JPH06507398A - Heterogeneous conjugate antibody for treatment of HIV infection - Google Patents

Heterogeneous conjugate antibody for treatment of HIV infection

Info

Publication number
JPH06507398A
JPH06507398A JP4510961A JP51096192A JPH06507398A JP H06507398 A JPH06507398 A JP H06507398A JP 4510961 A JP4510961 A JP 4510961A JP 51096192 A JP51096192 A JP 51096192A JP H06507398 A JPH06507398 A JP H06507398A
Authority
JP
Japan
Prior art keywords
cells
hiv
antibody
infected
cell culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4510961A
Other languages
Japanese (ja)
Inventor
ヒギンズ ポール ジェイ
ポッツ バーバラ ジェイ
Original Assignee
リプリジェン コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リプリジェン コーポレーション filed Critical リプリジェン コーポレーション
Publication of JPH06507398A publication Critical patent/JPH06507398A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

HIV感染治療のための異種複合抗体 発明の背景 本発明はヒトの免疫不全ウィルス感染の治療に関する。 ヒト免疫不全症ウィルス(HI V)は、後天性免疫不全症候群(AIDS)の 病原体で、一種のレトロウィルスで、14928球及び単球/マクロファージ系 のCD4 細胞を含む一定の免疫系細胞に感染する。効果的な治療を行わないと AIDS@者の死亡率はほぼ10096である(Fuc i、5cience  230:617. 1988)。 優に100を越えるHIVの変種が確認されている。HIVエンベロープ糖蛋白 質gp120のアミノ酸配列は殊に変化し易い、そのアミノ酸は1つの種から次 の種へと20−25%も変化することがある。種から種への変化に加えて、逆転 写酵素の高いエラー率に起因するゲノム配列におけるさらに微妙な変化もある。 誤った組込みをする率は、1転写サイクル当たり、1ゲノムにつき1エラーを導 入する程十分に高い。従って、特定のウィルスとして分離されたものは、いずれ にせよ、類傭種の一団である。さらに、類似種の多様性と数は、1つのHIV変 種から次へと異なっているようである。これらの類似種はin vi’Vo で 進化するという十分な証拠がある。例えば、感染した個人から連続的に分離され たウィルスは、多様な類似種の比率に相当な一時的変動のあることを顕示してい る(Meyehans、Ce// 58:901. 1989)、また、中和耐 性HIV変種はHIVが中和抗体の存在下に生育する時に、gp120をコード するウィルス配列における単一塩基の変化によって生じ得るという証拠もある( Reitz et al。、Ce// 54+57. 1988)。感染した個 人は、最初、HIVに対して体液性及び細胞性免疫応答を開始する。感染した個 人の免疫応答が実際ウィルスの蔓延及びより耐性の高い変種の発生を促すと信じ るべき理由がある(McCune et al、、reツノ 64:351.、 1991)。 ヒトHIV蛋白質に対するヒトモノクローナル抗体が、ハイブリドーマ形成とE pstein Barr ウィルスの形質転換によって生成された(Banap our et al、、1. /mmuno/、 139:4027. 198 7; Amadoci et at、、AIDS Res、 1tyd Hum J/7 Retroyiruses 5ニア3. 1989)。 さらに最近になって、CD4受容体の一部に融合された細胞毒からなる細胞毒性 ハイブリッド蛋白質が、HIVにコードされている蛋白質を発現している細胞を 破壊するための1手段として提唱されている。このアプローチは、HIVエンベ ロープ蛋白質、gp120が、14928球及び単球/マクロファージ系のある 種の細胞上に存在するCD4受容体を認識するという事実に依存するものである 。このようにして、CD4の可溶性誘導体は表面gp’120を発現しているH IV感染細胞を標的としてサイトトキシンを向けるために利用できるがもしれな い。Chaudharty et al、(Nature 335:369゜1 988)は、CD4−シュードモナス外毒素ハイブリッド蛋白質をHIVに慢性 感染しているリンパ球に投与すると全般的蛋白質合成に減少を起こすことを発見 した。Ti1l et al、(Scietyce 242:1166、198 8)は、CD4−リシンA融合蛋白質が、慢性感染のH9細胞培養においてDN A合成を低減することを見いたした。この戦略の変法において、(:apone t al、CNz1ure 337:529. 1989)は、可溶性CD4と ある抗体の定常領域から成るハイブリッド蛋白質を立案した。この分子は免疫系 応答をgp120に向けるために立案されたものである。この一般型の他の分子 は、補体を活性化することが示されている(Traunecker et al 、 Nature 339ニア8. 1989)。 2つの共有結合した抗体、あるいは抗体が細胞に、あるいはウィルスに仕向けら れた蛋白質に共有結合した抗体から成る異種複合分子が、細胞毒性細胞及び腫瘍 細胞やウィルス感染細胞に仕向ける手段として提唱されている。Sega 1e t al、(米国特許第4,676.980号)は、架橋異種抗体を免疫系細胞 を好ましくない、あるいはを害な細胞に仕向けるために、架橋異種抗体を用いる ことを提案している。Fanger et al、(PCT 公開 WO912 ・00360)は、この様な異種複合体をAIDSの治療に対して提案17てい る。 特に、F a xi g e rらは、CD4 (あるいはgp120のCD4 結合ドメイン)に融合された高親和性Fcγ受容体特異抗体をAIDSの治療に 用いることを提唱1−5ている。Fangerらは、また、抗gp1.20抗体 のようなHI V特異抗体に遊合された高親和性Feγ受容体特異抗体から成る 異種複合体をAIDS冶吟に使用することを示唆している。Zarling e t al、(EP公開番号03089.36)は、HIV感染細胞に発現された HIV抗原に特異的な抗体で、末梢血液のエフェクター細胞に特異的で、HIV 感染細胞を殺す能力のある第二抗体に架橋されたものから成る異種複合体抗体に ついて述べている。 発明の概要 一般に、本発明は、共有結合した第−及び第二蛋白質を含む異種複合抗体を特徴 とし、第一蛋白質は末梢血液のエフェクター細胞表面に存在する抗原に対する抗 体を含み、第二の抗体部分はHIV感染細胞表面に発現されたHIVMNあるい はHIV MN変種のgp120エンベロープ蛋白質の■3ループ配列に対する 抗体を含んでいる。ここで、エフェクター細胞及びHIV−MN感染CEM−s s細胞を含む第一混合細胞培養において、初期濃度20ng/mlの異種複合抗 体は、この第一混合培養細胞の逆転写酵素活性を、エフェクター細胞とHIV− MN感染CEM−ss細胞を含む他の同一の第二混合細胞培養と比較して少なく とも80%低下させる。ここで、エフェクター細胞は、第一、第二混合細胞培養 においてCEM−ss細胞の3倍過剰にあり、逆転写酵素活性は、感染後1(月 」目に測定され、異種複合抗体及びエフェクター細胞は、第一混合細胞培養に感 染後18時間して加えられ、第一、第二細胞培養は100−1. OOO単位の HIV−MNで感染される。 好適な態様において、第一細胞培養の逆転写酵素活性は、第二混合細胞培養の逆 転写酵素活性に比べて9[〕%以上減少する。 他の好適な態様において、エフェクター細胞及びHIV−MN以外のHIV株に 感染さ第1たCEM−ssliB胞を含む第一混合細胞培養において、初期濃度 200ng/’mlの異種複合抗体は、第一混合培養細胞の逆転写酵素活性を、 エフェクター細胞とHIV−MN以外のHI V株に感染した当該CEM−ss 細胞を含む他の同一の第二細胞培養の逆転写酵素活性に比べて少くとも50%低 下させる9゜ここで、第一、第二混合細胞培養において、エフェクター=細胞は 当該CEM−sS細胞の3倍過剰にあり、逆転写酵素活性は感染後10EコII に測定され、異種複合抗体及びエフェクター細胞は第一混合細胞培養に感染後1 8時間にて添加され。 第一、第二細胞培養はHIV−MN以外のHIV株の100−1000感染単位 で感染された。 なお別の好適な態様において、異種複合抗体はHIV=MN以外のHI V株の V3ループに結合する。 他の好適な態様において、エフェクター細胞は細胞毒性Tリンパ球、好中球、単 球/マクロファージ、及び大型顆粒リンパ球からなるグループから選択される。 そしてエフェクター細胞表面に存在する抗原はCD3である。 もう1つの好適な態様において、エフェクター細胞及びHIV−IIIBに感染 したCEM−ss細胞を含む第一混合細胞培養において、20日g/m+の異種 複合抗体は、第一混合培養細胞の逆転写酵素活性を、エフェクター細胞とHIV B感染CEM−ss細胞を含む他の同一の第二混合細胞培養の逆転写酵素活性に 比べて少くとも80%低下させる。ここで、第一、第二混合細胞培養において、 エフェクター細胞はCEM−ss細胞の3倍過剰にあり、逆転写酵素活性は感染 後10日目に測定され、異種複合抗体及びエフェクター細胞は第一混合細胞培養 に感染後18時間して添加され、第一、第二細胞培養は100−1000感染単 位の旧V−IIIBで感染される。 なお別の好適な態様において、エフェクター細胞と、HIV株の一つ(Alab ama、Duke6587−5、Duke6587−7、Duke7887−7 、SF2. WMJ 2.及びIIIB)に感染したCEM ss細胞を含む3 種またはそれ以上の混合培養細胞において、20日g/mlの異種複合抗体は、 各々の混合細胞培養の逆転写酵素活性を、エフェクター細胞及び同じHIV株に 感染したCEM−ss細胞を含む他の同一・の混合細胞培養の逆転写酵素活性に 比べて少くとも80?6低rさせる。ここで、第一、第二混合細胞培養において エフェクター細胞はCEM−ss細胞の3倍過剰にあり、逆転写酵素活性は感染 後10!1[1に測定され、異種i(合抗体及びエフェクター細胞は第一混合細 胞培養に感染後18時間して添加され、第一、第二細胞培養は100−1.00 0感染単位のHIV株で感染される。 関連する態様において本発明は、共有結合 Heterogeneous conjugate antibody for treatment of HIV infection Background of the invention The present invention relates to the treatment of immunodeficiency virus infections in humans. Human immunodeficiency virus (HIV) is the cause of acquired immunodeficiency syndrome (AIDS). Pathogen, a type of retrovirus, 14928 cell and monocyte/macrophage system infect certain immune system cells, including CD4 cells. without effective treatment The mortality rate for people with AIDS is approximately 10,096 (Fuc i, 5science) 230:617. 1988). Well over 100 variants of HIV have been identified. HIV envelope glycoprotein The amino acid sequence of gp120 is particularly variable; its amino acids can vary from one species to the next. species can vary by as much as 20-25%. In addition to changing from species to species, reversal There are also more subtle changes in the genome sequence due to the high error rate of transcriptases. The rate of misintegration is one error per genome per transcription cycle. high enough to enter. Therefore, if a virus is isolated as a specific virus, In any case, they are a group of mercenaries. Furthermore, the diversity and number of similar species are It seems to vary from species to species. These similar species are invi’Vo There is enough evidence that it evolves. For example, if serially isolated from an infected individual viruses exhibit considerable temporal fluctuations in the proportions of diverse similar species. (Meyehans, Ce // 58:901. 1989), and neutralization resistance. sexual HIV variants encode gp120 when HIV grows in the presence of neutralizing antibodies. There is also evidence that it can be caused by a single base change in the viral sequence ( Reitz et al. , Ce// 54+57. 1988). infected individuals A person initially mounts a humoral and cellular immune response against HIV. infected individuals The belief is that the human immune response actually facilitates the spread of the virus and the development of more resistant variants. There are reasons to do so (McCune et al., retsuno 64:351., 1991). Human monoclonal antibodies against human HIV proteins have been shown to inhibit hybridoma formation and E. Produced by transformation of pstein Barr virus (Banap our et al, 1. /mmuno/, 139:4027. 198 7; Amadoci et at, AIDS Res, 1tyd Hum J/7 Retroyiruses 5 Near 3. 1989). More recently, cytotoxicity consisting of a cytotoxin fused to part of the CD4 receptor The hybrid protein targets cells expressing the protein encoded by HIV. It has been proposed as a means of destroying it. This approach Rope protein, gp120, is present in 14928 cells and monocyte/macrophage lineages. It relies on the fact that it recognizes the CD4 receptor present on the cells of the species. . In this way, a soluble derivative of CD4 can be isolated from surface gp'120-expressing H It could be used to target cytotoxins to IV-infected cells. stomach. Chaudharty et al, (Nature 335:369゜1 988) developed a CD4-Pseudomonas exotoxin hybrid protein to chronically infect HIV. Discovered that administration to infected lymphocytes caused a decrease in general protein synthesis did. Ti1l et al, (Science 242:1166, 198 8) showed that the CD4-ricin A fusion protein was able to stimulate DNA in chronically infected H9 cell cultures. It was found that A synthesis was reduced. In a variation of this strategy, (:apone tal, CNz1ure 337:529. (1989), soluble CD4 and A hybrid protein consisting of the constant region of an antibody was designed. This molecule is the immune system It was designed to direct the response to gp120. Other molecules of this general type has been shown to activate complement (Traunecker et al. , Nature 339 Near 8. 1989). Two covalently linked antibodies, or antibodies, directed against cells or viruses. A heterogeneous complex molecule consisting of an antibody covalently linked to a protein that targets cytotoxic cells and tumors. It has been proposed as a means to target cells and virus-infected cells. Sega 1e tal, (U.S. Pat. No. 4,676.980), cross-linked xenoantibodies to immune system cells. Using cross-linked xenoantibodies to target unwanted or harmful cells I am proposing that. Fanger et al, (PCT published WO912 ・00360) has proposed such a heterogeneous complex for the treatment of AIDS17. Ru. In particular, F.a.xi.g.e.r. et al. High-affinity Fcγ receptor-specific antibodies fused to (binding domain) for the treatment of AIDS There are 1-5 proposals for using the method. Fanger et al. also reported that anti-gp1.20 antibodies consists of a high affinity Feγ receptor-specific antibody conjugated to an HIV-specific antibody such as The use of heterogeneous complexes in the treatment of AIDS is suggested. Zarling e tal, (EP Publication No. 03089.36) was expressed in HIV-infected cells. Antibodies specific to HIV antigens, specific to peripheral blood effector cells, A heterogeneous complex antibody consisting of a second antibody cross-linked with the ability to kill infected cells It talks about. Summary of the invention In general, the invention features a heteroconjugate antibody comprising a covalently linked first and second protein. The first protein is an anti-antigen present on the surface of effector cells in the peripheral blood. The second antibody portion contains HIVMN expressed on the surface of HIV-infected cells or is for the ■3-loop sequence of the gp120 envelope protein of the HIV MN variant. Contains antibodies. Here, effector cells and HIV-MN infected CEM-s In the first mixed cell culture containing S cells, an initial concentration of 20 ng/ml of heterogeneous conjugate anti- The body transfers the reverse transcriptase activity of this first mixed culture of cells to effector cells and HIV- compared to another identical second mixed cell culture containing MN-infected CEM-ss cells. Both will be reduced by 80%. Here, the effector cells are the first and second mixed cell culture. in CEM-ss cells, and reverse transcriptase activity was in 3-fold excess in CEM-ss cells at 1 month postinfection. ”, the xenoconjugated antibodies and effector cells are first detected in the mixed cell culture. 18 hours after staining, the first and second cell cultures were incubated at 100-1. OOO unit infected with HIV-MN. In a preferred embodiment, the reverse transcriptase activity of the first cell culture is reverse transcriptase activity of the second mixed cell culture. It decreases by more than 9% compared to the transcriptase activity. In other preferred embodiments, effector cells and HIV strains other than HIV-MN. In the first mixed cell culture containing infected CEM-ssliB cells, the initial concentration 200 ng/'ml of the heteroconjugate antibody inhibited the reverse transcriptase activity of the first mixed culture cells. The CEM-ss infected with effector cells and HIV strains other than HIV-MN at least 50% lower than the reverse transcriptase activity of another identical second cell culture containing cells 9°Here, in the first and second mixed cell culture, the effector = cell is The CEM-sS cells are in 3-fold excess, and reverse transcriptase activity is 10EcoII after infection. The xenoconjugated antibodies and effector cells were measured at 1 p.i. after infection of the first mixed cell culture. Added at 8 hours. The first and second cell cultures contain 100-1000 infectious units of HIV strains other than HIV-MN. was infected with. In yet another preferred embodiment, the heteroconjugate antibody is of an HIV strain other than HIV=MN. Binds to V3 loop. In other preferred embodiments, the effector cells are cytotoxic T lymphocytes, neutrophils, monocytes. selected from the group consisting of globules/macrophages, and large granular lymphocytes. The antigen present on the surface of effector cells is CD3. In another preferred embodiment, the effector cells and infected with HIV-IIIB In the first mixed cell culture containing CEM-ss cells, 20 days g/m+ xenogeneic The conjugated antibody increases the reverse transcriptase activity of the first mixed culture cells between effector cells and HIV. Reverse transcriptase activity of another identical second mixed cell culture containing B-infected CEM-ss cells. Reduce by at least 80% compared to Here, in the first and second mixed cell culture, Effector cells are in 3-fold excess over CEM-ss cells, and reverse transcriptase activity is The xenoconjugate antibodies and effector cells were measured 10 days after the first mixed cell culture. were added 18 hours after infection, and the first and second cell cultures had 100-1000 infected cells. It is infected with the former V-IIIB. In yet another preferred embodiment, the effector cell and one of the HIV strains (Alab ama, Duke6587-5, Duke6587-7, Duke7887-7 , SF2. WMJ 2. and IIIB) containing CEM ss cells infected with In mixed culture cells of species or more, 20 g/ml of xenoconjugated antibody Reverse transcriptase activity of each mixed cell culture was tested on effector cells and the same HIV strain. Reverse transcriptase activity of other identical mixed cell cultures containing infected CEM-ss cells Make it at least 80-6 lower r. Here, in the first and second mixed cell culture Effector cells are in 3-fold excess over CEM-ss cells, and reverse transcriptase activity is After 10!1 [1, xenogeneic antibodies and effector cells were 18 hours after infection, the first and second cell cultures were added at 100-1.00 infected with 0 infectious units of the HIV strain. In a related aspect, the invention provides covalent bonding

【また第−及び第二蛋白質を含む異種 複合抗体を特徴とし、第一蛋白質は末梢血液のエフェクター細胞表面に存在する 抗原に対する抗体を含み、第二の抗体部分はHIV感染細胞表面に発現されたH IV−MNあルイl!HI V−MN変種のgp120エンベロープ蛋白質のv 3ループ配列に対する抗体を含んでいる。ここで、エフェクター細胞及びHIV −MN感染CEM−ss細胞を含む第一混合細胞培養において、初期濃度10n g/口〕lの異f!複合抗体は、この第一混合培養細胞の逆転写酵素活性を、エ フェクター細胞とHIV−MN感染CEM−ss細胞を含む他の同一の第二混合 細胞培養と比較して少なくとも80%低丁させる。ここで、エフェクター細胞は 、第一、第二混合細胞培養においてCEM−ss細胞の3倍過剰にあり、逆転写 酵素活性は、感染後10日[1にM1定され、異f!複合抗体及びエフェクター 細胞は、第一混合細胞培養に感染後18時間して加えられ、第一、第二細胞培養 は100−1000単位のHIV−MNで感染される。 関連する態様において本発明は、共有結合した第−及び第二蛋白質を含む異種複 合抗体を特徴とし、第一蛋白質は末梢血液のエフェクター細胞表面に存在する抗 原に対する抗体を含み、第二の抗体部分はHIV感染細胞表面に発現されたHI V−MNあるいはHIV−MN変種のgp120エンベロープ蛋白質のV3ル− プ配列に対する抗体を含んでいる。ここで、エフェクター細胞及びHI V−M N感染CIIJf−ss細胞を3む第一混合細胞培養において、初期濃度5ng /mlの異種複合抗体は、この第一混合培養細胞の逆転写酵素活性を、エフェク ター細胞とH[V−MN感染CEM−ss細胞を含む他の同一の第二混合細胞培 養と比較して少なくとも8096低下させる。ここで、エフェクター細胞は、第 一、第二混合細胞培養においてCEM−ss細胞の3倍過剰にあり、逆転写酵素 活性は、感染後10日目に測定され、異種複合抗体及びエフェクター細胞は、第 一混合細胞培養に感染後18時間して加えられ、第一、第二細胞培養は100− 1000中位のHIV−MNて感染される。 他の関連する態様において本発明は、共有結合(7た第一・及び第一蛋白質を八 む異種複合抗体を特徴とし、第一蛋白質は末梢血液のエフェクター細胞表面に存 在する抗原に対する抗体を含み、第二の抗体部分はHIV感染細胞表面に発現さ れたHIV−MNあルL”l;iHI V−MN変mのgp120エンベロープ 蛋白質〕V3ループ配列に対する抗体を含んでいる。ここで、エフェクター細胞 及びHI V−MN感染CEM−ss細胞を含む第一混合細胞培養において、初 期1度1ng/mlの異種複合抗体は、この第一混合培養細胞の逆転写酵素活性 を、エフェクター細胞とHIV−MN感染CEM−s5細胞を含む他の同一の第 二混合細胞培養と比較し、て少なくとも80%低下させる。ここで、エフェクタ ー細胞は、第一、第二混合細胞培養においてCEh4−ss細胞の3倍過剰にあ り、逆転写酵素活性は、感染後10EE目にM1定され、異種複合抗体及びエフ ェクター細胞は、第一混合細胞培養に感染後18時間j7て加えられ、第一・、 第二細胞培養は100−1000単位のHXV−MNで感染される。 関連する態様において本発明は、共有結合した第−及び第二蛋白質を含む異種複 合抗体を特徴とし、第一蛋白質は末梢血液のエフェクター細胞表面に存在する抗 原に対する抗体を含み、第二の抗体部分はアミノ酸配列GPGRAFに対する抗 体を含んでいる。 好適な態様において、エフェクター細胞及びHIV−MNに感染したCEM−s sm胞を含む第一混合細胞培養において、2 (,1n g/m lの異種複合 抗体は、第一混合培養細胞の逆転写酵素活性を、細胞きHIV−MN感染CEM −ss細胞を含む他の同一の第二混合細胞培養の逆転写酵素活性に比べて少くと も80%低下させる。ここで、第一、第二混合細胞培養において、エフェクター 細胞はCEM−ss細胞の′3倍過剰にあり、逆転写酵素活性は感染後10日目 に測定され、異種複合抗体及びエフェクター細胞は第一混合細胞培養に感象後1 8時間して添加され、第一、第二細胞培養は100−1000感染単位のHIV −MNで感染される。 関連する態様において本発明は、共存結合した第−及び第二蛋白質を含む異種複 合抗体を特徴とし、第一蛋白質は末梢血液のエフェクター細胞表面に存在する抗 原に対する抗体を含み、第一の抗体部分はアミノ酸配列IXIGPGRに対する 抗体を含んでいる。ここで、Xはいかなるアミノ酸でもよい。 好適な態様において、エフェクター細胞及びHIV−MNに感染したCEM−s s細胞を含む第一混合細胞培養において、20ng/mlの異種複合抗体は、第 一混合培養細胞の逆転写酵素活性を、エフェクター細胞とHIV−MN感染CE M−ss細胞を含む他の同一の第二混合細胞培養の逆転写酵素活性に比べて少く とも80%低下させる。ここで、第一、第二混合細胞培養においてエフェクター 細胞はCEM−ss細胞の3倍過剰にあり、逆転写酵素活性は感染後10日目に 測定され、異種複合抗体及びエフェクター細胞は第一混合細胞培養に感染後18 時間して添加され、第一、第二細胞培養は100−1000感染単位のHIV− MNで感染される。 関連する態様において本発明は、共有結合した第−及び第二蛋白質を含む異種複 合抗体を特徴とし、第一蛋白質は末梢血液のエフェクター細胞表面に存在する抗 原に対する抗体を含み、第二の抗体部分はアミノ酸配列QARILAVERYL KDQQLLG IWGC5GKL ICに対する抗体を含んでいる。 好適な態様において、エフェクター細胞及びHIV−MNに感染したCEM−s s細胞を含む第一混合細胞培養において、20ng/mlの異種複合抗体は、第 一混合培養細胞の逆転写酵素活性を、エフェクター細胞とHIV−MN感染CE M−ss細胞を含む他の同一の第二混合細胞培養の逆転写酵素活性に比べて少く とも80%低下させる。ここで、第一、第二混合細胞培養においてエフェクター 細胞はCEM−ss細胞の3倍過剰にあり、逆転写酵素活性は感染後10日目に 測定され、異種複合抗体及びエフェクター細胞は第一混合細胞培養に感染後18 時間して添加され、第一、第二細胞培養は100−1000感染単位のHIV− MNで感染される。 他の好適な態様において、エフェクター細胞は細胞毒性1926球、好中球、単 球/マクロファージ、及び大型顆粒リンパ球からなるグループから選択される。 そしてエフェクター細胞表面に存在する抗原はCD3である。 その他の好適な態様において本発明は、薬理学的に効果的な量の上述の異種複合 抗体を含む、薬理学的に許容できる混成物に関する。 関連する態様において本発明は、HIVに感染した患者の治療法に関し、この方 法には、上述の薬理学的に許容できる混成物の患者への投与を含む。 その他の態様において本発明は、(a)細胞表面抗原を発現するエフェクター細 胞、及び(b)上述の異種複合抗体を含む、HIVを標的とするエフェクター細 胞に関する。 関連する態様において本発明は、HIVに感染した患者の治療法に関し、この方 法には、上述のHIVを標的とするエフェクター細胞の患者への投与を含む。 MN基本型ウィルスは、gp120エンベロープ蛋白質のv3ループ領域中、位 置AI ’17における特定のアミノ酸サブ配列に−R−に−R−1−H−1− G−P−G−R−A−F−Y−T−T−Kにより定義される。(アミノ酸配列は 標準的な一文字表記で示す。)MNウィルス変種は、上述のHIV−MN配列と 位置A7〜A1、のアミノ酸残基1−G−P−G−Rが完全に一致し、残り12 アミノ酸が上述のHIV−MN配列と最低36%の相同性を有するものである。 “に対する°とは、指示された抗原に結合する抗体を意味する。gp120のV 3ループは、Ratner et al、 (Nature 313:277. 1985)のgl)120番号付けによるアミノ酸303〜338の36アミノ 酸領域として定義される。 本発明の異種複合抗体は非常に効果的である。逆転写酵素アッセイにより示され る通り、低濃度においてもウィルス復製をほぼ完全に阻害する。好適な異種複合 抗体は、一つ以上の株に効果的なものである。 本発明の他の特徴及び利点は、以下に記載する好適な実施例及び特許請求の範囲 から明確である。 発明の詳細な説明 4、【図面の簡単な説明】 図1は、細胞毒性1928球存在下でのHIV−111B感染CEM−ss細胞 の逆転写酵素活性に対する、0KT3抗体と59.1抗体の複合していない混合 物(黒菱形)及び0KT3159.1異種複合抗体(白四角)の効果を示したグ ラフである。逆転写酵素活性(cpm/10μm)は、細胞培養物中の初期抗体 濃度(ng/ml)の関数で示している。 図2は、細胞毒性1928球存在下でのHIV−MN感染CEM−ss細胞の逆 転写酵素活性に対する、0KT3抗体と59.1抗体の複合していない混合物( 黒菱形)及び0KT3159.1異種複合抗体(白四角)の効果を示したグラフ である。逆転写酵素活性(cpm/10μm)は、細胞培養物中の初期抗体濃度 (ng/ml)の関数で示している。 図3は、細胞毒性Tリンパ球非存在下でのHIV−111B感染CEM−ss細 胞の逆転写酵素活性に対する、0KT3抗体と59.1抗体の複合していない混 合物(白丸)及び0KT3159.1異種複合抗体(黒丸)の効果を示したグラ フである。細胞毒性1926球のみ存在下でのHIV−111B感染CEM−s sl[胞の逆転写酵素活性(黒三角);HIV−111B感染CEM−ss細胞 のみの逆転写酵素活性(白玉角);及び感染していないCEM−ss細胞のみの 逆転写酵素活性(黒画角)も併せて示している。逆転写酵素活性(cpm/10 μl)は、細胞培養物中の初期抗体濃度(ng/ml)の関数で示している(抗 体を添加しない場合を除く)。 図4は、1μg/’mlの0KT3159.1異種複合抗体存在下での、逆転写 酵素活性に対する細胞毒性1926球とHIV−MN感染CEM−ss細胞の比 率の効果を示したグラフである。逆転写酵素活性(cpm/10μm)は、OE M−ss細胞に対する細胞毒性リンパ球の関数で示している( l o g 1 0スケール)。 図5は、HIV−MN(パネルA) 、HIV−Alabama (パネルB) 、HIV−Duke7887−7 (パネルC) 、HIV−Duke6587 −5(パネルD) 、HIV−Duke6587−7 (パネルE) 、HIV −I I IB(パネルF) 、HIV−5F2 (パネルG)、及びHIV− WMJ2(パネルH)に感染したCEM−ss細胞の逆転写酵素活性に対する、 細胞毒性1926球と0KT3159.1異種複合抗体(白四角)及び0KT3 抗体と59.1抗体の複合していない混合物(黒三角)の効果を示したグラフで ある。逆転写酵素活性(cpm/10μm)は、感染後の日数の関数で示してい る。 図6は、HIV−1118感染CEM−ss細胞の逆転写酵素活性に対する、複 合0KT3抗体と6C5抗体の混合物(白丸)及び0KT3/6C5異種複合抗 体(黒丸)の効果を示したグラフである。逆転写酵素活性(cpm/10μl) は、細胞培養物中の初期抗体濃度(ng/ml)の関数で示している。 AIDS治療に対する異種複合抗体 本発明の分子は、HIVに感染した細胞を殺すことのできる細胞毒性免疫エフェ クター細胞表面に存在する抗原に対する第一の抗体を、HIV感染細胞の表面に 存在するHIV抗原に対する第二の抗体に結合することにより作製した異種複合 抗体である。 本発明の異種複合抗体は非常に効力が高い。これらの異種複合抗体は、低濃度で も、HIVに感染した細胞とエフェクター細胞の混合細胞培養物中のHIV活性 を十分に低下させることができる。最も好適な異種複合抗体は、高い効力と広範 囲の反応性の両方を兼ね備えたものである。広範囲の反応性を有する異種複合抗 体とは、一つ以上のHIV株に対して効果的であるものを指す。例えば、広範囲 の反応性を有する異種複合抗体は、HIV−MNとHIV−3F2またはIIV −MNとHIV−WMJ2まりl!HI V−MNとHIV−111Bl:対し て効果的である。 HIVに感染した細胞を殺すことのできる細胞毒性免疫エフェクター細胞に対す る異種複合抗体の一部は、細胞毒性1926球、単球/マクロファージ、大型顆 粒リンパ球(細胞とNK細胞を含む)及び好中球のような細胞の表面に存在する 抗原を認識する。細胞毒性免疫エフェクター細胞に対する抗体はエフェクター細 胞表面上の抗原に結合し、細胞溶解活性を誘発することが好ましい。例えば、認 識された抗原はCD3受容体またはCD16 (Fc)受容体である。細胞溶解 活性を誘発するために複数のシグナルを必要とする受容体(例えば、CD2及び CD28受容体)に対する抗体はあまり好ましくない。 HIVに感染した細胞表面に存在する抗原に対する異種複合抗体の一部は、(1 )HIV−1のMN基本型(HI V−MN)のgl)120エンベロープ蛋白 質のv3ループ配列中のエピトープ、(2)HIV−1のMN基本型のウィルス 変種のgl)120エンベロープ蛋白質のv3ループ配列中のエピトープ、(3 )アミノ酸584〜611の間にあるgp41の一部の中のエピトープを認識す ることが好ましい。 gp120の■3ループは、Ratner et al、(Nature 31 3:277.1985)のgl)120番号付けによるアミノ酸303〜338 の36アミノ酸領域である。MN基本型ウィルスは、gp120エンベロープ蛋 白質の中のアミノ酸サブ配列に−R−に−R−1−H−1−G−P−G−R−A −F−Y−T−T−K (A’ −A’)により定義される。MNウィルス変種 は、上述の旧V−MN配列と位置A7〜A11のアミノ酸残基1−G−P−G− Rが完全に一致し、残り12アミノ酸が上述のHIV−MN配列と最低36%の 相同性を有するものである。 上述の、HIVに対する抗体は、非常に効力の高い異種複合抗体を作製するため の良い候補である。しかし、作製された異種複合抗体の効力が高くない場合もあ る。最終的には本発明の異種複合抗体の作製における、HIVに対する特定の抗 体の有用性を評価するには、異種複合抗体を作製するしかない。例えば、)It ■に対する抗体を抗CD3抗体に共有結合させ、適切なアッセイ法により異種複 合抗体の効力を評価するなどである。一度、HIVに対する特定の抗体の異種複 合抗体作製における有用性が示されれば、その抗体を他のエフェクター細胞抗原 に対する抗体に共有結合させることにより、他の異種複合抗体を作製するのに使 用することができる。 上述の通り、最も好適な異種複合抗体は、効力の高さと共に広範囲の反応性を兼 ね備えたものである。(1)G−P−G−R−A−Fの配列を有するエピトープ 、(2)I−X−1−G−P−G−R(ここでXはいかなるアミノ酸でもよ0) の配列を有するエピトープ、または(3)gp41のアミノ酸584〜611( Ratner et at、、5utyrsの番号付けζこよる)部分の中(こ あるエピトープ、を認識するHIVに対する抗体は、効力が高く広範囲の反応性 を有する異種複合抗体の作製に有用であると思われる。これは、HIV−MNの v3ループ、HIV−MNウィルス変種のv3ループ、またはgp41中のエピ トープを認識する抗体を、効力が高く広範囲の反応性を有する異種複合抗体の作 製;こ使用することができないことを示すものではない。 異種複合抗体の調製にY−1用なHIVに対する抗体を作製及びスクリーニング 技術、異種複合抗体の調製法、及び異種複合抗体の効力及び反応性の広さの評価 法を以下に記載する。広範囲の反応性を有する異種複合抗体を作製するためには 、広範囲の1(IM株を認識する、HIVに対する抗体(すなわち、株に特異的 ではない抗体)を選択するのが効果的である。アミノ酸配列G−P−G−R−A −F。 アミノ酸配列1−X−[−G−P−G−R(ここでXはいかなるアミノ酸でもよ い)、またはgp41のアミノ酸584〜アミノ酸611部分の中にあるエピト ープに対する抗体を選択するのも効果的である。これらの抗体は、以下に記載す る標準的なエピトープマソビング技術を用いて同定することができる。 一般的に、有用な、HIVに対する抗体の作製及び選択過程には以下が含まれる 。(1)ハイブリドーマの作製及び反応性を有する抗体を生産するハイブリドー マの選択、(2)HrVエンベロープ蛋白質を発現する細胞への結合能を有する 抗体を生産するハイブリドーマの選択、(3)選択されたモノクローナル抗体の 増幅及び精製、(4)gp120 V3ループペプチドまたはgp41由来のペ プチドを用いた、抗体の反応性の解析、(5)エピトープマツピング。上述の通 り、これらの工程のすべてが必須なわけではない。1〜3の工程を簡略にし、異 種複合抗体を調製するのに精製された抗体を使用することができる。なお、この 異種複合抗体の効力及び反応性の広さは、以下に記載する逆転写酵素アッセイに より解析することができる。本発明の異種複合抗体を作製するために、精製され た、HIVに対する抗体を、免疫エフェクター細胞に対する抗体に共有結合させ る。異種複合抗体の効力及び反応性の範囲は、エフェクター細胞とHIVに感染 した細胞の混合細胞培養物中で逆転写酵素アッセイを用いて測定することができ る。 異種複合抗体は、いかなる架橋法によっても形成することができる。適切な架橋 法には、5PDPSSPDPとSMCC,及びビオチン−アビジンが含まれる。 Segal et al、(米国特許第4,676.980号)は、多くの架橋 技術について記述している。その他の方法として、ハイブリッド−ハイブリドー マを経て2つの特異性を有する抗体を作製することにより(Suresh et al、、Afethods in Enzymology 121°210.  1986) 、または遺伝子工学により抗体を結合することができる。 )11Vに対する抗体の調製 本発明の異種複合抗体分子の調製に有用な抗体は、以下に記載する通りに作製及 びスクリーニングすることができる。HIV−MNまたはHIV−MNのウィル ス変種のV3ループに対する抗体の調製及び解析も、1991年3月6日に出願 された米国特許出願第07/665,306号(本発明の参考文献に取り入れら れている)に記載されている。 免疫原の調製 異種複合抗体分子の作製に有用な、HIVに対する抗体の1群は、HI V−M NまたはHI V−MNのウィルス変種のv3ループ中の配列を認識する。従っ て、これらの抗体の作製に使用する免疫原には、gp160、gp120、V3 Jレープの全体または一部を含むgp120またはgp160、またはv3ルー プの全体または一部を含む合成ペプチドが含まれる。すべての場合において、V 3/レープ配列はHIV−MNまたはHIV−MNのウィルス変種のものである 。V3)レープに対する抗体の作製に好適な免疫原には、閉鎖的なループ中に形 成されるRP70ペプチドが含まれる(以下に記載)。 異種複合抗体分子の作製に有用な、HIVに対する抗体の他の群は、gp41中 のアミノ酸584〜611領域中の配列を認識する。これらの抗体の作製1ご使 用する免疫原には、gp 160、gp41、V3ループの全体または一部を含 むgp41のアミノ酸584〜611の間にある配列、すなわちQ−A−R−1 −L−A−V−E−R−Y−L−に−D−Q−Q−L−L−G−1−W−G−C −8−G−に−L−1−C,の全体または一部を含むgp160またはgp41 の断片が含まれる。 免疫化するペプチド、ポリペプチドまたは蛋白質は、直鎖状である力)、また鑑 よ■3ループ配列末端のシスティン残基の間に形成されるジスルフィド結合Iこ より閉鎖的なループとなる■3ループを有することもある。免疫されるペプチド 力(一つ以上のV3ループを存する場合、各ループはジスルフィド結合を介して 別々のループを形成することもある。 目的の配列を有する合成ペプチドは、自動化ペプチド合成機を用いて合成するこ とができる。無傷の組み換えgp160エンベローブポリベブチドは、本発明と 同一の譲渡人に譲渡されているRu5che et al、の米国特許出願第0 91.481号(1987年8月31日に出願され、本発明の参考文献に取り入 れられている)に記載されている通り、バキュロウィルス発現系を用も)で昆虫 細胞中で生産し、精製することができる。 免疫原として使用する合成ペプチドまたは蛋白質断片は複合していなくても、ま たは、以下のように、例えば、スクシニルマレイミドメチルシクロへキサニルカ ルボキシルレー)(SMCC)を複合媒体としてkeyhole ILmpet ヘモシアニン(KLH)またはオボアルブミンのような免疫原性担体と複合させ ることもできる(Yoshitake et al、、)、B i o ch  em。 92:1413. 1982)。 簡単に記載すると、ジメチルホルムアミド50μlに溶解した1mgのSMCC を5mgの担体(0,1M NaPO、pH6,5中10−20mg/m1の濃 度)に添加し、室温で0. 5時間インキュベートする。次(1で溶液をセファ デクスG−25カラムに通して過剰な未反応SMCCを除去し、2mgのペプチ ドを添加する(10mg/mlの濃度で0.1.M NaPC)4 、pH8, 1mM EDTAの脱気溶液中に懸濁)。溶液をN2 ガスと混合し、4℃で一 部インキユベートする。次いで、沈殿物が溶けるまで試料を6M尿素、0.1M NaPO、pH7で透析する。次いで試料を、6M尿素、O,IM NaP0  で平衡化したBioGel P−10カラムに通す。溶出した蛋白質を回収し、 蒸留水で透析する。 免疫原に有用な数種のペプチド(RP142.RP70.RP342.RPIo o、RP102.RP108.RP123c、RP174c)の配列を表1(こ 示す。この一覧はすべてを網羅しているわけではない。免疫原として使用するこ とができるペプチドの極一部を示したにすぎない。 (以下余白) 表1:免疫原として有用なペプチドの例RP142 YNKRKRIHIGPG RAFYTTKNI IG(C) RP342 1HIGPGRAFYT RP70 1NCTRPNYNKRKRIHIGPGRAFYTTKN 11  GT I RQAHCN I 5RP100 (SGG)TRKG IHIGP GRAIY (GGSC)RP102 (SGG)TRKS I S IGPG RAF (GGSC)RP108 (SGG)HIGPGRAFYATG (G GSC)RP123c (C)HIGPGRAF (C)RP135([11B )NNTRKSIRIQRGPGRAFVTIGKIG(C) RP174c (C)NNTRKS IRIQRGPGRAFVTIGKIG( C) RP339 (RF) ITKGPGRVIY (C)注:カッコ内のアミノ酸 は、単離ペプチドの天然配列ではないペプチドRP70.RP123c、RP1 74cは、アミノ酸配列末端に近し12つのシスティン残基の間に形成されるジ スルフィド結合によりル−プを形成することができる。このような結合の形成方 法は、Zhang et al、(5’t’ochemjstry 27+37 85.1988)に記載されている。 ペプチドを、定法に従いフロイント(Freund)完全アジュ7くンド中1; 乳化して免疫化用に調製した(CFA、Difco Labs、Grand l 5land、NY)。 )11Vに対する抗体の作製 HIVに対する抗体は、マウスの系(Ba lb/c、C57BL/6.A、S W、 BIO,BR,またはBIO,A、Jackson Labs、、Bar Harbor、ME)の腹腔内において、マウス1匹につき10〜50μgの環 状化RP70 (表1)または組み換えgp160を用いて免疫化することによ り調製した。免疫原を最初の投与の後2〜4週間の間隔で2〜3回、フロイント 不完全アジュバント中に乳化した、または可溶化した形で、マウスに追加投与し た。 マウスから採血し、免疫原との反応性を有する抗体の有無について血清を調べた 。 血清学的に強い反応性を示すマウスに追加抗原投与し、その3〜5日後にこれら のマウスのひ臓細胞を、重鎖及び軽鎖イムノグロブリンの両方を分泌することの できないN5−1 (A、 T、 C,C,No、 TlB18) 、5P2− 0 (A、 T。 C,C,No、CRL8287.CRL8006)またはP3.X63.AC3 ゜653骨髄腫細飽に、Koh l e rとMilsteinの方法に基づい た定法CN1fure 256:495.1975)に従って融合させた(Ke arney et al、、j、Immuno/、123:1548,1979 )。 融合後6〜21日後に出現したハイブリドーマの上清について、以下の通りEL ISAスクリーニングアンセグアより抗体の生産をスクリーニングした。RP7 0により生産されたハイブリドーマにはRP70ペプチドを用い、gp160に より生産されたハイブリドーマにはgp41の残基567〜647のアミノ酸配 列と同一のアミノ酸配列を有するペプチドを用いた。 各ウェルにつき最終濃度0.1〜10μg/mlのペプチドを含む50μlのP BS溶液を用いて、96ウエルCo5tar平底マイクロタイタープレートにペ プチドをコーティングした。ペプチド溶液を吸引し、PBS+0.5% BSA と置換した。インキュベーション後、ウェルを吸引、洗浄し、50μmのハイブ リドーマ上演を添加した。インキュベーション後、PBSを用いて細胞を3回洗 浄し、適切に希釈したヤギ抗マウス イムノグロブリン−西洋ワサビパーオキシ ダーゼ護合体(HRP、Zymed Laboratories、San Fr ancisco、CA)50.calとともにインキュベートした。PBSを用 いてウェルを再度3回洗浄し、HRPの基質である1mM ABTS (0,1 Mクエン酸ナトリウム、p)14.2中の2,2azino−bis (3−e thylbenzthiazoline−6−sulfonic acidに1 :10OO希釈のH2O2を添加したもの)50μmを添加して、結合している 抗体を検出した。HRP活性は410nmの吸収を測定することによりモニター した。 EL I SA法で陽性のハイブリドーマについて、HIVエンベロープ蛋白質 を発現する細胞への結合能を試験することができる。このようなアッセイの一例 では、特定のHIV株のenV遺伝子を発現する組み換えワクシニアウィルスを CD4+ヒトT−リンパ腫系、CEM−ss (AIDS Re5earch  and Reference Reagent Program、Rockvi lle、MD、catalog #776)の細胞に感染させる。ハイブリドー マ上清(または精製抗体)を感染細胞と共にインキュベートし、二次抗体及び蛍 光活性化細胞ソータを用いて間接的免疫蛍光により抗体の結合を検出する。対照 実験として、etyr’遺伝子を発現しないこと以外は同一の細胞への結合を測 定する。 θ〃ト・を発現する細胞に結合するがenp遺伝子を発現しない細胞には結合し ない抗体を生産するハイブリドーマについて、さらに解析を行なう。HIV株の e〃に遺伝子を発現する細胞は、以下に記載する通りに調製することができる。 ある場合(抗体の中和において)、シンシチウム形成阻害アッセイにより、HI Vに対する抗体を評価することができる。このアッセイにおいては、HIV感染 細胞と非感染細胞の混合物にに抗体を添加し、巨大細胞の形成をモニターする。 このアッセイの詳細は、1991年3月6日に出願された米国特許出願第07/ 665、’306号(本発明の参考文献に取り入れられている)に記載されてい る。 組み換えワクシニアウィルスを用いたHIV entyを発現する細胞の調製H IV eny遺伝子を発現する細胞への結合アッセイには、実際にHIVに感染 した細胞よりもむしろ、HIV eny遺伝子を発現するワクシニアウィルスに 感染した細胞を使用する。ワクシニアウィルスプロモータにより全iHI Vエ ンベロープ遺伝子を発現することができる組み換えワクシニアウィルスの構築は 、EP 公告番号0 243 029(本発明の参考文献に取り入れられている )に記載されている。HIV eny遺伝子と、第二のワクシニアウィルスプロ モータにより発現される大腸菌の/icZ遺伝子、及びそれに隣接してチミジン キナーゼ(丁K)をコードするワクシニアウィルス配列を有する組み換えベクタ ーpSC25を用いて組み換えウィルスを作製した。 HIV−MN変種の特異性を有するエンベロープ遺伝子をコードするDNAをて いる)を除去し、HIV−MN eny遺伝子由来の相似の37111断片と置 換することにより調製した。その結果得られるプラスミドpscR2502は、 ベロープ遺伝子を有する。 上述の180アミノ酸の置換の代わりに、HIV−MN gp160蛋白質の小 さめの領域を使用することができる。例えば、いずれがのHIV株由来の36他 の方法として、全長HIV−MN eny遺伝子を有する組み換え体を使用する ことができる。複数のHIVエンベロープを発現する株は、抗体の特異性を評価 する上で有用である。 無傷のTK遺伝子を有するワクシニアウィルスにあらがじめ感染したCV−1宿 主細胞に、組み換えベクターpscR2502を感染させた。HIVエンベロー プ遺伝子は、ベクター上のTK配列とウィルスゲノム中のTK配列の間の相同組 み換えによりウィルスDNA中に組み込まれる。HIVエンベロープ遺伝子を6 する組み換え体は、TK欠損株細胞に感染させ、ブロモデオキシウリジン(BU dR)とX−galを含む培地上にまくことにより選択した。BUdRはTK“ 細胞に対して毒性を示すので、TK−組み換え体を選択する。X−galは1z c2遺伝子産物により分解される発色基質であり、jzc2遺伝子が発現すると プラークが青(なり、HIV−env遺伝子も併せ持つ組み換えウィルスを同定 することができる。 抗体の精製及び増幅 EL I SAアッセイにおいて、ペプチド結合性を有することが示されたハイ ブリドーマを、限定希釈法によりサブクローニングした。ハイブリドーマ細胞と 、免疫化していない同系マウス由来の放射線照射したび臓細胞を混合しくそれぞ れ、最終濃度5細胞/m+と2.5X106細胞/ml)、混合懸濁液200μ +をマイクロタイターウェルに入れ、各ウェルにつき1個のハイブリドーマ細胞 となるようにした。7〜14日後に出現したサブクローンについて、再度上述の ELISA法により評価した。代表的な陽性クローンをもう一部サブクローニン グした。 5種の主要なマウス イムノグロブリン アイソタイプ(IgM、IgG1゜1  gG2A、I gG2B、I gG3)にそれぞれ対応するヤギ抗マウス−H RP調製物を用いたELISA法により、抗体のアイソタイプを決定した。 ELISAおよびシンシチウム阻害アッセイで陽性であることが繰り返し確認さ れたハイブリドーマサブクローンをpristane−primed同系マウス の腹腔内に注入することにより、精製抗体を調製した。注入の2〜3週間後に腹 水を回収し、各抗体アイソタイプに応じた方法でモノクローナル抗体を以下に記 載する通りに精製した。溶出後、すべてのIgG抗体は、PBSに対して透析し た。 IgM抗体は、対応するハイブリドーマ細胞を注入したマウスの腹水を50%N H2SO4沈殿により精製し、次いで沈殿物を4xPBSに対して透析した。 次いで、透析した抗体を、4xPBSであらかじめ平衡化したUl t rag e IA−6カラム(B io t echn i cs、Vf I 1ene uve−La−Garenne、France)に通した。ELISAにより抗 体を含をする画分を同定した。 IgG1抗体を含有する腹水は、4倍量の0.1M Tris−HCI、3MN aC1,pH8,9により希釈し、同じTris−NaCI緩衝液で平衡化した Protein A−セファロースアフィニティ力ラムに通すことにより単離し た。0.1M クエン酸ナトリウム、pH6,0を用いて抗体を溶出した。 I gG2抗体を含有する腹水は、2倍量のPBSにより希釈し、PBSで平衡 化したProtein A−セファロースアフィニティカラムに結合させた。次 いで、0.15M NaCl、0.1M酢酸、pH3,0によりカラムから溶出 した。溶出後、I M N a 2 HCO3を添加することにより抗体を迅速 に中和した。 IgG3抗体を含有する腹水は、4倍量の0.1M Tris−HCI、3MN aC1,pH8,9により希釈し、Protein A−セファロースアフィニ ティカラムに適し、0.15M NaCl、0.1M酢酸により抗体を溶出した 。 その他の方法として、すべてのIgGサブクラスは、以下の方法により精製する ことができる。腹水を4倍量の0.1M Tris−HCI、3M NaC1゜ pH8,9により希釈し、Protein A−セファロースアフィニティ力ラ ムに通し、0.15M NaC1,O,1M酢酸、pH3,0により溶出する。 抗体の特異性の決定 以下に記載するアッセイは、HIVに対する抗体の株特異性を決定し、HIVに 対する抗体により認識されるエピトープをマツプするのに使用することができる 。これらのアッセイの一部またはすべては、異種複合抗体を生産するためのHI Vに対する抗体を選択するのに使用することができる。上述のHIV eny遺 伝子を発現する細胞への結合アッセイも、抗体の特異性の評価に使用することが できる。V3に対する抗体により認識されるエピトープは、標準的なELISA アッセイまたは以下に記載する競合的ELISAアッセイによりマツプすること ができる。EL I SAアンセイにamなペプチドには、(1)多様なHIV 変種由来のv3ループ配列(表2)を代表する24〜25merの配列、(2) MN V3ルーブチンブ配列(C)−に−R−1−H−I−G−P−G−R−A −F−Y−T−T−(C)に対応する12merの配列を含み、それぞれ最初の アルギニン(R)残基からチロシン(Y)残基までの1つのアミノ酸がアラニン 残基に置換されているMN置換配列を含む。置換配列においては、天然ではアラ ニンであるところがグリシンに置換されている。抗体の、MN配列中に含まれる エピトープ認識は、アラニンが置換されたペプチドに抗体が結合しにくくなるこ とから示される。アラニン置換により結合は阻害される。 競合的EL I SAアッセイは、標準的なELI SAアッセイを以下のよう に修正し0行なった。抗体をプレートにアプライする前に、10MM−0,00 45μMの濃度の、先に列記した試験ペプチドの1つと共に抗体をインキュベー トした。抗体と結合する上で、試験ペプチドが固定化免疫原と競合する場合、抗 体がプレートにほとんどまたはまったく結合しないことがELI SAにより示 される。 gp41に対する抗体により認識されるエピトープは、gp41配列の全体また は一部に基づくアラニン置換配列を用いて類似の方法でマツプすることができる 。gp41の一部に対応する配列を有するペプチドを使用することも可能である 。 v3ループに対する抗体 HIV−MN gp120のv3ループ中の配列を認識し、異種複合抗体の作製 に使用することのできる抗体を以下に記載する。 BALB/CマウスをRP70 (表1)免疫原により免疫化して、ハイブリド ーマF59及びF83を作製した。F59/P5B3 (59,1)及びF83 /P6F12 (83,1)と命名した抗体は、株特異的ではない抗体として同 定された。59.1抗体との結合においてRP70と競合するアラニン置換ペプ チドは、G−P−G−R−A−F配列中にアラニン置換を含まない。同様に、G −P−G−R−A−F配列を有するペプチドは59.1抗体との結合においてR P70と競合することができるが、この配列を有しないペプチド(すなわち、R PI29及びRP175)は競合することができない。これらの結果は、59. 1抗体がG−P−G−R−A−Fエピトープを認識することを示唆している。こ の配列は広範囲にわたるHIV変種中に存在する。59.1の株特異性は、上述 の技術を用いて解析した。これらのアッセイにより、59.1がHI V−1v INSHIV−3F2、旧V−WMJ2及び旧V−111BのV3ループを認識 すルコとが示された。 ELISAアッセイにより、83.1抗体がl−X−1−G−P−G−Rエピト ープ(Xはいかなるアミノ酸でもよい)を認識することが実証された。83゜1 抗体の株特異性は、上述の技術を用いて解析した。これらのアッセイにより、8 3.1がHIV−MN、HIV−Alabama、HIV−8F2、HIV−W MJ2及びHIV−Duke 7887−7のv3ループを認識することが示さ れた。 このように我々は、多くのHIV株を認識する抗体2種を同定した。83.1抗 体はl−X−1〜G−P−G−Rエピトープ(Xはいがなるアミノ酸でもよい) を認識する。一方、59.1はGPGRAFエピトープを認識する。59.1抗 体を用いて、5cott et al、(7,Immutyolozy 140 :8.1988)により異種複合抗体を作製した。 gp41に対する抗体 組み換えgp160を用いて、根本的には以下に記載する通りにモノクローナル 抗体を作製した。ELI SAアッセイにより、これらの抗体の一種、6c5が gp41の一部分(アミノ酸584〜611)を認識することが示された。gp 41のこの部分は、HIV株の間で大きく異なることはない。従って、この領域 に対する抗体は株特異的ではないと予想される。この抗体を用いて、5cott et al、()、Immunolozy 140:8,1988)により異種 複合抗体を作製、精製した。 0KT3159.1及び0KT3/6C5異種複合抗体以下に記載する実験は、 種々のHIV株に感染したCEM−ss細胞(Amertcan Type C u1ture Co11ection、Bethesda、MD:Access ion No、CCL119)に対する2種の異種複合抗体、0KT3159. 1及び0KT3/6C5の影響を示したものである。 0KT3159.1異種複合抗体は、抗CD3モノクローナル抗体、0KT3を HIV−MNのgp120サブユニットのv3領域中のエピトープに対する二番 目のモノクローナル抗体、59.1に共有結合により架橋して作製した。0KT 3/6C5異種複合抗体は、0KT3をHIV−MNのgp41サブユニットの 残基584〜611 (Ratner et al、、Nature 313: 277.1985の番号付けによる)中のエピトープに対するモノクローナル抗 体、6C5に共有結合により架橋して作製した。CD3は、抗原に対するT細胞 受容体(T CR)と非常に関連性の高い受容体である。CD3受容体を発現す る細胞毒性1928球の存在下で感染細胞を培養した場合、本発明の異種複合抗 体は、ウィルスの逆転写酵素活性により測定される通り、ウィルスの複製を画期 的に減少させる。逆転写酵素活性は、HIV活性の感度のよい指標であるため、 これらの結果はウィルスに感染した細胞が急激に減少することを示している。異 種複合抗体が、Tリンパ球を感染細胞に作用させることにより感染細胞の死滅を 促進することが、特定の理論に縛られることなく示された。 CTLの作製 異種複合抗体の活性の試験に使用するCTL細胞系(IF8)は、5cotte t al、()、Immunojofy 140:8,1988)の方法を修正 した方法により調製した。簡単に記載すると、大量の供与体PBL培養物を同種 異系の、EBVによりトランスフオームされたリンパ芽球細胞系(ステイミュレ ータ細胞)と共に20% FBS (Gibco/BRL、Grand l5l and、NY) 、PHAに刺激されたPBL由来の上清及び100U/mlの 組み換えインターロイキン2を添加したRPMI 1640培地中で7日間イン キュベートした。次いで、U底トレー中で限定希釈する(1細胞/ウエル)こと により細胞をクローニングした。支持細胞層には放射線照射した自系PBLとス テイミュレータ細胞を使用した。クローンをCTL活性(ステイミュレータ細胞 の溶解により評価した)及びNK活性(K562細胞の溶解:CCL 243゜ American Type Cu1ture Co11ection、Bet hesda、MD)についてスクリーニングした。CTL活性を示すがNK活性 ヲ示さないクローン1F8を選択した。 るウィルス複製の減少か逆転写酵素活性の測定により示された特記しない限り、 CEM−ss細胞(96ウエルプレート中15,000細胞/ウエル)は、64 感染単位(IU)のHIV−MNまたはHIV−111Bに感染させた。感染の 18時間後、エフェクタ細胞(IF8細胞、45,000/ウエル)を種々の濃 度の0KT3159.1異種複合抗体または等量の複合していない抗体と共に感 染CEM−ss細胞に添加した。CTLを10% FBS(G i b c o /BRL)を含むRPF、11 1640中で生育させ、新鮮な培地で洗浄した 後、抗体を添加した。78後無細胞培養上清を回収し、wtt+eyet al 、()、Vlro/、62:139,1988)の方法により逆転写酵素活性を 測定した。 図1及び図2の通り、0.5日g/mlの0KT3159.1異種複合抗体(黒 菱形)は、HIV−MNまたはHIV−IIIBのいずれかに感染したCEM− ss細胞中の逆転写酵素活性を事実上除去した。0KT3抗体と59.1抗体の 複合していない混合物(白四角)は、2,000ng/mlの場合でさえも逆転 写酵素活性に影響を及はさなかった。 図3では、別の実験を行ない、CTL細胞細胞性存在下丸)では0KT3159 .1異種複合抗体は逆転写酵素活性に影響を及ぼさないことを実証した。同様に 、0KT3159.1異種複合抗体非存在下(黒三角)ではCTLはHIV−1 目8感染細胞の逆転写酵素活性に事実上影響を及ぼさなかった。CTL細胞細胞 性存在下複合していない抗体(白丸)及びCTLのみ(白三角)は感染細胞の逆 転写酵素活性に事実上影響を及はさなかった。非感染細胞(黒四角)の逆転写酵 素活性は検出されなかった。すべての場合、CTL及び/または抗体は、感染の 18時間後に添加した。 長時間のウィルス復製及びこれによるウィルスの蔓延が異種複合分子の効力に影 響を及はすかどうかを決定するために、抗体及びCTLの添加に先立つHrV感 染時間を変化させた。抗体及びCTLを添加する前に、CEM−ss細胞をHI V−MNまたはHIV−111B(641U)と共に6.18.48または72 時間インキュベートした。逆転写酵素活性は、感染の7日後に測定した。0KT 3159.1異種複合抗体及びCTLを添加する前に、6.18または48時間 感染させた場合、逆転写酵素活性を完全に除去するには0.5日g/mlの異種 複合抗体で十分であった。同一条件下で、逆転写酵素活性を除去するためには、 2,000ng/m1以上の0KT3抗体及び59.1抗体の複合していない混 合物が必要であった。抗体及びCTLを添加する前に、72時間感染させた場合 、逆転写酵素活性を除去するにはlng/mlのOKT’3159.1が必要で あった。この時点では、逆転写酵素活性を除去するためには、2.OOOng5 /m1以上の複合していない抗体か必要であった。 さらに、抗体の濃度を一定にし、CTLのCEM−ss細胞に対する比率を変化 させた実験を行ない、0KT3159.1異種複合抗体のin vjt’roに おける効勾を解析した。この実験におい°Cは、0KT3159.1異種複合抗 体の濃度(1Ug/ml) 、CEM−s s細胞の数(15,000/ウエル )及びHIV−MNまたはHIV−111の感染用量(64,ItJ)を一定に 12、培長物に添加するCTLの数を変化させた。CTL及び/または異種複合 抗体は感染の18時間後に添加L、感染7日]」に逆転写酵素活性を測定]7た 。図4にお(翫て、逆転写酵素活性は、CTL : CEM−s s比が011 の場合完全に除去され、CTL : CEM−s s比か(’1.006旨のよ うに低い場合でも時部分的に(≧6096)除去された。この結果は、l’ I ) J’ /’ Vθで見られる条件のように標的細胞(CEM−s s )の 数がエフ−フタ−細胞の数よりも非常に多(X場合にも0KT3159.1異種 複合抗体が効果的であることを実証している。 0KT3.159.1は多くのHIV株に対して効用的である0KT3159. 1異種複合抗体が種々のHI V株に対して効果的である力覧否かを試験するた めに、CEM−ss1!1胞(24ウェルプレート中150.00077′ウエ ル)i:xoo〜1000 1UのH[Vを感染させた。感染時1こlよ、3倍 量のCTL (450,000/ウエル)及び’]、zzg/rnlの0KT3 159.1異種N合抗体(またはllJg/mlの単量体抗体)を培養物に添加 [、た。培養物は、週に−う回分側し、4〜5[1毎に培養上清を回収して逆転 写酵素活性を測定した。抗体は、一度添加した後は追加添加しなかった。このた め、培養物を分割することにより抗体濃度及び標的細胞と1フエクター細胞の絶 対数は減少する。文■照実験Jし7て、ウィルスのみと共にCEM−ss細胞を 培養【7た。HI V単離物を試験し、それらのV3配列を表2に示した。 表2:V3ループ配列 Alabama −KS−−−−−−−−−−H−−RDuke 6587−5  V−N −−−一−−−−−−−H−−−3F2 T−−3−Y−−−−−− −H−−GWMJ2 I−R3LS−−−−−−m=−R,−RE11 I B KS I −QR−一−−−−−V−I GDUKE 6587−7 T −− G −−−−−−−−−1−A−GDUKE7887−7TSRG−R−−−− −−ILA−Eこの表において、−”はぞの位置のアミノ酸がλ4Nと同一・で あることを示している。保存されたGPGRAFモチーフは下線で示している。 図6において、HIV単離物がGPGRAF配列を有する場合はずべて(MN。 Alabama、、Duke 6587−5、INIB、SF2、WMJ2.そ れぞれパネルASB、、D、F、G、H) 、0KT3159.1 (白四角) は、逆転写酵素活性を抗体またはCTLを添加t、ないCEMS8(黒丸)と比 較し2て9596以上阻害した。GPGRAIモチーフを有する2種の単離物、 DUKE 6587−7 (パネルE) 、DUKE 7B87−7 (パネル C)を試験したところ、1つ(DUKE 6587−7)は11.[l害した。 0KT3と59.1の複合していない混合物(黒三角)は効果を示さなかった。 0KT3/6C5異種複合抗体は感染細胞中で逆転写酵素活性を阻害する0KT 3/6C5異種複合抗体の、HIV−111B感染CEM−ss細胞中の逆転写 酵素活性を阻害する能力を試験した。簡単に記載すると、CEM−’5s(96 ウエルプレート中15,000細胞/つxル)を64 1UのHIV−IIIB に表出した。18時間後、CTL (45,000細胞/ウエル)及び種々の濃 度の0KT3/6C5異種複合抗体を添加した。7日後、上述の通りに逆転写酵 素活性を測定した。 図6において、0KT3/6C5異種複合抗体(白丸)は0.5ng/mlのよ うな低濃度でも逆転写酵素活性を事実上除去した。これに対して、0KT3と6 C5の複合していない混合物は、逆転写酵素活性に対して特に影響を示さながっ た。 0KT3159.1及び0KT3/6C5はCTL存在下で細胞毒性を有する異 種複合抗体の細胞毒性活性を試験するために、まず初めに我々は組み換えワクシ ニアウィルスに感染したCVI細胞を使用したモデル系中での5Icr放出アツ セイを行なった。HIV−IIIB env遺伝子(VPE16)または旧V  −MN (VMN)eny遺伝子のいずれかを発現する組み換えワクシニアウィ ルスによりCVI細胞を感染させた。HIV θnV遺伝子を発現しない組み換 えワクシニアウィルス(v s C8)を負の対照として用いた。細胞培養混合 物は根本的には逆転写酵素アッセイの場合と同様に準備した。エフェクター細胞 としてIF8細胞を使用した。この細胞自体はCV1細胞またはワクシニアウィ ルスに感染したCVI細胞に対して細胞毒性を示さない。 表3において、10μg/mlの0KT3159.1異種複合抗体は58%のV PE16感染CVI細胞及び62%のVMN感染CVI細胞を溶解した。非感染 細胞の溶解は非常に少なかった。111量体抗体を添加した場合にも細胞溶解は 同じくらい少なかった(データ示さず)。0KT3159.1を使用した場合の 溶解率が10096ではなく最大60%なのは、恐らく、ワクシニアウィルスに よるCVI細胞への感染が不完全であったためであろう(CVI細胞の限定希釈 によるシンシチウム形成アッセイにより、細胞の50〜60%がgp160を発 現することを示した)。gp120のカルボキシル末端のエピトープを認識し、 HIV envを発現する(FAC3により評価)細胞に結合する2種の抗体、 IC1または7C6を用いて形成した異種複合抗体は、HIV−MNまたはHI V−IIIB e/7V蛋白質のいずれかを発現するワクシニアウィルスに感染 した細胞の溶解には相対的に効果的ではなかった。細胞表面結合は、ある所定の 抗体が細胞毒性異種複合抗体を作製できるかどうか決定するのに必要だが十分な 特性ではないことは明白である。 表3:異種複合抗体による細胞溶解 0KT3159.1 6 58 62 0KT3/7C6917N、D。 0KT3/IC1118N、D。 以下に記載するアッセイは、本発明の異種複合抗体の効力を決定するのに使用す るものである。種々のHIV株を使用することにより、所定の異種複合抗体の反 応性の広さも併せて決定することができる。本発明の異種複合抗体の効力を正確 に決定するためには、慎重に制御された条件下で、HIV感染細胞に対する異種 複合抗体の効果を測定することが重要である。好適なアッセイを以下に記載する 。 100〜1000感染単位(IU)の目的H夏■株によりCEM−ss細胞(2 4ウエルマイクロタイタープレート、ウェル容Ji2ml中、150,000細 胞/ウエル)を感染させる。感染の18時間後、目的の初期濃度を達成するのに 十分な量の異種複合抗体と共に450,000エフエクター細胞を添加する。 樟準的な条件下で細胞を培養し、3日毎に分割する。異種複合抗体は追加添加し ないため、培養物を分割する度に異種複合抗体濃度は半分になる。異種複合抗体 を添加しない以外は全く同一の条件の培養を対照実験とする。感染10日1に、 Willey et al、()、Vjro10!、)’ 62:139;19 88)の方法により、両方の培養物の逆転写酵素活性を測定する。ウィルス生産 がピークに達するのに感染後140以上要するHIV株については、逆転写酵素 活性を感染10日後に測定すべきてはない。代わりに、ウィルス生産が最大に近 い時点で逆転写酵素活性を測定すべきである。 感染単位はKiber法により決定する。ウィルスのタイターは保存中に低下す るため、ウィルス保存液のタイターは使用直前に測定することが重要である。 ウィルス保存液は不完全なウィルス粒子を少なくするよう慎重に調製すべきであ る。例えば、調製したウィルス保存液の感染の多重度は0.001が望ましく、 細胞は対数増殖するような条件で培養すべきであり、また、ウィルスはウィルス 生産が最大の時点(逆転写酵素活性またはp24発現が最大であることで判断す る)で回収すべきである。 組み換え異種複合抗体 モノクローナル抗体は大部分の場合ヒト以外の種の中で生産されるため、ヒトに 対して免疫原性を示すことが多い。ヒトの治療において異種複合抗体を効果的に 使用するために、抗原結合部分(可変領域)はある種に由来し、構造的安定性及 び生物学的機能に関与する部分(一定領域)はヒト抗体に由来するキメラ抗体分 子を作製する必要があるかもしれない。可変領域がある種に由来し一定領域が他 の種に由来するキメラ抗体の作製法は、当業者に熟知されている。例えば、Ne uberger et al、、PCT 公開 WO36101533、優先口 1984年9月3日;Morrison et al、EP公開番号0,173 .494、優先臼1984年8月27日参照のこと。その他の方法として、可変 領域の相補性決定領域(CDRs)のみを、望ましい抗原特異性を有するイムノ グロブリン由来のCDR5と置換する方法がWinter(GB公開番号2゜1 88.638、優先81986年3月27日)により記載されている。ヒトFC 部分を有する抗体を作製することによりマウスモノクローナルをヒトの治療に適 合するようにすることもできるCMorrtson、5cience 229: 1202.1985)。単一ポリペプチド鎖抗体も、組み換え法により従来の抗 体よりも簡便に作製することができる。単一ポリペプチド鎖抗体の作製方法はL adner et al、(米国特許第4.946,778号)により記載され ており、これらの方法は異種複合抗体の作製に応用することができる。′このよ うなハイブリッドモノクローナル抗体の構築、発現及び精製方法は確立している 。 二重の特異性を有する抗体の作製にクアドローマを使用することができる(Re ading et al、、米国特許第4,474.893及び4,714.6 81)。 使用法 本発明の抗体は、静脈注射または筋肉注射のいずれかの経路により非経口的に投 与することができる。典型的な治療法は、約1週間〜約6か月間にわたって効果 的な量の抗体を投与するものである。患者の疾患を制御するために必要な治療回 数は、疾患の重さや進行段階及び患者の特性により各患者ごとに異なる。各治療 に必要な総用量は数回に分けても、−回で投与してもよい。ヒトモノクローナル 抗体は、単独で投与しても、また、患者の疾患を制御するためにAZTのような 他のHIV治療と連動して投与してもよい。 異種複合抗体の薬理学的混成物は目的の投与モードに従って、リポソーム、溶液 、懸濁剤及び微粒子などの形状に作製する。 ある場合には、異種複合抗体を適切なエフェクター細胞と共に投与することが望 ましい(Nitta et al、、1he 1ancet 335:368゜ 1990)。例えば、HIV感染の治療が必要な患者(または適合する提供者) から抹消血液リンパ球(P B L)を回収し、異種複合抗体と共にインキュベ ートしてから細胞を再注入する。ある場合、PBLは培養物中に広がる(Ros enberg et al、、5cietyce 233:1318,1986 )oPBLはインターロイキン、インターフェロンまたは他のイムノモジュレー タと共にインキュベートしてもよい。さらに、細胞は、エフェクター細胞の細胞 溶解活性を刺激する受容体特異的抗体(Scott et al、、Cellu larImmunolozy 114:370.1988)のような分子と共に インキュベートしてもよい。 請求の範囲: 配列表 (2)配列番号:コ (i)配列の特徴: (A)配列の長さ: 6 CB)配列の型: アミノ酸 (D)トポロジー: 直鎖状 (xi)配列番号:1の配列: C1y Pro cly Arg ALa Pha(2)配列番号:2 (1)配列の特徴: (A)配列の長さ: 7 (B)配列の型: アミノ酸 (D)トポロジー: 直鎖状 (xi)配列番号:2の配列: 11@ Xaa工l@ (ily Pro GLy Arg(2)配列番号・3 (i)配列の特徴: (A)配列の長さ:28 (B)配列の型: アミノ酸 (D)トポロジー: 直鎖状 (xi)配列番号:3の配列: Gin ALa Arg XLm L@LI Ala Val Glu Arg  Tyr Leu Ly−^−p (inn Gin La■ S !Ois L*u Gly Xl・τrp Gly CY@ S@t Gly Lye L 4Ll工X@Cys(2)配列番号:4 (i)配列の特徴。 (A)配列の長さ=17 (B)配列の型・ アミノ酸 (D)トポロジー: 直鎖状 (Xl)配列番号=4の配列: Lye (2)配列番号:5 (i)配列の特徴: (A)配列の長さ: 5 (B)配列の型: アミノ酸 (D)トポロジー: 直鎖状 (xi)配列番号:5の配列: XLm GLY Pro Gly Arg(2)配列番号=6 (i)配列の特徴: (A)配列の長さ=24 (B)配列の型: アミノ酸 (D)トポロジー: 直鎖状 (xi)配列番号二6の配列: Tyr Asn Lye Arg Lys 入rg Xi・ 111g XLm  Gly 1lro Gly Ar9 ALa Ph・ ’pr S 10 is τhr Thr Ly@ Asn !le !le GLy C1m2゜ (2)配列番号ニア (i)配列の特徴: (A)配列の長さ=11 (B)配列の型: アミノ酸 (D)トポロジー: 直鎖状 (xi)配列番号ニアの配列: Xis 11Lm XLm Gly Pro Gly Arg Ala Pha  Tyrτ■(2)配列番号:8 (i)配列の特?ji: (A)配列の長さ=40 (xi)配列番号:8の配列: !i@Asn CY# Thx kg Pea^−n?yr^−n LF JL rg LF hxq XLm BLm !leS 10 1s GIY Pro aly Ar9 ALa Ph@Tyt Thr テhr L y−Asn XLm !le 31y Thr Xl・^rq Gin Ala  XLm Cy−^mI′1 工1m B@r3% 40 (2)配列番号;9 (i)配列の特徴; (A)配列の長さ:21 (B)配列の型: アミノ酸 (D)トポロジー: 直鎖状 (xi)配列番号:9の配列: S@3? Gly Gly Thr Arg L)n Oly H@Mi・Xi s cly Pro Gly Arg^la !l@S 10 15 ?yr Gly Oly SQL cys(2)配列番号=lO (i)配列の特徴: (A)配列の長さ=20 (B)配列の型: アミノ酸 (D)トポロジー: 直鎖状 (xl)配列番号=10の配列: s@r Gly cxy Thr Ar9 LY@ SQL” XL拳S社XL @ Oly pro 017 社g^la Phs5 10 1s Gly Oly a@r Cys (2)配列番号:11 (i)配列の特徴: (A)配列の長さ=19 (B)配列の型: アミノ酸 (D)トポロジー: 直鎖状 (x i)配列番号=11の配列: SQL C:Ly Oly H1sエエ@ Oly Pro Oly Arg^ La Ph@Tyt^la The Gly Gly(2)配列番号:12 (i)配列の特徴: (A)配列の長さ:10 CB)配列の型: アミノ酸 (D)トポロジー: 直鎖状 (xi)配列番号:12の配列: Cys 1lls Xis Gly !’roGly kg^la Phs C ysS ユ0 (2)配列番号;13 (i)配列の特徴: (A)配列の長さ=25 (B)配列の型: アミノ酸 (D)トポロジー: 直鎖状 (xl)配列番号=13の配列: ^−n ^−n rhr ^xq Lys li@r Xis Arg 工1@  ctn A19 sty pro Gly ^xq A1■ 5 10 1s Ph@ Val 丁hr Xis GAY LY@ XIJ cly CY@( 2)配列番号=14 (1)配列の特@: (A)配列の長さ:26 (B)配列の型: アミノ酸 (D)トポロジー: 直鎖状 (xi)配列番号:14の配列: q−^an A釦thr Arg Ly# 1!+@r X1m 社g 11m  Gin 社g Oly pro Oly Ar95 工O工5 ^1m 11)1@ VJLIThr Z工@ Oly Lys工l* (il y cym(2)配列番号=15 (i)配列の特徴: (A)配列の長さ=11 (B)配列の型: アミノ酸 (D)トポロジー: 直鎖状 (x i)配列番号=15の配列: Xis Thr Lys Oly Pro Gly JLrg VJLL Il @?yr C’ys(2)配列番号:16 (i)配列の特徴: (A)配列の長さ:16 (B)配列の型: アミノ酸 (D)トポロジー: 直鎖状 (xi)配列番号=16の配列: Cys Lys Arg 11m RL@ Xis Gly Pro Gly  Arg^1m Ph・T7r Thrτhr CY@5 10 is (2)配列番号=17 (1)配列の特徴: (A)配列の長さ:17 (B)配列の型: アミノ酸 (D)トポロジー: 直鎖状 (Xl)配列番号=17の配列: (2)配列番号=18 (i)配列の特徴: (A)配列の長さ=17 (B)配列の型・ アミノ酸 (D)トポロジー: 直鎖状 (xi)配列番号=18の配列: Ly@Ly@gsr Mg 工l@Ius Xis Oly Pro Gly  kg^la Phs HLm丁hrτhr(2)配列番号219 (i)配列の特徴工 (A)配列の長さ:17 (B)配列の型: アミノ酸 (D)トポロジー: 直鎖状 (xi)配列番号=19の配列: (2)配列番号=20 (i)配列の特徴: (A)配列の長さ:17 (B)配列の型: アミノ酸 (D)トポロジー: 直鎖状 (xi)配列番号;2oの配列: (2)配列番号:21 (i)配列の特徴: (A)配列の長さ:17 (B)配列の型ニ アミノ酸 (D)トポロジー、 直鎖状 (xl)配列番号=21の配列: VaL ^r9 Arg S@r Lye Sat Xle Gly Pro  (Ay Arg Ala the 入r9 丁hr ^x9(2)配列番号:2 2 (i)配列の特徴; (A)配列の長さ−17 (B)配列の型・ アミノ酸 (D)トポロジー: 直鎖状 (xl)配列番号−22の配列: LYII s@r Xle λr9 工111 can mg GLy I’r o GLy 入rg 入La the VsiL The 氏B S 10 is IY (2)配列番号:23 (i)配列の特徴・ (A)配列の長さ:17 (B)配列の型: アミノ酸 (D)トポロジー: 直鎖状 (xi)配列番号:23の配列: The 入rg LY# Gly Xle 1lis X1e Gly Pro  Gly Arg Ala 工↓s Tyr 入La Th■ (2)配列番号:24 (i)配列の特iji: (A)配列の長さ=17 (B)配列の型: アミノ酸 (D)トポロジー: 直鎖状 (xl)配列番号:24の配列・ 丁hr s@r ^tq Oly Xle ^r9 工1e Gly Pl:o  OLy Arg Ala Xle Ia@u 入1a T■■ S 10 xs G↓υ (ln Ql/LLld:)) 峯穀危YI班 (In 0+/LLI(1:’) 峯a九)班 (LLIdり) 峯!I危)研 感染後の日数 一◆−十対照(CTLまたは抗体非存在下)−→−CTL十単量体 感染後の口数 + CT L+異種複合体 図5(1)感染後の日数 一心−CTL十異[複合体 図5(C) 0 2 4 6 8 to 12 感染後の日数 図5(D) 感染後の11数 −4−4一対照(CT L、または抗体非仔在「)−1−CT L + fit 二体 −O−CT i、十異種複合体 図5(E) 感染後の日数 一◆−十対照(CTLまたは抗体非存在下)感染iその日数 m=1− 十対照(CT Lまたは抗、体非存在下)感染後の日数 一→−(一対照(CTLまたは抗体非存在下)−一〇−−MON 0KT3+6 C −一◆−−HC0KT3/6G5 図6 補正書の写しく翻訳文)提出書(特許法第184条の8)1、国際出願の表示 PCT/US92103616 2、発明の名称 HIV感染治療のための異種複合抗体 3、特許出願人 住 所 アメリカ合衆国 マサチューセッツ州 ケンブリッジビルディング 7 00 ワン ケンダル スフウェア名 称 リブリジェン コーポレーション国  籍 アメリカ合衆国 5、補正書の提出年月日 1993年 7月14日 6、添付書類の目録 (1)補正書の写しく翻訳文) 1通 く原文第13頁の翻訳文〉 1Hg/mlの0KT3159.1異種複合抗体存在下での、逆転写酵素活性に 対する細胞毒性1928球とHIV−MN感染CEM−ss細胞の比率の効果を 示したグラフである。逆転写酵素活性(cpm/10μm)は、CEM−ss細 胞に対する細胞毒性リンパ球の関数で示している(1Ggloスケール)。 図5 (A) 〜5 (H)は、HIV−MN (5A) 、HIV−Al a bama(5B) 、HIV−Duke7887−7 (5C) 、HIV−D uke65875 (5D) 、HI V Duk e6587 7 (5E)  、HIV I I I s (5F) 、HIV−3F2 (5G) 、及び HIV−WMJ2 (5H)に感染したCEM−ss細胞の逆転写酵素活性に対 する、細胞毒性1928球と0KT3159゜1異種複合抗体(白四角)及び0 KT3抗体と59.1抗体の複合していない混合物(黒二角)の効果を示したグ ラフである。逆転写酵素活性(cpm/10μl)は、感染後の日数の関数で示 している。 図6は、HIV−I118感染CEM−ss細胞の逆転写酵素活性に対する、複 合0KT3抗体と6G5抗体の混合物(白丸)及び0KT3/6G5異種複合抗 体(黒丸)の効果を示したグラフである。逆転写酵素活性(cpm/10μl) は、細胞培養物中の初期抗体濃度(n g/m 1 )の関数で示している。 AIDS治療に対する異種複合抗体 本発明の分子は、HIVに感染した細胞を殺すことのできる細胞毒性免疫エフェ クター細胞表面に存在する抗原に対する第一の抗体を、HIV感染細胞の表面に 存在するHIV抗原に対する第二の抗体に結合することにより作製した異種複合 抗体である。 く原文第32頁の翻訳文〉 表2:v3ループ配列 A l a b ama −KS −−−−−−−−−−H−−RDuke 6 587−5 V−N −−−−−−−−−−H−−−8F2 ”r−−s−y− −−−−一−1(−−cWMJ2 V−R8LS−−−−−−−R−REl 1 1 BKS l −−QR−−−−−−V−I GDUKE 6587−7 T −−G−−−−−−−−1−A−GDUKE 7887−7 TSRG−R−− −−−−ILA−Eこの表において、°−1はその位置のアミノ酸がMNと同一 であることを示している。保存されたGPGRAFモチーフは下線で示している 。 図5(A)〜5(H)において、HIV単離物がGPGRAF配列を有する場合 はすべて(MN、A1at+ama、Duke 6587−5、IIIB、SF 2、WMJ2 ;+t’Lft’L図5A、BSD、F、G、H) 、0KT3 159.1(白四角)は、逆転写酵素活性を抗体またはCTLを添加しないCE M−ss(黒丸)と比較して9596以上阻害した。GPGRAIモチーフを有 する2Nの単離物、DUKE 6587−7 (図5E) 、DUKE 788 7−7 (図5C)を試験しタトコロ、1つ(DUKE 6587−7) は1 lJ1害した。0KT3と59.1の複合していない混合物(黒三角)は効果を 示さなかった。 0KT3/6G5異種複合抗体は感染細胞中で逆転写酵素活性を阻害するOKT  3/6 C5,flF!複合抗体の、HIV−111感染CEFv1−ss細 胞中の逆転写酵素活性を阻害する能力を試験した。簡単に記載すると、CEM− ss(96ウエルプレート中15,000細胞/ウエル)を64 1UのHI  V−1目、に表出1〜た。18時間後、CTL (45,000細胞/ウエル) 及び種々の濃度の0KT3/6C5異種複合抗体を添加した。7日後、上述の通 りに逆転写酵素活性を測定した。 フロントページの続き (51) Int、 C1,’ 識別記号 庁内整理番号C12N 5/10 15/13 ZNA C12P 21108 8214−4BI [It is also characterized by a heterologous composite antibody containing a first protein and a second protein, where the first protein contains an antibody against an antigen present on the surface of effector cells in peripheral blood, and the second antibody portion is expressed on the surface of an HIV-infected cell. H IV-MN Arui! Contains antibodies against the v3 loop sequence of the gp120 envelope protein of HIV-MN variants. Here, in a first mixed cell culture containing effector cells and HIV-MN-infected CEM-ss cells, different f. The conjugated antibody suppresses the reverse transcriptase activity of this first mixed culture cell. The cell density is reduced by at least 80% compared to an otherwise identical second mixed cell culture containing effector cells and HIV-MN infected CEM-ss cells. Here, effector cells were in 3-fold excess over CEM-ss cells in the first and second mixed cell cultures, and reverse transcriptase activity was determined at M1 at 10 days postinfection [1], with different f! Conjugate antibody and effector cells are added to the first mixed cell culture 18 hours after infection, and the first and second cell cultures are infected with 100-1000 units of HIV-MN. In a related aspect, the invention provides a heterologous complex comprising covalently linked first and second proteins. The first protein is an antibody present on the surface of effector cells in peripheral blood. The second antibody portion contains an antibody against the V3 loop sequence of the gp120 envelope protein of HIV-MN or HIV-MN variants expressed on the surface of HIV-infected cells. Here, in a first mixed cell culture containing effector cells and HIV-MN-infected CIIJf-ss cells, the heterologous conjugate antibody at an initial concentration of 5 ng/ml inhibits the reverse transcriptase activity of the first mixed culture cells. Effect Another identical second mixed cell culture containing target cells and H[V-MN-infected CEM-ss cells. decrease by at least 8096 compared to the Here, effector cells were in 3-fold excess over CEM-ss cells in the first and second mixed cell cultures, reverse transcriptase activity was measured 10 days post-infection, and xenoconjugated antibodies and effector cells were The first mixed cell culture is added 18 hours after infection, and the first and second cell cultures are infected with between 100 and 1000 HIV-MN. In another related aspect, the invention features a heterologous conjugate antibody comprising a covalently linked first protein and a first protein, the first protein being present on the surface of effector cells in peripheral blood. a second antibody portion expressed on the surface of an HIV-infected cell. contains an antibody against the V3 loop sequence of the gp120 envelope protein (gp120 envelope protein) of infected HIV-MN cells. In one mixed cell culture, the first A single phase of 1 ng/ml of xenoconjugated antibody was used to compare the reverse transcriptase activity of this first mixed culture with another identical second mixed cell culture containing effector cells and HIV-MN-infected CEM-s5 cells. , by at least 80%. Here, the effector - cells were in 3-fold excess of CEh4-ss cells in the first and second mixed cell cultures. Reverse transcriptase activity was determined in M1 at 10 EE postinfection, and the Vector cells are added to the first mixed cell culture 18 hours after infection, and the first and second cell cultures are infected with 100-1000 units of HXV-MN. In a related aspect, the invention provides a heterologous complex comprising covalently linked first and second proteins. The first protein is an antibody present on the surface of effector cells in peripheral blood. the second antibody portion comprises an antibody against the amino acid sequence GPGRAF. Contains the body. In a preferred embodiment, in a first mixed cell culture comprising effector cells and CEM-ssm cells infected with HIV-MN, a The enzyme activity was reduced compared to the reverse transcriptase activity of another identical second mixed cell culture containing HIV-MN infected CEM-ss cells. also reduced by 80%. Here, in the first and second mixed cell cultures, effector cells were in 3-fold excess over CEM-ss cells, reverse transcriptase activity was measured at day 10 post-infection, and heteroconjugate antibodies and effector cells were detected at day 10 postinfection. One mixed cell culture is added 18 hours after challenge, and the first and second cell cultures are infected with 100-1000 infectious units of HIV-MN. In a related aspect, the invention provides a heterologous complex comprising a co-associated first and second protein. The first protein is an antibody present on the surface of effector cells in peripheral blood. The first antibody portion contains an antibody against the amino acid sequence IXIGPGR. Here, X may be any amino acid. In a preferred embodiment, in a first mixed cell culture comprising effector cells and CEM-ss cells infected with HIV-MN, 20 ng/ml of the heteroconjugate antibody inhibits the reverse transcriptase activity of the first mixed culture cells from the effector cells. at least 80% compared to the reverse transcriptase activity of another identical second mixed cell culture containing CEM-ss cells and HIV-MN infected CEM-ss cells. Here, effector cells were in 3-fold excess over CEM-ss cells in the first and second mixed cell cultures, reverse transcriptase activity was measured 10 days after infection, and the heteroconjugate antibody and effector cells were in the first mixed cell culture. The first and second cell cultures are infected with 100-1000 infectious units of HIV-MN, which are added to the cell cultures 18 hours after infection. In a related aspect, the invention provides a heterologous complex comprising covalently linked first and second proteins. The first protein is an antibody present on the surface of effector cells in peripheral blood. The second antibody portion contains an antibody against the amino acid sequence QARILAVERYL KDQQLLG IWGC5GKL IC. In a preferred embodiment, in a first mixed cell culture comprising effector cells and CEM-ss cells infected with HIV-MN, 20 ng/ml of the heteroconjugate antibody inhibits the reverse transcriptase activity of the first mixed culture cells from the effector cells. at least 80% compared to the reverse transcriptase activity of another identical second mixed cell culture containing CEM-ss cells and HIV-MN infected CEM-ss cells. Here, effector cells were in 3-fold excess over CEM-ss cells in the first and second mixed cell cultures, reverse transcriptase activity was measured 10 days after infection, and the heteroconjugate antibody and effector cells were in the first mixed cell culture. The first and second cell cultures are infected with 100-1000 infectious units of HIV-MN, which are added to the cell cultures 18 hours after infection. In other preferred embodiments, the effector cells are selected from the group consisting of cytotoxic 1926 cells, neutrophils, monocytes/macrophages, and large granular lymphocytes. The antigen present on the surface of effector cells is CD3. In another preferred embodiment, the present invention relates to a pharmacologically acceptable hybrid comprising a pharmacologically effective amount of a heteroconjugate antibody as described above. In a related aspect, the invention relates to a method for treating patients infected with HIV; The method involves administering to the patient a pharmacologically acceptable composition as described above. In other embodiments, the invention provides: (a) effector cells expressing cell surface antigens; and (b) an effector cell targeting HIV, comprising the above-mentioned heteroconjugate antibody. Regarding cells. In a related aspect, the invention relates to a method for treating patients infected with HIV; The method involves administering to the patient the HIV-targeted effector cells described above. The MN basic type virus has a position in the v3 loop region of the gp120 envelope protein. The specific amino acid subsequence at position AI '17 is defined by -R- to -R-1-H-1- G-P-G-R-A-F-Y-T-T-K. (Amino acid sequences are shown in standard one-letter notation.) The MN virus variant has a complete match with the HIV-MN sequence described above in amino acid residues 1-G-P-G-R at positions A7-A1, and the rest. 12 amino acids have a minimum of 36% homology with the HIV-MN sequence described above. "°" refers to an antibody that binds to the indicated antigen. amino Defined as acid region. The heteroconjugate antibodies of the invention are highly effective. indicated by reverse transcriptase assay As shown, it almost completely inhibits virus reproduction even at low concentrations. Suitable heteroconjugate antibodies are those that are effective against more than one strain. Other features and advantages of the invention will be apparent from the preferred embodiments described below and from the claims. Detailed Description of the Invention 4. [Brief Description of the Drawings] Figure 1 shows the conjugate of 0KT3 antibody and 59.1 antibody on the reverse transcriptase activity of HIV-111B-infected CEM-ss cells in the presence of cytotoxic 1928 cells. Not mixed Groups showing the effects of 0KT3159.1 (black diamonds) and 0KT3159.1 heteroconjugate antibody (white squares). It's rough. Reverse transcriptase activity (cpm/10 μm) is shown as a function of initial antibody concentration (ng/ml) in cell culture. Figure 2 shows the reverse of HIV-MN infected CEM-ss cells in the presence of cytotoxic 1928 cells. Figure 2 is a graph showing the effects of an unconjugated mixture of 0KT3 and 59.1 antibodies (black diamonds) and a 0KT3159.1 heteroconjugate antibody (open squares) on transcriptase activity. Reverse transcriptase activity (cpm/10 μm) is shown as a function of initial antibody concentration (ng/ml) in cell culture. Figure 3 shows HIV-111B infected CEM-ss cells in the absence of cytotoxic T lymphocytes. Uncomplexed mixture of 0KT3 and 59.1 antibodies on reverse transcriptase activity in cells. Graph showing the effects of compound (white circle) and 0KT3159.1 heteroconjugate antibody (black circle) It is f. Reverse transcriptase activity of HIV-111B-infected CEM-ss cells in the presence of only cytotoxic 1926 cells (black triangles); Reverse transcriptase activity of only HIV-111B-infected CEM-ss cells (open circles); The reverse transcriptase activity (black angle of view) of only CEM-ss cells that are not treated is also shown. Reverse transcriptase activity (cpm/10 μl) is shown as a function of initial antibody concentration (ng/ml) in cell culture (anti- (except when not adding body). Figure 4 shows the ratio of cytotoxic 1926 cells and HIV-MN infected CEM-ss cells to reverse transcriptase activity in the presence of 1 μg/'ml 0KT3159.1 heteroconjugate antibody. This is a graph showing the effect of rate. Reverse transcriptase activity (cpm/10 μm) is shown as a function of cytotoxic lymphocytes against OEM-ss cells (log 10 scale). Figure 5 shows HIV-MN (panel A), HIV-Alabama (panel B), HIV-Duke7887-7 (panel C), HIV-Duke6587-5 (panel D), HIV-Duke6587-7 (panel E), Cytotoxic 1926 spheres and 0KT3159.1 heterologous complex on reverse transcriptase activity of CEM-ss cells infected with HIV-II IIB (panel F), HIV-5F2 (panel G), and HIV-WMJ2 (panel H). This is a graph showing the effects of antibodies (white squares) and an uncomplexed mixture of 0KT3 and 59.1 antibodies (black triangles). Reverse transcriptase activity (cpm/10 μm) is shown as a function of days post-infection. Ru. Figure 6 shows multiple effects on reverse transcriptase activity of HIV-1118-infected CEM-ss cells. Mixture of 0KT3 antibody and 6C5 antibody (white circle) and 0KT3/6C5 heterogeneous composite antibody This is a graph showing the effect of the body (black circles). Reverse transcriptase activity (cpm/10 μl) is shown as a function of initial antibody concentration (ng/ml) in cell culture. Heteroconjugate Antibodies for AIDS Treatment Molecules of the invention are cytotoxic immune effecters capable of killing cells infected with HIV. This is a heterogeneous composite antibody produced by binding a first antibody directed against an antigen present on the surface of HIV-infected cells to a second antibody directed against an HIV antigen present on the surface of HIV-infected cells. The heteroconjugate antibodies of the invention are highly potent. These heteroconjugate antibodies can be used at low concentrations. can also sufficiently reduce HIV activity in mixed cell cultures of HIV-infected cells and effector cells. The most suitable heteroconjugate antibodies have high potency and broad spectrum. It has both the reactivity of Heterogeneous composite antibody with a wide range of reactivity A body refers to one that is effective against one or more strains of HIV. For example, a heteroconjugate antibody with a broad range of reactivities may be used for HIV-MN and HIV-3F2 or IIV-MN and HIV-WMJ2. Effective against HIV-MN and HIV-111Bl. against cytotoxic immune effector cells that can kill HIV-infected cells. Some of the xenoconjugate antibodies used are cytotoxic 1926 cells, monocytes/macrophages, and large condyle cells. Recognizes antigens present on the surface of cells such as granular lymphocytes (including cells and NK cells) and neutrophils. Antibodies to cytotoxic immune effector cells are Preferably, the antigen binds to the antigen on the cell surface and induces cytolytic activity. For example, The recognized antigen is the CD3 receptor or the CD16 (Fc) receptor. Less preferred are antibodies directed against receptors that require multiple signals to elicit cytolytic activity (eg, CD2 and CD28 receptors). A part of the heterologous complex antibody against the antigen present on the surface of HIV-infected cells is derived from (1) gl120 envelope protein of the MN basic form of HIV-1 (HIV-MN). (2) an epitope in the v3 loop sequence of the gl120 envelope protein of the MN basic viral variant of HIV-1; (3) an epitope in the v3 loop sequence of the gp41 envelope protein between amino acids 584-611 recognize epitopes within the It is preferable that The 3-loop of gp120 is a 36 amino acid region from amino acids 303 to 338 according to the gl)120 numbering of Ratner et al. (Nature 313:277.1985). The MN basic virus has gp120 envelope protein. The amino acid subsequence in white matter is defined by -R- to -R-1-H-1-G-P-G-R-A -F-Y-T-T-K (A' -A'). Ru. The MN virus variant has a complete identity of amino acid residue 1-G-P-G-R at positions A7 to A11 with the old V-MN sequence described above, and the remaining 12 amino acids are at least 36% identical to the HIV-MN sequence described above. It has homology to . The antibodies against HIV mentioned above are good candidates for generating highly potent heteroconjugate antibodies. However, there are cases where the efficacy of the produced heterogeneous conjugate antibody is not high. Ru. Finally, in the production of the heterologous composite antibody of the present invention, The only way to evaluate its usefulness in the body is to create a heterogeneous conjugate antibody. For example, an antibody against ) It can be covalently linked to an anti-CD3 antibody, and a suitable assay can be used to For example, to evaluate the efficacy of conjugated antibodies. Once a heterogeneous copy of a specific antibody against HIV If the antibody is shown to be useful in generating conjugated antibodies, it can be used to generate other heteroconjugate antibodies by covalently linking the antibody to antibodies directed against other effector cell antigens. can be used. As mentioned above, the most suitable heteroconjugate antibodies combine high potency with a wide range of reactivity. This is what I prepared for. (1) an epitope with the sequence G-P-G-R-A-F, (2) an epitope with the sequence I-X-1-G-P-G-R (where X can be any amino acid). Antibodies against HIV that recognize epitopes within (3) amino acids 584-611 (according to the numbering of Ratner et al., 5utyrs) of gp41 have high potency and broad reactivity. This may be useful for the production of heterologous conjugate antibodies with the v3 loop of HIV-MN, the v3 loop of HIV-MN viral variants, or the epitope in gp41. The antibody that recognizes the tope can be used to create a heterogeneous composite antibody with high potency and wide-ranging reactivity. manufactured; this does not indicate that it cannot be used. Techniques for producing and screening antibodies against HIV for Y-1 in the preparation of heteroconjugate antibodies, methods for preparing heteroconjugate antibodies, and methods for evaluating the potency and breadth of reactivity of heteroconjugate antibodies are described below. In order to create a heterogeneous composite antibody with a wide range of reactivity, it is effective to select an antibody against HIV that recognizes a wide range of IM strains (i.e., an antibody that is not strain-specific). Amino acid sequence G-P-G-R-A -F.Amino acid sequence 1-X-[-G-P-G-R, where X can be any amino acid. ), or an epitope within the amino acid 584 to amino acid 611 region of gp41. It is also effective to select antibodies against the same group. These antibodies are listed below. can be identified using standard epitope mapping techniques. Generally, useful antibody generation and selection processes against HIV include the following. (1) Production of hybridomas and hybrids that produce reactive antibodies (2) selection of hybridomas that produce antibodies capable of binding to cells expressing the HrV envelope protein, (3) amplification and purification of the selected monoclonal antibodies, (4) gp120 V3 loop peptide or gp41 origin of pe Analysis of antibody reactivity using peptides, (5) Epitope mapping. As mentioned above However, not all of these steps are essential. Simplify steps 1 to 3 and make them different. Purified antibodies can be used to prepare species-conjugated antibodies. The potency and breadth of reactivity of this heterogeneous conjugate antibody are determined by the reverse transcriptase assay described below. It can be analyzed more easily. To produce the heteroconjugate antibodies of the present invention, purified antibodies against HIV are covalently linked to antibodies against immune effector cells. Ru. The potency and range of reactivity of heteroconjugate antibodies can be determined using reverse transcriptase assays in mixed cell cultures of effector cells and HIV-infected cells. Ru. Heteroconjugate antibodies can be formed by any crosslinking method. Suitable crosslinking methods include 5PDPSSPDP and SMCC, and biotin-avidin. Segal et al. (US Pat. No. 4,676,980) describe a number of crosslinking techniques. Another method is hybrid-hybrid Antibodies can be combined by producing antibodies with dual specificity via multi-layer hybridization (Suresh et al., Methods in Enzymology 121°210.1986) or by genetic engineering. ) Preparation of Antibodies to 11V Antibodies useful in the preparation of the heteroconjugate antibody molecules of the invention can be produced and prepared as described below. and screening. HIV-MN or the Will of HIV-MN Preparation and analysis of antibodies against the V3 loop of the S-variants is also described in U.S. patent application Ser. ). Preparation of Immunogens One group of antibodies against HIV that are useful for generating heteroconjugate antibody molecules recognize sequences in the v3 loop of HIV-MN or viral variants of HIV-MN. follow The immunogens used to generate these antibodies include gp120 or gp160, including all or part of gp160, gp120, V3 J-Rape, or V3 J-Rape. Synthetic peptides containing all or part of a polypeptide are included. In all cases, the V3/Rape sequence is of HIV-MN or a viral variant of HIV-MN. V3) Suitable immunogens for the generation of antibodies against rape include (described below). Another group of antibodies against HIV that are useful for generating heteroconjugate antibody molecules recognize sequences in the amino acid 584-611 region of gp41. Preparation of these antibodies 1. The immunogen used includes all or part of the gp160, gp41, V3 loop. -D-Q-Q-L-L-G- in the sequence between amino acids 584 and 611 of mugp41, that is, Q-A-R-1 -L-A-V-E-R-Y-L- 1-W-G-C-8-G- includes gp160 or gp41 fragments containing all or part of -L-1-C. The immunizing peptide, polypeptide, or protein may be a linear chain (i.e., a linear chain) or a disulfide bond formed between the cysteine residues at the end of the three-loop sequence. It may have three loops, which is a more closed loop. The peptide to be immunized (if more than one V3 loop is present, each loop may form a separate loop via disulfide bonds). Synthetic peptides with the desired sequence can be synthesized using an automated peptide synthesizer. to synthesize I can do it. Intact recombinant gp160 envelope polypeptides are described in U.S. Patent Application No. 091.481 of Ruche et al. Incorporate into references It can be produced and purified in insect cells using a baculovirus expression system as described in (2009). Synthetic peptides or protein fragments used as immunogens may be unconjugated or or, for example, succinylmaleimidomethylcyclohexanylcarbonate, as follows: (SMCC) as a complexing medium with an immunogenic carrier such as keyhole ILmpet hemocyanin (KLH) or ovalbumin. (Yoshitake et al., ), Biochem. 92:1413.1982). Briefly, 1 mg of SMCC dissolved in 50 μl of dimethylformamide was mixed with 5 mg of carrier (at a concentration of 10-20 mg/ml in 0.1 M NaPO, pH 6.5). and incubate for 0.5 h at room temperature. Next (separate the solution in step 1) Excess unreacted SMCC was removed by passing through a Dex G-25 column, and 2 mg of peptide (suspended in a degassed solution of 0.1.M NaPC4, pH 8, 1mM EDTA at a concentration of 10mg/ml). The solution is mixed with N2 gas and partially incubated at 4°C. The sample is then dialyzed against 6M urea, 0.1M NaPO, pH 7 until the precipitate is dissolved. The sample is then passed through a BioGel P-10 column equilibrated with 6M urea, O, IM NaPO. Collect the eluted protein and dialyze it against distilled water. The sequences of several peptides useful as immunogens (RP142.RP70.RP342.RPIoo, RP102.RP108.RP123c, RP174c) are shown in Table 1. This list is not exhaustive. to be used as a source. This is only a small part of the peptides that can be used. (Left below) Table 1: Examples of peptides useful as immunogens RP142 YNKRKRIHIGPG RAFYTTKNI IG (C) RP342 1HIGPGRAFYT RP70 1NCTRPNYNKRKRIHIGPGRAFYTTKN 11 GT I RQAHCN I 5RP 100 (SGG)TRKG IHIGP GRAIY (GGSC)RP102 (SGG)TRKS I S IGPG RAF (GGSC) RP108 (SGG) HIGPGRAFYATG (G GSC) RP123c (C) HIGPGRAF (C) RP135 ([11B) NNTRKSIRIQRGPGRAFVTIGKIG (C) RP174c (C) NNTRKS IRIQRGPGRAF VTIGKIG (C) RP339 (RF) ITKGPGRVIY (C) Note: In parentheses The amino acids of peptide RP70. are not in the native sequence of the isolated peptide. RP123c and RP174c are diamino acids formed between 12 cysteine residues near the end of the amino acid sequence. A loop can be formed by a sulfide bond. How to form such a bond The method is described in Zhang et al, (5't'chemistry 27+37 85.1988). Peptides were prepared for immunization by emulsification in Freund's complete adjuvant according to standard methods (CFA, Difco Labs, Grand 15 Land, NY). ) Generation of antibodies against 11V Antibodies against HIV were produced by intraperitoneal injection of mouse strains (Balb/c, C57BL/6.A, SW, BIO, BR, or BIO, A, Jackson Labs, Bar Harbor, ME). 10-50 μg of rings per mouse. by immunization with modified RP70 (Table 1) or recombinant gp160. It was prepared as follows. The immunogen was boosted to mice in emulsified or solubilized form in Freund's incomplete adjuvant two to three times at intervals of two to four weeks after the initial administration. Ta. Blood was collected from the mice and the serum was examined for the presence of antibodies reactive with the immunogen. Mice showing strong serological reactivity were boosted, and 3 to 5 days later the spleen cells of these mice were challenged with N5-1 (A), which is incapable of secreting both heavy and light chain immunoglobulins. , T, C, C, No, TlB18), 5P2-0 (A, T. C, C, No, CRL8287.CRL8006) or P3. X63. AC3 653 myeloma cells were fused according to a standard method based on the method of Kohler and Milstein (Kearney et al., Immuno/, 123:1548, 1979). The supernatant of the hybridoma that appeared 6 to 21 days after the fusion was screened for antibody production using ELISA screening Ansegua as follows. For hybridomas produced by RP70, RP70 peptide was used to infect gp160. The hybridomas produced by this method contain the amino acid sequence of residues 567 to 647 of gp41. A peptide with the same amino acid sequence as the sequence was used. Peptide into a 96-well Co5tar flat bottom microtiter plate using 50 μl of PBS solution containing peptide at a final concentration of 0.1-10 μg/ml per well. Coated with petite. The peptide solution was aspirated and replaced with PBS+0.5% BSA. After incubation, the wells were aspirated, washed, and placed in a 50 μm hive. Added ridoma performances. After incubation, wash the cells three times with PBS. Goat anti-mouse immunoglobulin - horseradish peroxy, purified and diluted appropriately. Dase Protector (HRP, Zymed Laboratories, San Francisco, CA) 50. Incubated with cal. Use PBS Wells were washed again three times with HRP substrate, 2,2azino-bis(3-e thylbenzthiazoline-6-sulfonic acid) in 1mM ABTS (0,1M sodium citrate, p) 1:1: Bound antibodies were detected by adding 50 μm of H2O2 diluted to 100 μm. HRP activity was monitored by measuring absorption at 410 nm. Hybridomas that are positive by ELISA can be tested for their ability to bind to cells expressing HIV envelope protein. In one example of such an assay, a recombinant vaccinia virus expressing the enV gene of a particular HIV strain is incubated with a CD4+ human T-lymphoma line, CEM-ss (AIDS Research and Reference Reagent Program, Rockville, MD, catalog #776). infect cells. hybrid The supernatant (or purified antibody) is incubated with infected cells, and the secondary antibody and fluorescent Detect antibody binding by indirect immunofluorescence using a light-activated cell sorter. As a control experiment, we measured binding to the same cells except that they did not express the etyr' gene. Set. It binds to cells that express θ〃to・ but does not bind to cells that do not express the enp gene. Further analysis will be conducted on hybridomas that produce antibodies that do not have the following characteristics. Cells expressing genes in HIV strain e can be prepared as described below. In some cases (in neutralizing antibodies), antibodies to HIV can be evaluated by syncytium formation inhibition assays. In this assay, antibodies are added to a mixture of HIV-infected and uninfected cells and the formation of giant cells is monitored. Details of this assay are described in U.S. Patent Application No. 07/07, filed March 6, 1991. No. 665, '306 (incorporated by this reference). Ru. Preparation of cells expressing HIV eny using recombinant vaccinia virus For binding assays to cells expressing the HIV eny gene, cells infected with vaccinia virus expressing the HIV eny gene, rather than cells actually infected with HIV, were used. Use cells that have been purified. The vaccinia virus promoter allows all iHIV vectors to be The construction of a recombinant vaccinia virus capable of expressing envelope genes is described in EP Publication No. 0 243 029 (incorporated by reference to this invention). HIV any gene and second vaccinia virus pro A recombinant vector having an E. coli /icZ gene expressed by a motor and a vaccinia virus sequence encoding thymidine kinase (DingK) adjacent to it. - A recombinant virus was created using pSC25. (containing the DNA encoding the envelope gene with specificity for the HIV-MN variant) was removed and replaced with a similar 37111 fragment derived from the HIV-MN eny gene. It was prepared by replacing. The resulting plasmid pscR2502 carries the envelope gene. Instead of the 180 amino acid substitution described above, a small portion of the HIV-MN gp160 protein Shark area can be used. For example, any HIV strain derived from a recombinant with the full-length HIV-MNeny gene can be used. Strains expressing multiple HIV envelopes are useful in assessing antibody specificity. CV-1 host pre-infected with vaccinia virus with intact TK gene Principal cells were infected with recombinant vector pscR2502. HIV envelope The target gene is a homologous group between the TK sequence on the vector and the TK sequence in the viral genome. It is integrated into the viral DNA by recombination. Recombinants carrying the HIV envelope gene were selected by infecting TK-deficient cells and plating them on a medium containing bromodeoxyuridine (BUdR) and X-gal. TK-recombinants were selected because BUdR is toxic to TK cells.X-gal is a chromogenic substrate that is degraded by the 1zc2 gene product, and when the It is possible to identify recombinant viruses that also contain the -env gene. Purification and amplification of antibodies Antibody antibodies shown to have peptide binding properties in ELISA assay Bridemas were subcloned by limited dilution. A mixture of hybridoma cells and irradiated liver cells from non-immunized syngeneic mice was used. (final concentrations of 5 cells/m+ and 2.5×10 6 cells/ml) and 200 μ+ of the mixed suspension were placed in microtiter wells, one hybridoma cell per well. The subclones that appeared after 7 to 14 days were evaluated again by the above-mentioned ELISA method. Subcloning some representative positive clones I clicked. The isotypes of the antibodies were determined by ELISA using goat anti-mouse-H RP preparations corresponding to each of the five major mouse immunoglobulin isotypes (IgM, IgG1, 1, 1, 1, 2, 1, 2, 3). Repeatedly confirmed positive in ELISA and syncytial inhibition assays Purified antibodies were prepared by intraperitoneally injecting the hybridoma subclones obtained into pristane-primed syngeneic mice. 2-3 weeks after injection Collect the water and prepare monoclonal antibodies using the method appropriate for each antibody isotype. Purified as described. After elution, all IgG antibodies were dialyzed against PBS. Ta. IgM antibodies were purified by 50% N H2SO4 precipitation of ascites fluid of mice injected with the corresponding hybridoma cells, and the precipitates were then dialyzed against 4x PBS. The dialyzed antibody was then passed through an Ultra IA-6 column (Biotechniques, VfI 1ene uve-La-Garenne, France) pre-equilibrated with 4xPBS. Anti- The fraction containing the body was identified. Ascites containing IgG1 antibodies was diluted with 4 volumes of 0.1 M Tris-HCI, 3 MN aCl, pH 8,9 and passed through a Protein A-Sepharose affinity column equilibrated with the same Tris-NaCI buffer. isolated Ta. Antibodies were eluted using 0.1M sodium citrate, pH 6.0. Ascitic fluid containing IgG2 antibodies was diluted with 2 volumes of PBS and bound to a Protein A-Sepharose affinity column equilibrated with PBS. Next The column was then eluted with 0.15M NaCl, 0.1M acetic acid, pH 3.0. After elution, the antibodies were quickly neutralized by adding IM Na2HCO3. Ascites containing IgG3 antibodies was diluted with 4 volumes of 0.1M Tris-HCI, 3MN aCl, pH 8,9, and treated with Protein A-Sepharose Affinity. The antibody was eluted with 0.15M NaCl, 0.1M acetic acid. Alternatively, all IgG subclasses can be purified by the following method. Ascites was diluted with 4 times the volume of 0.1M Tris-HCI, 3M NaCl, pH 8,9, and subjected to Protein A-Sepharose affinity assay. Elute with 0.15M NaCl, O, 1M acetic acid, pH 3.0. Determination of Antibody Specificity The assay described below determines the strain specificity of antibodies to HIV and can be used to map epitopes recognized by antibodies directed against it. Some or all of these assays can be used to select antibodies against HIV for producing heteroconjugate antibodies. The above-mentioned HIV Binding assays to cells expressing the gene can also be used to assess antibody specificity. Epitopes recognized by antibodies to V3 can be mapped by standard ELISA assays or by competitive ELISA assays as described below. Peptides that are suitable for ELISA assays include (1) a 24-25mer sequence representative of v3 loop sequences from various HIV variants (Table 2), (2) MN V3 lubutin sequence (C)- to -R -1-H-I-G-P-G-R-A -F-Y-T-T- (C), each containing a 12-mer sequence corresponding to the first arginine (R) residue to tyrosine (Y ) contains an MN substitution sequence in which one amino acid up to the residue is replaced with an alanine residue. In substitution sequences, naturally occurring Glycine is substituted for nin. Antibody recognition of epitopes contained in the MN sequence makes it difficult for antibodies to bind to peptides in which alanine is substituted. It is shown from. Binding is inhibited by alanine substitution. A competitive ELISA assay was performed using a standard ELISA assay with the following modifications. Before applying the antibody to the plate, incubate the antibody with one of the test peptides listed above at a concentration of 10 MM - 0,00 45 μM. I did it. If the test peptide competes with the immobilized immunogen for binding to the antibody, ELISA shows little or no binding of the body to the plate. be done. The epitope recognized by antibodies against gp41 may be the entire gp41 sequence or can be mapped in an analogous manner using partially based alanine substitution sequences. It is also possible to use peptides with sequences corresponding to parts of gp41. Antibodies against v3 loop Antibodies that recognize sequences in the v3 loop of HIV-MN gp120 and can be used for the production of heterologous composite antibodies are described below. BALB/C mice were immunized with the RP70 (Table 1) immunogen to generate hybrid mer F59 and F83 were produced. Antibodies designated F59/P5B3 (59,1) and F83/P6F12 (83,1) are identical as non-strain-specific antibodies. established. Alanine-substituted peptides that compete with RP70 in binding to 59.1 antibodies Tide does not contain an alanine substitution in the G-P-G-R-A-F sequence. Similarly, peptides with the G-P-G-R-A-F sequence can compete with RP70 in binding to the 59.1 antibody, whereas peptides without this sequence (i.e., R PI29 and RP175 ) cannot compete. These results suggest that the 59.1 antibody recognizes the G-P-G-R-A-F epitope. child sequences are present in a wide range of HIV variants. The strain specificity of 59.1 was analyzed using the techniques described above. These assays demonstrated that 59.1 recognizes the V3 loop of HIV-1v INSHIV-3F2, old V-WMJ2, and old V-111B. An ELISA assay showed that the 83.1 antibody was isolated from the l-X-1-G-P-G-R epitope. (X can be any amino acid). The strain specificity of the 83°1 antibodies was analyzed using the techniques described above. These assays showed that 83.1 recognizes the v3 loop of HIV-MN, HIV-Alabama, HIV-8F2, HIV-W MJ2 and HIV-Duke 7887-7. It was. We thus identified two antibodies that recognize many HIV strains. 83.1 anti The body recognizes l-X-1 to G-P-G-R epitopes (X can be any amino acid). On the other hand, 59.1 recognizes the GPGRAF epitope. 59.1 anti A heterogeneous composite antibody was produced by Cott et al. (7, Immutyology 140:8.1988) using a human body. Antibodies against gp41 Monoclonal antibodies were generated using recombinant gp160 essentially as described below. ELISA assays showed that one of these antibodies, 6c5, recognizes a portion of gp41 (amino acids 584-611). This portion of gp41 does not vary significantly between HIV strains. Therefore, antibodies against this region are not expected to be strain specific. Using this antibody, a heterogeneous composite antibody was produced and purified by Cott et al. (2001), Immunology 140:8, 1988). 0KT3159.1 and 0KT3/6C5 xenoconjugate antibodies. This figure shows the influence of the composite antibodies, 0KT3159.1 and 0KT3/6C5. The 0KT3159.1 heteroconjugate antibody is an anti-CD3 monoclonal antibody, 0KT3, directed against an epitope in the v3 region of the gp120 subunit of HIV-MN. It was prepared by covalently cross-linking the eye monoclonal antibody 59.1. The 0KT 3/6C5 heteroconjugate antibody is a monoclonal antibody directed against an epitope in residues 584-611 (according to the numbering of Ratner et al., Nature 313: 277.1985) of the gp41 subunit of HIV-MN. It was prepared by covalently cross-linking 6C5. CD3 is a receptor highly related to the T cell receptor (TCR) for antigens. Expresses CD3 receptors When infected cells were cultured in the presence of cytotoxic 1928 cells, the heterologous conjugate antibody of the present invention The body dramatically reduces viral replication, as measured by viral reverse transcriptase activity. Since reverse transcriptase activity is a sensitive indicator of HIV activity, these results indicate a rapid decrease in virus-infected cells. different Without being bound by any particular theory, it has been shown that species-conjugated antibodies promote the death of infected cells by causing T lymphocytes to act on infected cells. Preparation of CTL The CTL cell line (IF8) used for testing the activity of the heteroconjugate antibody was prepared by a modified method of Scott et al. Briefly, large numbers of donor PBL cultures were harvested from an allogeneic, EBV-transformed lymphoblastoid cell line (Stemulae). cells) were incubated for 7 days in RPMI 1640 medium supplemented with 20% FBS (Gibco/BRL, Grand 15L and NY), supernatant from PHA-stimulated PBL, and 100 U/ml recombinant interleukin-2. Cubated. Cells were then cloned by limited dilution (1 cell/well) in U-bottom trays. The supporting cell layer contains irradiated autologous PBL and stem cells. tamulator cells were used. Clones were screened for CTL activity (assessed by lysis of stimulator cells) and NK activity (lysis of K562 cells: CCL 243° American Type Culture Collection, Bethesda, MD). Clone 1F8, which exhibits CTL activity but no NK activity, was selected. CEM-ss cells (15,000 cells/well in 96-well plates) contained 64 infectious units (IU) of HIV-MN or -111B. 18 hours after infection, effector cells (IF8 cells, 45,000/well) were cultured at various concentrations. 0KT3159.1 xenoconjugated antibody or an equivalent amount of unconjugated antibody. was added to stained CEM-ss cells. CTLs were grown in RPF, 111640 containing 10% FBS (Gi bco /BRL) and washed with fresh medium before addition of antibodies. After 78 days, the cell-free culture supernatant was collected, and the reverse transcriptase activity was measured by the method of wtt+eye et al. As shown in Figures 1 and 2, 0.5 g/ml of 0KT3159.1 xenoconjugate antibody (black diamond) was able to inhibit reverse transcriptase in CEM-ss cells infected with either HIV-MN or HIV-IIIB. activity was virtually eliminated. An unconjugated mixture of 0KT3 and 59.1 antibodies (open squares) had no effect on reverse transcriptase activity even at 2,000 ng/ml. In Figure 3, another experiment was performed in which CTL cells (circle) in the presence of 0KT3159. We demonstrated that the 1 xenoconjugated antibody had no effect on reverse transcriptase activity. Similarly, in the absence of the 0KT3159.1 heteroconjugate antibody (black triangles), CTLs had virtually no effect on reverse transcriptase activity in HIV-1 infected cells. CTL cells Unconjugated antibodies in the presence of cells (white circles) and CTL alone (white triangles) are the opposite of infected cells. Transcriptase activity was virtually unaffected. Reverse transcription enzyme in uninfected cells (black squares) No elementary activity was detected. In all cases, CTLs and/or antibodies were added 18 hours after infection. Prolonged virus replication and the resulting spread of the virus may affect the efficacy of heterogeneous complex molecules. HrV sensitivity prior to addition of antibodies and CTLs to determine whether The dyeing time was varied. CEM-ss cells were incubated with HIV-MN or HIV-111B (641U) for 6.18.48 or 72 hours before adding antibodies and CTLs. Reverse transcriptase activity was measured 7 days after infection. If infected for 6.18 or 48 hours before adding 0KT 3159.1 xenoconjugate antibody and CTL, 0.5 g/ml xenoconjugate antibody is sufficient to completely eliminate reverse transcriptase activity. Met. Under the same conditions, an unconjugated mixture of 0KT3 and 59.1 antibodies at 2,000 ng/ml or more was added to remove reverse transcriptase activity. A compound was needed. 1ng/ml OKT'3159.1 was required to eliminate reverse transcriptase activity when infected for 72 hours before addition of antibodies and CTLs. At this point, to remove reverse transcriptase activity, 2. Uncomplexed antibodies of OOOng5/ml or higher were required. Furthermore, we conducted an experiment in which the concentration of antibody was kept constant and the ratio of CTL to CEM-ss cells was varied, and the in vitro conjugate antibody of 0KT3159.1 was We analyzed the effective gradient at . In this experiment °C was 0KT3159.1 heterogeneous conjugate anti- CTL added to the culture at a constant concentration of CEM-s cells (1 Ug/ml), number of CEM-s cells (15,000/well), and infectious dose of HIV-MN or HIV-111 (64, ItJ). The number of . CTL and/or heterologous conjugate antibodies were added 18 hours after infection, and reverse transcriptase activity was measured 7 days after infection. Figure 4 shows that reverse transcriptase activity is completely eliminated when the CTL:CEM-ss ratio is 011, and when the CTL:CEM-ss ratio is It was partially removed (≧6096) even at very low levels. This result indicates that the number of target cells (CEM-s s ) is much larger than the number of F-phthalmocytes (X also in the case of 0KT3159. 1 Heterogeneous conjugate antibody has been demonstrated to be effective. 0KT3.159.1 is effective against many HIV strains 0KT3159.1 heterogeneous conjugate antibody is effective against various HIV strains In order to test whether or not the CEM-ss1!1 cells (150.00077′ well in 24-well plate) i: xoo ~ 1000 infected with 1 U of H[V. At the time of infection, 3 times the amount of CTL (450,000/well) and 0KT3 159.1 heterologous N-conjugate (or 1 Jg/ml monomeric antibody) of zzg/rnl was added to the culture. Addition [,ta. Cultures were harvested weekly, and culture supernatants were collected every 4 to 5 days to measure reverse transcriptase activity. No additional antibodies were added after the once addition. others Therefore, by splitting the culture, antibody concentration and isolation of target cells and one effector cell can be determined. Logarithm decreases. In a text-based experiment, CEM-ss cells were cultured with only the virus [7]. HIV isolates were tested and their V3 sequences are shown in Table 2. Table 2: V3 loop sequence Alabama -KS------H---RDuke 6587-5 V-N----1---H----3F2 T--3- Y-- −G −−−−−−−−−1−A−GDUKE7887‐7TSRG‐R−−−−−ILA−EIn this table, the amino acid at the position marked with “−” is the same as λ4N. Conserved GPGRAF motifs are underlined. In Figure 6, in all cases where an HIV isolate has a GPGRAF sequence (MN. Alabama, Duke 6587-5, INIB, SF2, WMJ2. So Panels ASB, D, F, G, H) and 0KT3159.1 (open squares) compare reverse transcriptase activity with CEMS8 with and without antibody or CTL (black circles). compared to 2, it was inhibited by 9596 or more. Two isolates with GPGRAI motifs were tested, DUKE 6587-7 (Panel E), DUKE 7B87-7 (Panel C), and one (DUKE 6587-7) was 11. [l harmed. An uncomplexed mixture of 0KT3 and 59.1 (black triangles) showed no effect. The 0KT3/6C5 heteroconjugate antibody inhibits reverse transcriptase activity in infected cells The ability of the 0KT3/6C5 heteroconjugate antibody to inhibit reverse transcriptase activity in HIV-111B infected CEM-ss cells was tested. Briefly, CEM-'5s (15,000 cells/cell in 96-well plates) were expressed in 64 IU of HIV-IIIB. After 18 hours, CTL (45,000 cells/well) and various concentrations 0KT3/6C5 heteroconjugate antibody was added. After 7 days, reverse transcription fermentation was performed as described above. Elementary activity was measured. In Figure 6, the 0KT3/6C5 heteroconjugate antibody (white circle) was at a concentration of 0.5 ng/ml. Even at low concentrations, reverse transcriptase activity was virtually eliminated. In contrast, the uncomplexed mixture of 0KT3 and 6C5 showed no particular effect on reverse transcriptase activity. 0KT3159.1 and 0KT3/6C5 are cytotoxic proteins in the presence of CTL. To test the cytotoxic activity of species-conjugated antibodies, we first used recombinant vaccines. 5Icr release in a model system using CVI cells infected with Niavirus. Said. Recombinant vaccinia virus expressing either the HIV-IIIB env gene (VPE16) or the old V-MN (VMN) eny gene. CVI cells were infected with the virus. Recombinant that does not express the HIV θnV gene Elephant vaccinia virus (vs C8) was used as a negative control. cell culture mix The preparation was essentially the same as for the reverse transcriptase assay. IF8 cells were used as effector cells. This cell itself is CV1 cell or vaccinia virus. It does not show cytotoxicity to CVI cells infected with R. In Table 3, 10 μg/ml 0KT3159.1 heteroconjugate antibody lysed 58% of V PE16-infected CVI cells and 62% of VMN-infected CVI cells. Lysis of uninfected cells was very low. Cell lysis was equally low when the 111-mer antibody was added (data not shown). The reason why the lysis rate is up to 60% when using 0KT3159.1 instead of 10096 is probably due to the vaccinia virus. (A syncytium formation assay using limited dilution of CVI cells showed that 50-60% of the cells expressed gp160.) ). A heteroconjugate antibody formed using two antibodies, IC1 or 7C6, that recognizes an epitope at the carboxyl terminus of gp120 and binds to cells expressing HIV env (assessed by FAC3) can be used to detect HIV-MN or HIV-IIIB. It was relatively ineffective in lysing cells infected with vaccinia viruses expressing either e/7V protein. It is clear that cell surface binding is a necessary but not sufficient property to determine whether a given antibody is capable of generating a cytotoxic xenoconjugate antibody. Table 3: Cell lysis by heteroconjugate antibodies 0KT3159.1 6 58 62 0KT3/7C6917N,D. 0KT3/IC1118N, D. The assay described below is used to determine the potency of the heteroconjugate antibodies of the invention. It is something that By using various HIV strains, a given heterologous conjugate antibody can be produced. The breadth of responsiveness can also be determined at the same time. In order to accurately determine the efficacy of the heteroconjugate antibodies of the invention, it is important to measure the effects of the heteroconjugate antibodies on HIV-infected cells under carefully controlled conditions. A suitable assay is described below. Incubate CEM-ss cells (2 4-well microtiter plates, 150,000 cells in 2 ml wells with 100-1000 infectious units (IU) of the objective H summer strain). cells/wells). Eighteen hours after infection, 450,000 effector cells are added with sufficient amount of xenoconjugated antibody to achieve the desired initial concentration. Cells are cultured under camphoric conditions and split every 3 days. Additional heterogeneous conjugate antibody was added. Therefore, each time the culture is split, the heteroconjugate antibody concentration is halved. A control experiment is a culture under exactly the same conditions except that no heteroconjugate antibody is added. On day 10 of infection, Willey et al, (), Vjro10! Reverse transcriptase activity of both cultures is determined by the method of , )'62:139;1988). For HIV strains that require more than 140 days postinfection to reach peak virus production, reverse transcriptase activity should not be measured after 10 days of infection. Instead, virus production is near maximum. Reverse transcriptase activity should be measured at a later time point. Infectious units are determined by the Kiber method. Virus titer decreases during storage Therefore, it is important to measure the titer of the virus preservation solution immediately before use. Virus preservation solutions should be carefully prepared to minimize the number of incomplete virus particles. Ru. For example, the multiplicity of infection of the prepared virus stock solution is preferably 0.001, the cells should be cultured under conditions that allow logarithmic growth, and the virus should be collected at the point of maximum virus production (reverse transcriptase activity or Judging by maximum p24 expression It should be collected at Recombinant xenoconjugate antibodies Monoclonal antibodies are mostly produced in non-human species and are therefore often immunogenic in humans. In order to effectively use a heteroconjugate antibody in human therapy, the antigen-binding portion (variable region) must be derived from a species and must be structurally stable and stable. The parts (certain regions) involved in biological functions are chimeric antibody parts derived from human antibodies. It may be necessary to create a child. Methods for producing chimeric antibodies in which the variable region is derived from one species and the constant region is derived from another species are well known to those skilled in the art. See, for example, Neuberger et al, PCT Publication WO 36101533, Priority Entry September 3, 1984; Morrison et al, EP Publication No. 0,173. 494, Priority Mortar August 27, 1984. Another method is to replace only the complementarity determining regions (CDRs) of the variable region with CDR5 derived from an immunoglobulin with the desired antigen specificity, as described by Winter (GB Publication No. 2.1 88.638, Priority 81986.3). July 27th). By creating antibodies with human FC portions, we have made mouse monoclonals suitable for human therapy. CM Morrtson, 5science 229: 1202.1985). Single polypeptide chain antibodies can also be produced by recombinant methods. It can be produced more easily than the body. Methods for making single polypeptide chain antibodies have been described by Ladner et al. (US Pat. No. 4,946,778), and these methods can be applied to making heteroconjugate antibodies. 'This way Methods for constructing, expressing, and purifying hybrid monoclonal antibodies have been established. Quadromas can be used to generate antibodies with dual specificity (Reading et al., US Pat. Nos. 4,474.893 and 4,714.681). Methods of Use Antibodies of the invention may be administered parenterally, either by intravenous or intramuscular injection. can be given. A typical treatment regimen involves administering an effective amount of the antibody over a period of about one week to about six months. the number of treatments needed to control the patient's disease; The number varies for each patient depending on the severity and stage of the disease and patient characteristics. The total dose required for each treatment may be divided into several doses or administered in multiple doses. Human monoclonal antibodies may be administered alone or in conjunction with other HIV treatments, such as AZT, to control the patient's disease. Pharmacological mixtures of heteroconjugate antibodies are prepared in forms such as liposomes, solutions, suspensions, and microparticles, depending on the intended mode of administration. In some cases, it may be desirable to administer the xenoconjugated antibody together with appropriate effector cells. (Nitta et al., 1he 1ancet 335:368° 1990). For example, peripheral blood lymphocytes (PBL) are collected from a patient (or a compatible donor) in need of treatment for HIV infection and incubated with a xenoconjugated antibody. and then reinject the cells. In some cases, PBLs are spread in culture (Rosenberg et al., 5cietyce 233:1318, 1986). may be incubated with Additionally, cells may be incubated with molecules such as receptor-specific antibodies (Scott et al., Cellular Immunology 114:370.1988) that stimulate the cytolytic activity of effector cells. Claims: Sequence listing (2) Sequence number: (i) Sequence characteristics: (A) Sequence length: 6 CB) Sequence type: Amino acids (D) Topology: Linear (xi) Sequence number: Sequence of 1: C1y Pro cly Arg ALa Pha (2) SEQ ID NO: 2 (1) Sequence characteristics: (A) Sequence length: 7 (B) Sequence type: Amino acids (D) Topology: Linear ( xi) Sequence of SEQ ID NO:2: 11 @ Amino acid (D) Topology: Linear (xi) Sequence of SEQ ID NO: 3: Gin ALa Arg XLm L@LI Ala Val Glu Arg Tyr Leu Ly-^-p (inn Gin LaS !Ois L*u Gly Xl・τrp Gly CY@S@t Gly Lye L 4Ll Engineering Linear (Xl) Sequence of SEQ ID NO: 4: Lye (2) SEQ ID NO: 5 (i) Sequence characteristics: (A) Sequence length: 5 (B) Sequence type: Amino acids (D) Topology: Linear (xi) Sequence of SEQ ID NO: 5: XLm GLY Pro Gly Arg (2) SEQ ID NO: = 6 (i) Sequence characteristics: (A) Sequence length = 24 (B) Sequence type: Amino acid ( D) Topology: Linear (xi) Sequence of SEQ ID NO: 26: Tyr Asn Lye Arg Lys In rg Xi・ 111g XLm Gly 1lro Gly Ar9 ALa Ph・ 'pr S 10 is τhr Thr Ly@ Asn !le !le GLy C1m2゜ (2) Sequence number near (i) Sequence characteristics: (A) Sequence length = 11 (B) Sequence type: Amino acid (D) Topology: Linear (xi) Sequence near SEQ ID number: Xis 11Lm XLm Gly Pro Gly Arg Ala Pha Tyrτ (2) Sequence number: 8 (i) Sequence characteristics?ji: (A) Sequence length = 40 (xi) Sequence of sequence number: 8: !i@Asn CY# Thx kg Pea^-n?yr^-n LF JL rg LF hxq XLm BLm !leS 10 1s GIY Pro ally Ar9 ALa Ph@Tyt Thr Tehr Ly-Asn XLm! le 31y Thr Type: Amino acid (D) Topology: Linear (xi) Sequence of SEQ ID NO: 9: S@3? Gly Gly Thr Arg L)n Oly H@Mi・Xi s cly Pro Gly Arg^la! l@S 10 15? yr Gly Oly SQL cys (2) Sequence number = lO (i) Sequence characteristics: (A) Sequence length = 20 (B) Sequence type: Amino acid (D) Topology: Linear (xl) Sequence number = Sequence of 10: s@r Gly cxy Thr Ar9 LY@SQL” XL Ken S Co. XL @ Oly pro 017 Co. g^la Phs5 10 1s Gly Oly a@r Cys (2) Sequence number: 11 (i) Characteristics of the sequence : (A) Sequence length = 19 (B) Sequence type: Amino acid (D) Topology: Linear (x i) Sequence of SEQ ID NO: 11: SQL C:Ly Oly H1s@ Oly Pro Oly Arg^ La Ph@Tyt^la The Gly Gly (2) SEQ ID NO: 12 (i) Sequence characteristics: (A) Sequence length: 10 CB) Sequence type: Amino acid (D) Topology: Linear (xi) Sequence of SEQ ID NO: 12: Cys 1lls Xis Gly !'roGly kg^la Phs CysS Yu0 (2) SEQ ID NO: 13 (i) Sequence characteristics: (A) Sequence length = 25 (B) Sequence length Type: Amino acid (D) Topology: Linear (xl) Sequence of SEQ ID NO: 13: ^-n ^-n rhr ^xq Lys li@r Xis Arg 工1@ctn A19 sty pro Gly ^xq A15 10 1s Ph @ Val Dhr Xis GAY LY @ XIJ cly CY @ (2) Sequence number = 14 (1) Sequence characteristics @: (A) Sequence length: 26 (B) Sequence type: Amino acid (D) Topology: Direct Chain (xi) Sequence of SEQ ID NO: 14: q-^an A button thr Arg Ly# 1!+@r Engineering @ Oly Lys Engineering * (il y cym (2) Sequence number = 15 (i) Sequence characteristics: (A) Sequence length = 11 (B) Sequence type: Amino acid (D) Topology: Linear (x i) Sequence of sequence number = 15: Xis Thr Lys Oly Pro Gly JLrg VJLL Il @?yr C'ys (2) Sequence number: 16 (i) Sequence characteristics: (A) Sequence length: 16 ( B) Sequence type: Amino acid (D) Topology: Linear (xi) Sequence of SEQ ID NO: 16: Cys Lys Arg 11m RL@Xis Gly Pro Gly Arg^1m Ph・T7r Thrτhr CY@5 10 is (2) SEQ ID NO: 17 (1) Sequence characteristics: (A) Sequence length: 17 (B) Sequence type: Amino acid (D) Topology: Linear (Xl) Sequence of SEQ ID NO: 17: (2) Sequence Number = 18 (i) Sequence characteristics: (A) Sequence length = 17 (B) Sequence type/amino acid (D) Topology: Linear (xi) Sequence of SEQ ID NO: 18: Ly@Ly@gsr Mg Engineering@Ius Xis Oly Pro Gly kg^la Phs HLmdinghrτhr(2) SEQ ID NO: 219 (i) Sequence characteristics (A) Sequence length: 17 (B) Sequence type: Amino acids (D) Topology : Linear (xi) Sequence of SEQ ID NO: 19: (2) SEQ ID NO: 20 (i) Sequence characteristics: (A) Sequence length: 17 (B) Sequence type: Amino acids (D) Topology: Linear (xi) Sequence of SEQ ID NO: 2o: (2) SEQ ID NO: 21 (i) Sequence characteristics: (A) Sequence length: 17 (B) Sequence type 2 amino acids (D) Topology, straight Chain (xl) Sequence of SEQ ID NO: 21: VaL ^r9 Arg S@r Lye Sat (A) Sequence length - 17 (B) Sequence type/amino acids (D) Topology: Linear (xl) Sequence of SEQ ID NO: 22: LYII s@r Xle λr9 Engineering 111 can mg GLy I'r o GLy input rg input La the VsiL The Mr. B S 10 is IY (2) Sequence number: 23 (i) Sequence characteristics・ (A) Sequence length: 17 (B) Sequence type: Amino acid (D) Topology: Linear (xi) Sequence of SEQ ID NO: 23: The rg LY# Gly (A) Sequence length = 17 (B) Sequence type: Amino acid (D) Topology: Linear (xl) Sequence of SEQ ID NO: 24・Dinghr s@r ^tq Oly Xle ^r9 Engineering 1e Gly Pl :o OLy Arg Ala ri) Mine! I) Laboratory Days after infection 1-10 control (in the absence of CTL or antibodies) -→-CTL 10 monomer Number of mouths after infection + CTL + xenocomplex Figure 5 (1) Days after infection Isshin-CTL 10 different complexes Figure 5 (C) 0 2 4 6 8 to 12 Days after infection Figure 5 (D) 11 numbers after infection -4-4 One control (CTL, or antibody-free) -1 -CT L + fit two bodies -O-CT i, ten heterologous complexes Figure 5 (E) Days after infection 1-10 control (in the absence of CTL or antibodies) infection i days m = 1- 10 control (CT Days after infection (in the absence of L or anti-body) 1→-(one control (in the absence of CTL or antibody) -10--MON 0KT3+6 C -1--HC0KT3/6G5 Figure 6 Copy and translation of the amendment 1. Indication of international application PCT/US92103616 2. Title of invention Heterologous conjugate antibody for treatment of HIV infection 3. Patent applicant Address 700 Cambridge Building, Massachusetts, United States of America One Kendall Software Name Librigen Corporation Nationality United States of America 5. Date of submission of written amendment July 14, 1993 6. List of attached documents (1) Copy and translation of written amendment) 1 copy Original page 13 Translation> Reverse transcriptase activity in the presence of 1Hg/ml 0KT3159.1 heteroconjugate antibody 2 is a graph showing the effect of the ratio of cytotoxic 1928 cells and HIV-MN-infected CEM-ss cells. Reverse transcriptase activity (cpm/10 μm) was measured using CEM-ss cells. It is shown as a function of cytotoxic lymphocytes against cells (1Gglo scale). Figures 5 (A) to 5 (H) show HIV-MN (5A), HIV-Alabama (5B), HIV-Duke7887-7 (5C), HIV-Duke65875 (5D), HIV-Duke65877. (5E), HIV IIIs (5F), HIV-3F2 (5G), and HIV-WMJ2 (5H)-infected CEM-ss cells. A graph showing the effects of cytotoxic 1928 cells and 0KT3159゜1 heteroconjugate antibody (white squares) and an unconjugated mixture of 0KT3 antibody and 59.1 antibody (black squares). It's rough. Reverse transcriptase activity (cpm/10 μl) is shown as a function of days post infection. are doing. Figure 6 shows multiple effects on reverse transcriptase activity of HIV-I118-infected CEM-ss cells. Mixture of 0KT3 antibody and 6G5 antibody (white circle) and 0KT3/6G5 heterogeneous composite anti- This is a graph showing the effect of the body (black circles). Reverse transcriptase activity (cpm/10 μl) is shown as a function of initial antibody concentration (ng/m 1 ) in cell culture. Heteroconjugate Antibodies for AIDS Treatment Molecules of the invention are cytotoxic immune effecters capable of killing cells infected with HIV. This is a heterogeneous composite antibody produced by binding a first antibody directed against an antigen present on the surface of HIV-infected cells to a second antibody directed against an HIV antigen present on the surface of HIV-infected cells. Translation of original text, page 32> Table 2: v3 loop sequence Al a b ama -KS -----------H--RDuke 6 587-5 V-N −−−−−−−−−H−−−8F2 ”r−−s−y−−−−−1−1(−−cWMJ2 V−R8LS−−−−−− R-REI 1 1 BKS l --QR-------V-I GDUKE 6587-7 T --G--------1-A-GDUKE 7887-7 TSRG-R-- -- --ILA-E In this table, °-1 indicates that the amino acid at that position is the same as MN. Conserved GPGRAF motifs are underlined. Figures 5(A)-5(H ), all cases where the HIV isolate has the GPGRAF sequence (MN, A1at+ama, Duke 6587-5, IIIB, SF2, WMJ2; +t'Lft'L Figure 5A, BSD, F, G, H), 0KT3 159.1 (white square) inhibited reverse transcriptase activity by 9596 or more compared to CEM-ss (black circle) without addition of antibody or CTL. Two 2N isolates, DUKE 6587-7 (Figure 5E) and DUKE 788 7-7 (Figure 5C) were tested; An uncomplexed mixture of 0KT3 and 59.1 (black triangles) showed no effect. 0KT3/6G5 heteroconjugate antibody inhibits reverse transcriptase activity in infected cells OKT 3/6 C5,flF! of the composite antibody to HIV-111-infected CEFv1-ss cells. The ability to inhibit reverse transcriptase activity in cells was tested. Briefly, CEM-ss (15,000 cells/well in a 96-well plate) was expressed in 64 1 U of HIV-1 cells. After 18 hours, CTL (45,000 cells/well) and various concentrations of 0KT3/6C5 xenoconjugate antibody were added. After 7 days, the above notification Reverse transcriptase activity was then measured. Continuation of the front page (51) Int, C1,’ Identification code Office serial number C12N 5/10 15/13 ZNA C12P 21108 8214-4BI

Claims (18)

【特許請求の範囲】[Claims] 1.共有結合した第一及び第二蛋白質を含む異種複合抗体であり、前記第一蛋白 質は末梢血液のエフェクター細胞表面に存在する抗原に対する抗体を含み、前記 第二の抗体部分はHIV感染細胞表面に発現されたHIV−MNあるいはHIV −MN変種のgp120エンベロープ蛋白質のV3ループ配列に対する抗体を含 んでいる、ここで、エフェクター細胞及びHIV−MN感染CEM−ss細胞を 含む第一混合細胞培養において、初期濃度20ng/mlの前記異種複合抗体は 、前記第一混合培養細胞の逆転写酵素活性を、前記エフェクター細胞と前記HI VrMN感染CEM−ss細胞を含む他の同一の第二混合細胞培養と比較して少 なくとも80%低下させる、ここで、前記エフェクター細胞は、前記第一、第二 混合細胞培養において前記CEM−ss細胞の3倍過剰にあり、前記逆転写酵素 活性は、感染後10日目に測定され、前記異種複合抗体及び前記エフェクター細 胞は、前記第一混合細胞培養に感染後18時間して加えられ、前記第一、第二細 胞培養は100−1000単位のHlV−MNで感染される。1. A heterologous composite antibody comprising a covalently bonded first and second protein; The protein contains antibodies against antigens present on the surface of effector cells in peripheral blood; The second antibody portion is derived from HIV-MN or HIV expressed on the surface of HIV-infected cells. - Contains an antibody against the V3 loop sequence of the gp120 envelope protein of the MN variant. Here, effector cells and HIV-MN-infected CEM-ss cells are In a first mixed cell culture containing the heteroconjugate antibody at an initial concentration of 20 ng/ml, , the reverse transcriptase activity of the first mixed culture cells is determined by the effector cells and the HI compared to another identical second mixed cell culture containing VrMN-infected CEM-ss cells. at least 80%, wherein said effector cells reduce said first, second in a 3-fold excess of the CEM-ss cells in a mixed cell culture, and the reverse transcriptase Activity was measured on day 10 post-infection and cells were added to the first mixed cell culture 18 hours after infection, and the first and second cells were added to the first mixed cell culture 18 hours after infection. Cell cultures are infected with 100-1000 units of HlV-MN. 2.前記第一細胞培養の前記逆転写酵素活性を、前記第二の細胞培養と比較して 90%以上低下させることを特徴とする請求項1に記載の異種複合抗体。2. comparing the reverse transcriptase activity of the first cell culture with the second cell culture; The heterogeneous composite antibody according to claim 1, characterized in that the antibody is reduced by 90% or more. 3.共有結合した第一及び第二蛋白質を含む異種複合抗体であり、前記第一蛋白 質は末梢血液のエフェクター細胞表面に存在する抗原に対する抗体を含み、前記 第二の抗体部分はHIV感染細胞表面に発現されたHIV−MNあるいはHIV −MN変種のgp120エンベロープ蛋白質のV3ループ配列に対する抗体を含 んでいる、ここで、エフェクター細胞及びHIV−MN感染CEM−ss細胞を 含む第一混合細胞培養において、初期濃度10ng/mlの前記異種複合抗体は 、前記第一混合培養細胞の逆転写酵素活性を、前記エフェクター細胞と前記HI V−MN感染CEM−ss細胞を含む他の同一の第二混合細胞培養と比較して少 なくとも80%低下させる、ここで、前記エフェクター細胞は、前記第一、第二 混合細胞培養において前記CEM−ss細胞の3倍過剩にあり、前記逆転写酵素 活性は、感染後10日目に測定され、前記異種複合抗体及び前記エフェクター細 胞は、前記第一混合細胞培養に感染後18時間して加えられ、前記第一、第二細 胞培養は100−1000単位のHIV−MNで感染される。3. A heterologous composite antibody comprising a covalently bonded first and second protein; The protein contains antibodies against antigens present on the surface of effector cells in peripheral blood; The second antibody portion is derived from HIV-MN or HIV expressed on the surface of HIV-infected cells. - Contains an antibody against the V3 loop sequence of the gp120 envelope protein of the MN variant. Here, effector cells and HIV-MN-infected CEM-ss cells are In a first mixed cell culture containing the heteroconjugate antibody at an initial concentration of 10 ng/ml, , the reverse transcriptase activity of the first mixed culture cells is determined by the effector cells and the HI compared to another identical second mixed cell culture containing V-MN infected CEM-ss cells. at least 80%, wherein said effector cells reduce said first, second 3 times more than the CEM-ss cells in mixed cell culture, and the reverse transcriptase Activity was measured on day 10 post-infection and cells were added to the first mixed cell culture 18 hours after infection, and the first and second cells were added to the first mixed cell culture 18 hours after infection. Cell cultures are infected with 100-1000 units of HIV-MN. 4.共有結合した第一及び第二蛋白質を含む異種複合抗体であり、前記第一蛋白 質は末梢血液のエフェクター細胞表面に存在する抗原に対する抗体を含み、前記 第二の抗体部分はHIV感染細胞表面に発現されたHIV−MNあるいはHIV −MN変種のgp120エンベロープ蛋白質のV3ループ配列に対する抗体を含 んでいる、ここで、エフェクター細胞及びHIV−MN感染CEM−ss細胞を 含む第一混合細胞培養において、初期濃度5ng/mlの前記異種複合抗体は、 前記第一混合培養細胞の逆転写酵素活性を、前記エフェクター細胞と前記HIV −MN感染CEM−ss細胞を含む他の同一の第二混合細胞培養と比較して少な くとも80%低下させる、ここで、前記エフェクター細胞は、前記第一、第二混 合細胞培養において前記CEM−ss細胞の3倍過剰にあり、前記逆転写酸素活 性は、感染後10日目に測定され、前記異種複合抗体及び前記エフェクター細胞 は、前記第一混合細胞培養に感染後18時間して加えられ、前記第一、第二細胞 培養は100−1000単位のHIV−MNで感染される。4. A heterologous composite antibody comprising a covalently bonded first and second protein; The protein contains antibodies against antigens present on the surface of effector cells in peripheral blood; The second antibody portion is derived from HIV-MN or HIV expressed on the surface of HIV-infected cells. - Contains an antibody against the V3 loop sequence of the gp120 envelope protein of the MN variant. Here, effector cells and HIV-MN-infected CEM-ss cells are In a first mixed cell culture comprising: The reverse transcriptase activity of the first mixed culture cells was determined by the effector cells and the HIV - less compared to another identical second mixed cell culture containing MN-infected CEM-ss cells. at least 80%, wherein said effector cells reduce said first and second mixtures by at least 80%. in 3-fold excess of the CEM-ss cells in combined cell culture, and the reverse transcription oxygen activity The sex was determined on day 10 post-infection, and the xenoconjugated antibody and the effector cell was added to the first mixed cell culture 18 hours after infection, and added to the first and second cell cultures. Cultures are infected with 100-1000 units of HIV-MN. 5.共有結合した第一及び第二蛋白質を含む異種複合抗体であり、前記第一蛋白 質は末梢血液のエフェクター細胞表面に存在する抗原に対する抗体を含み、前記 第二の抗体部分はHIV感染細胞表面に発現されたHIV−MNあるいはHIV −MN変種のgp120エンベロープ蛋白質のV3ループ配列に対する抗体を含 んでいる、ここで、エフェクター細胞及びHIV−MN感染CEM−ss細胞を 含む第一混合細胞培養において、初期濃度1ng/mlの前記異種複合抗体は、 前記第一混合培養細胞の逆転写酵素活性を、前記エフェクター細胞と前記HIV −MN感染CEM−ss細胞を含む他の同一の第二混合細胞培養と比較して少な くとも80%低下させる、ここで、前記エフェクター細胞は、前記第一、第二混 合細胞培養において前記CEM−ss細胞の3倍過剰にあり、前記逆転写酸素活 性は、感染後10日目に測定され、前記異種複合抗体及び前記エフェクター細胞 は、前記第一混合細胞培養に感染後18時間して加えられ、前記第一、第二細胞 培養は100−1000単位のHIV−MNで感染される。5. A heterologous composite antibody comprising a covalently bonded first and second protein; The protein contains antibodies against antigens present on the surface of effector cells in peripheral blood; The second antibody portion is derived from HIV-MN or HIV expressed on the surface of HIV-infected cells. - Contains an antibody against the V3 loop sequence of the gp120 envelope protein of the MN variant. Here, effector cells and HIV-MN-infected CEM-ss cells are In a first mixed cell culture comprising: The reverse transcriptase activity of the first mixed culture cells was determined by the effector cells and the HIV - less compared to another identical second mixed cell culture containing MN-infected CEM-ss cells. at least 80%, wherein said effector cells reduce said first and second mixtures by at least 80%. in 3-fold excess of the CEM-ss cells in combined cell culture, and the reverse transcription oxygen activity The sex was determined on day 10 post-infection, and the xenoconjugated antibody and the effector cell was added to the first mixed cell culture 18 hours after infection, and added to the first and second cell cultures. Cultures are infected with 100-1000 units of HIV-MN. 6.共有結合した第一及び第二蛋白質を含む異種複合抗体であり、前記第一蛋白 質は末梢血液のエフェクター細胞表面に存在する抗原に対する抗体を含み、前記 第二の抗体部分はアミノ酸配列GPGRAFに対する抗体を含んでいる。6. A heterologous composite antibody comprising a covalently bonded first and second protein; The protein contains antibodies against antigens present on the surface of effector cells in peripheral blood; The second antibody portion includes an antibody against the amino acid sequence GPGRAF. 7.共有結合した第一及び第二蛋白質を含む異種複合抗体であり、前記第一蛋白 質は末梢血液のエフェクター細胞表面に存在する抗原に対する抗体を含み、前記 第二の抗体部分はアミノ酸配列IXIGPGRに対する抗体を含んでいる、ここ で、Xはいかなるアミノ酸でもよい。7. A heterologous composite antibody comprising a covalently bonded first and second protein; The protein contains antibodies against antigens present on the surface of effector cells in peripheral blood; The second antibody portion comprises an antibody against the amino acid sequence IXIGPGR, where and X may be any amino acid. 8.前記エフェクター細胞及びHIV−MN感染CEM−ss細胞を含む第一混 合細胞培養において、初期濃度20ng/mlの異種複合抗体が、前記第一混合 培養細胞の逆転写酵素活性を、前記エフェクター細胞と前記HIV−MN感染C EM−ss細胞を含む他の同一の第二混合細胞培養と比較して少なくとも80% 低下させることを特徴とする請求項6または7に記載の異種複合抗体、ここで、 前記エフェクター細胞は、前記第一、第二混合細胞培養において前記CEM−s s細胞の3倍過剰にあり、前記逆転写酵素活性は、感染後10日目に測定され、 前記異種複合抗体及び前記エフェクター細胞は、前記第一混合細胞培養に感染後 18時間して加えられ、前記第一、第二細胞培養は100−1000単位のHI V−MNで感染される。8. A first mixture containing the effector cells and HIV-MN infected CEM-ss cells. In the combined cell culture, a heteroconjugate antibody with an initial concentration of 20 ng/ml was added to the first mixture. The reverse transcriptase activity of the cultured cells was determined by the effector cells and the HIV-MN-infected C. at least 80% compared to another identical second mixed cell culture containing EM-ss cells The heteroconjugate antibody according to claim 6 or 7, characterized in that it reduces The effector cells are in the CEM-s in the first and second mixed cell culture. in 3-fold excess of S cells, and the reverse transcriptase activity was measured 10 days post-infection; The heterologous conjugate antibody and the effector cells are added to the first mixed cell culture after infection. 18 hours later, the first and second cell cultures were treated with 100-1000 units of HI. infected with V-MN. 9.前記エフェクター細胞及びHIV−IIIB感染CEM−ss細胞を含む第 一混合細胞培養において、初期濃度20ng/mlの異種複合抗体が、前記第一 混合培養細胞の逆転写酵素活性を、前記エフェクター細胞と前記HIV−III B感染CEM−ss細胞を含む他の同一の第二混合細胞培養と比較して少なくと も80%低下させることを特徴とする請求項1に記載の異種複合抗体、ここで、 前記エフェクター細胞は、前記第一、第二混合細胞培養において前記CEM−s s細胞の3倍過剰にあり、前記逆転写酵素活性は、感染後10日目に測定され、 前記異種複合抗体及び前記エフェクター細胞は、前記第一混合細胞培養に感染後 18時間して加えられ、前記第一、第二細胞培養は100−1000単位のHI V−IIIBで感染される。9. A cell comprising the effector cells and HIV-IIIB-infected CEM-ss cells. In one mixed cell culture, a heteroconjugate antibody at an initial concentration of 20 ng/ml was added to the first The reverse transcriptase activity of the mixed culture cells was determined by comparing the effector cells and the HIV-III. Compared to another identical second mixed cell culture containing B-infected CEM-ss cells, The heteroconjugate antibody according to claim 1, characterized in that the heteroconjugate antibody reduces by 80%, The effector cells are in the CEM-s in the first and second mixed cell culture. in 3-fold excess of S cells, and the reverse transcriptase activity was measured 10 days post-infection; The heterologous conjugate antibody and the effector cells are added to the first mixed cell culture after infection. 18 hours later, the first and second cell cultures were treated with 100-1000 units of HI. V-IIIB infection. 10.前記エフェクター細胞と、Alabama,Duke6587−5、Du ke6587−7,Duke7887−7,SF2,WMJ2,及びIIIBか らなるHIV株の一つに感染したCEM−ss細胞を含む3種またはそれ以上の 混合培養細胞において、20ng/mlの異種複合抗体が、前記エフェクター細 胞及び同じ前記HIV株に感染したCEM−ss細胞を含む他の同一の混合細胞 培養の逆転写酸素活性に比べて少くとも80%低下させることを特徴とする請求 項1に記載の異種複合抗体、ここで、前記第一、第二混合細胞培養において前記 エフェクター細胞は前記CEM−ss細胞の3倍過剰にあり、前記逆転写酵素活 性は感染後10日目に測定され、前記異種複合抗体及び前記エフェクター細胞は 前記第一混合細胞培養に感染後18時間して加えられ、前記第一、第二細胞培養 は100−1000単位の前記HIV株で感染される。10. The effector cells and ke6587-7, Duke7887-7, SF2, WMJ2, and IIIB? CEM-ss cells infected with one of the following HIV strains: In mixed culture cells, 20 ng/ml of the heteroconjugate antibody was added to the effector cells. cells and other identical mixed cells containing CEM-ss cells infected with the same said HIV strain. A claim characterized in that the reverse transcription oxygen activity of the culture is reduced by at least 80%. Item 1. The heterologous conjugate antibody according to item 1, wherein said first and second mixed cell cultures Effector cells are in 3-fold excess of the CEM-ss cells and have reverse transcriptase activity. The sex was determined on day 10 post-infection, and the xenoconjugated antibodies and the effector cells were added to said first mixed cell culture 18 hours after infection, said first and second cell cultures are infected with 100-1000 units of the HIV strain. 11.共有結合した第一及び第二蛋白質を含む異種複合抗体であり、前記第一蛋 白質は末梢血液のエフェクター細胞表面に存在する抗原に対する抗体を含み、前 記第二の抗体部分はアミノ酸配列QARILAVERYLKDQQLLGIWG CSGKLICに対する抗体を含んでいる。11. A heterologous composite antibody comprising covalently bonded first and second proteins; White matter contains antibodies against antigens present on the surface of effector cells in peripheral blood, and The second antibody portion has the amino acid sequence QARILAVERYLKDQQLLGIWG Contains antibodies against CSGKLIC. 12.前記エフェクター細胞及びHIV−MN感染CEM−ss細胞を含む第一 混合細胞培養において、初期濃度20ng/mlの異種複合抗体が、前記第一混 合培養細胞の逆転写酵素活性を、前記エフェクター細胞と前記HIV−MN感染 CEM−ss細胞を含む他の同一の第二混合細胞培養と比較して少なくとも80 %低下させることを特徴とする請求項11に記載の異種複合抗体、ここで、前記 エフェクター細胞は、前記第一、第二混合細胞培養において前記CEM−ss細 胞の3倍過剰にあり、前記逆転写酸素活性は、感染後10日目に測定され、前記 異種複合抗体及び前記エフェクター細胞は、前記第一混合細胞培養に感染後18 時間して加えられ、前記第一、第二細胞培養は100−1000単位のHIV− MNで感染される。12. A first cell comprising the effector cells and HIV-MN infected CEM-ss cells. In a mixed cell culture, a heteroconjugate antibody at an initial concentration of 20 ng/ml was added to the first mixture. The reverse transcriptase activity of the co-cultured cells was determined by the effector cells and the HIV-MN infection. at least 80 compared to another identical second mixed cell culture containing CEM-ss cells. 12. The heteroconjugate antibody according to claim 11, wherein the heteroconjugate antibody is characterized in that the The effector cells are the CEM-ss cells in the first and second mixed cell cultures. The reverse transcription oxygen activity was measured on day 10 post-infection, and the reverse transcription oxygen activity was in 3-fold excess of the The heterologous conjugate antibody and the effector cells were added to the first mixed cell culture 18 days after infection. The first and second cell cultures contain 100-1000 units of HIV- Infected by MN. 13.前記エフェクター細胞が細胞毒性Tリンパ球、好中球、単球/マクロファ ージ、及び大型顆粒リンパ球からなるグループから選択されることを特徴とする 請求項1または請求項11に記載の異種複合抗体。13. The effector cells include cytotoxic T lymphocytes, neutrophils, monocytes/macrophages. large granular lymphocytes, and large granular lymphocytes. The heterologous composite antibody according to claim 1 or claim 11. 14.前記エフェクター細胞表面に存在する抗原がCD3であることを特徴とす る請求項1または請求項11に記載の異種複合抗体。14. The antigen present on the surface of the effector cell is CD3. The heterologous composite antibody according to claim 1 or claim 11. 15.前記エフェクター細胞及びHIV−MN以外のHIV株感染CEM−ss 細胞を含む第一混合細胞培養において、初期濃度200ng/mlの異種複合抗 体が、前記第一混合培養細胞の逆転写酵素活性を、前記エフェクター細胞と前記 HIV−MN以外のHIV株感染CEM−ss細胞を含む他の同一の第二混合細 胞培養と比較して少なくとも50%低下させることを特徴とする請求項6または 7に記載の累積複合抗体、ここで、前記エフェクター細胞は、前記第一、第二混 合細胞培養において前記CEM−ss細胞の3倍過剰にあり、前記逆転写酵素活 性は、感染後10日目に測定され、前記異種複合抗体及び前記エフェクター細胞 は、前記第一混合細胞培養に感染後18時間して加えられ、前記第一、第二細胞 培養は100−1000単位のHIV−MN以外のHIV株で感染される。15. CEM-ss infected with the effector cells and HIV strains other than HIV-MN In a first mixed cell culture containing cells, an initial concentration of 200 ng/ml of heterogeneous conjugate anti- The body increases the reverse transcriptase activity of the first mixed cultured cells with the effector cells and the first mixed cultured cells. Another identical second mixed cell containing CEM-ss cells infected with an HIV strain other than HIV-MN or claim 6, characterized in that it is reduced by at least 50% compared to cell culture. 7. The cumulative complex antibody according to 7, wherein the effector cell is the first and second mixed antibody. In combined cell culture, the reverse transcriptase activity is in 3-fold excess of the CEM-ss cells. The sex was determined on day 10 post-infection, and the xenoconjugated antibody and the effector cell was added to the first mixed cell culture 18 hours after infection, and added to the first and second cell cultures. Cultures are infected with 100-1000 units of an HIV strain other than HIV-MN. 16.異種複合抗体がHIV−MN以外のHIV株のV3ループに結合すること を特徴とする請求項1に記載の異種複合抗体。16. Binding of the heterologous conjugate antibody to the V3 loop of HIV strains other than HIV-MN The heterologous composite antibody according to claim 1, characterized by: 17.薬理学的に効果的な量の請求項1または請求項11に記載の異種複合抗体 を含む薬理学的に許容できる混成物。17. A pharmacologically effective amount of the heteroconjugate antibody according to claim 1 or claim 11. A pharmacologically acceptable mixture containing. 18.(a)細胞表面抗原を発現するエフェクター細胞と、(b)請求項1また は請求項11に記載の異種複合抗体と、を含むHIVを標的とするエフェクター 細胞。18. (a) an effector cell expressing a cell surface antigen; and (b) claim 1 or is an effector targeting HIV, comprising the heterologous conjugate antibody according to claim 11. cell.
JP4510961A 1991-05-14 1992-04-29 Heterogeneous conjugate antibody for treatment of HIV infection Pending JPH06507398A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US69977391A 1991-05-14 1991-05-14
US699,773 1991-05-14
PCT/US1992/003616 WO1992020373A1 (en) 1991-05-14 1992-04-29 Heteroconjugate antibodies for treatment of hiv infection

Publications (1)

Publication Number Publication Date
JPH06507398A true JPH06507398A (en) 1994-08-25

Family

ID=24810855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4510961A Pending JPH06507398A (en) 1991-05-14 1992-04-29 Heterogeneous conjugate antibody for treatment of HIV infection

Country Status (4)

Country Link
EP (1) EP0586505A1 (en)
JP (1) JPH06507398A (en)
CA (1) CA2102511A1 (en)
WO (1) WO1992020373A1 (en)

Families Citing this family (406)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759551A (en) * 1993-04-27 1998-06-02 United Biomedical, Inc. Immunogenic LHRH peptide constructs and synthetic universal immune stimulators for vaccines
GB9318901D0 (en) * 1993-09-13 1993-10-27 Centre Nat Rech Scient Multiple branch peptide construction
US5877016A (en) 1994-03-18 1999-03-02 Genentech, Inc. Human trk receptors and neurotrophic factor inhibitors
JPH11510170A (en) 1995-07-27 1999-09-07 ジェネンテック インコーポレーテッド Protein Formula
US6030945A (en) * 1996-01-09 2000-02-29 Genentech, Inc. Apo-2 ligand
US6998116B1 (en) 1996-01-09 2006-02-14 Genentech, Inc. Apo-2 ligand
CA2249206A1 (en) 1996-04-01 1997-10-09 Genentech, Inc. Apo-2li and apo-3 apoptosis polypeptides
US5851984A (en) * 1996-08-16 1998-12-22 Genentech, Inc. Method of enhancing proliferation or differentiation of hematopoietic stem cells using Wnt polypeptides
US6159462A (en) * 1996-08-16 2000-12-12 Genentech, Inc. Uses of Wnt polypeptides
US6462176B1 (en) 1996-09-23 2002-10-08 Genentech, Inc. Apo-3 polypeptide
US6136958A (en) * 1996-09-30 2000-10-24 Genentech, Inc. Antibodies to vertebrate smoothened proteins
US5990281A (en) 1996-09-30 1999-11-23 Genentech, Inc. Vertebrate smoothened proteins
JP3394540B2 (en) 1997-01-31 2003-04-07 ジェネンテク・インコーポレイテッド O-fucosyltransferase
US6342369B1 (en) 1997-05-15 2002-01-29 Genentech, Inc. Apo-2-receptor
AU739350B2 (en) 1997-06-05 2001-10-11 University Of Texas System, The APAF-1, the CED-4 human homolog, an activator of caspase-3
AU735883C (en) * 1997-06-13 2002-02-07 Genentech Inc. Protein recovery by chromatography followed by filtration upon a charged layer
JP2002508663A (en) 1997-06-18 2002-03-19 ジェネンテク,インコーポレイテッド Apo-2DcR
ATE393222T1 (en) 1997-09-18 2008-05-15 Genentech Inc DCR3 POLYPEPTIDE, A TNFR HOMOLOGUE
JP2001522584A (en) 1997-10-10 2001-11-20 ジェネンテク・インコーポレイテッド Apo-3 ligand polypeptide
PT1650219E (en) 1997-10-17 2008-03-31 Genentech Inc Human toll homologues
ATE406441T1 (en) 1997-10-29 2008-09-15 Genentech Inc USE OF THE WNT-1 INDUCED SECRETED POLYPEPTIDE WISP-1
EP2033970A3 (en) 1997-10-29 2009-06-17 Genentech, Inc. Polypeptides and nucleic acids encoding the same
ES2305608T3 (en) 1997-11-21 2008-11-01 Genentech, Inc. ANTIGENS TYPE A-33 AND ITS PHARMACOLOGICAL USES.
US7192589B2 (en) 1998-09-16 2007-03-20 Genentech, Inc. Treatment of inflammatory disorders with STIgMA immunoadhesins
NZ527900A (en) 1997-12-03 2005-02-25 Genentech Inc PRO361 polypeptides and nucleic acids with homology to mucin and chitinase
WO1999036535A1 (en) 1998-01-15 1999-07-22 Genentech, Inc. Apo-2 ligand
US6727079B1 (en) 1998-02-25 2004-04-27 The United States Of America As Represented By The Department Of Health And Human Services cDNA encoding a gene BOG (B5T Over-expressed Gene) and its protein product
EP2050762A3 (en) 1998-03-10 2009-07-08 Genentech, Inc. Human cornichon-like protein and nucleic acids encoding it
EP1064382B1 (en) 1998-03-17 2008-08-20 Genentech, Inc. Polypeptides homologous to vegf and bmp1
EP1941905A1 (en) 1998-03-27 2008-07-09 Genentech, Inc. APO-2 Ligand-anti-her-2 antibody synergism
EP3112468A1 (en) 1998-05-15 2017-01-04 Genentech, Inc. Il-17 homologous polypeptides and therapeutic uses thereof
EP2333069A3 (en) 1998-05-15 2011-09-14 Genentech, Inc. Therapeutic uses of IL-17 homologous polypeptides
PT1086138E (en) 1998-06-12 2010-01-04 Genentech Inc Monoclonal antibodies, cross-reactive antibodies and method for producing the same
US7090848B1 (en) 1998-08-04 2006-08-15 Henry M. Jackson Foundation For The Advancement Of Military Medicine HIV-1 envelope protein associated with a broadly reactive neutralizing antibody response
EP1104310B1 (en) * 1998-08-04 2009-07-01 The Henry M. Jackson Foundation for the advancement of Military Medicine, Inc. Expression and characterization of hiv-1 envelope protein associated with a broadly reactive neutralizing antibody response
US20020172678A1 (en) 2000-06-23 2002-11-21 Napoleone Ferrara EG-VEGF nucleic acids and polypeptides and methods of use
EP1950300A3 (en) 1998-11-18 2011-03-23 Genentech, Inc. Antibody variants with higher binding affinity compared to parent antibodies
EP2075335A3 (en) 1998-12-22 2009-09-30 Genentech, Inc. Methods and compositions for inhibiting neoplastic cell growth
JP5456222B2 (en) 1998-12-23 2014-03-26 ジェネンテック, インコーポレイテッド IL-1 related polypeptides
HUP0104865A3 (en) 1999-01-15 2004-07-28 Genentech Inc Polypeptide variants with altered effector function
EP1956030B1 (en) 1999-06-15 2009-11-11 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids endoding the same
EP1189641B1 (en) 1999-06-25 2009-07-29 Genentech, Inc. HUMANIZED ANTI-ErbB2 ANTIBODIES AND TREATMENT WITH ANTI-ErbB2 ANTIBODIES
ES2330301T3 (en) 1999-08-27 2009-12-09 Genentech, Inc. DOSAGES FOR TREATMENT WITH ANTI-ERBB2 ANTIBODIES.
EP2228446A1 (en) 1999-12-01 2010-09-15 Genentech, Inc. Secreted and transmembrane polypeptieds and nucleic acids encoding the same
EP2290081A3 (en) 1999-12-23 2012-08-01 Genentech, Inc. IL-17 homologous polypeptide and therapeutic uses thereof
US6740520B2 (en) 2000-03-21 2004-05-25 Genentech, Inc. Cytokine receptor and nucleic acids encoding the same
WO2001097858A2 (en) 2000-06-20 2001-12-27 Idec Pharmaceuticals Corporation Cold anti-cd20 antibody/radiolabeled anti-cd22 antibody combination
EP2077276A1 (en) 2000-06-23 2009-07-08 Genentech, Inc. Compositions and methods for the diagnosis and treatment of disorders involving angiogensis
EP2042597B1 (en) 2000-06-23 2014-05-07 Genentech, Inc. Compositions and methods for the diagnosis and treatment of disorders involving angiogenesis
ATE415978T1 (en) 2000-07-27 2008-12-15 Genentech Inc SEQUENTIAL ADMINISTRATION OF CPT-11 AND APO-2L POLYPEPTIDE
UA81743C2 (en) 2000-08-07 2008-02-11 Центокор, Инк. HUMAN MONOCLONAL ANTIBODY WHICH SPECIFICALLY BINDS TUMOR NECROSIS FACTOR ALFA (TNFα), PHARMACEUTICAL MIXTURE CONTAINING THEREOF, AND METHOD FOR TREATING ARTHRITIS
US6902734B2 (en) 2000-08-07 2005-06-07 Centocor, Inc. Anti-IL-12 antibodies and compositions thereof
ATE412009T1 (en) 2000-08-24 2008-11-15 Genentech Inc METHOD FOR INHIBITING IL-22 INDUCED PAP1
AU8847801A (en) 2000-08-25 2002-03-04 Basf Plant Science Gmbh Plant polynucleotides encoding novel prenyl proteases
EP1944317A3 (en) 2000-09-01 2008-09-17 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
AU1344102A (en) 2000-10-12 2002-04-22 Genentech Inc Reduced-viscosity concentrated protein formulations
US20020159996A1 (en) 2001-01-31 2002-10-31 Kandasamy Hariharan Use of CD23 antagonists for the treatment of neoplastic disorders
US7087726B2 (en) 2001-02-22 2006-08-08 Genentech, Inc. Anti-interferon-α antibodies
EP2340849A1 (en) 2001-05-30 2011-07-06 Genentech, Inc. Anti-NGF antibodies for the treatment of various disorders
US20070160576A1 (en) 2001-06-05 2007-07-12 Genentech, Inc. IL-17A/F heterologous polypeptides and therapeutic uses thereof
EP1992643A3 (en) 2001-06-20 2008-12-10 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
CN1575338B (en) 2001-08-29 2012-05-16 杰南技术公司 Bv8 nucleic acids and polypeptides with mitogenic activity
WO2003024392A2 (en) 2001-09-18 2003-03-27 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
WO2003088808A2 (en) 2002-04-16 2003-10-30 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP1575571A4 (en) 2002-01-02 2008-06-25 Genentech Inc Compositions and methods for the diagnosis and treatment of tumor
AU2003202297C1 (en) 2002-01-25 2006-05-18 G2 Therapies Ltd Anti-C5aR antibodies and uses thereof
AU2003210802B2 (en) 2002-02-05 2009-09-10 Genentech Inc. Protein purification
EP2110434A1 (en) 2002-02-25 2009-10-21 Genentech, Inc. Type-1 cytokine receptor GLM-R
EP1487343B1 (en) 2002-03-05 2008-12-31 Board of Regents, The University of Texas System Biospecific contrast agents
EP2305710A3 (en) 2002-06-03 2013-05-29 Genentech, Inc. Synthetic antibody phage libraries
AU2003247806B2 (en) 2002-07-08 2009-11-12 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
PT1585966E (en) 2002-07-15 2012-02-20 Hoffmann La Roche Treatment of cancer with the anti-erbb2 antibody rhumab 2c4
EP1590363A4 (en) 2002-09-09 2006-11-02 Dana Farber Cancer Inst Inc Bh3 peptides and method of use thereof
ES2629602T5 (en) 2002-09-11 2021-06-08 Genentech Inc Protein purification
EP2444409A2 (en) 2002-09-16 2012-04-25 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2322202A3 (en) 2002-10-29 2011-07-27 Genentech, Inc. Compositions and methods for the treatment of immune diseases
CA2503748A1 (en) 2002-11-08 2004-05-27 Genentech, Inc. Compositions and methods for the treatment of natural killer cell related diseases
WO2004047728A2 (en) 2002-11-26 2004-06-10 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
US7569364B2 (en) 2002-12-24 2009-08-04 Pfizer Inc. Anti-NGF antibodies and methods using same
PT1575517E (en) 2002-12-24 2012-05-28 Rinat Neuroscience Corp Anti-ngf antibodies and methods using same
US9498530B2 (en) 2002-12-24 2016-11-22 Rinat Neuroscience Corp. Methods for treating osteoarthritis pain by administering a nerve growth factor antagonist and compositions containing the same
JP4912144B2 (en) 2003-03-12 2012-04-11 ジェネンテック, インコーポレイテッド Use of BV8 and / or EG-VEGF to promote hematopoiesis
AU2003237792A1 (en) 2003-04-01 2004-11-23 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
BRPI0403964B8 (en) 2003-04-04 2021-05-25 Genentech Inc stable liquid formulations, article of manufacture and use of these formulations for the treatment of ige-mediated dysfunction
ES2322267T3 (en) 2003-04-09 2009-06-18 Genentech, Inc. THERAPY OF AN AUTOINMUNOLOGICAL DISEASE IN A PATIENT THAT PRESENTS AN INAPPROPRIATE RESPONSE TO A TNF-ALFA INHIBITOR.
MXPA05012723A (en) 2003-05-30 2006-02-08 Genentech Inc Treatment with anti-vegf antibodies.
KR20060027801A (en) 2003-06-05 2006-03-28 제넨테크, 인크. Combination therapy for b cell disorders
EP2367008A3 (en) 2003-06-06 2014-12-24 Genentech, Inc. Modulating the interaction between HGF beta chain and C-Met
KR20060015646A (en) 2003-06-13 2006-02-17 유니버시티 오브 피츠버그 Monitoring immunologic, hematologic and inflammatory diseases
SI1641822T1 (en) 2003-07-08 2013-08-30 Genentech, Inc. Il-17 a/f heterologous polypeptides and therapeutic uses thereof
ES2786568T3 (en) 2003-07-28 2020-10-13 Genentech Inc Reduction of protein A leaching during protein A affinity chromatography
EP2311468B1 (en) 2003-08-08 2014-01-15 Perseus Proteomics Inc. Gene overexpressed in cancer
WO2005019258A2 (en) 2003-08-11 2005-03-03 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP1689432B1 (en) 2003-11-17 2009-12-30 Genentech, Inc. Compositions and methods for the treatment of tumor of hematopoietic origin
US7312320B2 (en) 2003-12-10 2007-12-25 Novimmune Sa Neutralizing antibodies and methods of use thereof
CA2548282A1 (en) 2003-12-11 2005-06-30 Genentech, Inc. Methods and compositions for inhibiting c-met dimerization and activation
US7968690B2 (en) 2003-12-23 2011-06-28 Rinat Neuroscience Corp. Agonist anti-trkC antibodies and methods using same
EP2168986A3 (en) 2004-02-19 2010-07-28 Genentech, Inc. CDR-repaired antibodies
US20150017671A1 (en) 2004-04-16 2015-01-15 Yaping Shou Methods for detecting lp-pla2 activity and inhibition of lp-pla2 activity
ATE482393T1 (en) 2004-05-11 2010-10-15 Univ Pittsburgh DIAGNOSIS AND MONITORING OF INFLAMMATORY DISEASES BY MEASUREMENT OF ADDITIONAL COMPONENTS OF LEUKOCYTES
US20060051345A1 (en) 2004-06-04 2006-03-09 Genentech, Inc. Method for treating multiple sclerosis
EP2801583B1 (en) 2004-07-10 2018-04-25 Fox Chase Cancer Center Genetically modified human natural killer cell lines
ZA200701183B (en) 2004-07-20 2008-05-28 Genentech Inc Inhibitors of angiopoietin-like 4 protein, combinations, an their use
EA016357B1 (en) 2004-07-30 2012-04-30 Ринат Ньюросайенс Корп. Antibodies directed against amyloid-beta peptide and methods using same
JO3000B1 (en) 2004-10-20 2016-09-05 Genentech Inc Antibody Formulations.
US7964195B2 (en) 2005-01-07 2011-06-21 Diadexus, Inc. Ovr110 antibody compositions and methods of use
EP3698807A1 (en) 2005-01-21 2020-08-26 Genentech, Inc. Fixed dosing of her antibodies
US20060233791A1 (en) 2005-02-15 2006-10-19 Duke University Anti-CD19 antibodies and uses in oncology
EP1871807B1 (en) 2005-02-18 2012-11-28 Dana-Farber Cancer Institute, Inc. Antibodies against cxcr4 and methods of use thereof
AU2006216732C1 (en) 2005-02-23 2017-07-20 Genentech, Inc. Extending time to disease progression or survival in cancer patients using a HER dimerization inhibitor
US8278069B2 (en) 2005-04-11 2012-10-02 National Research Council Of Canada Identification of a β-1,3-N-acetylgalactosaminyltransferase (CGTE) from Campylobacter jejuni LIO87
DE602006018458D1 (en) 2005-04-29 2011-01-05 Univ California ANTIBODIES TO HISTONE MODIFICATIONS FOR CLINICAL CANCER DIAGNOSIS AND PROGNOSIS
EP1885755A4 (en) 2005-05-05 2009-07-29 Univ Duke Anti-cd19 antibody therapy for autoimmune disease
PL1899364T3 (en) 2005-05-17 2020-08-24 University Of Connecticut Compositions and methods for immunomodulation in an organism
US7858843B2 (en) 2005-06-06 2010-12-28 Genentech, Inc. Gene disruptions, compositions and methods relating thereto
US7482124B2 (en) 2005-07-08 2009-01-27 Bristol-Myers Squibb Company Method of identifying a PPARgamma-agonist compound having a decreased likelihood of inducing dose-dependent peripheral edema
WO2007014169A2 (en) 2005-07-22 2007-02-01 Y's Therapeutics Co, Ltd. Anti-cd26 antibodies and methods of use thereof
SI2573114T1 (en) 2005-08-10 2016-08-31 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
AU2006280321A1 (en) 2005-08-15 2007-02-22 Genentech, Inc. Gene disruptions, compositions and methods relating thereto
ES2664421T3 (en) 2005-11-14 2018-04-19 Teva Pharmaceuticals International Gmbh Antagonist antibody directed against a peptide related to the calcitonin gene
MY149159A (en) 2005-11-15 2013-07-31 Hoffmann La Roche Method for treating joint damage
AU2006335053A1 (en) 2005-11-21 2007-07-19 Genentech, Inc. Novel gene disruptions, compositions and methods relating thereto
CN105859886A (en) 2005-12-02 2016-08-17 健泰科生物技术公司 Compositions and methods associated with antibodies that bind to IL-22 and IL-22R
US8466263B2 (en) 2005-12-02 2013-06-18 Dana-Farber Cancer Institute, Inc. Carbonic anhydrase IX (G250) anitbodies
EP1982181B1 (en) 2006-02-06 2010-12-15 Rhode Island Hospital Gpr30 estrogen receptor in breast cancers
CA2638821A1 (en) 2006-02-17 2007-10-11 Genentech, Inc. Gene disruptons, compositions and methods relating thereto
EP2540741A1 (en) 2006-03-06 2013-01-02 Aeres Biomedical Limited Humanized anti-CD22 antibodies and their use in treatment of oncology, transplantation and autoimmune disease
US20100278821A1 (en) 2006-03-21 2010-11-04 The Regents Of The University Of California N-cadherin: target for cancer diagnosis and therapy
CA2646597A1 (en) 2006-03-21 2007-09-27 The Regents Of The University Of California N-cadherin and ly6 e: targets for cancer diagnosis and therapy
ES2544957T3 (en) 2006-03-21 2015-09-07 Genentech, Inc. Combined therapy involving alpha5beta1 antagonists
EP2389948A1 (en) 2006-03-23 2011-11-30 Novartis AG Anti-tumor cell antigen antibody therapeutics
EP2008106A2 (en) 2006-03-31 2008-12-31 Dana-Farber Cancer Institute Methods of determining cellular chemosensitivity
EP2614839A3 (en) 2006-04-05 2015-01-28 Genentech, Inc. Method for using BOC/CDO to modulate hedgehog signaling
EP2082645A1 (en) 2006-04-19 2009-07-29 Genentech, Inc. Novel gene disruptions, compositions and methods relating thereto
WO2007131133A2 (en) 2006-05-04 2007-11-15 Genentech, Inc. Methods and compositions relating to zpa polypeptides
CA2654438A1 (en) 2006-06-01 2008-03-27 Genentech, Inc. Crystal structure of crig and c3b:crig complex
CA2652703C (en) 2006-06-07 2018-08-28 Bioalliance C.V. Antibodies recognizing a carbohydrate containing epitope on cd-43 and cea expressed on cancer cells and methods using same
FR2902799B1 (en) 2006-06-27 2012-10-26 Millipore Corp METHOD AND UNIT FOR PREPARING A SAMPLE FOR THE MICROBIOLOGICAL ANALYSIS OF A LIQUID
US7572618B2 (en) 2006-06-30 2009-08-11 Bristol-Myers Squibb Company Polynucleotides encoding novel PCSK9 variants
EP2471815B1 (en) 2006-07-11 2016-03-30 University Of Medicine And Dentistry Of New Jersey Proteins, nucleic acids encoding the same and associated methods of use
ES2612383T3 (en) 2006-07-19 2017-05-16 The Trustees Of The University Of Pennsylvania WSX-1 / IL-27 as a target for anti-inflammatory responses
US8586006B2 (en) 2006-08-09 2013-11-19 Institute For Systems Biology Organ-specific proteins and methods of their use
BRPI0715703A2 (en) 2006-08-22 2013-09-17 G2 Inflammation Pty Ltd anti-c5ar antibodies with enhanced properties
JP2010501172A (en) 2006-08-25 2010-01-21 オンコセラピー・サイエンス株式会社 Prognostic markers and therapeutic targets for lung cancer
KR101161923B1 (en) 2006-10-03 2012-07-03 유니버시티 오브 메디신 앤드 덴티스트리 오브 뉴 저지 Atap peptides, nucleic acids encoding the same and associated methods of use
MX2009004757A (en) 2006-11-14 2009-05-21 Genentech Inc Modulators of neuronal regeneration.
EP2097092A4 (en) 2006-11-21 2010-04-07 Modulation of rhamm (cd168) for selective adipose tissue development
JP5391073B2 (en) 2006-11-27 2014-01-15 ディアデクサス インコーポレーテッド Ovr110 antibody compositions and methods of use
WO2008079280A1 (en) 2006-12-21 2008-07-03 Millipore Corporation Purification of proteins
US8362217B2 (en) 2006-12-21 2013-01-29 Emd Millipore Corporation Purification of proteins
US8569464B2 (en) 2006-12-21 2013-10-29 Emd Millipore Corporation Purification of proteins
US7875431B2 (en) 2007-02-22 2011-01-25 Genentech, Inc. Methods for detecting inflammatory bowel disease
WO2008109440A2 (en) 2007-03-02 2008-09-12 Genentech, Inc. Predicting response to a her dimerisation inhibitor based on low her3 expression
WO2008118324A2 (en) 2007-03-26 2008-10-02 Macrogenics, Inc. Composition and method of treating cancer with an anti-uroplakin ib antibody
RU2549701C2 (en) 2007-05-07 2015-04-27 Медиммун, Ллк Anti-icos antibodies and their application in treatment of oncological, transplantation-associated and autoimmune diseases
PL2173381T3 (en) 2007-05-14 2014-03-31 Novimmune Sa Fc receptor-binding polypeptides with modified effector functions
PT2164862E (en) 2007-06-08 2015-10-29 Australian Poultry Crc Pty Ltd Clostridial toxin netb
WO2008154249A2 (en) 2007-06-08 2008-12-18 Genentech, Inc. Gene expression markers of tumor resistance to her2 inhibitor treatment
SI3597659T1 (en) 2007-07-09 2023-04-28 Genentech, Inc. Prevention of disulfide bond reduction during recombinant production of polypeptides
JP5469600B2 (en) 2007-07-16 2014-04-16 ジェネンテック, インコーポレイテッド Anti-CD79b antibody and immunoconjugate and method of use thereof
TW200918089A (en) 2007-07-16 2009-05-01 Genentech Inc Humanized anti-CD79b antibodies and immunoconjugates and methods of use
JP5659014B2 (en) 2007-08-02 2015-01-28 ジリード バイオロジクス,インク. Methods and compositions for treatment and diagnosis of fibrosis, tumor invasion, angiogenesis and metastasis
MX2010001307A (en) 2007-08-02 2010-07-30 Novimmune Sa Anti-rantes antibodies and methods of use thereof.
US8691222B2 (en) 2007-10-02 2014-04-08 Genentech, Inc. NLRR-1 antagonists and uses thereof
US9464135B2 (en) 2007-10-08 2016-10-11 The Regents Of The University Of California Epithelial membrane protein-2 (EMP2) and proliferative vitroretinopathy (PVR)
EP2200631A1 (en) 2007-10-16 2010-06-30 Zymogenetics, Inc. Combination of blys inhibition and anti-cd 20 agents for treatment of autoimmune disease
SI2514436T1 (en) 2007-11-07 2018-04-30 Genentech, Inc. Il-22 for use in treating microbial disorders
KR20100097691A (en) 2007-11-12 2010-09-03 테라클론 사이언시스, 아이엔씨. Compositions and methods for the therapy and diagnosis of influenza
KR20110015409A (en) 2007-11-29 2011-02-15 제넨테크, 인크. Gene expression markers for inflammatory bowel disease
CA2707483A1 (en) 2007-11-30 2009-06-11 Wolfgang Fraunhofer Protein formulations and methods of making same
US8883146B2 (en) 2007-11-30 2014-11-11 Abbvie Inc. Protein formulations and methods of making same
NZ586611A (en) 2007-12-06 2012-09-28 Dana Farber Cancer Inst Inc Antibodies against influenza virus and methods of use thereof
EP2231705A2 (en) 2007-12-17 2010-09-29 Pfizer Limited Treatment of interstitial cystitis
AU2008338313B2 (en) 2007-12-18 2014-01-16 Bioalliance C.V. Antibodies recognizing a carbohydrate containing epitope on CD-43 and CEA expressed on cancer cells and methods using same
CA3108119C (en) 2008-01-15 2024-01-16 The Board Of Trustees Of The Leland Stanford Junior University Markers of acute myeloid leukemia stem cells
TWI472339B (en) 2008-01-30 2015-02-11 Genentech Inc Composition comprising antibody that binds to domain ii of her2 and acidic variants thereof
SI2657253T1 (en) 2008-01-31 2017-10-30 Genentech, Inc. Anti-CD79b antibodies and immunoconjugates and methods of use
AU2009217224B2 (en) 2008-02-20 2014-09-11 G2 Inflammation Pty Ltd Humanized anti-C5aR antibodies
AU2009223688B2 (en) 2008-03-10 2014-12-11 Theraclone Sciences, Inc. Compositions and methods for the therapy and diagnosis of cytomegalovirus infections
SG10201402815VA (en) 2008-04-09 2014-09-26 Genentech Inc Novel compositions and methods for the treatment of immune related diseases
JP6219556B2 (en) 2008-05-16 2017-10-25 ジェネンテック, インコーポレイテッド Use of biomarkers for evaluation of treatment of gastrointestinal inflammatory disorders using beta7 integrin antagonists
US8999702B2 (en) 2008-06-11 2015-04-07 Emd Millipore Corporation Stirred tank bioreactor
WO2009150623A1 (en) 2008-06-13 2009-12-17 Pfizer Inc Treatment of chronic prostatitis
US20120128684A1 (en) 2008-08-25 2012-05-24 Burnham Institute For Medical Research Conserved Hemagglutinin Epitope, Antibodies to the Epitope and Methods of Use
US8790642B2 (en) 2008-08-29 2014-07-29 Genentech, Inc. Cross-reactive and bispecific anti-IL-17A/F antibodies
KR20110051245A (en) 2008-09-10 2011-05-17 제넨테크, 인크. Methods for inhibiting ocular angiogenesis
TWI516501B (en) 2008-09-12 2016-01-11 禮納特神經系統科學公司 Pcsk9 antagonists
TW201014605A (en) 2008-09-16 2010-04-16 Genentech Inc Methods for treating progressive multiple sclerosis
EP2927244A1 (en) 2008-09-19 2015-10-07 MedImmune, LLC Antibodies directed to DLL4 and uses thereof
WO2010062857A1 (en) 2008-11-26 2010-06-03 Allergan, Inc. Klk-13 antibody inhibitor for treating dry eye
SI2376535T1 (en) 2008-12-09 2017-07-31 F. Hoffmann-La Roche Ag Anti-pd-l1 antibodies and their use to enhance t-cell function
CN105037535A (en) 2008-12-16 2015-11-11 Emd密理博公司 Stirred tank reactor and method
JP2012512244A (en) 2008-12-16 2012-05-31 イー・エム・デイー・ミリポア・コーポレイシヨン Protein purification
KR20110101212A (en) 2008-12-17 2011-09-15 제넨테크, 인크. Hepatitis c virus combination therapy
WO2010075249A2 (en) 2008-12-22 2010-07-01 Genentech, Inc. A method for treating rheumatoid arthritis with b-cell antagonists
EP2379595A2 (en) 2008-12-23 2011-10-26 AstraZeneca AB Targeted binding agents directed to 5 1 and uses thereof
WO2010086828A2 (en) 2009-02-02 2010-08-05 Rinat Neuroscience Corporation Agonist anti-trkb monoclonal antibodies
SI3260136T1 (en) 2009-03-17 2021-05-31 Theraclone Sciences, Inc. Human immunodeficiency virus (hiv) -neutralizing antibodies
UA105384C2 (en) 2009-04-01 2014-05-12 Дженентек, Инк. Treatment of insulin-resistant disorders
AU2010236787A1 (en) 2009-04-01 2011-11-10 Genentech, Inc. Anti-FcRH5 antibodies and immunoconjugates and methods of use
WO2010118243A2 (en) 2009-04-08 2010-10-14 Genentech, Inc. Use of il-27 antagonists to treat lupus
CA2759506A1 (en) 2009-04-23 2010-10-28 Theraclone Sciences, Inc. Granulocyte-macrophage colony-stimulating factor (gm-csf) neutralizing antibodies
PE20160652A1 (en) 2009-05-05 2016-07-09 Novimmune Sa ANTIBODIES THAT JOIN IL-17F
AU2010249787A1 (en) 2009-05-20 2011-12-22 Theraclone Sciences, Inc. Compositions and methods for the therapy and diagnosis of influenza
WO2010146511A1 (en) 2009-06-17 2010-12-23 Pfizer Limited Treatment of overactive bladder
MX2012000417A (en) 2009-07-07 2012-02-08 Genentech Inc Diagnosis and treatment of autoimmune demyelinating diseases.
EP2584049A3 (en) 2009-07-20 2013-08-28 Genentech, Inc. Gene expression markers for Crohn's disease
NZ597531A (en) 2009-07-31 2014-05-30 Genentech Inc Inhibition of tumor metastasis using bv8- or g-csf-antagonists
MX346115B (en) 2009-08-06 2017-03-08 Genentech Inc * Method to improve virus removal in protein purification.
US20110039300A1 (en) 2009-08-10 2011-02-17 Robert Bayer Antibodies with enhanced adcc functions
HUE048980T2 (en) 2009-08-11 2020-08-28 Hoffmann La Roche Production of proteins in glutamine-free cell culture media
US20110038871A1 (en) 2009-08-11 2011-02-17 Veena Viswanth Ccr2 inhibitors for treating conditions of the eye
US20110053223A1 (en) 2009-08-14 2011-03-03 Robert Bayer Cell culture methods to make antibodies with enhanced adcc function
US9428548B2 (en) 2009-09-01 2016-08-30 Genentech, Inc. Enhanced protein purification through a modified protein A elution
US9096877B2 (en) 2009-10-07 2015-08-04 Macrogenics, Inc. Fc region-containing polypeptides that exhibit improved effector function due to alterations of the extent of fucosylation, and methods for their use
US8535912B2 (en) 2009-10-15 2013-09-17 Genentech, Inc. Chimeric fibroblast growth factors with altered receptor specificity
CN104043126A (en) 2009-10-22 2014-09-17 霍夫曼-拉罗奇有限公司 Modulation of axon degeneration
BR112012009409A2 (en) 2009-10-22 2017-02-21 Genentech Inc method of identifying an inhibitory substance, antagonist molecule, isolated nucleic acid, vector, host cell, method of making the molecule, composition, article of manufacture, method of inhibiting a biological activity, method of treating a pathological condition, method for detect msp in a sample and method to detect hepsin in a sample
CN102612374A (en) 2009-11-12 2012-07-25 霍夫曼-拉罗奇有限公司 A method of promoting dendritic spine density
AR079217A1 (en) 2009-11-30 2012-01-04 Genentech Inc COMPOSITIONS AND METHODS FOR DIAGNOSIS AND TUMOR TREATMENT
KR101989628B1 (en) 2009-12-21 2019-06-14 제넨테크, 인크. Antibody formulation
EP3450459B1 (en) 2009-12-28 2021-05-26 OncoTherapy Science, Inc. Anti-cdh3 antibodies and uses thereof
US20110159588A1 (en) 2009-12-30 2011-06-30 Kui Lin Methods for Modulating a PDGF-AA Mediated Biological Response
WO2011094759A2 (en) 2010-02-01 2011-08-04 The Regents Of The University Of California Novel diagnostic and therapeutic targets associated with or regulated by n-cadherin expression and/or epithelial to mesenchymal transition (emt) in prostate cancer and other malignancies
CN102933231B (en) 2010-02-10 2015-07-29 伊缪诺金公司 CD20 antibody and uses thereof
MX2012009215A (en) 2010-02-23 2012-11-23 Genentech Inc Compositions and methods for the diagnosis and treatment of tumor.
SA114360064B1 (en) 2010-02-24 2016-01-05 رينات نيوروساينس كوربوريشن Antagonist anti-il-7 receptor antibodies and methods
WO2011111007A2 (en) 2010-03-11 2011-09-15 Rinat Neuroscience Corporation ANTIBODIES WITH pH DEPENDENT ANTIGEN BINDING
WO2011133931A1 (en) 2010-04-22 2011-10-27 Genentech, Inc. Use of il-27 antagonists for treating inflammatory bowel disease
EP2566510A1 (en) 2010-05-03 2013-03-13 F. Hoffmann-La Roche AG Compositions and methods useful for reducing the viscosity of protein-containing formulations
MA34291B1 (en) 2010-05-03 2013-06-01 Genentech Inc COMPOSITIONS AND METHODS FOR DIAGNOSING AND TREATING A TUMOR
EP2571903B1 (en) 2010-05-17 2019-09-04 EMD Millipore Corporation Stimulus responsive polymers for the purification of biomolecules
WO2011146568A1 (en) 2010-05-19 2011-11-24 Genentech, Inc. Predicting response to a her inhibitor
ES2637613T5 (en) 2010-05-25 2022-07-20 Hoffmann La Roche Polypeptide purification procedures
JP6050226B2 (en) 2010-05-28 2016-12-21 ジェネンテック, インコーポレイテッド Lowering lactic acid levels and increasing polypeptide production by downregulating LDH and PDHK expression
EP3957653A1 (en) 2010-06-02 2022-02-23 Dana Farber Cancer Institute, Inc. Humanized monoclonal antibodies and methods of use
US20110311527A1 (en) 2010-06-16 2011-12-22 Allergan, Inc. IL23p19 ANTIBODY INHIBITOR FOR TREATING OCULAR AND OTHER CONDITIONS
WO2012003493A2 (en) 2010-07-01 2012-01-05 The Regents Of The University Of California Protein kinase ck2 gene mutations, amplifications and polymorphisms in human cancers and methods of use
JP2013540701A (en) 2010-08-12 2013-11-07 セラクローン サイエンシーズ, インコーポレイテッド Anti-hemagglutinin antibody composition and method of use thereof
WO2012022734A2 (en) 2010-08-16 2012-02-23 Medimmune Limited Anti-icam-1 antibodies and methods of use
SG10201506782XA (en) 2010-08-27 2015-10-29 Stem Centrx Inc Notum protein modulators and methods of use
PT3556396T (en) 2010-08-31 2022-07-04 Scripps Research Inst Human immunodeficiency virus (hiv)-neutralizing antibodies
CN106620693A (en) 2010-09-03 2017-05-10 艾伯维施特姆森特克斯有限责任公司 Novel modulators and methods of use
WO2012030512A1 (en) 2010-09-03 2012-03-08 Percivia Llc. Flow-through protein purification process
WO2012061129A1 (en) 2010-10-25 2012-05-10 Genentech, Inc Treatment of gastrointestinal inflammation and psoriasis a
AU2011325833C1 (en) 2010-11-05 2017-07-13 Zymeworks Bc Inc. Stable heterodimeric antibody design with mutations in the Fc domain
WO2012071436A1 (en) 2010-11-24 2012-05-31 Genentech, Inc. Method of treating autoimmune inflammatory disorders using il-23r loss-of-function mutants
EP2648748A1 (en) 2010-12-08 2013-10-16 Stem Centrx, Inc. Novel modulators and methods of use
AU2012217867A1 (en) 2011-02-14 2013-09-05 Theraclone Sciences, Inc. Compositions and methods for the therapy and diagnosis of influenza
SA112330278B1 (en) 2011-02-18 2015-10-09 ستيم سينتركس، انك. Novel modulators and methods of use
EP2685968A1 (en) 2011-03-15 2014-01-22 Theraclone Sciences, Inc. Compositions and methods for the therapy and diagnosis of influenza
CA2831732C (en) 2011-03-31 2019-12-31 Genentech, Inc. Use of a monoclonal anti-beta7 antibody for treating gastrointestinal inflammatory disorders
CN103619881B (en) 2011-04-07 2017-07-28 安姆根有限公司 New EGFR associated proteins
EP2714738B1 (en) 2011-05-24 2018-10-10 Zyngenia, Inc. Multivalent and monovalent multispecific complexes and their uses
DK2718322T3 (en) 2011-06-06 2018-12-03 Novo Nordisk As THERAPEUTIC ANTIBODIES
JP2013040160A (en) 2011-07-01 2013-02-28 Genentech Inc Use of anti-cd83 agonist antibody for treating autoimmune disease
EP2734546A1 (en) 2011-07-18 2014-05-28 Amgen Inc. Apelin antigen-binding proteins and uses thereof
CN103890008A (en) 2011-08-17 2014-06-25 霍夫曼-拉罗奇有限公司 Inhibition of angiogenesis in refractory tumors
US8822651B2 (en) 2011-08-30 2014-09-02 Theraclone Sciences, Inc. Human rhinovirus (HRV) antibodies
JP6356607B2 (en) 2011-11-02 2018-07-11 ジェネンテック, インコーポレイテッド Overload / elution chromatography
WO2013063702A1 (en) 2011-11-04 2013-05-10 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the fc domain
EP2776470A2 (en) 2011-11-11 2014-09-17 Rinat Neuroscience Corporation Antibodies specific for trop-2 and their uses
WO2013093693A1 (en) 2011-12-22 2013-06-27 Rinat Neuroscience Corp. Staphylococcus aureus specific antibodies and uses thereof
US9249224B2 (en) 2011-12-22 2016-02-02 Rinat Neuroscience Corp. Human growth hormone receptor antagonist antibodies and methods of use thereof
US20130195851A1 (en) 2011-12-23 2013-08-01 Genentech, Inc. Articles of manufacture and methods for co-administration of antibodies
WO2013101771A2 (en) 2011-12-30 2013-07-04 Genentech, Inc. Compositions and method for treating autoimmune diseases
WO2013116287A1 (en) 2012-01-31 2013-08-08 Genentech, Inc. Anti-ig-e m1' antibodies and methods using same
SI2812443T1 (en) 2012-02-06 2019-10-30 Inhibrx Inc Cd47 antibodies and methods of use thereof
DK2817338T3 (en) 2012-02-24 2017-10-23 Abbvie Stemcentrx Llc DLL3 modulators and methods of use
HUE037613T2 (en) 2012-03-29 2018-09-28 Novimmune Sa Anti-tlr4 antibodies and uses thereof
AU2013256010B2 (en) 2012-05-04 2018-01-04 Dana-Farber Cancer Institute, Inc. Affinity matured anti-CCR4 humanized monoclonal antibodies and methods of use
US20130336973A1 (en) 2012-05-10 2013-12-19 Zymeworks Inc. Heteromultimer Constructs of Immunoglobulin Heavy Chains with Mutations in the Fc Domain
AU2013274347B2 (en) 2012-06-11 2018-03-08 Amgen Inc. Dual receptor antagonistic antigen-binding proteins and uses thereof
DK2877494T3 (en) 2012-07-23 2020-09-21 La Jolla Inst Allergy & Immunology PTPRS and proteoglycans in autoimmune disease
US10393733B2 (en) 2012-09-19 2019-08-27 Dana-Farber Cancer Institute, Inc. Dynamic BH3 profiling
EP2903641A2 (en) 2012-10-04 2015-08-12 Dana-Farber Cancer Institute, Inc. Human monoclonal anti-pd-l1 antibodies and methods of use
MX2015005874A (en) 2012-11-09 2015-09-10 Pfizer Platelet-derived growth factor b specific antibodies and compositions and uses thereof.
CN105051528A (en) 2012-11-15 2015-11-11 弗·哈夫曼-拉罗切有限公司 Ionic strength-mediated ph gradient ion exchange chromatography
JP6392770B2 (en) 2012-12-03 2018-09-19 ノビミューン エスアー Anti-CD47 antibody and method of use thereof
KR102276974B1 (en) 2013-02-06 2021-07-13 인히브릭스, 인크. Non-platelet depleting and non-red blood cell depleting cd47 antibodies and methods of use thereof
MX2015010682A (en) 2013-02-22 2016-05-31 Stemcentrx Inc Novel antibody conjugates and uses thereof.
BR112015022210A8 (en) 2013-03-13 2018-01-23 Genentech Inc antibody formulations
CN110075293A (en) 2013-03-13 2019-08-02 霍夫曼-拉罗奇有限公司 Aoxidize reduced preparaton
AR095398A1 (en) 2013-03-13 2015-10-14 Genentech Inc FORMULATIONS WITH REDUCED OXIDATION
US10653779B2 (en) 2013-03-13 2020-05-19 Genentech, Inc. Formulations with reduced oxidation
WO2014145098A1 (en) 2013-03-15 2014-09-18 Genentech, Inc. Cell culture compositions with antioxidants and methods for polypeptide production
AU2014227909C1 (en) 2013-03-15 2021-11-25 Dana-Farber Cancer Institute, Inc. Flavivirus neutralizing antibodies and methods of use thereof
US20140283157A1 (en) 2013-03-15 2014-09-18 Diadexus, Inc. Lipoprotein-associated phospholipase a2 antibody compositions and methods of use
US9447193B2 (en) 2013-03-24 2016-09-20 Development Center For Biotechnology Methods for suppressing cancer by inhibition of TMCC3
RU2015145610A (en) 2013-03-27 2017-05-04 Дженентек, Инк. APPLICATION OF BIOMARKERS FOR THE EVALUATION OF TREATMENT OF GASTROINTESTINAL INFLAMMATORY DISORDERS BY BETA7 INTEGRIN ANTAGONISTS
WO2014169076A1 (en) 2013-04-09 2014-10-16 Annexon,,Inc. Methods of treatment for neuromyelitis optica
US20160083698A1 (en) 2013-04-19 2016-03-24 The Regents Of The University Of California Lone star virus
MX2015015339A (en) 2013-05-07 2016-07-15 Rinat Neuroscience Corp Anti-glucagon receptor antibodies and methods of use thereof.
JP6462680B2 (en) 2013-07-09 2019-01-30 アネクソン,インコーポレーテッド Anti-complement factor C1q antibody and use thereof
WO2015006686A1 (en) 2013-07-12 2015-01-15 Genentech, Inc. Elucidation of ion exchange chromatography input optimization
KR20160030936A (en) 2013-07-16 2016-03-21 제넨테크, 인크. Methods of treating cancer using pd-1 axis binding antagonists and tigit inhibitors
US10093978B2 (en) 2013-08-12 2018-10-09 Genentech, Inc. Compositions for detecting complement factor H (CFH) and complement factor I (CFI) polymorphisms
US10077304B2 (en) 2013-08-14 2018-09-18 The Governing Council Of The University Of Toronto Antibodies against frizzled receptor
CA2922698C (en) 2013-08-29 2023-01-03 City Of Hope Cell penetrating conjugates comprising non-cell penetrating antibodies covalently attached to one or more phosphorothioate nucleic acids
WO2015035180A1 (en) 2013-09-05 2015-03-12 Genentech, Inc. Method for chromatography reuse
JP6663852B2 (en) 2013-09-19 2020-03-13 デイナ ファーバー キャンサー インスティチュート,インコーポレイテッド BH3 profiling method
SG11201602283UA (en) 2013-09-27 2016-04-28 Genentech Inc Anti-pdl1 antibody formulations
WO2015050959A1 (en) 2013-10-01 2015-04-09 Yale University Anti-kit antibodies and methods of use thereof
SG10201810298VA (en) 2013-11-13 2018-12-28 Pfizer Tumor necrosis factor-like ligand 1a specific antibodies and compositions and uses thereof
WO2015087187A1 (en) 2013-12-10 2015-06-18 Rinat Neuroscience Corp. Anti-sclerostin antibodies
EP3083692B1 (en) 2013-12-17 2020-02-19 F.Hoffmann-La Roche Ag Methods of treating her2-positive cancers using pd-1 axis binding antagonists and anti-her2 antibodies
WO2015095410A1 (en) 2013-12-17 2015-06-25 Genentech, Inc. Methods of treating cancer using pd-1 axis binding antagonists and an anti-cd20 antibody
CA2934028A1 (en) 2013-12-17 2015-06-25 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
WO2015109212A1 (en) 2014-01-17 2015-07-23 Pfizer Inc. Anti-il-2 antibodies and compositions and uses thereof
AU2015231164B2 (en) 2014-03-19 2020-04-09 Dana-Farber Cancer Institute, Inc. Immunogenetic restriction on elicitation of antibodies
MX2016012282A (en) 2014-03-27 2017-01-06 Genentech Inc Methods for diagnosing and treating inflammatory bowel disease.
WO2015153514A1 (en) 2014-03-31 2015-10-08 Genentech, Inc. Combination therapy comprising anti-angiogenesis agents and ox40 binding agonists
TWI695011B (en) 2014-06-18 2020-06-01 美商梅爾莎納醫療公司 Monoclonal antibodies against her2 epitope and methods of use thereof
BR112017004393A2 (en) 2014-09-15 2018-02-27 Genentech Inc antibody formulations
AU2015327781A1 (en) 2014-10-03 2017-04-20 Dana-Farber Cancer Institute, Inc. Glucocorticoid-induced tumor necrosis factor receptor (GITR) antibodies and methods of use thereof
EP3699196A1 (en) 2014-10-06 2020-08-26 Dana Farber Cancer Institute, Inc. Humanized cc chemokine receptor 4 (ccr4) antibodies and methods of use thereof
RU2020141422A (en) 2014-11-05 2021-01-13 Дженентек, Инк. METHODS FOR OBTAINING TWO-STRAIN PROTEINS IN BACTERIA
CA2966558C (en) 2014-11-05 2024-03-12 Genentech, Inc. Methods of producing two chain proteins in bacteria
WO2016081384A1 (en) 2014-11-17 2016-05-26 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
TWI595006B (en) 2014-12-09 2017-08-11 禮納特神經系統科學公司 Anti-pd-1 antibodies and methods of use thereof
EP3244907B1 (en) 2015-01-13 2020-02-19 City of Hope Ctla4-binding protein peptide-linker masks
MX2017009272A (en) 2015-01-16 2018-04-11 Cell penetrating antibodies.
CN107407677B (en) 2015-01-28 2020-07-17 豪夫迈·罗氏有限公司 Gene expression markers and treatment of multiple sclerosis
JP6903587B2 (en) 2015-04-03 2021-07-14 ユーリカ セラピューティックス, インコーポレイテッド Constructs targeting AFP peptide / MHC complexes and their use
EP3280441B1 (en) 2015-04-07 2021-09-29 Alector LLC Anti-sortilin antibodies and methods of use thereof
WO2016164835A1 (en) 2015-04-08 2016-10-13 Dana-Farber Cancer Institute, Inc. Humanized influenza monoclonal antibodies and methods of use thereof
CN114773476A (en) 2015-04-13 2022-07-22 辉瑞公司 Therapeutic antibodies and their use
MX2017013383A (en) 2015-04-20 2017-12-07 Tolero Pharmaceuticals Inc Predicting response to alvocidib by mitochondrial profiling.
JP6802185B2 (en) 2015-04-27 2020-12-16 デイナ ファーバー キャンサー インスティチュート,インコーポレイテッド High-throughput BH3 profiling: a rapid and scaleable technique for BH3 profiling in small cells
KR20170138556A (en) 2015-05-01 2017-12-15 다나-파버 캔서 인스티튜트 인크. Methods for mediating cytokine expression using anti-CCR4 antibodies
AU2016265845B2 (en) 2015-05-15 2020-10-08 City Of Hope Chimeric antigen receptor compositions
KR102608921B1 (en) 2015-05-18 2023-12-01 스미토모 파마 온콜로지, 인크. Albocidip prodrug with increased bioavailability
WO2016191750A1 (en) 2015-05-28 2016-12-01 Genentech, Inc. Cell-based assay for detecting anti-cd3 homodimers
WO2016196381A1 (en) 2015-05-29 2016-12-08 Genentech, Inc. Pd-l1 promoter methylation in cancer
JP7376977B2 (en) 2015-06-12 2023-11-09 アレクトル エルエルシー Anti-CD33 antibody and method of use thereof
EP3307779A2 (en) 2015-06-12 2018-04-18 Alector LLC Anti-cd33 antibodies and methods of use thereof
MX2017016353A (en) 2015-06-17 2018-05-02 Genentech Inc Methods of treating locally advanced or metastatic breast cancers using pd-1 axis binding antagonists and taxanes.
MX2018001289A (en) 2015-08-03 2018-04-30 Tolero Pharmaceuticals Inc Combination therapies for treatment of cancer.
TWI797060B (en) 2015-08-04 2023-04-01 美商再生元醫藥公司 Taurine supplemented cell culture medium and methods of use
CA2996059A1 (en) 2015-08-28 2017-03-09 Alector Llc Anti-siglec-7 antibodies and methods of use thereof
AU2016315892B2 (en) 2015-09-02 2023-06-15 The Regents Of The University Of Colorado, A Body Corporate Compositions and methods for modulating T-cell mediated immune response
IL293708A (en) 2015-10-06 2022-08-01 Genentech Inc Method for treating multiple sclerosis
KR20180064541A (en) 2015-10-23 2018-06-14 화이자 인코포레이티드 Anti-IL-2 antibodies and compositions and uses thereof
JP7060502B2 (en) 2015-10-29 2022-04-26 アレクトル エルエルシー Anti-Sigma-9 antibody and its usage
CN108430455A (en) 2015-12-30 2018-08-21 豪夫迈·罗氏有限公司 Tryptophan derivative is used for the purposes of protein preparaton
EP3397287A1 (en) 2015-12-30 2018-11-07 Genentech, Inc. Formulations with reduced degradation of polysorbate
US10472422B2 (en) 2016-01-08 2019-11-12 Abgenomics International Inc. Tetravalent anti-PSGL-1 antibodies and uses thereof
MX2018008347A (en) 2016-01-08 2018-12-06 Hoffmann La Roche Methods of treating cea-positive cancers using pd-1 axis binding antagonists and anti-cea/anti-cd3 bispecific antibodies.
CN109073635A (en) 2016-01-25 2018-12-21 豪夫迈·罗氏有限公司 Method for measuring T cell dependence bispecific antibody
KR20190005966A (en) 2016-05-10 2019-01-16 제넨테크, 인크. Methods for reducing trisulfide bonds during recombinant production of polypeptides
CN109563124A (en) 2016-06-17 2019-04-02 豪夫迈·罗氏有限公司 The purifying of multi-specificity antibody
WO2018018039A2 (en) 2016-07-22 2018-01-25 Dana-Farber Cancer Institute, Inc. Glucocorticoid-induced tumor necrosis factor receptor (gitr) antibodies and methods of use thereof
EP3494139B1 (en) 2016-08-05 2022-01-12 F. Hoffmann-La Roche AG Multivalent and multiepitopic anitibodies having agonistic activity and methods of use
JP7250674B2 (en) 2016-08-08 2023-04-03 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト CANCER TREATMENT AND DIAGNOSTIC METHOD
WO2018035025A1 (en) 2016-08-15 2018-02-22 Genentech, Inc. Chromatography method for quantifying a non-ionic surfactant in a composition comprising the non-ionic surfactant and a polypeptide
US20190233505A1 (en) 2016-09-06 2019-08-01 Dana-Farber Cancer Institute, Inc. Methods of treating or preventing zika virus infection
TW201825674A (en) 2016-09-09 2018-07-16 美商艾斯合顧問有限公司 Oncolytic virus expressing bispecific engager molecules
EP3515937A1 (en) 2016-09-23 2019-07-31 Teva Pharmaceuticals International GmbH Treating refractory migraine
EA201990548A1 (en) 2016-09-23 2019-09-30 Тева Фармасьютикалз Интернэшнл Гмбх TREATMENT OF CLUSTER HEAD PAIN
CA3040812A1 (en) 2016-11-04 2018-05-11 Novimmune Sa Anti-cd19 antibodies and methods of use thereof
US11279694B2 (en) 2016-11-18 2022-03-22 Sumitomo Dainippon Pharma Oncology, Inc. Alvocidib prodrugs and their use as protein kinase inhibitors
US10132797B2 (en) 2016-12-19 2018-11-20 Tolero Pharmaceuticals, Inc. Profiling peptides and methods for sensitivity profiling
EP3565845A4 (en) 2017-01-06 2020-10-07 Biosion, Inc. Erbb2 antibodies and uses therefore
KR20190124753A (en) 2017-03-03 2019-11-05 리나트 뉴로사이언스 코프. Anti-GITR Antibodies and Methods of Use thereof
RU2665790C1 (en) 2017-04-17 2018-09-04 Закрытое Акционерное Общество "Биокад" Monoclonal pd-l1 antibody
EP3615569A1 (en) 2017-04-25 2020-03-04 The U.S.A. As Represented By The Secretary, Department Of Health And Human Services Antibodies and methods for the diagnosis and treatment of epstein barr virus infection
WO2018200586A1 (en) 2017-04-26 2018-11-01 Eureka Therapeutics, Inc. Constructs specifically recognizing glypican 3 and uses thereof
JOP20190256A1 (en) 2017-05-12 2019-10-28 Icahn School Med Mount Sinai Newcastle disease viruses and uses thereof
US11359014B2 (en) 2017-05-16 2022-06-14 Alector Llc Anti-siglec-5 antibodies and methods of use thereof
WO2018215835A1 (en) 2017-05-26 2018-11-29 Novimmune Sa Anti-cd47 x anti-mesothelin antibodies and methods of use thereof
CN117700548A (en) 2017-08-03 2024-03-15 艾利妥 anti-CD 33 antibodies and methods of use thereof
WO2019055579A1 (en) 2017-09-12 2019-03-21 Tolero Pharmaceuticals, Inc. Treatment regimen for cancers that are insensitive to bcl-2 inhibitors using the mcl-1 inhibitor alvocidib
WO2019067015A1 (en) 2017-09-29 2019-04-04 City Of Hope Chimeric antigen receptors and bispecific antibodies for treatment of mantle cell lymphoma
US11707522B2 (en) 2017-10-13 2023-07-25 Boehringer Ingelheim International Gmbh Human antibodies to Tn antigen
JP7404247B2 (en) 2018-02-01 2023-12-25 ファイザー・インク Chimeric antigen receptor targeting CD70
US11377500B2 (en) 2018-02-01 2022-07-05 Pfizer Inc. Antibodies specific for CD70 and their uses
WO2019178248A1 (en) 2018-03-13 2019-09-19 The Regents Of The University Of California Inhibitors of integrin alpha 2 beta 1 and methods of use
WO2019175658A1 (en) 2018-03-14 2019-09-19 Novimmune Sa Anti-cd3 epsilon antibodies and methods of use thereof
WO2019213416A1 (en) 2018-05-02 2019-11-07 The Usa, As Represented By The Secretary, Dept. Of Health And Human Services Antibodies and methods for the diagnosis, prevention, and treatment of epstein barr virus infection
EP3796983A2 (en) 2018-05-23 2021-03-31 Pfizer Inc. Antibodies specific for gucy2c and uses thereof
JP7376564B2 (en) 2018-06-29 2023-11-08 シティ・オブ・ホープ CD6-targeted chimeric antigen receptor for treating certain autoimmune diseases
CA3060547A1 (en) 2018-07-13 2020-01-13 Alector Llc Anti-sortilin antibodies and methods of use thereof
WO2020023920A1 (en) 2018-07-27 2020-01-30 Alector Llc Anti-siglec-5 antibodies and methods of use thereof
BR112021002130A2 (en) 2018-08-08 2021-05-04 Genentech, Inc. liquid formulation, article of manufacture or kit and method for reducing oxidation of a polypeptide
MX2021006544A (en) 2018-12-04 2021-07-07 Sumitomo Pharma Oncology Inc Cdk9 inhibitors and polymorphs thereof for use as agents for treatment of cancer.
WO2020191326A1 (en) 2019-03-20 2020-09-24 Sumitomo Dainippon Pharma Oncology, Inc. Treatment of acute myeloid leukemia (aml) with venetoclax failure
MX2022000726A (en) 2019-07-19 2022-02-10 Oncoresponse Inc Immunomodulatory antibodies and methods of use thereof.
JP2022541652A (en) 2019-07-26 2022-09-26 ヴァンダービルト ユニバーシティ Human monoclonal antibody against enterovirus D68
EP4013788A1 (en) 2019-08-12 2022-06-22 Purinomia Biotech, Inc. Methods and compositions for promoting and potentiating t-cell mediated immune responses through adcc targeting of cd39 expressing cells
AU2020403021A1 (en) 2019-12-12 2022-06-23 Alector Llc Methods of use of anti-CD33 antibodies
PL4045533T3 (en) 2020-03-26 2024-04-15 Vanderbilt University Human monoclonal antibodies to severe acute respiratory syndrome coronavirus 2 (sars-cov-2)
WO2021195385A1 (en) 2020-03-26 2021-09-30 Vanderbilt University HUMAN MONOCLONAL ANTIBODIES TO SEVERE ACUTE RESPIRATORY SYNDROME CORONAVIRUS 2 (SARS-GoV-2)
CN115916176A (en) 2020-05-01 2023-04-04 加利福尼亚大学董事会 Inhibitors of alpha 2 beta 1 integrin and methods of use thereof
AR123997A1 (en) 2020-11-04 2023-02-01 Univ Rockefeller NEUTRALIZING ANTIBODIES AGAINST SARS-CoV-2
JP2024503724A (en) 2021-01-20 2024-01-26 オンコレスポンス,インク. Immunomodulatory antibodies and their uses
WO2022200389A1 (en) 2021-03-22 2022-09-29 Novimmune S.A. Bispecific antibodies targeting cd47 and pd-l1 and methods of use thereof
WO2022217026A1 (en) 2021-04-09 2022-10-13 Seagen Inc. Methods of treating cancer with anti-tigit antibodies
EP4334354A1 (en) 2021-05-06 2024-03-13 Dana-Farber Cancer Institute, Inc. Antibodies against alk and methods of use thereof
WO2023097024A1 (en) 2021-11-24 2023-06-01 Dana-Farber Cancer Institute, Inc. Antibodies against ctla-4 and methods of use thereof
WO2023114544A1 (en) 2021-12-17 2023-06-22 Dana-Farber Cancer Institute, Inc. Antibodies and uses thereof
WO2023114543A2 (en) 2021-12-17 2023-06-22 Dana-Farber Cancer Institute, Inc. Platform for antibody discovery
WO2023147399A1 (en) 2022-01-27 2023-08-03 The Rockefeller University Broadly neutralizing anti-sars-cov-2 antibodies targeting the n-terminal domain of the spike protein and methods of use thereof
WO2023178357A1 (en) 2022-03-18 2023-09-21 Evolveimmune Therapeutics, Inc. Bispecific antibody fusion molecules and methods of use thereof
WO2023245105A1 (en) 2022-06-17 2023-12-21 Genentech, Inc. Use of kosmotropes to enhance yield of an affinity chromatography purification step
WO2024039672A2 (en) 2022-08-15 2024-02-22 Dana-Farber Cancer Institute, Inc. Antibodies against msln and methods of use thereof
WO2024039670A1 (en) 2022-08-15 2024-02-22 Dana-Farber Cancer Institute, Inc. Antibodies against cldn4 and methods of use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69029036T2 (en) * 1989-06-29 1997-05-22 Medarex Inc SPECIFIC REAGENTS FOR AIDS THERAPY

Also Published As

Publication number Publication date
WO1992020373A1 (en) 1992-11-26
CA2102511A1 (en) 1992-11-15
EP0586505A1 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
JPH06507398A (en) Heterogeneous conjugate antibody for treatment of HIV infection
KR100547049B1 (en) Compositions and Methods for Treating Viral Infections
AU700371B2 (en) Hiv envelope polypeptides
Wyatt et al. Relationship of the human immunodeficiency virus type 1 gp120 third variable loop to a component of the CD4 binding site in the fourth conserved region
AU680916B2 (en) HIV immunogenic complexes
US5912176A (en) Antibodies against a host cell antigen complex for pre and post exposure protection from infection by HIV
CA2066607A1 (en) Peptides associated with the cd4 binding region of gp120 and their methods of use
PL155084B1 (en) A method of monoclonic antibodies generating and the useof theses antibodies in distributions based on immulogical affinity
EP0492560A2 (en) Human monoclonal antibodies directed against the transmembrane glycoprotein (gp41) of HIV-1, and related peptides
EP0910659B1 (en) Antibodies against a complex of cd4 and a chemokine receptor domain, and their use against hiv infections
JP2888980B2 (en) HIV immunotherapy
Zaghouani et al. Induction of antibodies to the envelope protein of the human immunodeficiency virus by immunization with monoclonal anti-idiotypes.
AU8653691A (en) Aids therapy and vaccine
CN1930184B (en) Novel TAT complexes, and vaccines comprising them
Shapira-Nahor et al. CD4-derived synthetic peptide blocks the binding of HIV-1 GP120 to CD4-bearing cells and prevents HIV-1 infection
JP2583555B2 (en) Methods and materials for the detection and treatment of human immunodeficiency virus (HIV)
DE69433057T2 (en) PEPTIDES FOR USE IN VACCINATING AND INDUCING NEUTRALIZING ANTIBODIES AGAINST THE HUMAN IMMUNITY VIRUS
CA2262427A1 (en) Conjugated peptides, immunological reagent containing same and use thereof for treatment of immunological disorders
Bès et al. The chimeric mouse-human anti-CD4 Fab 13B8. 2 expressed in baculovirus inhibits both antigen presentation and HIV-1 promoter activation
WO1993004693A1 (en) Synergistic inhibition of hiv-1
KR920001772B1 (en) Human immunodeficiency virus(hiv)enn-coded peptide capable of eliciting hiv-inhibiting antibodies in mammals
Murakami et al. Applications of biotinylated V3 loop peptides of human immunodeficiency virus type 1 to flow cytometric analyses and affinity chromatographic techniques
MXPA99003380A (en) Compositions and methods for treating viral infections
AU2008203501A1 (en) Compositions and methods for treating viral infections
AU2004208648A1 (en) Compositions and methods for treating infections