WO2005012730A1 - ポンプ - Google Patents

ポンプ Download PDF

Info

Publication number
WO2005012730A1
WO2005012730A1 PCT/JP2004/011274 JP2004011274W WO2005012730A1 WO 2005012730 A1 WO2005012730 A1 WO 2005012730A1 JP 2004011274 W JP2004011274 W JP 2004011274W WO 2005012730 A1 WO2005012730 A1 WO 2005012730A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
driving element
driving
electrode layer
diaphragm
Prior art date
Application number
PCT/JP2004/011274
Other languages
English (en)
French (fr)
Inventor
Shingo Sewa
Kazuo Onishi
Minoru Nakayama
Shigeki Fujiwara
Original Assignee
Eamex Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eamex Corporation filed Critical Eamex Corporation
Priority to JP2005512580A priority Critical patent/JPWO2005012730A1/ja
Publication of WO2005012730A1 publication Critical patent/WO2005012730A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/025Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms two or more plate-like pumping members in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • F04B43/09Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/02Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows

Definitions

  • the present invention relates to a pump and a pump driving element, and more particularly to a small to ultra-small pump for electronic devices such as a pump for a water-cooled circulation module for cooling a CPU of a computer as well as a normal pump.
  • the present invention relates to a small to ultra-small pump for a reagent dispenser, a pump suitably used for an ultra-small pump used for a blood test chip, and a pump driving element.
  • a small pump has been proposed as a small or ultra-small pump of this type (for example, Patent Document 2).
  • An object of the present invention is not only a normal pump, but also a pump for an electronic device, a pump for a reagent dispenser, and a pump suitably used for a water-cooled module for cooling a heating element of an electronic device such as a CPU. It is an object of the present invention to provide a small to ultra-small pump suitably used for a blood test chip pump or the like.
  • Patent Document 1 JP 2003-133776
  • Patent Document 2 JP 2003-13878
  • the invention according to claim 1 is the pump, wherein the driving unit for controlling the suction and discharge of the fluid is at least configured by a driving element of a laminate including an electrode layer on a solid electrolyte.
  • the invention according to claim 2 is the pump according to claim 1, wherein the solid electrolyte contains an ion exchange resin, and the electrode layer is a metal electrode.
  • the invention according to claim 3 is the pump according to claim 1, wherein the electrode layer includes a conductive polymer.
  • the invention according to claim 4 is the pump according to any one of claims 1 to 3, wherein the electrode layer is constituted by a plurality of electrode layers separated by insulating grooves. is there
  • the present invention having these configurations allows the present invention to be used not only for ordinary pumps, but also for water-cooled modules for cooling heating elements of electronic devices such as CPUs. It is suitable as a pump. Further, it is a small to ultra-small pump suitably used for a reagent dispenser pump, a blood test chip pump and the like. Further, it can be suitably used not only as a small or ultra-compact pump, but also as an ordinary pump.
  • the driving element of the present invention has a laminated structure in which an electrode layer is formed on a solid electrolyte layer.
  • the solid electrolyte is an ion exchange resin
  • the electrode to which a negative voltage is applied moves water molecules and ions contained in the ion-exchange resin layer to the vicinity of the electrode, and the outside ( (The side opposite to the ion exchange resin layer).
  • the driving element has a circular shape, it is deformed into a substantially conical shape.
  • the electrode to which the negative voltage is applied can return to the state before the convex deformation by canceling the applied voltage.
  • the driving element of the present invention can drive the driving force S by repeatedly applying and releasing the voltage.
  • a pump including a driving element which deforms according to the plurality of electrode layers by dividing the insulating grooves is provided. Can be.
  • FIG. 1 (a) is a schematic perspective view of a diaphragm pump showing one embodiment according to the present invention.
  • FIG. 1 (b) is a schematic perspective view of a diaphragm pump showing a part of a driving element according to the pump.
  • FIG. 2 (a) is a schematic cross-sectional view of the diaphragm pump taken along line AA of FIG. 1 (a).
  • FIG. 2 (b) is a schematic cross-sectional view taken along line AA of the diaphragm pump in FIG. 1 (a).
  • FIG. 3A is a schematic perspective view of a diaphragm pump showing another embodiment.
  • FIG. 3 (b) is a schematic cross-sectional view taken along the line BB in FIG. 3 (a).
  • FIG. 4 (a) is a schematic perspective view of a diaphragm pump showing another embodiment.
  • FIG. 4 (b) is a schematic cross-sectional view taken along line C-C in FIG. 4 (a).
  • FIG. 5 (a) is a schematic perspective view of a pump showing another embodiment.
  • FIG. 5 (b) is a schematic front view showing the operation state in FIG. 5 (a).
  • FIG. 5 (c) is a schematic perspective view of a pump device using two pumps of FIG. 5 (a).
  • FIG. 6 (a) is a schematic perspective view of a pump showing another embodiment.
  • FIG. 6 (b) is a schematic perspective view of the driving element in FIG. 6 (a).
  • FIG. 6 (c) is a schematic sectional view of the pump in FIG. 6 (a).
  • FIG. 6D is a schematic sectional view of the pump showing a compressed state of the driving element in FIG. 6A.
  • FIG. 6 (e) is a schematic sectional view of the pump showing the same contracted state in FIG. 6 (a).
  • FIG. 7 (a) is a schematic sectional view showing a non-energized state in one embodiment of the plunger pump according to the present invention.
  • FIG. 7 (b) is a schematic cross-sectional view showing the state of non-energization in the embodiment of the plunger pump of FIG. 7 (a), but is a state of energization.
  • FIG. 7 (c) is a schematic plan view of a driving element used in the plunger pump of FIG. 7 (a).
  • FIG. 8 (a) is a schematic sectional view of a bellows pump showing one embodiment according to the present invention.
  • FIG. 8 (b) is a schematic cross-sectional view of the bellows pump of FIG. 8 (a) when energized.
  • FIG. 9 (a) is a schematic sectional view of another embodiment of the bellows pump according to the present invention when a voltage is applied to the electrodes of the driving element.
  • FIG. 9 (b) is a schematic cross-sectional view when no voltage is applied to the electrodes of the driving element in the base pump of FIG. 9 (a).
  • FIG. 9 (c) is a front view of an intermediate member of the bellows pump of FIG. 9 (a).
  • FIG. 10 is a schematic sectional view of a pump using the plate-shaped driving element of the present invention.
  • FIG. 11 is a sectional view of a pump showing another embodiment of the present invention.
  • FIGS. 12 (a)-(c) are schematic sectional views showing an embodiment of the pump of the present invention.
  • FIG. 13 is a cross-sectional view of the driving element of FIG. 7 (c).
  • FIG. 1 (a) is a schematic perspective view of a diaphragm pump showing one embodiment according to the present invention
  • FIG. 1 (b) is a schematic perspective view of a diaphragm pump showing a part of a driving element according to the pump
  • FIGS. 2 (a) and 2 (b) are schematic cross-sectional views of the diaphragm pump taken along the line AA of FIG. 1 (a), each showing a part of a driving element according to the pump.
  • reference numeral 101 denotes a diaphragm pump configured by connecting two pump elements 101a and 101b.
  • One of the pump elements 101a has a suction hole 102 for sucking a fluid (liquid), and the suction hole 102
  • the pump chamber 103 includes a suction passage 104 connected to the pump chamber 103, and a check valve 105 for closing or opening the suction passage 104 to the pump chamber 103.
  • 106 is a diaphragm of the diaphragm.
  • 107 is a discharge hole for discharging a fluid (liquid), and 108 is a discharge path communicating from the pump chamber 103 to the discharge hole 107.
  • a check valve 109 closes or opens the discharge hole 107.
  • Ll and L2 are lead wires, respectively.
  • another pump element 101b has a suction hole 112 for sucking fluid discharged from the discharge hole 107 of the pump element 101a, and a force connected to the pump chamber 113 from the suction hole 112. 114, the pump chamber 113, and the closing or opening of the suction passage 114 to the pump chamber 113. It has a check valve 115 for release.
  • 116 is a diaphragm of the diaphragm.
  • Reference numeral 117 denotes a discharge hole for discharging a fluid (liquid), and reference numeral 118 denotes a discharge passage communicating from the pump chamber 113 to the discharge hole 117.
  • 119 is a check valve for closing or opening the discharge hole 107.
  • the diaphragms 106 and 116 of the diaphragm according to this embodiment are at least constituted by a driving element of a stacked body including an electrode layer on a solid electrolyte.
  • the solid electrolyte includes an ion exchange resin and the electrode layer is a metal electrode.
  • the electrode layer may include a conductive polymer.
  • FIG. 3 (a) is a schematic perspective view of a diaphragm pump showing another embodiment
  • FIG. 3 (b) is a schematic sectional view taken along the line BB.
  • diaphragms 202 and 203 of diaphragms each composed of a driving element of a laminate having an electrode layer on a solid electrolyte are provided. In this way, when electricity is supplied, the diaphragms 202 and 203 of the diaphragm repeatedly contract and expand with or without synchronization, and operate as a pump.
  • reference numeral 204 denotes a suction hole
  • 205 denotes a suction path
  • 206 denotes a check valve
  • 207 denotes a discharge hole
  • 208 denotes a check valve
  • 209 is a pump room.
  • Ll and L2 are lead wires, respectively.
  • FIG. 4A is a schematic perspective view of a diaphragm pump showing still another embodiment
  • FIG. 3 (b) is a schematic sectional view taken along line C-C in FIG. 4 (a).
  • a diaphragm 302 of a diaphragm installed in a main body 301 is provided with a substantially triangular driving element 303 for driving the diaphragm.
  • the diaphragm 302 of the diaphragm and the driving element 303 having a triangular shape are connected to each other by a connecting body 304 for connecting each of them.
  • 305 is a suction hole
  • 306 is a suction path
  • 307 is a check valve
  • 308 is a discharge hole
  • 309 is a check valve.
  • 310 is a pump room.
  • Ll and L2 are lead wires, respectively.
  • FIG. 5 (a) is a schematic perspective view of a pump showing still another embodiment
  • FIG. 5 (b) is a schematic front view showing an operation state in FIG. 5 (a).
  • FIG. 5 (c) is a schematic perspective view of a pump device using two such pumps.
  • This embodiment includes a main body 403 having a fluid suction portion 401 and a fluid discharge portion 402, and a pump chamber 404 connected to the main body 403.
  • the pump chamber 404 is formed of a cylindrical body having a bottom, and is formed of an expandable body such as an elastomer having a variable internal volume, and is connected to the main body 403 in a sealed state.
  • the pump 404 is a drive unit for controlling the suction and discharge of fluid, and is constituted by a drive element of a laminate having an electrode layer on a solid electrolyte.
  • FIG. 6 (a) is a schematic perspective view of a pump showing still another embodiment
  • FIG. 6 (b) is a schematic perspective view of the driving element in FIG. 6 (a).
  • FIG. 6C is a schematic sectional view of the pump of FIG. 6A
  • FIG. 6D is a schematic sectional view of the pump showing a compressed state of the driving element.
  • FIG. 6 (e) is a schematic sectional view of the pump showing the contracted state.
  • a pump 501 of this embodiment is composed of a pump chamber 502, a bag 503 having a fluid inlet 504 and a fluid outlet 505,
  • Driving elements 506a and 506b are provided on the outer peripheral surface of the bag body 503 so as to face the center of the bag body 503 from the respective sides of the suction port 504 and the discharge port 505 of the bag body 503.
  • the driving elements 506a and 506b are respectively provided with bases 507a and 507b provided at the inlet 504 or the non-outlet 505 of the bag body 503 and the bases 507a and 507b.
  • Each of the bag members 503 radially extends toward the center of the bag member and is energized.
  • 509a is a check valve on the outlet 505 side
  • 509b is a check valve on the inlet 504 side.
  • Ll and L2 are lead wires, respectively.
  • FIG. 7 is a schematic sectional view showing an embodiment of the plunger pump according to the present invention
  • FIG. 7 (a) is a schematic sectional view showing a non-energized state
  • FIG. 7 (b) is energized to a lead wire.
  • FIG. 3 is a schematic sectional view showing the state.
  • FIG. 7 (c) is a schematic plan view of a driving element used in the pump.
  • the pump of this embodiment includes a cylindrical pump chamber 601 and a plunger 602 that changes the internal volume of the pump chamber 601.
  • the plunger 602 is provided with a driving unit 603 for giving a piston operation to the plunger 602,
  • the drive section 603 has a structure in which a disk-shaped drive element 604 is bent in a direction to press the plunger 602 in an energized state.
  • the driving section 603 has a circular plate 605 and the disk-shaped driving element 604 provided along the circumference of the circular plate 605.
  • the driving element 604 is composed of a driving element group 606 having a hierarchical structure in a vertical direction, and a plurality of disk-shaped driving elements 604 having different diameters are formed on the front and back of the circular plate 605. It is provided along the circumference of both sides.
  • the driving element 606 is composed of a plurality of disc-shaped elements having different diameters. 604a, 604b are provided along the circumference of both sides of the circular plate.
  • FIG. 13 is a cross-sectional view of the driving element of FIG. 7 (c) cut parallel to the thickness direction by a plane passing through the center point of the outer periphery of the disk-shaped or annular element 1101 and 1102. It is.
  • the driving element 606 includes two disk-shaped or ring-shaped driving elements 1101 and 1102, a gap is provided between the outer driving element 1101 and the inner driving element 1102, and the inner side is provided on the inner side. It has a space.
  • the driving element 1101 includes electrode layers 1103 and 1103 ′ with the solid electrolyte layer 1104 interposed therebetween in the thickness direction.
  • the disc-shaped or annular element 1102 includes electrode layers 1105 and 1105 'with a solid electrolyte layer 1106 interposed therebetween in the thickness direction.
  • the disk-shaped or ring-shaped elements 1101 and 1102 may have a laminated structure of a solid electrolyte and an electrode layer, or may be a joined body.
  • the solid electrolyte contains an ion exchange resin having a cation as a counter ion, a negative voltage is applied to the electrode layer 1105, and a positive voltage is applied to the electrode layer 1105 '.
  • the element 1102 is displaced or bent so as to protrude upward in FIG.
  • the displacement or bending drive mechanism can be applied to a drive element used in the pump of the present application.
  • FIG. 8A is a schematic sectional view of a bellows pump showing one embodiment according to the present invention.
  • FIG. 8 (b) is a schematic cross-sectional view of the same pump when energized.
  • the pump of this embodiment includes a pump chamber 701 for bellows and a drive unit 702 for expanding and contracting the bellows 705, and the drive unit 702 is bent in a direction in which the bellows 705 is extended in an energized state.
  • the disk-shaped driving element 703 is released from the bending in the non-energized state.
  • the driving section 702 has a circular plate 704 provided around the valley of the bellows 705 and the disk-shaped driving element 703 provided along the circumference of the circular plate 704.
  • the driving element 703 is composed of a driving element group having a hierarchical structure in the vertical direction. Ll and L2 are lead wires, respectively.
  • the driving element 703 expands the bellows 705 and operates as a pump as shown in Fig. 8 (b).
  • FIG. 9 is a modification of the pump of FIG. 8, and performs a similar pump operation.
  • Ll and L2 are lead wires, respectively.
  • FIGS. 9A and 9B are schematic sectional views of another embodiment of the bellows pump according to the present invention.
  • the drive element 722 is bent in a convex shape by applying a voltage, and the bellows 711 is in an expanded state.
  • fluid flows from the suction port 713 of the suction pipe 712 into the fluid chamber 723. Then, it is taken into the space inside the bellows through the flow path 720 of the indirect member 719. Then, as shown in FIG.
  • FIG. 9C is a front view of the indirect member 719 when viewed from the discharge port direction.
  • FIG. 10 shows a plate-shaped driving element 802 provided inside a pipe 801 constituting a flow path, having one end 802a fixed and the other end 802b open along the flow path.
  • the driving element 802 has one end overlapped and fixed and the other end opened, and is composed of a pair of plate-shaped driving elements facing each other.
  • the opposing surface of the drive element 802 is connected to the same pole by a lead wire via a current-carrying member, and the outer surface of the drive element 802 is connected to the same pole by a lead wire via a current-carrying member.
  • Ll and L2 are lead wires, respectively.
  • FIG. 11 shows a pump according to another embodiment of the present invention.
  • a pump 902 provided inside a pipe 901 constituting a flow path, one end of which is fixed to one inner wall 903 of the pipe, and the other end of which is in contact with the other inner wall 904 of the pipe to close the flow path.
  • a plate-shaped driving element 905 has a force, and the plate-shaped driving element 905 has a fluid passage hole 906, and further includes a drive element 907 for closing the passage hole 906. It is equipped with.
  • Ll and L2 are lead wires, respectively.
  • FIGS. 12 (a)-(c) are schematic sectional views showing one embodiment of the pump of the present invention.
  • the tubular driving element 1001 has an electrode layer 1003-10006 formed on a solid electrolyte layer 1002.
  • the electrode layer 1003 and the electrode layer 1004 are separated from each other by an insulating groove 1007 so as to be insulated from each other.
  • the electrode layer 1004 and the electrode layer 1005 are separated by an insulating groove 1008, and the electrode layer 1005 and the electrode layer 1006 are separated by an insulating groove 1009 so as to be insulated from an adjacent electrode layer.
  • the insulating layers are each formed in the circumferential direction and formed as a groove having no end.However, the insulating layers are provided so as to divide the P-contact electrode layer into an insulating state. I'm sorry.
  • FIG. 12 (a) is a schematic cross-sectional view of the pump of the present invention in a state where one electrode layer is curved to the outside of the tube.
  • FIG. 12 (b) is a schematic cross-sectional view of the pump of the present invention in a state where the electrode layer adjacent to the curved electrode layer of the pump of FIG. 12 (a) is curved outside the tube.
  • FIG. 12 (c) is a schematic cross-sectional view of the pump of the present invention in a state where an electrode layer adjacent to the curved electrode layer of the pump of FIG. 12 (b) is curved outside the tube.
  • a negative voltage is applied via a lead wire 1010 to bend the electrode layer 1003 to the outside of the tube, and a positive voltage is applied to the electrode layer 1004 via a lead wire 1011.
  • the voltage application to the electrode layer 1003 is released, and at the same time, a negative voltage is applied via the lead wire 1011 to apply the electrode layer 1003.
  • FIGS. 12 (a) and 12 (b) show the case where the substrate is bent outward when a negative voltage is applied, as typified by the case where the metal electrode layer is formed on the cation exchange resin layer. Is an example.
  • Drive for tubular pump of the present invention The element for use may be an element that curves outward when a positive voltage is applied.
  • the driving element of the present invention has a laminated structure in which an electrode layer is formed on a solid electrolyte layer.
  • the drive element includes the solid electrolyte ion-exchange resin, and the electrode layer is a metal electrode, or the electrode layer is formed of a conductive polymer.
  • a driving element including a driving element can be used. Note that, in the drawings of the present application, connection to a power supply via a lead wire to each driving element is not particularly illustrated. The connection of each drive element to the electrode is not particularly limited, and the electrodes of each drive element may be connected in series or in parallel between the respective elements by a lead wire or the like.
  • a driving element including the solid electrolyte force ion exchange resin and the electrode layer being a metal electrode for example, a metal electrode as an electrode layer is formed by subjecting an ion exchange resin to electroless plating.
  • the obtained laminated body can be obtained.
  • a polymer electrolyte (laminate) having a metal layer formed thereon can be obtained by repeatedly performing the following steps (1) and (3) on an ion exchange resin.
  • (2) Reduction step An ion-exchange resin is immersed in an aqueous solution containing sodium sulfite to reduce the adsorbed dichlorophenantophosphorus gold complex, thereby forming a gold electrode on the membrane polymer electrolyte.
  • the temperature of the aqueous solution is set at 60 to 80 ° C, and the dichlorophenanthrin gold complex is reduced for 6 hours while gradually adding sodium sulfite.
  • (3) washing step the membrane-shaped polymer electrolyte having the gold electrode formed on the surface is taken out and washed with water at 70 ° C for 1 hour.
  • the driving element of the present invention in which the electrode layer contains a conductive polymer can be obtained by forming a layer of a conductive polymer obtained by an electrolytic polymerization method on a solid electrolyte layer. Wear.
  • the electrolytic polymerization method is a polymerization method using an electrolytic solution containing an organic compound as a solvent, and the organic compound includes (1) a group of chemical bonds including an ether bond, an ester bond, a carbon-halogen bond, and a carbonate bond. And / or (2) a functional group selected from at least one selected from the group consisting of a functional group consisting of a hydroxyl group, a nitro group, a sulfone group, and a nitrile group.
  • the liquid contains an anion containing a plurality of fluorine atoms bonded to a trifluoromethanesulfonic acid ion and / or a central atom, since larger bending can be caused.
  • the pump of the present invention is as described above, it can be made small or ultra-small, so that it is suitable not only for ordinary pumps but also for water-cooled modules for cooling heating elements of electronic devices such as CPUs. It is suitably used for a pump for an electronic device, a pump for a reagent dispenser, a pump for a blood test chip, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

 流体の吸排を制御する駆動部が、固体電解質上に電極層を備えた積層体の駆動用素子で少なくとも構成され、前記固体電解質がイオン交換樹脂を含み、かつ前記電極層が金属電極であるポンプは、ダイヤフラムポンプ、プランジャーポンプ、ベローズポンプなどのポンプとして用いることができる。また、本願発明のポンプは、通常のポンプのみならず、CPU等の電子機器の発熱素子を冷却する水冷モジュール等に好適に用いられる電子機器用ポンプや、試薬ディスペンサー用ポンプ、血液検査用チップ用ポンプなどに好適に用いられる。        

Description

明 細 書
ポンプ
技術分野
[0001] 本発明はポンプ及びポンプ用駆動用素子に関し、さらに詳細には通常のポンプの みならず、特にコンピューターの CPU等を冷却する水冷循環モジュール用ポンプな どの電子機器用小型乃至超小型ポンプ、試薬ディスペンサー用の小型乃至超小型 ポンプ、血液検査用チップに用いられる超小型ポンプに好適に用いられるポンプ及 びポンプ用駆動用素子に関するものである。
背景技術
[0002] 例えばコンピューターの CPU等を冷却する水冷循環モジュール用ポンプなどの電 子機器用として好適な小型乃至超小型ポンプが求められている(例えば、特許文献
1)。またこの種の小型乃至超小型ポンプとして小型ポンプが提案されてレ、る(例えば 、特許文献 2)。
[0003] しかし、力かるポンプではその小型化に限界があるため、 CPU等の電子機器の発 熱素子を冷却する水冷モジュールに用いられる好適な小型又は超小型ポンプは未 だ提供されていない。また近時では、チップ内に採血液の流路とこれに供給する試 薬の流路が形成され、これらの各流体をポンプで行う検查チップが提案されてレ、るが 、このチップに好適な超小型ポンプも未だ提供されてレ、なレ、。
[0004] 本発明の目的は、通常のポンプのみならず、 CPU等の電子機器の発熱素子を冷 却する水冷モジュール等に好適に用レ、られる電子機器用ポンプや、試薬ディスペン サー用ポンプ、血液検査用チップ用ポンプなどに好適に用いられる、小型乃至超小 型のポンプを提供するところにある。
[0005] 特許文献 1 :特開 2003— 133776
特許文献 2 :特開 2003— 13878
発明の開示
[0006] 請求の範囲第 1項の発明は、流体の吸排を制御する駆動部が、固体電解質上に 電極層を備えた積層体の駆動用素子で少なくとも構成されているポンプである。 請求の範囲第 2項の発明は、前記固体電解質がイオン交換樹脂を含み、かつ前記 電極層が金属電極である請求の範囲第 1項に記載のポンプである。
請求の範囲第 3項の発明は、前記電極層が導電性高分子を含む請求の範囲第 1 項に記載のポンプである。
請求の範囲第 4項の発明は、前記電極層が、絶縁溝で区分された複数の電極層で 構成されている請求の範囲第 1項乃至第 3項のいずれかの項に記載のポンプである
[0007] 本発明は、これらの構成を持っため、通常のポンプのみならず、 CPU等の電子機 器の発熱素子を冷却する水冷モジュール等に用いることができ、電子機器用小型乃 至超小型ポンプとして好適である。また、試薬ディスペンサー用ポンプ、血液検査用 チップ用ポンプなどに好適に用いられる小型乃至超小型のポンプである。さらに、小 型乃至超小型のポンプのみならず、通常のポンプとしても好適に用いられる。
[0008] 本発明の駆動用素子は、固体電解質層上に電極層が形成された積層構造を備え ている。例えば、前記固体電解質がイオン交換樹脂である場合には、前記電極層に 電圧を印加することにより、イオン交換樹脂層内に含まれる水分子及びイオンが移動 する。前記イオン交換樹脂が陽イオン交換樹脂である場合には、マイナスとなる電圧 が印加された電極は、イオン交換樹脂層内に含まれる水分子及びイオンが該電極近 傍に移動して、外側 (イオン交換樹脂層と反対側)へ凸状に湾曲する。また、前記駆 動用素子が円形形状である場合には、略円錐状に変形する。マイナスとなる電圧が 印加された電極は、印加電圧を解除することにより、凸状の変形前の状態に戻ること ができる。このようなメカニズムにより、本発明の駆動用素子は、電圧の印加と解除を 繰り返すことで、駆動すること力 Sできる。そして、必要に応じて、前記電極層を、絶縁 溝で区分された複数の電極層で構成すると、絶縁溝の区切りによる複数の電極層に 応じた変形をする駆動用素子を含むポンプとすることができる。
図面の簡単な説明
[0009] [図 1]図 1 (a)は、本発明に係る一実施形態を示すダイヤフラムポンプの概略斜視図 である。 図 1 (b)は、同ポンプに係る駆動用素子の一部を示すダイヤフラムポ ンプの概略斜視図である。 [図 2]図 2 (a)は、図 1 (a)におけるダイヤフラムポンプの A— A線概略断面図である。 図 2 (b)は、図 1 (a)におけるダイヤフラムポンプの A— A,線概略断面図である。 園 3]図 3 (a)は、他の実施形態を示すダイヤフラムポンプの概略斜視図である。
図 3 (b)は、図 3 (a)における B—B線概略断面図である。
園 4]図 4 (a)は、他の実施形態を示すダイヤフラムポンプの概略斜視図である。
図 4 (b)は、図 4 (a)における C一 C線概略断面図である。
[図 5]図 5 (a)は、他の実施形態を示すポンプの概略斜視図である。 図 5 (b) は、図 5 (a)における動作状態を示す概略正面図である。 図 5 (c)は、図 5 (a) のポンプを 2つ用いたポンプ装置の概略斜視図である。
[図 6]図 6 (a)は、他の実施形態を示すポンプの概略斜視図である。 図 6 (b) は、図 6 (a)における駆動用素子の概略斜視図である。 図 6 (c)は、図 6 (a)に おけるポンプの概略断面図。 図 6 (d)は、図 6 (a)における駆動用素子の圧縮 状態を示すポンプの概略断面図である。 図 6 (e)は、図 6 (a)における同収縮 状態を示すポンプの概略断面図である。
園 7]図 7 (a)は、本発明に係るプランジャーポンプの一実施形態における非通電時 を示す概略断面図である。 図 7 (b)は、図 7 (a)のプランジャーポンプの一実 施形態における非通電時を示す概略断面図に示す状態となっているが、通電時を 示す概略断面図である。 図 7 (c)は、図 7 (a)のプランジャーポンプポンプに 用いられている駆動用素子の概略平面図である。
園 8]図 8 (a)は、本発明に係る一実施形態を示すベローズポンプの概略断面図であ る。 図 8 (b)は、図 8 (a)のべローズポンプにおける通電時の同ポンプの概略 断面図である。
園 9]図 9 (a)は、本発明に係るベローズポンプの他の実施態様における駆動用素子 の電極に電圧を印可した際の概略断面図である。 図 9 (b)は、図 9 (a)のべ口 ーズポンプにおける駆動用素子の電極への電圧非印可時の概略断面図である。
図 9 (c)は、図 9 (a)のべローズポンプの中間部材の正面図である。
[図 10]図 10は、本発明の前記プレート状の駆動用素子を用いたポンプの概略断面 図である。 [図 11]図 11は、本発明の他の実施形態を示すポンプの断面図である。
園 12]図 12 (a)—(c)は、本発明のポンプの一実施形態を示す概略断面図である
[図 13]図 7 (c)の駆動用素子についての断面図である。
符号の説明
101 ダイヤフラムポンプ
101a, 101b ポンプ素子
102 吸入孔
103 ポンプ室
104 吸入路
105 逆止弁
106 ダイヤフラムの隔膜
107 排出孔
108 排出路
109 逆止弁
112 吸入孔
113 ポンプ室
1 14 吸入路
115 逆止弁
116 ダイヤフラムの隔膜
117 排出孔
118 排出路
1 19 逆止弁
201 本体部
202、 203 ダイヤフラムの隔膜
204 吸入孔
205 吸入路
206 逆止弁
207 排出孔 208 逆止弁
209 ポンプ室
301 本体部
302 ダイヤフラムの隔膜
303 駆動用素子
304 連結体
305 吸入孔
306 吸入路
307 逆止弁
308 排出孔
309 逆止弁
310 ポンプ室
401 流体の吸入部
402 流体の排出部
403 本体部
404 ポンプ室
405 第 2のポンプ室
406 吸入孔
407 排出孔
501 ポンプ
502 ポンプ室
503 袋体
504 流体の吸入口
505 排出口
506a, 506b 駆動用素子
507a, 507b 基部
508a, 508b 圧縮片
509a, 509b 逆止弁、 601 ポンプ室
602 プランジャー
603 駆動部
604 駆動用素子
604a (1101) 駆動用素子
604b (1102) 駆動用素子
605 円形プレート
606 駆動用素子群
607 ノ^
608 逆止弁
609 排出口
610 逆止弁
611 吸入口
701 ベローズ構造のポンプ室
702 駆動部
703 円盤状の駆動用素子
704 円形プレート
706 吸入口
707 吐出口
708、 709 逆止弁
716、 717 逆止弁
801 管
802 駆動用素子
803 固定用部材
804、 805 通電用部材
901
902 ポンプ
903 内壁 905 駆動用素子
906 流体の通過穴
907 駆動用素子
1001 駆動用素子
1002 固リ体電解質層
1003— 10006 電極層
1007 絶縁溝
1008 絶縁溝
1009 絶縁溝
Ll、 L2 発明を実施するための最良の形態
[0011] 図 1 (a)は本発明に係る一実施形態を示すダイヤフラムポンプの概略斜視図、図 1 ( b)は同ポンプに係る駆動用素子の一部を示すダイヤフラムポンプの概略斜視図、図 2 (a)及び図 2 (b)もそれぞれ同ポンプに係る駆動用素子の一部を示す図 1 (a)にお けるダイヤフラムポンプの A— A線概略断面図である。
[0012] 図において、 101は 2つのポンプ素子 101a、 101bを連結して構成したダイヤフラ ムポンプであり、一方のポンプ素子 101aには、流体(液体)を吸入する吸入孔 102と 、この吸入孔 102からポンプ室 103につながる吸入路 104と、ポンプ室 103と、このポ ンプ室 103への吸入路 104の閉鎖又は開放をする逆止弁 105を有している。 106は ダイヤフラムの隔膜である。 107は流体 (液体)を排出する排出孔であり、 108は前記 ポンプ室 103から排出孔 107に連通する排出路である。 109は前記排出孔 107を閉 鎖又は開放する逆止弁である。なお、 Ll、 L2はそれぞれリード線である。
[0013] 他方、もう一つのポンプ素子 101bには、前記ポンプ素子 101aの排出孔 107から 排出された流体を吸入する吸入孔 112と、この吸入孔 112からポンプ室 113につな 力 ¾吸入路 114と、ポンプ室 113と、このポンプ室 113への吸入路 114の閉鎖又は開 放をする逆止弁 115を有している。 116はダイヤフラムの隔膜である。 117は流体 (液 体)を排出する排出孔であり、 118は前記ポンプ室 113から排出孔 117に連通する 排出路である。 119は前記排出孔 107を閉鎖又は開放する逆止弁である。
[0014] この実施形態のダイヤフラムの隔膜 106、 116は、固体電解質上に電極層を備え た積層体の駆動用素子で少なくとも構成されている。そしてこの場合、前記固体電解 質力イオン交換樹脂を含み、かつ前記電極層が金属電極である構成が好適である が、前記電極層が導電性高分子を含む場合であってもよい。
[0015] 従って、この駆動用素子にリード線を図示のように接続することによって、通電する と、ダイヤフラムの隔膜 106、 116がそれぞれ膨張、収縮を繰り返すため、ポンプとし て動作するものである。
[0016] 図 3 (a)は他の実施形態を示すダイヤフラムポンプの概略斜視図であり、図 3 (b)は 同 B-B線概略断面図である。この実施形態では本体部 201の両側に、固体電解質 上に電極層を備えた積層体の駆動用素子からなるダイヤフラムの隔膜 202、 203が 設けられており、この駆動用素子にリード線を図示のように接続することによって、通 電すると、前記と同様、このダイヤフラムの隔膜 202、 203が同期しながら又は同期し ないで、収縮、膨張を繰り返し、ポンプとして動作するものである。なお、図において 、 204は吸入孔、 205は吸入路、 206は逆止弁、 207は排出孔、 208は逆止弁であ る。 209はポンプ室である。 Ll、 L2はそれぞれリード線である。
[0017] 図 4 (a)はさらに他の実施形態を示すダイヤフラムポンプの概略斜視図であり、図 4
(b)は図 4 (a)における C一 C線概略断面図である。この実施形態は、本体部 301に 設置されたダイヤフラムの隔膜 302に、これを駆動するほぼ三角形状の駆動用素子 303を備えている。ダイヤフラムの隔膜 302と三角形状の駆動用素子 303には、それ ぞれを連結する連結体 304で連結されている。なお、 305は吸入孔、 306は吸入路 、 307は逆止弁、 308は排出孔、 309は逆止弁である。 310はポンプ室である。 Ll、 L2はそれぞれリード線である。
[0018] 従って、この駆動用素子にリード線を図示のように接続することによって、通電する と、前記と同様、この三角形状の駆動用素子 303が収縮、膨張を繰り返すため、これ に連結されているダイヤフラムの隔膜 302が同期して収縮、膨張を繰り返し、ポンプと して動作するものである。
[0019] 図 5 (a)はさらに他の実施形態を示すポンプの概略斜視図であり、図 5 (b)は図 5 (a )における動作状態を示す概略正面図である。図 5 (c)はこのポンプを 2つ用いたボン プ装置の概略斜視図である。
この実施形態は、流体の吸入部 401と流体の排出部 402を有する本体部 403と、こ の本体部 403に連結されたポンプ室 404を備えている。この実施形態では、ポンプ 室 404は有底の円筒体で構成されており、内容積を可変するエラストマ一などの伸 縮体で構成され、前記本体部 403に密封状態で連結されている。
なお、この実施形態ではポンプ 404室が流体の吸排を制御する駆動部であり、 固体電解質上に電極層を備えた積層体の駆動用素子で構成されている。
[0020] 従って、図 5 (b)に示すように、この駆動用素子にリード線を図示のように接続するこ とによって、通電すると、前記と同様、この駆動用素子 404が収縮、膨張を繰り返す ため、ポンプとして動作するものである。
なお、図 5 (c)に示すように、このポンプを複数本、第 2のポンプ室 405に連結し、第 2のポンプ室 405でさらに容量の大きいポンプをつくることも可能である。なお、図中 、 406は吸入孔、 407は排出孔である。逆止弁は図中省略されている。 Ll、 L2はそ れぞれリード線である。
[0021] 図 6 (a)は、さらに他の実施形態を示すポンプの概略斜視図であり、図 6 (b)は図 6 ( a)における駆動用素子の概略斜視図である。図 6 (c)は図 6 (a)のポンプの概略断面 図、図 6 (d)は同駆動用素子の圧縮状態を示すポンプの概略断面図である。図 6 (e) は同収縮状態を示すポンプの概略断面図である。
[0022] 図において、この実施形態のポンプ 501は、ポンプ室 502力 流体の吸入口 504と 流体の排出口 505を有する袋体 503で構成されており、
当該袋体 503の外周面に、前記袋体 503の吸入口 504と排出口 505のそれぞれ の側から前記袋体 503の中央方向に向力、う駆動用素子 506a、 506bが対向して設 けられており、 前記各駆動用素子 506a、 506bは、前記袋体 503の吸入口 504又 は前記非出口 505佃 Jに酉己設される基部 507a、 507bと、この基部 507a、 507b力、ら 前記袋体の中央方向に向かってそれぞれ放射状に延び、通電状態で前記袋体 503 に圧縮動作を与える複数の圧縮片 508a、 508bを備えているものである。なお、 509 aは排出口 505側の逆止弁、 509bは吸入口 504側の逆止弁である。 Ll、 L2はそれ ぞれリード線である。
[0023] 従って、図 6 (a)に示す様に、この駆動用素子にリード線を図示のように接続するこ とによって、通電すると、この複数の圧縮片 508a、 508bが袋体 503に対して収縮、 膨張の動作を与えるため、ポンプとして動作するものである。
[0024] 図 7は本発明に係るプランジャーポンプの一実施形態を示す概略断面図、図 7 (a) は非通電状態を示す同概略断面図、図 7 (b)はリード線に通電した状態を示す同概 略断面図である。図 7 (c)は同ポンプに用いられている駆動用素子の概略平面図で ある。
[0025] 図において、この実施形態のポンプは、シリンダー状のポンプ室 601と当該ポンプ 室 601の内容積を可変するプランジャー 602とを備え、
前記プランジャー 602に、当該プランジャー 602にピストン動作を与える駆動部 60 3が設けられており、
前記駆動部 603が、通電状態で前記プランジャー 602を押圧する方向に屈曲する 円盤状の駆動用素子 604を有している構造である。
[0026] 特にこの実施形態では、前記駆動部 603が、円形プレート 605と、この円形プレー ト 605の円周部に沿って設けられた前記円盤状の駆動用素子 604を有している。そ してまた、前記駆動用素子 604が上下に階層構造をなした駆動用素子群 606で構 成されており、かつ直径が異なる複数の円盤状の駆動用素子 604が円形プレート 60 5の表裏両面の円周部に沿って設けられている。
[0027] 従って、非通電時では図 7 (a)に示す状態となっている力 通電すると、図 7 (b)に 示すように、前記駆動用素子 604が上下に階層的に連続して屈曲し、プランジャー 6 02をポンプ室 601内に押し上げる。なお、本実施形態のポンプは、バネ 607がプラ ンジャー 602に対して駆動用素子 604を押し下げる弾発力が付勢されている。なお、 608は排出口 609側の逆止弁、 610は吸入口 611側の逆止弁である。 Ll、 L2はそ れぞれリード線である。
[0028] なお、図 7 (c)において、この駆動用素子 606は、直径が異なる複数の円板状素子 604a, 604bが円形プレートの表裏両面の円周部に沿って設けられている。
[0029] 図 13は、図 7 (c)の駆動用素子について、円板状若しくは環状の素子 1101及び 1 102の外周の中心点を通る平面によって、厚さ方向と平行に切断された断面図であ る。駆動用素子 606は、 2つ円板状若しくは環状の駆動用素子 1101及び 1102を備 え、外側の駆動用素子 1101と内側の駆動用素子 1102との間には間隔を備え、内 側には空間部を備えている。駆動用素子 1101は、厚さ方向において固体電解質層 1104を挟んで、電極層 1103及び 1103 'を備えている。素子 1101と同様に、円板 状若しくは環状の素子 1102は、厚さ方向に固体電解質層 1106を挟んで電極層 11 05及び 1105'を備えている。円板状若しくは環状の素子 1101及び 1102は、固体 電解質と電極層の積層構造であってもよぐ接合体であっても良い。前記の円板状 若しくは環状の素子 1102において、例えば、前記固体電解質がカチオンを対イオン とするイオン交換樹脂を含み、電極層 1105にマイナスの電圧を印加し、電極層 110 5'にプラスの電圧を印加した場合には、素子 1102は図 13の上側に凸となる状態に 変位若しくは屈曲をする。なお、この変位若しくは屈曲の駆動機構は、本願のポンプ に用いられる駆動用素子に適応することができる。
[0030] 図 8 (a)は本発明に係る一実施形態を示すベローズポンプの概略断面図である。
図 8 (b)は通電時の同ポンプの概略断面図である。図 8より、この実施形態のポンプ は、ベローズのポンプ室 701と当該べローズ 705を伸縮させる駆動部 702を備え、上 記駆動部 702が、通電状態で前記べローズ 705を伸張する方向に屈曲し、非通電 状態で当該屈曲が解除される円盤状の駆動用素子 703である。
[0031] また前記駆動部 702が、ベローズ 705の谷部に周設された円形プレート 704と、こ の円形プレート 704の円周部に沿って設けられた前記円盤状の駆動用素子 703を 有しており、また前記駆動用素子 703が上下に階層構造をなした駆動用素子群で構 成されている。 Ll、 L2はそれぞれリード線である。
[0032] 従って、この態様のポンプは、リード線を通して通電状態にすると、図 8 (b)に示され るように、前記駆動用素子 703がべローズ 705を伸張させ、ポンプとして動作する。
[0033] 図 9は、図 8のポンプの変形型であり、同様のポンプ動作をする。 Ll、 L2はそれぞ れリード線である。 [0034] 図 9 (a)及び図 9 (b)は、本発明に係るベローズポンプの他の実施態様の概略断面 図である。図 9 (a)において、駆動素子 722が電圧印可により凸状に屈曲してベロー ズ 711が伸長した状態となる、このとき流体は、吸入管 712の吸入口 713から流体室 723へと流入し、間接部材 719の流路 720を介してべローズ内側の空間へと取り込 まれる。ついで、図 9 (b)に示すように、ベローズ自体の収縮力若しくはパネ(図示せ ず)により、駆動素子 722が電圧印可を解除されたにより凸状に屈曲してベローズ 71 1が収縮した状態となりなる。ベローズ 711が収縮した状態では、ベローズ 711の内 側の空間に取り込まれた流体は、押し出されて、流路 720を介して流体室 723へと流 れ、吐出管 714の吐出口 715から吐出される。前記べローズポンプでは、図 9 (a)及 び図 9 (b)においては、円形プレート 721上の両側に駆動用素子を有し、合計 6枚の 環状の駆動用素子を有しているが、駆動用素子の使用枚数は、特に制限されない。 なお、図 9 (c)は、間接部材 719について、吐出口方向から見た場合の正面図である
[0035] 図 10は流路を構成する管 801の内部に設けられ、流路に沿って、一端 802aが固 定され、他端 802bが開放されたプレート状の駆動用素子 802が設けられている。ま た、その駆動用素子 802は、一端が重ね合わされて固定され、他端がそれぞれ開放 され、相互に対向する一対の前記プレート状の駆動用素子からなり、前記 2つのプレ ート状の駆動用素子 802の対向面が通電用部材を介してリード線によって同極に接 続され、当該駆動用素子 802の外側面も通電用部材を介してリード線によって同極 に接続されている。 Ll、 L2はそれぞれリード線である。
[0036] 従って、これにリード線から通電すると、図 10 (a)—図 10 (d)に至る機構で変化し、 ポンプ動作を発揮する。
[0037] 他方、図 11は本発明の他の実施形態を示すポンプである。流路を構成する管 901 の内部に設けられるポンプ 902であって、一端が管の一方の内壁 903に固定され、 他端が管の他方の内壁 904に接触して流路を閉鎖可能であるプレート状の駆動用 素子 905力、らなり、前記プレート状の駆動用素子 905が、流体の通過穴 906を有して おり、さらに当該通過穴 906を閉鎖する駆動用素子 907からなる逆止弁を備えたもの である。 Ll、 L2はそれぞれリード線である。 [0038] 図 12 (a)—(c)は、本発明のポンプの一実施形態を示す概略断面図である。管状 の駆動用素子 1001は、固体電解質層 1002上に電極層 1003— 10006が形成され ている。電極層 1003と電極層 1004とは、絶縁溝 1007によって互いに絶縁状態とな るように区分されている。同様に、電極層 1004と電極層 1005とは絶縁溝 1008によ り区分され、電極層 1005と電極層 1006とは絶縁溝 1009により区分されて、隣接す る電極層と互いに絶縁状態となるように各電極層が設けられている。前記絶縁層は、 図 12においては、それぞれ円周方向に形成されて、端部を備えていない溝として形 成されているが、 P 接する電極層を絶縁状態に区分するように設けられていればよ レ、。
[0039] 図 12 (a)は、一の電極層を管の外側に湾曲させた状態の本発明のポンプの概略 断面図である。図 12 (b)は、図 12 (a)のポンプの湾曲させた電極層に隣接する電極 層を管の外側に湾曲させた状態である本発明のポンプの概略断面図である。図 12 ( c)は、図 12 (b)のポンプの湾曲させた電極層に隣接する電極層を管の外側に湾曲 させた状態である本発明のポンプの概略断面図である。図 12 (a)においては、リード 線 1010を介してマイナスとなる電圧を印加して電極層 1003を管の外側に湾曲させ 、リード線 1011を介してプラスとなる電圧を電極層 1004に印加している。例えば、図 12 (a)の状態の後に、図 12 (b)に示すように、電極層 1003に対する電圧印加を解 除すると同時に、リード線 1011を介してマイナスとなる電圧を印加して電極層 1004 を管の外側に湾曲させ、リード線 1012を介してプラスとなる電圧を電極層 1005に印 加することで、管内部の流体は、図面の右側方向に移動する。更に、同様にして、図 12 (c)に示すように、電極層 1004に対する電圧印加を解除すると同時に、リード線 1 012を介してマイナスとなる電圧を印加して電極層 1005を管の外側に湾曲させ、リ ード線 1013を介してプラスとなる電圧を電極層 1005に印加することで、管内部の流 体は更に図面の右側方向に移動する。前記に示す電圧の印加を繰り返すことにより 、本発明の管状のポンプ用駆動用素子は、流体を一の端部 1004から吸入し、他の 端部 1015から排出することができる。なお、図 12 (a)—(b)は、陽イオン交換樹脂層 上に金属電極層が形成された場合に代表されるように、マイナスとなる電圧を印加し た場合に外側に湾曲する場合を例示したものである。本発明の管状のポンプ用駆動 用素子は、プラスとなる電圧の印加により外側に湾曲する素子であってもよい。
[0040] 本発明の駆動用素子は、固体電解質層上に電極層が形成された積層構造を備え ている。前記駆動用素子としては、特に限定されるものではないが、前記固体電解質 力イオン交換樹脂を含み、かつ前記電極層が金属電極である駆動用素子、または前 記電極層が導電性高分子を含む駆動用素子を用いることができる。なお、本願の図 面において、各駆動用素子へのリード線を介した電源への接続については、特に図 示していなレ、。各駆動用素子の電極への接続については、特に限定されるものでは なぐリード線等により各駆動素子の電極をそれぞれの素子間で直列または並列に 接続しても良い。
[0041] 前記固体電解質力イオン交換樹脂を含み、かつ前記電極層が金属電極である駆 動用素子としては、例えば、イオン交換樹脂に無電解メツキを施すことにより、電極層 である金属電極が形成された積層体を得ることができる。前記無電解メツキ方法とし ては、イオン交換樹脂に下記(1)一(3)の工程を繰り返して実施することで、金属層 が形成された高分子電解質 (積層体)を得ることができる。 (1)吸着工程:ジクロ口フエ ナント口リン金塩化物水溶液にイオン交換樹脂を 12時間浸漬し、成形品内にジクロロ フエナント口リン金錯体を吸着させる。 (2)還元工程:亜硫酸ナトリウムを含む水溶液 中にイオン交換樹脂を浸漬して、吸着したジクロロフヱナント口リン金錯体を還元して 、前記膜状高分子電解質に金電極を形成させる。このとき、水溶液の温度を 60— 80 °Cとし、亜硫酸ナトリウムを徐々に添加しながら、 6時間ジクロロフヱナントリン金錯体 の還元を行う。次いで、(3)洗浄工程:表面に金電極が形成した膜状高分子電解質 を取り出し、 70°Cの水で 1時間洗浄する。
[0042] また、前記電極層が導電性高分子を含む本発明の駆動用素子は、固体電解質層 上に電解重合法により得られた導電性高分子の層を形成することにより得ることがで きる。前記電解重合法としては、有機化合物を溶媒として含む電解液を用いる重合 法であり、前記有機化合物は、 (1)エーテル結合、エステル結合、炭素 -ハロゲン結 合及びカーボネート結合からなる化学結合の群から少なくとも一つ以上選ばれた化 学結合種、及び/または(2)ヒドロキシノレ基、ニトロ基、スルホン基及び二トリル基から なる官能基の群から少なくとも 1つ以上選ばれた官能基を分子中に含み、前記電解 液がトリフルォロメタンスルホン酸イオン及び/または中心原子に対して結合するフッ 素原子を複数含むァニオンを含む電解重合法を用いることが、より大きな屈曲を生じ ることができるので好ましレ、。
産業上の利用可能性
本発明のポンプは、上記の通りであるので、小型乃至超小型にすることができるた め、通常のポンプのみならず、 CPU等の電子機器の発熱素子を冷却する水冷モジ ユール等に好適に用いられる電子機器用ポンプや、試薬ディスペンサー用ポンプ、 血液検査用チップ用ポンプなどに好適に用レ、られる。

Claims

請求の範囲
[1] 流体の吸排を制御する駆動部が、固体電解質上に電極層を備えた積層体の駆動用 素子で少なくとも構成されているポンプ。
[2] 前記固体電解質がイオン交換樹脂を含み、かつ前記電極層が金属電極である請求 の範囲第 1項に記載のポンプ。
[3] 前記電極層が導電性高分子を含む請求の範囲第 1項に記載のポンプ。
[4] 前記電極層が、絶縁溝で区分された複数の電極層で構成されている請求の範囲第 1項乃至第 3項のいずれかの項に記載のポンプ。
[5] ダイヤフラムの隔膜が、請求の範囲第 1項乃至第 4項のいずれかの項に記載の駆動 用素子で構成されたダイヤフラムポンプ。
[6] ダイヤフラムの隔膜と、これを駆動する請求の範囲第 1項乃至第 4項のいずれかの項 に記載の駆動用素子を備えたダイヤフラムポンプ。
[7] 流体の吸入部と、流体の排出部と、これらに連結されたポンプ室を有し、当該ポンプ 室が、流体の吸排を制御する駆動部であり、請求の範囲第 1項乃至第 4項のいずれ 力、の項に記載の駆動用素子で構成されているポンプ。
[8] ポンプ室が、ポンプ室の内容積を可変する伸縮体で構成されており、その璧体の周 囲に請求の範囲第 1項乃至第 4項のいずれかの項に記載の駆動用素子が設けられ ているポンプ。
[9] 前記ポンプ室が、流体の吸入口と流体の排出口を有する袋体で構成されており、 当該袋体の外周面に、前記袋体の吸入口と排出口のそれぞれの側から前記袋体 の中央方向に向力う駆動用素子が対向して設けられており、
前記各駆動用素子は、前記袋体の吸入口又は前記排出口側に配設される基部と 、この基部から前記袋体の中央方向に向かってそれぞれ放射状に延び、通電状態 で前記袋体に圧縮動作を与える複数の圧縮片を備えている請求の範囲第 8項記載 のポンプ。
[10] シリンダー状のポンプ室と当該ポンプ室の内容積を可変するプランジャーとを備え、 前記プランジャーに、当該プランジャーにピストン動作を与える駆動部が設けられて おり、
前記駆動部が、通電状態で前記プランジャーを押圧する方向に屈曲する請求の範 囲第 1項乃至第 4項のいずれかの項に記載の円盤状の駆動用素子を有するプラン ジャーポンプ。
[11] 前記駆動部が、円形プレートと、この円形プレートの円周部に沿って設けられた前記 円盤状の駆動用素子を有する請求の範囲第 10項記載のプランジャーポンプ。
[12] 前記駆動用素子が上下に階層構造をなした駆動用素子群で構成された請求の範囲 第 11項記載のプランジャーポンプ。
[13] 前記駆動用素子が、直径が異なる複数の円板状素子が円形プレートの表裏両面の 円周部に沿って設けられた駆動用素子である請求の範囲第 11項又は第 12項記載 のプランジャーポンプ。
[14] ベローズ構造のポンプ室と当該べローズを伸縮させる駆動部を備え、
上記駆動部が、通電状態で前記べローズを伸張する方向に屈曲し、非通電状態で 当該屈曲が解除される請求の範囲第 1項乃至第 4項のいずれかの項に記載の円盤 状の駆動用素子であるべローズポンプ。 [15] 前記駆動部が、ベローズの谷部に周設された円形プレートと、この円形プレートの円 周部に沿って設けられた前記円盤状の駆動用素子を有する請求の範囲第 13項記 載のベローズポンプ。
[16] 前記駆動用素子が上下に階層構造をなした駆動用素子群で構成された請求の範囲 第 15項記載のベローズポンプ。
[17] 前記駆動用素子が、直径が異なる複数の円板状素子が円形プレートの表裏両面の 円周部に沿って設けられた駆動用素子である請求の範囲第 15項又は第 16項記載 のべ口一ズポンプ。
[18] 流路を構成する管の内部に設けられ、流路に沿って、一端が固定され、他端が開放 されたプレート状の請求の範囲第 1項乃至第 4項のいずれかの項に記載の駆動用素 子が設けられてレ、るポンプ。
[19] 一端が重ね合わされて固定され、他端がそれぞれ開放され、相互に対向する一対の 前記プレート状の駆動用素子からなり、
前記 2つのプレート状の駆動用素子の対向面が同極に接続され、当該駆動用素子 の外側面が同極に接続されているポンプ。
[20] 流路を構成する管の内部に設けられるポンプであって、一端が管の一方の内壁に固 定され、他端が管の他方の内壁に接触して流路を閉鎖可能な請求の範囲第 1項乃 至第 4項のいずれかの項に記載のプレート状の駆動用素子からなり、
前記プレート状の駆動用素子が、流体の通過穴を有しており、さらに当該通過穴を 閉鎖する請求の範囲第 1項乃至第 4項のいずれかの項に記載の駆動用素子からな る逆止弁を備えたポンプ。
[21] 管状の固体電解質上に電極層を備えた積層体である駆動用素子で少なくとも構成さ れたポンプ。
[22] 前記電極層が円周方向に形成された絶縁溝により複数設けられた請求の範囲第 21 項に記載のポンプ。 固体電解質上に電極層を備えた積層体で少なくとも構成されたポンプ用駆動用素子
[24] 前記固体電解質力 Wオン交換樹脂を含み、かつ前記電極層が金属電極である請求 の範囲第 24項記載のポンプ用駆動用素子。
[25] 前記電極層が導電性高分子を含む請求の範囲第 23項記載のポンプ用駆動用素子
[26] 前記電極層が、絶縁溝で区分された複数の電極層で構成されている請求の範囲第 23項乃至第 25項のいずれかの項に記載のポンプ用駆動用素子。
[27] 請求の範囲第 23項乃至第 26項のいずかの項に記載された駆動用素子で構成され たダイヤフラムの隔膜体。
[28] ダイヤフラムの隔膜と、これを駆動する請求の範囲第 23項乃至第 26項のいずかの 項に記載された駆動用素子を備えたポンプ用駆動用素子装置。
[29] ポンプ室を構成する駆動用素子であって、請求の範囲第 23項乃至第 26項のいずれ 力、の項に記載の駆動用素子で構成されているポンプ用駆動用素子。
[30] ポンプ室を構成する袋状の駆動用素子であって、請求の範囲第 23項乃至第 26項の いずれかの項に記載の駆動用素子で構成されているポンプ用駆動用素子。 [31] 内容積が可変である伸縮性のポンプ室の周囲に設けられる駆動用素子であって、 請求の範囲第 23項乃至第 26項のいずれかの項に記載の駆動用素子であり、 前記駆動用素子が、前記袋体の吸入口又は前記排出口側に配設される基部と、 この基部から前記袋体の中央方向に向かってそれぞれ放射状に延び、通電状態 で前記袋体に圧縮動作を与える複数の圧縮片を備えているポンプ用駆動用素子。
[32] 円形プレートと、この円形プレートの円周部に沿って設けられた請求の範囲第 23項 乃至第 26項のいずれかの項に記載の円盤状の駆動用素子を有し、前記駆動用素 子が上下に階層構造をなした駆動用素子群で構成されたポンプ用駆動用素子装置
[33] 流路を構成する管の内部に設けられる駆動用素子であって、流路に沿って、固定さ れる一端部と、開放される他端部を有するプレート状の請求の範囲第 23項乃至第 2 6項のいずれかの項に記載のポンプ用駆動用素子。
[34] 管の一方の内壁に固定される固定端と、管の他方の内壁に接触して流路を閉鎖可 能な開放端を有する、請求の範囲第 23項乃至第 26項のいずれかの項に記載のプ レート状の駆動用素子であって、
前記プレート状の駆動用素子が、流体の通過穴を有しており、さらに当該通過穴を 閉鎖する請求の範囲第 23項乃至第 26項のいずれかの項に記載の駆動用素子から なる逆止弁を備えたポンプ用駆動用素子。
[35] 管状の固体電解質上に電極層を備えた積層構造を有するポンプ用駆動用素子。
[36] 前記電極層が円周方向に形成された絶縁溝により複数設けられた請求の範囲第 35 項に記載のポンプ用駆動用素子。 請求の範囲第 36項のポンプ用駆動用素子を用いたポンプの駆動方法であって、一 の電極層に電圧を印加することにより管の外側に湾曲させた後に、該電極層に隣接 する電極層に電圧を印加して管の外側に湾曲させることにより、管内部の流体を吸 排出するポンプの駆動方法。
PCT/JP2004/011274 2003-08-05 2004-08-05 ポンプ WO2005012730A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005512580A JPWO2005012730A1 (ja) 2003-08-05 2004-08-05 ポンプ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003205991 2003-08-05
JP2003-205991 2003-08-05

Publications (1)

Publication Number Publication Date
WO2005012730A1 true WO2005012730A1 (ja) 2005-02-10

Family

ID=34113693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011274 WO2005012730A1 (ja) 2003-08-05 2004-08-05 ポンプ

Country Status (2)

Country Link
JP (1) JPWO2005012730A1 (ja)
WO (1) WO2005012730A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126613A1 (ja) * 2007-04-09 2008-10-23 Eamex Corporation アクチュエータ体および絞り機構
JP2009545290A (ja) * 2006-07-26 2009-12-17 マサチューセッツ・インスティテュート・オブ・テクノロジー 電気化学アクチュエータ
US8604664B2 (en) 2004-06-14 2013-12-10 Massachusetts Institute Of Technology Electrochemical actuator

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324605A (en) * 1976-08-19 1978-03-07 Koukuu Uchiyuu Gijiyutsu Kenki Biimorph vibrator pumps
JPS5324606A (en) * 1976-08-19 1978-03-07 Koukuu Uchiyuu Gijiyutsu Kenki Biimorph vibrator pumps
JPS6098182A (ja) * 1983-11-04 1985-06-01 Asahi Okuma Ind Co Ltd ダイヤフラムポンプ
JPH0519578U (ja) * 1991-08-27 1993-03-12 株式会社三鈴エリー 管状圧電ポンプ
JPH0552268U (ja) * 1991-12-25 1993-07-13 株式会社安川電機 微量移動アクチュエータ
JPH07167327A (ja) * 1993-12-17 1995-07-04 Tdk Corp アクチュエータの変位拡大機構
JPH07506534A (ja) * 1992-11-06 1995-07-20 フルイロジック・システムズオーユー 定量微小液体供給方法及び装置
JPH1137049A (ja) * 1997-07-11 1999-02-09 Nissan Motor Co Ltd 燃料ポンプ
JP2002332956A (ja) * 2001-05-02 2002-11-22 National Institute Of Advanced Industrial & Technology 膜型アクチュエータ及びそのアクチュエータを用いた液体封入式防振装置並びにそのアクチュエータを用いた流体制御装置
JP2003106262A (ja) * 2001-09-28 2003-04-09 Hitachi Hybrid Network Co Ltd 給排装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522698A (en) * 1981-11-12 1985-06-11 Maget Henri J R Electrochemical prime mover
JP3646166B2 (ja) * 2001-12-04 2005-05-11 独立行政法人産業技術総合研究所 アクチュエータ素子の製造方法
JP3633555B2 (ja) * 2001-12-25 2005-03-30 株式会社デンソー 半導体力学量センサ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324605A (en) * 1976-08-19 1978-03-07 Koukuu Uchiyuu Gijiyutsu Kenki Biimorph vibrator pumps
JPS5324606A (en) * 1976-08-19 1978-03-07 Koukuu Uchiyuu Gijiyutsu Kenki Biimorph vibrator pumps
JPS6098182A (ja) * 1983-11-04 1985-06-01 Asahi Okuma Ind Co Ltd ダイヤフラムポンプ
JPH0519578U (ja) * 1991-08-27 1993-03-12 株式会社三鈴エリー 管状圧電ポンプ
JPH0552268U (ja) * 1991-12-25 1993-07-13 株式会社安川電機 微量移動アクチュエータ
JPH07506534A (ja) * 1992-11-06 1995-07-20 フルイロジック・システムズオーユー 定量微小液体供給方法及び装置
JPH07167327A (ja) * 1993-12-17 1995-07-04 Tdk Corp アクチュエータの変位拡大機構
JPH1137049A (ja) * 1997-07-11 1999-02-09 Nissan Motor Co Ltd 燃料ポンプ
JP2002332956A (ja) * 2001-05-02 2002-11-22 National Institute Of Advanced Industrial & Technology 膜型アクチュエータ及びそのアクチュエータを用いた液体封入式防振装置並びにそのアクチュエータを用いた流体制御装置
JP2003106262A (ja) * 2001-09-28 2003-04-09 Hitachi Hybrid Network Co Ltd 給排装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8604664B2 (en) 2004-06-14 2013-12-10 Massachusetts Institute Of Technology Electrochemical actuator
JP2009545290A (ja) * 2006-07-26 2009-12-17 マサチューセッツ・インスティテュート・オブ・テクノロジー 電気化学アクチュエータ
WO2008126613A1 (ja) * 2007-04-09 2008-10-23 Eamex Corporation アクチュエータ体および絞り機構
US7917027B2 (en) 2007-04-09 2011-03-29 Eamex Corporation Actuator body and throttle mechanism

Also Published As

Publication number Publication date
JPWO2005012730A1 (ja) 2006-09-21

Similar Documents

Publication Publication Date Title
US6481984B1 (en) Pump and method of driving the same
US8308452B2 (en) Dual chamber valveless MEMS micropump
US9217426B2 (en) Pump, pump arrangement and pump module
US7064472B2 (en) Electroactive polymer devices for moving fluid
JP5480983B2 (ja) 屈曲トランスデューサ、マイクロ・ポンプおよびマイクロ・バルブの製造方法、マイクロ・ポンプおよびマイクロ・バルブ
US20060147325A1 (en) Pumps with diaphragms bonded as bellows
JP2017506722A (ja) マイクロポンプシステム
WO2000023753A1 (en) Active compressor vapor compression cycle integrated heat transfer device
WO2009152775A1 (zh) 一种微型泵
JP2020510158A (ja) マイクロポンプシステムおよび処理技法
JP3202643B2 (ja) マイクロポンプおよびマイクロポンプの製造方法
KR20080070358A (ko) 마이크로 펌프
WO2005012730A1 (ja) ポンプ
CN108167167B (zh) 一种复合静电和压电驱动的微型振膜压缩机
TW200306597A (en) A piezoelectrically actuated liquid metal switch
AU2005313898A1 (en) Magnetic pulse pump/compressor system
KR100868898B1 (ko) 적층형 pzt를 이용한 압전펌프
CN111863748B (zh) 一体化微型冷却器及冷却系统
WO2005042974A1 (ja) 導電性高分子を含むポンプ及びその駆動方法
JP4472919B2 (ja) マイクロバルブ
JP2003120548A (ja) 小型ポンプ、冷却システム、及び携帯機器
JP2018028265A (ja) マイクロダイヤフラムポンプ
JP2010175360A (ja) マイクロ化学チップ
JP2011144692A (ja) 導電性高分子を用いた流体搬送装置
CN209892419U (zh) 一种混联腔体驱动的微型压电气体压缩机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005512580

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase