WO2005042974A1 - 導電性高分子を含むポンプ及びその駆動方法 - Google Patents

導電性高分子を含むポンプ及びその駆動方法 Download PDF

Info

Publication number
WO2005042974A1
WO2005042974A1 PCT/JP2004/015832 JP2004015832W WO2005042974A1 WO 2005042974 A1 WO2005042974 A1 WO 2005042974A1 JP 2004015832 W JP2004015832 W JP 2004015832W WO 2005042974 A1 WO2005042974 A1 WO 2005042974A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
conductive polymer
diaphragm
voltage
pump according
Prior art date
Application number
PCT/JP2004/015832
Other languages
English (en)
French (fr)
Inventor
Minoru Nakayama
Tetsuji Zama
Original Assignee
Eamex Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eamex Corporation filed Critical Eamex Corporation
Publication of WO2005042974A1 publication Critical patent/WO2005042974A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps

Definitions

  • the present invention relates to a fluid transfer device, and more particularly, to a small or ultra-small fluid transfer device, and more particularly, to an apparatus for supplying a material represented by methanol in a fuel cell,
  • the present invention relates to a pump for incorporation into an electronic machine device including a water-cooling circulator for cooling a semiconductor device including a CPU.
  • a pump that is a device for transporting a fluid such as water is a pump for cooling a device for a heating element typified by a semiconductor of a computer device, a unit for transporting blood to a chip for a blood test, and a pump for a reagent dispenser.
  • a pump for an in-vivo implanting device including an artificial heart and the like have been studied, and miniaturization or ultra miniaturization has been achieved.
  • Patent Document 1 As a device for cooling a heating element such as a CPU in a computer, an electronic device of a heat medium circulation cooling type such as water provided with a circulation pump has been proposed (for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-133776
  • Pumps that can be used for cooling pumps for heating elements represented by the above-described electronic devices, blood transfer means, reagent dispensers, and pumps for implanting in vivo are used in heat medium circulation cooling devices of notebook computers.
  • the device be small, lightweight, and be driven at a low voltage of about several volts or less.
  • pumps that use a motor as the drive source for the pump are difficult to downsize and use a large amount of metal parts.
  • a pump for supplying a raw material typified by methanol in a fuel cell be small and lightweight.
  • a ceramic material is used. It is also possible to use a pump that drives the piezoelectric element as a driving element.
  • ceramic piezoelectric elements are driven at a high voltage of 100 V, which can be miniaturized. Therefore, a voltage converter is required to use a low-voltage power supply, and the device configuration becomes complicated.
  • High voltage driven pumps especially when used in in-vivo implants, may also have an impact on the human body due to electrical leakage. In other words, a pump that has a simple device configuration, is small and lightweight, can be driven at a low voltage, and has no power has yet been obtained.
  • An object of the present invention is to provide a pump for cooling a heating element, a blood transfer means, a reagent dispenser, a pump for supplying a raw material typified by methanol in a fuel cell, and a pump that can be used as a pump implanted in a living body. Therefore, it is an object of the present invention to provide a pump that can be reduced in size, is lightweight, can be driven at a low voltage of about several volts or less, and can be driven silently.
  • the present invention is the pump, wherein the drive unit that controls the suction of the fluid and the discharge of the Z or the fluid includes a drive element including a conductive polymer molded product.
  • a pump has a simple device configuration, is small in size and light in weight, can be driven at low voltage, and has no sound.
  • the present invention is also the pump, wherein the pump is a diaphragm pump, and the diaphragm constituting at least a part of the pump chamber includes the driving element.
  • the present invention also relates to a pump in which the pump is a tube pump, and at least a part of a tube of the tube pump is formed of a tube-shaped conductive polymer molded product, and the inside of the tube is a fluid flow path. is there.
  • the present invention is also a pump in which the pump is a bellows pump, a wall of a pump chamber is formed by the bellows, and the driving element is connected to an upper part and a bottom part of the pump chamber.
  • the pump of the present invention includes a conductive polymer in the driving section, and the conductive polymer is driven by a chemical mechanism of electrolytic expansion and contraction t.
  • the pump can be driven at a low voltage, The power is also silent.
  • the device configuration is simple, and miniaturization and light weight are easy.
  • FIG. 2 is a cross-sectional view of a case where a connecting member is used for the pump of FIG. 1;
  • FIG. 4 is a longitudinal sectional view of a third embodiment of the pump of the present invention.
  • FIG. 5 is a sectional view of the pump in FIG. 4.
  • FIG. 5 A vertical sectional view showing a state in which the pump of FIG. 5 is driven.
  • FIG. 7 A vertical sectional view of a fourth embodiment of the pump of the present invention.
  • FIG. 8 is a longitudinal sectional view showing a state where the pump of FIG. 7 is driven.
  • FIG. 9 is a longitudinal sectional view of an embodiment in which a metal coil-shaped panel is provided inside a pump chamber 52 of the pump in FIG. 7.
  • FIG. 10 is a front view of an embodiment of the diaphragm unit.
  • FIG. 11 is a sectional view taken along line AA of the diaphragm unit in FIG. 10;
  • FIG. 12 is a partially enlarged view of the diaphragm unit shown in FIG. 11 taken along the line AA.
  • FIG. 13 is a perspective view of an embodiment of a diaphragm pump using a diaphragm unit.
  • FIG. 14 is a sectional view of the diaphragm pump taken along line BB in FIG. 13.
  • FIG. 15 is a partially enlarged cross-sectional view near the suction port in the cross-sectional view of FIG. 14.
  • FIG. 16 is a partially enlarged cross-sectional view near the suction port in the cross-sectional view of FIG.
  • Tube pump 1 Tubular conductive polymer, material
  • FIG. 1 is a sectional view of a first embodiment of the pump of the present invention.
  • One diaphragm pump 1 is a diaphragm pump including diaphragms 3 and 4 having conductive high molecular force inside a coin-shaped casing 2 having an internal space.
  • the diaphragm 3 and the diaphragm 4 are disc-shaped conductive polymer films, the circumference of which is fixed to a wall surface 5 and connected to each other via a connection member 6 at the center.
  • Each of the two diaphragms 3 and 4 is installed in a state where tension is applied in the direction of the membrane surface, and has a substantially conical shape.
  • the diaphragm 3 forms the casing 2 and the first pump chamber 7, and the diaphragm 4 forms the casing 2 and the second pump chamber 8.
  • the space 9 inside the diaphragm pump 1 is formed by being partitioned by the diaphragm 3 and the diaphragm 4 and the housing 2 formed by a film-shaped conductive polymer molded product. By filling the space 9 with the electrolyte, the diaphragms 3 and 4 come into contact with the electrolyte.
  • the conductive polymer molded product of the diaphragm 3 and the conductive polymer molded product of the diaphragm 4 are connected to a power supply via leads 10 and 10 ', respectively.
  • a negative voltage is applied to the membrane-shaped conductive polymer molded product of the diaphragm 4 by using aeron as the supporting salt of the electrolyte, and a positive voltage is applied to the membrane-shaped conductive polymer molded product of the diaphragm 3.
  • the diaphragm 4 contracts, the diaphragm 3 expands, the pump chamber 9 becomes wider, and the pump chamber 8 becomes narrower.
  • a brass voltage is applied to the membrane-shaped conductive polymer molded product of the diaphragm 4 and a negative voltage is applied to the membrane-shaped conductive polymer molded product of the diaphragm 3
  • the diaphragm 3 contracts and the diaphragm 4 is shrunk.
  • the pump chamber 7 becomes narrower, and the pump chamber 8 becomes wider.
  • the two conductive polymer films which are diaphragms, perform an expanding and contracting movement with one of the conductive polymer films serving as a working electrode and the other serving as a counter electrode. Due to such a movement of the diaphragm, one diaphragm contracts and one diaphragm composes, thereby discharging the fluid in the pump chamber, and at the same time, the other diaphragm expands due to the contracting force of one diaphragm, and the other diaphragm expands.
  • the volume of the pump chamber formed by expands, and Pump 1 functions as a twin diaphragm pump.
  • the pump 1 in FIG. 1 includes a suction valve 121 near the suction port 11 and a discharge valve 122 near the discharge port 13.
  • the pump 1 includes a suction valve 123 near the suction port 11 ′ and a discharge valve 124 near the discharge port 13 ′.
  • the suction valves 121, 123 also prevent the suction locator from discharging the fluid, and the discharge valves 122, 124 prevent the discharge locator from sucking the fluid.
  • the flow in the pump chamber 8 is caused by the contraction of the diaphragm 4.
  • the body passes through the discharge port 13 'and is discharged by the discharge valve 124 being opened by the discharge pressure of the fluid.
  • the suction valve 121 is opened by the suction force, and the fluid is sucked into the pump chamber 7 through the suction port 11.
  • a member for mounting a suction pipe, a discharge pipe, or the like may be appropriately attached near the suction port and the Z or the discharge port.
  • well-known metal valves and resin valves whose materials are not particularly limited can be used, and bonding with the housing can be performed by a known method such as adhesion. it can.
  • FIG. 2 is a cross-sectional view of the first embodiment of the pump of the present invention in a case where no connection member is used for the pump of FIG.
  • the diaphragm pump 1 ′ includes diaphragms 3 ′ and 4 ′ that constitute at least a part of a pump chamber, and the diaphragm is made of a conductive polymer film, and is a closed space facing the diaphragms 3 ′ and 4 ′. Section 9 'is filled with electrolyte.
  • Each diaphragm has a pump chamber 7 ', 8' on the opposite side of the closed space across the diaphragm.
  • Each of the diaphragms is in contact with the electrolytic solution in the space 9 'since it is a conductive polymer film.
  • Each of the above-mentioned diaphragms is made of a conductive polymer film.
  • the conductive polymer film is formed of the diaphragm. It may be a laminate in which a conductive polymer film, which is included as a part, is used as one layer.
  • a film-shaped conductive polymer molded product can be used as the conductive polymer film.
  • the diaphragm pump 1 has two pump chambers, and is in a state in which a voltage is applied to the diaphragms 3 ′ and 4 ′, which are conductive polymer membranes, to be driven as a pump. .
  • the diaphragm 4 ' contracts and the diaphragm 3' To stretch.
  • the volume of the pump chamber 8 ' is reduced by the contraction of the diaphragm 4', and the fluid in the pump chamber is discharged.
  • the volume of the pump chamber 7 ' is increased by the expansion of the diaphragm 3', and the fluid is sucked into the pump chamber.
  • the driving of one diaphragm and the driving of the other diaphragm have opposite phases in one suction-discharge cycle. Become.
  • the polarity of the voltage applied to each conductive polymer film alternates between positive and negative
  • the continuous drive of the diaphragm pump 1 ′ is the same as that of the diaphragm pump 1 in FIG. 1, but by applying the polarity of the voltage applied to each conductive polymer membrane alternately to positive and negative, This can be performed by periodically and alternately applying the polarity of the applied voltage to the polymer film.
  • the diaphragm pump 1 'of FIG. 2 does not include a connecting member for connecting two diaphragms, as compared with the diaphragm pump 1 of FIG. 1, and the two diaphragms are not connected.
  • the diaphragm 4 ' which is a conductive polymer film
  • the diaphragm 4' performs a contracting movement.
  • the volume of the pump chamber 8 ' is reduced by the contraction movement.
  • the space 9 ′ provided on the opposite side of the pump chamber 8 ′ across the diaphragm 4 ′ is a closed space, the contraction movement is performed via the electrolyte filled in the space 9 ′.
  • the volume of the pump chamber 7 ' can be increased by pulling the expanding diaphragm 3'.
  • the diaphragm pump in Fig. 2 has two pump chambers.
  • the diaphragm pump of the present invention may have two or more pump chambers!
  • Each of the diaphragms constituting a part of the pump chamber is provided with a conductive polymer film, and when a voltage is applied to each conductive polymer film, each conductive polymer film acts as an electrode, and is subjected to electrolytic expansion and contraction. Produces.
  • the conductive polymer film included in the diaphragm constituting one pump chamber is used as a counter electrode to the conductive polymer film included in the other pump chamber via the electrolyte in the closed space by applying a voltage. If possible, the positional relationship between the diaphragms is not particularly limited.
  • the closed space is formed such that a large number of diaphragms form a polyhedron, and the closed space is filled with an electrolytic solution, and the conductive polymer film included in one or more diaphragms is electrically conductive in another diaphragm. It can also be used as a counter electrode of the polymer film.
  • the diaphragm pump is arranged so that the position-related force of one diaphragm and the other diaphragm is opposed to each other via the electrolyte, and having at least one pair of the above-described diaphragms reduces energy loss. Is also preferable because the driving is smooth.
  • the connection when the connection is made between the diaphragms, the shape of the diaphragm changes greatly at the moment when the suction and the discharge are switched, and a time lag occurs at the time of the switching.
  • a connection it is preferable that a connection be made between the diaphragms.
  • the lack of connection between the diaphragms makes the shape of the diaphragm in suction similar to that in discharge as shown in FIG. 2, and prevents time lag when switching between suction and discharge.
  • the diaphragm pump in which the diaphragms are not connected has no connecting member, it is easy to manufacture a small-diameter diaphragm pump such as a diaphragm pump having a circular diaphragm outer diameter of 10 ⁇ , and as a driving element. This is preferable because a portion where the conductive polymer film that functions can expand and contract also increases.
  • the voltage applied to the conductive polymer film included in each diaphragm is such that the period between the application of the positive voltage and the application of the negative voltage is 1 second. It is preferably one or more.
  • FIG. 3 is a sectional view of a second embodiment of the pump of the present invention.
  • the diaphragm pump 21, which is the pump of the present invention, is a diaphragm pump including a diaphragm 23 having a conductive polymer force inside a coin-shaped casing 22 having an internal space.
  • the diaphragm 23 is a circular conductive polymer film, and the circumference thereof is fixed to the wall surface 24.
  • the diaphragm 23 forms a housing 22 and a pump chamber 25.
  • the diaphragm 23 has a panel member 26 attached to the upper inside of the housing 22 and is connected to the membrane surface of the diaphragm 23 so that tension is applied in the membrane surface direction.
  • An electrode 27 is provided on the bottom surface of the inner space of the housing 22.
  • the diaphragm 23 and the electrode 27 are connected to a power supply via lead wires 28 and 28 ', respectively.
  • the diaphragm 23 and the electrode 27 come into contact with the same electrolyte.
  • a diaphragm 23, which is a film-shaped molded conductive polymer, is used as a working electrode, and an electrode 27 is used as a counter electrode.
  • the pump 21 functions as a diaphragm pump.
  • the pump 21 in FIG. 3 has a suction valve 311 near the suction port 30 and a discharge valve 312 near the discharge port 32, as in the case of FIG.
  • the suction valve 311 prevents the suction rocker from discharging the fluid
  • the discharge valve 312 prevents the fluid from being sucked from the discharge port.
  • a member for mounting a suction pipe, a discharge pipe, or the like may be appropriately attached near the suction port and the Z or the discharge port.
  • a well-known metal valve or resin valve whose materials are not particularly limited, can be used, and a known method such as adhesion is used for bonding to the housing. be able to.
  • the diaphragm pump in Figs. 1 and 3 shows a case in which only the conductive polymer film has a force.
  • the diaphragm pump of the present invention may have a laminated structure which is not limited to a diaphragm having only a conductive polymer membrane.
  • the diaphragm may have a structure including a nonwoven fabric that can function as a protective layer on a conductive polymer film.
  • the diaphragm has a conductive property that is good even if a conductive polymer film through which the electrolyte can pass is provided by having holes on the conductive polymer film through which the electrolyte does not pass.
  • a stretchable layer such as a nonwoven fabric through which an electrolyte solution can penetrate or a stretchable solid electrolyte layer may be further provided between the polymer membranes.
  • the conductive polymer film is not particularly limited in the composition of the conductive polymer, and a known conductive polymer can be used.
  • the conductive polymer film can be formed according to the performance of the diaphragm such as the discharge pressure and the discharge amount.
  • the composition of the conductive polymer can be appropriately selected. More specifically, polypyrrole can be used as the conductive high molecular monomer, and a known ion can be used as the dopant. Further, as a supporting electrolyte in the electrolyte for driving the diaphragm pump, a known supporting electrolyte can be used as a supporting electrolyte in the electrolyte for driving the diaphragm pump.
  • a pump using a polypyrrole membrane as a diaphragm which can generate a force of 5 Mpa in the direction of the conductive polymer membrane surface by applying a voltage, can generate a discharge pressure of 20 kPa per pump chamber. it can.
  • a circular conductive polymer film having a diameter of 40 mm and a thickness of 40 m is used as each diaphragm, and expands and contracts by 0.9% per 0.5 second in the direction of the film surface.
  • a discharge rate of 72 mlZs per second can be generated.
  • a desired discharge pressure can be obtained by laminating the conductive polymer films.
  • a conductive polymer film having an elongation percentage due to electrolytic expansion and contraction per 0.5 second of 0.5% or more when a voltage of IV is applied is 0% in the film surface direction. It is preferable because expansion and contraction of 0.9% or more can be performed per 5 seconds, and a large discharge amount can be easily obtained.
  • Conductive polymer membranes with an elongation of 0.5% or more due to electrolytic expansion / contraction per 0.5 second are manufactured by electropolymerization of conductive polymers that have elasticity due to electrochemical oxidation / reduction.
  • a method for producing a molecule wherein the electrolytic polymerization method comprises the step of forming at least one bond or functional group among an ether bond, an ester bond, a carbonate bond, a hydroxyl group, a nitro group, a sulfone group and a -tolyl group.
  • An electrolytic solution containing an organic compound containing Z and halogenated hydrocarbon as a solvent is used, and the conductive solution contains trifluoromethanesulfonate ion and an ion containing a plurality of fluorine atoms with respect to Z or a central atom in the electrolytic solution. Can be easily obtained by a method for producing a conductive polymer.
  • the method for producing a conductive polymer using an electrolytic polymerization method as the conductive polymer film wherein the electrolytic polymerization method uses the above trifluoromethanesulfonate ion and Z or Instead of an ion containing a plurality of fluorine atoms with respect to the central atom, the chemical formula (1)
  • n and m are arbitrary integers.
  • Examples of the organic compound contained as a solvent in the electrolytic polymerization method include 1,2-dimethoxetane, 1,2-diexoxetane, tetrahydrofuran, 2-methyltetrahydrofuran, and 1,4-dioxane (all of which include an organic compound containing an ether bond).
  • the organic compound containing a hydroxyl group is not particularly limited, but is preferably a polyhydric alcohol or a monohydric alcohol having 4 or more carbon atoms because of its good elasticity.
  • the organic compound has two or more bonds of ether bond, ester bond, carbonate bond, hydroxyl group, nitro group, sulfone group and -tolyl group in the molecule. ! /, May be an organic compound containing a functional group in any combination.
  • the organic compound When the organic compound is used as a solvent for an electrolytic solution by mixing two or more of the organic compounds, an organic compound having an ether bond, an organic compound having an ester bond, an organic compound having a carbonate bond, Among the organic compounds containing a hydroxyl group, the organic compounds containing a nitro group, the organic compounds containing a sulfone group, and the organic compounds containing a nitrile group, a combination of an organic compound having excellent extension and an organic compound having excellent contraction. Therefore, it is intended to improve the expansion / contraction ratio of the conductive polymer obtained by the electrolytic polymerization per 1 cycle of oxidation reduction.
  • the halogenated hydrocarbon contained as a solvent in the electrolytic solution is a hydrocarbon in which at least one hydrogen in the hydrocarbon is substituted with a halogen atom.
  • a hydrocarbon in which at least one hydrogen in the hydrocarbon is substituted with a halogen atom there is no particular limitation as long as it can stably exist as a liquid under polymerization conditions.
  • halogenated hydrocarbon examples include dichloromethane and dichloroethane.
  • the halogenated hydrocarbon only one kind can be used as a solvent in the electrolytic solution, but two or more kinds can be used in combination.
  • the halogenated hydrocarbon May be used as a solvent in the electrolytic solution, or a mixed solvent with the organic solvent may be used as a mixture with the above organic compound.
  • the electrolytic solution used in the electrolytic polymerization method includes an organic compound to be electrolytically polymerized (for example, pyrrole) and trifluoromethanesulfonic acid ion and Z or a central atom. And a plurality of fluorine atoms.
  • trifluoromethanesulfonic acid ions and aions containing a plurality of fluorine atoms with respect to Z or a central atom are incorporated into the conductive polymer.
  • the content of the trifluoromethanesulfonate ion and the arnone containing a plurality of fluorine atoms with respect to Z or the central atom in the electrolytic solution is not particularly limited, but the content of 0.1 to 0.5% in the electrolytic solution is not limited. 1-30% by weight is preferred 1-11% by weight is more preferred.
  • Trifluoromethanesulfonic acid ion is a compound represented by the chemical formula CFSO-.
  • an ion containing a plurality of fluorine atoms with respect to the central atom has a structure in which a plurality of fluorine atoms are bonded to a central atom such as boron, phosphorus, antimony, and arsenic. Contains a plurality of fluorine atoms bonded to the central atom.
  • Examples of the aone containing a plurality of fluorine atoms with respect to the central atom are not particularly limited, and include tetrafluorophosphate ion (BF-), hexafluorophosphate ion (PF-), and hexafluoroantimony.
  • Acid ions (SbF-) and hexafluorofluoric acid ions (AsF-) can be exemplified.
  • CF SO-, BF- and PF- are preferable in consideration of safety to human body.
  • Mu-on is good even if one kind of a-one is used, and several kinds of a-one can be used in the electrolyte at the same time.
  • An ion containing a plurality of fluorine atoms with respect to the central atom may be simultaneously used in the electrolytic solution.
  • the perfluoroalkylsulfonylimide ion contained as an a-one has a sulfon group bonded to a nitrogen atom which is the a-one center, and further has two substituents. It has a perfluoroalkyl group.
  • This perfluoroalkyl sulfol is represented by CF ( SO, and other perfluoroalkyl sulfol groups are represented by CF SO.
  • n and m are arbitrary integers of 1 or more, respectively, and n and m may be the same integer, or n and m may be different integers.
  • trifluoromethyl group pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, pendecafluoropentyl group, tridecafluoro hexyl group, pentadecafluoro heptyl group, heptadecaful And octyl group.
  • perfluoroalkylsulfonimide salt examples include bistrifluoromethylsulfonamide salt, bis (pentafluoroethylsulfolyl) imide salt, and bis (heptadecafluorooctylsulfoimide) salt.
  • -R imide salts can be used.
  • the perfluoroalkylsulfonylimide ion of the above chemical formula (1) can form a salt with a cation, and is added as a perfluoroalkylsulfonylimide salt to the electrolytic solution in the electrolytic polymerization method. Being, even good.
  • the cation which forms a salt with perfluoroalkylsulfonimide may be composed of one element such as Li + or may be composed of a plurality of elements.
  • the cation is not particularly limited as long as it can form a perfluoroalkylsulfonylimide ion as a monovalent cation and can be dissociated in an electrolytic solution.
  • the diaphragm has a multilayer structure, it is not necessary to have a laminated structure of a conductive polymer film layer and another layer on the entire surface of the diaphragm, so that the inside of the pump chamber is not required.
  • a conductive polymer film having a space near the center of the shape may be used as long as it has a layer that does not allow fluid to permeate.
  • a plurality of diaphragms may be provided in parallel on the same surface.
  • the diaphragms may be installed in the pump in a stacked state.
  • a diaphragm unit having a plurality of diaphragms in parallel on the same surface may be formed.
  • a plurality of the diaphragm units may be provided in parallel, or a plurality of the diaphragm units may be provided in a stacked manner.
  • FIG. 10 is a front view of an embodiment of the diaphragm unit.
  • Diaphragm The unit 71 includes a metal frame 72 having a large number of conductive polymer films 73 formed in the openings of the circular holes. Also, the same shape 72 ′ is provided on the back side of the metal frame 72. A tab 74 for applying a voltage is formed on the metal frame 72. The metal frame 72 'also has a tab formed in the same manner. In the hole 73, a conductive polymer film is formed so as to cover the opening of the hole 73.
  • FIG. 11 is an AA sectional view of the diaphragm unit of FIG.
  • FIG. 12 is a partially enlarged view of the sectional view of FIG.
  • the conductive polymer film 77 formed at the opening of the circular hole of the metal frame 72 ′ is the conductive polymer film 77 formed at the opening of the circular hole of the metal frame 72 ′.
  • And the insulator 75, so that the convex portions face each other. It can be driven to expand and contract like the diaphragm shown in FIG. 1 or FIG. 2 described above.
  • the porous body 76 between the metal frame 72 and the metal frame 72 ′, it is possible to form an interval between the metal frames, and the conductive polymer films 77 and 77 ′ are formed.
  • the cross section can be maintained in an arc shape.
  • a voltage can be applied to each diaphragm in each metal frame, so that driving of a plurality of diaphragms can be easily controlled.
  • an electrolytic solution is preferably sealed between the conductive polymer film 77 and the conductive polymer film 77 ′.
  • the conductive polymer films 77, 77 ' have a relationship between the working electrode and the counter electrode, and the expansion and contraction drive as shown in FIG. 1 or 2 can be easily performed. can do.
  • the insulator is provided in each hole to prevent the conductive polymer film 77 and the conductive polymer film 77 ′ from coming into direct contact with each other. If it does not contact the conductive polymer film 77 ', it may not be disposed.
  • the method for forming the conductive polymer film formed on the metal frames 72, 72 ' is not particularly limited.
  • a metal frame as a working electrode, applying a back plate to the metal frame, and performing electrolytic polymerization in a state in which the holes of the metal frame are closed with the back plate, the holes of the metal frame are formed.
  • the conductive polymer film covering the surface can be easily formed.
  • the conductive polymer film formed by such an electrolytic polymerization method is a film covering the entire surface of the metal frame, but in the hole, the conductive polymer film as a diaphragm is circular. Since many small diaphragms can be formed in the same space, the conductive polymer film formed in each hole expands and contracts. By driving, a large discharge pressure can be obtained, and since a plurality of diaphragm pumps are formed in parallel, the diaphragm using the diaphragm unit can discharge a large flow rate.
  • FIG. 13 is a perspective view of an embodiment of a diaphragm pump using the diaphragm unit.
  • FIG. 14 is a cross-sectional view taken along the line BB of the diaphragm pump in FIG.
  • FIG. 15 is a partially enlarged cross-sectional view near the suction port in the cross-sectional view of FIG.
  • FIG. 16 is a partially enlarged cross-sectional view near the discharge port in the cross-sectional view of FIG.
  • the diaphragm pump 81 has a housing formed by a lid 82 and a bottom 83.
  • the diaphragm unit is housed inside the housing.
  • the lid is provided with suction ports 84, 84 'and discharge ports 85, 85'.
  • the voltage pumping terminals 86, 86 ' are also provided in the diaphragm pump 81 so that they can be connected to an external power supply.
  • the suction port 84 and the discharge port 85 are provided so that both the suction port 84 force and the fluid sucked into the pump are discharged by the discharge port 85 force.
  • the diaphragm pump 81 is provided with both a suction port 84 'and a discharge port 85' so that the suction port 84 'can also discharge the fluid sucked into the pump from the discharge port 85'. ! /
  • the diaphragm pump 81 is provided with three diaphragm units. As shown in FIG. 15, the three diaphragm units 87, 88, and 89 are provided with a spacing force to form flow paths 90, 91, 92, and 93.
  • the flow passage 90 and the flow passage 92 are provided with seal members 94 and 95 at the ends on the suction port side so that fluid does not flow to the suction valve 96.
  • the flow passage 91 and the flow passage 93 are provided with seals 97 and 98 at the ends on the discharge port side so that fluid does not flow to the discharge valve 99. .
  • the flow path 91 and the flow path 93 communicate with a suction port 84 via a knob 96, and communicate with a discharge port 84 'via a knob provided near the discharge port 84.
  • the flow path 90 and the flow path 92 communicate with the suction port 85 'through a knob provided near the suction port 85', and discharge through a valve 99 provided near the discharge port 85. Go through Exit 85.
  • the diaphragm on the upper side of the diaphragm units 87 and 89 and the diaphragm on the lower side of the diaphragm unit 88 contract, so that the fluid existing in the space between the diaphragm units 87 and 88 is reduced.
  • the fluid fluid existing in the space between the diaphragm unit 88 and the lid 82 can be discharged from the discharge port 85 through the knobs 99 and 92 and the knob 99.
  • the conductive polymer films facing each other are driven so that the expansion and the contraction have the same phase.
  • the diaphragm unit 88 and the diaphragm unit 89 the conductive polymer films facing each other are driven so that they have the same phase as the stretching and contracting forces.
  • the diaphragms on the lower side of the diaphragm units 87 and 89 and the diaphragm on the upper side of the diaphragm unit 88 are extended, and Fluid is sucked in, and the diaphragm on the lower side of the diaphragm cuts 87 and 89 and the diaphragm on the upper side of the diaphragm unit 88 are contracted. More likely.
  • the upper diaphragm of the diaphragm units 87 and 89 and the lower diaphragm of the diaphragm unit 88 are extended to draw fluid from the suction port 84, and the upper diaphragm of the diaphragm units 87 and 89 is drawn.
  • the fluid sucked from the suction port 84 is discharged from the discharge port 85.
  • the stretching and shrinking of the conductive polymer film of each diaphragm unit can be generated as described above by applying a voltage to the metal frame of each diaphragm unit.
  • the pump of the present invention has the structure as described above, and since the conductive polymer is driven by a chemical mechanism, the pump can be driven at a low voltage, and furthermore, it is silent, and furthermore, In addition, the device configuration is simple, and the miniaturization is easy. Since metal parts are hardly used, weight reduction is easy.
  • FIG. 4 is a longitudinal sectional view of a third embodiment of the pump of the present invention.
  • FIG. 5 is a cross-sectional view of the pump of FIG.
  • FIG. 6 is a longitudinal sectional view showing a state where the pump of FIG. 5 is driven. It is.
  • a tube pump 40 which is a pump according to the present invention, includes a tube-shaped conductive polymer molded product 41, and a rod-shaped core material 42 inside thereof. The outer surface of the core material is covered with a separator, and a flow path 44 is formed between the separator 43 and the inner surface of the tube of the tubular conductive polymer 41.
  • the tube pump 40 applies a voltage to the core material and the tube-shaped conductive polymer.
  • the release of the dopant ions in the conductive polymer molded article into the electrolyte solution causes shrinkage, and the tubular conductive polymer molded article is deformed inward, so that the flow path can be closed as shown in Fig. 5.
  • the portion to which a voltage is applied is gradually moved in one direction in the length direction of the tube pump, so that the flow path is blocked by the contact between the tubular conductive polymer molded product and the separator. Since the portion gradually moves in one direction in the length direction, the fluid in the flow path can be pumped.
  • the electric resistance of the conductive polymer is used. Then, attach the lead wires at regular intervals in the length direction of the tubular conductive polymer molded product, and easily transfer the lead wires to which voltage is applied to adjacent lead wires in order. It can be carried out.
  • the core material functions as an electrode and the separator is provided outside the core material.
  • the tube pump of the present invention is limited to such a configuration. Not something.
  • another embodiment of the tube pump of the present invention includes a fluid passage between the core material and the tube of the tubular conductive polymer molded product, and the fluid pump is provided on the tubular conductive polymer molded product. And an electrode layer on the electrolyte layer. By applying a voltage using the electrode layer as a counter electrode and the conductive polymer molded product as a working electrode, driving similar to the driving shown in FIG. 6 can be performed.
  • the tube pump of the present invention has the structure as described above, and since the conductive polymer is driven by a chemical mechanism, the pump can be driven at a low voltage and has no sound.
  • the device configuration is simple and the size can be easily reduced.
  • metal parts are hardly used, weight reduction is easy.
  • the conductive polymer molded product is An electroconductive polymer molded article contains an electroconductive polymer obtained by a method for producing an electroconductive polymer by an electropolymerization method, wherein the electropolymerization method comprises an ether bond, an ester bond, a carbonate bond, a hydroxyl group, An organic solution containing at least one bond or a functional group among nitro group, sulfone group and -tolyl group and an electrolyte solution containing Z or a halogenated hydrocarbon as a solvent are used.
  • the conductive polymer molded article is a method for producing a conductive polymer using an electrolytic polymerization method, wherein the electrolytic polymerization method uses the above trifluoromethanesulfonic acid ion and Z as an ion.
  • the chemical formula (2) instead of an anion containing multiple fluorine atoms with respect to the central atom, the chemical formula (2)
  • n and m are arbitrary integers.
  • Including the conductive polymer obtained by the method for producing a conductive polymer using an electrolytic solution containing a perfluoroalkylsulfonylimide ion represented by the formula can cause electrolytic expansion and contraction of 16% or more. Therefore, it is preferable.
  • FIG. 7 is a longitudinal sectional view of a fourth embodiment of the pump of the present invention.
  • FIG. 8 is a longitudinal sectional view showing a state where the pump of FIG. 7 is driven.
  • the bellows pump 51 which is a pump of the present invention, is configured such that a wall 53 of a pump chamber 52 is formed of a bellows also having a function as a panel, and has a bottom 54 and an upper portion 55 joined to the wall 53.
  • the bellows pump 51 includes a driving element 56 which is a linear conductive polymer molded product so as to be connected to the upper portion 55 and the bottom portion 54.
  • 7 includes a suction valve 581 near the suction port 57 and a discharge port 582 near the discharge port 59.
  • the suction valve 581 prevents the fluid from being discharged from the suction port
  • the discharge valve 582 prevents the suctioned fluid from being discharged.
  • a member for mounting a suction pipe, a discharge pipe, or the like may be appropriately attached near the suction port and the Z or discharge port.
  • a known metal valve or resin valve whose material is not particularly limited can be used, and a known method such as bonding is used for bonding to the housing. It comes out.
  • FIG. 8 is a longitudinal sectional view showing a state where the bellows pump of FIG. 7 is contracted.
  • the driving element 56 which is a linear body of a conductive polymer, expands by applying a voltage, and the bellows pump 51 expands due to the expanding force of the bellows having the panel function.
  • the bellows pump 51 expands, the fluid is sucked into the pump chamber 52.
  • the pump 51 is contracted to obtain the state of FIG. In the state of FIG.
  • the driving element 56 which is a linear body of a conductive polymer, contracts due to the application of a voltage, thereby contracting the bellows having the panel function, and the pump chamber 52 contracts.
  • the pump chamber 52 contracts, the fluid in the pump chamber 52 is discharged from the discharge port.
  • the bellows wall is not particularly limited as long as it has a panel function for expanding and contracting the bellows pump.
  • a metal bellows, a resin bellows, and a rubber bellows may be used.
  • Bellows having a protective layer on the inside can also be used.
  • the fluid to be discharged is an electrolytic solution because it is not necessary to provide an electrolyte layer.
  • the metal bellows preferably has corrosion resistance for durability.
  • the bellows pump of the present invention exercises by repeating the states shown in Figs. 8 and 7 to perform the pump function.
  • the bellows pump of the present invention has the structure as described above, and since the conductive polymer is driven by a chemical mechanism, the pump can be driven at a low voltage and is silent.
  • the configuration is simple and the size is easy to reduce. Moreover, since metal parts are hardly used, weight reduction is easy.
  • FIG. 9 is a longitudinal sectional view of an embodiment in which a metal coiled panel is provided inside the pump chamber 52 of the bellows pump.
  • the bellows pump 51 ′ in FIG. 9 has the configuration of the bellows pump 51 in FIG. 8 and is provided with a coiled panel 60, so that when the fluid to be discharged is an electrolyte, the coiled panel functions as a counter electrode. Can be done and bellows pump 51 'can be extended by the coiled panel.
  • the linear conductive polymer molded product which is the driving element, is contracted by applying a voltage, the bellows pump 51 'is contracted, and the coil-shaped panel is also contracted.
  • the bellows pump 51 can be extended by the repulsive force of the coiled panel.
  • the bellows pump of the present invention is a bellows pump having a fluid to be discharged as an electrolyte and a metal coiled panel inside the pump chamber.
  • the coiled panel can function as a counter electrode, This is preferable because expansion and contraction of the bellows pump, that is, suction and discharge of fluid can be performed more smoothly.
  • the drive element of the bellows pump according to the present invention is a force that is connected to the upper part and the lower part of the pump chamber. A partial force connected to the upper part of the pump chamber. It is not necessary that the elements up to are driving elements. About half of the length from the top to the bottom may be a driving element, or may be connected to the top and bottom of the pump chamber via a connection member.
  • the drive element is a conductive polymer molded article, and the shape is not particularly limited as long as the bellows can be contracted and expanded. It is preferable that the shape of the conductive polymer molded product is any one of a linear shape, a column shape, a band shape, and a cylindrical shape because connection is easy. Further, when the driving element has these shapes, the driving element is provided such that the long axis of the conductive polymer molded product coincides with the expansion and contraction direction of the pump chamber. Good for efficiency.
  • the bellows pump can be driven by driving the driving element by applying a positive voltage and a negative voltage alternately to the conductive polymer molded article to cause electrolytic expansion and contraction. .
  • the conductive polymer molded article contains a conductive polymer obtained by a method for producing a conductive polymer by an electrolytic polymerization method, and the electrolytic polymerization method includes an ether bond. , An ester bond, a carbonate bond, an organic compound containing at least one bond or a functional group of at least one of a hydroxyl group, a nitro group, a sulfonic group and a -tolyl group, and an electrolyte containing Z or halogenated hydrocarbon as a solvent. Trifluoromethanesulfonate ion and Z or central atom in the electrolytic solution.
  • the conductive polymer molded article is a method for producing a conductive high molecule using an electrolytic polymerization method, wherein the electrolytic polymerization method uses the above-mentioned trifluoromethanesulfonate ion and Z or a central atom as an ion.
  • the chemical formula (3) (3)
  • n and m are arbitrary integers.
  • Including the conductive polymer obtained by the method for producing a conductive polymer using an electrolytic solution containing perfluoroalkylsulfonylimide ion represented by the formula can cause electrolytic expansion and contraction of 16% or more. Therefore, it is preferable.
  • the pump of the present invention can be reduced in size, is lightweight, can be driven at a low voltage of about several volts or less, and can be driven silently. It can be suitably used for a step, a reagent dispenser, a pump for supplying a raw material represented by methanol in a fuel cell, and a pump for implantation into a living body.
  • the pump for implantation in a living body the pump of the present invention can be driven at 1 Hz and can make a pulsation close to a pulse, so that it is suitable as an artificial heart for humans or animals. For! /, You can.
  • the pump of the present invention uses a conductive polymer molded product and is driven by an electrochemical reaction of the conductive polymer molded product
  • the pump in a device for cooling a heating element such as a CPU in a computer is used.
  • the coolant is heated by the heating element and has heat, so that the electrochemical reaction easily proceeds. Can be used.
  • the pump of the present invention can be used for an ink cartridge in a printer using ink represented by an ink jet printer.
  • the pump of the present invention By installing the pump of the present invention in the ink cartridge, it can be used as a pump for discharging or supplying ink.
  • the pump of the present invention may be used to
  • the printer using the ink cartridge equipped with the pump according to the present invention can be downsized by connecting the pump to the printer head via a flexible tube, and the printer is provided with a small printing mechanism. It can be suitably used as a portable printer.
  • the ink cartridge provided with the pump of the present invention can be easily disposable because the number of parts of the pump is small and the structure of the pump is simple. When the ink cartridge provided with the pump of the present invention is disposable, it can be used more favorably because there is no need to worry about the life of the pump without worrying about ink leakage or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Fuel Cell (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

 流体の吸入及び/または流体の吐出を制御する駆動部が導電性高分子成形品を備えた駆動用素子を含むことを特徴とするポンプである。発熱素子の冷却用ポンプ、血液搬送手段、試薬ディスペンサー、並びに生体内埋め込みポンプに使用可能なポンプである。また、該導電性高分子が電解伸縮という化学的なメカニズムにより駆動するので、ポンプの駆動が低電圧で可能であり無音である。さらに、装置構成も簡単で、小型化及び軽量化が容易である。

Description

明 細 書
導電性高分子を含むポンプ及びその駆動方法
技術分野
[0001] 本発明は、流体搬送装置に関し、詳しくは小型若しくは超小型の流体搬送装置に 関し、更に詳しくは、燃料電池におけるメタノールに代表される原料の供給用装置、
CPUを含む半導体装置を冷却するための水冷循環装置を含む電子機械機器組込 用ポンプに関する。
背景技術
[0002] 水などの流体を搬送する装置であるポンプは、コンピュータ装置の半導体に代表さ れる発熱素子用装置の冷却用ポンプ、血液検査用のチップに血液を搬送する手段 、試薬ディスペンサー用のポンプ、並びに人工心臓を含む生体内埋め込み装置用 ポンプなどに適用が検討され、小型化乃至超小型化が図られている。
[0003] 例えば、コンピュータにおける CPUなどの発熱素子を冷却する装置としては、循環 用ポンプを備えた水等の熱媒体循環冷却型の電子機器が提案されて ヽる (例えば、 特許文献 1)。
[0004] 特許文献 1:特開 2003— 133776号公報
発明の開示
発明が解決しょうとする課題
[0005] 上記の電子機器に代表される発熱素子の冷却用ポンプ、血液搬送手段、試薬ディ スペンサー、並びに生体内埋め込み用ポンプに用いることができるポンプは、ノート 型コンピュータの熱媒体循環冷却装置に用いる場合のように、小型であり、軽量であ り、数 V程度以下の低電圧で駆動できることが好ましい。例えば、ポンプの駆動源とし てモーターを用いたポンプは、小型化が難しぐまた金属部品を多量に用いるために
、構成が複雑であり、軽量ィ匕が難しい。また、モーターを用いたポンプは、音が大きく て、室内用途や医療用の用途には適していない。また、燃料電池におけるメタノール に代表される原料の供給用ポンプも小型で軽量ィ匕することが望まれている。
[0006] 上記の装置に用いることができる小型ポンプとしては、例えばセラミックス材料から なる圧電素子を駆動用素子として駆動させるポンプを用いることも可能である。しかし
、セラミックス製の圧電素子は、小型化が可能である力 100Vもの高電圧で駆動す るために、低電圧の電源を用いるには電圧変換装置が必要で、装置構成が複雑に なる。高電圧で駆動するポンプは、特に、生体内埋め込み装置に用いた場合には、 漏電による人体への影響も懸念される。つまり、装置構成が簡単で、小型で軽量であ り、低電圧で駆動でき、し力も無音であるポンプは、いまだ得られていない。
[0007] 本発明の目的は、発熱素子の冷却用ポンプ、血液搬送手段、試薬ディスペンサー 、燃料電池におけるメタノールに代表される原料の供給用ポンプ、並びに生体内埋 め込みポンプに使用可能なポンプであって、し力も小型化が可能であり、軽量で、数 V程度以下の低電圧で駆動し、しかも無音で駆動することができるポンプを提供する ことである。
課題を解決するための手段
[0008] そこで、本発明者らは、鋭意検討の結果、以下の発明により上記課題を解決できる ことを見出した。
[0009] 本発明は、流体の吸入及び Zまたは流体の吐出を制御する駆動部が、導電性高 分子成形品を備えた駆動用素子を含むことを特徴とするポンプである。かかるポンプ は、装置構成が簡単で、小型で軽量であり、低電圧で、しかも無音で駆動することが できる。
[0010] また、本発明は、前記ポンプがダイヤフラムポンプであり、ポンプ室の少なくとも一 部を構成するダイヤフラムが前記駆動用素子を含むポンプでもある。また、本発明は 前記ポンプがチューブポンプであり、該チューブポンプの管の少なくとも一部をチュ ーブ状導電性高分子成形品が構成し、該管の内側が流体の流路であるポンプでも ある。また、本発明は、前記ポンプがベローズポンプであり、ベローズによりポンプ室 の壁部が形成され、前記駆動用素子が前記ポンプ室の上部と底部とに接続されたポ ンプでもある。
発明の効果
[0011] 本発明のポンプは、駆動部に導電性高分子を含み、該導電性高分子が電解伸縮 t 、う化学的なメカニズムにより駆動するので、ポンプの駆動が低電圧で可能であり、 し力も無音である。さらに、装置構成も簡単で、小型化及び軽量ィ匕が容易である。 図面の簡単な説明
圆 1]本発明のポンプの第一の実施態様例の断面図。
[図 2]図 1のポンプにぉ 、て接続部材を用 、な 、場合における断面図。
圆 3]本発明のポンプの第二の実施態様例の断面図。
[図 4]本発明のポンプの第三の実施態様例の縦断面図。
[図 5]図 4のポンプの断面図。
圆 6]図 5のポンプを駆動させた状態を示す縦断面図。
圆 7]本発明のポンプにおける第四の実施態様例の縦断面図。
圆 8]図 7のポンプが駆動した状態の縦断面図。
[図 9]図 7のポンプのポンプ室 52の内部に金属製のコイル状パネを備えた実施態様 例の縦断面図。
[図 10]ダイヤフラムユニットの一実施態様例の正面図。
[図 11]図 10のダイヤフラムユニットの A— A断面図。
[図 12]図 11のダイヤフラムユニットの A— A断面図における部分拡大図。
[図 13]ダイヤフラムユニットを用いたダイヤフラムポンプの一実施態様例における斜 視図。
[図 14]図 13のダイヤフラムポンプにおける B— B断面図。
[図 15]図 14の断面図における吸入口付近における部分拡大断面図。
[図 16]図 14の断面図における吸入口付近における部分拡大断面図。
符号の説明
1、 1, ダイヤフラムポンプ
2、 2, 筐体
3、 3, ダイヤフラム
4、 4' ダイヤフラム
5、 5, 壁面
6 接続部材
7、 7, 第一ポンプ室 、 8' 第二ポンプ室
、 9' 空間部
0、 10' リード
1、 11 ' 吸入口
21、 123 吸入弁
22、 124 吐出弁
3、 13' 吐出口
1 ダイヤフラムポンプ2 筐体
3 ダイヤフラム
壁面
5 ポンプ室
パネ部材
7 電極
、 28' リード線
9 空間部
吸入口
11 吸入弁
12 吐出弁
吐出口
チューブポンプ1 チューブ状導電性高分子 、材
セノ レータ 流路
ベローズポンプ ポンプ室
壁部 55 上部
56 駆動用素子
57 吸入口
581 吸入弁
582 吐出弁
59 吐出口
60 コィノレ状ノ ネ
71 ダイヤフラムュこニット
72、 72' 金属枠体
73 孔
76 多孔質体
81 ダイヤフラムポンプ
82 蓋体
83 底体
84、 84' 吸入口
85、 85' 吐出口
86、 86' 端子
87、 88, 89 ダイヤフラムュ- :ッ卜
90、 91 流路
92、 93 流路
94、 95 シール体
96、 99 バノレブ
97、 98 シール体
発明を実施するための最良の形態
[0014] 以下、図を用いて説明するが、本願発明はこれらの実施態様に限定されるものでは ない。
[0015] 図 1は、本発明のポンプの第一の実施態様例の断面図である。本発明のポンプで あるダイヤフラムポンプ 1は、内部空間を有するコイン状の筐体 2の内側に、導電性高 分子力もなるダイヤフラム 3、 4を備えたダイヤフラムポンプである。ダイヤフラム 3とダ ィャフラム 4とは、円盤状の導電性高分子膜であり、その円周部が壁面 5に固定され 、中央部分において接続部材 6を介して互いに接続されている。 2つのダイヤフラム 3 、 4は、それぞれ膜面方向に張力が力かる状態で設置され、略円錐状を形成してい る。ダイヤフラム 3は筐体 2と第一ポンプ室 7を形成し、ダイヤフラム 4は、筐体 2と第二 ポンプ室 8を形成している。ダイヤフラムポンプ 1の内部にある空間部 9は、膜状の導 電性高分子成形品により形成されたダイヤフラム 3とダイヤフラム 4並びに筐体 2によ り仕切られて、形成されている。空間部 9に電解液を満たすことにより、ダイヤフラム 3 、 4は電解液と接する。ダイヤフラム 3の導電性高分子成形品とダイヤフラム 4の導電 性高分子成形品とにそれぞれリード 10、 10'を介して電源に接続される。例えば、前 記電解液の支持塩にァ-オンを用い、ダイヤフラム 4の膜状導電性高分子成形品に マイナスの電圧を印加し、ダイヤフラム 3の膜状導電性高分子成形品にプラスの電圧 を印加することで、ダイヤフラム 4が収縮し、ダイヤフラム 3が伸張し、ポンプ室 9が広く なり、ポンプ室 8が狭くなる。逆に、ダイヤフラム 4の膜状導電性高分子成形品にブラ スの電圧を印加し、ダイヤフラム 3の膜状導電性高分子成形品にマイナスの電圧を 印加すると、ダイヤフラム 3が収縮してダイヤフラム 4が伸張し、ポンプ室 7が狭くなり、 ポンプ室 8が広くなる。つまり、ダイヤフラムである二つの導電性高分子膜は、一方の 導電性高分子膜が作用極となり、他方が対極となって、伸縮運動をする。このような ダイヤフラムの運動により、一のダイヤフラムが収縮して一のダイヤフラムが構成する ポンプ室内の流体を吐出すると同時に、一のダイヤフラムが収縮する力で他のダイヤ フラムが伸張して、他のダイヤフラムが構成するポンプ室の容積が拡張し、ポンプ 1は ツインのダイヤフラムポンプとして機能する。
図 1のポンプ 1は、吸入口 11の付近に吸入弁 121を備え、吐出口 13の付近に吐出 弁 122を備えている。また、ポンプ 1は、吸入口 11 'の付近に吸入弁 123を備え、吐 出口 13 'の付近に吐出弁 124を備えている。吸入弁 121、 123により吸入ロカも流 体が吐出されることを防止し、吐出弁 122, 124により吐出ロカも流体が吸入されるこ とが防止される。図 1においては、ダイヤフラム 4が収縮することで、ポンプ室 8内の流 体は、吐出口 13'を通り、流体の吐出圧により吐出弁 124が開いて、吐出される。ポ ンプ室 8内の流体が吐出されるのと同時に、ダイヤフラム 4によってダイヤフラム 3が 伸張され、吸引する力で吸入弁 121が開いて、流体が吸入口 11を通ってポンプ室 7 内に吸入される。また、吸入口及び Zまたは吐出口の付近に、吸入用管や吐出用管 等を装着するための部材を適宜取付けても良い。また、吸入弁及び吐出弁は、材質 が特に限定されるものではなぐ公知の金属製弁や榭脂製弁を用いることができ、筐 体との接合も接着等の公知の方法を用いることができる。
[0017] 図 2は、本発明のポンプの第一の実施態様例において、図 1のポンプについて接 続部材を用いない場合における断面図である。ダイヤフラムポンプ 1 'は、ポンプ室の 少なくとも一部を構成するダイヤフラム 3'、 4'を備え、該ダイヤフラムが導電性高分 子膜からなり、ダイヤフラム 3'、 4'が面する閉空間である空間部 9'に電解液が満たさ れて ヽる。各ダイヤフラムがダイヤフラムを挟んで該閉空間の反対側にそれぞれボン プ室 7'、 8'を備えている。各ダイヤフラムは、導電性高分子膜であることから、空間 部 9'の電解液に接している。前記の各ダイヤフラムは、導電性高分子膜からなるが、 図 1のダイヤフラムポンプと同様に、導電性高分子の電解伸縮作用によりダイヤフラ ムが駆動するのであれば、導電性高分子膜がダイヤフラムの一部として含まれて 、て もよぐ導電性高分子膜を 1の層とする積層体であっても良い。前記導電性高分子膜 は、膜状の導電性高分子成型品を用いることができる。
[0018] 図 2において、ダイヤフラムポンプ 1,は、 2つのポンプ室を備え、導電性高分子膜 力 なるダイヤフラム 3'、 4'に電圧を印加して、ポンプとして駆動させている状態であ る。一方のダイヤフラムであるダイヤフラム 3'に電圧を印加し、他方のダイヤフラムで あるダイヤフラム 4'に対してダイヤフラム 3'と逆電圧を印加することにより、ダイヤフラ ム 4'が収縮して、ダイヤフラム 3'が伸張する。ダイヤフラム 4'が収縮することによりポ ンプ室 8'の容積が縮小して該ポンプ室内の流体が吐出される。また、ダイヤフラム 3' が伸張することでポンプ室 7'の容積が増大して、該ポンプ室内に流体が吸引される 。一方の導電性高分子膜を作用極とした場合に他方の導電性高分子膜が対極とな ることで、一方のダイヤフラムの駆動と他方のダイヤフラムの駆動とが吸入一吐出周期 における逆位相となる。それぞれの導電性高分子膜の印加電圧の極性を正負交互 に印加することで、ダイヤフラムの伸張と収縮とが交互に行われて、各ポンプ室で吸 入と吐出とが交互に行われる。ダイヤフラムポンプ 1 'を連続的に駆動することは、図 1 のダイヤフラムポンプ 1についても同様であるが、各導電性高分子膜に対する印加電 圧の極性を正負交互に印加することにより、各導電性高分子膜に対する印加電圧の 極性を周期的に正負交互に印加することで、行うことができる。
[0019] 図 2のダイヤフラムポンプ 1 'は、図 1のダイヤフラムポンプ 1と比べて、 2つのダイヤ フラムを接続するための接続部材を備えておらず、 2つのダイヤフラムが接続されて いない。導電性高分子膜であるダイヤフラム 4'に電圧を印加することで、ダイヤフラ ム 4'は、収縮運動をする。前記収縮運動によりポンプ室 8'の容積は縮小する。また、 ダイヤフラム 4'を挟んでポンプ室 8'の反対側に設けられた空間部 9'が閉じた空間で あることから、前記収縮運動は、空間部 9 'に満たされた電解液を介して、伸張するダ ィャフラム 3'を引張って、ポンプ室 7'の容積を増大させることができる。
[0020] 図 2におけるダイヤフラムポンプは、ポンプ室を 2つの場合であるが、本発明のダイ ャフラムポンプは 2以上のポンプ室を備えたものであってもよ!/、。ポンプ室の一部を 構成するダイヤフラムがそれぞれ導電性高分子膜を備え、各導電性高分子膜が電 圧が印加されることにより、各導電性高分子膜は電極として作用して、電解伸縮を生 じる。一のポンプ室を構成するダイヤフラムに含まれる導電性高分子膜が、電圧印加 により、他のポンプ室に含まれる導電性高分子膜を、前記閉空間内の電解液を介し て対極とすることができれば、ダイヤフラム間の位置関係は、特に限定されるものでは ない。例えば、多数のダイヤフラムが多面体を形成するように前記閉空間を形成し、 該閉空間に電解液を満たして、 1以上のダイヤフラムに含まれる導電性高分子膜が 他のダイヤフラムに含まれる導電性高分子膜の対極となるようにすることもできる。特 に、前記ダイヤフラムポンプは、一方のダイヤフラムと他方のダイヤフラムとの位置関 係力 前記ダイヤフラムが電解液を介して対向するように配置され、この対を 1対以上 有することが、エネルギーロスが少なぐ駆動もスムースであることから、好ましい。対 の一方のダイヤフラムと他方のダイヤフラムとが互いに吸入一吐出周期における逆位 相となるように連続的に駆動させることで、収縮するダイヤフラムが同一の対の伸張 するダイヤフラムを引張ることが、容易となる。 [0021] 図 2の実施態様例においては、対のダイヤフラム同士が接続されていない。ダイヤ フラム間で接続がされている場合には、図 1のように、吸入時におけるダイヤフラムの 断面が略三角錐状となり、吐出時におけるダイヤフラムの断面が円弧状となる。従つ て、ダイヤフラム間で接続がされている場合には、吸入と吐出が切り替わる瞬間に、 ダイヤフラムの形状が大きく変化して、切り替え時にタイムラグが生じてしまう。このタ ィムラグを防止するためには、ダイヤフラム間で接続がされて ヽな 、ことが好ま 、。 ダイヤフラム間で接続がされていないことは、図 2のように、吸引におけるダイヤフラム 形状と吐出におけるダイヤフラム形状とが同様となり、吸入と吐出と切り替え時のタイ ムラグを防止できる。さらに、ダイヤフラム間で接続がされていない前記ダイヤフラム ポンプは、接続部材が無いので、ダイヤフラム外径 10 φの円形であるダイヤフラムポ ンプ等の小型ダイヤフラムポンプを製造することが容易となり、駆動用素子として機能 する導電性高分子膜が伸縮することができる部分も増大するために、好ましい。
[0022] 図 1及び図 2の実施態様例においては、各ダイヤフラムに含まれる導電性高分子膜 に印加される電圧が、正極性電圧の印加と負極性電圧の印加との周期が 1秒当たり 1以上であることが好ましい。正極性電圧の印加と負極性電圧の印加との周期が 1秒 当たり 1以上となるように前記導電性高分子膜に電圧を印加することにより、吸入と吐 出と切り替え時のタイムラグが生じ難い。
[0023] 図 3は、本発明のポンプの第二の実施態様例の断面図である。本発明のポンプで あるダイヤフラムポンプ 21は、内部空間を有するコイン状の筐体 22の内側に、導電 性高分子力もなるダイヤフラム 23を備えたダイヤフラムポンプである。ダイヤフラム 23 は、円状の導電性高分子膜であり、その円周部が壁面 24に固定されている。ダイヤ フラム 23は、筐体 22とポンプ室 25を形成する。ダイヤフラム 23は、パネ部材 26が筐 体 22の内側上部に取付けられ、ダイヤフラム 23の膜面上に接続されて、膜面方向に 張力が力かる状態で設置されている。筐体 22の内側空間の底面には、電極 27が設 けられている。ダイヤフラム 23と電極 27とは、それぞれリード線 28, 28'を介して電源 に接続されて ヽる。筐体 22とダイヤフラム 23とで仕切られた空間部 29に電解液を満 たすことによりダイヤフラム 23と電極 27とは同一の電解液に接することになる。膜状 の導電性高分子成型品であるダイヤフラム 23を作用極とし、電極 27を対極として、ダ ィャフラム 23にプラスの電圧を印加することにより、電解液中のァ-オンが導電性高 分子成型品の膜内に取り込まれて、ダイヤフラム 23が伸張し、パネ部材 26の押す力 でポンプ室 25は広くなる。また、ダイヤフラム 23へのマイナスの電圧印加により、ダイ ャフラム 23が収縮し、パネ部材 26を縮めてポンプ室 25は狭くなる。この様なダイヤフ ラム 23の運動により、ポンプ 21は、ダイヤフラムポンプとして機能する。
[0024] 図 3のポンプ 21は、図 1の場合と同様に、吸入口 30に付近に吸入弁 311を備えて 、吐出口 32の付近に吐出弁 312を備えている。吸入弁 311により吸入ロカも流体が 吐出されることを防止し、吐出弁 312により流体が吐出口から吸入されることを防止し ている。また、吸入口及び Zまたは吐出口の付近に、吸入用管や吐出用管等を装着 するための部材を適宜取付けても良い。また、吸入弁及び吐出弁は、材質が特に限 定されるものではなぐ公知の金属製弁や榭脂製弁を用いることができ、筐体との接 合も接着等の公知の方法を用いることができる。
[0025] 図 1及び図 3におけるダイヤフラムポンプは、導電性高分子膜のみ力もなるダイヤフ ラムの場合を示している。しかし、本発明のダイヤフラムポンプは、導電性高分子膜 のみ力もなるダイヤフラムに限定されるものではなぐ積層構造を有することもできる。 例えば、前記ダイヤフラムは、導電性高分子膜上に保護層として機能しうる不織布を 備えた構造とすることもできる。また、前記ダイヤフラムは、電解液が通過することのな い導電性高分子膜上に、孔を有することにより電解液が通過することのできる導電性 高分子膜を積層させても良ぐ導電性高分子膜間に更に不織布のような電解液が浸 透することができる伸縮性を有する層や伸縮性の固体電解質層を備えていても良い
[0026] 前記導電性高分子膜は、導電性高分子の組成が特に限定されるものではなく公知 の導電性高分子を用いることができ、吐出圧や吐出量等のダイヤフラムの性能に応 じて、導電性高分子の組成を適宜選択することができる。より具体的には、導電性高 分子の単量体としては、ポリピロールを用いること力 ドーパントとして、ドーパントィォ ンとしては公知のァ-オンを用いることができる。また、前記ダイヤフラムポンプを駆 動するための電解液中の支持電解質も、公知の支持電解質を用いることができる。
[0027] 上述の導電性高分子膜については、例えば、導電性高分子膜に IV、 200mAで 電圧印加することで、導電性高分子膜の膜面方向に 5Mpaの力を発生することがで きるポリピロール膜をダイヤフラムに用いたポンプは、 1つのポンプ室について 20kPa の吐出圧を発生することができる。また、図 1の実施態様例のポンプでは、各ダイヤフ ラムとして直径 40mm、厚さ 40 mの円形導電性高分子膜を用い、膜面方向に 0. 5 秒当たり 0. 9%の伸縮を行うことにより、 1秒当たりの吐出量 72mlZsを発生すること ができる。また、導電性高分子膜の積層により所望の吐出圧を得ることができる。
[0028] 特に、前記導電性高分子膜としては、 0. 5秒あたりの電解伸縮による伸び率が IV の電圧印加で 0. 5%以上である導電性高分子膜が、膜面方向に 0. 5秒当たり 0. 9 %以上の伸縮を行うことでき、大きな吐出量を容易に得ることができるので好ま 、。 0. 5秒あたりの電解伸縮による伸び率が 0. 5%以上である導電性高分子膜は、電気 化学的酸化還元による伸縮性を有する導電性高分子を電解重合法により製造する 導電性高分子の製造方法であって、前記電解重合法が、エーテル結合、エステル結 合、カーボネート結合、ヒドロキシル基、ニトロ基、スルホン基及び-トリル基のうち少 なくとも 1つ以上の結合あるいは官能基を含む有機化合物及び Z又はハロゲンィ匕炭 化水素を溶媒として含む電解液を用い、前記電解液中にトリフルォロメタンスルホン 酸イオン及び Zまたは中心原子に対してフッ素原子を複数含むァ-オンを含む導電 性高分子の製造方法により容易に得ることができる。また、前記導電性高分子膜とし ては、電解重合法を用いた導電性高分子の製造方法であって、該電解重合法が、ァ ユオンとして、上記のトリフルォロメタンスルホン酸イオン及び Zまたは中心原子に対 してフッ素原子を複数含むァ-オンの替りに、化学式(1)
(C F SO ) (C F SO ) N— (1)
n (2n+ l) 2 m (2m+ l) 2
(ここで、 n及び mは任意の整数。 )
で表されるパーフルォロアルキルスルホ二ルイミドイオンを含む電解液を用いた導電 性高分子の製造方法により容易に得ることができる。
[0029] 前記電解重合法における溶媒として含まれる前記有機化合物としては、 1, 2—ジメ トキシェタン、 1, 2—ジエトキシェタン、テトラヒドロフラン、 2—メチルテトラヒドロフラン、 1, 4 ジォキサン (以上、エーテル結合を含む有機化合物)、 γ プチ口ラタトン、酢 酸ェチル、酢酸 η-ブチル、酢酸- 1-ブチル、 1, 2 ジァセトキシェタン、 3—メチルー 2— ォキサゾリジノン、安息香酸メチル、安息香酸ェチル、安息香酸ブチル、フタル酸ジ ェチル (以上、エステル結合を含む有機化合物)、プロピレンカーボネート、エチレン カーボネート、ジメチノレカーボネート、ジェチノレカーボネート、メチノレエチノレカーボネ ート(以上、カーボネート結合を含む有機化合物)、エチレングリコール、ブタノール、
1一へキサノール、シクロへキサノール、 1一才クタノール、 1ーデカノール、 1ードデカノ ール、 1一才クタデカノール (以上、ヒドロキシル基を含む有機化合物)、ニトロメタン、 ニトロベンゼン(以上、ニトロ基を含む有機化合物)、スルホラン、ジメチルスルホン( 以上、スルホン基を含む有機化合物)、及びァセトニトリル、ブチ口-トリル、ベンゾ- トリル (以上、二トリル基を含む有機化合物)を例示することができる。なお、ヒドロキシ ル基を含む有機化合物は、特に限定されるものではないが、多価アルコール及び炭 素数 4以上の 1価アルコールであること力 伸縮率が良いために好ましい。なお、前 記有機化合物は、前記の例示以外にも、分子中にエーテル結合、エステル結合、力 ーボネート結合、ヒドロキシル基、ニトロ基、スルホン基及び-トリル基のうち、 2っ以 上の結合ある!/、は官能基を任意の組合わせで含む有機化合物であってもよ 、。
[0030] 前記有機化合物は、前記有機化合物を 2種以上混合して電解液の溶媒に用いる 場合には、エーテル結合を含む有機化合物、エステル結合を含む有機化合物、力 ーボネート結合を含む有機化合物、ヒドロキシル基を含む有機化合物、ニトロ基を含 む有機化合物、スルホン基を含む有機化合物、及び二トリル基を含む有機化合物の うち、伸張に優れた有機化合物と収縮に優れた有機化合物とを組合わせて、電解重 合により得られた導電性高分子の 1酸ィ匕還元サイクル当たりの伸縮率の向上を図るこ とちでさる。
[0031] また、前記の導電性高分子の製造方法において電解液に溶媒として含まれるハロ ゲンィ匕炭化水素は、炭化水素中の水素が少なくとも 1つ以上ハロゲン原子に置換さ れたもので、電解重合条件で液体として安定に存在することができるものであれば、 特に限定されるものではない。
[0032] 前記ハロゲン化炭化水素としては、例えば、ジクロロメタン、ジクロロェタンを挙げる ことができる。前記ハロゲン化炭化水素は、 1種類のみを前記電解液中の溶媒として 用いることもできるが、 2種以上併用することもできる。また、前記ハロゲン化炭化水素 は、上記の有機化合物との混合して用いてもよぐ該有機溶媒との混合溶媒を前記 電解液中の溶媒として用いることもできる。
[0033] 前記の導電性高分子の製造方法において、電解重合法に用いられる電解液には 、電解重合される有機化合物(例えば、ピロール)およびトリフルォロメタンスルホン酸 イオン及び Zまたは中心原子に対してフッ素原子を複数含むァ-オンを含む。この 電解液を用いて電解重合を行うことにより、電解伸縮において 1酸ィ匕還元サイクル当 たりの伸縮率及び Zまたは特定時間あたりの変位率が優れた導電性高分子を得るこ とができる。上記電解重合により、トリフルォロメタンスルホン酸イオン及び Zまたは中 心原子に対してフッ素原子を複数含むァ-オンが導電性高分子に取り込まれること になる。
[0034] 前記トリフルォロメタンスルホン酸イオン及び Zまたは中心原子に対してフッ素原子 を複数含むァ-オンは、電解液中の含有量が特に限定されるものではないが、電解 液中に 0. 1— 30重量%含まれるのが好ましぐ 1一 15重量%含まれるのがより好まし い。
[0035] トリフルォロメタンスルホン酸イオンは、化学式 CF SO—で表される化合物である。
3 3
また、中心原子に対してフッ素原子を複数含むァ-オンは、ホウ素、リン、アンチモン 及びヒ素等の中心原子に複数のフッ素原子が結合をした構造を有し、ァ-オンの分 子中に中心原子に対して結合するフッ素原子を複数含む。中心原子に対してフッ素 原子を複数含むァ-オンとしては、特に限定されるものではないが、テトラフルォロホ ゥ酸イオン(BF―)、へキサフルォロリン酸イオン(PF―)、へキサフルォロアンチモン
4 6
酸イオン(SbF―)、及びへキサフルォロヒ酸イオン (AsF―)を例示することができる。
6 6
なかでも、 CF SO―、 BF—及び PF—が人体等に対する安全性を考慮すると好ましく
3 3 4 6
、 CF SO—及び BF—がより好ましい。前記の中心原子に対してフッ素原子を複数含
3 3 4
むァ-オンは、 1種類のァ-オンを用いても良ぐ複数種のァ-オンを同時に電解液 中に用いても良ぐさら〖こは、トリフルォロメタンスルホン酸イオンと複数種の中心原子 に対しフッ素原子を複数含むァ-オンとを同時に電解液中に用いても良 、。
[0036] また、ァ-オンとして含まれる前記パーフルォロアルキルスルホ二ルイミドイオンは、 ァ-オン中心である窒素原子にスルホ-ル基が結合し、さらに、置換基である 2つの パーフルォロアルキル基を有している。このパーフルォロアルキルスルホ -ルは C F( SOで表され、他のパーフルォロアルキルスルホ -ル基は、 C F SOで表
2n+ l) 2 m (2m+ l) 2 される。前記の nおよび mは、それぞれ 1以上の任意の整数であり、 nと mとが同じ整 数であってもよぐ nと mとが異なる整数であっても良い。例えばトリフルォロメチル基、 ペンタフルォロェチル基、ヘプタフルォロプロピル基、ノナフルォロブチル基、ゥンデ カフルォロペンチル基、トリデカフルォ口へキシル基、ペンタデカフルォ口へプチル基 、ヘプタデカフルォロォクチル基などを挙げることができる。前記パーフルォロアルキ ルスルホ-ルイミド塩としては、例えば、ビストリフルォロメチルスルホ-ルアミド塩、ビ ス(ペンタフルォロェチルスルホ -ル)イミド塩、ビス(ヘプタデカフルォロォクチルス ルホ -ル)イミド塩を用いることができる。
[0037] 上記化学式(1)のパーフルォロアルキルスルホ二ルイミドイオンは、カチオンと塩を 形成することができ、パーフルォロアルキルスルホ二ルイミド塩として電解重合法にお ける電解液中に加えられて 、ても良 、。パーフルォロアルキルスルホ-ルイミドと塩を 形成するカチオンは、 Li+の様に 1つの元素から構成されていてもよぐ複数の元素よ り構成されていても良い。前記カチオンは、 1価の陽イオンとしてパーフルォロアルキ ルスルホニルイミドイオンを形成することができ、電解液中で解離することができるも のであれば、特に限定されるものではない。
[0038] また、ダイヤフラムが複層構造を有する場合にぉ 、て、ダイヤフラムの全面に導電 性高分子膜の層と他の層との積層構造を有して 、る必要が無く、ポンプ室内の流体 を透過することのない層を有していれば、形状の中心付近に空間部を備えた導電性 高分子膜でも良い。
[0039] また、本発明のダイヤフラムポンプは、ダイヤフラムを同一面上に並列で複数設け ても良い。また前記ダイヤフラムポンプは、ダイヤフラムをポンプ内に積み重ね状に 設置しても良い。前記のようにダイヤフラムをポンプ内に複数設ける際には、ダイヤフ ラムを同一面上に並列で複数備えたダイヤフラムユニットを形成しても良い。また、本 発明のダイヤフラムポンプにおいては、前記ダイヤフラムユニットを並列に複数備える こと、または前記ダイヤフラムユニットを積み重ね状に複数備えても良い。
[0040] 図 10は、前記ダイヤフラムユニットの一実施態様例の正面図である。ダイヤフラム ユニット 71は、円形孔の開口部に形成された導電性高分子膜 73を多数備えた金属 枠体 72を備えている。また、金属枠体 72の裏側にも同一形状の 72'を備えている。 金属枠体 72には電圧印加用のタブ部 74が形成されている。金属枠体 72'も、同様 にタブ部が形成されている。また、孔 73には、導電性高分子膜が孔 73の開口部を覆 うように形成されている。図 11は、図 10のダイヤフラムユニットの A-A断面図である。 図 12は、図 11の断面図における部分拡大図である。
[0041] 図 12において、金属枠体 72の円形孔の開口部に形成された導電性高分子膜 77 は、金属枠体 72 'の円形孔の開口部に形成された導電性高分子膜 77 'と絶縁体 75 を介して、凸部が向かい合うように対面している。上述した図 1または図 2のダイヤフラ ムの様に伸縮駆動することができる。また、金属枠体 72と金属枠体 72'との間に多孔 質体 76を配置することにより、金属枠体間に間隔を形成することが可能となり、導電 性高分子膜 77、 77'を断面円弧状に維持することができる。また、前記金属枠体 72 、 72'に電圧を印加することにより、各金属枠体における各ダイヤフラムに電圧を印 加することができるので、複数のダイヤフラムの駆動を容易に制御することができる。 なお、導電性高分子膜 77と導電性高分子膜 77'との間には電解液が封入されてい ることが好ましい。前記電解液が導電性高分子膜間に存在することにより、導電性高 分子膜 77、 77'が作用電極と対極との関係となり、図 1または図 2に示したような伸縮 駆動を容易にすることができる。また、前記絶縁体は、導電性高分子膜 77と導電性 高分子膜 77'とが直接に接することを防止するために、各孔にそれぞれ配置されて いるが、導電性高分子膜 77と導電性高分子膜 77'とが接しなければ、配置されてな くても良い。
[0042] 金属枠体 72, 72'に形成された導電性高分子膜は、特に形成方法が限定されるも のではない。例えば、金属枠体を作用電極とし、該金属枠体に背板を当てて、該金 属枠体の孔を該背板で塞いだ状態で電解重合をすることにより、該金属枠体の孔を 覆う導電性高分子膜は、容易に形成することができる。このような電解重合方法によ り形成された導電性高分子膜は、前記金属枠体を一面に覆う膜となるが、孔におい ては、ダイヤフラムとしての導電性高分子膜は円形となる。同一のスペース内に多数 の小さなダイヤフラムを形成できるので、各孔に形成された導電性高分子膜が伸縮 駆動することにより、大きな吐出圧を得ることができ、し力も、複数のダイヤフラムボン プが並列に形成されるので、前記ダイヤフラムユニットを用いたダイヤフラムは、大き な流量を吐出することもできる。
[0043] 図 13は、前記ダイヤフラムユニットを用いたダイヤフラムポンプの一実施態様例に おける斜視図である。図 14は、図 13のダイヤフラムポンプにおける B— B断面図であ る。図 15は、図 14の断面図における吸入口付近における部分拡大断面図である。 図 16は図 14の断面図における吐出口付近の部分拡大断面図である。
[0044] 図 13において、ダイヤフラムポンプ 81は、蓋体 82と底体 83により筐体が形成され ている。その筐体内部に、前記ダイヤフラムユニットが収納されている。前記蓋体に は、吸入口 84, 84'と吐出口 85、 85'が設けられている。また、電圧印加用の端子 8 6, 86'も、外部電源と接続できるように、ダイヤフラムポンプ 81に備えている。ダイヤ フラムポンプ 81においては、吸入口 84力もポンプ内に吸入された流体が吐出口 85 力も吐出されるように、吸入口 84と吐出口 85とが設けられている。また、ダイヤフラム ポンプ 81にお!/、ては、吸入口 84'力もポンプ内に吸入された流体が吐出口 85 'から 吐出されるように、吸入口 84'と吐出口 85 'とも設けられて!/、る。
[0045] 図 14の B— B断面図に示すように、前記ダイヤフラムポンプ 81には、 3つのダイヤフ ラムユニットが備えられている。図 15に示すように、 3つのダイヤフラムユニット 87、 88 、 89は、間隔力設けられ、流路 90、 91、 92、 93力 ^形成されている。流路 90と流路 92 は、吸入口側の端部にシール体 94、 95力設けられて、吸入用のバルブ 96に流体が 流れないようにされている。また、図 16に示すように、流路 91と流路 93は、吐出口側 の端部にシール体 97、 98が設けられて、吐出用のバルブ 99に流体が流れないよう にされている。流路 91と流路 93とは、ノ レブ 96を介して吸入口 84と通じ、且つ、吐 出口 84付近に設けられたノ レブを介して吐出口 84'と通じている。同様に、流路 90 と流路 92とは、吸入口 85'付近に設けられたノ レブを介して吸入口 85'と通じ、且つ 、吐出口 85付近に設けられたバルブ 99を介して吐出口 85と通じて 、る。
[0046] 図 15及び図 16において、ダイヤフラムユニット 87及び 89の図下側のダイヤフラム 並びにダイヤフラムユニット 88の図上側のダイヤフラムが伸張して、流体が吸入口 84 力もバルブ 96を介して、流路 91、 93を通って、ダイヤフラムユニット 87とダイヤフラム ユニット 88との間の空間、並びに底体 83とダイヤフラムユニット 89との間の空間に流 入することができる。また、この流入と同時に、ダイヤフラムユニット 87及び 89の図上 側のダイヤフラム、並びにダイヤフラムユニット 88の図下側のダイヤフラムが収縮する ことにより、ダイヤフラムユニット 87と 88との間の空間に存在する流体、並びに、ダイ ャフラムユニット 88と蓋体 82との間の空間に存在する流体流体が 90、 92を通り、ノ ルブ 99を介して、吐出口 85から吐出することができる。このように、ダイヤフラムュ- ット 87とダイヤフラムユニット 88とにおいて、互いに対面する導電性高分子膜は、伸 張と収縮とが、同位相となるように駆動される。同様に、ダイヤフラムユニット 88とダイ ャフラムユニット 89とにおいても。互いに対面する導電性高分子膜は、伸張と収縮と 力 同位相となるように駆動される。
[0047] つまり、図 14一 16に例示したダイヤフラムポンプの実施態様例では、ダイヤフラム ユニット 87及び 89の図下側のダイヤフラム並びにダイヤフラムユニット 88の図上側 のダイヤフラムを伸張させて、吸入口 84からの流体の吸入が生じ、ダイヤフラムュ- ット 87及び 89の図下側のダイヤフラム並びにダイヤフラムユニット 88の図上側のダイ ャフラムを収縮させることで、吸入口 84から吸入された流体の吐出力 吐出口 85'よ り生じる。同様に、ダイヤフラムユニット 87及び 89の図上側のダイヤフラム並びにダイ ャフラムユニット 88の図下側のダイヤフラムを伸張させて、吸入口 84からの流体の吸 入が生じ、ダイヤフラムユニット 87及び 89の図上側のダイヤフラム並びにダイヤフラ ムユニット 88の図下側のダイヤフラムを収縮させることで、吸入口 84から吸入された 流体の吐出が、吐出口 85より生じる。なお、各ダイヤフラムユニットの導電性高分子 膜の伸張と収縮とは、各ダイヤフラムユニットの金属枠体に電圧を印加することにより 、上述のように生じることができる。
[0048] 本発明のポンプは、上記のような構造であり、導電性高分子が化学的なメカニズム により駆動するので、ポンプの駆動が低電圧で可能であり、しかも無音であって、さら に、装置構成も簡単で小型化も容易である。し力も、金属部品はほとんど使用してい な 、ので軽量化も容易である。
[0049] 図 4は、本発明のポンプの第三の実施態様例の縦断面図である。図 5は、図 4のポ ンプの断面図である。また、図 6は、図 5のポンプを駆動させた状態を示す縦断面図 である。本発明のポンプであるチューブポンプ 40は、チューブ状の導電性高分子成 型品 41を備え、その内側に棒状の芯材 42を備えている。前記芯材の外面はセパレ ータで覆われ、セパレータ 43とチューブ状導電性高分子 41の管の内面との間に、流 路 44が形成されている。流路 44を通過する流体を電解液とし、芯材 42を通電可能 な金属線とした場合には、チューブポンプ 40は、芯材とチューブ状導電性高分子と に電圧を印加することで、電解液中に導電性高分子成型品中のドーパントイオンを 放出して収縮し、チューブ状導電性高分子成形品が内側方向に変形するので、図 5 に示すように流路を塞ぐことができる。この、チューブポンプは、電圧を印加する部分 をチューブポンプの長さ方向の一方向に徐々に移動させることにより、チューブ状導 電性高分子成型品とセパレータとが接することにより流路がふさがれた部分が徐々に 長さ方向の一方向に移動するので、流路内の流体を圧送することができる。なお、チ ユーブ状導電性高分子成型品に電圧が印加された部分を、チューブポンプの長さ方 向の一方向に、徐々に移動させる方法としては、導電性高分子の有する電気抵抗を 利用して、チューブ状導電性高分子成型品の長さ方向に一定間隔となるようにリード 線を取付けて、電圧を印加するリード線を、順次、隣接したリード線に移していく方法 で容易に行うことができる。
[0050] 図 4乃至図 6に記載のチューブポンプは、芯材が電極として機能し、該芯材の外側 にセパレータを備えている力 本発明のチューブポンプは、このような構成に限定さ れるものではない。たとえば、本発明のチューブポンプの別の実施態様例としては、 芯材とチューブ状導電性高分子成型品の管との間に流体の流路を有し、チューブ状 導電性高分子成型品上に電解質層を備え、さらに該電解質層上に電極層を備えた 構造を示すことができる。前記電極層を対極とし、前記導電性高分子成型品を作用 極として電圧を印加することにより、図 6に示した駆動と同様な駆動をすることができる
[0051] 本発明のチューブポンプは、上記のような構造であり、導電性高分子が化学的なメ 力-ズムにより駆動するので、ポンプの駆動が低電圧で可能であり、しかも無音であ つて、さらに、装置構成も簡単で小型化も容易である。しかも、金属部品はほとんど使 用していないので軽量化も容易である。なお、前記導電性高分子成型品は、前記導 電性高分子成型品が、電解重合法による導電性高分子の製造方法により得られた 導電性高分子を含み、前記電解重合法が、エーテル結合、エステル結合、カーボネ ート結合、ヒドロキシル基、ニトロ基、スルホン基及び-トリル基のうち少なくとも 1っ以 上の結合あるいは官能基を含む有機化合物及び Z又はハロゲン化炭化水素を溶媒 として含む電解液を用い、前記電解液中にトリフルォロメタンスルホン酸イオン及び Zまたは中心原子に対してフッ素原子を複数含むァ-オンを含む導電性高分子の 製造方法により得られた前記導電性高分子を含むことが、 3%以上の伸縮を容易に 得ることができるために、好ましい。特に、前記導電性高分子成型品は、電解重合法 を用いた導電性高分子の製造方法であって、該電解重合法が、ァ-オンとして、上 記のトリフルォロメタンスルホン酸イオン及び Zまたは中心原子に対してフッ素原子を 複数含むァニオンの替りに、化学式 (2)
(C F SO ) (C F SO ) N— (2)
n (2n+ l) 2 m (2m+ l) 2
(ここで、 n及び mは任意の整数。 )
で表されるパーフルォロアルキルスルホ二ルイミドイオンを含む電解液を用いた導電 性高分子の製造方法により得られた導電性高分子を含むことが、 16%以上の電解 伸縮を生じることができるので、好ましい。
図 7は、本発明のポンプにおける第四の実施態様例の縦断面図である。図 8は、図 7のポンプが駆動した状態の縦断面図である。本発明のポンプであるべローズポンプ 51は、ポンプ室 52の壁部 53がパネとしての機能も備えるベローズにより形成され、 壁部 53と接合する底部 54と上部 55とを備える。ベローズポンプ 51は、上部 55と底 部 54とに接続されるように、線状の導電性高分子成型品である駆動用素子 56を備 える。また、図 7のポンプ 51は、吸入口 57の付近に吸入弁 581を備え、吐出口 59付 近に吐出口 582を備えている。吸入弁 581により吸入口からの流体の吐出が防止さ れ、吐出弁 582により吐出ロカもの流体の吸入が防止される。また、吸入口及び Zま たは吐出口の付近に、吸入用管や吐出用管等を装着するための部材を適宜取付け ても良い。また、吸入弁及び吐出弁は、材質が特に限定されるものではなぐ公知の 金属製弁や榭脂製弁を用いることができ、筐体との接合も接着等の公知の方法を用 いることがでさる。 [0053] 図 7のべローズポンプ 51は、例えば、ポンプ室 52へ吸入および吐出する流体を電 解液とし、線状の導電性高分子成型品である駆動用素子 56にリード線を取付けて作 用電極として電圧を印加し、更にポンプ室 52に対極を設け電圧を印加することで、 線状の導電性高分子成型品の伸縮運動とパネとしての機能も備えるベローズの伸縮 運動とにより駆動することができる。図 8は、図 7のべローズポンプが収縮した状態を 示す縦断面図である。図 7の状態において、導電性高分子の線状体である駆動用素 子 56が電圧印加により伸張し、パネ機能を備えたベローズの伸張する力によってベ ローズポンプ 51が伸張する。ベローズポンプ 51が伸張することで、流体がポンプ室 5 2内に吸入される。次いで、駆動用素子 56に対して、図 7の状態において印加した電 圧と逆電圧を印加することで、ポンプ 51を収縮させて図 8の状態とする。図 8の状態 において、導電性高分子の線状体である駆動用素子 56が電圧印加により収縮して、 パネ機能を備えたベローズを縮めて、ポンプ室 52が収縮される。ポンプ室 52が収縮 されることで、ポンプ室 52内の流体が吐出口から吐出される。なお、ベローズである 壁部は、ベローズポンプを伸縮するためにパネ機能を備えていれば特に限定される ものではないが、例えば、金属製べローズ、榭脂製べローズ、ゴム製べローズを用い ることができ、内側に保護層を備えたベローズも用いることができる。
[0054] また、本発明のベローズポンプは、吐出する流体が電解液であることが、電解質層 を設ける必要が無いことから好ましい。前記流体が電解液である場合においては、前 記金属製べローズが耐久性のために耐腐食性を有することが好まし 、。
[0055] 本発明のベローズポンプは、図 8と図 7の状態を繰り返すことで運動して、ポンプ機 能を果たす。本発明のベローズポンプは、上記のような構造であり、導電性高分子が 化学的なメカニズムにより駆動するので、ポンプの駆動が低電圧で可能であり、しか も無音であって、さらに、装置構成も簡単で小型化も容易である。しかも、金属部品 はほとんど使用して ヽな 、ので軽量化も容易である。
[0056] また、図 9は、上記べローズポンプのポンプ室 52の内部に金属製のコイル状パネを 備えた実施態様例の縦断面図である。図 9のべローズポンプ 51 'は、図 8のべローズ ポンプ 51の構成にカ卩えて、コイル状パネ 60を備えることにより、吐出する流体を電解 液とした場合にコイル状パネが対極として機能することができ、しかもべローズポンプ 51 'がコイル状パネにより伸張することができる。駆動素子である線状導電性高分子 成型品が電圧印加により収縮した際においては、ベローズポンプ 51 'が収縮され、コ ィル状パネも収縮される。線状導電性高分子成型品が逆電圧の印加により伸張する 際にお 、ては、ベローズである壁部が榭脂製べローズ等のパネ機能を有しな 、ベロ ーズであっても、当該コイル状パネの反発力でベローズポンプ 51 'が伸張をすること ができる。つまり、本発明のベローズポンプは、吐出する流体を電解液とし、ポンプ室 の内部に金属製のコイル状パネを備えたベローズポンプであること力 前記コイル状 パネが対極として機能することができ、ベローズポンプの伸縮、即ち流体の吸入 '吐 出をよりスムースに行うことができるので、好ましい。
[0057] 本発明のベローズポンプの駆動用素子は、前記ポンプ室の上部と底部とに接続さ れるのである力 前記ポンプ室の上部との接続部分力 前記ポンプ室の上部と底部 とに接続部分までが駆動用素子である必要はな 、。前記上部から前記底部までの長 さの半分程度が駆動用素子であっても良ぐ前記ポンプ室の上部及び底部とに接続 用部材を介して接続されても良 ヽ。
[0058] また、前記駆動用素子は、導電性高分子成型品であり、ベローズを収縮及び伸張 させることができれば、形状が特に限定されるものではないが、ポンプ室の上部と底 部との接続が容易であることから、前記導電性高分子成型品の形状が線状、柱状、 帯状、または筒状のいずれかの形状であることが好ましい。また、前記駆動用素子は 、該駆動用素子がこれらの形状である場合には、導電性高分子成形品の長軸が前 記ポンプ室の伸縮方向と一致するように設けられること力 力の効率が良いために好 ましい。前記導電性高分子成型品に正極性電圧と負極性電圧とを交互に印加して、 電解伸縮運動をさせることで、前記駆動用素子を駆動させて、前記べローズポンプを 駆動することができる。なお、前記導電性高分子成型品は、前記導電性高分子成型 品が、電解重合法による導電性高分子の製造方法により得られた導電性高分子を 含み、前記電解重合法が、エーテル結合、エステル結合、カーボネート結合、ヒドロ キシル基、ニトロ基、スルホン基及び-トリル基のうち少なくとも 1つ以上の結合あるい は官能基を含む有機化合物及び Z又はハロゲンィ匕炭化水素を溶媒として含む電解 液を用 、、前記電解液中にトリフルォロメタンスルホン酸イオン及び Zまたは中心原 子に対してフッ素原子を複数含むァ-オンを含む導電性高分子の製造方法により得 られた前記導電性高分子を含むことが、 3%以上の伸縮を容易に得ることができるた めに、好ましい。特に、前記導電性高分子成型品は、電解重合法を用いた導電性高 分子の製造方法であって、該電解重合法が、ァ-オンとして、上記のトリフルォロメタ ンスルホン酸イオン及び Zまたは中心原子に対してフッ素原子を複数含むァ-オン の替りに、化学式 (3)
(C F SO ) (C F SO ) N— (3)
n (2n+ l) 2 m (2m+ l) 2
(ここで、 n及び mは任意の整数。 )
で表されるパーフルォロアルキルスルホ二ルイミドイオンを含む電解液を用いた導電 性高分子の製造方法により得られた導電性高分子を含むことが、 16%以上の電解 伸縮を生じることができるので、好ましい。
産業上の利用可能性
[0059] 本発明のポンプは、小型化が可能であり、軽量で、数 V程度以下の低電圧で駆動 し、しかも無音で駆動することができるので、発熱素子の冷却用ポンプ、血液搬送手 段、試薬ディスペンサー、燃料電池におけるメタノールに代表される原料の供給用ポ ンプ並びに生体内埋め込み用ポンプに好適に用いることができる。前記生体内埋め 込み用ポンプにつていは、本発明のポンプは、 1Hzで駆動することができるために脈 柏に近い拍動をすることができるので、人間若しくは動物用の人工心臓として好適に 用!/、ることができる。
[0060] 特に、本発明のポンプは、導電性高分子成型品を用い、該導電性高分子成型品 の電気化学的反応により駆動するので、コンピュータにおける CPUなどの発熱素子 を冷却する装置における冷媒を循環させるためのポンプに用 ヽた場合には、冷媒が 発熱素子により暖められて熱を有することにより、電気化学的な反応が進行しやすく なるので、より好適に発熱素子の冷却用ポンプに用いることができる。
[0061] また、本発明のポンプは、インクジェットプリンタに代表されるインクを用いたプリンタ におけるインクカートリッジに用いることができる。本発明のポンプは、前記インクカー トリッジに設置することにより、インク吐出用若しくはインク供給用のポンプとして用い ることができる。例えば、本発明のポンプを前記インクカートリッジのインク吐出用ボン プに用い、前記ポンプをフレキシブルな管を介してプリンタヘッドと接続することで、 本発明のポンプを備えたインクカートリッジを用いたプリンタは、プリンタヘッドを小型 化できるので、小型の印字機構を備えた携帯用プリンタとして好適に用いることがで きる。また、本発明のポンプを備えた前記インクカートリッジは、そのポンプの部品数 が少なくて、ポンプの構造も簡単であることから、使い捨てとすることが容易に可能で ある。本発明のポンプを備えた前記インクカートリッジは、使い捨てとした場合には、 インクの液漏れ等の心配が無ぐポンプの寿命を気にすることがないので、さらに好 適に用いることができる。

Claims

請求の範囲
[I] 流体の吸入及び Zまたは流体の吐出を制御する駆動部が、導電性高分子成形品を 備えた駆動用素子を含むことを特徴とするポンプ。
[2] 前記ポンプがダイヤフラムポンプであり、ポンプ室の少なくとも一部を構成するダイヤ フラムが前記駆動用素子を含む請求の範囲第 1項に記載のポンプ。
[3] 前記ダイヤフラムを複数備え、各ダイヤフラムがそれぞれ別のポンプ室の一部を構成 する請求の範囲第 2項に記載のポンプ。
[4] 一のダイヤフラムの膜面が、他のダイヤフラムの膜面に直接又は接続部材を介して 接続された請求の範囲第 3項に記載のポンプ。
[5] 2つのダイヤフラムがそれぞれ膜面方向に張力が力かる状態で設置され、前記ダイ ャフラムが膜状の導電性高分子成形品を含み、該ダイヤフラムがそれぞれポンプ室 を構成する請求の範囲第 2項に記載のポンプ。
[6] 2つのダイヤフラムに面する空間が電解液で満たされ、各ダイヤフラムに含まれる膜 状の導電性高分子成形品が該電解質に接する請求の範囲第 5項に記載のポンプ。
[7] 前記ポンプがチューブポンプであり、該チューブポンプの管の少なくとも一部をチュ ーブ状導電性高分子成形品が構成し、該管の内側が流体の流路である請求の範囲 第 1項に記載のポンプ。
[8] 前記導電性高分子成形品の内側に芯材を備え、前記チューブ状導電性高分子成 形品が内側方向に変形することにより前記流体を圧送する請求の範囲第 7項に記載 のポンプ。
[9] 前記導電性高分子成形品が作用極であり、前記芯材が対極であり、前記芯材上に セパレータを備え、前記流体が前記導電性高分子成形品を駆動するための電解液 である請求の範囲第 8項に記載のポンプ。
[10] 前記ポンプがベローズポンプであり、ベローズによりポンプ室の壁部が形成され、前 記駆動用素子が前記ポンプ室の上部と底部とに接続された請求の範囲第 1項に記 載のポンプ。
[II] 前記駆動用素子を前記ポンプ室の内部に備えた請求の範囲第 10項に記載のボン プ。
[12] 前記導電性高分子成形品が、線状、柱状、帯状、または筒状のいずれかの形状であ る請求の範囲第 10項に記載のポンプ。
[13] 前記ポンプ室の内部に金属製のコイル状パネを備え、該コイル状パネが前記ポンプ 室の蓋部と底部とに接続され、該コイル状パネの内側に前記駆動用素子が配される ように該コイル状パネを備えた請求の範囲第 10項に記載のポンプ。
[14] ベローズにより形成されるポンプ室を伸縮駆動するための駆動用素子が、導電性高 分子成形品の長軸が前記ポンプ室の伸縮方向と一致するように設けられた請求の範 囲第 10項に記載のポンプ。
[15] 前記導電性高分子成型品が IVの電圧印加により、 0. 5秒当たりの伸び率が 0. 5% 以上の導電性高分子を含む請求の範囲第 2項に記載のポンプ。
[16] 前記導電性高分子成型品が、電解重合法による導電性高分子の製造方法により 得られた導電性高分子を含み、前記電解重合法が、エーテル結合、エステル結合、 カーボネート結合、ヒドロキシル基、ニトロ基、スルホン基及び-トリル基のうち少なくと も 1つ以上の結合あるいは官能基を含む有機化合物及び Z又はハロゲンィ匕炭化水 素を溶媒として含む電解液を用い、前記電解液中にトリフルォロメタンスルホン酸ィ オン及び Zまたは中心原子に対してフッ素原子を複数含むァ-オンを含む導電性 高分子の製造方法により得られた前記導電性高分子を含む請求の範囲第 1項に記 載のポンプ。
[17] 前記導電性高分子成型品が、電解重合法を用いた導電性高分子の製造方法であ つて、該電解重合法が、ァ-オンとして、上記のトリフルォロメタンスルホン酸イオン及 び Zまたは中心原子に対してフッ素原子を複数含むァニオンの替りに、化学式(1)
(C F SO ) (C F SO ) N— (1)
n (2n+ l) 2 m (2m+ l) 2
(ここで、 n及び mは任意の整数。 )
で表されるパーフルォロアルキルスルホ二ルイミドイオンを含む電解液を用いた導電 性高分子の製造方法によりより得られた導電性高分子を含む請求の範囲第 1項に記 載のポンプ。
[18] 請求の範囲第 1項に記載のポンプについて、前記導電性高分子成型品に正極性電 圧と負極性電圧とを交互に印カロして、電解伸縮運動をさせることにより、前記駆動用 素子を駆動させ、該ポンプを駆動するポンプの駆動方法。
[19] ポンプ室を 2以上備えたダイヤフラムポンプであって、
各ポンプ室の少なくとも一部を構成するダイヤフラムを備え、
該ダイヤフラムが導電性高分子膜を備え、
2以上のダイヤフラムが面する閉空間に電解液が満たされ、
各ダイヤフラムがダイヤフラムを挟んで該閉空間の反対側にポンプ室をそれぞれ備 え、各ダイヤフラムが導電性高分子膜を該電解液に接するようにそれぞれ含むダイ ャフラムポンプ。
[20] 互いに対向するように配置した対のダイヤフラムを 1以上備え、対のダイヤフラム同士 が接続されて 、な 、請求の範囲第 19項に記載のダイヤフラムポンプ。
[21] 前記導電性高分子成型品が IVの電圧印加により、 0. 5秒当たりの伸び率が 0. 5% 以上の導電性高分子を含む請求の範囲第 19項に記載のポンプ。
[22] 前記導電性高分子成型品が、電解重合法による導電性高分子の製造方法により 得られた導電性高分子を含み、前記電解重合法が、エーテル結合、エステル結合、 カーボネート結合、ヒドロキシル基、ニトロ基、スルホン基及び-トリル基のうち少なくと も 1つ以上の結合あるいは官能基を含む有機化合物及び Z又はハロゲンィ匕炭化水 素を溶媒として含む電解液を用い、前記電解液中にトリフルォロメタンスルホン酸ィ オン及び Zまたは中心原子に対してフッ素原子を複数含むァ-オンを含む導電性 高分子の製造方法により得られた前記導電性高分子を含む請求の範囲第 19項に 記載のポンプ。
[23] 前記導電性高分子成型品が、電解重合法を用いた導電性高分子の製造方法であ つて、該電解重合法が、ァ-オンとして、上記のトリフルォロメタンスルホン酸イオン及 び Zまたは中心原子に対してフッ素原子を複数含むァニオンの替りに、化学式(1) (C F SO ) (C F SO ) N— (1)
n (2n+ l) 2 m (2m+ l) 2
(ここで、 n及び mは任意の整数。 )
で表されるパーフルォロアルキルスルホ二ルイミドイオンを含む電解液を用いた導電 性高分子の製造方法により得られた導電性高分子を含む請求の範囲第 19項に記 載のポンプ。
[24] ダイヤフラムポンプの駆動方法であって、
前記ダイヤフラムポンプは、
ポンプ室が 2以上設けられ、
各ポンプ室の少なくとも一部がダイヤフラムで構成され、
該ダイヤフラムが導電性高分子膜を含み、
2以上のダイヤフラムが面する閉空間に電解液が満たされ、
各ダイヤフラムがダイヤフラムを挟んで該閉空間の反対側にポンプ室をそれぞれ備 え、
各ダイヤフラムが導電性高分子膜を該電解液に接するようにそれぞれ含むダイヤフ ラムポンプであり、
一方のダイヤフラムの駆動と他方のダイヤフラムの駆動とが吸入一吐出周期における 逆位相となるように、一方の導電性高分子膜に印加される電圧の逆電圧が他方の導 電性高分子膜に印加されるように電圧を印加し、
それぞれの印加電圧の極性を正負交互に印加することで連続的に駆動させるダイヤ フラムポンプの駆動方法。
[25] 電圧を印加することにより前記導電性高分子膜が収縮運動をして一方のポンプ室の 容積を縮小し、該収縮運動が該電圧と逆極性の電圧を印加することにより伸張する 導電性高分子膜を、電解液を介して、引張ることにより、他方のポンプ室の容積を増 大させる請求の範囲第 24項に記載のダイヤフラムポンプの駆動方法。
[26] 正極性電圧の印加と負極性電圧の印加との周期が 1秒当たり 1以上である請求の範 囲第 24項に記載のダイヤフラムポンプの駆動方法。
[27] 前記ダイヤフラムが電解液を介して対向するように配置された対を一対以上有し、対 の一方のダイヤフラムと他方のダイヤフラムとが吸入一吐出周期における逆位相とな るように連続的に駆動させる請求の範囲第 24項に記載のダイヤフラムポンプの駆動 方法。
PCT/JP2004/015832 2003-10-30 2004-10-26 導電性高分子を含むポンプ及びその駆動方法 WO2005042974A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003371216 2003-10-30
JP2003-371216 2003-10-30
JP2003-428899 2003-12-25
JP2003428899 2003-12-25
JP2004-154138 2004-05-25
JP2004154138A JP4619690B2 (ja) 2003-10-30 2004-05-25 導電性高分子を含むダイヤフラムポンプ及びその駆動方法

Publications (1)

Publication Number Publication Date
WO2005042974A1 true WO2005042974A1 (ja) 2005-05-12

Family

ID=34557010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015832 WO2005042974A1 (ja) 2003-10-30 2004-10-26 導電性高分子を含むポンプ及びその駆動方法

Country Status (2)

Country Link
JP (1) JP4619690B2 (ja)
WO (1) WO2005042974A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8062007B2 (en) 2008-07-08 2011-11-22 Panasonic Corporation Fluid transporting device using conductive polymer
US8449273B2 (en) 2008-08-26 2013-05-28 Panasonic Corporation Fluid transporting device using conductive polymer
WO2017102209A1 (de) * 2015-12-17 2017-06-22 Ksb Aktiengesellschaft Pumpe mit verformbarem förderelement
US10653823B2 (en) 2008-04-04 2020-05-19 3M Innovative Properties Company Wound dressing with micropump

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5186158B2 (ja) * 2007-08-30 2013-04-17 東海ゴム工業株式会社 アクチュエータ
CN102817818A (zh) * 2012-08-30 2012-12-12 清华大学 一种用于双流体同步传输的电解微泵
WO2014148103A1 (ja) * 2013-03-22 2014-09-25 株式会社村田製作所 圧電ブロア
WO2015042235A1 (en) * 2013-09-20 2015-03-26 Gojo Industries, Inc. Dispenser pump using electrically activated material
KR102275106B1 (ko) * 2020-06-30 2021-07-07 한국기술교육대학교 산학협력단 폴리염화비닐 겔 기반의 마이크로 펌프

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11169394A (ja) * 1997-12-15 1999-06-29 Keiichi Kanefuji 金属電極を表面に有する人工筋肉体
JPH11169393A (ja) * 1997-12-15 1999-06-29 Keiichi Kanefuji 人工筋肉体
JP2001026000A (ja) * 1999-05-13 2001-01-30 Matsushita Electric Ind Co Ltd 有機分子膜を含む構造体およびその利用
JP2003152234A (ja) * 2001-11-15 2003-05-23 Sony Corp アクチュエータ及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11169394A (ja) * 1997-12-15 1999-06-29 Keiichi Kanefuji 金属電極を表面に有する人工筋肉体
JPH11169393A (ja) * 1997-12-15 1999-06-29 Keiichi Kanefuji 人工筋肉体
JP2001026000A (ja) * 1999-05-13 2001-01-30 Matsushita Electric Ind Co Ltd 有機分子膜を含む構造体およびその利用
JP2003152234A (ja) * 2001-11-15 2003-05-23 Sony Corp アクチュエータ及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10653823B2 (en) 2008-04-04 2020-05-19 3M Innovative Properties Company Wound dressing with micropump
US8062007B2 (en) 2008-07-08 2011-11-22 Panasonic Corporation Fluid transporting device using conductive polymer
US8449273B2 (en) 2008-08-26 2013-05-28 Panasonic Corporation Fluid transporting device using conductive polymer
WO2017102209A1 (de) * 2015-12-17 2017-06-22 Ksb Aktiengesellschaft Pumpe mit verformbarem förderelement

Also Published As

Publication number Publication date
JP2005207406A (ja) 2005-08-04
JP4619690B2 (ja) 2011-01-26

Similar Documents

Publication Publication Date Title
CN106536930B (zh) 微泵系统
US11725640B2 (en) Electroosmotic pump
WO2005042974A1 (ja) 導電性高分子を含むポンプ及びその駆動方法
US9039389B2 (en) Pulse activated actuator pump system
US7322803B2 (en) Pumps with diaphragms bonded as bellows
US9199201B2 (en) Self contained electroosmotic pump and method of making thereof
EP2626094B1 (en) Drug delivery device with electrically controlled volume changing means
US9515336B2 (en) Diaphragm pump for a fuel cell system
Sheybani et al. A MEMS electrochemical bellows actuator for fluid metering applications
JP2021534345A (ja) 電気浸透圧ポンプ
CN1249899C (zh) 微型电渗泵
CN102822252A (zh) 带有气体减排部件的高表面积聚合物致动器
WO2005120728A1 (ja) 流体振動装置及びその駆動方法
KR20170083390A (ko) 약액 주입 장치
JP2010175360A (ja) マイクロ化学チップ
JP6108446B2 (ja) マイクロ流路内の液体を輸送するデバイスおよび方法
CN110665089B (zh) 一种血液输送用静电蠕动泵
CN114632563B (zh) 一种液滴微流控芯片及微液滴的制备方法
KR100650547B1 (ko) 벤츄리 타입 마이크로 펌프 및 이를 이용한 연료전지시스템
RU2782876C1 (ru) Бесклапанный мембранный микрофлюидный насос
US20230077910A1 (en) Electroosmotic pump
Ma et al. Resonantly driven piezoelectric micropump with PDMS check valves and compressible space
Wang et al. A Stretchable Soft Pump Driven by a Heterogeneous Dielectric Elastomer Actuator
Lin et al. A Compact, High‐Performance, and Deformation‐Resilient Trielectrode Electrostatic Soft Pump for Soft Robotics
JPH0451965A (ja) 輸液袋および該輸液袋を用いた輸液装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase