配列 (1一
210aa) を GST融合タンパク質として、 組み換え体の調製を実施した。 すなわ ち、 K#2 cDNA clone-18を铸型とし、 プライマ一 F (配列番号 2 7 8 ) 、 および プライマー R (配列番号 2 7 9 ) を用い PCR法にて K#2 (l-210aa) をコード する遺伝子を増幅し、 続いて pGEM-¾ベクター (プロメガ社製) への挿入を行 つた。 塩基配列を定法にて確認した後、 制限酵素 EcoRI-Notlを用いて切断した 遺伝子断片を pDEST15 (Invitrogen社製) に揷入し、 発現ベクター pDEST15- K#2を構築した。
配列番号 2 7 8 (F) : CACCATGGGATTTGGATTCATCTCCATGAT
配列番号 2 7 9 (R) : TGTCTTTTTCCTTTTTTGAACTGAAGGCCCC
続いて、 発現べクタ一 pDEST15-K#2を上項と同様に GST結合型抗原タンパ ク質 (k#2(l-210aa)) を上項と同様に調製し、 K#2ポリクロ一ナル抗体の作製 のため、 k#2(l-210aa)-GST融合夕ンパク質を免疫したゥサギ抗血清の調製を実 施した。 すなわち、 ニュージーランドホワイト種ゥサギ (10週齢雌、 日本クレ ァ社製) に PBS懸濁した K#2— GST融合夕ンパク質 100pg/0.5mL/匹をフロイ ント完全アジュバント (DIFCO社) 0.5 mLと混合してェマルジヨンにしたも のを皮下注射により投与して初回免疫を行った。 以後 2週間間隔で、 PBSに懸 濁した K#2— GST融合夕ンパク質 100pg/0.5mL/匹をフロイント不完全アジュバ ント 0.5 mLと混合してェマルジヨンにしたものを、 皮下注射により投与して合 計 4回免疫を実施した。 免疫前、 3回、 そして 4回目免疫後に採血を実施し、 K#2_GST融合夕ンパク質に対する抗体価上昇を ELISA法で確認した。 抗体価 の上昇を確認した後、 全採血を行い、 K#2免疫ゥサギ抗血清を得た。 これを抗 Κ#2ポリクローナル抗体とした。
4-3. 抗 Κ#2ポリク口一ナル抗体を用いた Κ#2タンパク質分子の検出
上記により調製した Ε#2免疫ゥサギ抗血清の反応性を確認するために、 Κ#2 強制発現細胞株ならびに各種癌細胞株の細胞ライゼ一トを用い Κ#2の検出を行 つた。
Κ#2発現用動物細胞発現べクタ一は前述の Κ#2をコードする cDNAを pcDNA3.1 に揷入し、 K#2遺伝子発現べクタ一 pcDNA3.1_K#2 とした。 そして、 1 ]igの発現べク夕一 pcDNA3.1-K#2を 2 x 105個 HEK293細胞に FuGene6試 薬 (ロシュダイダイァグノスティック社製) を用いて導入し、 K#2を一過性発 現させた。 発現べクタ一導入 3日後の細胞を回収し、 培養細胞を RIPA緩衝液 (150 mM塩化ナトリウム、 1% ΝΡ·40、 0.5% デォキシコール酸、 0.1% S D S、 50 mMトリスヒドロキシァミノメタン塩酸塩 (pH8.0) ) にて可溶化する ことで細胞ライゼートを調製した。 それぞれ 3 mgタンパク質相当量のライゼ一 トを SDS-ポリアクリルアミドゲルに供し、 SDS-PAGEによりタンパク質を分 離した後、 Hybond-P (アマシャムバイオサイエンス社製) に転写した。 そして 一次抗体として抗 K#2ポリク口一ナル抗体 (抗血清 5000倍希釈) を使用し、 二次抗体に HRP標識抗ゥサギ IgG抗体 (ジャクソン社製) を用い、 ECLブラ ス (アマシャムバイオサイエンス社製) による検出を行ったところ、 K#2と考 えられるバンドが検出された。
同時に各種癌細胞株の細胞ライゼートに関して同様にウエスタンブロット解析 を行った。 その結果、 GeneChipU133の解析結果と一致し、 mRNA発現スコア が高い細胞株においてのみ分子量約 27kDaの全長の K#2と考えられるバンドを 検出することに成功した (図 7 8 ) 。 なお、 Li-7細胞および Hep3B細胞に関し て GeneChipデータはない。
4.4 抗 K#2ポリク口一ナル抗体を用いた肝癌組織における #2のタンパク質 の発現解析
Κ#2癌の組織抽出物を用いて抗 Κ#2ポリクロ一ナル抗体によるウエスタンブ ロット解析を実施した。 ヒト組織抽出物調製は、 組織片に RIPA緩衝液 (150 mM塩化ナトリウム、 1% ΝΡ-40、 0.5%デォキシコール酸、 0.1% S D S、 50 mM トリスヒドロキシァミノメタン塩酸塩 (pH8.0) ) を添加して超音波破碎後、 遠心して上清画分を回収して行った。 各々の抽出サンプルについて蛋白質濃度を ブラッドフォード法で定量し、 4mg/mLとなるように調製した後、 SDS-サンプ ルバッファーと等量混合し、 95°Cで 5分間加熱処理を行った。 15%ポリアクリ ルアミドゲルを調製して抽出物サンプルを 10mgずつアプライし、 SDS-PAGE を行った。
上記と同様に、 抗 K#2ポリクローナル抗体によるウェスタンプロット解析を実 施したところ、 特異的な Ε#2付近のパンドが、 癌部特異的に検出された (図 7 9 ) 。
以上の結果により、 TEG23:K#2分子は癌部特異的に夕ンパク質レベルにおい ても発現が亢進し、 かつ、 癌細胞株において分泌されていることが明らかになつ たことにより、 抗 K#2抗体を用いた癌組織、 および血清を用いた診断における 有用性が示された。 実施例 5
抗 TEG1: C20orfl02モノク口一ナル抗体の作製
抗 C20orfl02抗体を用いた癌の検出が可能かどうかを明らかにするために、 抗 C20orfl02モノクローナル抗体の作製を行つた。
5-1. C20orf!02 cDNAの単離
C20orfl02の発現を行うために、 まず C20orfl02の cDNAを以下のようにし て単離した。 肺腺癌組織より前述の方法に従い一本鎖 cDNAを調製し、 それを 鎊型として E c o R Iまたは X h o Iの制限酵素サイトのついたプライマ一 F (配列番号: 2 6 9 ) と R (配列番号: 2 7 0 ) を用いて PCR法にて、 C20orfl02 予測配列と一致する約 615bp付近のバンドの検出に成功した。 P C R用酵素お よび試薬には、 アドバンテージ HFポリメラ一ゼミックス (Advantage HF Polymerase Mix;クロンテツク社製) およびァドバンテ一ジ HF P C Rバッフ ァ一 (Advantage HF PCR buffer) 、 2 0 Ο μΜ デォキシヌクレオチド三リン 酸、 0 . 2 μΜプライマ一を用い、 c D NA l pLを錡型にした P C R ( 9 4 °C 3 0秒、 6 8 °C 3 0秒、 7 2 °C 3分、 3 5サイクル) を行った。 PCR法で得ら れた特異的増幅断片は DN Aライゲーシヨンキット (タカラ社製) を用いて pG EM— T e a s yベクター (プロメガ社製) に揷入し、 塩基配列を定法により 確認したところ、 単離した cDNAが C20orfl02に相当することが明らかとなつ た。 なお、 プライマー Fは C20orfl02遺伝子 (GenBank: NM— 080607) の 5'- 端にハイブリダイズするように、 そして Rは 3'-端にハイブリダイズするように デザインした。
配列番号 269 (F) : CGAATTCATGGGGGCCCCGCTCGCCGTAGC 配列番号 270 (R) : CCTCGAGGAGGCTGCAGGCCTCCTGGTCCA
5-2. C20orfl02の免疫用抗原の調製
PCR産物を組み込んだ pGEM- T e a s yベクタ一はコンビテント細胞 XL— 1 B l ue (ストラタジーン社製) へ形質転換し、 5_ブロモ -4-クロ 口- 3— jS—インドリル一ガラクトピラノシド (5-Bromo-4-Cliloro-3-Indolyl- ]3■ Galactopyranoside; X-gal) を用いたカラーセレクションを行い、 PCR産物 が組み込まれたベクタ一のみを選出した。 形質転換は、 コンビテント細胞に 10 pLのライゲーシヨン反応産物を加え、 30分間氷冷後に、 42°Cのヒートショ ック 45秒、 続けて 2分間氷冷して形質転換を起こさせた。 さらに、 抗生物質耐 性遺伝子の発現を行うために抗生剤を含まない LB培地を 90 OpL加え、 3 7 °Cで 30分間穏やかに撹拌した。 遠心で菌体を回収し、 20mg/mLの X-g a 1を 20pL散布させた、 アンピシリンを含む LBプレートに菌体をまき込み、 37 °Cで 16時間培養した。 プレート上で生育したコロニーのうち、 発色をして いないコロニー (P C R産物がべク夕一に組み込まれていることが予想されるも の) を 5個選択し、 最終濃度が 10 Opg/mLのアンピシリンを含む 5mLの L B培地で 37°C、 16時間激しく撹拌し、 菌体を増殖させた。 増殖した菌体の一 部から、 フエノ一ル /クロ口ホルム抽出によってプラスミド DNAを回収し、 E c oR I (8UZ L) を 0. 5pL、 1 OxH バッファ一を 2pL、 蒸留水 を 7. 5pL力 Bえ、 37 °Cで 1時間消化を行った。 0. 8%のァガロースゲルを 用いた電気泳動で消化物のサイズが目的の P C R産物のサイズと同一であること を確認した。 C20orfl02の遺伝子が組み込まれたと考えられるプラスミド DN Aの回収はカンタムプレップ プラスミド ミニプレップキット (Quantum Prep Plasmid MiniPrep Kit (バイオラッド社製) を用いて行つた。 溶出は蒸 留水で行った。 塩基配列を定法にて確認した後、 制限酵素 EcoRI-XhoIを用いて 切断した遺伝子断片を、 大腸菌夕ンパク質発現用ベクターである pET41aべク 夕一 (Novagen社製) に揷入に組み換えた。 p E T 41に組み込まれた遺伝子 は、 GST融合タンパク質として翻訳される。
PET41を制限酵素 (EcoRIおよび Xhol) で消化し、 電気泳 »を行い、 キ ァクイック ゲル抽出キットで精製を行った。 p GEM - T e a s yによって 増幅した C20orfl02の配列をもつフラグメントは DNAライゲ一シヨンキット を用いて pET41に組み込みを行った。
pGEM-T e a s yから精製を行った C20orfl02フラグメント 4pLに、 ライゲ一シヨンバッファ一 5pLおよび pET41を lpL加え、 16。Cで 30 分間保温した。
ライゲーシヨン反応の終了したプラスミド DNAは XL— 1 B 1 ueへ形質 転換を行い、 カナマイシンを含む LB培地で 16時間振盪を行い、 菌体を増殖さ せた。 増殖させた大腸菌から、 カンタムプレップ プラスミド ミニプレップキ ットを用いて、 プラスミドの精製を行った。 pET41への C20orfl02の揷入 を確認するために、 pETがもつ配列に対するプライマ一 (配列番号 271およ び 272) でシーケンスを行った。
配列番号 271: TTCGAACGCCAGCACATGGAC
配列番号 272: GCTAGTTATTGCTCAGCGGTG
p ET41ベクタ一に組み込まれた C20orfl02を、 T 7プロモーターを持つ コンビテント細胞 BL 21 Codon PLUS R I L (ノバジェン社製) に形質転換させた。
形質転換は、 以下の手順で行つた。 l O OpLの BL21 Codon PL US R I Lに p E T-C20orfl02- F Lを 1 pgZpL濃度で 1 加え 5分間氷 冷した。 その後、 42 °Cの恒温層に 20秒間漬け、 ヒートショックを与えた。 さ らに 2分間氷冷した後、 900 pLの抗生剤無添加の L Bを加え、 37 °Cで 10 分間インキュベートした後に、 遠心 (1000xg、 5分) を行った。 上清を廃 棄した後コンビテント細胞を再懸濁させ、 カナマイシンを含んだ L Bプレートに まきこんで 37 で 16時間、 選択培養を行った。
大腸菌を用いて発現させた C20orfl02の G S T融合タンパク質の精製は G S Tとダル夕チオンの結合を利用したァフィ二ティ精製で行った。 まず、 培養液を 600 Oxg, 4 °Cで 10分間遠心することで大腸菌の菌体を回収した。 菌体溶 解バッファー (5 OmM塩化ナトリウム、 ImM EDTA、 ImM ジチオスレ イト一ル (DTT) 、 5 OmMトリスヒドロキシァミノメタン塩酸塩, pH8. 0) を加え、 氷上で超音波処理を行った。 その後、 最終濃度が 1%になるように Tr i t on X— 100を添加し、 1340 Oxg、 4°Cで 45分間遠心を行 つて上清を回収した。 この上清にダルタチオンセファロ一ス (アマシャムバイオ サイエンス社製) を 500pL加え、 4 °Cで 1時間転倒混和を行い、 GST— C20orfl02融合蛋白質を吸着させた。
遠心 (300 Oxg, 4°C、 5分) でダルタチオンセファロ一スを回収し、 1 OmLの PBS— T (0. 5 Tr i t on X_ 100を含む P B S) で洗浄 後、 溶出バッファ一 (5 OmM還元型ダル夕チオン、 20 OmM塩化ナトリウム ImM EDTA、 lmMDTT、 20 OmM T r i s-HC 1 , pH8. 0) を加えて 4°Cで 1時間転倒混和し、 GST融合タンパク質を溶出させた。 遠 心 (300 Oxg, 4°C、 5分) によってダル夕チオンセファロースを除去し、 GST融合 C20orfl02精製蛋白質を得た。 PD— 10カラム (アマシャムバイ ォサイエンス社製) で PBS溶液とし、 ブラッドフォード法によってタンパク質 濃度を定量し、 SDS— PAGEによって純度を検定し、 免疫に必要なタンパク 質の量および純度を満たしていることを確認し、 このタンパク質を以下に示すモ ノク口一ナル抗体作製のための免疫原とした。
5-3. C20orfl02モノク口一ナノレ抗体の作製
ヒト C20orfl02の完全長蛋白質の G S T—融合発現物 (大腸菌発現物) 精製 品を免疫原とした。 マウス (BALBZc雌 6週齢) に 50pgZ匹で 3回免疫 した後、 血清中の抗体価を検定した。 抗体価検定法として、 免疫原 0. 5pg/ wellを固相化した EL I S A用プレ一トに、 予め G S T蛋白質で抗 G S T抗体 のノイズを吸収させた免疫マウス血清の希釈列を反応させ、 HRP標識抗マウス 抗体の反応を経て、 基質添加後に得られた発色について 45 Onmの吸光度を測 定する方法 (免疫抗原固相 EL I SA法) を使用した。
抗体価宂進を認めたマウスに 25μ Ζ匹を最終免疫し、 72時間後に脾臓細 胞を採取し、 骨髄腫細胞 (P3ZNS I— 1— Ag4— 1) と細胞融合
(Kohler G, Milstein C: Nature 256, 495(1975)) を行った。 HAT選択培地で 培養を行うことにより、 ハイプリドーマを得た。 ハイブリド一マの培養上清を予 め GST蛋白質で吸収させた後に免疫抗原固相 EL I SAを行い、 C20orfl02 現物) に対して反応するものを一次選抜した。 免疫抗原 E L I S A陽性のパイブ リドーマについては、 C〇 S 7細胞に C20orfl02を強制発現させた細胞株の夕 ンパク質抽出液を用いたウエスタン ·プロッティングにおいて特異性を検定した。 陽性のものについて限界希釈法にてクローニングを行い、 モノクロ一ナル抗体産 生株を樹立した。 抗体産生ハイブリド一マを B AL B/ cマウスに接種すること によってマウス腹水を得た。 腹水中のモノクローナル抗体を硫安塩析法で精製し、 精製抗体を調製した。 以上により、 抗 C20orfl02抗体 H9615を作製した。 実施例 6
钪 C20orfl02モノク口一ナル抗体を用いた C20orf!02夕ンパク質分子の検出 上記により調製した抗 C20orfl02モノク口一ナル抗体 H9615の反応性を確認 するために、 C20orfl02強制発現細胞株ならびに各種癌細胞株の細胞ライゼ一 トを用い C20orfl02の検出を行った。
初めに、 C20orfl02強制発現 COS7細胞を用いウエスタンプロット解析によ り抗 C20orfl02モノクロ一ナル抗体 H9615の反応性を確認した。 動物細胞発現 ベクタ一は前述の C20orfl02をコードする cDNAを pcDNA4Mys_His
(Invitrogen社製) に挿入した C20orfl02遺伝子発現べクタ一を使用した。 す なわち、 lpgの発現ベクターを 5 x l04個の COS7細胞に FuGene6試薬 (ロシ ュダイダイァグノスティック社製) を用いて導入し、 C20orfl02を一過性発現 させた。 発現ベクター導入 3日後の細胞を回収し、 培養細胞を RIPA緩衝液 (150 mM塩化ナトリウム、 1% ΝΡ-40、 0.5%デォキシコ一ル酸、 0.1% S D S、 50 mMトリスヒドロキシァミノメタン塩酸塩 (PH8.0) ) にて可溶化する ことで細胞ライゼ一トを調製した。 それぞれ 10 gタンパク質相当量のライゼ —トを SDS-ポリアクリルァミドゲルに供し、 SDS-PAGEによりタンパク質を 分離した後、 Hybond-P (アマシャムバイオサイエンス社製) に転写した。 そし て抗 C20orfl02モノクローナル抗体 H9615 (l g/mL) を使用し、 二次抗体に HRP標識抗マウス IgG抗体 (ジャクソン社製) を用い、 ECLプラス (アマシ ャムバイオサイエンス社製) による検出を行ったところ、 理論分子量 22.5kDa 付近に特異的な C20orfl02と考えられるバンドが検出された。
同時に、 各種癌細胞株の細胞ライゼートに関して同様にウエスタンプロット解 析を行った。 その結果、 GeneChipU133の解析結果と一致し、 mRNA発現スコ ァが高い細胞株においてのみ分子量約 22.5kDaの全長の C20orfl02と考えられ るパンドを検出することに成功した (図 7 4 ) 。
さらに、 C20orfl02遺伝子が予測配列として分泌シグナルを有することから、 C20orfl02を発現する癌細胞株において分泌型の C20orfl02が培養上清中に検 出できるか確認したところ、 C20orfl02を高発現する癌細胞株の培養上清中に も強制発現細胞の培養上清と同じ分子量のバンドが抗 C20orfl02モノクローナ ル抗体により検出された (図 7 4 ) 。
以上の結果より、 抗 C20oi'fl02モノク口一ナル抗体 H9615は C20orfl02を 特異的に検出できること、 ならびに GeneChip解析による mRNA発現の程度と C20orfl02 タンパク質の発現の程度が一致することが明らかとなった。 さらに、 抗 C20orfl02モノク口一ナル抗体を用いた検討から C20orfl02発現細胞の培養 上清中に分泌型の C20orfl02が存在することが明らかとなったことより、 分泌 型 C20orfl02を検出することで癌細胞の有無を判断できる可能性が強く示唆さ れた。 実施例 7
抗 C20orf!02モノク口一ナル抗体を用いた肺腺癌組織における C20orf!02の夕 ンパク質の発現解析
肺腺癌の組織抽出物を用いて抗 C20orfli)2モノク口一ナル抗体 H9615による ウエスタンプロット解析を実施した。 ヒト組織抽出物調製は、 組織片に MPA緩 衝液 (150 mM塩化ナトリウム、 1% ΝΡ-40、 0.5%デォキシコ一ル酸、 0.1% S D S、 50 mMトリスヒドロキシァミノメタン塩酸塩 (pH8.0) ) を添加して 超音波破碎後、 遠心して上清画分を回収して行った。 各々の抽出サンプルについ て蛋白質濃度をブラッドフォード法で定量し、 4mg/mLとなるように調製した 後、 SDS-サンプルバッファ一と等量混合し、 95°Cで 5分間加熱処理を行った。 15%ポリアクリルアミドゲルを調製して抽出物サンプルを 10p gずつアプライ し、 SDS-PAGEを行った。 上記と同様に、 抗 C20orfl02モノクローナル抗体 H9615によるウエスタンブロット解析を実施したところ、 特異的な約 22.5kDa 付近のバンドが、 癌部特異的に検出された (図 7 5 ) 。
以上の結果により、 TEGl:C20orfl02分子は癌部特異的に夕ンパク質レベル においても発現が宂進し、 かつ、 癌細胞株において分泌されていることが明らか になったことにより、 モノクローナル抗体を用いた癌組織、 および血清を用いた 診断における有用性が示された。 実施例 8
抗 OK/SW-CL..30抗体の作製
TEG6: OK/SW-CL..30に関して、 抗 OK/SW-CL..30抗体を用いた癌の検出 が可能かどうかを明らかにするために、 抗 OK/SW-CL..30抗体の作製を行った。 8- 1. hNotum cDNAの単離
公共データベース (UCSCおよび GenBank) の検索によって、 OK/SW- CL..30の cDNA配列は部分配列であり、 実際には OK/SW-CL..30配列をすベて 含み、 かつ、 さらなる 5 '領域を含んだ仮想タンパク質 LOC147111
(GenBank:NM— 178493:配列番号 2 7 3 - 2 7 4 ) が全長 ORF遺伝子である 可能性が見出された。 その配列はシグナル配列を含み、 かつ、 ハエ Notmn
(NM— 168642) と相同性 42.7%示すことから、 新規遺伝子として hNotumと命 名し、 以下の解析を実施した。 まず hNotumの cDNAを以下のようにして単離 した。 HepG2細胞よ 0前述の方法に従い一本鎖 cDNAを調製し、 それを錶型と してプライマー WT164 (配列番号 2 7 5 ) と LS746 (配列番号 2 7 6 ) を用い て PCR法にて、 hNotum予測配列と一致する約 1.5kbp付近のバンドの検出に 成功した。 PCR法は KOD plusキット (TOYOBO社製) のプロトコ一ルに準 じて調整した反応液に反応液総量の 5%に相当する DMSOを加え、 初めに
95 °Cで 2分間一次変性を行い、 94 t:で 15秒、 68°Cで 90秒からなるサイクル を 35回行なった。 PCR法で得られた特異的増幅断片を TOPOクローニング法 により pENTR (インビトロジェン社製) に挿入し、 塩基配列を定法により確認 したところ、 単離した cDNAが hNotumであることが明らかとなった。
なお、 プライマー WT164は hNotum遺伝子 (GenBank: NM— 178493) の 5,· 端にハイブリダイズするように、 そして LS746は 3,-端にハイブリダイズするよ うにデザインした。
配列番号 2 7 5 (WT164) : CACCGAATTCATGGGCCGAGGGGTGCGCGTG 配列番号 2 7 6 (LS746) : CTCGAGGCTTCCGTTGCTCAGCATCCCCAG 8-2. hNotumの免疫用抗原の調製
hNotumの免疫用抗原としてアミノ酸の部分配列 (143aa-496aa) を GS 結 合型タンパク質として、 組み換え体の調製を実施した。 すなわち、 上記の hNotm cDNAを铸型とし、 LS695プライマ一 (配列番号 2 7 7 ) 、 および LS746 (配列番号 2 7 6 ) を用い PCR法にて hNotum (I43aa-496aa) をコー ドする遺伝子を増幅し、 続いて pGEM-T Easyベクタ一 (プロメガ社製) への 挿入を行った。 塩基配列を定法にて確認した後、 制限酵素 EcoM-XhoIを用いて 切断した遺伝子断片を pET41aベクタ一 (Novagen社製) に揷入し、 発現べク 夕一を構築した。
配列番号 2 7 7 (LS695) : GAATTCATGCGGCGCCTCATGAGCTCCCGGGA GST融合抗原タンパク質 (hNortmn 143aa-496aaを含む) の調製、 および マウス免疫によるモノクロ一ナル抗体の作製は上項と同様に実施した。 その結果、 hNotumモノク口一ナル抗体 H9541を作製した。 実施例 9 '
抗 hNotum抗体を用いた hNotum夕ンパク質分子の検出
作製したモノクローナル抗体の反応性を確認するために、 hNotum強制発現 細胞株ならびに各種癌細胞株の細胞ライゼ一トを用い hNotmn の検出を行った。 コントロールには上記で使用した抗原部位 143aa-496aaを pcDNA4に挿入した ベクターを使用した。 予測分子量は 39.9kDaである。 ウエスタンプロット解析 は上項と同様に実施し、 一次抗体である H9541は終濃度 100 g/mLで実施し た。
その結果、 図 7 6に示すとおり 37kDaマ一力一位置付近に hNotmn (l43aa- 496aa) と考えられる特異的なパンドが検出された。
続いて、 各種癌細胞株の細胞ライゼ一トに関して同様にウエスタンブロット解 析を行った。 その結果、 GeneCMpU133の解析結果と一致し、 mRNA発現スコ ァが高い細胞株においてのみ分子量約 55kDaの全長の hNotumと考えられるバ ンドを検出することに成功した (図 7 6 ) 。
さらに、 hNotum遺伝子が予測配列として分泌シグナルを有することから、 hNotumを発現する癌細胞株において分泌型の hNotumが培養上清中に検出で きるか確認したところ、 hNotumを高発現する癌細胞株の培養上清中にも強制 発現細胞の培養上清と同じ分子量のバンドが抗 hNotum抗体により検出された (図 7 6 ) 。 以上の結果より、 hNotumモノクローナル抗体 H9541は hNotumを特異的に 検出できること、 ならびに GeneChip解析による mRNA発現の程度と hNotum タンパク質の発現の程度が一致することが明らかとなった。 さらに、 抗 hNotum抗体を用いた検討から hNotum発現細胞の培養上清中に分泌型の hNotumが存在することが明らかとなつたことより、 分泌型 hNotumを検出す ることで癌細胞の有無を判断できる可能性が強く示唆された。 実施例 1 0
hNotum抗体を用いた肝癌組織における hNotumのタンパク質の発現解析
肝癌の組織抽出物を用いて抗 hNotum抗体によるウエスタンブロット解析を 実施した。 上記と同様に、 hNotmn抗体によるウエスタンプロット解析を実施 したところ、 特異的な hNotum付近のバンドが、 癌部特異的に検出され、 (図 7 7 ) 。 3検体調査し、 2検体において陽性であった。 、 また、 検体 26に関し ては、 同一患者より得た 2ケ所の肝細胞癌組織 (S2、 S5) のうち、 一箇所の組 織で hNortumが陽性であった。
以上の結果により、 TEG6:hNotum(OK/SW-CL..30)分子は癌部特異的にタン パク質レベルにおいても発現が亢進し、 かつ、 癌細胞株において分泌されている ことが明らかになったことにより、 モノクロ一ナル抗体を用いた癌組織、 および 血清を用いた診断における有用性が示された。 実施例 1 1
11-1. 抗 KIAA1359抗体の作製
TEG37:KIAA1359について、 抗 KIAA1359抗体を用いた癌の検出が可能か どうかを明らかにするために、 抗 KIAA1359抗体の作製を行った。 すなわち、 KIAA1359の免疫用抗原としてアミノ酸の部分配列 (76aaから 88aa) をぺプ チドタンパク質として、 常法によりペプチド配列合成を実施した。 ペプチド N 末端に C:システィン残基を付加し、 Keyhole limpet hemocyanin (KLH) にコ ンジユゲーションし免疫原とした。 そしてモノクローナル抗体は上項と同様に実 施した。 そしてモノク口一ナル抗体 A8409Aの単離に成功した。
ぺプチド配列: PEAETRGAKRISPA (配列番号 2 8 0 )
11-2. KIAA1359 cDNAの単離 KIAA1359の発現を行うために、 まず KIAA1359の cDNAを以下のようにし て単離した。 KIAA1359発現細胞である MKN74細胞より前述の方法に従い一 本鎖 cDNAを調製し、 それを铸型としてプライマー F (配列番号 2 8 1 ) と R (配列番号 2 8 2 ) を用いて PCR法にて、 KIAA1359の予測配列と一致する約 1.6kbp付近のバンドの検出に成功した。 PCR法は Advanvtede HF2キット
(クロンテック社製) のプロ卜コールに準じて反応液を調製し、 初めに 95 °Cで 1分間一次変性を行い、 94 °Cで 15秒、 63 °Cで 30秒、 68でで 2分からなるサ ィクルを 35回行なつた後、 最後の伸長反応を 68 で 6分間からなる条件で実 施した。 PCR法で得られた特異的増幅断片を TAクロ一ニング法により pGEM- T Easy (プロメガ社製) に揷入し、 塩基配列を定法により確認したところ、 単 離した cDNAが KIAA1359であることが明らかとなった。 そして、 この cDNA を PcDNA4/myc-HisA (Invitrogen社製) に挿入し、 KIAA1359遺伝子発現べ クタ一とした。 なお、 プライマ一 Fは KIAA1359遺伝子 (GenBank:
NM_152673) の 5'-端にハイブリダィズするように、 そして Rは 3'-端にハイブ リダイズするようにデザィンした。
配列番号 2 8 1 ( F) i GGATCCATGGGCTGTCTCTGGGGTCTGGCTCTGC 配列番号 2 8 2 (R) : CTCGAGGCCTCTCCTGACACGCAGTAAGGAGACC 11-3. 抗 KIAA1359抗体 A8409Aを用いた KIAA1359夕ンパク質分子の検出 上記により作製した抗 KIAA1359抗体 A8409Aの反応性を確認するために、 KIAA1359強制発現細胞株ならびに各種癌細胞株の細胞ライゼートを用い
KIAA1359の検出を行った。
コントロールとして、 KIAA1359 を強制発現させた COS7 ライゼートを用い、 各種癌細胞株の細胞ライゼートに関して同様にウェスタンブロット解析を行った。 A8409A抗体濃度は lOOpg/mLで使用した。 その結果、 GeneChipU133の解析 スコアの高い、 Capanlにおいて、 コントロールの強制発現 KAII1359と同等な 約 lOOkDaの KAII1359分子と考えられるバンドの検出に成功した (図 8 0 ) 。 11-4. 抗 KIAA1359抗体 A8409Aを用いた胃癌組織における KIAA1359の夕 ンパク質の発現解析
胃癌の組織抽出物を用レて抗 KIAA1359抗体 A8409Aによるウエスタンブロ ット解析を実施した。 ヒト組織抽出物調製は、 組織片に RIPA緩衝液 (150 mM 塩化ナトリウム、 1% ΝΡ-40、 0.5%デォキシコール酸、 0.1% S D S、 50 mM トリスヒドロキシァミノメタン塩酸塩 (PH8.0) ) を添加して超音波破碎後、 遠 心して上清画分を回収して行った。 各々の抽出サンプルについて蛋白質濃度をプ ラッドフォード法で定量し、 4mg/niLとなるように調製した後、 SDS-サンプル バッファーと等量混合し、 95°Cで 5分間加熱処理を行った。 10%ポリアクリル アミドゲルを調製して抽出物サンプルを 10mgずつアプライし、 SDS-PAGEを 行った。
上記と同様に、 抗 KIAA1359抗体 A8409Aによるウエスタンブロット解析を 実施したところ、 特異的な lOOkDa付近のバンドが、 癌部特異的に検出された (図 8 1 ) 。
以上の結果により、 TEG37:KIAA1359分子は癌部特異的にタンパク質レベル においても発現が亢進し、 かつ、 癌細胞株において発現亢進していることが明ら かになつたことにより、 モノクローナル抗体を用いた癌組織、 および血清を用い た診断における有用性が示された。 実施例 1 2
12-1. 抗 PEG10抗体の作製
TEG60: PEG10は通常のコドンュ一セージにより翻訳する ORF1と、 ORF1 の終止コドン領域でフレームシフトが起こり、 新たに翻訳される ORF2の存在 が、 Shigemotoら、 Nucleic Acids Research, 29, 4079-4088, 2001のマウス PEG10の報告、 あるいは Onoら、 Genomics, 73, 232-237, 2001のヒト PEG10 のゲノム配列からの予測により、 示唆されているが、 実験的にヒト PEG10の ORF2存在を証明した報告は見つかっていない。 そのため、 我々は ORF2部分 のフレームシフトが実際に起こっているのかどうか、 また、 その新たに翻訳され た領域が癒組織で存在するどうかを証明するため、 予測した ORF2アミノ酸配 列をもとに抗 PEG10/ORF2モノク口一ナル抗体を作製し、 証明することを試み た。
ORF2アミノ酸配列 (配列番号 2 8 3 )
QLSCQGLKVFAGGKLPGPAVEGPSATGPEIIRSPQDDASSPHLQVMLQIHL PGRHTLFVRAMIDSGASGNFIDHEYVAQNGIPLRIKDWPILVEAIDGRPIAS GPWHETHDLIVDLGDHREVLSFDVTQSPFFPWLGVRWLSTHDPNITWS TRSIVFDSEYCRYHCRMYSPIPPSLPPPAPQPPLYYPVDGYRVYQPVRYYY VQNVYTPVDEHVYPDHRLVDPHIEMIPGAHSIPSGHVYSLSEPEMAALRD FVARNVKDGLITPTIAPNGAQVLQVKRGWKLQVSYDCRAPNNFTIQNQYP RLSIPNLEDQAHl^TYTEFWQIPGYQTYPTYAAYPTYPVGFAWYPVGRDG QGRSLYVPVMITWNPHWYRQPPVPQYPPPQPPPPPPPPPPPPSYSTL
12-2. PEG10 cDNAの単離
PEG10の発現を行うために、 まず PEG10の cDNAを以下のようにして単離 した。 ヒト胎児肝組織より前述の方法に従い一本鎖 cDNAを調製し、 それを錶 型としてプライマー F1 (配列番号 2 8 4 ) と R1 (配列番号 2 8 5 ) を用いて PCR法にて、 PEG10予測配列と一致する約 2200kbp付近のバンドの検出に成 功した。 PCR法は Advantage2 cDNA PCRキット (Clontech社製) のプロト コールに準じて反応液を調製し、 初めに 94 °Cで 1分間一次変性を行い、 94 °C で 30秒、 68でで 3分からなるサイクルを 35回行なつた後、 最後の伸長反応を 68 °Cで 10分間からなる条件で実施した。 PCR法で得られた特異的増幅断片を TAクロ一ニング法により pGEM-T easy (プロメガ社製) に挿入し、 塩基配列 を定法により確認したところ、 単離した cDNAが PEG10であることが明らか となった。
なお、 プライマ一 F1は PEG10遺伝子 (GenBank: AB049834) の 5,-端にハイ プリダイズするように、 そして R1は 3'-端にハイブリダイズするようにデザィ ンした。 " "
配列番号 2 8 4 (F1) : GGATCCATGACCGAACGAAGAAGGGACGAG 配列番号 2 8 5 (R1) : TCTAGACAGGGTACTGTAAGATGGAGGCGG 12-3. PEG10/ORF2の免疫用抗原の調製およびモノクローナル抗体の作製 PEG10/ORF2の免疫用抗原としてアミノ酸の部分配列 (ORF2/51aa-251aa) を GST-結合型夕ンパク質として、 組み換え体の調製を実施した。
すなわち、 上記の PEGlO cDNAを铸型とし、 F2プライマ一 (配列番号 2 8 6 ) 、 および R2プライマ一 (配列番号 2 8 7 ) を用い PCR法にて PEG10 (ORF2/51aa-251aa) をコードする遺伝子を増幅し、 続いて pGEM'T easyベ クタ一 (プロメガ社製) への挿入を行った。 塩基配列を定法にて確認した後、 制 限酵素 BamHI-XhoIを用いて切断した遺伝子断片を pET41cベクタ一
(Novagen社製) に揷入し、 発現べクタ一 pETc— PEG10_ORF2を構築した。 配列番号 2 8 6 (F2) : GGATCCATCTTCCGGGCAGAGACACCCT
配列番号 2 8 7 (R2) : CTCGAGTGCCATTTCAGGTTCGGACAGTG
続いて、 発現べクタ一 pETc_PEG10_ORF2を上項と同様に GST結合型
PEG10—ORF2タンパク質として調製、 マウス免疫によるモノクロ一ナル抗体の 作製を実施した。 そして PEG10— ORF2に対するモノク口一ナル抗体 H4128を 作製した。
12-4. 抗 PEG10/ORF2抗体を用いた PEG10夕ンパク質分子の検出
上記により調製した抗 PEG10/ORF2抗体 H4128の反応性を確認するために、 PEG10強制発現細胞株ならびに各種癌細胞株の細胞ライゼ一トを用い PEG10 の検出を行った。
初めに、 PEG10強制発現 COS7細胞を用いウエスタンブロット解析により抗 PEG10/ORF2抗体 B0000Aの反応性を確認した。 動物細胞発現べク夕一は前述 の PEG10全長をコードする cDNAを pcDNA4HisMaxC (Invitrogen社製) に 揷入した PEG10遺伝子発現べクタ一 pcDNA4/HisMax— PEGIO—Fullを使用し た。 PEG10の N末端に Xpressタグ配列が揷入されたコンストラクトとなって いる。 すなわち、 l pgの発現べクタ一 pcDNA4/HisMax— PEG10— Full、 もしく は陰性対照として pcDNA4 (Mock) を 5 x 104個の COS7細胞と Hep3B細胞 に FuGene6試薬 (ロシュダイダイァグノスティック社製) を用いて導入し、 PEG10を一過性発現させた。 発現べクタ一導入 3日後の細胞を回収し、 培養細 胞を RIPA緩衝液 (150 mM塩化ナトリウム、 1% NP'40、 0.5%デォキシコー ル酸、 0.1% S D S、 50 mMトリスヒドロキシァミノメタン塩酸塩
(pH8.0) ) にて可溶化することで細胞ライゼートを調製した。 それぞれ 5 mg タンパク質相当量のライゼートを SDS-ポリアクリルアミドゲルに供し、 SDS- PAGEによりタンパク質を分離した後、 Hybond-P (アマシャムバイオサイェン ス社製) に転写した。 そして一次抗体として抗 Xpress抗体 (5000倍希釈)
(インビトロジェン社製) もしくは PEG10/ORF2抗体 H4128 (2pg/mL) を使 用し、 二次抗体に HRP標識抗マウス IgG抗体 (アマシャムバイオサイエンス社 製) を用い、 ECLプラス (アマシャムバイオサイエンス社製) による検出を行 つたところ、 Mockの陰性コントロールに対し、 H4128抗体により、 PEG10と 考えられる 83kDa、 50kDa付近のバンドが得意的に検出された (図 8 2 ) 。 ま た、 N末に標識された Xpressタグ抗体においても同様に約 83kDa付近のパン ドは特異的に検出されている。 その約 83kDa付近のものは ORF1以降フレ一ム シフトを起こし、 ORF2の融合した全長サイズでなはないかと考察している。 ま た、 坊原とした ORF2部分のアミノ酸配列は通常のフレームでは翻訳されない ことから、 ヒト PEG10においてフレ一ムシフトが行われていることが、 抗 PEG10/ORF2抗体 H4128を用いることにより明らかとなった。
12- 5. 抗 PEG10抗体 H4128を用いた肝細胞癌組織における PEG10の夕ンパ ク質の発現解析
肝細胞癌および肝芽種の組織抽出物を用いて抗 PEG10抗体によるウェスタン プロット解析を実施した。 ヒト組織抽出物調製は、 組織片に RIPA緩衝液 (150 mM塩化ナトリウム、 1ο/。ΝΡ-40、 0.5%デォキシコ一ル酸、 0.1% S D S、 50 mM トリスヒドロキシァミノメタン塩酸塩 (pH8.0) ) を添加して超音波破碎後、 遠心して上清画分を回収して行った。 各々の抽出サンプルについて蛋白質濃度を ブラッドフォード法で定量し、 4mg/mLとなるように調製した後、 SDS-サンプ ルバッファーと等量混合し、 95°Cで 5分間加熱処理を行った。 12%ポリアクリ ルアミドゲルを調製して抽出物サンプルを lOmgずつアプライし、 SDS-PAGE を行った。
上記と同様に、 抗 PEG10抗体 H4128によるウエスタンブロット解析を実施 したところ、 特異的な 83kDa付近のバンドと 50kDa付近のバンドが、 癌部特 異的に検出された (図 8 3 ) 。 このことにより強制発現させた PEG10のみなら ず、 肝細胞癌、 肝芽種組織においても PEG10/ORF2が存在することが明らかと なった。
以上の結果により、 TEG60: PEG10分子は癌部特異的にタンパク質レベルに おいても発現が亢進していることが明らかになったことにより、 モノクローナル 抗体を用いた癌組織、 および血清を用いた診断における有用性が示された。 実施例 1 3
13- 1. DUSP9の免疫用抗原の調製およびモノクローナル抗体の作製
TEG63: DUSP9に関して、 モノクロ一ナル抗体を用いた癌の検出が可能か どうかを明らかにするために、 抗 DUSP9抗体の作製を行つた。
DUSP9の免疫用抗原として DUSP9全長配列を GST融合夕ンパク質として、 組み換え体の調製を実施した。 すなわち、 HepG2 cDNAを铸型とし、 Ls772プ ライマ一 (配列番号 2 8 8 ) 、 および Ls773プライマー (配列番号 2 8 9 ) を 用い PCR法にて DUSP9 (385aa) をコ一ドする遺伝子を増幅し、 続いて pGEM-Teベクター (プロメガ社製) への挿入を行った。 塩基配列を定法にて確 認した後、 制限酵素 EcoRI-Hindlllを用いて切断した遺伝子断片を pET41aベ クタ一 (Novagen社製) に挿入し、 発現ベクター pET41a_DUSP9を構築した。 配列番号 2 8 8 (F) : GAATTCATGGAGGGTCTGGGCCGCTC
酉己列番号 2 8 9 (R) : CTCGAGGGTGGGGGCCAGCTCGAAG
続いて、 発現ベクター pET41a-DUSP9を用いて上項と同様に GST融合 DUSP9 (l-385aa) タンパク質の調製を行い、 マウス免疫によるモノクロ一ナ ル抗体の作製を実施した。 そして、 抗 DUSP9抗体 #8901を作製した。
13-2. 抗 DUSP9抗体を用いた DUSP9夕ンパク質分子の検出
上記により調製した抗 DUSP9抗体 #8901の反応性を確認するために、 DUSP9強制発現細胞株ならびに各種癌細胞株の細胞ライゼ一トを用い DUSP9 の検出を行った。
初めに、 DUSP9強制発現 COS7細胞を用いウエスタンプロット解析により抗 DUSP9抗体 #8901の反応性を確認した。 動物細胞発現べクタ一は前述の DUSP9をコードする cDNAを pcDNA4Mys-His (Invitrogen社製) に挿入し た DUSP9遺伝子発現ベクター pcDNA4-DUSP9を使用した。 すなわち、 1 の発現べクタ一 pcDNA4-DUSP9を 5 x 104個の COS7細胞に FuGene6試薬 (ロシュダイダイァグノスティック社製) を用いて導入し、 DUSP9を一過性発 現させた。 発現ベクター導入 3日後の細胞を回収し、 培養細胞を RIPA緩衝液 (150 mM塩化ナトリウム、 1% ΝΡ-40、 0.5% デォキシコ一ル酸、 0.1% S D S、 50 mMトリスヒドロキシァミノメタン塩酸塩 (pH8.0) ) にて可溶化する ことで細胞ライゼ一トを調製した。 その 3 mg夕ンパク質相当量のライゼ一トを SDS-ポリアクリルアミドゲルに供し、 SDS-PAGEによりタンパク質を分離した 後、 Hybond-P (アマシャムバイオサイエンス社製) に転写した。 そして一次抗 体として DUSP9抗体 (l ng/mL) を使用し、 二次抗体に HRP標識抗マウス IgG抗体 (ジャクソン社製) を用い、 ECLプラス (アマシャムバイオサイェン ス社製) による検出を行ったところ、 約 42kDa付近に DUSP9と考えられるバ ンドが検出された。
同時に各種癌細胞株の細胞ライゼートに関して同様にウェスタンブロット解析 を行った。 その結果、 GeneChipUl33の解析結果と一致し、 mRNA発現スコア が高い細胞株においてのみ分子量約 42kDaの全長 DUSP9と考えられるバンド を特異的に検出することに成功した (図 8 4 ) 。
13-3. 抗 DUSP9抗体を用いた肝細胞癌組織における DUSP9の夕ンパク質の 発現解析
肝細胞癌の組織抽出物を用いて抗 DUSP9抗体 # 8901によるウエスタンプロ ット解析を実施した。 ヒト組織抽出物調製は、 組織片に RIPA緩衝液 (150 mM 塩化ナトリゥム、 1% NP-40、 0.5%デォキシコール酸、 0.1% S D S、 50 mM トリスヒドロキシァミノメタン塩酸塩 (pH8.0) ) を添加して超音波破砕後、 遠 心して上清画分を回収して行った。 各々の抽出サンプルについて蛋白質濃度をブ ラッドフォード法で定量し、 4mg/mLとなるように調製した後、 SDS-サンプル ノ ツファーと等量混合し、 95°Cで 5分間加熱処理を行った。 12%ポリアクリル アミドゲルを調製して抽出物サンプルを 10mgずつアプライし、 SDS-PAGEを 行った。
上記と同様に、 抗 DUSP9抗体 #8901によるウエスタンプロット解析を実施 したところ、 特異的な 42kDa付近のバンドが、 癌部特異的に検出された (図 8 5 ) 。 特に低分化型肝細胞癌において 3例中 3例にて検出された。
以上の結果により、 TEG63: DUSP9分子は癌部位において遺伝子発現亢進 のみならず、 タンパク質レベルにおいても癌部および癌細胞株において、 発現亢 進していることがモノクローナル抗体を用いることにおいて証明された。 このこ とにより、 モノクローナル抗体を用いた癌組織、 および血清を用いた診断におけ る有用性が示された。 実施例 1 4
14-1. 钪 CvstatinSN抗体の作製
TEG47:CystatinSNに関して、 抗 CystatinSN抗体を用いた癌の検出が可能 かどうかを明らかにするために、 抗 CystatinSN抗体の作製を行った。
すなわち、 CystatinSNの免疫用抗原としてアミノ酸の部分配列 (60aaから 75aa) をペプチドタンパク質として (GenBank No.: NM_001898参照) 、 常 法によりペプチド配列合成を実施した。 ペプチド N末端に C:システィン残基 を付加し、 Keyhole limpet hemocyanin (KLH) にコンジュゲーシヨンし免疫原 とした。 そしてモノクローナル抗体は上項と同様に作製した。 そしてモノクロ一 ナル抗体の単離に成功した。
ぺプチド配列: C-KDDYYRRPLRVLRAEQ (配列番号 2 9 0 )
14-2. 抗 CvstatinSN抗体を用いた大腸癌組織における CvstatinSNの夕ンパ ク質の発現解析
大腸癌の組織抽出物を用いて抗 CystatinSN抗体によるウェスタンプロット解 析を実施した。 ヒト組織抽出物調製およびウエスタンブロット解析は上項と同様 に実施した。 抗 CystatinSN抗体 ( 4 g/mL) によるウェスタンブロット解析を 実施したところ、 特異的な 15kDa付近のバンドが、 癌部特異的に検出された
(図 8 6 ) 。 CystatinSNの予測分子量が約 16kDaであることから、 癌部にお いて特異的に CystatinSNが発現亢進していることが明らかとなつた。
以上の結果により、 TEG47:CystatinSN分子は癌部特異的に夕ンパク質レべ ルにおいて発現亢進していることが明らかになったことにより、 モノクローナル 抗体を用いた癌組織、 および血清を用いた診断における有用性が示された。 実施例 1 5
抗 SFRP4抗体の作製
TEG56: SFRP4に関して、 抗 SFRP4抗体を用いた癌の検出が可能かどうか を明らかにするために、 抗 SFRP4抗体の作製を行つた。
15-1. SFRP4 cDNAの単離
SFRP4の発現を行うために、 まず SFRP4の cDNAを以下のようにして単離 した。 胃癌組織より前述の方法に従い一本鎖 cDNAを調製し、 それを铸型とし て EcoRIまたは Xholの制限酵素サイ卜のついたプライマー GC898 (配列番号 2 9 1 ) と GC899 (配列番号 2 9 2 ) を用いて PCR法にて、 目的サイズと一 致する約 lOOObp付近のパンドの検出に成功した。 PGR用酵素および試薬には、 ァドパンテージ HFポリメラ一ゼミックス (Advantage HF Polymerase Mix; クロンテック社製) およびアドバンテ一ジ HF P C Rバッファ一 (Advantage HF PCR buffer) 、 2 0 Ο μΜデォキシヌクレオチド三リン酸、 0 . 2 μΜブラ イマ一を用い、 c D NA l pLを铸型にした P C R ( 9 4 °C 3 0秒、 6 8 °C 3 0秒、 7 2 C 3分、 3 5サイクル) を行った。 PCR法で得られた特異的増幅断 片は D NAライゲ一シヨンキット (夕カラ社製) を用いて pGEM-T easyベクタ ― (プロメガ社製) に挿入し、 塩基配列を定法により確認したところ、 単離した cDNAが SFRP4に相当することが明らかとなった。
なお、 プライマー GC898は SFR4— ORF遺伝子 (GenBank: NM_003014) の 5,-端にハイブリダイズするように、 そして GC899は 3,-端にハイプリダイズす るようにデザインした。
配列番号 2 9 1 (GC898) : CGGGATCCATGTTCCTCTCCATCCTAGTGG 配列番号 2 9 2 (GC899) : CGCTCGAGACACTCTTTTCGGGTTTGTTC 15-2. SFRP4の免疫用抗原の調製
SFRP4の免疫用抗原として上記の全長 SFRP4配列を GST-結合型夕ンパク質 として、 組み換え体の調製を実施した。 すなわち、 上記の pGEM-Tに揷入され た SFRP4配列を、 制限酵素 EcoRI-XhoIを用いて切断し、 そして pET41aべク 夕一 (Novagen社製) に揷入し、 発現べクタ一 GS SFRP4を構築した。
GST融合抗原タンパク質の調製、 およびマウス免疫によるモノクローナル抗 体の作製は上項と同様に実施した。 その結果、 抗 SFRP4モノクローナル抗体 A7113を作製した。
15-3. 抗 SFRP4抗体を用いた胃組織における SFRP4のタンパク質の発現解 近
胃癌の組織抽出物を用いて抗 SFRP4抗体によるウエスタンプロット解析を実 施した。 上項と同様に、 抗 SFRP4抗体 A7113 (40pg/mL) によるウエスタン プロット解析を実施したところ、 癌部において特異的な約 50 kDa付近のバンド が検出された (図 8 7 ) 。
同時に上記でクローニングした SFRP4配列を挿入した発現べクタ一
SFRP4j)cDNA4His-Myc (Invitrogen ¾) を COS7細胞に強制発現させ、 その 細胞ライゼートに対する抗 Myc抗体 (5千倍希釈、 Invitrogen) によるウェス タンプロット解析を実施したところ、 臨床検体で検出されたものと同一サイズの バンドが検出された (図 8 8)。 そのため、 臨床検体で抗 SFRP4モノクロ一ナル 抗体により検出された 50kDaのバンドは SFRP4であると考えられ、 モノクロ ーナル抗体により SFRP4が癌部での宂進が特異的に検出されたことが明らかと なった。 さらに、 SFRP4を強制発現させた COS7細胞の培養上清の解析を試み たところ、 シグナル配列を持つ SFRP4が培養上清に分泌することが明らかとな つた (図 8 8 ) 。 以上の結果により、 TEG56:SFRP4分子は癌部特異的に夕ンパク質レベルに おいても発現が亢進し、 かつ、 癌細胞において分泌されていることが示唆された ことにより、 モノクローナル抗体を用いた癌組織、 および血清を用いた診断にお ける有用性が示された。 産業上の利用性
本発明の遺伝子、 タンパク質および抗体は、 癌の診断および治療、 ならびに癌 の治療薬の開発において用いることができる。

Claims

請求の範囲
I. 配列番号 1一 65のいずれかに記載されるヌクレオチド配列を有する遺 伝子によりコードされるタンパク質またはそのフラグメント。
2. 配列番号 1、 2、 28、 29、 30、 31、 32、 51、 52、 60お よび 61のいずれかに記載されるヌクレオチド配列を有する遺伝子によりコード されるタンパク質またはそのフラグメント。
3. 請求項 2記載のタンパク質またはそのフラグメントを含む、 肺癌を診断 または治療する為の組成物。
4. 配列番号 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13、 22、 23、 24、 25、 26、 27、 33、 34、 35、 36、 37、 38、 39、 40、 41、 42、 53、 54および 55のいずれかに記載されるヌクレオチド 配列を有する遺伝子によりコードされるタンパク質またはそのフラグメント。
5. 請求項 4記載のタンパク質またはそのフラグメントを含む、 胃癌を診断 または治療する為の組成物。
6. 配列番号 3、 '7、 20、 21、 46、 47、 48、 49および 50.のい ずれかに記載されるヌクレオチド配列を有する遺伝子によりコ一ドされるタンパ ク質またはそのフラグメント。
7. 請求項 6記載のタンパク質またはそのフラグメントを含む、 大腸癌を診 断または治療する為の組成物。
8. 配列番号 14、 15、 16、 17、 18、 19、 43、 44、 45、 5 6、 57、 58、 59、 62、 63、 64および 65のいずれかに記載されるヌ クレオチド配列を有する遺伝子によりコードされるタンパク質またはそのフラグ メン卜。
9. 請求項 8記載のタンパク質またはそのフラグメントを含む、 肝癌を診断 または治療する為の組成物。
10. 前記遺伝子が、 配列番号 1、 9、 10、 14、 20、 22、 24、 25、 26、 27、 28、 29、 32、 38、 39、 40、 44、 51、 52、 53、 54および 58のいずれかに記載されるヌクレオチド配列を有する、 請求項 1記 載のタンパク質またはそのフラグメント。
I I. 前記遺伝子が、 配列番号 1、 9、 10、 14、 20、 22、 24、 25 および 26のいずれかに記載されるヌクレオチド配列を有する、 請求項 1記載の タンパク質またはそのフラグメント。
12. 配列番号 66- 123のいずれかに記載されるアミノ酸配列を有する、 請求項 1記載の夕ンパク質またはそのフラグメント。
13. 請求項 1, 2, 4, 6, 8, 10, 11および 12のいずかに記載の夕 ンパク質またはそのフラグメントを認識する抗体。
14. 配列番号 1一 65のいずれかに記載されるヌクレオチド配列もしくはこ れに相補的なヌクレオチド配列を有するポリヌクレオチド、 およびこれらのポリ ヌクレオチドと高ストリンジェン卜な条件下でハイブリダイズするポリヌクレオ チド。
15. 配列番号 1一 65のいずれかに記載されるヌクレオチド配列の少なくと も 12個の連続するヌクレオチド配列もしくはこれに相補的なヌクレオチド配列 を有するポリヌクレオチド、 およびこれらのポリヌクレオチドと高ストリンジェ ントな条件下でハイプリダイズする少なくとも 12個のヌクレオチドを有するポ リヌクレオチド。
16. 配列番号が 1、' 2、 28、 29、 30、 31、 32、 51、 52、 60 および 61のいずれかである、 請求項 14または 15記載のポリヌクレオチド。
17. 請求項 16記載のポリヌクレオチドを含む、 肺癌を診断または治療する 為の組成物。
18. 配列番号が 3、 4、 5、 6、 7、 8、 9、 10、 1 1、 12、 13、 2 2、 23、 24、 25、 26、 27、 33、 34、 35、 36、 37、 38、 3 9、 40、 41、 42、 53、 54および 55のいずれかである、 請求項 14ま たは 15記載のポリヌクレオチド
19. 請求項 18記載のポリヌクレオチドを含む、 胃癌を診断または治療する 為の組成物。
20. 配列番号が 3、 7、 20、 21、 46、 47、 48、 49および 50の いずれかである、 請求項 14または 15記載のポリヌクレオチド
21. 請求項 20記載のポリヌクレオチドを含む、 大腸癌を診断または治療す る為の組成物。
22. 配列番号が 14、 15、 16、 17、 18、 19、 43、 44、 45、 56、 57、 58、 59、 62、 63、 64および 65のいずれかである、 請求 項 14または 15記載のポリヌクレオチド。
23. 請求項 22記載のポリヌクレオチドを含む、 肝癌を診断または治療する 為の組成物。
24. 配列番号が 1、 9、 10、 14、 20、 22、 24、 25、 26、 27、 28、 29、 32、 38、 39、 40、 44、 51、 52、 53、 54および 5 8のいずれかである、 請求項 14または 15記載のポリヌクレオチド。
25. 請求項 14, 15, 16, 18, 20, 22および 24のいずれかに記 載のポリヌクレオチドを含むベクター。
26. 請求項 25記載のベクターを含む細胞。
27. 抗癌活性を有する化合物を同定する方法であって、
培養ヒト細胞を試験化合物と接触させ、 そして
前記細胞において配列番号 1-65のいずれかに記載されるヌクレオチド配列を 含む遺伝子の発現量の変化を引き起こす化合物を抗瘡活性を有する化合物として 同定する
の各工程を含む方法。
28. 請求項 1, 2, ' 4, 6, 8, 10, 11および 12のいずかに記載の夕 ンパク質、 または請求項 14, 15, 16, 18, 20, 22および 24のいず れかに記載のポリヌクレオチドの発現量を測定することを特徴とする癌の診断方 法
29. C20orfl02タンパク質を検出することを特徴とする癌の診断方法。
30. 癌が肺癌、 肝癌、 または膝癌である請求項 29記載の診断方法
31. 分泌された C20orfl02タンパク質を検出することを特徴とする請求項 2 9記載の診断方法。
32. C20orfl02タンパク質を認識する抗体を用いることを特徴とする請求項 29記載の診断方法。
33. 血液中、 血清中、 または血漿中の C20orfl02夕ンパク質を検出すること を特徴とする請求項 29記載の診断方法。
34. 以下の工程:
(a) 被験者から試料を採取する工程;
(b) 採取された試料に含まれる C20orfl02タンパク質を検出する工程 を含む癌の診断方法。 .
3 5 . 被験者から採取される試料が血液、 血清、 または血漿である請求項 3 4 記載の診断方法。
3 6 . C20orfl02タンパク質細胞外領域を検出することを特徴とする請求項 3
4記載の診断方法。
3 7 . C20orfl02タンパク質を認識する抗体を用いることを特徴とする請求項 3 4記載の診断方法。
PCT/JP2004/011650 2003-08-08 2004-08-06 癌高発現遺伝子 WO2005014818A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AT04771625T ATE528397T1 (de) 2003-08-08 2004-08-06 Bei krebs überexprimiertes gen
JP2005513023A JP4643450B2 (ja) 2003-08-08 2004-08-06 癌高発現遺伝子
US10/568,471 US20080153104A1 (en) 2003-08-08 2004-08-06 Gene Overexpressed in Cancer
EP04771625A EP1652923B1 (en) 2003-08-08 2004-08-06 Gene overexpressed in cancer
US11/584,793 US20070037204A1 (en) 2003-08-08 2006-10-20 Gene overexpressed in cancer
US12/229,750 US7812128B2 (en) 2003-08-08 2008-08-26 Gene overexpressed in cancer
US12/384,165 US9434775B2 (en) 2003-08-08 2009-04-01 Gene overexpressed in cancer
US12/807,314 US9376475B2 (en) 2003-08-08 2010-08-31 Gene overexpressed in cancer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003290704 2003-08-08
JP2003-290704 2003-08-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/568,471 A-371-Of-International US20080153104A1 (en) 2003-08-08 2004-08-06 Gene Overexpressed in Cancer
US11/584,793 Continuation US20070037204A1 (en) 2003-08-08 2006-10-20 Gene overexpressed in cancer

Publications (1)

Publication Number Publication Date
WO2005014818A1 true WO2005014818A1 (ja) 2005-02-17

Family

ID=34131599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011650 WO2005014818A1 (ja) 2003-08-08 2004-08-06 癌高発現遺伝子

Country Status (5)

Country Link
US (1) US20080153104A1 (ja)
EP (2) EP1652923B1 (ja)
JP (2) JP4643450B2 (ja)
AT (1) ATE528397T1 (ja)
WO (1) WO2005014818A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005097204A1 (ja) * 2004-04-09 2005-10-20 Takeda Pharmaceutical Company Limited 癌の予防・治療剤
WO2007005635A3 (en) * 2005-07-01 2007-08-02 Us Gov Health & Human Serv Mitotic spindle protein aspm as a diagnostic marker for neoplasia and uses therefor
JP2008118915A (ja) * 2006-11-10 2008-05-29 Kazuto Nishio 胃癌高発現遺伝子特定による胃癌診断および創薬への利用
EP2095821A1 (en) * 2008-02-29 2009-09-02 Rheinische Friedrich-Wilhelms-Universität Bonn Anticancer agent
JP2009276153A (ja) * 2008-05-13 2009-11-26 Sumitomo Bakelite Co Ltd 胃癌の判定方法
AU2006203884B2 (en) * 2005-01-06 2012-02-16 Genentech, Inc. Cancer prognostic, diagnostic and treatment methods
US8198025B2 (en) 2005-05-02 2012-06-12 Toray Industries, Inc. Method for diagnosing esophageal cancer
JP2013539468A (ja) * 2010-08-27 2013-10-24 ステム セントリックス, インコーポレイテッド Notumタンパク質モジュレーターおよび使用法
JP2014501513A (ja) * 2010-11-24 2014-01-23 レクシコン ファーマシューティカルズ インコーポレイテッド Notumペクチンアセチルエステラーゼと結合する抗体
JP2014533247A (ja) * 2011-11-01 2014-12-11 バイオノミクス インコーポレイテッド 抗体および癌を治療する方法
JP2015503921A (ja) * 2012-01-09 2015-02-05 スージョウ マイクロダイアグ バイオメディスン カンパニー リミテッド 結腸直腸癌診断および予測のためのバイオマーカー
JP2015503920A (ja) * 2012-01-09 2015-02-05 スージョウ マイクロダイアグ バイオメディスン カンパニー リミテッド 乳癌の予測および診断のためのバイオマーカー
JP2016106087A (ja) * 2010-06-04 2016-06-16 花王株式会社 新規ヒアルロン酸分解促進因子及びその阻害剤
WO2024076781A1 (en) * 2022-10-08 2024-04-11 Taipei Medical University Polynucleotides for silencing transcript variant 1 of assembly factor for spindle microtubules and applications thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2103628A4 (en) * 2006-12-14 2012-02-22 Forerunner Pharma Res Co Ltd MONOCLONAL ANTIBODY ANTI-CLAUDIN 3, AND TREATMENT AND DIAGNOSIS OF CANCER USING SUCH ANTIBODY
EP2060583A1 (en) * 2007-10-23 2009-05-20 Ganymed Pharmaceuticals AG Identification of tumor-associated markers for diagnosis and therapy
FR2958936A1 (fr) * 2010-04-14 2011-10-21 Sanofi Aventis Proteine de fusion robo1-fc et son utilisation dans le traitement des tumeurs
US9119869B2 (en) * 2010-04-29 2015-09-01 Ronald J. Shebuski Mucin derived polypeptides
US20190382853A1 (en) * 2011-02-25 2019-12-19 Korea Institute Of Ocean And Science & Technology Mest as biomarker for cancer diagnosis and prognosis and method for using thereof
AU2012332588B2 (en) 2011-11-01 2017-09-07 Bionomics, Inc. Methods of blocking cancer stem cell growth
CN103901206B (zh) * 2013-05-07 2016-03-16 上海良润生物医药科技有限公司 半胱氨酸蛋白酶抑制剂sn与糖类抗原19-9的联合应用
CN103940996B (zh) * 2013-05-07 2016-03-16 上海良润生物医药科技有限公司 Cystatin SN和AFP在制备诊断和预示肝癌标志物中的应用
AU2015240599B2 (en) 2014-04-04 2020-11-19 Bionomics, Inc. Humanized antibodies that bind LGR5
WO2015172201A1 (en) * 2014-05-16 2015-11-19 Peter Maccallum Cancer Institute Biomarker of gastric cancer
AU2017239038B2 (en) 2016-03-22 2024-06-27 Bionomics Inc Administration of an anti-LGR5 monoclonal antibody

Citations (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0003089A1 (fr) 1978-01-06 1979-07-25 Bernard David Séchoir pour feuilles imprimées par sérigraphie
EP0125023A1 (en) 1983-04-08 1984-11-14 Genentech, Inc. Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
JPH0159878B2 (ja) 1982-05-21 1989-12-20 Yunibaashitei Obu Karifuorunia
WO1991000360A1 (en) 1989-06-29 1991-01-10 Medarex, Inc. Bispecific reagents for aids therapy
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1992020791A1 (en) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992020373A1 (en) 1991-05-14 1992-11-26 Repligen Corporation Heteroconjugate antibodies for treatment of hiv infection
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994004690A1 (en) 1992-08-17 1994-03-03 Genentech, Inc. Bispecific immunoadhesins
WO1994011523A2 (en) 1992-11-13 1994-05-26 Idec Pharmaceuticals Corporation Fully impaired consensus kozac sequences for mammalian expression
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1995001438A1 (en) 1993-06-30 1995-01-12 Medical Research Council Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof
WO1995015388A1 (en) 1993-12-03 1995-06-08 Medical Research Council Recombinant binding proteins and peptides
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
WO1996027011A1 (en) 1995-03-01 1996-09-06 Genentech, Inc. A method for making heteromultimeric polypeptides
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1997038098A1 (en) 1996-04-10 1997-10-16 University Of Manitoba Human hyaluronan receptor
WO1998013388A1 (fr) 1996-09-26 1998-04-02 Chugai Seiyaku Kabushiki Kaisha Anticorps contre les peptides lies a la parathormone humaine
WO1999020764A1 (en) 1997-10-20 1999-04-29 The Regents Of The University Of California Robo: a family of polypeptides and nucleic acids involved in nerve guidance
WO1999029729A2 (en) 1997-12-09 1999-06-17 Children's Medical Center Corporation Antagonists of neuropilin receptor function and use thereof
WO2000006698A1 (en) 1998-07-30 2000-02-10 Human Genome Sciences, Inc. 98 human secreted proteins
WO2000012702A2 (en) 1998-08-31 2000-03-09 Bayer Corporation Human genes differentially expressed in colorectal cancer
WO2000034477A2 (en) 1998-12-11 2000-06-15 Incyte Pharmaceuticals, Inc. Neuron-associated proteins
WO2000036107A2 (en) 1998-12-17 2000-06-22 Corixa Corporation Compositions and methods for therapy and diagnosis of ovarian cancer
WO2000037643A2 (en) 1998-12-23 2000-06-29 Corixa Corporation Compounds for immunotherapy and diagnosis of colon cancer and methods for their use
EP1033401A2 (en) 1999-02-26 2000-09-06 Genset Expressed sequence tags and encoded human proteins
WO2000055351A1 (en) 1999-03-12 2000-09-21 Human Genome Sciences, Inc. Human colon cancer associated gene sequences and polypeptides
WO2000055633A2 (en) 1999-03-15 2000-09-21 Eos Biotechnology, Inc. Methods of screening for colorectal cancer modulators
WO2000058473A2 (en) 1999-03-31 2000-10-05 Curagen Corporation Nucleic acids including open reading frames encoding polypeptides; 'orfx'
WO2000061739A1 (en) 1999-04-09 2000-10-19 Kyowa Hakko Kogyo Co., Ltd. Method for controlling the activity of immunologically functional molecule
WO2000073509A2 (en) 1999-06-01 2000-12-07 Incyte Genomics, Inc. Molecules for diagnostics and therapeutics
WO2001000828A2 (en) 1999-06-30 2001-01-04 Corixa Corporation Compositions and methods for the therapy and diagnosis of lung cancer
WO2001009317A1 (fr) 1999-07-29 2001-02-08 Helix Research Institute Gene associe au cancer de l'estomac
WO2001021653A2 (en) 1999-09-23 2001-03-29 Corixa Corporation Ovarian tumor antigen and methods of use therefor
WO2001022920A2 (en) 1999-09-29 2001-04-05 Human Genome Sciences, Inc. Colon and colon cancer associated polynucleotides and polypeptides
WO2001051628A2 (en) 2000-01-14 2001-07-19 Millennium Pharmaceuticals, Inc. Genes compositions, kits, and methods for identification, assessment, prevention, and therapy of breast cancer
WO2001051513A2 (en) 2000-01-14 2001-07-19 Corixa Corporation Ovarian tumor-associated sequences
WO2001055355A1 (en) 2000-01-31 2001-08-02 Human Genome Sciences, Inc. Nucleic acids, proteins, and antibodies
WO2001057058A2 (de) 2000-01-31 2001-08-09 Metagen Pharmaceuticals Gmbh Nachweis von differenzieller genexpression
WO2001059111A1 (en) 2000-02-08 2001-08-16 Millennium Pharmaceuticals, Inc. 18057 protein, a seven transmembrane protein
WO2001060860A2 (en) 2000-02-17 2001-08-23 Millennium Predictive Medicine, Inc. Genes differentially expressed in human prostate cancer and their use
WO2001064886A2 (en) 2000-03-01 2001-09-07 Corixa Corporation Compositions and methods for the detection, diagnosis and therapy of hematological malignancies
WO2001064835A2 (en) 2000-02-28 2001-09-07 Hyseq, Inc. Novel nucleic acids and polypeptides
WO2001066719A1 (fr) 2000-03-07 2001-09-13 Chiba-Prefecture Nouveau gene clone en neuroblastome humain et nouveaux fragments de gene
WO2001070976A2 (en) 2000-03-21 2001-09-27 Corixa Corporation Compositions and methods for the therapy and diagnosis of ovarian and endometrial cancer
WO2001073027A2 (en) 2000-03-24 2001-10-04 Corixa Corporation Compositions and methods for therapy and diagnosis of colon cancer
WO2001075177A2 (en) 2000-04-03 2001-10-11 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Tumor markers in ovarian cancer
WO2001077168A2 (en) 2000-04-11 2001-10-18 Corixa Corporation Compositions and methods for the therapy and diagnosis of lung cancer
WO2001092578A2 (en) 2000-05-26 2001-12-06 Board Of Trustees Of The University Of Illinois Reagents and methods for identifying and modulating expression of genes regulated by retinoids
WO2001094629A2 (en) 2000-06-05 2001-12-13 Avalon Pharmaceuticals Cancer gene determination and therapeutic screening using signature gene sets
WO2002000677A1 (en) 2000-06-07 2002-01-03 Human Genome Sciences, Inc. Nucleic acids, proteins, and antibodies
WO2002000889A1 (fr) 2000-06-29 2002-01-03 Seikagaku Corporation Sulfate transferase et adn codant cette enzyme
WO2002000939A2 (en) 2000-06-28 2002-01-03 Diadexus, Inc. Method of diagnosing, monitoring, staging, imaging and treating colon cancer
US6337195B1 (en) 1995-06-06 2002-01-08 Human Genome Sciences, Inc. Colon specific genes and proteins
WO2002004514A2 (en) 2000-07-11 2002-01-17 Corixa Corporation Compositions and methods for the therapy and diagnosis of lung cancer
US20020008150A1 (en) 1995-04-07 2002-01-24 Kazuhiko Watanabe Expansion valve and refrigerating system
WO2002010217A2 (en) 2000-08-02 2002-02-07 The Johns Hopkins University Endothelial cell expression patterns
WO2002012280A2 (en) 2000-08-03 2002-02-14 Corixa Corporation Compositions and methods for the therapy and diagnosis of colon cancer
US20020022248A1 (en) 1997-02-25 2002-02-21 Jiangchun Xu Compositions and methods for the therapy and diagnosis of prostate cancer
WO2002020598A1 (en) 2000-07-28 2002-03-14 Michael Andrew Mcguckin Mucin
US6362321B1 (en) 1998-03-27 2002-03-26 The General Hospital Corporation Taxol resistance associated gene
WO2002026982A2 (en) 2000-09-29 2002-04-04 Incyte Genomics, Inc. Secreted human proteins
US20020042096A1 (en) 2000-01-31 2002-04-11 Rosen Craig A. Nucleic acids, proteins, and antibodies
WO2002029103A2 (en) 2000-10-02 2002-04-11 Gene Logic, Inc. Gene expression profiles in liver cancer
WO2002029086A2 (en) 2000-10-02 2002-04-11 Bayer Corporation Nucleic acid sequences differentially expressed in cancer tissue
WO2002031140A1 (fr) 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Cellules produisant des compositions d'anticorps
WO2002046415A2 (en) * 2000-12-08 2002-06-13 Incyte Genomics, Inc. Polynucleotide and polypeptide sequences of putative transporters and ion channells
WO2002058534A2 (en) 2000-11-20 2002-08-01 Corixa Corporation Compositions and methods for the therapy and diagnosis of colon cancer
WO2002060317A2 (en) 2001-01-30 2002-08-08 Corixa Corporation Compositions and methods for the therapy and diagnosis of pancreatic cancer
WO2002064797A2 (en) 2001-02-16 2002-08-22 The United States Of America, Represented By The Secretary, Department Of Health And Human Services Mitochondrial topoisomerase i
US20030003538A1 (en) * 1999-09-23 2003-01-02 Dietrich Paul Shartzer Neuropathic pain genes; compositions thereof; related reagents
WO2003029424A2 (en) * 2001-10-02 2003-04-10 Curagen Corporation Novel proteins and nucleic acids encoding same
WO2004040000A2 (en) * 2002-09-09 2004-05-13 Nura, Inc G protein coupled receptors and uses thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010333A1 (fr) * 1995-09-14 1997-03-20 Sumitomo Electric Industries, Ltd. Nouvelles proteines s'exprimant specifiquement dans le cancer du foie, genes codant ces proteines, anticorps actifs contre ces proteines et procede de detection de l'expression de ces proteines
JPH09203734A (ja) * 1996-01-26 1997-08-05 Sumitomo Electric Ind Ltd 抗血清、抗体、リガンド及びそれらの検出方法
DE69831222T2 (de) 1997-02-25 2006-07-13 Corixa Corp., Seattle Verbindungen zur immundiagnose von prostatakrebs und deren verwendung
WO1998042738A1 (en) * 1997-03-21 1998-10-01 Human Genome Sciences, Inc. 87 human secreted proteins
WO1999000495A1 (fr) * 1997-06-26 1999-01-07 Sumitomo Electric Industries, Ltd. Nouvelle proteine ayant une excellente expression dans le cancer du sang, gene codant cette proteine, anticorps dirigee contre cette derniere et procede de detection de l'expression de cette proteine
US20020090615A1 (en) * 2000-01-31 2002-07-11 Rosen Craig A. Nucleic acids, proteins, and antibodies
AU2002255478A1 (en) * 2001-01-10 2002-09-12 Pe Corporation (Ny) Kits, such as nucleic acid arrays, comprising a majority of human exons or transcripts, for detecting expression and other uses thereof
US6743619B1 (en) * 2001-01-30 2004-06-01 Nuvelo Nucleic acids and polypeptides
EP1293569A3 (en) * 2001-09-14 2004-03-31 Research Association for Biotechnology Full-length cDNAs
WO2003061681A2 (en) * 2002-01-25 2003-07-31 DeveloGen Aktiengesellschaft für entwicklungsbiologische Forschung Proteins involved in the regulation of energy homeostasis and organelle metabolism
WO2004080148A2 (en) * 2002-10-02 2004-09-23 Nuvelo, Inc. Novel nucleic acids and polypeptides
US20070020637A1 (en) * 2003-01-21 2007-01-25 Research Association For Biotechnology Full-length cDNA
WO2004087874A2 (en) * 2003-03-28 2004-10-14 Nuvelo, Inc. Novel nucleic acids and polypeptides

Patent Citations (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0003089A1 (fr) 1978-01-06 1979-07-25 Bernard David Séchoir pour feuilles imprimées par sérigraphie
JPH0159878B2 (ja) 1982-05-21 1989-12-20 Yunibaashitei Obu Karifuorunia
EP0125023A1 (en) 1983-04-08 1984-11-14 Genentech, Inc. Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
WO1991000360A1 (en) 1989-06-29 1991-01-10 Medarex, Inc. Bispecific reagents for aids therapy
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992020791A1 (en) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1992020373A1 (en) 1991-05-14 1992-11-26 Repligen Corporation Heteroconjugate antibodies for treatment of hiv infection
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994004690A1 (en) 1992-08-17 1994-03-03 Genentech, Inc. Bispecific immunoadhesins
WO1994011523A2 (en) 1992-11-13 1994-05-26 Idec Pharmaceuticals Corporation Fully impaired consensus kozac sequences for mammalian expression
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1995001438A1 (en) 1993-06-30 1995-01-12 Medical Research Council Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof
WO1995015388A1 (en) 1993-12-03 1995-06-08 Medical Research Council Recombinant binding proteins and peptides
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
WO1996027011A1 (en) 1995-03-01 1996-09-06 Genentech, Inc. A method for making heteromultimeric polypeptides
US20020008150A1 (en) 1995-04-07 2002-01-24 Kazuhiko Watanabe Expansion valve and refrigerating system
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6337195B1 (en) 1995-06-06 2002-01-08 Human Genome Sciences, Inc. Colon specific genes and proteins
WO1997038098A1 (en) 1996-04-10 1997-10-16 University Of Manitoba Human hyaluronan receptor
WO1998013388A1 (fr) 1996-09-26 1998-04-02 Chugai Seiyaku Kabushiki Kaisha Anticorps contre les peptides lies a la parathormone humaine
US20020022248A1 (en) 1997-02-25 2002-02-21 Jiangchun Xu Compositions and methods for the therapy and diagnosis of prostate cancer
WO1999020764A1 (en) 1997-10-20 1999-04-29 The Regents Of The University Of California Robo: a family of polypeptides and nucleic acids involved in nerve guidance
WO1999029729A2 (en) 1997-12-09 1999-06-17 Children's Medical Center Corporation Antagonists of neuropilin receptor function and use thereof
US6362321B1 (en) 1998-03-27 2002-03-26 The General Hospital Corporation Taxol resistance associated gene
WO2000006698A1 (en) 1998-07-30 2000-02-10 Human Genome Sciences, Inc. 98 human secreted proteins
WO2000012702A2 (en) 1998-08-31 2000-03-09 Bayer Corporation Human genes differentially expressed in colorectal cancer
WO2000034477A2 (en) 1998-12-11 2000-06-15 Incyte Pharmaceuticals, Inc. Neuron-associated proteins
WO2000036107A2 (en) 1998-12-17 2000-06-22 Corixa Corporation Compositions and methods for therapy and diagnosis of ovarian cancer
WO2000037643A2 (en) 1998-12-23 2000-06-29 Corixa Corporation Compounds for immunotherapy and diagnosis of colon cancer and methods for their use
EP1033401A2 (en) 1999-02-26 2000-09-06 Genset Expressed sequence tags and encoded human proteins
WO2000055351A1 (en) 1999-03-12 2000-09-21 Human Genome Sciences, Inc. Human colon cancer associated gene sequences and polypeptides
WO2000055174A1 (en) 1999-03-12 2000-09-21 Human Genome Sciences, Inc. Human prostate cancer associated gene sequences and polypeptides
WO2000055320A1 (en) 1999-03-12 2000-09-21 Human Genome Sciences, Inc. Human pancreas and pancreatic cancer associated gene sequences and polypeptides
WO2000055633A2 (en) 1999-03-15 2000-09-21 Eos Biotechnology, Inc. Methods of screening for colorectal cancer modulators
WO2000058473A2 (en) 1999-03-31 2000-10-05 Curagen Corporation Nucleic acids including open reading frames encoding polypeptides; 'orfx'
WO2000061739A1 (en) 1999-04-09 2000-10-19 Kyowa Hakko Kogyo Co., Ltd. Method for controlling the activity of immunologically functional molecule
WO2000073509A2 (en) 1999-06-01 2000-12-07 Incyte Genomics, Inc. Molecules for diagnostics and therapeutics
WO2001000828A2 (en) 1999-06-30 2001-01-04 Corixa Corporation Compositions and methods for the therapy and diagnosis of lung cancer
WO2001009317A1 (fr) 1999-07-29 2001-02-08 Helix Research Institute Gene associe au cancer de l'estomac
WO2001021653A2 (en) 1999-09-23 2001-03-29 Corixa Corporation Ovarian tumor antigen and methods of use therefor
US20030003538A1 (en) * 1999-09-23 2003-01-02 Dietrich Paul Shartzer Neuropathic pain genes; compositions thereof; related reagents
WO2001022920A2 (en) 1999-09-29 2001-04-05 Human Genome Sciences, Inc. Colon and colon cancer associated polynucleotides and polypeptides
WO2001051513A2 (en) 2000-01-14 2001-07-19 Corixa Corporation Ovarian tumor-associated sequences
WO2001051628A2 (en) 2000-01-14 2001-07-19 Millennium Pharmaceuticals, Inc. Genes compositions, kits, and methods for identification, assessment, prevention, and therapy of breast cancer
WO2001054733A1 (en) 2000-01-31 2001-08-02 Human Genome Sciences, Inc. Nucleic acids, proteins and antibodies
WO2001057058A2 (de) 2000-01-31 2001-08-09 Metagen Pharmaceuticals Gmbh Nachweis von differenzieller genexpression
WO2001055355A1 (en) 2000-01-31 2001-08-02 Human Genome Sciences, Inc. Nucleic acids, proteins, and antibodies
US20020042096A1 (en) 2000-01-31 2002-04-11 Rosen Craig A. Nucleic acids, proteins, and antibodies
WO2001059111A1 (en) 2000-02-08 2001-08-16 Millennium Pharmaceuticals, Inc. 18057 protein, a seven transmembrane protein
WO2001060860A2 (en) 2000-02-17 2001-08-23 Millennium Predictive Medicine, Inc. Genes differentially expressed in human prostate cancer and their use
WO2001064835A2 (en) 2000-02-28 2001-09-07 Hyseq, Inc. Novel nucleic acids and polypeptides
WO2001064886A2 (en) 2000-03-01 2001-09-07 Corixa Corporation Compositions and methods for the detection, diagnosis and therapy of hematological malignancies
WO2001066719A1 (fr) 2000-03-07 2001-09-13 Chiba-Prefecture Nouveau gene clone en neuroblastome humain et nouveaux fragments de gene
WO2001070976A2 (en) 2000-03-21 2001-09-27 Corixa Corporation Compositions and methods for the therapy and diagnosis of ovarian and endometrial cancer
WO2001073027A2 (en) 2000-03-24 2001-10-04 Corixa Corporation Compositions and methods for therapy and diagnosis of colon cancer
WO2001075177A2 (en) 2000-04-03 2001-10-11 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Tumor markers in ovarian cancer
WO2001077168A2 (en) 2000-04-11 2001-10-18 Corixa Corporation Compositions and methods for the therapy and diagnosis of lung cancer
WO2001092578A2 (en) 2000-05-26 2001-12-06 Board Of Trustees Of The University Of Illinois Reagents and methods for identifying and modulating expression of genes regulated by retinoids
WO2001094629A2 (en) 2000-06-05 2001-12-13 Avalon Pharmaceuticals Cancer gene determination and therapeutic screening using signature gene sets
WO2002000677A1 (en) 2000-06-07 2002-01-03 Human Genome Sciences, Inc. Nucleic acids, proteins, and antibodies
WO2002000939A2 (en) 2000-06-28 2002-01-03 Diadexus, Inc. Method of diagnosing, monitoring, staging, imaging and treating colon cancer
WO2002000889A1 (fr) 2000-06-29 2002-01-03 Seikagaku Corporation Sulfate transferase et adn codant cette enzyme
WO2002004514A2 (en) 2000-07-11 2002-01-17 Corixa Corporation Compositions and methods for the therapy and diagnosis of lung cancer
WO2002020598A1 (en) 2000-07-28 2002-03-14 Michael Andrew Mcguckin Mucin
WO2002010217A2 (en) 2000-08-02 2002-02-07 The Johns Hopkins University Endothelial cell expression patterns
WO2002012280A2 (en) 2000-08-03 2002-02-14 Corixa Corporation Compositions and methods for the therapy and diagnosis of colon cancer
WO2002026982A2 (en) 2000-09-29 2002-04-04 Incyte Genomics, Inc. Secreted human proteins
WO2002029103A2 (en) 2000-10-02 2002-04-11 Gene Logic, Inc. Gene expression profiles in liver cancer
WO2002029086A2 (en) 2000-10-02 2002-04-11 Bayer Corporation Nucleic acid sequences differentially expressed in cancer tissue
WO2002031140A1 (fr) 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Cellules produisant des compositions d'anticorps
WO2002058534A2 (en) 2000-11-20 2002-08-01 Corixa Corporation Compositions and methods for the therapy and diagnosis of colon cancer
WO2002046415A2 (en) * 2000-12-08 2002-06-13 Incyte Genomics, Inc. Polynucleotide and polypeptide sequences of putative transporters and ion channells
WO2002060317A2 (en) 2001-01-30 2002-08-08 Corixa Corporation Compositions and methods for the therapy and diagnosis of pancreatic cancer
WO2002064797A2 (en) 2001-02-16 2002-08-22 The United States Of America, Represented By The Secretary, Department Of Health And Human Services Mitochondrial topoisomerase i
WO2003029424A2 (en) * 2001-10-02 2003-04-10 Curagen Corporation Novel proteins and nucleic acids encoding same
WO2004040000A2 (en) * 2002-09-09 2004-05-13 Nura, Inc G protein coupled receptors and uses thereof

Non-Patent Citations (81)

* Cited by examiner, † Cited by third party
Title
"Antibodies A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY
"PCR Protocols, A Guide to Methods and Applications", 1990, ACADEMIC PRESS
"Strategies for Protein Purification and Characterization: A Laboratory Course Manual", 1996, COLD SPRING HARBOR LABORATORY PRESS
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 410
ALTSCHUL ET AL., NUCLEIC ACIDS RES., vol. 25, 1997, pages 3389 - 3402
BELYAVSKY A. ET AL., NUCLEIC ACIDS RES., vol. 17, 1989, pages 2919 - 2932
BELYAVSKY, A. ET AL., NUCLEIC ACIDS RES., vol. 17, 1989, pages 2919 - 2932
BETTER ET AL., SCIENCE, vol. 240, 1988, pages 1041 - 1043
BETTER, M.; HORWITZ, A. H.: "Methods in Enzymology", vol. 178, 1989, ACADEMIC PRESS, INC., pages: 476 - 496
BETTER, M.; HORWITZ, A.H., METHODS ENZYMOL., vol. 178, 1989, pages 476 - 496
BIRD, R. E. ET AL., TIBTECH, vol. 9, 1991, pages 132 - 137
BIRD, R. E.; WALKER, B. W., TRENDS BIOTECHNOL., vol. 9, 1991, pages 132 - 137
CAMPBELL: "Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology", 1984, ELSEVIER SCIENCE PUBLISHERS
CHIRGWIN, J. M. ET AL., BIOCHEMISTRY, vol. 18, 1979, pages 5294 - 5299
CHOMCZYNSKI P.; SACCHI N. ANAL., BIOCHEM., vol. 162, 1987, pages 156 - 159
CHOMCZYNSKI, P. ET AL., ANAL. BIOCHEM., vol. 162, 1987, pages 156 - 159
CO, M. S. ET AL., JL IMMUNOL., vol. 152, 1994, pages 2968 - 2976
CO, M.S. ET AL., J. IMMUNOL., vol. 152, 1994, pages 2968 - 2976
CURRENT TOPICS IN MICROBIOLOGY AND IMMUNOLOGY, vol. 81, 1978, pages 1 - 7
DALBADIE-MCFARLAND, G. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 79, 1982, pages 6409 - 6413
DE ST. GROTH, S. F. ET AL., J. IMMUNOL. METHODS, vol. 35, 1980, pages 1 - 21
EBERT, K.M. ET AL., BIO/TECHNOLOGY, vol. 12, 1994, pages 699 - 702
FASEB J., vol. 6, 1992, pages 2422 - 2427
FG PLUTHERO: "Rapid purification of high-activity Taq DNA polymerase", NUCL. ACIDS. RES., vol. 21, 1993, pages 4850 - 4851
FROHMAN M. A. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 85, 1988, pages 8998 - 9002
FROHMAN, M. A. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 8998 - 9002
GALFRE, G. ET AL., NATURE, vol. 277, 1979, pages 131 - 133
GOTOH, T. ET AL., GENE, vol. 152, 1995, pages 271 - 275
GRANTHAM R. ET AL., NUCLEIC ACIDS RESEARCH, vol. 9, 1981, pages 43 - 74
GREEN, J. IMMUNOL. METHODS, vol. 231, no. 11-23, 1999
GRUGER ET AL., J. IMMUNOL., vol. 152, no. 5368, pages 1994
HOLLINGER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 6448
HUSTON, J. S. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 85, 1988, pages 5879 - 5883
J. EXP. MED., vol. 108, 1995, pages 945
J. IMMUNOL., vol. 123, 1979, pages 1548 - 1550
JULIAN, K.; C. MA ET AL., J. IMMUNOL., vol. 24, 1994, pages 131 - 138
KARLIN; ALTSCHUL, PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873 - 5877
KOHLER, G.; MILSTEIN, C., EUR., J. IMMUNOL., vol. 6, 1976, pages 511 - 519
KOHLER, G.; MILSTEIN, C., METHODS ENZYMOL., vol. 73, 1981, pages 3 - 46
KOHLER, G; MILSTEIN, C, NATURE, vol. 256, 1975, pages 495
KOSTELNY ET AL., J. IMMUNOL., vol. 148, no. 5, 1992, pages 1547 - 1553
KRAMER W; FRITZ H J, METHODS. ENZYMOL., vol. 154, 1987, pages 350 - 367
KRAMER, W. ET AL., NUCLEIC ACIDS RES., vol. 12, 1984, pages 9441 - 9456
KUNKEL, METHODS ENZYMOL., vol. 85, 1988, pages 2763 - 2766
KUNKEL, T A, PROC. NATL. ACAD. SCI. USA., vol. 82, 1985, pages 488 - 492
L. LUO ET AL.: "Gene expression profiles of laser-captured adjacent neuronal subtypes", NAT. MED., 1999, pages 117 - 122
LAMOYI, E., METHODS ENZYMOL., vol. 121, 1986, pages 652 - 663
LAMOYI, E., METHODS IN ENZYMOLOGY, vol. 121, 1989, pages 652 - 663
LEI S.P. ET AL., J. BACTERIOL., vol. 169, 1987, pages 4379
LEI, S. P. ET AL., J. BACTERIOL., vol. 169, 1987, pages 4379
MARGULIES, D. H. ET AL., CELL, vol. 8, 1976, pages 405 - 415
MARK, D. F. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 5662 - 5666
MCCAFFERTY ET AL., NATURE, vol. 348, 1990, pages 552 - 554
MILLSTEIN ET AL., NATURE, vol. 305, 1983, pages 537 - 539
MIZUSHIMA ET AL., NUCLEIC ACIDS RES., vol. 18, 1990, pages 5322
MULLIGAN ET AL., NATURE, vol. 277, 1979, pages 108
MULLIGANET, NATURE, vol. 277, no. 108, 1979
NUCLEIC ACIDS. RES., vol. 18, no. 17, 1990, pages 5322
PLUCKTHUN, A.; SKERRA, A., METHODS ENZYMOL., vol. 178, 1989, pages 497 - 515
PLUECKTHUN, A.; SKERRA, A.: "Methods in Enzymology", vol. 178, 1989, ACADEMIC PRESS, INC., pages: 476 - 496
PROC. NATL. ACAD. SCI. USA, vol. 60, 1968, pages 1275
PROC. NATL. ACAD. SCI. USA, vol. 77, 1980, pages 4216 - 4220
ROUSSEAUX ET AL., METHODS ENZYMOL., vol. 121, 1986, pages 663 - 669
ROUSSEAUX, J. ET AL., METHODS IN ENZYMOLOGY, vol. 121, 1989, pages 663 - 669
SATO, K. ET AL., CANCER RES., vol. 53, 1993, pages 851 - 856
See also references of EP1652923A4
SHULMAN, M. ET AL., NATURE, vol. 276, 1978, pages 269 - 270
SMITH ET AL., J. MOL. BIOL., vol. 147, 1981, pages 195 - 197
ST. GROTH ET AL., J. IMMUNOL. METHODS, vol. 35, no. 1-21, 1980
SURESH ET AL., METHODS IN ENZYMOLOGY, vol. 121, 1986, pages 210
SUSUMU, M. ET AL., NATURE, vol. 315, 1985, pages 592 - 594
TROWBRIDGE, I. S., J. EXP. MED., vol. 148, 1978, pages 313 - 323
TUTT ET AL., J. IMMUNOL., vol. 147, no. 60, pages 1991
VALLE ET AL., NATURE, vol. 291, 1981, pages 338 - 340
VANDAMME, A. M. ET AL., EUR. J. BIOCHEM., vol. 192, 1990, pages 767 - 775
VICKI GLASER, SPECTRUM BIOTECHNOLOGY APPLICATIONS, 1993
WANG, A. ET AL., SCIENCE, vol. 224, pages 1431 - 1433
WARD ET AL., NATURE, vol. 341, 1989, pages 544 - 546
WELLS; EEK, CHEM BIOL, vol. 7, no. 8, August 2000 (2000-08-01), pages R185 - 6
ZOLLER, M J; SMITH, M., METHODS ENZYMOL., vol. 100, 1983, pages 468 - 500
ZOLLER, M. J.; SMITH, M., NUCLEIC ACIDS RESEARCH, vol. 10, 1982, pages 6487 - 6500

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1733743A4 (en) * 2004-04-09 2007-06-27 Takeda Pharmaceutical PREVENTIVE / REMEDY AGAINST CANCER
WO2005097204A1 (ja) * 2004-04-09 2005-10-20 Takeda Pharmaceutical Company Limited 癌の予防・治療剤
EP1833996B1 (en) * 2005-01-06 2012-12-05 Genentech, Inc. Cancer prognostic methods
AU2006203884B2 (en) * 2005-01-06 2012-02-16 Genentech, Inc. Cancer prognostic, diagnostic and treatment methods
US8198025B2 (en) 2005-05-02 2012-06-12 Toray Industries, Inc. Method for diagnosing esophageal cancer
JP5219029B2 (ja) * 2005-05-02 2013-06-26 東レ株式会社 食道ガン及び食道ガン転移診断のための組成物及び方法
WO2007005635A3 (en) * 2005-07-01 2007-08-02 Us Gov Health & Human Serv Mitotic spindle protein aspm as a diagnostic marker for neoplasia and uses therefor
JP2008118915A (ja) * 2006-11-10 2008-05-29 Kazuto Nishio 胃癌高発現遺伝子特定による胃癌診断および創薬への利用
EP2095821A1 (en) * 2008-02-29 2009-09-02 Rheinische Friedrich-Wilhelms-Universität Bonn Anticancer agent
WO2009106624A1 (en) * 2008-02-29 2009-09-03 Rheinische Friedrich-Wilhelms Universität Anticancer agent
JP2009276153A (ja) * 2008-05-13 2009-11-26 Sumitomo Bakelite Co Ltd 胃癌の判定方法
JP2016106087A (ja) * 2010-06-04 2016-06-16 花王株式会社 新規ヒアルロン酸分解促進因子及びその阻害剤
JP2013539468A (ja) * 2010-08-27 2013-10-24 ステム セントリックス, インコーポレイテッド Notumタンパク質モジュレーターおよび使用法
JP2014501513A (ja) * 2010-11-24 2014-01-23 レクシコン ファーマシューティカルズ インコーポレイテッド Notumペクチンアセチルエステラーゼと結合する抗体
US11059907B2 (en) 2010-11-24 2021-07-13 Lexicon Pharmaceuticals, Inc. Antibodies that bind Notum Pectinacetylesterase
JP2014533247A (ja) * 2011-11-01 2014-12-11 バイオノミクス インコーポレイテッド 抗体および癌を治療する方法
JP2015503921A (ja) * 2012-01-09 2015-02-05 スージョウ マイクロダイアグ バイオメディスン カンパニー リミテッド 結腸直腸癌診断および予測のためのバイオマーカー
JP2015503920A (ja) * 2012-01-09 2015-02-05 スージョウ マイクロダイアグ バイオメディスン カンパニー リミテッド 乳癌の予測および診断のためのバイオマーカー
WO2024076781A1 (en) * 2022-10-08 2024-04-11 Taipei Medical University Polynucleotides for silencing transcript variant 1 of assembly factor for spindle microtubules and applications thereof

Also Published As

Publication number Publication date
JP2011015681A (ja) 2011-01-27
ATE528397T1 (de) 2011-10-15
US20080153104A1 (en) 2008-06-26
JPWO2005014818A1 (ja) 2006-10-05
EP1652923A4 (en) 2006-07-26
JP4643450B2 (ja) 2011-03-02
EP1652923A1 (en) 2006-05-03
EP1652923B1 (en) 2011-10-12
EP2311468A1 (en) 2011-04-20
EP2311468B1 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
WO2005014818A1 (ja) 癌高発現遺伝子
US9376475B2 (en) Gene overexpressed in cancer
US20110070614A1 (en) Fucose transporter
WO2001023556A1 (fr) Nouvelle proteine receptrice d'hemopoietine (nr12)
US20030175900A1 (en) Compositions and methods for the treatment of tumor
US20060019252A1 (en) Genes and polypeptides relating to hepatocellular or colorectal carcinoma
JP2011015694A (ja) トランスポーター遺伝子oatp−b、c、d、およびe
WO2001009316A1 (fr) Nouveaux genes codant la proteine kinase / proteine phosphatase
JP4353798B2 (ja) 肝細胞癌に関連する遺伝子およびタンパク質
JP2006217844A (ja) Dkk1の遺伝子、蛋白質及び抗体を用いた癌の診断・モニター方法及び治療方法
KR20090014979A (ko) 신장암 진단 조성물 및 키트
WO2002020770A1 (fr) Methode de criblage d'un agent antitumoral a l'aide d'une interaction entre une proteine arf et une proteine hk33
BR112020014931A2 (pt) Anticorpo, fragmento funcional ou sonda do mesmo contra antígenos tumorais
JP2006061108A (ja) GasderminBを標的とした癌診断および創薬
JP4590107B2 (ja) 新規胎児性遺伝子
JP6145657B2 (ja) 甲状腺髄様がん判定方法
JP4499926B2 (ja) 腫瘍抑制遺伝子
JP2005189228A (ja) 肺癌、食道癌、喉頭癌、咽頭癌、舌癌、胃癌、腎癌、大腸癌、子宮頸癌、脳腫瘍、膵癌、膀胱癌の診断及び治療方法
WO2001044470A1 (fr) Nouvelle helicase d'arn humain appelee helicaine
JP2004267003A (ja) ヒト白血球型抗原領域に存在する新規遺伝子
WO2001083738A1 (fr) Facteur de regulation de differenciation et de determination du sexe
JPWO2002065116A1 (ja) Arfタンパクとa10タンパクの相互作用を調節する薬剤のスクリーニング方法
KR20020073174A (ko) 더블유티1 상호작용 단백질 더블유티아이피

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513023

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004771625

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004771625

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10568471

Country of ref document: US