WO1992020373A1 - Heteroconjugate antibodies for treatment of hiv infection - Google Patents

Heteroconjugate antibodies for treatment of hiv infection Download PDF

Info

Publication number
WO1992020373A1
WO1992020373A1 PCT/US1992/003616 US9203616W WO9220373A1 WO 1992020373 A1 WO1992020373 A1 WO 1992020373A1 US 9203616 W US9203616 W US 9203616W WO 9220373 A1 WO9220373 A1 WO 9220373A1
Authority
WO
WIPO (PCT)
Prior art keywords
hiv
antibody
cells
cem
mn
Prior art date
Application number
PCT/US1992/003616
Other languages
French (fr)
Inventor
Paul J. Higgins
Barbara J. Potts
Original Assignee
Repligen Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US69977391A priority Critical
Priority to US699,773 priority
Application filed by Repligen Corporation filed Critical Repligen Corporation
Publication of WO1992020373A1 publication Critical patent/WO1992020373A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Abstract

The invention features a heteroconjugate antibody which includes two binding functionalities. The first binding function is directed to a peripheral blood effector cell antigen, preferably CD-3. The second functionality is directed to a specific domain of an aids virus coat protein, preferably the V3 loop sequence of the gp120 envelope from HIV MN or a variant thereof. Methods of therapy are also presented where 20 ng/ml of a mixed culture of HIV infected cells (effector/CEM-ss cells) have a 80-90 % decrease in reverse transcriptase activity compared to an identical culture with a 3:1 ratio of effector cell:CEM-ss.

Description

HETEROCONJUGATE ANTIBODIES FOR TREATMENT OF HIV INFECTION

Background of the Invention This invention relates to the treatment of Human Immunodeficiency Virus infection.

Human Immunodeficiency Virus (HIV) , the etiologic agent of Acquired Immunodeficiency Syndrome (AIDS) , is a retrovirus which infects certain immune system cells, including T4 lymphocytes and CD4+ cells of the monocyte/macrophage lineage. In the absence of effective treatment, the mortality rate for AIDS patients approaches 100% (Fauci, Science 239:617, 1988).

Well over 100 HIV variants have been identified. The amino acid sequence of the HIV envelope glycoprotein gpl20 is particularly variable; its amino acid sequence can vary by 20-25% from one strain to the next. In addition to strain to strain variability, there is a more subtle variation in genome sequence caused by the high error rate of reverse transcriptase. The misincorporation rate is high enough to introduce one error per genome per replication cycle. Consequently any particular viral isolate consists of a cohort of quasi- species. Further, the diversity and number of quasi- species apparently differs from one HIV variant to another. There is substantial evidence that these quasi- species evolve in vivo. For example, successive viral isolates from an infected individual reveal substantial temporal fluctuations in the proportion of various quasi- species (Meyehans, Cell 58:901, 1989). There is also evidence that neutralization-resistant HIV variants can arise through single-base changes in the viral sequence encoding gpl20 when HIV is grown in the presence of neutralizing antibodies (Reitz et al., Cell 54:57, 1988). Infected individuals initially mount a humoral and cellular immune response against HIV, and there is reason to believe that an infected individual's immune response may actually encourage viral spread and the emergence of more resistant variants (McCune et al.. Cell 64:351, 1991) .

Human monoclonal antibodies directed against HIV proteins have been produced by hybrido a formation and Epstein Barr Virus transformation (Banapour et al., J. Immunol . 139:4027, 1987; Amadoci et al., AIDS Res . and Human Retroviruεes 5:73, 1989).

More recently cytotoxic hybrid proteins composed of a cytotoxin fused to part of the CD4 receptor have been proposed as a way to destroy cells expressing HIV encoded proteins. This approach relies on the fact that the HIV envelope protein, gpl20, recognizes the CD4 receptor, which is present on T4 lymphocytes and certain cells of the monocyte/macrophage lineage. Thus, a soluble derivative of CD4 might be used to target a cytotoxin to HIV infected cells that express surface gpl20. Chaudhary et al. (Nature 335:369, 1988) found that administration of a CD4 -Pseudomonas exotoxin hybrid protein to a lymphocytic cell line chronically infected with HIV causes a decrease in overall protein synthesis. Till et al. (Science 242:1166, 1988) found that a CD4- ricin A fusion protein decreases DNA synthesis in cultures of chronically infected H9 cells. In a variation of this strategy. Capon et al. (Nature 337:529, 1989) designed a hybrid protein composed of soluble CD4 and the constant region of an antibody. This molecule is designed to direct immune system response to gpl20.

.Another molecule of this general type has been shown to activate complement (Traunecker et al. Nature 339:78, 1989) .

Heteroconjugate molecules consisting of two covalently joined antibodies or an antibody covalently joined to a cell- or virus-targeted protein have been proposed as a means by which to target cytotoxic cells to undesirable cells such as tumor cells and virally infected cells. Segal et al. (U.S. Patent No. 4,676,980) suggest the use of cross-linked hetero-antibodies to target immune system cells to unwanted or detrimental cells. Fanger et al. (PCT publication WO91/00360) have proposed such heteroconjugates for treatment of AIDS. In particular, Fanger et al. suggest the use of a high affinity Fey receptor-specific antibody fused to CD4 (or the CD4 binding domain of gpl20) for AIDS therapy. Fanger et al. also suggest the use of heteroantibodies consisting of an high affinity FCT receptor-specific antibody fused to an HIV-specific antibody such as anti- gpl20 antibody for AIDS therapy. Zarling et al. (EP Publication No. 03089.36) described heteroconjugate antibodies consisting of an antibody specific for an HIV antigen that is expressed on HIV infected cells cross¬ linked to a second antibody which is specific for an effector cell of the peripheral blood and which is capable of killing HIV infected cells.

Summary of the Invention In general, the invention features a heteroconjugate antibody which includes a first and a second portion joined together covalently, the first portion includes an antibody directed against an antigen present on the surface of an effector cell of the peripheral blood, the second antibody portion includes an antibody directed against a V3 loop sequence of the gpl20 envelope protein of HIV MN or a HIV MN viral variant expressed on the surface of HIV-infected cells, wherein the heteroconjugate antibody at an initial concentration of 20 ng/ml in a first mixed cell culture which includes effector cells and CEM-ss cells infected with HIV-MN decreases the reverse transcriptase activity of the first mixed culture cell by at least 80% compared to the reverse transcriptase activity of an otherwise identical second mixed cell culture which includes effector cells and the CEM-ss cells infected with HIV-MN, wherein the effector cells are in 3-fold excess over the CEM-ss cells in the first and second mixed cell cultures, the reverse transcriptase activity is measured ten days after infection, the heteroconjugate antibody and the effector cells are added to the CEM-ss cells in the first mixed cell culture 18 hours after infection, and the first and second cell cultures are infected with 100-1000 infectious units of HIV-MN.

In a preferred embodiment, the decrease in the reverse transcriptase activity of the first cell culture is greater than 90% compared to the reverse transcriptase activity of the second mixed cell culture.

In another preferred embodiment, the heteroconjugate antibody at an initial concentration of 200 ng/ml in a first mixed cell culture which includes effector cells and CEM-ss cells infected with an HIV strain other than HIV-MN decreases the reverse transcriptase activity of the first mixed culture cell by at least 50% compared to the reverse transcriptase activity of an otherwise identical second mixed cell culture which includes effector cells and said CEM-ss cells infected with the HIV strain other than HIV-MN, wherein the effector cells are in 3-fold excess over said CEM-ss cells in the first and second mixed cell cultures, the reverse transcriptase activity is measured ten days after infection, the heteroconjugate antibody and the effector cells are added to said CEM-ss cells in the first mixed cell culture 18 hours after infection, and the first and second cell cultures are infected with 100- 1000 infectious units of the HIV strain other than HIV- MN.

In yet another preferred embodiment, the heteroconjugate antibody binds to the V3 loop of an HIV strain other than HIV-MN.

In other preferred embodiments, the effector cell is chosen from the group consisting of cytotoxic T lymphocytes, neutrophils, monocytes/macrophages, and large granular lymphocytes; and the antigen present on the surface of an effector cell is CD3.

In a another preferred embodiment, the heteroconjugate antibody at an initial concentration of 20 ng/ml in a first mixed cell culture which includes effector cells and CEM-ss cells infected with HIV-IIIB decreases the reverse transcriptase activity of the first mixed culture cell by at least 80% compared to the reverse transcriptase activity of an otherwise identical second mixed cell culture which includes effector cells and the CEM-ss cells infected with HIV-IIIB, wherein the effector cells are in 3-fold excess over the CEM-ss cells in the first and second mixed cell cultures, the reverse transcriptase activity is measured ten days after infection, the heteroconjugate antibody and the effector cells are added to the CEM-ss cells in the first mixed cell culture 18 hours after infection, and the first and second cell cultures are infected with 100-1000 infectious units of HIV-IIIB.

In yet another preferred embodiment, the heteroconjugate antibody at an initial concentration of 20 ng/ml in three or more mixed cell cultures each of which includes effector cells and CEM-ss cells infected with one of the HIV strains: Alabama, Duke 6587-5, Duke 6587-7, Duke 7887-7, SF2, WMJ2, and IIIB, decreases the reverse transcriptase activity of each of the mixed cell culture by 80% compared to the reverse transcriptase activity of an otherwise identical mixed cell culture which includes effector cells and CEM-ss cells infected with the same strain of HIV, wherein the effector cells are in 3-fold excess over the CEM-ss cells in the first and second mixed cell cultures, the reverse transcriptase activity is measured ten days after infection, the heteroconjugate antibody and the effector cells are added to the CEM-ss cells in the first mixed cell culture 18 hours after infection, and the first and second cell cultures are infected with 100-1000 infectious units of the strain of HIV.

In a related aspect, the invention features a heteroconjugate antibody which includes a first and a second portion joined together covalently, the first portion includes an antibody directed against an antigen present on the surface of an effector cell of the peripheral blood, the second antibody portion includes an antibody directed against a V3 loop sequence of the gpl20 envelope protein of HIV MN or a HIV MN viral variant expressed on the surface of HIV-infected cells, wherein the heteroconjugate antibody at an initial concentration of 10 ng/ml in a first mixed cell culture which includes the effector cells and CEM-ss cells infected with HIV-MN decreases the reverse transcriptase activity of the first mixed culture cell by at least 80% compared to the reverse transcriptase activity of an otherwise identical second mixed cell culture which includes the effector cells and the CEM-ss cells infected with HIV-MN, wherein the effector cells are in 3-fold excess over the CEM-ss cells in the first and second mixed cell cultures, the reverse transcriptase activity is measured ten days after infection, the heteroconjugate antibody and the effector cells are added to the CEM-ss cells in the first mixed cell culture 18 hours after infection, and the first and second cell cultures are infected with 100-1000 infectious units of HIV-MN.

In a related aspect, the invention feature a heteroconjugate antibody which includes a first and a 5 second portion joined together covalently, the first portion includes an antibody directed against an antigen present on the surface of an effector cell of the peripheral blood, the second antibody portion includes an antibody directed against a V3 loop sequence of the gpl20

10 envelope protein of HIV MN or a HIV MN viral variant expressed on the surface of HIV-infected cells, wherein the heteroconjugate antibody at an initial concentration of 5 ng/ml in a first mixed cell culture which includes effector cells and CEM-ss cells infected with HIV-MN

I'D decreases the reverse transcriptase activity of the first mixed culture cell by at least 80% compared to the reverse transcriptase activity of an otherwise identical second mixed cell culture which includes effector cells and the CEM-ss cells infected with HIV-MN, wherein the

20 effector cells are in 3-fold excess over the CEM-ss cells in the first and second mixed cell cultures, the reverse transcriptase activity is measured ten days after infection, the heteroconjugate antibody and the effector cells are added to the CEM-ss cells in the first mixed 5 cell culture 18 hours after infection, and the first and second cell cultures are infected with 100-1000 infectious units of HIV-MN.

In another related aspect, the invention features a heteroconjugate antibody which includes a first and a 0 second portion joined together covalently, the first portion includes an antibody directed against an antigen present on the surface of an effector cell of the peripheral blood, the second antibody portion includes an antibody directed against a V3 loop sequence of the gpl20 5 envelope protein of HIV MN or a HIV MN viral variant expressed on the surface of HIV-infected cells, wherein the heteroconjugate antibody at an initial concentration of 1 ng/ml in a first mixed cell culture which includes effector cells and CEM-ss cells infected with HIV-MN decreases the reverse transcriptase activity of the first mixed culture cell by at least 80% compared to the reverse transcriptase activity of an otherwise identical second mixed cell culture which includes effector cells and the CEM-ss cells infected with HIV-MN, wherein the effector cells are in 3-fold excess over the CEM-ss cells in the first and second mixed cell cultures, the reverse transcriptase activity is measured ten days after infection, the heteroconjugate antibody and the effector cells are added to the CEM-ss cells in the first mixed cell culture 18 hours after infection, and the first and second cell cultures are infected with 100-1000 infectious units of HIV-MN.

In a related aspect, the invention features a heteroconjugate antibody which includes a first and a second portion joined together covalently, the first portion includes an antibody directed against an antigen present on the surface of an effector cell of the peripheral blood, the second antibody portion includes an antibody directed against the amino acid sequence GPGRAF. In a preferred embodiment, the heteroconjugate antibody at an initial concentration of 20 ng/ml in a first mixed cell culture which includes effector cells and CEM-ss cells infected with HIV-MN decreases the reverse transcriptase activity of the first mixed culture cell by at least 80% compared to the reverse transcriptase activity of an otherwise identical second mixed cell culture which includes cells and the CEM-ss cells infected with HIV-MN, wherein the effector cells are in 3-fold excess over the CEM-ss cells in the first and second mixed cell cultures, the reverse transcriptase activity is measured ten days after infection, the heteroconjugate antibody and the effector cells are added to the CEM-ss cells in the first mixed cell culture 18 hours after infection, and the first and second cell cultures are infected with 100-1000 infectious units of HIV-MN.

In a related aspect, the invention features a heteroconjugate antibody which includes a first and a second portion joined together covalently, the first portion includes an antibody directed against an antigen present on the surface of an effector cell of the peripheral blood, the second antibody portion includes an antibody directed against the amino acid sequence IXIGPGR, wherein X = any amino acid. In a preferred embodiment, the heteroconjugate antibody at an initial concentration of 20 ng/ml in a first mixed cell culture which includes effector cells and CEM-ss cells infected with HIV-MN decreases the reverse transcriptase activity of the first mixed culture cell by at least 80% compared to the reverse transcriptase activity of an otherwise identical second mixed cell culture which includes effector cells and the CEM-ss cells infected with HIV-MN, wherein the effector cells are in 3-fold excess over the CEM-ss cells in the first and second mixed cell cultures, the reverse transcriptase activity is measured ten days after infection, the heteroconjugate antibody and the effector cells are added to the CEM-ss cells in the first mixed cell culture 18 hours after infection, and the first and second cell cultures are infected with 100-1000 infectious units of HIV-MN.

In a related aspect, the invention features a heteroconjugate antibody which includes a first and a second portion joined together covalently, the first portion includes an antibody directed against an antigen present on the surface of an effector cell of the peripheral blood, the second antibody portion includes an antibody directed against the amino acid sequence QARILAVERY KDQQLLGIWGCSGKLIC. In a preferred embodiment, the heteroconjugate antibody at an initial concentration of 20 ng/ml in a first mixed cell culture which includes effector cells and CEM-ss cells infected with HIV-MN decreases the reverse transcriptase activity of the first mixed culture cell by at least 80% compared to the reverse transcriptase activity of an otherwise identical second mixed cell culture which includes effector cells and the CEM-ss cells infected with HIV-MN, wherein the effector cells are in 3-fold excess over the CEM-ss cells in the first and second mixed cell cultures, the reverse transcriptase activity is measured ten days after infection, the heteroconjugate antibody and the effector cells are added to the CEM-ss cells in the first mixed cell culture 18 hours after infection, and the first and second cell cultures are infected with 100-1000 infectious units of HIV-MN.

In other preferred embodiments, the effector cell is chosen from the group consisting of cytotoxic T lymphocytes, neutrophils, monoσytes/macrophages, and large granular lymphocytes; and the antigen present on the surface of an effector cell is CD3.

In another aspect, the invention features a pharmaceutically acceptable composition which includes a pharmaceutically effective amount of a heteroconjugate antibody described above.

In a related aspect, the invention features a method for treating a patient infected with HIV, the method includes administering to the patient the above- described pharmaceutically acceptable composition. In another aspect, the invention features an HIV- targeted effector cell which includes: (a) an effector cell expressing a cell surface antigen; and (b) an above- described heteroconjugate antibody. In a related aspect, the invention features a method for treating a patient infected with HIV; the method includes administering to the patient the above- described HIV-targeted effector cell.

The MN prototype virus is defined by a particular amino acid subsequence within the V3 loop region of the gpl20 envelope protein having positions Aj-A^K-R-K-R-I- H-I-G-P-G-R-A-F-Y-T-T-K. (Amino acid sequences are presented in the standard single-letter code throughout.) MN viral variants are variant which exhibit complete amino acid sequence homology at residues I-G-P-G-R, i.e., at positions A? through AX1, and at least 36% homology with the remaining 12 amino acids of the HIV-MN sequence given above. By "directed against" is meant that an antibody binds to the indicated antigen. The V3 loop of gpl20 is defined as the 36 amino acid region from amino acid 303 to 338, inclusive, according to the gpl20 numbering scheme of Ratner et al. (Nature 313:277, 1985).

The heteroconjugate antibodies of the invention are highly effective; even at low concentrations they are capable of nearly eliminating viral replication as judged by a reverse transcriptase assay. The preferred heteroconjugate antibodies are those which are effective against more than one strain. Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.

Detailed Description The drawings are first briefly described. Figure 1 is a graphical representation of the effect of a mixture of unconjugated OKT3 antibody and 59.1 antibody (filled diamonds) and OKT3/59.1 heteroconjugate antibody (open squares) on the reverse transcriptase activity of CEM-ss cells infected with HIV- IIIB in the presence of cytotoxic T-lymphocytes. Reverse transcriptase activity (cpm/10 μl) is presented as a function of the initial antibody concentration (ng/ml) in the cell culture. Figure 2 is a graphical representation of the effect of a mixture of unconjugated 0KT3 antibody and 59.1 antibody (filled diamonds) and OKT3/59.1 heteroconjugate antibody (open squares) on the reverse transcriptase activity of CEM-ss cells infected with HIV- MN in the presence of cytotoxic T-lymphocytes. Reverse transcriptase activity (cpm/10 μl) is presented as a function of the initial antibody concentration (ng/ml) in the cell culture.

Figure 3 is a graphical representation of the effect of a mixture of unconjugated 0KT3 antibody and 59.1 antibody (open circles) and OKT3/59.1 heteroconjugate antibody (filled circles) on the reverse transcriptase activity of CEM-ss cells infected with HIV- IIIB in the absence of cytotoxic T-lymphocytes. The reverse transcriptase activity of HIV-IIIB infected CEM- ss cells in the presence of cytotoxic lymphocytes only (filled triangle) ; HIV-IIIB infected CEM-ss cells alone (open triangle) ; and uninfected CEM-ss cells alone (filled square) is also indicated. Reverse transcriptase activity (cpm/10 μl) is presented as a function of the initial antibody concentration (ng/ml) in the cell culture (except for those cases in which no antibody was added) .

Figure 4 is a graphical representation of the effect of the ratio of cytotoxic T-lymphocytes to HIV-MN infected CEM-ss cells on reverse transcriptase activity in the presence of 1 μg/ml OKT3/59.1 heteroconjugate antibody. Reverse transcriptase activity (cpm/10 μl) is presented as a function of the cytotoxic lymphocyte to CEM-ss cells (log10 scale) .

Figure 5 is a set of graphs which illustrate the effect of cytotoxic T-lymphocytes and OKT3/59.1 heteroconjugate antibody (open squares) and a mixture of unconjugated OKT3 antibody and 59.1 antibody (filled triangles) on the reverse transcriptase activity of CEM- ss cells infected with HIV-MN (panel A) , HIV-Alabama (panel B) , HIV-Duke 7887-7 (panel C) , HIV-Duke 6587-5 (panel D) , HIV-Duke 6587-7 (panel E) , HIV-IIIB (panel F) , HIV-SF2 (panel G) , and HIV-WMJ2 (panel H) . In each case, a control is included where neither antibodies or cytotoxic T-lymphocytes were added (filled circles) . Reverse transcriptase activity (cpm/10 μl) is presented as a function of the number of days post-infection.

Figure 6 is a graphical representation of the effect of a mixture of conjugated 0KT3 antibody and 6C5 antibody (open circles) and OKT3/6C5 heteroconjugate antibody (filled circles) on the reverse transcriptase activity of HIV-IIIB infected CEM-ss cells. Reverse transcriptase activity (cpm/10 μl) is presented as a function of the initial antibody concentration (ng/ml) in the cell culture. Heteroconiuqate Antibodies for AIDS Therapy

The molecules of the invention are heteroconjugate antibodies produced by covalently attaching a first antibody which is directed against an antigen present on the surface of a cytotoxic immune effector cell capable of killing an HIV infected cell to a second antibody which is directed against an HIV antigen present on the surface of HIV infected cells. The heteroconjugate antibodies of the invention are highly potent. Even at relatively low concentrations, these heteroconjugate antibodies are capable of substantially reducing HIV activity in a mixed cell culture of HIV infected cells and effector cells. The most preferred heteroconjugate antibodies are those which are both highly potent and broadly reactive. Broadly reactive heteroconjugate antibodies are those which are effective against more than one strain of HIV. For example, a broadly reactive heteroconjugate antibody might be effective against HIV-MN and HIV-SF2 or HIV-MN and HIV-WMJ2, or HIV-MN and HIV-IIIB.

The portion of the heteroconjugate antibody which is directed against a cytotoxic immune effector cell capable of killing HIV infected cells recognizes an antigen present on the surface of cells such as: cytotoxic T-lymphocytes, monocytes/macrophages, large granular lymphocytes (including cells and NK cells) , and neutrophils. Preferably, the immune effector cell- directed antibody binds to an antigen on the surface of the effector cell in a manner which triggers cytolytic activity. For example, the antigen recognized can be the CD3 receptor or the CD16 (Fc) receptor. Less preferred are antibodies directed to receptors which require multiple signals to initiate cytolytic activity (e.g., the CD2 and CD28 receptors) .

The portion of the heteroconjugate antibody which is directed against an antigen present on the surface of HIV infected cells preferably recognizes: (1) an epitope within the V3 loop sequence of the gpl20 envelope protein of the MN prototype of HIV-1 (HIV-MN); (2) an epitope within the V3 loop sequence of the gpl20 envelope protein of a viral variant of the MN prototype of HIV-1; or (3) an epitope within the portion of gp41 between amino acids 584 to 611, inclusive. The V3 loop of gpl20 is the 36 amino acid region from amino acid 303 to 338, inclusive, according to the gpl20 numbering scheme of Ratner et al. (Nature 313:277, 1985) . The MN prototype of HIV-1 is defined by the following amino acid subsequence within the V3 loop of gpl20: K-R-K-R-I-H-I-G-P-G-R-A-F-Y-T-T-K (A1-A17) . MN viral variants are variants which exhibit complete amino acid homology at residues I-G-P-G-R, i.e., positions A7 through A11, and at least 36% homology with the remaining 12 amino acids of the MN sequence given above.

The above-described HIV-directed antibodies are good candidates for use in generating heteroconjugate antibodies which are highly potent. In some cases, however, the heteroconjugates formed will not be highly potent. Ultimately the usefulness of a particular HIV- directed antibody for production of a heteroconjugate antibody of the invention can only be assessed by producing a heteroconjugate antibody, for example by covalently linking the HIV-directed antibody to an anti- CD3 antibody, and measuring the potency of the heteroconjugate antibody in an appropriate assay. Once a particular HIV-directed antibody has been shown to be useful for generating a potent heteroconjugate antibody, it can be used to generate other heteroconjugate antibodies by covalently linking it to other effector cell antigen-directed antibodies.

As discussed above, the most preferred heteroconjugate antibodies are those which are broadly reactive as well as highly potent. HIV-directed antibodies which recognize: (1) an epitope having the sequence G-P-G-R-A-F; (2) an epitope having the sequence I-X-I-G-P-G-R, where X is any amino acid; or (3) an epitope within the portion of gp41 between amino acids 584 to 611 (according to the numbering scheme of Ratner et al., supra) , inclusive are likely to be useful for generating highly potent and broadly reactive heteroconjugate antibodies. This does not imply that antibodies recognizing other epitopes within the V3 loop of HIV-MN, the V3 loop of an HIV-MN viral variant, or gp41 cannot be used to produce a highly potent, broadly reactive heteroconjugate antibodies.

Described below are techniques for generating and screening HIV-directed antibodies useful for preparation of heteroconjugate antibodies, methods for the preparation of heteroconjugate antibodies, and methods for assessing the potency and breadth of reactivity of heteroconjugate antibodies. In order to generate broadly reactive heteroconjugate antibodies it is useful to select HIV-directed antibodies which recognize a broad range of HIV strains (i.e., antibodies which are not strain specific) . It is also useful to select antibodies which are directed against the amino acid sequence: G-P- G-R-A-F; or the amino acid sequence: I-X-I-G-P-G-R, where X is any amino acid; or an epitope within the portion of gp41 from amino acid 584 to amino acid 611. These antibodies can be identified using standard epitope mapping techniques as described below.

Generally, the steps for generating and selecting useful HIV-directed antibodies include: (1) generation of hybridomas and selection of hybridomas producing reactive antibodies; (2) selection of hybridomas producing antibodies capable of binding to cells expressing HIV envelope protein; (3) amplification and purification of selected monoclonal antibodies; (4) analysis of antibody reactivity using gpl20 V3 loop peptides or gp41 derived peptides; and (5) epitope mapping. As mentioned above not all of these steps are essential. It is possible to simply follow steps 1 through 3 and use the purified antibodies to prepare heteroconjugate antibodies whose potency and breadth of reactivity can be analyzed using the reverse transcriptase assay described herein below. To generate a heteroconjugate antibody of the invention, a purified HIV-directed antibody is covalently attached to an antibody directed against an immune effector cell. The potency and reactivity of heteroconjugate antibodies can be measured in a mixed cell culture of effector cells and HIV-infected cells using a reverse transcriptase assay.

Heteroconjugate antibodies may be formed using any convenient cross-linking method. Suitable cross-linking methods include: SPDP, SPDP and SMCC, and biotin-avidin. Segal et al. (U.S. Patent 4,676,980) describes a number of cross-linking techniques. Alternatively, the antibodies can be linked by the generation of bispecific antibodies via hybrid-hybridomas (Suresh et al.. Methods in Enzymology 121:210, 1896) or by genetic engineering. Preparation of HIV-directed Antibodies

Antibodies useful for the preparation of the heteroconjugate molecules of the invention may be generated and screened as described below. Methods for preparing and analyzing antibodies directed towards the V3 loop of HIV-MN of an HIV-MN viral variant are also described in U.S. Application No. 07/665,306, filed March 6, 1991, hereby incorporated by reference. Preparation of the Immunogen

One group of HIV-directed antibodies useful for production of heteroconjugate antibodies recognize sequences within the V3 loop of HIV-MN or an HIV-MN viral variant. Accordingly, the immunogen used to generate these antibodies can include: gpl60, gpl20, fragments of gpl20 or gpl60 which include all or part of the V3 loop, or synthetic peptides which include all or part of the V3 loop. In all cases the V3 loop sequences is that of HIV- MN or an HIV-MN viral variant. Preferred immunogens for generating V3 loop directed antibodies include the RP70 peptide formed into a closed loop (described below) .

The other group of HIV-directed antibodies useful for production of heteroconjugate antibodies recognize sequences within the region of gp41 spanning amino acids 584-611. The immunogens used to generate these antibodies can include: gplβo, gp41, and fragments of gplβo or gp41 which include all or part of the sequence lying between amino acids 584 and 611 of gp4l, i.e., Q- A-R-I-L-A-V-E-R-Y-L-K-D-Q-Q-L-L-G-I-W-G-C-S-G-K-L-I-C.

The immunizing peptide, polypeptide or protein may be in linear form or alternatively may contain the V3 loop formed into a closed loop by creation of a disulfide bond between cysteine residues at the termini of the V3 loop sequence. If the immunizing peptide contains more than one V3 loop, each may be separately formed into a loop through disulfide bonding.

Synthetic peptides containing the desired sequences can be synthesized by automated peptide synthesis using an automated peptide synthesizer. Intact recombinant gpl60 envelope polypeptide can be produced in insect cells using a baculovirus expression system and purified as described in Rusche et al., U.S. Application No. 091,481, filed August 31, 1987, assigned to the same assignee as the present invention, hereby incorporated by reference.

Synthetic peptides or protein fragments to be used as immunogens can be either unconjugated or conjugated to an immunogenic carrier, e.g. , keyhole limpet hemocyanin (KLH) or ovalbumin, using succinyl maleimidomethyl cyclohexanylcarboxylate (SMCC) as a conjugation agent (Yoshitake et al., J. Biochem. 92:1413, 1982), as follows.

Briefly, 1 mg of SMCC dissolved in 50 μl of dimethylformamide is added to 6 mg of carrier (at a concentration of 10-20 mg/ml in 0.1M NaP04, pH 6.5) and incubated at room temperature for 0.5 h. The solution is then passed through a Sephadex G-25 column to remove excess unreacted SMCC and 2 mg of peptide is added (suspended in a degassed solution of 0.1M NaP04, pH 8, lmM EDTA at a concentration of 10 mg/ml) . The solution is mixed by N, gas and incubated at 4°C overnight. The sample is then dialyzed in 6M urea, 0.1M NaP04, pH 7 until the precipitate dissolves. The sample is next eluted through a BioGel P-10 column equilibrated in 6M urea, 0.1M NaPO.. The voided protein is collected and dialyzed in distilled H_0.

The sequences of several peptides (RP142, RP70, RP342, RPlOO, RP102, RP108, RP123c, and RP174c) useful in immunogens are shown in Table 1. This list is not meant to be exhaustive; it merely lists a few of the peptides which may be used as immunogens.

Table 1; Examples of Peptides Useful as Immunogens

RP142 Y N K R K R I H I G P G R A F Y T T K N I I G (C) RP342 I H I G P G R A F Y T

RP70 I N C T R P N Y N K R K R I H I G P G R A F Y T T K N

I I G T I R Q A H C N I S RPlOO (S G G) T R K G Z H I G P G R A I Y (G G S C)

RP102 (S G G) T R K S I S I G P G R A F (G G S C) RP108 (S G G) H I G P G R A F Y A T G (G G S C)

RP123C (C) H I G P G R A F (C)

RP135 (IIIB) N N T R K S I R I Q R G P G R A F V T I G K I G (C) RP174C (C) N N T R K S I R I Q R G P G R A F V T I G K I G

(C) RP339 (RF) I T K G P G R V I Y (C)

Note: Amino acids in parentheses are not in the natural sequence of the indicated isolate

Peptides RP70, RP123C, and RP174c can be formed into closed loops by creation of a disulfide bond between the two cysteine residues near the ends of the amino acid sequence. A method for creating such a bond is described in. Zhang et al. (Biochemistry 27:3785, 1988). The peptides were prepared for immunization by emulsification in complete Freund's adjuvant according to standard techniques. (CFA, Difco Labs, Grand Island, NY) . Generation of HIV-Directed Antibodies HIV-directed antibodies were prepared by intraperitoneal immunization of mouse strains (Balb/c, C57BL/6, A.SW, B10.BR, or BIO.A, Jackson Labs., Bar Harbor, ME) with 10-50 μg per mouse of circularized RP70 (Table 1) or recombinant gpl60. The mice were given booster immunizations of the immunogen, either in an emulsification of incomplete Freund's adjuvant or in soluble form, two to three times at two to four week intervals following the initial immunization. Mice were bled and the sera assayed for the presence of antibodies reactive with the immunogen. Mice showing a strong serological response were boosted and, 3-5 days later, spleen cells from these mice were fused with NS-1 (A.T.C.C. No. TIB18) , SP2-0 (A.T.C.C. No. CRL8287, CRL8006) , or P3.X63.AG8.653 myeloma cells incapable of secreting both heavy and light immunoglobulin chains

(Kearney et al., J. Immunol . 123:1548, 1979) by standard procedures based on the method of Kohler and Milstein, (Nature 256:495, 1975).

Supernatants from hybridomas which appeared 6-21 days after fusion were screened for production of antibodies by an ELISA screening assay, as follows. The RP70 peptide was used to screen RP70 generated hybridomas, and a peptide whose amino acid sequence is identical to that of residues 567-647 of gp41, was used to screen gpl60 generated hybridomas.

Each well of a 96-well Costar flat-bottom microtiter plate was coated with the peptide by placing a 50 μl aliquot of a PBS solution containing the peptide at a final concentration of 0.1-10 μg/ml in each well. The peptide solution was aspirated and replaced with PBS + 0.5% BSA. Following incubation, the wells were aspirated, washed, and 50 μl of hybridoma supernatant was added. Following incubation, the wells were washed 3 times with PBS, and then incubated with 50 μl of an appropriate dilution of goat anti-mouse immunoglobulin conjugated with horseradish peroxidase (HRP, Zymed Laboratories, San Francisco, CA) . The wells were washed again 3 times with PBS and 50 μl of ImM .ABTS (2,2 azino- bis (3-ethylbenzthiazoline-6-sulfonic acid) in 0.1M Na- Citrate, pH 4.2, to which a 1:1000 dilution of 30% H202 had been added) , the substrate for HRP, was added to detect bound antibody. HRP activity was monitored by measuring the absorbance at 410nm.

Hybridomas that test positive by the ELISA method can be tested for their ability to bind to cells which express the HIV envelope protein. In one such assay recombinant vaccinia virus expressing a the env gene of a particular HIV strain are used to infect cells of the CD4+ human T-lymphoma line, CEM-ss (AIDS Research and Reference Reagent Program, Rockville, MD, catalog #776) . Hybridoma supernatant (or purified antibodies) are incubated with the infected cells, and antibody binding is detected by indirect immune florescence using a secondary antibody and a florescence activated cell sorter. As a control, binding to otherwise identical cells which do not express an HIV env gene is measured. Hybridomas producing antibodies which bind to env expressing cells (but not to non-expressing cells) are then selected for further characterization. Cells expressing the env gene of any HIV strain may be prepared as described below.

In some cases (for neutralizing antibodies) an assay for inhibition of syncytia formation can be used to assess HIV-directed antibodies. In this assay the antibody is added to a mixture of HIV-infected and uninfected cells and giant cell formation is monitored. This assay is described in detail in U.S. Application No. 07/665,306, filed March 6, 1991, hereby incorporated by reference. Preparation of HIV env Expressing Cells Using a Recombinant Vaccinia Virus

An assay for binding to cells expressing an HIV env gene can employ cells infected with a vaccinia virus expressing an HIV env gene rather than actual HIV infected cells. Construction of a recombinant vaccinia virus capable of expressing the full-length HIV envelope gene from a vaccinia virus promoter is described in EP Publication No. 0 243 029, hereby incorporated by reference. The recombinant vector pSC25, containing the HIV env gene and the laσZ gene of E. coli expressed from a second vaccinia virus promoter, and flanked by vaccinia viral sequences which together encode thymidine kinase (TK) , was used to produce the recombinant virus.

A recombinant vector that contains DNA encoding an envelope gene having the specificity of the HIV-MN variant was prepared by removing a 570 bp Bglll fragment (encoding 180 amino acids) from the HIV-III-, env gene which spans the region of the VS loop in pSC25, and replacing it with the analogous Bglll fragment from the HIV-MN env gene. The resulting plasmid, pSCR2502, contained a hybrid envelope gene which encoded an envelope protein having the principal neutralizing domain of the MN virus and the remainder of the env gene sequence from the HIV-III D- envelope. A smaller region of the HIV-MN gpl60 protein can be used in place of the 180 amino acid replacement just described; e.g., DNA encoding the 36 amino acid V3 loop from any HIV strain can be inserted into the envelope- encoding DNA in place of the corresponding IIIβ DNA sequence. Alternatively, a recombinant could be used which contains the complete HIV-MN env gene. Multiple HIV envelope expressing strains are useful for assessing the specificity of an antibody.

The recombinant vector pSCR2502 was transfected into CV-1 host cells that had been pre-infected with vaccinia virus containing an intact TK gene. The HIV envelope gene was integrated into the viral DNA by homologous recombination between the TK sequences on the vector and the TK sequences within the viral genome. Recombinants containing the HIV envelope gene were selected by infection of TK- cells and plating on media containing bromodeoxyuridine (BUdR) and X-gal. BUdR is toxic to TK+ cells and thus selects for TK" recombinants; X-gal is a chromogenic substrate cleaved by the product of the lacZ gene which results in the production of blue plaques where the lacZ gene is expressed and further identifies the recombinant virus which also contains the HIV-env gene. Antibody Purification and Amplification Hybridomas that tested positive for peptide binding in the ELISA assay were subcloned by the limiting dilution method. Hybridoma cells and irradiated splenocytes from nonimmunized syngeneic mice (final concentration 5 cells/ml and 2.5 x 10 cells/ml, respectively) were mixed and 200 μl of the mixed suspension were plated in microtiter wells to give 1 hybridoma cell per well. Subclones which appeared 7-14 days later were assayed again by the ELISA procedure described above. Representative positive subclones were subcloned a second time.

The isotypes of the antibodies were determined by the ELISA method using goat anti-mouse-HRP preparations which corresponded to each of the five major mouse immunoglobulin isotypes (IgM, IgGl, lgG2A, IgG2B and IgG3). Purified antibodies were prepared by injecting hybridoma subclones that repeatedly tested positive by ELISA and syncytium inhibition assays intraperitoneally into pristane-primed syngeneic mice. The ascites which developed were recovered two to three weeks after injection and the monoclonal antibodies were purified as follows, using procedures which were dependent on the isotype of the antibody. Following elution, all IgG antibodies were dialyzed against PBS. IgM antibodies were purified by 50% NH-SO. precipitation of ascites fluid from mice injected with the corresponding hybridoma cells, and then dialysis of the precipitate against 4X PBS. The dialyzed antibody was then passed over an Ultrogel A-6 column (Biotechnics, Villeneuve-La-Garenne, France) pre- equilibrated with 4X PBS. The antibody-containing fraction was identified using ELISA.

Ascites fluid containing IgGl antibodies was diluted 4-fold in 0.1M Tris-HCl, 3M NaCl, pH 8.9, and isolated by passage through a Protein A-Sepharose affinity column equilibrated with the same Tris-NaCl buffer. The antibody was eluted using 0.1M Na-Citrate, pH 6.0.

Ascites fluid containing IgG2 antibodies was diluted two-fold in PBS, and then bound to a Protein-A- Sepharose affinity column equilibrated with PBS. It was then eluted from the column with 0.15M NaCl, 0.1M acetic acid, pH 3.0. Following elution, the antibody was immediately neutralized by the addition of 1M Na-HCO .

* 3 Ascites fluid containing IgG3 antibodies was diluted 4-fold in 0.1M Tris-HCl, 3M NaCl, pH 8.9, passed over a Protein-A-Sepharose affinity column, and antibody was eluted from the Protein A column with 0.15M NaCl, 0.1M acetic acid. Alternatively, all IgG subclasses can be purified by the following procedure. Ascites fluid is diluted 2- fold in 0.1M Tris-HCl, 3M NaCl pH 8.9, passed over Protein A Sepharose affinity column, and eluted with 0.15M NaCl, 0.1M acetic acid, pH 3.0. Determination of Antibody Specificity

Assays described below can be used for determination of the strain specificity of HIV-directed antibodies and to map the epitope recognized by HIV- directed antibodies. Some or all of these assays may be used to select HIV-directed antibodies for production of heteroconjugate antibodies. The assay for binding to cells expressing an HIV env gene described above can also be used to assess antibody specificity. The epitope recognized by the V3-directed antibodies can be mapped using standard ELISA assays and competitive ELISA assays as described below. Peptides which are useful for ELISA assays include: (1) a series of 24 or 25-mers representing the V3 loop sequences from a variety of HIV variants (Table 2) ; and (2) the MN substitution series, which includes a series of 12-mers corresponding to the MN V3 loop tip sequence (C)-K-R-I-H-I-G-P-G-R-A-F-Y-T-T- (C) , each having an alanine residue substituted for one of the amino acids starting at the first arginine (R) residue and proceeding to the tyrosine (Y) residue. In the substitution series a glycine was substituted for the naturally occurring alanine. Antibody recognition of an epitope contained within the MN sequence is revealed by loss of binding of the antibody to an alanine-substituted peptide, the alanine substitution having disrupted the binding interaction.

Competitive ELISA assays were performed as for standard ELISA assays with the following modifications. Prior to applying the antibody to the plate, the antibody preparation is incubated with a test peptide from the groups listed above at concentrations ranging from 10μM to 0.0045μM. If the test peptide competes with the immobilized immunogen for binding to the antibody, the ELISA will reveal little or no binding of the antibody to the plate.

The epitope recognized by gp41-directed antibodies can be mapped in a similar manner using an alanine substitution series based on the sequence of all or part of gp41. It is also possible to use peptides whose sequence corresponds to a portion of gp41. V3 Loop-Directed Antibodies

Described below are two antibodies which recognizes sequences within the V3 loop of HIV-MN gpl20 and which can be used to generate heteroconjugate antibodies.

Hybridomas F59 and F83 were generated from immunization of BA B/C mice with the closed loop immunogen RP70 (Table 1) . .Antibodies, designated F59/P5B3 (59.1), and F83/P6F12 (83.1) were identified as antibodies which are not strain specific. Alanine- εubstituted peptides that were capable of competing with RP70 for binding to the 59.1 antibody did not contain alanine substitutions within the G-P-G-R-A-F sequence. Similarly, peptides that contained the G-P-G-R-A-F sequence were able to compete with RP70 for binding to the 59.1 antibody, while those that did not contain this sequence (i.e., RP129 and RP175) were not able to compete. These results indicate that the 59.1 antibody recognizes the G-P-G-R-A-F epitope. This sequence is present in a wide range of HIV variants. The strain specificity of the 59.1 antibody was analyzed using the above-described techniques. These assays indicated that 59.1 recognizes the V3 loop of HIV-MN, HIV-SF2, HIV-WMJ2 and HIV-IIIB. ELISA assays demonstrated that the 83.1 antibody recognizes the I-X-I-G-P-G-R epitope (where X is any amino acid). The strain specificity of the 83.1 antibody was analyzed using the above-described techniques. These assays indicated that 83.1 recognizes the V3 loop of HIV- MN, HIV-Alabama, HIV-SF2, HIV-WMJ2, and HIV-Duke 7887-7.

Thus, we have identified and characterized two antibodies which recognize a number of HIV strains. One 83.1 recognizes the epitope I-X-I-G-P-G-R (where X is any amino acid. Another, 59.1, recognizes the epitope GPGRAF. THe 59.1 antibody was used to generate a heteroconjugate antibody using the method of Scott et al. (J. Immunology 140:8, 1988). gp41-Directed Antibodies Recombinant gpl60 was used to generate monoclonal antibodies essentially as described above. ELISA assays demonstrated that one of these antibodies, 6C5, recognizes the portion of gp41 from amino acids 584 to 611. This portion of gp41 does not vary significantly from one HIV strain to another. Accordingly antibodies directed against this region are not expected to be strain specific. This antibody was used to generate and purify heteroconjugate antibodies using the method of Scott et al. (J. Immunology 140:8, 1988). OKT3/59.1 and OKT3/6C5 Heteroconiugate Antibodies

The experiments described below illustrate the effect of two heteroconjugate antibodies, OKT3/59.1 and OKT3/6C5, on viral replication in CEM-ss cells (American Type Culture Collection, Bethesda, MD: Accession No. CCL119) infected with various strains of HIV. OKT3/59.1 heteroconjugate antibody was produced by covalently cross-linking an anti-CD3 monoclonal antibody, 0KT3, to a second monoclonal antibody, 59.1, directed against an epitope within the V3 domain of the gpl20 subunit of HIV- MN. OKT3/6C5 heteroconjugate antibody was produced by covalently cross-linking OKT3, to a monoclonal antibody, 6C5, directed against a conserved epitope within residues 584-611 of the gp41 subunit of HIV (numbering according to Ratner et al. , Nature 313:277, 1985). CD3 is a receptor closely associated with the T cell receptor for antigen (TCR) . When the infected cells are grown in the presence of cytotoxic T-lymphocytes, which express the CD3 receptor, these heteroconjugate antibodies of the invention dramatically decrease viral replication as measured by viral reverse transcriptase activity. Because reverse transcriptase activity is a sensitive measure of HIV activity, these results indicate that the number of virally infected cells is sharply decreased. Without being bound to a particular theory, it appears that the heteroconjugate antibodies are promoting killing of infected cells by linking T lymphocytes to infected cells. Generation of CTL The CTL line (1F8) used for testing the activity of heteroconjugate antibodies was prepared by a modification of the method of Scott et al. (J". Immunology 140:8, 1988). Briefly, donor PBL were incubated in bulk culture with an allogenic EBV-transformed lymphoblastoid cell line (stimulator cells) for 7 days in RPMI 1640 medium supplemented with 20% FBS (Gibco/BRL, Grand Island, NY) , supernatant derived from PHA-stimulated PBL, and 100 U/ml of recombinant interleukin-2. The cells were then cloned by limiting dilution (1 cell/well) in U-bottom trays. Irradiated autologous PBL and stimulator cells were used as feeders. The clones were screened for CTL activity (assessed by lysis of stimulator cells) and NK activity (lysis of K562 cells; CCL 243, American Type Culture Collection, Bethesda, MD) . Clone 1F8 possessing CTL activity and not NK activity was selected.

OKT3/59.1 Decreases Viral Replication as Measured by Reverse Transcriptase Activity in HIV-MN and HIV-IIIB Infected Cells

Unless otherwise noted, CEM-ss cells (15,000 cells/well in a 96 well plate) were infected with 64 infectious units (IU) of HIV-IIIB or HIV-MN. At 18 hr post-infection, effector cells (1F8 cells 45,000/well) along with varying concentrations of either OKT3/59.1 heteroconjugate or an equivalent amount of the unconjugated antibodies were added to the infected CEM- ss cells. The CTL were grown in RPMI 1640 with 10% FBS; Gibco/BRL) , and were washed with fresh medium prior to addition of antibodies. After 7 days cell-free culture supernatants were harvested and assayed for reverse transcriptase activity by the method of Willey et al. (J. Virol . 62:139, 1988).

Referring to Figs, l and 2, OKT3/59.1 heteroconjugate (filled diamonds) at 0.5 ng/ml essentially eliminated reverse transcriptase activity in CEM-ss cells infected with either HIV-IIIB or HIV-MN. A mixture of unconjugated OKT3 antibody and 59.1 antibody (open squares) had no effect on the reverse transcriptase activity even at 2,000 ng/ml.

Referring to Fig. 3, a separate experiment demonstrated that 0KT3/59.1 heteroconjugate has no effect on reverse transcriptase activity in the absence of CTL cells (filled circles) . Similarly, CTL in absence of OKT3/59.1 heteroconjugate (filled triangle) have no substantial effect on the reverse transcriptase activity of HIV-IIIB infected cells. Unconjugated antibodies in the absence of CTL (open circles) and CTL alone (open triangle) have no substantial effect on the reverse transcriptase activity of infected cells. Uninfected cells (filled square) have no detectable reverse transcriptase activity. In all cases CTL and/or antibodies were added 18 hr post-infection.

The period of HIV infection prior to the addition of antibody and CTL was varied to determine whether longer periods of viral replication and thus increased viral spread affects the efficacy of the heteroconjugate molecule. CEM-ss cells were incubated with HIV-IIIB or HIV-MN (64 IU) for 6, 18, 48 or 72 hours prior to the addition of antibody and CTL. Reverse transcriptase activity was measured 7 days post-infection. When infection proceeded for 6, 18 or 48 hours prior to the addition of 0KT3/59.1 heteroconjugate and CTL, 0.5 ng/ml of heteroconjugate was sufficient to completely eliminate reverse transcriptase activity. Under the same conditions, a mixture of unconjugated 0KT3 antibody and 59.1 antibody at more than 2,000 ng/ml was required to eliminate reverse transcriptase activity. If infection was allowed to proceed for 72 hours prior to addition of antibody and CTL, 1 ng/ml OKT3/59.1 was required to abolish reverse transcriptase activity. At this time point unconjugated antibody at more than 2,000 ng/ml was required to eliminate reverse transcriptase activity.

The in vitro potency of OKT3/59.1 heteroconjugate was further characterized by an experiment in which the concentration of antibody was held constant, but the ratio of CTL to CEM-ss cells was varied. In this experiment the concentration of OKT3/59.1 heteroconjugate (1 μg/ml), the number of CEM-ss cells (15,000/well) and the infectious dose (64 IU) of HIV-IIIB or HIV-MN were held constant, and the number of CTL added to the cultures was varied. CTL and/or heteroconjugate antibody were added 18 hr post-infection and reverse transcriptase activity was measured 7 days post infection. Referring to Fig. 4, reverse transcriptase activity was completely eliminated at a CTL:CEM-ss ratio of 0.1:1 and was partially eliminated ( >_ 60%) at CTL:CEM-ss ratios as low as .006:1. This result demonstrates that OKT3/59.1 heteroconjugate is effective even when the number of target cells (CEM-ss) is significantly larger than the number of effector cells, a condition comparable to that observed in vivo. OKT3/59.1 is Effective Against Many HIV Strains

To test whether the OKT3/59.1 heteroconjugate is effective against a variety of HIV strains, CEM-ss cells (150,000/well in 24 well plates) infected with 100-1000 IU of HIV. At the time of infection a 3-fold excess of CTL (450,000/well) and 1 μg/ml of OKT3/59.1 heteroconjugate (or 1 μg/ml of a mixture of monomeric antibodies) were added to the culture. Cultures were split 3 times per week and culture supernatants were collected at four or five day intervals for assay of reverse transcriptase activity. After the initial addition of antibody no further antibody was added. Thus splitting the culture decreases the antibody concentration and the absolute number of target and effector cells. As a control, CEM-ss were cultured with virus only. The HIV isolates tested and their V3 sequences are listed in Table 2.

Table 2: V3 Loop Sequences

Isolate V3 Sequence MN K R K R I H I G P G R A F Y T T K

Alabama - K S _ -. _ _ _ _ H R

Duke 6587-5 V - N H

SF2 T S - Y H G WMJ2 V - R S L S R - R E

IIIB K S I Q R V - I G

DUKE 6587-7 T G I - A - G

DUKE 7887-7 T S R G - R I L A - E In this table a "-" indicates that the amino acid at that position is the same as in MN. The conserved GPGRAF motif in underlined

Referring to Fig. 6, compared to CEM-ss without added antibody or CTL (filled circles), 0KT3/59.1 (unfilled squares) inhibited reverse transcriptase activity more than 95% in all cases in which the HIV isolate has the GPGRAF sequence (MN, Alabama, Duke 6587- 5, IIIB, SF2, and WMJ2; panels A, B, D, F, G, and H respectively) . Two isolates, Duke 6587-7 (panel E) and Duke 7887-7 (panel C) having a GPGRAI motif were tested, and one (Duke 6587-7) was inhibited. A mixture of unconjugated OKT3 and 59.1 (filled triangles) had no effect. OKT3/6C5 Heteroconiugate Inhibits Reverse Transcriptase Activity of Infected Cells

OKT3/6C5 heteroconjugate was tested for its ability to inhibit reverse transcriptase activity of HIV- IIIB infected CEM-ss. Briefly, CEM-ss (15,000/well in a 96 well plate) were exposed to 64 IU of HIV-IIIB. After 18 hrs., CTL (45,000/well) and OKT3/6C5 heteroconjugate at various concentrations were added. Reverse transcriptase activity was measured 7 days later as described above. Referring to Fig. 6, OKT3/6C5 heteroconjugate (open circles) essentially eliminated reverse transcriptase activity at concentrations as low as 0.5 ng/ml. In contrast, a mixture unconjugated OKT3 and 6C5 had no significant effect on reverse transcriptase activity.

OKT3/59.1 and OKT3/6C5 Are Cytotoxic in the Presence of C£L

To test the cytotoxic activity of heteroconjugate antibodies, we initially performed 51Cr release assays in a model system using recombinant vaccinia virus-infected CV1 cells. Recombinant vaccinia virus which express either the HIV-IIIB env gene (VPE16) or HIV-MN (VMN) env gene were used to infect CV1 cells. A recombinant vaccinia virus which does not express an HIV env gene (VSC8) was used as a negative control. Mixed cell cultures were set up essentially as described for the reverse transcriptase assays. 1F8 cells were used as effector cells and were not by themselves cytotoxic to CV1 cells or vaccinia virus-infected CV1 cells.

Referring to Table 3, OKT3/59.1 heteroconjugate at 10 μg/ml lysed 58% of the VPE16 infected CV1 cells and 62% of the VMN infected CVl cells. Lyses of uninfected cells was very low. Cell lyses was similarly low when mono eric antibodies were added (data not shown) . That the maximum lysis using OKT3/59.1 was 60% as opposed to 100% is probably the result of incomplete infection of CVl cells by the vaccinia virus (Syncytia formation assays with limiting dilutions of CVl cells indicated that approximately 50-60% of the cells expressing gpl60) . Heteroconjugates formed using 1C1 or 7C6, two antibodies which recognize epitopes at the carboxyl-terminus ofgpl20 and which bind to cells expressing HIV env (as assessed by FACS) , were relatively ineffective in lysing cells infected with vaccinia virus expressing either HIV-MN or HIV-IIIB env protein. Apparently cell surface binding, although necessary, is not a sufficient characteristic by which to determine whether any given antibody can generate a cytotoxic heteroconjugate antibody.

Table 3: Cell Lysis by Heteroconjugate .Antibodies

Percentage Cell Lysis Heteroconiugate CV1-VSC 8CV1-VPE1 CVl-VMN OKT3/59.1 6 58 62

OKT3/7C6 9 17 N.D.

OKT3/1C1 1 18 N.D.

Assay of Heteroconiugate Potency The assay described below is used to determine the potency of the heteroconjugate antibodies of the invention. By using a variety of HIV strains the breadth of reactivity of a given heteroconjugate antibody may also be determined. In order to accurately determine the potency of the heteroconjugate antibodies of the invention it is important to measure the effect of the heteroconjugate antibody on HIV infected cells under carefully controlled conditions. The preferred assay is described below. CEM-ss cells (150,000 cells/well in 24 well microtiter plates, 2 ml wells) are infected with 100- 1000 infectious units (IU) of the desired HIV strain. At 18 hr post-infection, 450,000 effector cells are added along with enough heteroconjugate antibody to make the desired initial heteroconjugate antibody concentration. The cells are grown under standard conditions and are split every 3 days. No additional heteroconjugate antibody is added, thus the heteroconjugate antibody concentration is halved each time the culture is split. A control culture is set up and grown under exactly the same conditions but without heteroconjugate antibody. The reverse transcriptase activity of both cultures is measured 10 days post infection using the method of

Willey et al. (J. Virology 62:139, 1988). For HIV stains which take longer than 14 days post-infection to reach peak virus production, reverse transcriptase activity should not be measured at 10 days post-infection. Instead the reverse transcriptase activity should be measured at a time which is close to that of maximum virus production.

The infectious units are determined according to the Karber method. Because viral titer can decrease during storage, it is important that the viral stock be freshly titered. Viral stocks should be carefully prepared so that the number of defective viral particles is low. For example, the multiplicity of infection for preparing viral stocks should be 0.001, cells should be grown under conditions which allow logarithmic cell growth, and virus should be collected at the peak of virus production (as determined by maximal reverse transcriptase activity or p24 expression) . Engineered Heteroconiugate Antibodies Since, for the most part, monoclonal antibodies are produced in species other than humans, they are often immunogenic to humans. In order to successfully use heteroconjugate antibodies in the treatment of humans, it may be necessary to create chimeric antibody molecules wherein the antigen binding portion (the variable region) is derived from one species, and the portion involved with providing structural stability and other biological functions (the constant region) is derived from a human antibody. Methods for producing chimeric antibodies in which the variable domain is derived from one species and the constant domain is derived from a second species are well known to those skilled in the art. See, for example, Neuberger et al. , WO Publication No. 86/01533, priority September 3, 1984; Morrison et al, EP Publication No. 0,173,494, priority August 27, 1984. An alternative method, in which an antibody is produced by replacing only the complementarity determining regions (CDRs) of the variable region with the CDRs from an immunoglobulin of the desired antigenic specificity, is described by Winter (GB Publication No. 2,188,638, priority March 27, 1986). Murine monoclonals can be made compatible with human therapeutic use by producing an antibody containing a human Fc portion (Morrison, Science 229:1202, 1985). Single polypeptide chain antibodies are also more easily produced by recombinant means than are conventional antibodies. Ladner et al. (U.S. Patent No. 4,946,778) describes methods for producing single polypeptide chain antibodies and these methods may be adapted to produce heteroconjugate antibodies. Established procedures would allow construction, expression, and purification of such a hybrid monoclonal antibody. Quadromas can be used to generate bispecific antibodies (Reading et al. , U.S Patent Nos. 4,474,893 and 4,714,681) . Use

The antibody of the invention is administered parenterally, either via the intravenous or intramuscular route. A typical treatment regimen would comprise administration of an effective amount of antibody administered over between about one week and about 6 months. The number of treatments required to control a patient's disease may vary from individual to individual, depending upon the severity and stage of the illness and the individual characteristics of each patient being treated. The total dose required for each treatment may be administered by multiple doses or in a single dose. The human monoclonal antibody may be administered alone or in conjunction with other HIV treatments, such as AZT, in order to control a patient's disease. Pharmaceutical compositions of heteroconjugate antibodies are produced according to the intended mode of administration and may include: liposomes, solutions, suspensions and microparticles.

In some circumstances it may be desirable to administer the heteroconjugate antibody along with the appropriate effector cell (Nitta et al., The Lancet 335:368, 1990). For example, peripheral blood lymphocytes (PBL) may be collected from an individual in need of treatment for HIV infection (or a compatible donor) and incubated with a heteroconjugate antibody prior to reinfusion of the cells. In some cases the PBL may be expanded in culture (Rosenberg et al. , Science 233:1318, 1986). The PBL may also be incubated with interieukins, interferons, or other immunomodulators. In addition the cells may be incubated with molecules such as receptor specific antibodies which will stimulate the cytolytic activity of the effector cells (Scott et al.. Cellular Immunology 114:370, 1988).

What is claimed is:

SEQUENCE LISTING (1) GENERAL INFORMATION:

(i) APPLICANT: Repligen Corporation

(ii) TITLE OF INVENTION: HETEROCONJUGATE ANTIBODIES FOR TREATMENT OF HIV INFECTION

(iii) NUMBER OF SEQUENCES: 24

(iv) CORRESPONDENCE .ADDRESS:

(A) ADDRESSEE: Fish & Richardson

(B) STREET: 225 Franklin Street

(C) CITY: Boston

(D) STATE: Massachusetts

(E) COUNTRY: U.S.A.

(F) ZIP: 02110-2804

(V) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: 3.5" Diskette, 1.44 Mb

(B) COMPUTER: IBM PS/2 Model 50Z or 55SX

(C) OPERATING SYSTEM: IBM P.C. DOS (Version 3.30)

(D) SOFTWARE: WordPerfect (Version 5.0)

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER:

(B) FILING DATE:

(C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: 07/699,773

(B) FILING DATE: 14-May-1991 (viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Paul T. Clark (B) REGISTRATION NUMBER: 30,162

(C) REFERENCE/DOCKET NUMBER: 00231/055WO1

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: (617) 542-5070

(B) TELEFAX: (617) 542-8906

(C) TELEX: 200154

(2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 1:

(i) SEQUENCE CHARACTERISTICS:

Figure imgf000041_0001

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

Gly Pro Gly Arg Ala Phe

5

(2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 2:

(i) SEQUENCE CHARACTERISTICS:

Figure imgf000041_0002
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2 :

He Xaa He Gly Pro Gly .Arg

5

(2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 3:

(i) SEQUENCE CHARACTERISTICS:

Figure imgf000042_0001

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

Gin Ala Arg He Leu Ala Val Glu Arg Tyr Leu Lys Asp Gin Gin Leu

5 10 15

Leu Gly He Trp Gly Cys Ser Gly Lys Leu He Cys 20 25

(2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 17

(B) TYPE: amino acid (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Lys Arg Lys Arg He His He Gly Pro Gly Arg Ala Phe Tyr Thr Thr

5 10 15

Lys (2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 5:

(i) SEQUENCE CHARACTERISTICS:

Figure imgf000043_0001

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

He Gly Pro Gly Arg

5

(2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 24

(B) TYPE: amino acid (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Tyr Asn Lys Arg Lys Arg He His He Gly Pro Gly Arg Ala Phe Tyr

5 10 15 Thr Thr Lys Asn He He Gly Cys 20

(2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 7:

(i) SEQUENCE CHARACTERISTICS:

Figure imgf000044_0001

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

He His He Gly Pro Gly Arg Ala Phe Tyr Thr 5 10

(2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 8:

(i) SEQUENCE CHARACTERISTICS:

Figure imgf000044_0002

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

He Asn Cys Thr Arg Pro Asn Tyr Asn Lys Arg Lys Arg He His He

5 10 15

Gly Pro Gly Arg Ala Phe Tyr Thr Thr Lye Asn He He Gly Thr He 20 25 30

Arg Gin Ala His Cys Asn He Ser 35 40

(2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 9:

(i) SEQUENCE CHARACTERISTICS:

Figure imgf000044_0003
( i) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

Ser Gly Gly Thr Arg Lys Gly He His He Gly Pro Gly Arg Ala He 5 10 15

Tyr Gly Gly Ser Cys 20

(2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 10:

(i) SEQUENCE CHARACTERISTICS:

Figure imgf000045_0001

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Ser Gly Gly Thr Arg Lys Ser He Ser He Gly Pro Gly Arg Ala Phe

5 10 15

Gly Gly Ser Cys 20

(2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 11:

(i) SEQUENCE CHARACTERISTICS:

Figure imgf000045_0002

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11: Ser Gly Gly His He Gly Pro Gly .Arg Ala Phe Tyr Ala Thr Gly Gly

5 10 15

Gly Ser Cys

(2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 12:

(i) SEQUENCE CHARACTERISTICS:

Figure imgf000046_0001

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

Cys His He Gly Pro Gly Arg Ala Phe Cys

5 10

(2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 25

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

Asn Asn Thr Arg Lys Ser He Arg He Gin Arg Gly Pro Gly Arg Ala

5 10 15

Phe Val Thr He Gly Lys He Gly Cys 20 25 (2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 14:

(i) SEQUENCE CHARACTERISTICS:

Figure imgf000047_0001

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

Cys Asn Asn Thr Arg Lys Ser He Arg He Gin Arg Gly Pro Gly Arg

5 10 15 Ala Phe Val Thr He Gly Lys He Gly Cys 20 25

(2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 15:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 11

(B) TYPE: amino acid (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

He Thr Lys Gly Pro Gly Arg Val He Tyr Cys 5 10

(2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 16:

(i) SEQUENCE CHARACTERISTICS:

Figure imgf000048_0001

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

Cys Lys Arg He His He Gly Pro Gly Arg Ala Phe Tyr Thr Thr Cys

5 10 15

(2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 17:

(i) SEQUENCE CHARACTERISTICS:

Figure imgf000048_0002

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

Lys Arg Lys Arg He His He Gly Pro Gly Arg Ala Phe Tyr Thr Thr

5 10 15

Lys

(2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 18:

(i) SEQUENCE CHARACTERISTICS:

Figure imgf000048_0003

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18: Lys Lys Ser Arg He His He Gly Pro Gly Arg Ala Phe His Thr Thr

5 10 15

Arg

(2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 19:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 17

(B) TYPE: amino acid (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

Val Arg Asn Arg He His He Gly Pro Gly Arg Ala Phe His Thr Thr

5 10 15 Lys

(2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 20:

(i) SEQUENCE CHARACTERISTICS:

Figure imgf000049_0001

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

Thr Arg Lys Ser He Tyr He Gly Pro Gly Arg Ala Phe His Thr Thr

5 10 15 Gly (2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 21:

(i) SEQUENCE CHARACTERISTICS:

Figure imgf000050_0001

( i) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

Val Arg Arg Ser Lys Ser He Gly Pro Gly Arg Ala Phe Arg Thr Arg

5 10 15 Glu

(2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 22:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 17

(B) TYPE: amino acid (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

Lys Ser He .Arg He Gin Arg Gly Pro Gly Arg Ala Phe Val Thr He 5 10 15

Gly

(2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 23:

Figure imgf000051_0001

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23 :

Thr .Arg Lys Gly He His He Gly Pro Gly .Arg Ala He Tyr Ala Thr

5 10 15

Gly

(2) INFORMATION FOR SEQUENCE IDENTIFICATION NUMBER: 24:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 17

(B) TYPE: amino acid (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

Thr Ser Arg Gly He Arg He Gly Pro Gly Arg Ala He Leu Ala Thr

5 10 15

Glu

Claims

Claims 1. A heteroconjugate antibody comprising a first and a second portion joined together covalently, said first portion comprising an antibody directed against an antigen present on the surface of an effector cell of the peripheral blood, said second antibody portion comprising an antibody directed against a V3 loop sequence of the gpl20 envelope protein of HIV MN or a HIV MN viral variant expressed on the surface of HIV-infected cells, wherein said heteroconjugate antibody at an initial concentration of 20 ng/ml in a first mixed cell culture comprising said effector cells and CEM-ss cells infected with HIV-MN decreases the reverse transcriptase activity of said first mixed culture cell by at least 80% compared to the reverse transcriptase activity of an otherwise identical second mixed cell culture comprising said effector cells and said CEM-ss cells infected with HIV- MN, wherein said effector cells are in 3-fold excess over said CEM-ss cells in said first and second mixed cell cultures, said reverse transcriptase activity is measured ten days after infection, said heteroconjugate antibody and said effector cells are added to said CEM-ss cells in said first mixed cell culture 18 hours after infection, and said first and second cell cultures are infected with 100-1000 infectious units of HIV-MN.
2. The heteroconjugate antibody of claim 1 where in said decrease in said reverse transcriptase activity of said first cell culture is greater than 90% compared to said reverse transcriptase activity of said second mixed cell culture.
3. A heteroconjugate antibody comprising a first and a second portion joined together covalently, said first portion comprising an antibody directed against an antigen present on the surface of an effector cell of the peripheral blood, said second antibody portion comprising an antibody directed against a V3 loop sequence of the gpl20 envelope protein of HIV MN or a HIV MN viral variant expressed on the surface of HIV-infected cells, wherein said heteroconjugate antibody at an initial concentration of 10 ng/ml in a first mixed cell culture comprising said effector cells and CEM-ss cells infected with HIV-MN decreases the reverse transcriptase activity of said first mixed culture cell by at least 80% compared to the reverse transcriptase activity of an otherwise identical second mixed cell culture comprising said effector cells and said CEM-ss cells infected with HIV- MN, wherein said effector cells are in 3-fold excess over said CEM-ss cells in said first and second mixed cell cultures, said reverse transcriptase activity is measured ten days after infection, said heteroconjugate antibody and said effector cells are added to said CEM-ss cells in said first mixed cell culture 18 hours after infection, and said first and second cell cultures are infected with 100-1000 infectious units of HIV-MN.
4. A heteroconjugate antibody comprising a first and a second portion joined together covalently, said first portion comprising an antibody directed against an antigen present on the surface of an effector cell of the peripheral blood, said second antibody portion comprising an antibody directed against a V3 loop sequence of the gpl20 envelope protein of HIV MN or a HIV MN viral variant expressed on the surface of HIV-infected cells, wherein said heteroconjugate antibody at an initial concentration of 5 ng/ml in a first mixed cell culture comprising said effector cells and CEM-ss cells infected with HIV-MN decreases the reverse transcriptase activity of said first mixed culture cell by at least 80% compared to the reverse transcriptase activity of an otherwise identical second mixed cell culture comprising said effector cells and said CEM-ss cells infected with HIV- MN, wherein said effector cells are in 3-fold excess over said CEM-ss cells in said first and second mixed cell cultures, said reverse transcriptase activity is measured ten days after infection, said heteroconjugate antibody and said effector cells are added to said CEM-ss cells in said first mixed cell culture 18 hours after infection, and said first and second cell cultures are infected with 100-1000 infectious units of HIV-MN.
5. A heteroconjugate antibody comprising a first and a second portion joined together covalently, said first portion comprising an antibody directed against an antigen present on the surface of an effector cell of the peripheral blood, said second antibody portion comprising an antibody directed against a V3 loop sequence of the gpl20 envelope protein of HIV MN or a HIV MN viral variant expressed on the surface of HIV-infected cells, wherein said heteroconjugate antibody at an initial concentration of 1 ng/ml in a first mixed cell culture comprising said effector cells and CEM-ss cells infected with HIV-MN decreases the reverse transcriptase activity of said first mixed culture cell by at least 80% compared to the reverse transcriptase activity of an otherwise identical second mixed cell culture comprising said effector cells and said CEM-ss cells infected with HIV- MN, wherein said effector cells are in 3-fold excess over said CEM-ss cells in said first and second mixed cell cultures, said reverse transcriptase activity is measured ten days after infection, said heteroconjugate antibody and said effector cells are added to said CEM-ss cells in said first mixed cell culture 18 hours after infection, and said first and second cell cultures are infected with 100-1000 infectious units of HIV-MN.
6. A heteroconjugate antibody comprising a first and a second portion joined together covalently, said first portion comprising an antibody directed against an antigen present on the surface of an effector cell of the peripheral blood, said second antibody portion comprising an antibody directed against the amino acid sequence GPGRAF.
7. A heteroconjugate antibody comprising a first and a second portion joined together covalently, said first portion comprising an antibody directed against an antigen present on the surface of an effector cell of the peripheral blood, said second antibody portion comprising an antibody directed against the amino acid sequence IXIGPGR, wherein X = any amino acid.
8. The heteroconjugate antibody of claim 6 or claim 7 wherein said heteroconjugate antibody at an initial concentration of 20 ng/ml in a first mixed cell culture comprising said effector cells and CEM-ss cells infected with HIV-MN decreases the reverse transcriptase activity of said first mixed culture cell by at least 80% compared to the reverse transcriptase activity of an otherwise identical second mixed cell culture comprising said effector cells and said CEM-ss cells infected with HIV-MN, wherein said effector cells are in 3-fold excess over said CEM-ss cells in said first and second mixed cell cultures, said reverse transcriptase activity is measured ten days after infection, said heteroconjugate antibody and said effector cells are added to said CEM- ss cells in said first mixed cell culture 18 hours after infection, and said first and second cell cultures are infected with 100-1000 infectious units of HIV-MN.
9. The heteroconjugate antibody of claim 1 wherein said heteroconjugate antibody at an initial concentration of 20 ng/ml in a first mixed cell culture comprising said effector cells and CEM-ss cells infected with HIV-IIIB decreases the reverse transcriptase activity of said first mixed culture cell by at least 80% compared to the reverse transcriptase activity of an otherwise identical second mixed cell culture comprising said effector cells and said CEM-ss cells infected with HIV-IIIB, wherein said effector cells are in 3-fold excess over said CEM-ss cells in said first and second mixed cell cultures, said reverse transcriptase activity is measured ten days after infection, said heteroconjugate antibody and said effector cells are added to said CEM-ss cells in said first mixed cell culture 18 hours after infection, and said first and second cell cultures are infected with 100-1000 infectious units of HIV-IIIB.
10. The heteroconjugate antibody of claim 1 wherein said heteroconjugate antibody at an initial concentration of 20 ng/ml in three or more mixed cell cultures each of which comprises said effector cells and CEM-ss cells infected with one of the HIV strains: Alabama, Duke 6587-5, Duke 6587-7, Duke 7887-7, SF2, WMJ2, and IIIB, decreases the reverse transcriptase activity of each of said mixed cell culture by 80% compared to the reverse transcriptase activity of an otherwise identical mixed cell culture comprising said effector cells and CEM-ss cells infected with said same strain of HIV, wherein said effector cells are in 3-fold excess over said CEM-ss cells in said first and second mixed cell cultures, said reverse transcriptase activity is measured ten days after infection, said heteroconjugate antibody and said effector cells are added to said CEM-ss cells in said first mixed cell culture 18 hours after infection, and said first and second cell cultures are infected with 100-1000 infectious units of said strain of HIV.
11. A heteroconjugate antibody comprising a first and a second portion joined together covalently, said first portion comprising an antibody directed against an antigen present on the surface of an effector cell of the peripheral blood, said second antibody portion comprising an antibody directed against the amino acid sequence QARILAVERYLKDQQLLGIWGCSGKLIC.
12. The heteroconjugate antibody of claim 11 wherein said heteroconjugate antibody at an initial concentration of 20 ng/ml in a first mixed cell culture comprising said effector cells and CEM-ss cells infected with HIV-MN decreases the reverse transcriptase activity of said first mixed culture cell by at least 80% compared to the reverse transcriptase activity of an otherwise identical second mixed cell culture comprising said effector cells and said CEM-ss cells infected with HIV- MN, wherein said effector cells are in 3-fold excess over said CEM-ss cells in said first and second mixed cell cultures, said reverse transcriptase activity is measured ten days after infection, said heteroconjugate antibody and said effector cells are added to said CEM-ss cells in said first mixed cell culture 18 hours after infection, and said first and second cell cultures are infected with 100-1000 infectious units of HIV-MN.
13. The heteroconjugate of claim 1 or claim 11 wherein said effector cell is chosen from the group consisting of cytotoxic T lymphocytes, neutrophils, monocytes/macrophages, and large granular lymphocytes.
14. The heteroconjugate of claim 1 or claim 11 wherein said antigen present on the surface of an effector cell is CD3.
15. The heteroconjugate antibody of claim 1 wherein said heteroconjugate antibody at an initial concentration of 200 ng/ml in a first mixed cell culture comprising said effector cells and CEM-ss cells infected with an HIV strain other than HIV-MN decreases the reverse transcriptase activity of said first mixed culture cell by at least 50% compared to the reverse transcriptase activity of an otherwise identical second mixed cell culture comprising said effector cells and said CEM-ss cells infected with said HIV strain other than HIV-MN, wherein said effector cells are in 3-fold excess over said CEM-ss cells in said first and second mixed cell cultures, said reverse transcriptase activity is measured ten days after infection, said heteroconjugate antibody and said effector cells are added to said CEM-ss cells in said first mixed cell culture 18 hours after infection, and said first and second cell cultures are infected with 100-1000 infectious units of said HIV strain other than HIV-MN.
16. The heteroconjugate antibody of claim 1 wherein said heteroconjugate antibody binds to the V3 loop of an HIV strain other than HIV-MN.
17. A pharmaceutically acceptable composition comprising a pharmaceutically effective amount of a heteroconjugate antibody of claim 1 or claim 11.
18. An HIV-targeted effector cell comprising: (a) an effector cell expressing a cell surface antigen; and (b) the heteroconjugate antibody of claim 1 or claim 11.
PCT/US1992/003616 1991-05-14 1992-04-29 Heteroconjugate antibodies for treatment of hiv infection WO1992020373A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US69977391A true 1991-05-14 1991-05-14
US699,773 1991-05-14

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51096192A JPH06507398A (en) 1991-05-14 1992-04-29

Publications (1)

Publication Number Publication Date
WO1992020373A1 true WO1992020373A1 (en) 1992-11-26

Family

ID=24810855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1992/003616 WO1992020373A1 (en) 1991-05-14 1992-04-29 Heteroconjugate antibodies for treatment of hiv infection

Country Status (4)

Country Link
EP (1) EP0586505A1 (en)
JP (1) JPH06507398A (en)
CA (1) CA2102511A1 (en)
WO (1) WO1992020373A1 (en)

Cited By (334)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622933A (en) * 1993-09-13 1997-04-22 Armel S.A. Multiple branch peptide constructions for use against HIV
US5843446A (en) * 1993-04-27 1998-12-01 United Biomedical, Inc. Immunogenic LHRH peptide constructs and synthetic universal immune stimulators for vaccines
US5851984A (en) * 1996-08-16 1998-12-22 Genentech, Inc. Method of enhancing proliferation or differentiation of hematopoietic stem cells using Wnt polypeptides
WO1999028462A2 (en) 1997-12-03 1999-06-10 Genentech, Inc. Polypeptides and nucleic acids encoding the same
US5990281A (en) * 1996-09-30 1999-11-23 Genentech, Inc. Vertebrate smoothened proteins
US6030945A (en) * 1996-01-09 2000-02-29 Genentech, Inc. Apo-2 ligand
US6121428A (en) * 1997-06-13 2000-09-19 Genentech, Inc. Protein recovery
US6136958A (en) * 1996-09-30 2000-10-24 Genentech, Inc. Antibodies to vertebrate smoothened proteins
US6159462A (en) * 1996-08-16 2000-12-12 Genentech, Inc. Uses of Wnt polypeptides
EP1104310A1 (en) * 1998-08-04 2001-06-06 Henry M. Jackson Foundation Expression and characterization of hiv-1 envelope protein associated with a broadly reactive neutralizing antibody response
US6270987B1 (en) 1997-01-31 2001-08-07 Genentech, Inc. O-fucosyltransferase
US6291643B1 (en) 1997-06-05 2001-09-18 Board Of Reports, The University Of Texas System Apaf-1 an activator of caspase-3
US6342369B1 (en) 1997-05-15 2002-01-29 Genentech, Inc. Apo-2-receptor
WO2002016625A2 (en) 2000-08-25 2002-02-28 Basf Plant Science Gmbh Plant polynucleotides encoding prenyl proteases
WO2002030463A2 (en) 2000-10-12 2002-04-18 Genentech, Inc. Reduced-viscosity concentrated protein formulations
US6462176B1 (en) 1996-09-23 2002-10-08 Genentech, Inc. Apo-3 polypeptide
US6469144B1 (en) 1996-04-01 2002-10-22 Genentech, Inc. Apo-2LI and Apo-3 polypeptides
WO2003075765A1 (en) 2002-03-05 2003-09-18 Board Of Regents, The University Of Texas System Biospecific contrast agents
US6627196B1 (en) 1999-08-27 2003-09-30 Genentech, Inc. Dosages for treatment with anti-ErbB2 antibodies
US6727079B1 (en) 1998-02-25 2004-04-27 The United States Of America As Represented By The Department Of Health And Human Services cDNA encoding a gene BOG (B5T Over-expressed Gene) and its protein product
US6740739B1 (en) 1998-01-15 2004-05-25 Genentech, Inc. Substitutional variants of APO-2 ligand
US6746668B2 (en) 1996-01-09 2004-06-08 Genentech, Inc. Apo-2 ligand
US6764679B2 (en) 1997-09-18 2004-07-20 Genentech, Inc. Antibodies to DcR3 Polypeptide, a TNFR Homolog
WO2004096124A2 (en) 2003-04-01 2004-11-11 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
WO2004112572A2 (en) 2003-06-13 2004-12-29 University Of Pittsburgh Monitoring immunologic, hematologic and inflammatory diseases
WO2005014818A1 (en) 2003-08-08 2005-02-17 Perseus Proteomics Inc. Gene overexpressed in cancer
US7090848B1 (en) 1998-08-04 2006-08-15 Henry M. Jackson Foundation For The Advancement Of Military Medicine HIV-1 envelope protein associated with a broadly reactive neutralizing antibody response
WO2006089133A2 (en) 2005-02-15 2006-08-24 Duke University Anti-cd19 antibodies and uses in oncology
WO2006108273A1 (en) 2005-04-11 2006-10-19 National Research Council Of Canada Identification of a beta-1,3-n-acetylgalactosaminyltransferase (cgte) from campylobacter jejuni lio87
US7235633B2 (en) 2000-03-21 2007-06-26 Genentech, Inc. Cytokine receptors and nucleic acids encoding the same
WO2007092431A2 (en) 2006-02-06 2007-08-16 Rhode Island Hospital Gpr30 estrogen receptor in breast cancers
EP1820859A2 (en) 1998-12-22 2007-08-22 Genentech, Inc. Methods and compositions for inhibiting neoplastic cell growth
WO2007131133A2 (en) 2006-05-04 2007-11-15 Genentech, Inc. Methods and compositions relating to zpa polypeptides
WO2008011081A2 (en) 2006-07-19 2008-01-24 The Trustees Of The University Of Pennsylvania Wsx-1/p28 as a target for anti-inflammatory responses
EP1887014A1 (en) 1997-10-17 2008-02-13 Genentech, Inc. Human toll homologues
WO2008021290A2 (en) 2006-08-09 2008-02-21 Homestead Clinical Corporation Organ-specific proteins and methods of their use
WO2008036135A2 (en) 2006-06-01 2008-03-27 Genentech, Inc. Crystal structure of crig and c3b: crig complex
WO2008060776A2 (en) 2006-10-03 2008-05-22 University Of Medicine And Dentistry Of New Jersey Atap peptides, nucleic acids encoding the same and associated methods of use
EP1941905A1 (en) 1998-03-27 2008-07-09 Genentech, Inc. APO-2 Ligand-anti-her-2 antibody synergism
EP1944317A2 (en) 2000-09-01 2008-07-16 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
EP1950300A2 (en) 1998-11-18 2008-07-30 Genentech, Inc. Antibody variants with higher binding affinity compared to parent antibodies
EP1967587A1 (en) 1997-10-10 2008-09-10 Genentech, Inc. APO-3 Ligand
WO2008118324A2 (en) 2007-03-26 2008-10-02 Macrogenics, Inc. Composition and method of treating cancer with an anti-uroplakin ib antibody
EP1978029A2 (en) 1999-06-15 2008-10-08 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids endoding the same
EP1992643A2 (en) 2001-06-20 2008-11-19 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP1995321A2 (en) 2005-08-15 2008-11-26 Genentech, Inc. Gene disruptions, compositions and methods relating thereto
US7462698B2 (en) 2005-07-22 2008-12-09 Y's Therapeutics Co., Ltd. Anti-CD26 antibodies and methods of use thereof
EP2002714A1 (en) 2005-11-21 2008-12-17 Genentech, Inc. Novel gene disruptions, compositions and methods relating thereto
EP2011886A2 (en) 2002-04-16 2009-01-07 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP2014298A2 (en) 2000-08-24 2009-01-14 Genentech, Inc. Interleukin-22 polypeptides, nucleic acids encoding the same and methods for the treatment of pancreatic disorders
EP2014677A1 (en) 1997-11-21 2009-01-14 Genentech, Inc. A-33 related antigens and their pharmacological uses
EP2014675A1 (en) 2003-08-11 2009-01-14 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2014770A2 (en) 1997-10-29 2009-01-14 Genentech, Inc. WNT-1 Iinduced secreted polypeptide WISP-2
EP2014303A2 (en) 2000-07-27 2009-01-14 Genentech, Inc. APO-2L receptor agonist and CPT-11 synergism
EP2016951A1 (en) 1998-03-17 2009-01-21 Genentech, Inc. Polypeptides homologous to VEGF and BMP1
US7482124B2 (en) 2005-07-08 2009-01-27 Bristol-Myers Squibb Company Method of identifying a PPARgamma-agonist compound having a decreased likelihood of inducing dose-dependent peripheral edema
EP2033970A2 (en) 1997-10-29 2009-03-11 Genentech, Inc. WNT-1 inducible genes
EP2042597A1 (en) 2000-06-23 2009-04-01 Genentech, Inc. Compositions and methods for the diagnosis and treatment of disorders involving angiogenesis
WO2009046123A2 (en) 2007-10-02 2009-04-09 Genentech, Inc. Nlrr-1 antagonists and uses thereof
EP2048154A1 (en) 2002-02-05 2009-04-15 Genentech, Inc. Protein purification
EP2050762A2 (en) 1998-03-10 2009-04-22 Genentech, Inc. Novel polypeptides and nucleic acids encoding the same
EP2050335A1 (en) 2006-02-17 2009-04-22 Genentech, Inc. Gene disruptions, compositions and methods relating thereto
EP2052742A1 (en) 2000-06-20 2009-04-29 Biogen Idec Inc. Treatment of B-cell associated diseases such as malignancies and autoimmune diseases using a cold anti-CD20 antibody/radiolabeled anti-CD22 antibody combination
WO2009054873A2 (en) 2007-08-02 2009-04-30 Novimmune S.A. Anti-rantes antibodies and methods of use thereof
EP2058334A2 (en) 1998-06-12 2009-05-13 Genentech, Inc. Monoclonal antibodies, cross-reactive antibodies and method for producing the same
EP2062916A2 (en) 2003-04-09 2009-05-27 Genentech, Inc. Therapy of autoimmune disease in a patient with an inadequate response to a TNF-Alpha inhibitor
EP2065467A2 (en) 2001-02-22 2009-06-03 Genentech, Inc. Anti-interferon-alpha antibodies
EP2067472A1 (en) 2002-01-02 2009-06-10 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
WO2009079649A1 (en) 2007-12-18 2009-06-25 Bioalliance C.V. Antibodies recognizing a carbohydrate containing epitope on cd-43 and cea expressed on cancer cells and methods using same
EP2075334A1 (en) 2000-06-23 2009-07-01 Genentech, Inc. EG-VEGF nucleic acids and polypeptides and methods of use
EP2075253A1 (en) 2000-06-23 2009-07-01 Genentech, Inc. Compositions and methds for the diagnosis and treatment of disorders involving angiogensis
EP2083079A1 (en) 1997-06-18 2009-07-29 Genentech, Inc. Apo-2DcR
EP2083018A2 (en) 2003-04-16 2009-07-29 Genentech, Inc. Compositions and methods relating to STOP-1
EP2082645A1 (en) 2006-04-19 2009-07-29 Genentech, Inc. Novel gene disruptions, compositions and methods relating thereto
EP2090657A2 (en) 2000-08-07 2009-08-19 Centocor Ortho Biotech Inc. Anti-IL-12 antibodies, compositions, methods and uses
WO2009101479A2 (en) 2007-05-14 2009-08-20 Novimmune Sa Fc receptor-binding polypeptides with modified effector functions
EP2093570A1 (en) 2003-06-06 2009-08-26 Genentech, Inc. Modulating the interaction between HGF beta chain and c-met
WO2009103113A1 (en) 2008-02-20 2009-08-27 G2 Inflammation Pty Ltd HUMANIZED ANTI-C5aR ANTIBODIES
EP2110434A1 (en) 2002-02-25 2009-10-21 Genentech, Inc. Type-1 cytokine receptor GLM-R
EP2112167A2 (en) 1999-06-25 2009-10-28 Genentech, Inc. Humanized ANTI-ERBB2 antibodies and treatment with ANTI-ERBB2 antibodies
EP2112162A1 (en) 2004-07-10 2009-10-28 Fox Chase Cancer Center Genetically modified human natural killer cell lines
WO2009140684A2 (en) 2008-05-16 2009-11-19 Genentech, Inc. Use of biomarkers for assessing treatment of gastrointestinal inflammatory disorders with beta7integrin antagonists
EP2143438A1 (en) 2001-09-18 2010-01-13 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP2159230A1 (en) 2000-08-07 2010-03-03 Centocor Ortho Biotech Inc. Anti-TNF antibodies, compositions, methods and uses
US7674605B2 (en) 2006-06-07 2010-03-09 Bioalliance C.V. Antibodies recognizing a carbohydrate containing epitope on CD-43 and CEA expressed on cancer cells and methods using same
EP2161283A1 (en) 2003-11-17 2010-03-10 Genentech, Inc. Compositions comprising antibodies against CD79b conjugated to a growth inhibitory agent or cytotoxic agent and methods for the treatment of tumor of hematopoietic origin
WO2010030813A2 (en) 2008-09-10 2010-03-18 Genentech, Inc. Methods for inhibiting ocular angiogenesis
WO2010029513A2 (en) 2008-09-12 2010-03-18 Rinat Neuroscience Corporation Pcsk9 antagonists
EP2186402A1 (en) 2005-06-06 2010-05-19 Genentech, Inc. Knock-out animal models for novel genes and methods of use
WO2010075249A2 (en) 2008-12-22 2010-07-01 Genentech, Inc. A method for treating rheumatoid arthritis with b-cell antagonists
WO2010074702A1 (en) 2008-12-16 2010-07-01 Millipore Corporation Purification of proteins
WO2010072740A2 (en) 2008-12-23 2010-07-01 Astrazeneca Ab TARGETED BINDING AGENTS DIRECTED TO α5β1 AND USES THEREOF
WO2010077634A1 (en) 2008-12-09 2010-07-08 Genentech, Inc. Anti-pd-l1 antibodies and their use to enhance t-cell function
WO2010080528A1 (en) 2008-12-17 2010-07-15 Genentech, Inc. Hepatitis c virus combination therapy
EP2214014A1 (en) 2004-05-11 2010-08-04 The University of Pittsburgh Monitoring immunologic, hematologic and inflammatory diseases
WO2010086828A2 (en) 2009-02-02 2010-08-05 Rinat Neuroscience Corporation Agonist anti-trkb monoclonal antibodies
EP2221316A1 (en) 2005-05-05 2010-08-25 Duke University Anti-CD19 antibody therapy for autoimmune disease
EP2228446A1 (en) 1999-12-01 2010-09-15 Genentech, Inc. Secreted and transmembrane polypeptieds and nucleic acids encoding the same
EP2230517A1 (en) 2005-01-07 2010-09-22 Diadexus, Inc. OVR110 antibody compositions and methods of use
EP2233149A1 (en) 2007-10-16 2010-09-29 ZymoGenetics, Inc. Combination of BLYS inhibition and anti-CD20 agents for treatment of autoimmune disease
WO2010114859A1 (en) 2009-04-01 2010-10-07 Genentech, Inc. Treatment of insulin-resistant disorders
WO2010118243A2 (en) 2009-04-08 2010-10-14 Genentech, Inc. Use of il-27 antagonists to treat lupus
EP2241622A2 (en) 1994-03-18 2010-10-20 Genentech, Inc. Human trk receptors and their derivatives
WO2010120561A1 (en) 2009-04-01 2010-10-21 Genentech, Inc. Anti-fcrh5 antibodies and immunoconjugates and methods of use
EP2248829A1 (en) 2003-05-30 2010-11-10 Genentech, Inc. Treatment with anti-VEGF antibodies
WO2010128407A2 (en) 2009-05-05 2010-11-11 Novimmune S.A. Anti-il-17f antibodies and methods of use thereof
EP2258848A1 (en) 1999-12-23 2010-12-08 Genentech, Inc. Il-17 homologous polypeptide and therapeutic uses thereof
EP2261367A2 (en) 2007-11-29 2010-12-15 Genentech, Inc. Gene expression markers for inflammatory bowel disease
EP2263691A1 (en) 2002-07-15 2010-12-22 Genentech, Inc. Treatment of cancer with the recombinant humanized monoclonal anti-erbb2 antibody 2C4 (rhuMAb 2C4)
EP2263692A1 (en) 2002-12-24 2010-12-22 Rinat Neuroscience Corp. Anti-NGF antibodies and methods using same
WO2010146511A1 (en) 2009-06-17 2010-12-23 Pfizer Limited Treatment of overactive bladder
EP2267450A2 (en) 2005-04-29 2010-12-29 The Regents of the University of California Antibodies against histone modifications for clinical diagnosis and prognosis of cancer
US7868133B2 (en) 2002-09-09 2011-01-11 Dana Farber Cancer Institute, Inc. BH3 peptides and method of use thereof
EP2272868A2 (en) 2003-06-05 2011-01-12 Genentech, Inc. Combination therapy for B cell disorders
WO2011005715A1 (en) 2009-07-07 2011-01-13 Genentech, Inc. Diagnosis and treatment of autoimmune demyelinating diseases
EP2275119A1 (en) 1995-07-27 2011-01-19 Genentech, Inc. Stable isotonic lyophilized protein formulation
WO2011011339A1 (en) 2009-07-20 2011-01-27 Genentech, Inc. Gene expression markers for crohn's disease
WO2011014750A1 (en) 2009-07-31 2011-02-03 Genentech, Inc. Inhibition of tumor metastasis using bv8- or g-csf-antagonists
WO2011019679A1 (en) 2009-08-11 2011-02-17 Allergan, Inc. Ccr2 inhibitors for treating conditions of the eye
WO2011019622A1 (en) 2009-08-14 2011-02-17 Genentech, Inc. Cell culture methods to make antibodies with enhanced adcc function
WO2011019620A1 (en) 2009-08-10 2011-02-17 Genentech, Inc. Antibodies with enhanced adcc function
WO2011031397A1 (en) 2009-08-06 2011-03-17 Genentech, Inc. Method to improve virus removal in protein purification
EP2298807A2 (en) 2004-07-30 2011-03-23 Rinat Neuroscience Corp. Antibodies directed against amyloid-beta peptide and methods using same
EP2305711A2 (en) 2005-04-11 2011-04-06 Rinat Neuroscience Corp. Methods for treating osteoarthitis pain by administering a nerve growth factor antagonist and compositions containing the same
EP2308968A1 (en) 2002-11-26 2011-04-13 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
WO2011044368A1 (en) 2009-10-07 2011-04-14 Macrogenics, Inc. Fc region-containing polypeptides that exhibit improved effector function due to alterations of the extent of fucosylation, and methods for their use
EP2311960A2 (en) 2001-08-29 2011-04-20 Genentech, Inc. Bv8 nucleic acids and polypeptides with mitogenic activity
EP2314318A1 (en) 2001-01-31 2011-04-27 Biogen Idec Inc. CD80 antibody for use in combination with chemotherapeutics to treat B cell malignancies
WO2011050194A1 (en) 2009-10-22 2011-04-28 Genentech, Inc. Methods and compositions for modulating hepsin activation of macrophage-stimulating protein
EP2319929A1 (en) 1998-12-23 2011-05-11 Genentech, Inc. IL-1 related polypeptides
EP2322200A2 (en) 2002-10-29 2011-05-18 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
WO2011060246A2 (en) 2009-11-12 2011-05-19 Genentech, Inc. A method of promoting dendritic spine density
WO2011066503A2 (en) 2009-11-30 2011-06-03 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP2333069A2 (en) 1998-05-15 2011-06-15 Genentech, Inc. Therapeutic uses of IL-17 homologous polypeptides
EP2332996A1 (en) 2002-09-11 2011-06-15 Genentech, Inc. Protein Purification
EP2332956A1 (en) 2002-07-08 2011-06-15 Genentech, Inc. Antibody binding to PRO71238
EP2335725A1 (en) 2003-04-04 2011-06-22 Genentech, Inc. High concentration antibody and protein formulations
EP2336178A1 (en) 2003-12-11 2011-06-22 Genentech, Inc. Methods and compositions for inhibiting C-Met dimerization and activation
US7968690B2 (en) 2003-12-23 2011-06-28 Rinat Neuroscience Corp. Agonist anti-trkC antibodies and methods using same
EP2340849A1 (en) 2001-05-30 2011-07-06 Genentech, Inc. Anti-NGF antibodies for the treatment of various disorders
WO2011082187A1 (en) 2009-12-30 2011-07-07 Genentech, Inc. Methods for modulating a pdgf-aa mediated biological response
WO2011080796A1 (en) 2009-12-28 2011-07-07 Oncotherapy Science, Inc. Anti-cdh3 antibodies and uses thereof
WO2011084750A1 (en) 2009-12-21 2011-07-14 Genentech, Inc. Antibody formulation
US7982012B2 (en) 2008-03-10 2011-07-19 Theraclone Sciences, Inc. Compositions and methods for the therapy and diagnosis of cytomegalovirus
WO2011094759A2 (en) 2010-02-01 2011-08-04 The Regents Of The University Of California Novel diagnostic and therapeutic targets associated with or regulated by n-cadherin expression and/or epithelial to mesenchymal transition (emt) in prostate cancer and other malignancies
WO2011100403A1 (en) 2010-02-10 2011-08-18 Immunogen, Inc Cd20 antibodies and uses thereof
EP2361931A1 (en) 2004-07-20 2011-08-31 Genentech, Inc. Inhibitors of angiopoietin-like 4 protein, combinations, and their use
WO2011106297A2 (en) 2010-02-23 2011-09-01 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
WO2011104687A1 (en) 2010-02-24 2011-09-01 Rinat Neuroscience Corporation Antagonist anti-il-7 receptor antibodies and methods
EP2364997A2 (en) 1999-01-15 2011-09-14 Genentech, Inc. Polypeptide variants with altered effector function
EP2364716A2 (en) 2002-11-08 2011-09-14 Genentech, Inc. Compositions and methods for the treatment of natural killer cell related diseases
WO2011111007A2 (en) 2010-03-11 2011-09-15 Rinat Neuroscience Corporation ANTIBODIES WITH pH DEPENDENT ANTIGEN BINDING
EP2366716A2 (en) 2006-03-21 2011-09-21 Genentech, Inc. Combinatorial therapy involving alpha5beta1 antagonists
WO2011119888A2 (en) 2010-03-24 2011-09-29 The Regents Of The University Of California N-cadherin: target for cancer diagnosis and therapy
EP2371388A2 (en) 2004-10-20 2011-10-05 Genentech, Inc. Antibody formulations
EP2380592A2 (en) 2005-11-14 2011-10-26 Rinat Neuroscience Corp. Antagonist antibodies directed against calcitonin gene-related peptide and methods using same
WO2011133931A1 (en) 2010-04-22 2011-10-27 Genentech, Inc. Use of il-27 antagonists for treating inflammatory bowel disease
WO2011139985A1 (en) 2010-05-03 2011-11-10 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
WO2011139718A1 (en) 2010-05-03 2011-11-10 Genentech, Inc. Compositions and methods useful for reducing the viscosity of protein-containing formulations
US8057796B2 (en) 2007-11-12 2011-11-15 Theraclone Sciences, Inc. Compositions and methods for the therapy and diagnosis of influenza
WO2011146568A1 (en) 2010-05-19 2011-11-24 Genentech, Inc. Predicting response to a her inhibitor
EP2389949A1 (en) 2006-03-23 2011-11-30 Novartis AG Anti-tumor cell antigen antibody therapeutics
EP2390666A1 (en) 2006-03-21 2011-11-30 The Regents of The University of California N-Cadherin as target for cancer diagnosis and therapy
WO2011150110A1 (en) 2010-05-25 2011-12-01 Genentech, Inc. Methods of purifying polypeptides
WO2011150241A2 (en) 2010-05-28 2011-12-01 Genentech, Inc. Decreasing lactate level and increasing polypeptide production by downregulating the expression of lactate dehydrogenase and pyruvate dehydrogenase kinase
WO2011159655A2 (en) 2010-06-16 2011-12-22 Allergan, Inc. IL23p19 ANTIBODY INHIBITOR FOR TREATING OCULAR AND OTHER CONDITIONS
EP2399605A1 (en) 2005-02-23 2011-12-28 Genentech, Inc. Extending time to disease progression or survival in cancer patients
WO2012022734A2 (en) 2010-08-16 2012-02-23 Medimmune Limited Anti-icam-1 antibodies and methods of use
EP2423333A1 (en) 2006-08-25 2012-02-29 Oncotherapy Science, Inc. Prognostic markers and therapeutic targets for lung cancer
WO2012027723A1 (en) 2010-08-27 2012-03-01 Stem Centrx, Inc Notum protein modulators and methods of use
WO2012031273A2 (en) 2010-09-03 2012-03-08 Stem Centrx, Inc. Novel modulators and methods of use
WO2012030512A1 (en) 2010-09-03 2012-03-08 Percivia Llc. Flow-through protein purification process
EP2434022A2 (en) 2002-10-03 2012-03-28 Genentech, Inc. Use of A33 antigens and JAM-IT
EP2436781A1 (en) 2007-02-22 2012-04-04 Genentech, Inc. Methods for detecting inflammatory bowel disease
EP2444409A2 (en) 2002-09-16 2012-04-25 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2450050A1 (en) 2006-11-29 2012-05-09 Genentech, Inc. IL-17A/F heterodimeric polypeptides and therapeutic uses thereof
WO2012061129A1 (en) 2010-10-25 2012-05-10 Genentech, Inc Treatment of gastrointestinal inflammation and psoriasis a
WO2012058768A1 (en) 2010-11-05 2012-05-10 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the fc domain
EP2455404A2 (en) 2006-08-22 2012-05-23 G2 Inflammation Pty Ltd Anti-C5AR antibodies with improved properties
WO2012071436A1 (en) 2010-11-24 2012-05-31 Genentech, Inc. Method of treating autoimmune inflammatory disorders using il-23r loss-of-function mutants
WO2012078813A2 (en) 2010-12-08 2012-06-14 Stem Centrx, Inc. Novel modulators and methods of use
US8211434B2 (en) 2008-11-26 2012-07-03 Allergan, Inc. KLK-13 antibody inhibitor for treating dry eye
EP2471809A1 (en) 2006-07-11 2012-07-04 University Of Medicine And Dentistry Of New Jersey Proteins, nucleic acids encoding the same and associated methods of use
EP2474557A2 (en) 2007-07-16 2012-07-11 Genentech, Inc. Anti-CD79b antibodies and immunoconjugates and methods of use
US8221757B2 (en) 2002-01-25 2012-07-17 G2 Therapies Ltd Monoclonal antibodies against extracellular loops of C5aR
WO2012112943A1 (en) 2011-02-18 2012-08-23 Stem Centrx, Inc. Novel modulators and methods of use
WO2012125614A1 (en) 2011-03-15 2012-09-20 Theraclone Sciences, Inc. Compositions and methods for the therapy and diagnosis of influenza
EP2503341A2 (en) 2006-11-14 2012-09-26 Genentech, Inc. Modulators of Neuronal Regeneration
WO2012138997A1 (en) 2011-04-07 2012-10-11 Amgen Inc. Novel egfr binding proteins
EP2526960A1 (en) 2003-03-12 2012-11-28 Genentech, Inc. Use of BV8 and/or EG-VEGF to promote hematopoiesis
WO2012162561A2 (en) 2011-05-24 2012-11-29 Zyngenia, Inc. Multivalent and monovalent multispecific complexes and their uses
US8329178B2 (en) 2005-02-18 2012-12-11 Dana-Farber Cancer Institute, Inc. Antibodies against CXCR4 and methods of use thereof
EP2537529A1 (en) 2007-08-02 2012-12-26 Gilead Biologics, Inc. Lox and loxl2 inhibitors antibodies and uses thereof
EP2540741A1 (en) 2006-03-06 2013-01-02 Aeres Biomedical Limited Humanized anti-CD22 antibodies and their use in treatment of oncology, transplantation and autoimmune disease
WO2013012855A1 (en) 2011-07-18 2013-01-24 Amgen Inc. Apelin antigen-binding proteins and uses thereof
WO2013025944A1 (en) 2011-08-17 2013-02-21 Genentech, Inc. Inhibition of angiogenesis in refractory tumors
WO2013033069A1 (en) 2011-08-30 2013-03-07 Theraclone Sciences, Inc. Human rhinovirus (hrv) antibodies
EP2567975A2 (en) 2006-11-21 2013-03-13 The Regents of The University of California Modulation of RHAMM (CD168) for selective adipose tissue development
EP2573114A1 (en) 2005-08-10 2013-03-27 MacroGenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
EP2586788A1 (en) 2007-07-09 2013-05-01 Genentech, Inc. Prevention of disulfide bond reduction during recombinant production of polypeptides
WO2013067301A1 (en) 2011-11-02 2013-05-10 Genentech, Inc. Overload and elute chromatography
WO2013063702A1 (en) 2011-11-04 2013-05-10 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the fc domain
EP2592156A2 (en) 2007-06-08 2013-05-15 Genentech, Inc. Gene expression markers of tumor resistance to HER2 inhibitor treatment
WO2013068946A2 (en) 2011-11-11 2013-05-16 Rinat Neuroscience Corp. Antibodies specific for trop-2 and their uses
US8466263B2 (en) 2005-12-02 2013-06-18 Dana-Farber Cancer Institute, Inc. Carbonic anhydrase IX (G250) anitbodies
WO2013096812A1 (en) 2011-12-23 2013-06-27 Genentech, Inc. Articles of manufacture and methods for co-administration of antibodies
WO2013093693A1 (en) 2011-12-22 2013-06-27 Rinat Neuroscience Corp. Staphylococcus aureus specific antibodies and uses thereof
WO2013093707A1 (en) 2011-12-22 2013-06-27 Rinat Neuroscience Corp. Human growth hormone receptor antagonist antibodies and methods of use thereof
WO2013101771A2 (en) 2011-12-30 2013-07-04 Genentech, Inc. Compositions and method for treating autoimmune diseases
EP2614839A2 (en) 2006-04-05 2013-07-17 Genentech, Inc. Method for using BOC/CDO to modulate hedgehog signaling
EP2623516A2 (en) 2005-12-02 2013-08-07 Genentech, Inc. Compositions and methods for the treatment of diseases and disorders associated with cytokine signaling involving antibodies that bind to IL-22 and IL-22R
WO2013116287A1 (en) 2012-01-31 2013-08-08 Genentech, Inc. Anti-ig-e m1' antibodies and methods using same
US8535912B2 (en) 2009-10-15 2013-09-17 Genentech, Inc. Chimeric fibroblast growth factors with altered receptor specificity
EP2639301A2 (en) 2006-06-30 2013-09-18 Bristol-Myers Squibb Company Polynucleotides encoding novel PCSK9 variants
EP2641618A2 (en) 2007-07-16 2013-09-25 Genentech, Inc. Humanized anti-CD79B antibodies and immunoconjugates and methods of use
WO2013149111A2 (en) 2012-03-29 2013-10-03 Novimmune S.A. Anti-tlr4 antibodies and uses thereof
EP2657253A2 (en) 2008-01-31 2013-10-30 Genentech, Inc. Anti-CD79b antibodies and immunoconjugates and methods of use
WO2013166500A1 (en) 2012-05-04 2013-11-07 Dana-Farber Cancer Institute, Inc. Affinity matured anti-ccr4 humanized monoclonal antibodies and methods of use
WO2013166594A1 (en) 2012-05-10 2013-11-14 Zymeworks Inc. Heteromultimer constructs of immunoglobulin heavy chains with mutations in the fc domain
US8609101B2 (en) 2009-04-23 2013-12-17 Theraclone Sciences, Inc. Granulocyte-macrophage colony-stimulating factor (GM-CSF) neutralizing antibodies
WO2013188448A2 (en) 2012-06-11 2013-12-19 Amgen Inc. Dual receptor antagonistic antigen-binding proteins and uses thereof
US8613926B2 (en) 2011-06-06 2013-12-24 Novo Nordisk A/S Anti-C5a receptor antibodies
EP2703011A2 (en) 2007-05-07 2014-03-05 MedImmune, LLC Anti-icos antibodies and their use in treatment of oncology, transplantation and autoimmune disease
US8691918B2 (en) 2010-05-17 2014-04-08 Emd Millipore Corporation Stimulus responsive polymers for the purification of biomolecules
WO2014055897A2 (en) 2012-10-04 2014-04-10 Dana-Farber Cancer Institute, Inc. Human monoclonal anti-pd-l1 antibodies and methods of use
WO2014072876A1 (en) 2012-11-09 2014-05-15 Pfizer Inc. Platelet-derived growth factor b specific antibodies and compositions and uses thereof
WO2014087248A2 (en) 2012-12-03 2014-06-12 Novimmune S.A. Anti-cd47 antibodies and methods of use thereof
WO2014130064A1 (en) 2013-02-22 2014-08-28 Abbvie Inc. Ultrafiltration and diafiltration formulation methods for protein processing
WO2014145098A1 (en) 2013-03-15 2014-09-18 Genentech, Inc. Cell culture compositions with antioxidants and methods for polypeptide production
EP2784084A1 (en) 2003-07-08 2014-10-01 Genentech, Inc. IL-17 A/F heterologous polypeptides and therapeutics uses thereof
WO2014160495A1 (en) 2013-03-13 2014-10-02 Genentech, Inc. Formulations with reduced oxidation
US8858948B2 (en) 2009-05-20 2014-10-14 Theraclone Sciences, Inc. Compositions and methods for the therapy and diagnosis of influenza
WO2014169076A1 (en) 2013-04-09 2014-10-16 Annexon,,Inc. Methods of treatment for neuromyelitis optica
WO2014172661A1 (en) 2013-04-19 2014-10-23 The Regent Of The University Of California Lone star virus
WO2014181229A2 (en) 2013-05-07 2014-11-13 Rinat Neuroscience Corp. Anti-glucagon receptor antibodies and methods of use thereof
US8900590B2 (en) 2010-08-12 2014-12-02 Theraclone Sciences, Inc. Anti-hemagglutinin antibody compositions and methods of use thereof
US8916160B2 (en) 2011-02-14 2014-12-23 Theraclone Sciences, Inc. Compositions and methods for the therapy and diagnosis of influenza
WO2015023596A1 (en) 2013-08-12 2015-02-19 Genentech, Inc. Compositions and method for treating complement-associated conditions
WO2015048520A1 (en) 2013-09-27 2015-04-02 Genentech, Inc. Anti-pdl1 antibody formulations
US8999702B2 (en) 2008-06-11 2015-04-07 Emd Millipore Corporation Stirred tank bioreactor
US9000132B2 (en) 2013-03-15 2015-04-07 Diadexus, Inc. Lipoprotein-associated phospholipase A2 antibody compositions and methods of use
WO2015050959A1 (en) 2013-10-01 2015-04-09 Yale University Anti-kit antibodies and methods of use thereof
WO2015073580A1 (en) 2013-11-13 2015-05-21 Pfizer Inc. Tumor necrosis factor-like ligand 1a specific antibodies and compositions and uses thereof
US9045541B2 (en) 2012-02-06 2015-06-02 Inhibrx Llc CD47 antibodies and methods of use thereof
WO2015087187A1 (en) 2013-12-10 2015-06-18 Rinat Neuroscience Corp. Anti-sclerostin antibodies
WO2015095410A1 (en) 2013-12-17 2015-06-25 Genentech, Inc. Methods of treating cancer using pd-1 axis binding antagonists and an anti-cd20 antibody
WO2015095418A1 (en) 2013-12-17 2015-06-25 Genentech, Inc. Methods of treating her2-positive cancers using pd-1 axis binding antagonists and anti-her2 antibodies
WO2015095423A2 (en) 2013-12-17 2015-06-25 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
WO2015109212A1 (en) 2014-01-17 2015-07-23 Pfizer Inc. Anti-il-2 antibodies and compositions and uses thereof
US9090930B2 (en) 2006-06-27 2015-07-28 Emd Millipore Corporation Method and unit for preparing a sample for the microbiological analysis of a liquid
EP2899541A1 (en) 2007-03-02 2015-07-29 Genentech, Inc. Predicting response to a HER dimerisation inhbitor based on low HER3 expression
US9133524B2 (en) 2010-07-01 2015-09-15 The Regents Of The University Of California Protein kinase ck2 gene mutations, amplifications and polymorphisms in human cancers and methods of use
WO2015143194A2 (en) 2014-03-19 2015-09-24 Dana-Farber Cancer Institute, Inc. Immunogenetic restriction on elicitation of antibodies
EP2927244A1 (en) 2008-09-19 2015-10-07 MedImmune, LLC Antibodies directed to DLL4 and uses thereof
EP2926830A2 (en) 2010-08-31 2015-10-07 Theraclone Sciences, Inc. Human immunodeficiency virus (HIV)-neutralizing antibodies
WO2015195917A1 (en) 2014-06-18 2015-12-23 Mersana Therapeutics, Inc. Monoclonal antibodies against her2 epitope and methods of use thereof
EP2962697A1 (en) 2006-11-27 2016-01-06 diaDexus, Inc. Ovr110 antibody compositions and methods of use
EP2980100A1 (en) 2007-06-08 2016-02-03 Australian Poultry CRC Pty Ltd Clostridial toxin netb
WO2016054638A1 (en) 2014-10-03 2016-04-07 Dana-Farber Cancer Institute, Inc. Glucocorticoid-induced tumor necrosis factor receptor (gitr) antibodies and methods of use thereof
WO2016057488A1 (en) 2014-10-06 2016-04-14 Dana-Farber Cancer Institute, Inc. Humanized cc chemokine receptor 4 (ccr4) antibodies and methods of use thereof
EP3011970A2 (en) 2009-10-22 2016-04-27 F. Hoffmann-La Roche AG Modulation of axon degeneration
WO2016073794A1 (en) 2014-11-05 2016-05-12 Genentech, Inc. Methods of producing two chain proteins in bacteria
WO2016073791A1 (en) 2014-11-05 2016-05-12 Genentech, Inc. Methods of producing two chain proteins in bacteria
WO2016081384A1 (en) 2014-11-17 2016-05-26 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
WO2016092419A1 (en) 2014-12-09 2016-06-16 Rinat Neuroscience Corp. Anti-pd-1 antibodies and methods of use thereof
US9376464B2 (en) 2006-12-21 2016-06-28 Emd Millipore Corporation Purification of proteins
EP3043181A1 (en) 2008-01-15 2016-07-13 The Board of Trustees of The Leland Stanford Junior University Markers of acute myeloid leukemia stem cells
WO2016123329A2 (en) 2015-01-28 2016-08-04 Genentech, Inc. Gene expression markers and treatment of multiple sclerosis
US9428548B2 (en) 2009-09-01 2016-08-30 Genentech, Inc. Enhanced protein purification through a modified protein A elution
US9465029B2 (en) 2004-04-16 2016-10-11 Glaxo Group Limited Methods for detecting LP-PLA2 activity and inhibition of LP-PLA2 activity
WO2016166629A1 (en) 2015-04-13 2016-10-20 Pfizer Inc. Therapeutic antibodies and their uses
EP3095793A1 (en) 2003-07-28 2016-11-23 Genentech, Inc. Reducing protein a leaching during protein a affinity chromatography
EP3095797A1 (en) 2012-02-24 2016-11-23 Stemcentrx, Inc. Anti dll3 antibodies and methods of use thereof
WO2016191750A1 (en) 2015-05-28 2016-12-01 Genentech, Inc. Cell-based assay for detecting anti-cd3 homodimers
WO2016196381A1 (en) 2015-05-29 2016-12-08 Genentech, Inc. Pd-l1 promoter methylation in cancer
WO2016201389A2 (en) 2015-06-12 2016-12-15 Alector Llc Anti-cd33 antibodies and methods of use thereof
WO2016201388A2 (en) 2015-06-12 2016-12-15 Alector Llc Anti-cd33 antibodies and methods of use thereof
WO2016205320A1 (en) 2015-06-17 2016-12-22 Genentech, Inc. Methods of treating locally advanced or metastatic breast cancers using pd-1 axis binding antagonists and taxanes
EP3112468A1 (en) 1998-05-15 2017-01-04 Genentech, Inc. Il-17 homologous polypeptides and therapeutic uses thereof
US9540674B2 (en) 2006-03-31 2017-01-10 Dana-Farber Cancer Institute, Inc. Methods of determining cellular chemosensitivity
US9562097B2 (en) 2011-07-01 2017-02-07 Genentech, Inc. Use of anti-CD83 agonist antibodies for treating autoimmune diseases
EP3130349A1 (en) 2004-06-04 2017-02-15 Genentech, Inc. Method for treating multiple sclerosis
WO2017040301A1 (en) 2015-08-28 2017-03-09 Alector Llc Anti-siglec-7 antibodies and methods of use thereof
WO2017041004A1 (en) 2015-09-02 2017-03-09 The Regents Of The University Of Colorado, A Body Corporate Compositions and methods for modulating t-cell mediated immune response
WO2017062682A2 (en) 2015-10-06 2017-04-13 Genentech, Inc. Method for treating multiple sclerosis
WO2017070561A1 (en) 2015-10-23 2017-04-27 Pfizer Inc. Anti-il-2 antibodies and compositions and uses thereof
WO2017075432A2 (en) 2015-10-29 2017-05-04 Alector Llc Anti-siglec-9 antibodies and methods of use thereof
US9683047B2 (en) 2008-09-16 2017-06-20 Genentech, Inc. Methods for treating progressive multiple sclerosis
WO2017117311A1 (en) 2015-12-30 2017-07-06 Genentech, Inc. Formulations with reduced degradation of polysorbate
WO2017117304A1 (en) 2015-12-30 2017-07-06 Genentech, Inc. Use of tryptophan derivatives for protein formulations
EP3189831A1 (en) 2007-11-30 2017-07-12 AbbVie Biotechnology Ltd Protein formulations and methods of making same
EP3208612A1 (en) 2008-04-09 2017-08-23 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP3211008A1 (en) 2008-08-29 2017-08-30 F. Hoffmann-La Roche AG Cross-reactive and bispecific anti-il-17a/f antibodies
US9803165B2 (en) 2008-12-16 2017-10-31 Emd Millipore Corporation Stirred tank reactor and method
US9810670B2 (en) 2012-11-15 2017-11-07 Genentech, Inc. Ionic strength-mediated pH gradient ion exchange chromatography
WO2017196902A2 (en) 2016-05-10 2017-11-16 Genentech, Inc. Methods of decreasing trisulfide bonds during recombinant production of polypeptides
US9822166B2 (en) 2013-03-15 2017-11-21 Dana-Farber Cancer Institute, Inc. Flavivirus neutralizing antibodies and methods of use thereof
WO2017218977A2 (en) 2016-06-17 2017-12-21 Genentech, Inc. Purification of multispecific antibodies
EP3260136A1 (en) 2009-03-17 2017-12-27 Theraclone Sciences, Inc. Human immunodeficiency virus (hiv) -neutralizing antibodies
EP3263581A1 (en) 2005-05-17 2018-01-03 University of Connecticut Compositions and methods for immunomodulation in an organism
WO2018018039A2 (en) 2016-07-22 2018-01-25 Dana-Farber Cancer Institute, Inc. Glucocorticoid-induced tumor necrosis factor receptor (gitr) antibodies and methods of use thereof
WO2018027204A1 (en) 2016-08-05 2018-02-08 Genentech, Inc. Multivalent and multiepitopic anitibodies having agonistic activity and methods of use
WO2018029124A1 (en) 2016-08-08 2018-02-15 F. Hoffmann-La Roche Ag Therapeutic and diagnostic methods for cancer
WO2018035025A1 (en) 2016-08-15 2018-02-22 Genentech, Inc. Chromatography method for quantifying a non-ionic surfactant in a composition comprising the non-ionic surfactant and a polypeptide
WO2018049261A1 (en) 2016-09-09 2018-03-15 Icellhealth Consulting Llc Oncolytic virus expressing immune checkpoint modulators
WO2018048939A1 (en) 2016-09-06 2018-03-15 Dana-Farber Cancer Institute, Inc. Methods of treating or preventing zika virus infection
WO2018055574A1 (en) 2016-09-23 2018-03-29 Teva Pharmaceuticals International Gmbh Treating refractory migraine
WO2018055573A1 (en) 2016-09-23 2018-03-29 Teva Pharmaceuticals International Gmbh Treating cluster headache
EP3301116A1 (en) 2008-08-25 2018-04-04 Dana Farber Cancer Institute, Inc. Conserved influenza hemagglutinin epitope and antibodies thereto
US9951122B2 (en) 2007-12-06 2018-04-24 Dana-Farber Cancer Institute, Inc. Antibodies against influenza virus and methods of use thereof
WO2018083535A1 (en) 2016-11-04 2018-05-11 Novimmune Sa Anti-cd19 antibodies and methods of use thereof
EP3321283A1 (en) 2008-06-13 2018-05-16 Pfizer Inc Treatment of chronic prostatitis
US9975957B2 (en) 2014-03-31 2018-05-22 Genentech, Inc. Anti-OX40 antibodies and methods of use
EP3327039A1 (en) 2010-06-02 2018-05-30 Dana Farber Cancer Institute, Inc. Humanized monoclonal antibodies and methods of use
US10010611B2 (en) 2013-03-13 2018-07-03 Genentech, Inc. Antibody formulations
US10011658B2 (en) 2015-04-03 2018-07-03 Eureka Therapeutics, Inc. Constructs targeting AFP peptide/MHC complexes and uses thereof
EP3348277A1 (en) 2009-11-20 2018-07-18 The Regents of The University of California Epithelial membrane protein-2 (emp2) and proliferative vitreoretinopathy (pvr)
EP3360567A1 (en) 2007-11-07 2018-08-15 Genentech, Inc. Amp for use in treating microbial disorders
WO2018158658A1 (en) 2017-03-03 2018-09-07 Rinat Neuroscience Corp. Anti-gitr antibodies and methods of use thereof
US10077304B2 (en) 2013-08-14 2018-09-18 The Governing Council Of The University Of Toronto Antibodies against frizzled receptor
US10087255B2 (en) 2015-04-07 2018-10-02 Alector Llc Anti-sortilin antibodies and methods of use thereof
WO2018200742A1 (en) 2017-04-25 2018-11-01 The Usa, As Represented By The Secretary, Dept. Of Health And Human Services Antibodies and methods for the diagnosis and treatment of epstein barr virus infection
EP3401335A1 (en) 2008-01-30 2018-11-14 Genentech, Inc. Composition comprising antibody that binds to domain ii of her2 and acidic variants thereof
US10132797B2 (en) 2016-12-19 2018-11-20 Tolero Pharmaceuticals, Inc. Profiling peptides and methods for sensitivity profiling
WO2018213316A1 (en) 2017-05-16 2018-11-22 Alector Llc Anti-siglec-5 antibodies and methods of use thereof
WO2018215835A1 (en) 2017-05-26 2018-11-29 Novimmune Sa Anti-cd47 x anti-mesothelin antibodies and methods of use thereof
EP3412309A1 (en) 2011-03-31 2018-12-12 F. Hoffmann-La Roche AG Methods of administering beta7 integrin antagonists
WO2019028283A1 (en) 2017-08-03 2019-02-07 Alector Llc Anti-cd33 antibodies and methods of use thereof
US10233211B2 (en) 2006-12-21 2019-03-19 Emd Millipore Corporation Purification of proteins
WO2019067015A1 (en) 2017-09-29 2019-04-04 City Of Hope Chimeric antigen receptors and bispecific antibodies for treatment of mantle cell lymphoma
US10259835B2 (en) 2015-05-18 2019-04-16 Tolero Pharmaceuticals, Inc. Alvocidib prodrugs having increased bioavailability
WO2019073069A1 (en) 2017-10-13 2019-04-18 Boehringer Ingelheim International Gmbh Human antibodies to thomsen-nouvelle (tn) antigen
US10274466B2 (en) 2013-07-12 2019-04-30 Genentech, Inc. Elucidation of ion exchange chromatography input optimization
US10308718B2 (en) 2018-01-10 2019-06-04 Alector Llc Anti-sortilin antibodies and methods of use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991000360A1 (en) * 1989-06-29 1991-01-10 Medarex, Inc. Bispecific reagents for aids therapy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991000360A1 (en) * 1989-06-29 1991-01-10 Medarex, Inc. Bispecific reagents for aids therapy

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Biotechnology, Volume 3, issued October 1985, CHANG et al., "Detection of antibodies to human T-cell lymphotropic virus-III (HTLV-III) with an immunoassay employing a reconiannat Escherichia coli-derived viral antigenic peptide", pages 905-909, entire document. *
Journal of Virology, Volume 61, No. 2, issued February 1987, MODROW et al., "Computer assisted analysis of envelope protein sequences of seven human immunodeficiency virus isolates: prediction of antigenic epitopes in conserved and variable regions", pages 570-578, entire document. *
Virology, Volume 164, issued 1988, GURGO et al., "Envelope sequences of two new united states HIV-1 isolates", pages 531-536, entire document. *

Cited By (456)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843446A (en) * 1993-04-27 1998-12-01 United Biomedical, Inc. Immunogenic LHRH peptide constructs and synthetic universal immune stimulators for vaccines
US5622933A (en) * 1993-09-13 1997-04-22 Armel S.A. Multiple branch peptide constructions for use against HIV
EP2241622A2 (en) 1994-03-18 2010-10-20 Genentech, Inc. Human trk receptors and their derivatives
EP2275119A1 (en) 1995-07-27 2011-01-19 Genentech, Inc. Stable isotonic lyophilized protein formulation
US6998116B1 (en) 1996-01-09 2006-02-14 Genentech, Inc. Apo-2 ligand
US6030945A (en) * 1996-01-09 2000-02-29 Genentech, Inc. Apo-2 ligand
US6746668B2 (en) 1996-01-09 2004-06-08 Genentech, Inc. Apo-2 ligand
US7285533B2 (en) 1996-01-09 2007-10-23 Genentech, Inc. Apo-2 ligand
US6469144B1 (en) 1996-04-01 2002-10-22 Genentech, Inc. Apo-2LI and Apo-3 polypeptides
US5851984A (en) * 1996-08-16 1998-12-22 Genentech, Inc. Method of enhancing proliferation or differentiation of hematopoietic stem cells using Wnt polypeptides
US6159462A (en) * 1996-08-16 2000-12-12 Genentech, Inc. Uses of Wnt polypeptides
US6462176B1 (en) 1996-09-23 2002-10-08 Genentech, Inc. Apo-3 polypeptide
US6492139B1 (en) 1996-09-30 2002-12-10 Genentech, Inc. Vertebrate smoothened proteins
US6136958A (en) * 1996-09-30 2000-10-24 Genentech, Inc. Antibodies to vertebrate smoothened proteins
US5990281A (en) * 1996-09-30 1999-11-23 Genentech, Inc. Vertebrate smoothened proteins
US6407216B1 (en) 1996-09-30 2002-06-18 Genentech, Inc. Vertebrate smoothened antibodies
US6270987B1 (en) 1997-01-31 2001-08-07 Genentech, Inc. O-fucosyltransferase
US7749755B2 (en) 1997-05-15 2010-07-06 Genentech, Inc. Apo-2 receptor polynucleotides
US7314619B2 (en) 1997-05-15 2008-01-01 Genentech, Inc. Inducing apoptosis using anti-Apo-2 antibodies
US7807153B2 (en) 1997-05-15 2010-10-05 Genentech, Inc. Apo-2 receptor agonist antibodies
US7939631B2 (en) 1997-05-15 2011-05-10 Genentech, Inc. APO-2 receptor polypeptides
US7750118B2 (en) 1997-05-15 2010-07-06 Genentech, Inc. Apo-2 receptor polypeptides
US7595046B2 (en) 1997-05-15 2009-09-29 Genentech, Inc. Treatment of cancer using anti-Apo-2 antibodies
US6342369B1 (en) 1997-05-15 2002-01-29 Genentech, Inc. Apo-2-receptor
US8092799B2 (en) 1997-05-15 2012-01-10 Genentech, Inc. Antibodies to Apo-2 receptor polypeptides
US6291643B1 (en) 1997-06-05 2001-09-18 Board Of Reports, The University Of Texas System Apaf-1 an activator of caspase-3
US6716598B2 (en) 1997-06-13 2004-04-06 Genentech, Inc. Protein recovery
US6121428A (en) * 1997-06-13 2000-09-19 Genentech, Inc. Protein recovery
US6322997B1 (en) 1997-06-13 2001-11-27 Genentech, Inc. Protein recovery
EP2083079A1 (en) 1997-06-18 2009-07-29 Genentech, Inc. Apo-2DcR
US6764679B2 (en) 1997-09-18 2004-07-20 Genentech, Inc. Antibodies to DcR3 Polypeptide, a TNFR Homolog
EP1967587A1 (en) 1997-10-10 2008-09-10 Genentech, Inc. APO-3 Ligand
EP1887014A1 (en) 1997-10-17 2008-02-13 Genentech, Inc. Human toll homologues
EP2033970A2 (en) 1997-10-29 2009-03-11 Genentech, Inc. WNT-1 inducible genes
EP2014770A2 (en) 1997-10-29 2009-01-14 Genentech, Inc. WNT-1 Iinduced secreted polypeptide WISP-2
EP2014677A1 (en) 1997-11-21 2009-01-14 Genentech, Inc. A-33 related antigens and their pharmacological uses
WO1999028462A2 (en) 1997-12-03 1999-06-10 Genentech, Inc. Polypeptides and nucleic acids encoding the same
US6740739B1 (en) 1998-01-15 2004-05-25 Genentech, Inc. Substitutional variants of APO-2 ligand
EP2017341A2 (en) 1998-01-15 2009-01-21 Genentech, Inc. Apo-2 ligand
US7342099B2 (en) 1998-02-25 2008-03-11 The United States Of America As Represented By The Secretary, Department Of Health And Human Services cDNA encoding a gene BOG (B5T over-expressed gene) and its protein product
US6727079B1 (en) 1998-02-25 2004-04-27 The United States Of America As Represented By The Department Of Health And Human Services cDNA encoding a gene BOG (B5T Over-expressed Gene) and its protein product
EP2050762A2 (en) 1998-03-10 2009-04-22 Genentech, Inc. Novel polypeptides and nucleic acids encoding the same
EP2016951A1 (en) 1998-03-17 2009-01-21 Genentech, Inc. Polypeptides homologous to VEGF and BMP1
EP1941905A1 (en) 1998-03-27 2008-07-09 Genentech, Inc. APO-2 Ligand-anti-her-2 antibody synergism
EP3112468A1 (en) 1998-05-15 2017-01-04 Genentech, Inc. Il-17 homologous polypeptides and therapeutic uses thereof
EP2333069A2 (en) 1998-05-15 2011-06-15 Genentech, Inc. Therapeutic uses of IL-17 homologous polypeptides
EP2058334A2 (en) 1998-06-12 2009-05-13 Genentech, Inc. Monoclonal antibodies, cross-reactive antibodies and method for producing the same
US7090848B1 (en) 1998-08-04 2006-08-15 Henry M. Jackson Foundation For The Advancement Of Military Medicine HIV-1 envelope protein associated with a broadly reactive neutralizing antibody response
EP1104310A1 (en) * 1998-08-04 2001-06-06 Henry M. Jackson Foundation Expression and characterization of hiv-1 envelope protein associated with a broadly reactive neutralizing antibody response
US7608688B2 (en) 1998-08-04 2009-10-27 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. HIV-1 protein associated with broadly reactive neutralizing antibody response
EP1104310A4 (en) * 1998-08-04 2003-01-08 Henry M Jackson Foundation Expression and characterization of hiv-1 envelope protein associated with a broadly reactive neutralizing antibody response
EP1950300A2 (en) 1998-11-18 2008-07-30 Genentech, Inc. Antibody variants with higher binding affinity compared to parent antibodies
EP1820859A2 (en) 1998-12-22 2007-08-22 Genentech, Inc. Methods and compositions for inhibiting neoplastic cell growth
EP2075335A2 (en) 1998-12-22 2009-07-01 Genentech, Inc. Methods and compositions for inhibiting neoplastic cell growth
EP2330198A1 (en) 1998-12-23 2011-06-08 Genentech, Inc. IL-1 related polypeptides
EP2319929A1 (en) 1998-12-23 2011-05-11 Genentech, Inc. IL-1 related polypeptides
EP2366713A2 (en) 1999-01-15 2011-09-21 Genentech, Inc. Polypeptide variants with altered effector function
EP2386574A2 (en) 1999-01-15 2011-11-16 Genentech, Inc. Polypeptide variants with altered effector function
EP2364997A2 (en) 1999-01-15 2011-09-14 Genentech, Inc. Polypeptide variants with altered effector function
EP1978029A2 (en) 1999-06-15 2008-10-08 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids endoding the same
EP2112167A2 (en) 1999-06-25 2009-10-28 Genentech, Inc. Humanized ANTI-ERBB2 antibodies and treatment with ANTI-ERBB2 antibodies
US7371379B2 (en) 1999-08-27 2008-05-13 Genentech, Inc. Dosages for treatment with anti-ErbB2 antibodies
US10160811B2 (en) 1999-08-27 2018-12-25 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US10280228B2 (en) 1999-08-27 2019-05-07 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US6627196B1 (en) 1999-08-27 2003-09-30 Genentech, Inc. Dosages for treatment with anti-ErbB2 antibodies
EP2228446A1 (en) 1999-12-01 2010-09-15 Genentech, Inc. Secreted and transmembrane polypeptieds and nucleic acids encoding the same
EP2290081A2 (en) 1999-12-23 2011-03-02 Genentech, Inc. IL-17 homologous polypeptide and therapeutic uses thereof
EP2258848A1 (en) 1999-12-23 2010-12-08 Genentech, Inc. Il-17 homologous polypeptide and therapeutic uses thereof
US7235633B2 (en) 2000-03-21 2007-06-26 Genentech, Inc. Cytokine receptors and nucleic acids encoding the same
EP2052742A1 (en) 2000-06-20 2009-04-29 Biogen Idec Inc. Treatment of B-cell associated diseases such as malignancies and autoimmune diseases using a cold anti-CD20 antibody/radiolabeled anti-CD22 antibody combination
EP2077276A1 (en) 2000-06-23 2009-07-08 Genentech, Inc. Compositions and methods for the diagnosis and treatment of disorders involving angiogensis
EP2042597A1 (en) 2000-06-23 2009-04-01 Genentech, Inc. Compositions and methods for the diagnosis and treatment of disorders involving angiogenesis
EP2275549A1 (en) 2000-06-23 2011-01-19 Genentech, Inc. Compositions and methods for the diagnosis and treatment of disorders involving angiogenesis
EP2075334A1 (en) 2000-06-23 2009-07-01 Genentech, Inc. EG-VEGF nucleic acids and polypeptides and methods of use
EP2168980A1 (en) 2000-06-23 2010-03-31 Genentech, Inc. Compositions and methods for the diagnosis and treatment of disorders involving angiogensis
EP2075253A1 (en) 2000-06-23 2009-07-01 Genentech, Inc. Compositions and methds for the diagnosis and treatment of disorders involving angiogensis
EP2792747A1 (en) 2000-06-23 2014-10-22 Genentech, Inc. Compositions and methods for the diagnosis and treatment of disorders involving angiogenesis
EP2014303A2 (en) 2000-07-27 2009-01-14 Genentech, Inc. APO-2L receptor agonist and CPT-11 synergism
EP2159230A1 (en) 2000-08-07 2010-03-03 Centocor Ortho Biotech Inc. Anti-TNF antibodies, compositions, methods and uses
EP2090657A2 (en) 2000-08-07 2009-08-19 Centocor Ortho Biotech Inc. Anti-IL-12 antibodies, compositions, methods and uses
EP2014298A2 (en) 2000-08-24 2009-01-14 Genentech, Inc. Interleukin-22 polypeptides, nucleic acids encoding the same and methods for the treatment of pancreatic disorders
WO2002016625A2 (en) 2000-08-25 2002-02-28 Basf Plant Science Gmbh Plant polynucleotides encoding prenyl proteases
EP1944317A2 (en) 2000-09-01 2008-07-16 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
WO2002030463A2 (en) 2000-10-12 2002-04-18 Genentech, Inc. Reduced-viscosity concentrated protein formulations
EP2314318A1 (en) 2001-01-31 2011-04-27 Biogen Idec Inc. CD80 antibody for use in combination with chemotherapeutics to treat B cell malignancies
EP2065467A2 (en) 2001-02-22 2009-06-03 Genentech, Inc. Anti-interferon-alpha antibodies
EP2340849A1 (en) 2001-05-30 2011-07-06 Genentech, Inc. Anti-NGF antibodies for the treatment of various disorders
EP2000148A1 (en) 2001-06-20 2008-12-10 Genentech, Inc. Compositions and methods for the diagnosis and treatment of prostate cancer
EP2000482A1 (en) 2001-06-20 2008-12-10 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP1992643A2 (en) 2001-06-20 2008-11-19 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP2000545A1 (en) 2001-06-20 2008-12-10 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP2311960A2 (en) 2001-08-29 2011-04-20 Genentech, Inc. Bv8 nucleic acids and polypeptides with mitogenic activity
EP2151244A1 (en) 2001-09-18 2010-02-10 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP2153843A1 (en) 2001-09-18 2010-02-17 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP2143438A1 (en) 2001-09-18 2010-01-13 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP2067472A1 (en) 2002-01-02 2009-06-10 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
US8673305B2 (en) 2002-01-25 2014-03-18 G2 Therapies Ltd Methods of treatment with antibodies against the extracellular loops of C5aR
US8221757B2 (en) 2002-01-25 2012-07-17 G2 Therapies Ltd Monoclonal antibodies against extracellular loops of C5aR
EP2048154A1 (en) 2002-02-05 2009-04-15 Genentech, Inc. Protein purification
EP2110434A1 (en) 2002-02-25 2009-10-21 Genentech, Inc. Type-1 cytokine receptor GLM-R
WO2003075765A1 (en) 2002-03-05 2003-09-18 Board Of Regents, The University Of Texas System Biospecific contrast agents
EP2011886A2 (en) 2002-04-16 2009-01-07 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP2332956A1 (en) 2002-07-08 2011-06-15 Genentech, Inc. Antibody binding to PRO71238
EP2263691A1 (en) 2002-07-15 2010-12-22 Genentech, Inc. Treatment of cancer with the recombinant humanized monoclonal anti-erbb2 antibody 2C4 (rhuMAb 2C4)
US9902759B2 (en) 2002-09-09 2018-02-27 Dana-Farber Cancer Institute, Inc. BH3 peptides and methods of use thereof
US9856303B2 (en) 2002-09-09 2018-01-02 Dana-Farber Cancer Institute, Inc. BH3 peptides and method of use thereof
US7868133B2 (en) 2002-09-09 2011-01-11 Dana Farber Cancer Institute, Inc. BH3 peptides and method of use thereof
EP2332996A1 (en) 2002-09-11 2011-06-15 Genentech, Inc. Protein Purification
EP3388452A2 (en) 2002-09-11 2018-10-17 Genentech, Inc. Protein purification
EP2444409A2 (en) 2002-09-16 2012-04-25 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2434022A2 (en) 2002-10-03 2012-03-28 Genentech, Inc. Use of A33 antigens and JAM-IT
EP2322202A2 (en) 2002-10-29 2011-05-18 Genentech, Inc. Compositions and methods for the treatment of immune diseases
EP2322203A2 (en) 2002-10-29 2011-05-18 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2322200A2 (en) 2002-10-29 2011-05-18 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2322201A2 (en) 2002-10-29 2011-05-18 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2364716A2 (en) 2002-11-08 2011-09-14 Genentech, Inc. Compositions and methods for the treatment of natural killer cell related diseases
EP2311870A1 (en) 2002-11-26 2011-04-20 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2308968A1 (en) 2002-11-26 2011-04-13 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2314676A1 (en) 2002-11-26 2011-04-27 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2311868A1 (en) 2002-11-26 2011-04-20 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2270048A2 (en) 2002-12-24 2011-01-05 Rinat Neuroscience Corp. Anti-NGF antibodies and methods using same
EP2263692A1 (en) 2002-12-24 2010-12-22 Rinat Neuroscience Corp. Anti-NGF antibodies and methods using same
EP2526960A1 (en) 2003-03-12 2012-11-28 Genentech, Inc. Use of BV8 and/or EG-VEGF to promote hematopoiesis
WO2004096124A2 (en) 2003-04-01 2004-11-11 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP2335725A1 (en) 2003-04-04 2011-06-22 Genentech, Inc. High concentration antibody and protein formulations
EP3178492A1 (en) 2003-04-04 2017-06-14 Genentech, Inc. High concentration antibody and protein formulations
EP2062916A2 (en) 2003-04-09 2009-05-27 Genentech, Inc. Therapy of autoimmune disease in a patient with an inadequate response to a TNF-Alpha inhibitor
EP2083018A2 (en) 2003-04-16 2009-07-29 Genentech, Inc. Compositions and methods relating to STOP-1
EP2251355A1 (en) 2003-05-30 2010-11-17 Genentech, Inc. Treatment with anti-VEGF antibodies
EP2248829A1 (en) 2003-05-30 2010-11-10 Genentech, Inc. Treatment with anti-VEGF antibodies
EP2311875A1 (en) 2003-05-30 2011-04-20 Genentech, Inc. Treatment with anti-VEGF antibodies
EP2272868A2 (en) 2003-06-05 2011-01-12 Genentech, Inc. Combination therapy for B cell disorders
EP2093570A1 (en) 2003-06-06 2009-08-26 Genentech, Inc. Modulating the interaction between HGF beta chain and c-met
WO2004112572A2 (en) 2003-06-13 2004-12-29 University Of Pittsburgh Monitoring immunologic, hematologic and inflammatory diseases
EP2784084A1 (en) 2003-07-08 2014-10-01 Genentech, Inc. IL-17 A/F heterologous polypeptides and therapeutics uses thereof
EP3095793A1 (en) 2003-07-28 2016-11-23 Genentech, Inc. Reducing protein a leaching during protein a affinity chromatography
WO2005014818A1 (en) 2003-08-08 2005-02-17 Perseus Proteomics Inc. Gene overexpressed in cancer
EP2311468A1 (en) 2003-08-08 2011-04-20 Perseus Proteomics Inc. Gene overexpressed in cancer
EP2014675A1 (en) 2003-08-11 2009-01-14 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2301568A1 (en) 2003-11-17 2011-03-30 Genentech, Inc. Antibody against IRTA2 for the treatment of tumour of hematopoietic origin
EP2161283A1 (en) 2003-11-17 2010-03-10 Genentech, Inc. Compositions comprising antibodies against CD79b conjugated to a growth inhibitory agent or cytotoxic agent and methods for the treatment of tumor of hematopoietic origin
EP2295073A1 (en) 2003-11-17 2011-03-16 Genentech, Inc. Antibody against CD22 for the treatment of tumour of hematopoietic origin
EP2336178A1 (en) 2003-12-11 2011-06-22 Genentech, Inc. Methods and compositions for inhibiting C-Met dimerization and activation
US7968690B2 (en) 2003-12-23 2011-06-28 Rinat Neuroscience Corp. Agonist anti-trkC antibodies and methods using same
EP2402756A2 (en) 2003-12-23 2012-01-04 Rinat Neuroscience Corp. Agonist anti-trkC antibodies and methods using same
US9465029B2 (en) 2004-04-16 2016-10-11 Glaxo Group Limited Methods for detecting LP-PLA2 activity and inhibition of LP-PLA2 activity
EP2214014A1 (en) 2004-05-11 2010-08-04 The University of Pittsburgh Monitoring immunologic, hematologic and inflammatory diseases
EP3130349A1 (en) 2004-06-04 2017-02-15 Genentech, Inc. Method for treating multiple sclerosis
EP2921500A1 (en) 2004-07-10 2015-09-23 Fox Chase Cancer Center Genetically modified human natural killer cell lines
US7618817B2 (en) 2004-07-10 2009-11-17 Fox Chase Cancer Center Genetically modified human natural killer cell lines
US9150636B2 (en) 2004-07-10 2015-10-06 Fox Chase Cancer Center Genetically modified human natural killer cell lines
US9181322B2 (en) 2004-07-10 2015-11-10 Fox Chase Cancer Center Genetically modified human natural killer cell lines
EP2112162A1 (en) 2004-07-10 2009-10-28 Fox Chase Cancer Center Genetically modified human natural killer cell lines
EP3406631A1 (en) 2004-07-10 2018-11-28 Fox Chase Cancer Center Genetically modified human natural killer cell lines
US8313943B2 (en) 2004-07-10 2012-11-20 Fox Chase Cancer Center Genetically modified human natural killer cell lines
EP2801583A1 (en) 2004-07-10 2014-11-12 Fox Chase Cancer Center Genetically modified human natural killer cell lines
EP2361931A1 (en) 2004-07-20 2011-08-31 Genentech, Inc. Inhibitors of angiopoietin-like 4 protein, combinations, and their use
EP2298807A2 (en) 2004-07-30 2011-03-23 Rinat Neuroscience Corp. Antibodies directed against amyloid-beta peptide and methods using same
EP2371388A2 (en) 2004-10-20 2011-10-05 Genentech, Inc. Antibody formulations
EP2230517A1 (en) 2005-01-07 2010-09-22 Diadexus, Inc. OVR110 antibody compositions and methods of use
WO2006089133A2 (en) 2005-02-15 2006-08-24 Duke University Anti-cd19 antibodies and uses in oncology
EP2548575A1 (en) 2005-02-15 2013-01-23 Duke University Anti-CD19 antibodies that mediate ADCC for use in treating autoimmune diseases
US8329178B2 (en) 2005-02-18 2012-12-11 Dana-Farber Cancer Institute, Inc. Antibodies against CXCR4 and methods of use thereof
EP2399605A1 (en) 2005-02-23 2011-12-28 Genentech, Inc. Extending time to disease progression or survival in cancer patients
EP2305711A2 (en) 2005-04-11 2011-04-06 Rinat Neuroscience Corp. Methods for treating osteoarthitis pain by administering a nerve growth factor antagonist and compositions containing the same
WO2006108273A1 (en) 2005-04-11 2006-10-19 National Research Council Of Canada Identification of a beta-1,3-n-acetylgalactosaminyltransferase (cgte) from campylobacter jejuni lio87
EP3272358A1 (en) 2005-04-11 2018-01-24 Rinat Neuroscience Corporation Methods for treating osteoarthitis pain by administering a nerve growth factor antagonist and compositions containing the same
EP2267450A2 (en) 2005-04-29 2010-12-29 The Regents of the University of California Antibodies against histone modifications for clinical diagnosis and prognosis of cancer
EP2221316A1 (en) 2005-05-05 2010-08-25 Duke University Anti-CD19 antibody therapy for autoimmune disease
EP3263581A1 (en) 2005-05-17 2018-01-03 University of Connecticut Compositions and methods for immunomodulation in an organism
EP2186402A1 (en) 2005-06-06 2010-05-19 Genentech, Inc. Knock-out animal models for novel genes and methods of use
US7482124B2 (en) 2005-07-08 2009-01-27 Bristol-Myers Squibb Company Method of identifying a PPARgamma-agonist compound having a decreased likelihood of inducing dose-dependent peripheral edema
US8030469B2 (en) 2005-07-22 2011-10-04 Sbi Incubation Co., Ltd. Anti-CD26 antibodies and methods of use thereof
US7462698B2 (en) 2005-07-22 2008-12-09 Y's Therapeutics Co., Ltd. Anti-CD26 antibodies and methods of use thereof
EP2573114A1 (en) 2005-08-10 2013-03-27 MacroGenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
EP1995321A2 (en) 2005-08-15 2008-11-26 Genentech, Inc. Gene disruptions, compositions and methods relating thereto
EP3069731A1 (en) 2005-11-14 2016-09-21 Labrys Biologics Inc. Antagonist antibodies directed against calcitonin gene-related peptide and methods using same
EP2380592A2 (en) 2005-11-14 2011-10-26 Rinat Neuroscience Corp. Antagonist antibodies directed against calcitonin gene-related peptide and methods using same
EP3178493A1 (en) 2005-11-14 2017-06-14 Labrys Biologics Inc. Antagonist antibodies directed against calcitonin gene-related peptide and methods using same
EP2002714A1 (en) 2005-11-21 2008-12-17 Genentech, Inc. Novel gene disruptions, compositions and methods relating thereto
US9676867B2 (en) 2005-12-02 2017-06-13 Dana-Farber Cancer Institute Inc. Chimeric T cell receptor comprising carbonic anhydrase IX (G250) antibody
EP3006466A2 (en) 2005-12-02 2016-04-13 Genentech, Inc. Compositions and methods for the treatment of diseases and disorders associated with cytokine signaling involving antibodies that bind to il-22 and il-22r
US8466263B2 (en) 2005-12-02 2013-06-18 Dana-Farber Cancer Institute, Inc. Carbonic anhydrase IX (G250) anitbodies
EP2623516A2 (en) 2005-12-02 2013-08-07 Genentech, Inc. Compositions and methods for the treatment of diseases and disorders associated with cytokine signaling involving antibodies that bind to IL-22 and IL-22R
US7803561B2 (en) 2006-02-06 2010-09-28 Rhode Island Hospital GPR30 estrogen receptor in breast cancers
WO2007092431A2 (en) 2006-02-06 2007-08-16 Rhode Island Hospital Gpr30 estrogen receptor in breast cancers
EP2050335A1 (en) 2006-02-17 2009-04-22 Genentech, Inc. Gene disruptions, compositions and methods relating thereto
EP2540741A1 (en) 2006-03-06 2013-01-02 Aeres Biomedical Limited Humanized anti-CD22 antibodies and their use in treatment of oncology, transplantation and autoimmune disease
EP2390666A1 (en) 2006-03-21 2011-11-30 The Regents of The University of California N-Cadherin as target for cancer diagnosis and therapy
EP2366716A2 (en) 2006-03-21 2011-09-21 Genentech, Inc. Combinatorial therapy involving alpha5beta1 antagonists
EP2389948A1 (en) 2006-03-23 2011-11-30 Novartis AG Anti-tumor cell antigen antibody therapeutics
EP2389949A1 (en) 2006-03-23 2011-11-30 Novartis AG Anti-tumor cell antigen antibody therapeutics
EP2389951A1 (en) 2006-03-23 2011-11-30 Novartis AG Anti-tumor cell antigen antibody therapeutics
EP2389946A1 (en) 2006-03-23 2011-11-30 Novartis AG Anti-tumor cell antigen antibody therapeutics
EP2389947A1 (en) 2006-03-23 2011-11-30 Novartis AG Anti-tumor cell antigen antibody therapeutics
EP2389950A1 (en) 2006-03-23 2011-11-30 Novartis AG Anti-tumor cell antigen antibody therapeutics
US9540674B2 (en) 2006-03-31 2017-01-10 Dana-Farber Cancer Institute, Inc. Methods of determining cellular chemosensitivity
EP2614839A2 (en) 2006-04-05 2013-07-17 Genentech, Inc. Method for using BOC/CDO to modulate hedgehog signaling
EP2082645A1 (en) 2006-04-19 2009-07-29 Genentech, Inc. Novel gene disruptions, compositions and methods relating thereto
WO2007131133A2 (en) 2006-05-04 2007-11-15 Genentech, Inc. Methods and compositions relating to zpa polypeptides
WO2008036135A2 (en) 2006-06-01 2008-03-27 Genentech, Inc. Crystal structure of crig and c3b: crig complex
US9193794B2 (en) 2006-06-07 2015-11-24 Bioalliance C.V. Antibodies recognizing a carbohydrate containing epitope on CD-43 and CEA expressed on cancer cells and methods using same
US7674605B2 (en) 2006-06-07 2010-03-09 Bioalliance C.V. Antibodies recognizing a carbohydrate containing epitope on CD-43 and CEA expressed on cancer cells and methods using same
US9090930B2 (en) 2006-06-27 2015-07-28 Emd Millipore Corporation Method and unit for preparing a sample for the microbiological analysis of a liquid
US9410181B2 (en) 2006-06-27 2016-08-09 Emd Millipore Corporation Method and unit for preparing a sample for the microbiological analysis of a liquid
EP2671946A1 (en) 2006-06-30 2013-12-11 Bristol-Myers Squibb Company Polynucleotides encoding novel PCSK9 variants
EP2639301A2 (en) 2006-06-30 2013-09-18 Bristol-Myers Squibb Company Polynucleotides encoding novel PCSK9 variants
EP2471815A1 (en) 2006-07-11 2012-07-04 University Of Medicine And Dentistry Of New Jersey Proteins, nucleic acids encoding the same and associated methods of use
EP2471809A1 (en) 2006-07-11 2012-07-04 University Of Medicine And Dentistry Of New Jersey Proteins, nucleic acids encoding the same and associated methods of use
WO2008011081A2 (en) 2006-07-19 2008-01-24 The Trustees Of The University Of Pennsylvania Wsx-1/p28 as a target for anti-inflammatory responses
WO2008021290A2 (en) 2006-08-09 2008-02-21 Homestead Clinical Corporation Organ-specific proteins and methods of their use
EP2520935A2 (en) 2006-08-09 2012-11-07 Homestead Clinical Corporation Organ-specific proteins and methods of their use
US8337852B2 (en) 2006-08-22 2012-12-25 G2 Inflammation Pty Ltd Anti-C5aR antibodies with improved properties
EP2455404A2 (en) 2006-08-22 2012-05-23 G2 Inflammation Pty Ltd Anti-C5AR antibodies with improved properties
EP2423333A1 (en) 2006-08-25 2012-02-29 Oncotherapy Science, Inc. Prognostic markers and therapeutic targets for lung cancer
EP2423332A1 (en) 2006-08-25 2012-02-29 Oncotherapy Science, Inc. Prognostic markers and therapeutic targets for lung cancer
WO2008060776A2 (en) 2006-10-03 2008-05-22 University Of Medicine And Dentistry Of New Jersey Atap peptides, nucleic acids encoding the same and associated methods of use
EP2503341A2 (en) 2006-11-14 2012-09-26 Genentech, Inc. Modulators of Neuronal Regeneration
EP2567975A2 (en) 2006-11-21 2013-03-13 The Regents of The University of California Modulation of RHAMM (CD168) for selective adipose tissue development
EP2962697A1 (en) 2006-11-27 2016-01-06 diaDexus, Inc. Ovr110 antibody compositions and methods of use
EP3181147A1 (en) 2006-11-29 2017-06-21 Genentech, Inc. Il-17a/f heterodimeric polypeptides and therapeutic thereof
EP2450050A1 (en) 2006-11-29 2012-05-09 Genentech, Inc. IL-17A/F heterodimeric polypeptides and therapeutic uses thereof
US10233211B2 (en) 2006-12-21 2019-03-19 Emd Millipore Corporation Purification of proteins
US9376464B2 (en) 2006-12-21 2016-06-28 Emd Millipore Corporation Purification of proteins
EP2436781A1 (en) 2007-02-22 2012-04-04 Genentech, Inc. Methods for detecting inflammatory bowel disease
EP2899541A1 (en) 2007-03-02 2015-07-29 Genentech, Inc. Predicting response to a HER dimerisation inhbitor based on low HER3 expression
WO2008118324A2 (en) 2007-03-26 2008-10-02 Macrogenics, Inc. Composition and method of treating cancer with an anti-uroplakin ib antibody
EP2703011A2 (en) 2007-05-07 2014-03-05 MedImmune, LLC Anti-icos antibodies and their use in treatment of oncology, transplantation and autoimmune disease
EP2737907A2 (en) 2007-05-07 2014-06-04 MedImmune, LLC Anti-icos antibodies and their use in treatment of oncology, transplantation and autoimmune disease
WO2009101479A2 (en) 2007-05-14 2009-08-20 Novimmune Sa Fc receptor-binding polypeptides with modified effector functions
EP2980100A1 (en) 2007-06-08 2016-02-03 Australian Poultry CRC Pty Ltd Clostridial toxin netb
EP2592156A2 (en) 2007-06-08 2013-05-15 Genentech, Inc. Gene expression markers of tumor resistance to HER2 inhibitor treatment
EP3327026A1 (en) 2007-07-09 2018-05-30 Genentech, Inc. Prevention of disulfide bond reduction during recombinant production of polypeptides
EP2586788A1 (en) 2007-07-09 2013-05-01 Genentech, Inc. Prevention of disulfide bond reduction during recombinant production of polypeptides
EP2641618A2 (en) 2007-07-16 2013-09-25 Genentech, Inc. Humanized anti-CD79B antibodies and immunoconjugates and methods of use
EP2474557A2 (en) 2007-07-16 2012-07-11 Genentech, Inc. Anti-CD79b antibodies and immunoconjugates and methods of use
WO2009054873A2 (en) 2007-08-02 2009-04-30 Novimmune S.A. Anti-rantes antibodies and methods of use thereof
EP2537529A1 (en) 2007-08-02 2012-12-26 Gilead Biologics, Inc. Lox and loxl2 inhibitors antibodies and uses thereof
WO2009046123A2 (en) 2007-10-02 2009-04-09 Genentech, Inc. Nlrr-1 antagonists and uses thereof
EP2233149A1 (en) 2007-10-16 2010-09-29 ZymoGenetics, Inc. Combination of BLYS inhibition and anti-CD20 agents for treatment of autoimmune disease
EP3360567A1 (en) 2007-11-07 2018-08-15 Genentech, Inc. Amp for use in treating microbial disorders
US8057796B2 (en) 2007-11-12 2011-11-15 Theraclone Sciences, Inc. Compositions and methods for the therapy and diagnosis of influenza
US8114402B2 (en) 2007-11-12 2012-02-14 Theraclone Sciences, Inc. Compositions and methods for the therapy and diagnosis of influenza
US8460671B2 (en) 2007-11-12 2013-06-11 Theraclone Sciences, Inc. Compositions and methods for the therapy and diagnosis of influenza
EP2261367A2 (en) 2007-11-29 2010-12-15 Genentech, Inc. Gene expression markers for inflammatory bowel disease
EP3189831A1 (en) 2007-11-30 2017-07-12 AbbVie Biotechnology Ltd Protein formulations and methods of making same
EP3333187A1 (en) 2007-12-06 2018-06-13 Dana-Farber Cancer Institute, Inc. Antibodies against influenza virus and methods of use thereof
US9951122B2 (en) 2007-12-06 2018-04-24 Dana-Farber Cancer Institute, Inc. Antibodies against influenza virus and methods of use thereof
US9334329B2 (en) 2007-12-18 2016-05-10 Bioalliance C.V. Antibodies recognizing a carbohydrate containing epitope on CD-43 and CEA expressed on cancer cells and methods using same
US8568718B2 (en) 2007-12-18 2013-10-29 Bioalliance C.V. Antibodies recognizing a carbohydrate containing epitope on CD-43 and CEA expressed on cancer cells and methods using same
WO2009079649A1 (en) 2007-12-18 2009-06-25 Bioalliance C.V. Antibodies recognizing a carbohydrate containing epitope on cd-43 and cea expressed on cancer cells and methods using same
US7982017B2 (en) 2007-12-18 2011-07-19 Bioalliance C.V. Antibodies recognizing a carbohydrate containing epitope on CD-43 and CEA expressed on cancer cells and methods using same
EP3043181A1 (en) 2008-01-15 2016-07-13 The Board of Trustees of The Leland Stanford Junior University Markers of acute myeloid leukemia stem cells
EP3401335A1 (en) 2008-01-30 2018-11-14 Genentech, Inc. Composition comprising antibody that binds to domain ii of her2 and acidic variants thereof
EP2657253A2 (en) 2008-01-31 2013-10-30 Genentech, Inc. Anti-CD79b antibodies and immunoconjugates and methods of use
EP2826791A2 (en) 2008-02-20 2015-01-21 G2 Inflammation Pty Ltd Humanized anti-C5aR antibodies
US8808701B2 (en) 2008-02-20 2014-08-19 G2 Inflammation Pty Ltd Methods of inhibiting the interaction of C5aR with C5a with anti-C5aR antibodies
US8361468B2 (en) 2008-02-20 2013-01-29 G2 Inflammation Pty Ltd Humanized anti-C5aR antibodies
US8268972B2 (en) 2008-02-20 2012-09-18 G2 Inflammation Pty Ltd Humanized anti-C5aR antibodies
WO2009103113A1 (en) 2008-02-20 2009-08-27 G2 Inflammation Pty Ltd HUMANIZED ANTI-C5aR ANTIBODIES
US8268309B2 (en) 2008-03-10 2012-09-18 Theraclone Sciences, Inc. Compositions and methods for the therapy and diagnosis of cytomegalovirus
US7982012B2 (en) 2008-03-10 2011-07-19 Theraclone Sciences, Inc. Compositions and methods for the therapy and diagnosis of cytomegalovirus
US8852594B2 (en) 2008-03-10 2014-10-07 Theraclone Sciences, Inc. Compositions and methods for the therapy and diagnosis of cytomegalovirus infections
EP3208612A1 (en) 2008-04-09 2017-08-23 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
WO2009140684A2 (en) 2008-05-16 2009-11-19 Genentech, Inc. Use of biomarkers for assessing treatment of gastrointestinal inflammatory disorders with beta7integrin antagonists
US8999702B2 (en) 2008-06-11 2015-04-07 Emd Millipore Corporation Stirred tank bioreactor
EP3321283A1 (en) 2008-06-13 2018-05-16 Pfizer Inc Treatment of chronic prostatitis
EP3301116A1 (en) 2008-08-25 2018-04-04 Dana Farber Cancer Institute, Inc. Conserved influenza hemagglutinin epitope and antibodies thereto
EP3211008A1 (en) 2008-08-29 2017-08-30 F. Hoffmann-La Roche AG Cross-reactive and bispecific anti-il-17a/f antibodies
WO2010030813A2 (en) 2008-09-10 2010-03-18 Genentech, Inc. Methods for inhibiting ocular angiogenesis
WO2010029513A2 (en) 2008-09-12 2010-03-18 Rinat Neuroscience Corporation Pcsk9 antagonists
US9683047B2 (en) 2008-09-16 2017-06-20 Genentech, Inc. Methods for treating progressive multiple sclerosis
US9994642B2 (en) 2008-09-16 2018-06-12 Genentech, Inc. Methods for treating progressive multiple sclerosis
EP2927244A1 (en) 2008-09-19 2015-10-07 MedImmune, LLC Antibodies directed to DLL4 and uses thereof
US8491905B2 (en) 2008-11-26 2013-07-23 Allergan, Inc. KLK-13 antibody inhibitor for treating dry eye
US8821874B2 (en) 2008-11-26 2014-09-02 Allergan, Inc. KLK-13 antibody inhibitor for treating dry eye
US8211434B2 (en) 2008-11-26 2012-07-03 Allergan, Inc. KLK-13 antibody inhibitor for treating dry eye
EP3447073A1 (en) 2008-12-09 2019-02-27 F. Hoffmann-La Roche AG Anti-pd-l1 antibodies and their use to enhance t-cell function
EP3255060A1 (en) 2008-12-09 2017-12-13 F. Hoffmann-La Roche AG Anti-pd-l1 antibodies and their use to enhance t-cell function
WO2010077634A1 (en) 2008-12-09 2010-07-08 Genentech, Inc. Anti-pd-l1 antibodies and their use to enhance t-cell function
WO2010074702A1 (en) 2008-12-16 2010-07-01 Millipore Corporation Purification of proteins
US9803165B2 (en) 2008-12-16 2017-10-31 Emd Millipore Corporation Stirred tank reactor and method
WO2010080528A1 (en) 2008-12-17 2010-07-15 Genentech, Inc. Hepatitis c virus combination therapy
WO2010075249A2 (en) 2008-12-22 2010-07-01 Genentech, Inc. A method for treating rheumatoid arthritis with b-cell antagonists
WO2010072740A2 (en) 2008-12-23 2010-07-01 Astrazeneca Ab TARGETED BINDING AGENTS DIRECTED TO α5β1 AND USES THEREOF
WO2010086828A2 (en) 2009-02-02 2010-08-05 Rinat Neuroscience Corporation Agonist anti-trkb monoclonal antibodies
EP3260136A1 (en) 2009-03-17 2017-12-27 Theraclone Sciences, Inc. Human immunodeficiency virus (hiv) -neutralizing antibodies
EP3323427A1 (en) 2009-03-17 2018-05-23 Theraclone Sciences, Inc. Human immunodeficiency virus (hiv)-neutralizing antibodies
WO2010114859A1 (en) 2009-04-01 2010-10-07 Genentech, Inc. Treatment of insulin-resistant disorders
WO2010120561A1 (en) 2009-04-01 2010-10-21 Genentech, Inc. Anti-fcrh5 antibodies and immunoconjugates and methods of use
WO2010118243A2 (en) 2009-04-08 2010-10-14 Genentech, Inc. Use of il-27 antagonists to treat lupus
US8609101B2 (en) 2009-04-23 2013-12-17 Theraclone Sciences, Inc. Granulocyte-macrophage colony-stimulating factor (GM-CSF) neutralizing antibodies
WO2010128407A2 (en) 2009-05-05 2010-11-11 Novimmune S.A. Anti-il-17f antibodies and methods of use thereof
US8858948B2 (en) 2009-05-20 2014-10-14 Theraclone Sciences, Inc. Compositions and methods for the therapy and diagnosis of influenza
WO2010146511A1 (en) 2009-06-17 2010-12-23 Pfizer Limited Treatment of overactive bladder
WO2011005715A1 (en) 2009-07-07 2011-01-13 Genentech, Inc. Diagnosis and treatment of autoimmune demyelinating diseases
EP2584049A2 (en) 2009-07-20 2013-04-24 Genentech, Inc. Gene expression markers for Crohn's disease
EP2757160A2 (en) 2009-07-20 2014-07-23 Genentech, Inc. Gene expression markers for Crohn's disease
WO2011011339A1 (en) 2009-07-20 2011-01-27 Genentech, Inc. Gene expression markers for crohn's disease
WO2011014750A1 (en) 2009-07-31 2011-02-03 Genentech, Inc. Inhibition of tumor metastasis using bv8- or g-csf-antagonists
EP3309168A1 (en) 2009-08-06 2018-04-18 F. Hoffmann-La Roche AG Method to improve virus removal in protein purification
WO2011031397A1 (en) 2009-08-06 2011-03-17 Genentech, Inc. Method to improve virus removal in protein purification
WO2011019620A1 (en) 2009-08-10 2011-02-17 Genentech, Inc. Antibodies with enhanced adcc function
WO2011019679A1 (en) 2009-08-11 2011-02-17 Allergan, Inc. Ccr2 inhibitors for treating conditions of the eye
WO2011019622A1 (en) 2009-08-14 2011-02-17 Genentech, Inc. Cell culture methods to make antibodies with enhanced adcc function
US9428548B2 (en) 2009-09-01 2016-08-30 Genentech, Inc. Enhanced protein purification through a modified protein A elution
WO2011044368A1 (en) 2009-10-07 2011-04-14 Macrogenics, Inc. Fc region-containing polypeptides that exhibit improved effector function due to alterations of the extent of fucosylation, and methods for their use
US8535912B2 (en) 2009-10-15 2013-09-17 Genentech, Inc. Chimeric fibroblast growth factors with altered receptor specificity
EP3011970A2 (en) 2009-10-22 2016-04-27 F. Hoffmann-La Roche AG Modulation of axon degeneration
WO2011050194A1 (en) 2009-10-22 2011-04-28 Genentech, Inc. Methods and compositions for modulating hepsin activation of macrophage-stimulating protein
WO2011060246A2 (en) 2009-11-12 2011-05-19 Genentech, Inc. A method of promoting dendritic spine density
EP3348277A1 (en) 2009-11-20 2018-07-18 The Regents of The University of California Epithelial membrane protein-2 (emp2) and proliferative vitreoretinopathy (pvr)
WO2011066503A2 (en) 2009-11-30 2011-06-03 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP3002297A2 (en) 2009-11-30 2016-04-06 F. Hoffmann-La Roche AG Antibodies for treating and diagnosing tumors expressing slc34a2 (tat211)
WO2011084750A1 (en) 2009-12-21 2011-07-14 Genentech, Inc. Antibody formulation
WO2011080796A1 (en) 2009-12-28 2011-07-07 Oncotherapy Science, Inc. Anti-cdh3 antibodies and uses thereof
WO2011082187A1 (en) 2009-12-30 2011-07-07 Genentech, Inc. Methods for modulating a pdgf-aa mediated biological response
WO2011094759A2 (en) 2010-02-01 2011-08-04 The Regents Of The University Of California Novel diagnostic and therapeutic targets associated with or regulated by n-cadherin expression and/or epithelial to mesenchymal transition (emt) in prostate cancer and other malignancies
WO2011100403A1 (en) 2010-02-10 2011-08-18 Immunogen, Inc Cd20 antibodies and uses thereof
WO2011106297A2 (en) 2010-02-23 2011-09-01 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
WO2011104687A1 (en) 2010-02-24 2011-09-01 Rinat Neuroscience Corporation Antagonist anti-il-7 receptor antibodies and methods
WO2011111007A2 (en) 2010-03-11 2011-09-15 Rinat Neuroscience Corporation ANTIBODIES WITH pH DEPENDENT ANTIGEN BINDING
WO2011119888A2 (en) 2010-03-24 2011-09-29 The Regents Of The University Of California N-cadherin: target for cancer diagnosis and therapy
WO2011133931A1 (en) 2010-04-22 2011-10-27 Genentech, Inc. Use of il-27 antagonists for treating inflammatory bowel disease
WO2011139985A1 (en) 2010-05-03 2011-11-10 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
WO2011139718A1 (en) 2010-05-03 2011-11-10 Genentech, Inc. Compositions and methods useful for reducing the viscosity of protein-containing formulations
US9217048B2 (en) 2010-05-17 2015-12-22 Emd Millipore Corporation Stimulus responsive polymers for the purification of biomolecules
US9731288B2 (en) 2010-05-17 2017-08-15 Emd Millipore Corporation Stimulus responsive polymers for the purification of biomolecules
US8691918B2 (en) 2010-05-17 2014-04-08 Emd Millipore Corporation Stimulus responsive polymers for the purification of biomolecules
WO2011146568A1 (en) 2010-05-19 2011-11-24 Genentech, Inc. Predicting response to a her inhibitor
WO2011150110A1 (en) 2010-05-25 2011-12-01 Genentech, Inc. Methods of purifying polypeptides
EP3299380A1 (en) 2010-05-25 2018-03-28 F. Hoffmann-La Roche AG Methods of purifying polypeptides
WO2011150241A2 (en) 2010-05-28 2011-12-01 Genentech, Inc. Decreasing lactate level and increasing polypeptide production by downregulating the expression of lactate dehydrogenase and pyruvate dehydrogenase kinase
US9487809B2 (en) 2010-05-28 2016-11-08 Genentech, Inc. Decreasing lactate level and increasing polypeptide production by downregulating the expression of lactate dehydrogenase and pyruvate dehydrogenase kinase
US10011856B2 (en) 2010-05-28 2018-07-03 Genentech, Inc. Decreasing lactate level and increasing polypeptide production by downregulating the expression of lactate dehydrogenase and pyruvate dehydrogenase kinase
EP3327039A1 (en) 2010-06-02 2018-05-30 Dana Farber Cancer Institute, Inc. Humanized monoclonal antibodies and methods of use
WO2011159655A2 (en) 2010-06-16 2011-12-22 Allergan, Inc. IL23p19 ANTIBODY INHIBITOR FOR TREATING OCULAR AND OTHER CONDITIONS
US9133524B2 (en) 2010-07-01 2015-09-15 The Regents Of The University Of California Protein kinase ck2 gene mutations, amplifications and polymorphisms in human cancers and methods of use
US8900590B2 (en) 2010-08-12 2014-12-02 Theraclone Sciences, Inc. Anti-hemagglutinin antibody compositions and methods of use thereof
WO2012022734A2 (en) 2010-08-16 2012-02-23 Medimmune Limited Anti-icam-1 antibodies and methods of use
WO2012027723A1 (en) 2010-08-27 2012-03-01 Stem Centrx, Inc Notum protein modulators and methods of use
EP2926830A2 (en) 2010-08-31 2015-10-07 Theraclone Sciences, Inc. Human immunodeficiency virus (HIV)-neutralizing antibodies
WO2012030512A1 (en) 2010-09-03 2012-03-08 Percivia Llc. Flow-through protein purification process
WO2012031273A2 (en) 2010-09-03 2012-03-08 Stem Centrx, Inc. Novel modulators and methods of use
EP3214442A1 (en) 2010-10-25 2017-09-06 F. Hoffmann-La Roche AG Treatment of gastrointestinal inflammation and psoriasis and asthmainflammation and psoriasis a
WO2012061129A1 (en) 2010-10-25 2012-05-10 Genentech, Inc Treatment of gastrointestinal inflammation and psoriasis a
WO2012058768A1 (en) 2010-11-05 2012-05-10 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the fc domain
WO2012071436A1 (en) 2010-11-24 2012-05-31 Genentech, Inc. Method of treating autoimmune inflammatory disorders using il-23r loss-of-function mutants
WO2012118547A1 (en) 2010-12-08 2012-09-07 Stem Centrx, Inc. Novel modulators and methods of use
WO2012078813A2 (en) 2010-12-08 2012-06-14 Stem Centrx, Inc. Novel modulators and methods of use
US8916160B2 (en) 2011-02-14 2014-12-23 Theraclone Sciences, Inc. Compositions and methods for the therapy and diagnosis of influenza
WO2012112943A1 (en) 2011-02-18 2012-08-23 Stem Centrx, Inc. Novel modulators and methods of use
WO2012125614A1 (en) 2011-03-15 2012-09-20 Theraclone Sciences, Inc. Compositions and methods for the therapy and diagnosis of influenza
EP3412309A1 (en) 2011-03-31 2018-12-12 F. Hoffmann-La Roche AG Methods of administering beta7 integrin antagonists
WO2012138997A1 (en) 2011-04-07 2012-10-11 Amgen Inc. Novel egfr binding proteins
WO2012162561A2 (en) 2011-05-24 2012-11-29 Zyngenia, Inc. Multivalent and monovalent multispecific complexes and their uses
US8613926B2 (en) 2011-06-06 2013-12-24 Novo Nordisk A/S Anti-C5a receptor antibodies
US8846045B2 (en) 2011-06-06 2014-09-30 Novo Nordisk A/S Anti-C5a receptor antibodies
US9562097B2 (en) 2011-07-01 2017-02-07 Genentech, Inc. Use of anti-CD83 agonist antibodies for treating autoimmune diseases
WO2013012855A1 (en) 2011-07-18 2013-01-24 Amgen Inc. Apelin antigen-binding proteins and uses thereof
WO2013025944A1 (en) 2011-08-17 2013-02-21 Genentech, Inc. Inhibition of angiogenesis in refractory tumors
US8822651B2 (en) 2011-08-30 2014-09-02 Theraclone Sciences, Inc. Human rhinovirus (HRV) antibodies
WO2013033069A1 (en) 2011-08-30 2013-03-07 Theraclone Sciences, Inc. Human rhinovirus (hrv) antibodies
EP3257564A1 (en) 2011-11-02 2017-12-20 F. Hoffmann-La Roche AG Overload and elute chromatography
WO2013067301A1 (en) 2011-11-02 2013-05-10 Genentech, Inc. Overload and elute chromatography
WO2013063702A1 (en) 2011-11-04 2013-05-10 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the fc domain
WO2013068946A2 (en) 2011-11-11 2013-05-16 Rinat Neuroscience Corp. Antibodies specific for trop-2 and their uses
WO2013093707A1 (en) 2011-12-22 2013-06-27 Rinat Neuroscience Corp. Human growth hormone receptor antagonist antibodies and methods of use thereof
WO2013093693A1 (en) 2011-12-22 2013-06-27 Rinat Neuroscience Corp. Staphylococcus aureus specific antibodies and uses thereof
WO2013096812A1 (en) 2011-12-23 2013-06-27 Genentech, Inc. Articles of manufacture and methods for co-administration of antibodies
WO2013101771A2 (en) 2011-12-30 2013-07-04 Genentech, Inc. Compositions and method for treating autoimmune diseases
WO2013116287A1 (en) 2012-01-31 2013-08-08 Genentech, Inc. Anti-ig-e m1' antibodies and methods using same
US9045541B2 (en) 2012-02-06 2015-06-02 Inhibrx Llc CD47 antibodies and methods of use thereof
US9663575B2 (en) 2012-02-06 2017-05-30 Inhibrx, Lp CD47 antibodies and methods of use thereof
EP3095797A1 (en) 2012-02-24 2016-11-23 Stemcentrx, Inc. Anti dll3 antibodies and methods of use thereof
WO2013149111A2 (en) 2012-03-29 2013-10-03 Novimmune S.A. Anti-tlr4 antibodies and uses thereof
WO2013166500A1 (en) 2012-05-04 2013-11-07 Dana-Farber Cancer Institute, Inc. Affinity matured anti-ccr4 humanized monoclonal antibodies and methods of use
WO2013166594A1 (en) 2012-05-10 2013-11-14 Zymeworks Inc. Heteromultimer constructs of immunoglobulin heavy chains with mutations in the fc domain
WO2013188448A2 (en) 2012-06-11 2013-12-19 Amgen Inc. Dual receptor antagonistic antigen-binding proteins and uses thereof
WO2014055897A2 (en) 2012-10-04 2014-04-10 Dana-Farber Cancer Institute, Inc. Human monoclonal anti-pd-l1 antibodies and methods of use
US9828434B2 (en) 2012-10-04 2017-11-28 Dana-Farber Cancer Institute, Inc. Human monoclonal anti-PD-L1 antibodies and methods of use
WO2014072876A1 (en) 2012-11-09 2014-05-15 Pfizer Inc. Platelet-derived growth factor b specific antibodies and compositions and uses thereof
US9810670B2 (en) 2012-11-15 2017-11-07 Genentech, Inc. Ionic strength-mediated pH gradient ion exchange chromatography
WO2014087248A2 (en) 2012-12-03 2014-06-12 Novimmune S.A. Anti-cd47 antibodies and methods of use thereof
WO2014130064A1 (en) 2013-02-22 2014-08-28 Abbvie Inc. Ultrafiltration and diafiltration formulation methods for protein processing
US10010611B2 (en) 2013-03-13 2018-07-03 Genentech, Inc. Antibody formulations
WO2014160495A1 (en) 2013-03-13 2014-10-02 Genentech, Inc. Formulations with reduced oxidation
US10131873B2 (en) 2013-03-15 2018-11-20 Genentech, Inc. Cell culture compositions with antioxidants and methods for polypeptide production
US10017732B2 (en) 2013-03-15 2018-07-10 Genentech, Inc. Cell culture compositions with antioxidants and methods for polypeptide production
US9822166B2 (en) 2013-03-15 2017-11-21 Dana-Farber Cancer Institute, Inc. Flavivirus neutralizing antibodies and methods of use thereof
WO2014145098A1 (en) 2013-03-15 2014-09-18 Genentech, Inc. Cell culture compositions with antioxidants and methods for polypeptide production
US9000132B2 (en) 2013-03-15 2015-04-07 Diadexus, Inc. Lipoprotein-associated phospholipase A2 antibody compositions and methods of use
WO2014169076A1 (en) 2013-04-09 2014-10-16 Annexon,,Inc. Methods of treatment for neuromyelitis optica
WO2014172661A1 (en) 2013-04-19 2014-10-23 The Regent Of The University Of California Lone star virus
WO2014181229A2 (en) 2013-05-07 2014-11-13 Rinat Neuroscience Corp. Anti-glucagon receptor antibodies and methods of use thereof
US10274466B2 (en) 2013-07-12 2019-04-30 Genentech, Inc. Elucidation of ion exchange chromatography input optimization
WO2015023596A1 (en) 2013-08-12 2015-02-19 Genentech, Inc. Compositions and method for treating complement-associated conditions
US10077304B2 (en) 2013-08-14 2018-09-18 The Governing Council Of The University Of Toronto Antibodies against frizzled receptor
WO2015048520A1 (en) 2013-09-27 2015-04-02 Genentech, Inc. Anti-pdl1 antibody formulations
WO2015050959A1 (en) 2013-10-01 2015-04-09 Yale University Anti-kit antibodies and methods of use thereof
WO2015073580A1 (en) 2013-11-13 2015-05-21 Pfizer Inc. Tumor necrosis factor-like ligand 1a specific antibodies and compositions and uses thereof
WO2015087187A1 (en) 2013-12-10 2015-06-18 Rinat Neuroscience Corp. Anti-sclerostin antibodies
WO2015095418A1 (en) 2013-12-17 2015-06-25 Genentech, Inc. Methods of treating her2-positive cancers using pd-1 axis binding antagonists and anti-her2 antibodies
WO2015095423A2 (en) 2013-12-17 2015-06-25 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
WO2015095410A1 (en) 2013-12-17 2015-06-25 Genentech, Inc. Methods of treating cancer using pd-1 axis binding antagonists and an anti-cd20 antibody
WO2015109212A1 (en) 2014-01-17 2015-07-23 Pfizer Inc. Anti-il-2 antibodies and compositions and uses thereof
WO2015143194A2 (en) 2014-03-19 2015-09-24 Dana-Farber Cancer Institute, Inc. Immunogenetic restriction on elicitation of antibodies
US9975957B2 (en) 2014-03-31 2018-05-22 Genentech, Inc. Anti-OX40 antibodies and methods of use
WO2015195917A1 (en) 2014-06-18 2015-12-23 Mersana Therapeutics, Inc. Monoclonal antibodies against her2 epitope and methods of use thereof
WO2016054638A1 (en) 2014-10-03 2016-04-07 Dana-Farber Cancer Institute, Inc. Glucocorticoid-induced tumor necrosis factor receptor (gitr) antibodies and methods of use thereof
WO2016057488A1 (en) 2014-10-06 2016-04-14 Dana-Farber Cancer Institute, Inc. Humanized cc chemokine receptor 4 (ccr4) antibodies and methods of use thereof
US10112994B2 (en) 2014-11-05 2018-10-30 Genentech, Inc. Methods of producing two chain proteins in bacteria
WO2016073791A1 (en) 2014-11-05 2016-05-12 Genentech, Inc. Methods of producing two chain proteins in bacteria
WO2016073794A1 (en) 2014-11-05 2016-05-12 Genentech, Inc. Methods of producing two chain proteins in bacteria
US10066002B2 (en) 2014-11-05 2018-09-04 Genentech, Inc. Methods of producing two chain proteins in bacteria
WO2016081384A1 (en) 2014-11-17 2016-05-26 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
WO2016092419A1 (en) 2014-12-09 2016-06-16 Rinat Neuroscience Corp. Anti-pd-1 antibodies and methods of use thereof
WO2016123329A2 (en) 2015-01-28 2016-08-04 Genentech, Inc. Gene expression markers and treatment of multiple sclerosis
US10011658B2 (en) 2015-04-03 2018-07-03 Eureka Therapeutics, Inc. Constructs targeting AFP peptide/MHC complexes and uses thereof
US10087255B2 (en) 2015-04-07 2018-10-02 Alector Llc Anti-sortilin antibodies and methods of use thereof
WO2016166629A1 (en) 2015-04-13 2016-10-20 Pfizer Inc. Therapeutic antibodies and their uses
US10259835B2 (en) 2015-05-18 2019-04-16 Tolero Pharmaceuticals, Inc. Alvocidib prodrugs having increased bioavailability
WO2016191750A1 (en) 2015-05-28 2016-12-01 Genentech, Inc. Cell-based assay for detecting anti-cd3 homodimers
WO2016196381A1 (en) 2015-05-29 2016-12-08 Genentech, Inc. Pd-l1 promoter methylation in cancer
WO2016201389A2 (en) 2015-06-12 2016-12-15 Alector Llc Anti-cd33 antibodies and methods of use thereof
WO2016201388A2 (en) 2015-06-12 2016-12-15 Alector Llc Anti-cd33 antibodies and methods of use thereof
WO2016205320A1 (en) 2015-06-17 2016-12-22 Genentech, Inc. Methods of treating locally advanced or metastatic breast cancers using pd-1 axis binding antagonists and taxanes
WO2017040301A1 (en) 2015-08-28 2017-03-09 Alector Llc Anti-siglec-7 antibodies and methods of use thereof
WO2017041004A1 (en) 2015-09-02 2017-03-09 The Regents Of The University Of Colorado, A Body Corporate Compositions and methods for modulating t-cell mediated immune response
WO2017062682A2 (en) 2015-10-06 2017-04-13 Genentech, Inc. Method for treating multiple sclerosis
WO2017070561A1 (en) 2015-10-23 2017-04-27 Pfizer Inc. Anti-il-2 antibodies and compositions and uses thereof
WO2017075432A2 (en) 2015-10-29 2017-05-04 Alector Llc Anti-siglec-9 antibodies and methods of use thereof
WO2017117304A1 (en) 2015-12-30 2017-07-06 Genentech, Inc. Use of tryptophan derivatives for protein formulations
WO2017117311A1 (en) 2015-12-30 2017-07-06 Genentech, Inc. Formulations with reduced degradation of polysorbate
WO2017196902A2 (en) 2016-05-10 2017-11-16 Genentech, Inc. Methods of decreasing trisulfide bonds during recombinant production of polypeptides
WO2017218977A2 (en) 2016-06-17 2017-12-21 Genentech, Inc. Purification of multispecific antibodies
WO2018018039A2 (en) 2016-07-22 2018-01-25 Dana-Farber Cancer Institute, Inc. Glucocorticoid-induced tumor necrosis factor receptor (gitr) antibodies and methods of use thereof
WO2018027204A1 (en) 2016-08-05 2018-02-08 Genentech, Inc. Multivalent and multiepitopic anitibodies having agonistic activity and methods of use
WO2018029124A1 (en) 2016-08-08 2018-02-15 F. Hoffmann-La Roche Ag Therapeutic and diagnostic methods for cancer
WO2018035025A1 (en) 2016-08-15 2018-02-22 Genentech, Inc. Chromatography method for quantifying a non-ionic surfactant in a composition comprising the non-ionic surfactant and a polypeptide
WO2018048939A1 (en) 2016-09-06 2018-03-15 Dana-Farber Cancer Institute, Inc. Methods of treating or preventing zika virus infection
WO2018049261A1 (en) 2016-09-09 2018-03-15 Icellhealth Consulting Llc Oncolytic virus expressing immune checkpoint modulators
WO2018049248A1 (en) 2016-09-09 2018-03-15 Icellhealth Consulting Llc Oncolytic virus equipped with bispecific engager molecules
WO2018055573A1 (en) 2016-09-23 2018-03-29 Teva Pharmaceuticals International Gmbh Treating cluster headache
WO2018055574A1 (en) 2016-09-23 2018-03-29 Teva Pharmaceuticals International Gmbh Treating refractory migraine
WO2018083535A1 (en) 2016-11-04 2018-05-11 Novimmune Sa Anti-cd19 antibodies and methods of use thereof
US10267787B2 (en) 2016-12-19 2019-04-23 Tolero Pharmaceuticals, Inc. Profiling peptides and methods for sensitivity profiling
US10132797B2 (en) 2016-12-19 2018-11-20 Tolero Pharmaceuticals, Inc. Profiling peptides and methods for sensitivity profiling
WO2018158658A1 (en) 2017-03-03 2018-09-07 Rinat Neuroscience Corp. Anti-gitr antibodies and methods of use thereof
WO2018200742A1 (en) 2017-04-25 2018-11-01 The Usa, As Represented By The Secretary, Dept. Of Health And Human Services Antibodies and methods for the diagnosis and treatment of epstein barr virus infection
WO2018213316A1 (en) 2017-05-16 2018-11-22 Alector Llc Anti-siglec-5 antibodies and methods of use thereof
WO2018215835A1 (en) 2017-05-26 2018-11-29 Novimmune Sa Anti-cd47 x anti-mesothelin antibodies and methods of use thereof
WO2019028283A1 (en) 2017-08-03 2019-02-07 Alector Llc Anti-cd33 antibodies and methods of use thereof
WO2019067015A1 (en) 2017-09-29 2019-04-04 City Of Hope Chimeric antigen receptors and bispecific antibodies for treatment of mantle cell lymphoma
WO2019073069A1 (en) 2017-10-13 2019-04-18 Boehringer Ingelheim International Gmbh Human antibodies to thomsen-nouvelle (tn) antigen
US10308718B2 (en) 2018-01-10 2019-06-04 Alector Llc Anti-sortilin antibodies and methods of use thereof

Also Published As

Publication number Publication date
CA2102511A1 (en) 1992-11-15
JPH06507398A (en) 1994-08-25
EP0586505A1 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
Cao et al. Effects of amino acid changes in the extracellular domain of the human immunodeficiency virus type 1 gp41 envelope glycoprotein.
Cheng-Mayer et al. Host range, replicative, and cytopathic properties of human immunodeficiency virus type 1 are determined by very few amino acid changes in tat and gp120.
EP0531472B1 (en) Humanized monoclonal antibodies
Thompson et al. Affinity maturation of a high-affinity human monoclonal antibody against the third hypervariable loop of human immunodeficiency virus: use of phage display to improve affinity and broaden strain reactivity
Gorny et al. Production of site-selected neutralizing human monoclonal antibodies against the third variable domain of the human immunodeficiency virus type 1 envelope glycoprotein.
Fouts et al. Crosslinked HIV-1 envelope–CD4 receptor complexes elicit broadly cross-reactive neutralizing antibodies in rhesus macaques
Rusche et al. Antibodies that inhibit fusion of human immunodeficiency virus-infected cells bind a 24-amino acid sequence of the viral envelope, gp120
Gorny et al. Repertoire of neutralizing human monoclonal antibodies specific for the V3 domain of HIV-1 gp120.
DE69334095T2 (en) A method for intracellular binding of targeted molecules
Sullivan et al. Effect of amino acid changes in the V1/V2 region of the human immunodeficiency virus type 1 gp120 glycoprotein on subunit association, syncytium formation, and recognition by a neutralizing antibody.
CA2076961C (en) Igg-1 human monoclonal antibody reactive with an hiv-1 glycoprotein and method of use
Nelson et al. An affinity-enhanced neutralizing antibody against the membrane-proximal external region of human immunodeficiency virus type 1 gp41 recognizes an epitope between those of 2F5 and 4E10
Beddows et al. Evaluating the immunogenicity of a disulfide-stabilized, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1
KR0158240B1 (en) Cloning and expression of humanized monoclonal antibodies against human interleukin-4
Fung et al. Identification and characterization of a neutralization site within the second variable region of human immunodeficiency virus type 1 gp120.
McKeating et al. Characterization of neutralizing monoclonal antibodies to linear and conformation-dependent epitopes within the first and second variable domains of human immunodeficiency virus type 1 gp120.
TILLEY et al. Synergistic neutralization of HIV-1 by human monoclonal antibodies against the V3 loop and the CD4-binding site of gp120
Healey et al. Novel anti-CD4 monoclonal antibodies separate human immunodeficiency virus infection and fusion of CD4+ cells from virus binding.
US5800822A (en) Tandem synthetic HIV-1 peptides
US5693752A (en) Peptides that induce antibodies which neutralize genetically divergent HIV-1 isolates
Grundner et al. Analysis of the neutralizing antibody response elicited in rabbits by repeated inoculation with trimeric HIV-1 envelope glycoproteins
Thali et al. Characterization of a discontinuous human immunodeficiency virus type 1 gp120 epitope recognized by a broadly reactive neutralizing human monoclonal antibody.
JP3696232B2 (en) Re-setting of the cell-mediated immunity by receptor chimeras
Wyatt et al. Functional and immunologic characterization of human immunodeficiency virus type 1 envelope glycoproteins containing deletions of the major variable regions.
KR100712256B1 (en) Soluble single-chain T-cell receptor proteins

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase in:

Ref country code: CA

Ref document number: 2102511

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2102511

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1992911846

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1992911846

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992911846

Country of ref document: EP