WO2009152775A1 - 一种微型泵 - Google Patents

一种微型泵 Download PDF

Info

Publication number
WO2009152775A1
WO2009152775A1 PCT/CN2009/072344 CN2009072344W WO2009152775A1 WO 2009152775 A1 WO2009152775 A1 WO 2009152775A1 CN 2009072344 W CN2009072344 W CN 2009072344W WO 2009152775 A1 WO2009152775 A1 WO 2009152775A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
output
input
micropump according
micropump
Prior art date
Application number
PCT/CN2009/072344
Other languages
English (en)
French (fr)
Inventor
罗七一
王勤
曾志海
刘宇程
杨平中
Original Assignee
微创医疗器械(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 微创医疗器械(上海)有限公司 filed Critical 微创医疗器械(上海)有限公司
Publication of WO2009152775A1 publication Critical patent/WO2009152775A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps

Definitions

  • This invention relates to pumps, and more particularly to a micropump. Background technique
  • FIG. 1 is a structural view of a conventional piezoelectric ceramic pump.
  • the prior piezoelectric ceramic pump 10 includes a piezoelectric ceramic sheet 1 1 (sometimes referred to as a piezoelectric ceramic), a variable space chamber 12, an input passage 13, an input check valve 14, an output check valve 15, and an output passage 16 .
  • the piezoelectric ceramic sheet 1 1 may be a multi-layered wafer shape, and the piezoelectric ceramic sheet 11 may be made of a material such as copper or stainless steel, and the substrate is covered with a layer of piezoelectric ceramic material, and the piezoelectric ceramic material is further covered with a layer.
  • a conductive material which may be silver.
  • the substrate and the conductive material overlying the piezoelectric ceramic material are respectively connected to two poles of an alternating current power source. After the energization, due to the characteristics of the piezoelectric ceramic material stretching and contracting in the electric field, the piezoelectric ceramic sheet 11 alternately bulges upward and downward with the alternating current.
  • the first working state of the piezoelectric ceramic pump is that the piezoelectric ceramic sheet 11 is convex upward.
  • the space of the variable space cavity 12 composed of the piezoelectric ceramic piece 11 and the piezoelectric ceramic pump 10 housing becomes large, so that the variable space cavity 12 is inside.
  • the pressure is getting smaller.
  • the input check valve 14 is opened to allow liquid to enter the variable space chamber 12 from the input passage 13 via the input check valve 14.
  • the output check valve 15 is closed so that liquid does not flow from the output passage 16 into the variable space chamber 12.
  • FIG. 3 a second operational state diagram of a prior art piezoelectric ceramic pump.
  • the piezoelectric ceramic pump of the prior art is the second work in which the piezoelectric ceramic sheet 11 is recessed downward.
  • the piezoelectric ceramic plate of the prior art When the piezoelectric ceramic plate of the prior art is in the second working state, when the piezoelectric ceramic piece 11 is recessed downward, the space of the variable space cavity 12 becomes small, and the pressure in the variable space cavity 12 becomes large. .
  • the output check valve 15 opens, and the liquid passes from the variable space chamber 12 through the output check valve 15 to the output passage 16.
  • the input check valve 14 When available When the pressure of the variable space chamber 12 is greater than the pressure of the input passage 13, the input check valve 14 is closed so that the liquid does not flow backward.
  • the input check valve 14 and the output check valve 15 are arranged in series in the same direction. Since the input check valve 14 and the output check valve 15 are both semi-floating check valves, when the pressure difference between the input channel I 3 and the output channel 16 is small, it is difficult to ensure the input check valve 14 or the output one-way. Valve 15 is well enclosed. At the same time, in order to ensure the tight sealing of the two check valves, the processing precision of the valve plate and the corresponding plane is generally required, which is not conducive to mass industrial production.
  • an embodiment of the present invention provides a micropump, the micropump including an actuating device, a space variable cavity, and an input channel and an output channel respectively connected to the space variable cavity;
  • a valve membrane responsive to actuation of the actuator is mounted in the input channel and/or the output channel.
  • the width of the valve membrane is greater than the width of the input channel and/or the output channel.
  • the broad film is specifically an elastic material.
  • the elastic valve membrane is a pre-tensioned valve membrane on both sides.
  • valve membrane comprises a first valve membrane and a second valve membrane
  • the first diaphragm and the input channel form an input unidirectional width
  • the second diaphragm and the output channel constitute an output check valve
  • the micropump further comprises a valve piece, the valve piece is installed in the input channel to form an input one-way, and the second valve film and the output channel form an output one-way valve;
  • valve plate is mounted in the output passage to form an output check valve; the first broad membrane and the input passage form an input check valve.
  • the input channel is disposed on the output side of the input channel adjacent to the valve film, and the first concave is disposed Slot.
  • the input channel of the input channel adjacent to the valve film is disposed on the input side of the first valve block that is smaller than the first 1HJ slot.
  • the output channel is provided with a second recess on the output side of the output channel adjacent to the valve film.
  • the output channel of the output channel adjacent to the valve film is disposed on the input side of the second valve that is smaller than the second groove.
  • the output channel is provided with a second recess on the output side of the output channel adjacent to the valve film.
  • the input channel and the input channel input side adjacent to the valve film are disposed to be smaller than the first valve stage of the first groove.
  • the output channel of the output channel adjacent to the valve film is disposed on the input side of the second valve that is smaller than the second groove.
  • the first valve table height is greater than or equal to or smaller than the second valve table height.
  • the first annular groove is opened outside the first wide platform.
  • a second annular groove is formed outside the second valve table.
  • the actuating device is a piezoelectric ceramic sheet.
  • the piezoelectric ceramic piece is circular, and the pump upper body is provided with a mounting groove for mounting the piezoelectric ceramic piece.
  • the actuating device is a magnetostrictive device, and a thin piece is fixed under the magnetic device.
  • the actuating device is a cam motor with a sheet fixed under the cam motor.
  • the actuating device is an electromagnet, and a sheet is fixed under the electromagnet.
  • the micropump is for an insulin pump.
  • the micro pump of the embodiment of the invention comprises an actuating device, a space variable cavity and an input channel and an output channel respectively connected to the space variable cavity; the input channel and the output channel are mounted with a responsive actuating device Action valve membrane.
  • the valve when the input channel input side, that is, the input channel inlet side or the intake side pressure is greater than the input channel output side, that is, the sum of the pressure on the liquid outlet side or the outlet side of the input channel and the diaphragm tension, the valve The seal of the membrane to the input channel is broken, the liquid or gas will be from the input channel The input side enters and then flows out from the output channel output side.
  • the input side input side pressure is less than the sum of the input channel output side pressure and the broad film tension, the wide film seals the input channel, and liquid or gas cannot pass through the input channel, thus forming an input form.
  • the valve The same is true for the sealing and opening process of the output channel, but the direction is reversed.
  • the micropump Due to the tension of the valve membrane, it can be well fixed in the micropump, and because of the flexibility of the valve membrane, especially when the liquid or gas in the micropump applies a pressure in the closing direction to it, it can be well ensured. shut down.
  • the micropump according to the embodiment of the present invention can ensure that the input check valve and the output check valve can be effectively opened and closed even when the micro-pump input channel and the contact surface of the output channel and the valve film are not made accurately.
  • Figure 1 is a structural view of a conventional piezoelectric ceramic pump
  • FIG. 2 is a first working state diagram of a conventional piezoelectric ceramic pump
  • Figure 3 is a second working state diagram of the prior piezoelectric ceramic pump
  • Figure 4 is a structural view of a first embodiment of the micropump of the present invention.
  • Figure 5 is a cross-sectional view taken along line A-A' of Figure 4.
  • Figure 6 is a first working state diagram of the first embodiment of the micropump according to the present invention
  • Figure 7 is a second working state diagram of the first embodiment of the micropump according to the present invention
  • a structural view of a second embodiment of the pump
  • Figure 9 is a cross-sectional view taken along line B-B of Figure 8.
  • FIG. 10 is a first working state diagram of a second embodiment of the micropump according to the present invention
  • FIG. 1 is a second working state diagram of a second embodiment of the micropump according to the present invention.
  • the present invention provides a micropump for achieving reliable control of input unidirectional and output check valves.
  • FIG. 4 is a structural view of a first embodiment of the micropump according to the present invention
  • FIG. 5 is a cross-sectional view taken along line AA of FIG.
  • the micropump according to the first embodiment of the present invention includes an actuating device, a space variable cavity 2, and an input channel and an output channel respectively connected to the space variable cavity 2.
  • a wide membrane 7 responsive to the actuation of the actuator is mounted in the input channel and the output channel.
  • the micropump specifically includes an actuating device, a pump upper body 3 connected to the actuating device, and a pump lower body 4 connected to the upper pump body 3, and a pump upper body 3 and the pump lower body 4 Between the valve membrane 7.
  • the actuating device is specifically realized by a piezoelectric ceramic sheet 1.
  • the upper pump body 3 is provided with a mounting groove 31 for mounting the piezoelectric ceramic sheet 1.
  • the pump upper body 3 may further define a third recess 32 concentric with the mounting slot 3 1 , and the third recess 32 and the mounting slot 31 form an annular step 3 1a, the piezoelectric The ceramic sheet 1 is sealingly mounted with the annular step 31a, and the piezoelectric ceramic sheet 1 and the third recess 32 form the space variable cavity 2.
  • the piezoelectric ceramic sheet 1 is a multi-layered wafer shape, and the piezoelectric ceramic sheet 1 may be made of a material such as copper or stainless steel, and the substrate is coated with a piezoelectric ceramic material, and the piezoelectric ceramic material is further covered with a conductive material. .
  • the conductive material may be silver.
  • the substrate and the conductive material coated on the piezoelectric ceramic material are respectively connected to two poles of an alternating current power source. After the energization, due to the characteristics of the piezoelectric ceramic material stretching and contracting in the electric field, the piezoelectric ceramic sheet 1 alternately performs upward and downward concave movements with alternating current.
  • the width of the valve membrane 7 may be slightly larger than the width of the input passage and the output passage to ensure sealing of the inlet and outlet passages of the diaphragm 7 .
  • the upper pump body 3 defines a pump upper body input passage 5a and a pump upper body output passage 6a that communicate with the space variable chamber 2.
  • a pump lower body input passage 5b and a pump lower body output passage 6b which communicate with the space variable chamber 2 are opened.
  • the valve ⁇ 3 ⁇ 4 7 forms an input check valve with the pump upper body input passage 5a and the pump lower body input passage 5b.
  • the valve membrane 7 and the pump upper body output passage 6a and the pump lower body output passage 6b constitute an output check valve.
  • the valve film 7 may specifically be made of an elastic material.
  • the valve film 7 can be assembled between the upper pump body 3 and the lower pump body 4 by bonding or clamping. Since the diaphragm 7 is bonded or clamped between the upper body 3 of the pump and the lower body 4 of the pump, the position of the valve plate in the valve chamber is not generated in the prior art. Unstable instability may occur, and the diaphragm may also have a preload to improve the performance of the piezoelectric ceramic pump.
  • the valve membrane 7 can also have a preload force to better stabilize the position of the diaphragm 7 to make the operation of the micro piezoelectric ceramic pump of the embodiment of the present invention more stable. Due to the use of the membrane valve with preload force, the production precision of the pump will be greatly relaxed, creating conditions for industrial production.
  • the diaphragm 7 When assembled, the diaphragm 7 can be strained to increase the preload of the input check valve and the output check valve.
  • the input check valve and the output check valve can share a diaphragm 7 .
  • the input check valve and the output one-way valve can also use separate two diaphragms, a first diaphragm and a second diaphragm.
  • the first valve film and the input channel form an input unidirectionally wide.
  • the second broad membrane and the output passage form an output check valve.
  • the micropump may further comprise an output one-way valve from the second valve membrane and the output passage, and a valve plate is mounted in the input passage to form an input one-way valve.
  • the micropump may further comprise an input check valve from the first valve membrane and the input passage, and the valve plate is mounted in the output passage to form an output check valve.
  • the pump upper body 3 opens a first recess 5a under the pump upper body input passage 5a, so that the valve membrane 7 can be under the pressure of external liquid or gas.
  • a deformation occurs in the range of the first groove 5al. Thereby, the deformation range of the valve film 7 as the input check valve is effectively ensured.
  • the pump lower body 4 also defines a second recess 6b1 above the pump lower body output passage 6b, so that the valve membrane 7 can be under the pressure of external liquid or gas.
  • the deformation occurs in the range of the two grooves 6b1. Thereby, the deformation range of the diaphragm 7 as the output check valve is effectively ensured.
  • the first operational state of the first embodiment of the micropump according to the present invention is a state in which the input check valve is opened and the output check valve is closed.
  • the space of the spatially variable cavity 2 composed of the piezoelectric ceramic sheet 1 and the upper pump body 3 becomes large, and the space variable cavity is 4 ⁇ The pressure inside 2 becomes smaller.
  • the pressure of the pump lower body input passage 5b is greater than the pressure of the space variable chamber 2
  • the space variable chamber 2 generates a negative pressure, so that liquid or gas is pushed away from the pump lower body input passage 5b by the valve membrane 7,
  • the valve membrane 7 is capable of deforming in the space of the first recess 5al, i.e., opening the input check valve such that liquid or gas enters the variable space chamber 2 through the input check valve.
  • the diaphragm 7 will be tightly closed.
  • the output is unidirectional. Liquid or gas cannot enter the space variable chamber 2 from the pump lower body output passage 6b through the wide membrane 7 (i.e., the output check valve).
  • the valve film 7 resumes the shape of the pump lower body input passage 5b and the upper pump input passage 5a, that is, the input check valve is closed, so that the liquid in the space variable chamber 2 It is not possible to return from the pump upper body to the pump lower body input passage 5b via the pump upper body input passage 5a.
  • FIG. 7 there is shown a second operational state diagram of a first embodiment of the micropump of the present invention.
  • the second working state of the first embodiment of the micropump of the present invention is a state in which the input check valve is closed and the output check valve is opened.
  • the space variable chamber 2 becomes smaller in volume and pressure is increased.
  • This pressure allows the diaphragm to close the pump lower input passage 5b, which seals the input check valve.
  • this pressure can push the diaphragm 7 at the pump upper body output passage 6a, and the diaphragm 7 can be deformed in the space of the second recess 6b1, so that the liquid or gas reaches the pump lower output passage 6b.
  • the micropump according to the embodiment of the invention can ensure the normal operation of the pump upper body and the pump lower body processed by the general injection molding method.
  • the micropump according to the embodiment of the invention ensures the position of the valve is stabilized by using the tensioned valve film, and the pressure of the closing direction of the valve film 7 during the operation of the pump is achieved by the flexibility of the valve film 7 to achieve a perfect fit and seal. Both the input check valve and the output check valve can be reliably opened and closed.
  • FIG. 8 and FIG. 9 is a structural view of a second embodiment of the micropump according to the present invention; and FIG. 9 is a cross-sectional view taken along line BB of FIG.
  • the micropump of the present invention relative to a second embodiment of the first embodiment the pump 4 can enter the lower body 5b is provided above the channel is smaller than the first groove 5al first valve stage 41 of the pump lower body.
  • the first valve stage 41 has a through hole communicating with the pump lower body input passage 5b.
  • the through hole in the first valve stage 41 is the same as the lower pump input channel 5b.
  • the pump upper body 3 may also be provided with a second valve table 33 smaller than the second recess 6b1 under the pump upper body output passage 6a.
  • the second valve stage 33 has a through hole communicating with the pump upper body output passage 6a.
  • the through hole in the second bay 33 is the same as the upper pump output passage 6a.
  • the micropump according to the embodiment of the present invention can only provide the second valve table 33, so that the sealing performance of the check valve can be more reliably ensured when the pump body manufacturing precision is not high, especially in the case where the outlet pressure difference is not large.
  • the micropump is made to have good stability.
  • the micropump according to the embodiment of the present invention can also provide only the first valve table 41, so that the sealing performance of the check valve can be more reliably ensured when the pump body manufacturing precision is not high, especially in the case where the inlet pressure difference is not large.
  • the micropump is made to have good stability.
  • the micropump according to the embodiment of the present invention may also be provided with the first valve stage 41 and the second valve stage 33 at the same time.
  • the valve film 7 can be made to have a greater tension and can be better fitted to the corresponding valve table. This makes it possible to more reliably ensure the tightness of the check valve when the pump body manufacturing accuracy is not high, especially in the case where the inlet and outlet pressure difference is not large, so that the micropump has better stability.
  • the height of the first valve table 41 may be the same as or different from the height of the second valve table 33 according to actual needs. Even a valve table can have a height of zero. When the height of both valve stages is 0, it is the case of the first embodiment.
  • Fig. 10 is a first working state diagram of a second embodiment of the micropump according to the present invention
  • Fig. 11 is a second working state diagram of the second embodiment of the micropump according to the present invention.
  • the first working state of the second embodiment of the micropump of the present invention is a state in which the input check valve is opened and the output check valve is closed.
  • the space of the space-variable cavity 2 composed of the piezoelectric ceramic piece 1 and the upper pump body 3 becomes large, and the pressure in the space-variable cavity 2 becomes small.
  • the pressure of the pump lower body input passage 5b is greater than the pressure of the space variable chamber 2, the space variable chamber 2 generates a negative pressure.
  • Deformation occurs in the space of 5al, that is, the input check valve is opened, so that the liquid or gas passes through the Enter the check valve into the space variable chamber 2 .
  • the second valve table 33 increases the preload force of the valve film 7, effectively ensuring the closed closing of the output check valve. Liquid or gas cannot enter the space variable chamber 2 from the pump lower body output passage 6b through the diaphragm 7 (i.e., the output check valve).
  • the valve film 7 resumes the shape of closing the passage of the pump lower body input passage 5b and the upper pump input passage 5a, that is, the input check valve is closed, the first valve table 41, the preload of the valve film 7 is increased, and the closed closing of the input check valve is effectively ensured.
  • the liquid in the space variable chamber 2 cannot be returned from the pump upper body through the input passage 5a to the pump lower body input passage 5b.
  • Fig. 11 shows a second working state of the second embodiment of the micropump according to the present invention, that is, the state in which the input one-way wide is closed and the output one-way valve is opened.
  • the space variable chamber 2 becomes smaller in volume and pressure is increased.
  • This pressure allows the diaphragm to close the lower input passage 6a of the pump, that is, to seal the input check valve.
  • this pressure can push the diaphragm 7 at the upper output passage 6a of the pump, and the diaphragm 7 can be deformed in the space of the second recess 6b1, so that the liquid or gas reaches the pump lower output passage 6b.
  • the third embodiment of the micropump of the present invention is further provided with a first annular groove at a position corresponding to the first recess 5al of the pump lower body 4, and the first annular groove.
  • the outer diameter dimension is greater than or equal to the outer dimension of the first recess 5al.
  • the first annular groove is opened for the upper body of the pump and the lower body of the pump to prevent the adhesive from flowing to the working surface of the input check valve while being fixed by adhesion.
  • a second annular groove may be opened at a position corresponding to the pump upper body 3 and the second groove 6b1, and an outer diameter of the second annular groove is greater than or equal to The outer dimensions of the second recess 6b1.
  • the second annular groove is opened for the upper body of the pump and the lower body of the pump to prevent the adhesive from flowing to the working surface of the output check valve while being fixed by adhesion.
  • the actuating device may further be a magnetostrictive device, the magnetostrictive device includes a magnetostrictive material and a coil, and the coil is wound around the magnetostrictive material, and the magnetostrictive A sheet is fixed under the material.
  • the actuating device of the embodiment of the present invention may further be a cam motor, the cam motor including a cam and a motor, wherein the cam is connected to an actuator of the motor, and a sheet is fixed under the cam.
  • the actuating device may further be an electromagnet comprising an electric soft iron and a coil, the coil being wound around the electric soft iron, and a sheet being fixed under the electric soft iron.
  • micropump according to the embodiment of the present invention can be applied to medical fields such as an insulin syringe or an analgesic pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Description

一种微型泵
技术领域
本发明涉及泵, 特别涉及一种微型泵。 背景技术
现有的微型泵, 包括压电陶瓷泵。 参阅图 1, 图 1为现有的压电陶瓷 泵的结构图。 现有的压电陶瓷泵 10包括压电陶瓷片 1 1 (有时简称压电陶 瓷)、 可变空间腔体 12、 输入通道 13、 输入单向阀 14、 输出单向阀 15、 及输出通道 16。
压电陶瓷片 1 1可为多层圓片形, 压电陶瓷片 11的基材可为铜或不锈 钢等材料, 基材上覆有一层压电陶瓷材料, 压电陶瓷材料上面还覆有一层 导电材料, 所述导电材料可以是银。 所述基材和所述压电陶瓷材料上面覆 的导电材料分别接交流电源的两极。 通电后, 由于压电陶瓷材料在电场中 伸缩的特性, 因此, 所述压电陶瓷片 11 将随交流电交替进行向上凸起和 向下凹入的动作。
参见图 2 , 现有的压电陶瓷泵第一种工作状态图。 现有的压电陶瓷泵 第一种工作状态是压电陶瓷片 11向上凸起的状态。
现有的压电陶瓷泵处于第一种工作状态时, 由压电陶瓷片 11 与压电 陶瓷泵 10 壳体构成的可变空间腔体 12的空间变大, 使可变空间腔体 12 内的压力变小。 当输入通道 13的压力大于可变空间腔体 12的压力, 输入 单向阀 14打开, 使液体从输入通道 13 , 经输入单向阀 14进入可变空间腔 体 12。 同时当可变空间腔体 12的压力小于输出通道 16的压力时, 关闭输 出单向阀 15 , 使液体不会从输出通道 16倒流入可变空间腔体 12。
参见图 3, 现有的压电陶瓷泵第二种工作状态图。 现有的压电陶瓷泵 第二种工作是压电陶瓷片 11向下凹入的状态。
现有的压电陶瓷泵处于第二种工作状态时, 当压电陶瓷片 11 向下凹 入时, 可变空间腔体 12的空间变小, 使可变空间腔体 12内的压力变大。 当可变空间腔体 12的压力大于输出通道 16的压力时, 输出单向阀 15打 开, 液体从可变空间腔体 12 , 经输出单向阀 15、 到达输出通道 16。 当可 变空间腔体 12的压力大于输入通道 13的压力时, 关闭输入单向阀 14使 液体不会倒流。
对于液体的流动来讲, 输入单向阀 14和输出单向阀 15是同方向串联 配置。 由于输入单向阀 14和输出单向阀 15均为半浮动式单向阀, 当输入 通道 I 3和输出通道 16两边的压力差不大时, 很难保证输入单向阀 14或 者输出单向阀 15 良好封闭。 同时, 为了保证两个单向阀的严密密封, 一 般对于阀片和对应的平面的加工精度都要求很高, 不利于大批量工业生 产。
因此, 如何提供一种微型泵, 保证输入单向阀和输出单向岡控制可靠 性, 是本领域技术人员需要解决的技术问题。 发明内容
本发明的目的是提供一种微型泵, 用于实现输入单向阀和输出单向阀 的可靠控制。
为解决上述技术问题, 本发明实施例提供一种微型泵, 所述微型泵包 括致动装置、 空间可变腔体以及分别与空间可变腔体相连的输入通道和输 出通道;
所述输入通道和 /或输出通道中安装有响应致动装置动作的阀膜。 优选地, 所述阀膜的宽度大于所述输入通道和 /或所述输出通道的宽 度。
优选地, 所述阔膜具体为弹性材料。
优选地, 所述弹性阀膜为两边预拉紧的阀膜。
优选地, 所述阀膜包括第一阀膜和第二阀膜;
所述第一岡膜和所述输入通道组成输入单向阔 , 所述第二阃膜和所述 输出通道组成输出单向阀。
优选地, 所述微型泵还包括阀片, 所述阀片安装在输入通道中, 形成 输入单向岡, 所述第二阀膜和所述输出通道组成输出单向阀;
或, 所述阀片安装在输出通道中, 形成输出单向阀; 所述第一阔膜和 所述输入通道组成输入单向阀。
优选地, 所述输入通道与所述阀膜相邻的输入通道输出侧设置第一凹 槽。
优选地, 所述输入通道与所述阀膜相邻的输入通道输入侧设置小于所 述第一 1HJ槽的第一阀台。
优选地, 所述输出通道与所述阀膜相邻的输出通道输出侧设置第二凹 槽。
优选地, 所述输出通道与所述阀膜相邻的输出通道输入侧设置小于所 述第二凹槽的第二阀台。
优选地, 所述输出通道与所述阀膜相邻的输出通道输出侧设置第二凹 槽。
优选地, 所述输入通道与所述阀膜相邻的输入通道输入侧设置小于所 述第一凹槽的第一阀台。
优选地, 所述输出通道与所述阀膜相邻的输出通道输入侧设置小于所 述第二凹槽的第二阀台。
优选地, 所述第一阀台高度大于或等于或小于所述第二阀台高度。 优选地, 所述第一阔台外开设第一环形槽。
优选地, 所述第二阀台外开设第二环形槽。
优选地, 所述致动装置为压电陶瓷片。
优选地, 所述压电陶瓷片为圓形, 所述泵上体开有用于安装所述压电 陶瓷片的安装槽。
优选地, 所述致动装置为磁致伸缩设备, 所述磁致设备下方固定有薄 片。
优选地,所述致动装置为带凸轮电机,所述凸轮电机下方固定有薄片。 优选地, 所述致动装置是电磁铁, 所述电磁铁下方固定有薄片。
优选地, 所述微型泵用于胰岛素泵。
本发明实施例所述微型泵包括致动装置、 空间可变腔体以及分别与空 间可变腔体相连的输入通道和输出通道; 所述输入通道和输出通道中安装 有可响应致动装置而动作的阀膜。
本发明实施例所述 型泵, 当输入通道输入侧即输入通道进液侧或进 气侧压力大于输入通道输出侧即输入通道出液侧或出气侧的压力与阀膜 张力之和时, 阀膜对输入通道的密封被打破, 液体或者气体将从输入通道 输入侧进入再从所述输入通道输出侧流出。 当输入通道输入侧的压力小于 输入通道输出侧压力与阔膜张力之和时, 阔膜将所述输入通道密封住, 此 时液体或者气体就不能通过所述输入通道, 这样就形成了输入单向阀。 同 理输出通道的密封和打开过程也是一样的, 但方向是相反的。
由于阀膜存在张力, 能够很好地固定在所述微型泵中, 又由于阀膜的 柔韧性, 尤其在所述微型泵内液体或气体对其施加关闭方向的压力时, 能 够很好地保证关闭。 这样, 本发明实施例所述微型泵可以保证所述微型泵 输入通道和输出通道与阀膜的接触面制作精度不高情况下, 也能有效地开 闭输入单向阀和输出单向阀。 附图说明
图 1为现有的压电陶瓷泵的结构图;
图 2为现有的压电陶瓷泵第一种工作状态图;
图 3现有的压电陶瓷泵第二种工作状态图;
图 4为本发明所述微型泵第一种实施例结构图;
图 5为图 4所示 A- A '截面剖视图;
图 6为本发明所述微型泵第一种实施例第一种工作状态图; 图 7为本发明所述微型泵第一种实施例第二种工作状态图; 图 8为本发明所述微型泵第二种实施例结构图;
图 9为图 8所示 B-B截面剖视图;
图 10为本发明所述微型泵第二种实施例第一种工作状态图; 图 1 1为本发明所述微型泵第二种实施例第二种工作状态图。 具体实施方式
本发明提供一种微型泵, 用于实现输入单向岡和输出单向阀的可靠控 制。
为了使本技术领域的技术人员更好地理解本发明方案, 下面结合附图 和具体实施方式对本发明作进一步的详细说明。
参见图 4和图 5, 图 4为本发明所述微型泵第一种实施例结构图; 图 5为图 4所示 A-A截面剖视图。 本发明第一种实施例所述微型泵包括致动装置、 空间可变腔体 2以及 分别与空间可变腔体 2相连的输入通道和输出通道。 所述输入通道和输出 通道中安装有响应致动装置动作的阔膜 7。
所述微型泵具体包括致动装置、 与所述致动装置相连的泵上体 3和与 泵上体 3相连的泵下体 4 , 以及安装在所述泵上体 3和所述泵下体 4之间 的阀膜 7。
所述致动装置具体釆用压电陶瓷片 1实现。 所述泵上体 3开设有用于 安装所述压电陶瓷片 1的安装槽 31。
所述泵上体 3还可以开设与所述安装槽 3 1 同心的第三凹槽 32 , 所述 第三凹槽 32与所述安装槽 3 1之间形成环形台阶 3 1a, 所述压电陶瓷片 1 与所述环形台阶 3 1a密封安装, 所述压电陶瓷片 1与所述第三凹槽 32形 成所述空间可变腔体 2。
压电陶瓷片 1为多层圓片形, 压电陶瓷片 1的基材可为铜或不锈钢等 材料, 基材上覆有一层压电陶瓷材料, 压电陶瓷材料上面还覆有一层导电 材料。 所述导电材料可以是银。
所述基材和所述压电陶瓷材料上面覆的导电材料分别接交流电源的 两极。 通电后, 由于压电陶瓷材料在电场中伸缩的特性, 因此, 所述压电 陶瓷片 1将随交流电交替进行向上凸起和向下凹入的动作。
所述阀膜 7的宽度可以略大于所述输入通道和所述输出通道的宽度, 以保证阀膜 7对输入通道和输出通道的密封。
所述泵上体 3开设与所述空间可变腔体 2相连通的泵上体输入通道 5a 和泵上体输出通道 6a。
在泵下体 4与所述泵上体输入通道 5a的对应位置处, 开设与所述空 间可变腔体 2相连通的泵下体输入通道 5b和泵下体输出通道 6b。
所述阀 ϋ¾ 7与所述泵上体输入通道 5a和泵下体输入通道 5b组成输入 单向阀。 所述阀膜 7与所述泵上体输出通道 6a和泵下体输出通道 6b组成 输出单向阀。
所述阀膜 7具体可以采用弹性材料。 所述阀膜 7可以通过粘接或者夹 紧装配在所述泵上体 3和泵下体 4之间。 由于阀膜 7是粘接或者夹紧装配 在泵上体 3和泵下体 4间的, 因此不会产生现有技术中阀片在阀室中位置 不固定可能带来的不稳定, 同时阀膜还可以有预紧力以改善压电陶瓷泵的 工作性能。
阀膜 7还可以有预紧力, 可以更好地稳定阀膜 7位置使本发明实施例 所述微型压电陶瓷泵的工作更稳定。 由于釆用带预紧力的膜式阀, 将大大 放宽泵的制作精度, 为工业生产创造条件。
阀膜 7在装配时, 可以拉紧变形以增加输入单向阀和输出单向阀的预 紧力。
输入单向阀和输出单向阀可以共用一个阀膜 7。 输入单向阀和输出单 向阀也可以分别使用单独的两个阀膜——第一阀膜和第二阀膜。
所述第一阀膜和所述输入通道组成输入单向阔。 所述第二阔膜和所述 输出通道组成输出单向阀。
当然, 所述微型泵还可以由所述第二阀膜和所述输出通道组成输出单 向阀, 在输入通道中安装阀片, 形成输入单向阀。
所述微型泵还可以由所述第一阀膜和所述输入通道组成输入单向阀, 在输出通道中安装所述阀片, 形成输出单向阀。
本发明第一种实施例所述微型泵, 所述泵上体 3在所述泵上体输入通 道 5a下方开设第一凹槽 5al,使得所述阀膜 7能够在外界液体或者气体的 压力下在所述第一凹槽 5al的范围内产生形变。 从而, 有效地保证了所述 阀膜 7作为输入单向阀的变形范围。
本发明实施例所述微型泵, 所述泵下体 4 在所述泵下体输出通道 6b 上方也开设第二凹槽 6bl , 使得所述阀膜 7能够在外界液体或者气体的压 力下在所述第二凹槽 6bl的范围内产生形变。 从而, 有效地保证了所述阀 膜 7作为输出单向阀的变形范围。
参见图 6 ,该图为本发明所述微型泵第一种实施例第一种工作状态图。 本发明所述微型泵第一种实施例第一种工作状态即输入单向阀打开、 输出单向阀关闭的状态。
压电陶瓷片 1通电后, 当压电陶瓷片 1向上凸起时, 由压电陶瓷片 1 与泵上体 3构成的空间可变腔体 2的空间变大, 4吏空间可变腔体 2内的压 力变小。 当泵下体输入通道 5b的压力大于空间可变腔体 2的压力时, 空 间可变腔体 2产生负压,使液体或者气体从泵下体输入通道 5b推开阀膜 7, 阀膜 7能够在第一凹槽 5al的空间内产生变形, 即打开输入单向阀, 使得 液体或者气体经过所述输入单向阀进入空间可变腔体 2。 此时由于空间可 变腔体 2存在负压, 在泵下体输出通道 6b的压力大于泵上体输出通道 6a 的压力差作用下,加上阀膜 7的柔韧性, 阀膜 7将紧密地关闭输出单向阔。 液体或者气体不能从泵下体输出通道 6b通过阔膜 7 (即输出单向阀)进入 空间可变腔体 2。
当压电陶瓷片 1达到向上凸起到最高点时, 阀膜 7恢复形状关闭泵下 体输入通道 5b与泵上体输入通道 5a即关闭了输入单向阀 , 使得空间可变 腔体 2 内液体不能从泵上体经泵上体输入通道 5a返回到泵下体输入通道 5b。
参见图 7,该图为本发明所述微型泵第一种实施例第二种工作状态图。 本发明所述微型泵第一种实施例第二种工作状态即输入单向阀关闭、 输出单向阀打开的状态。
当压电陶瓷片 1回复平直或继续向下弯曲时, 空间可变腔体 2体积变 小, 压力增高。 此压力能够更好地使阀膜封闭泵下体输入通道 5b , 即密封 住输入单向阀。 同时, 此压力能够推开泵上体输出通道 6a处的阀膜 7, 阀 膜 7能够在第二凹槽 6bl的空间内产生变形, 使得液体或者气体到达泵下 体输出通道 6b。
当压电陶瓷片 1向下变形达到最低点时, 阀膜 7恢复形状, 关闭输出 单向阀。 使得液体不能从泵下体输出通道 6b通过输出单向阀流向泵上体 输出通道 6a到达空间可变腔体 2。
图 6和图 7所示的两个工作状态结束后, 就完成了本发明第一种实施 例所述微型泵的一个动作周期。
本发明实施例所述微型泵, 能够保证通过一般注塑方式加工出来的泵 上体和泵下体的正常工作。 本发明实施例所述微型泵, 利用拉紧的阀膜保 证阀的位置稳定, 利用阀膜 7的柔韧性在泵工作时的对阀膜 7的关闭方向 的压力达到完美的贴合密封, 使输入单向阀和输出单向阀都能可靠地开 合。
参见图 8和图 9, 为本发明所述微型泵第二种实施例结构图; 图 9为 图 8所示 B-B截面剖视图。 本发明所述微型泵第二种实施例相对第一实施例, 所述泵下体 4可以 在所述泵下体输入通道 5b上方设置有小于所述第一凹槽 5al 的第一阀台 41。 所述第一阀台 41 内具有与所述泵下体输入通道 5b相通的通孔。
优选情况下,所述第一阀台 41内通孔与所述泵下体输入通道 5b相同。 本发明实施例所述微型泵, 所述泵上体 3也可以在所述泵上体输出通 道 6a下方设置一个小于所述第二凹槽 6bl的第二阀台 33。 所述第二阀台 33内具有与所述泵上体输出通道 6a相通的通孔。
优选情况下,所述第二间台 33内通孔与所述泵上体输出通道 6a相同。 本发明实施例所述微型泵可以只设置第二阀台 33 ,这样就能更可靠地 保证在泵体制造精度不高时单向阀的密闭性, 尤其在出口压力差不大的情 况下, 使得所述微型泵具有良好的稳定性。
本发明实施例所述微型泵可以也只设置第一阀台 41,这样就能更可靠 地保证在泵体制造精度不高时单向阀的密闭性, 尤其在入口压力差不大的 情况下, 使得所述微型泵具有良好的稳定性。
本发明实施例所述微型泵也可以同时设置第一阀台 41 和第二阀台 33。 能够使所述阀膜 7得到更大的张力并能够更好地贴合在对应阀台上。 这样就能更可靠地保证在泵体制造精度不高时单向阀的密闭性, 尤其在出 入口压力差不大的情况下, 使得所述微型泵具有更好的稳定性。
根据具体实际需要所述第一阀台 41高度可以与所述第二阀台 33高度 相同也可以不相同。 甚至某一阀台的高度可以为 0。 当两阀台高度都为 0 时就是第一实施例的情况。
参见图 10和图 1 1 ,图 10为本发明所述微型泵第二种实施例第一种工 作状态图; 图 11为本发明所述微型泵第二种实施例第二种工作状态图。
本发明所述微型泵第二种实施例第一种工作状态即输入单向阀打开、 输出单向阀关闭的状态。
当压电陶瓷片 1向上凸起时, 由压电陶瓷片 1与泵上体 3构成的空间 可变腔体 2的空间变大, 使空间可变腔体 2内的压力变小。 当泵下体输入 通道 5 b的压力大于空间可变腔体 2的压力时, 空间可变腔体 2产生负压,
5al 的空间内产生变形, 即打开输入单向阀, 使得液体或者气体经过所述 输入单向阀进入空间可变腔体 2。 此时由于空间可变腔体 2存在负压, 所 述第二阀台 33 又增加了所述阀膜 7的预紧力, 有效地保证了输出单向阀 的密闭关闭。 液体或者气体不能从泵下体输出通道 6b通过阀膜 7 (即输出 单向阀) 进入空间可变腔体 2。
当压电陶瓷片 1达到向上凸起到最高点时, 阀膜 7恢复形状关闭泵下 体输入通道 5b与泵上体输入通道 5a的通路, 即关闭了输入单向阀, 所述 第一阀台 41 又增加了所述阀膜 7的预紧力, 有效地保证了输入单向阀的 密闭关闭。 使得空间可变腔体 2 内液体不能从泵上体经输入通道 5a返回 到泵下体输入通道 5b。
. 图 11 为本发明所述微型泵第二种实施例第二种工作状态即输入单向 阔关闭、 输出单向阀打开的状态。
当压电陶瓷片 1回复平直或继续向下弯曲时, 空间可变腔体 2体积变 小, 压力增高。 此压力能够更好地使阀膜封闭泵下体输入通道 6a, 即密封 住输入单向阀。 同时, 此压力能够推开泵上体输出通道 6a处的阀膜 7 , 阀 膜 7能够在第二凹槽 6bl的空间内产生变形, 使得液体或者气体到达泵下 体输出通道 6b。
当压电陶瓷片 1向下变形达到最低点时, 阀膜 7恢复形状, 关闭输出 单向阀。 阔膜 7在第二阀台 33作用下, 增加了所述阔膜 7的预紧力, 有 效地保证了输出单向阀的密闭关闭。 使得空间可变腔体 2内液体不能从泵 下体输出通道 6b返回到泵上体输出通道 6a。
图 10和图 1 1所示的两个工作状态结束后, 就完成了本发明第二种实 施例所述微型压电陶瓷泵的一个动作周期。
本发明所述微型泵第三种实施例相对第二实施例, 在所述泵下体 4与 所述第一凹槽 5al对应的位置处, 还开设有第一环形槽, 所述第一环形槽 的外径尺寸大于或者等于所述第一凹槽 5al的外形尺寸。 所述第一环形槽 的开设, 是为了泵上体和泵下体在通过粘合固定的情况下, 防止粘接剂流 到输入单向阀工作面上而设置的溢流槽。
本发明实施例所述微型泵, 在所述泵上体 3与所述第二凹槽 6bl对应 的位置也可以开设第二环形槽, 所述第二环形槽的外径尺寸大于或者等于 所述第二凹槽 6bl的外形尺寸。 所述第二环形槽的开设, 是为了泵上体和泵下体在通过粘合固定的情 况下, 防止粘接剂流到输出单向阀工作面上而设置的溢流槽。
本发明实施例所述致动装置还可以为磁致伸缩设备, 所述磁致伸缩设 备包括磁致伸缩材料和线圈 , 所述线圏缠绕在所述磁致伸缩材料四周, 所 述磁致伸缩材料下方固定有薄片。
本发明实施例所述致动装置还可以为带凸轮电机, 所述带凸轮电机包 括凸轮和电机, 所述凸轮连接所述电机的执行机构, 所述凸轮下方固定有 薄片。
本发明实施例所述致动装置还可以是电磁铁, 所述电磁铁包括电工软 铁和线圈, 所述线圈缠绕所述电工软铁, 所述电工软铁下方固定有薄片。
本发明实施例所述微型泵可以应用于胰岛素注射器或者止痛泵等医 疗领域。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的 普通技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进 和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求 书
1、 一种微型泵, 其特征在于, 所述微型泵包括致动装置、 空间可变 腔体以及分别与空间可变腔体相连的输入通道和输出通道;
所述输入通道和 /或输出通道中安装有响应致动装置动作的阀膜。
2、 根据权利要求 1 所述的微型泵, 其特征在于, 所述阀膜的宽度大 于所述输入通道和 /或所述输出通道的宽度。
3、 根据权利要求 2所述的微型泵, 其特征在于, 所述阀膜具体为弹 性材料。
4、 根据权利要求 3 所述的微型泵, 其特征在于, 所述弹性阀膜为两 边预拉紧的阀膜。
5、 根据权利要求 3或 4所述的微型泵, 其特征在于, 所述阀膜包括 第一阀膜和第二阀膜;
所述第一阀膜和所述输入通道组成输入单向阀,所述第二阀膜和所述 输出通道组成输出单向阔。
6、 根据权利要求 5 所述的微型泵, 其特征在于, 所述微型泵还包括 阀片, 所述阀片安装在输入通道中, 形成输入单向阀, 所述第二阀膜和所 述输出通道组成输出单向阀;
或, 所述阀片安装在输出通道中, 形成输出单向阀, 所述第一阀膜和 所述输入通道组成输入单向阀。
7、 根据权利要求 5所述的微型泵, 其特征在于, 所述输入通道与所 述阀膜相邻的输入通道输出侧设置第一凹槽。
8、 根据权利要求 7所述的微型泵, 其特征在于, 所述输出通道与所 述阀膜相邻的输出通道输出侧设置第二凹槽。
9、 根据权利要求 8所述的微型泵, 其特征在于, 所述输出通道与所 述阀膜相邻的输出通道输入侧设置小于所述第二凹槽的第二阀台。
10、 根据权利要求 7所述的微型泵, 其特征在于, 所述输入通道与所 述阀膜相邻的输入通道输入侧设置小于所述第一凹槽的第一阀台。
11、 根据权利要求 5所述的微型泵, 其特征在于, 所述输出通道与所 述阀膜相邻的输出通道输出侧设置第二凹槽。
12、 根据权利要求 11 所述的微型泵, 其特征在于, 所述输出通道与 所述阀膜相邻的输出通道输入侧设置小于所述第二凹槽的第二阀台。
13、 根据权利要求 8所述的微型泵, 其特征在于, 所述输入通道与所 述阀膜相邻的输入通道输入侧设置小于所述第一凹槽的第一阀台。
14、 根据权利要求 13 所述的微型泵, 其特征在于, 所述输出通道与 所述阀膜相邻的输出通道输入侧设置小于所述第二凹槽的第二阀台。
15、 根据权利要求 14所述的微型泵, 其特征在于, 所述第一阀台高 度大于或等于或小于所述第二阀台高度。
16、 根据权利要求 10所述的微型泵, 其特征在于, 所述第一阀台外 开设第一环形槽。
17、 根据权利要求 12所述的微型泵, 其特征在于, 所述第二阀台外 开设第二环形槽。
18、 根据权利要求 5所述的微型泵, 其特征在于, 所述致动装置为压 电陶瓷片。
19、 根据权利要求 20所述的微型泵, 其特征在于, 所述压电陶瓷片 为圓形, 所述泵上体开有用于安装所述压电陶瓷片的安装槽。
20、 根据权利要求 5所述的微型泵, 其特征在于, 所述致动装置为磁 致伸缩设备, 所述磁致设备下方固定有薄片。
21、 根据权利要求 5所述的微型泵, 其特征在于, 所述致动装置为带 凸轮电机, 所述凸轮电机下方固定有薄片。
22、 根据权利要求 5所述的微型泵, 其特征在于, 所述致动装置是电 磁铁, 所述电磁铁下方固定有薄片。
23、 根据权利要求 5所述的微型泵, 其特征在于, 所述微型泵用于胰 岛素泵。
PCT/CN2009/072344 2008-06-20 2009-06-19 一种微型泵 WO2009152775A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2008100393876A CN101608610A (zh) 2008-06-20 2008-06-20 一种微型泵
CN200810039387.6 2008-06-20

Publications (1)

Publication Number Publication Date
WO2009152775A1 true WO2009152775A1 (zh) 2009-12-23

Family

ID=41433712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072344 WO2009152775A1 (zh) 2008-06-20 2009-06-19 一种微型泵

Country Status (2)

Country Link
CN (1) CN101608610A (zh)
WO (1) WO2009152775A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020115502A1 (en) * 2018-12-07 2020-06-11 Ttp Ventus Ltd. Improved valve
WO2020128426A1 (en) * 2018-12-07 2020-06-25 Ttp Ventus Ltd. Improved valve
US11835037B2 (en) 2018-10-03 2023-12-05 Ttp Ventus Ltd. Methods and devices for driving a piezoelectric pump
US11933287B2 (en) 2020-08-10 2024-03-19 Ttp Ventus Ltd. Pump for a microfluidic device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107023455A (zh) * 2012-04-19 2017-08-08 株式会社村田制作所 阀、流体控制装置
CN103599578B (zh) * 2013-12-03 2015-08-05 吉林大学 一种便携式压电驱动胰岛素泵
CN104083815A (zh) * 2014-06-17 2014-10-08 南京山诺生物科技有限公司 微型压电式输液器
WO2016063710A1 (ja) * 2014-10-21 2016-04-28 株式会社村田製作所 バルブ、流体制御装置および血圧計
CN106267462A (zh) * 2015-05-25 2017-01-04 美敦力公司 用于对患者进行给药的流体输注装置
TWI655929B (zh) 2016-12-01 2019-04-11 深禾醫學科技股份有限公司 具血壓量測功能的穿戴式裝置
CN107126593A (zh) * 2017-04-17 2017-09-05 深圳市体太赫兹科技有限公司 基于悬臂梁单向阀压电控制的液体输注方法及系统
CN107514355B (zh) * 2017-09-30 2019-07-16 瞬知(广州)健康科技有限公司 一种微流泵
CN112587753A (zh) * 2020-12-29 2021-04-02 无锡顶点医疗器械有限公司 一种动力装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047432C (zh) * 1995-12-08 1999-12-15 清华大学 硅微热致动泵及其制造工艺
US6033191A (en) * 1997-05-16 2000-03-07 Institut Fur Mikrotechnik Mainz Gmbh Micromembrane pump
US20040120836A1 (en) * 2002-12-18 2004-06-24 Xunhu Dai Passive membrane microvalves
CN1534193A (zh) * 2003-03-28 2004-10-06 汤玉生 带悬挂t字形阀膜微阀的单片型单向液体微泵
CN1548737A (zh) * 2003-05-06 2004-11-24 勤 王 具有双向过压保护功能的微量薄膜泵及其应用
CN2706605Y (zh) * 2003-05-06 2005-06-29 王勤 带压力互锁的微量薄膜泵
US20050158188A1 (en) * 2004-01-21 2005-07-21 Matsushita Elec. Ind. Co. Ltd. Micropump check valve and method of manufacturing the same
CN1212476C (zh) * 2001-04-24 2005-07-27 松下电工株式会社 泵及其制造方法
EP1754890A2 (en) * 2002-09-27 2007-02-21 Novo Nordisk A/S Membrane pump with strechable pump membrane
CN1926336A (zh) * 2003-10-01 2007-03-07 新加坡科技研究局 微型泵

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047432C (zh) * 1995-12-08 1999-12-15 清华大学 硅微热致动泵及其制造工艺
US6033191A (en) * 1997-05-16 2000-03-07 Institut Fur Mikrotechnik Mainz Gmbh Micromembrane pump
CN1212476C (zh) * 2001-04-24 2005-07-27 松下电工株式会社 泵及其制造方法
EP1754890A2 (en) * 2002-09-27 2007-02-21 Novo Nordisk A/S Membrane pump with strechable pump membrane
US20040120836A1 (en) * 2002-12-18 2004-06-24 Xunhu Dai Passive membrane microvalves
CN1534193A (zh) * 2003-03-28 2004-10-06 汤玉生 带悬挂t字形阀膜微阀的单片型单向液体微泵
CN1548737A (zh) * 2003-05-06 2004-11-24 勤 王 具有双向过压保护功能的微量薄膜泵及其应用
CN2706605Y (zh) * 2003-05-06 2005-06-29 王勤 带压力互锁的微量薄膜泵
CN1926336A (zh) * 2003-10-01 2007-03-07 新加坡科技研究局 微型泵
US20050158188A1 (en) * 2004-01-21 2005-07-21 Matsushita Elec. Ind. Co. Ltd. Micropump check valve and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11835037B2 (en) 2018-10-03 2023-12-05 Ttp Ventus Ltd. Methods and devices for driving a piezoelectric pump
WO2020115502A1 (en) * 2018-12-07 2020-06-11 Ttp Ventus Ltd. Improved valve
WO2020128426A1 (en) * 2018-12-07 2020-06-25 Ttp Ventus Ltd. Improved valve
US11828374B2 (en) 2018-12-07 2023-11-28 Ttp Ventus Ltd. Valve
US11841094B2 (en) 2018-12-07 2023-12-12 Ttp Ventus Ltd. Valve
US11933287B2 (en) 2020-08-10 2024-03-19 Ttp Ventus Ltd. Pump for a microfluidic device

Also Published As

Publication number Publication date
CN101608610A (zh) 2009-12-23

Similar Documents

Publication Publication Date Title
WO2009152775A1 (zh) 一种微型泵
US9237854B2 (en) Valve, fluid control device
JP5480983B2 (ja) 屈曲トランスデューサ、マイクロ・ポンプおよびマイクロ・バルブの製造方法、マイクロ・ポンプおよびマイクロ・バルブ
US6991214B2 (en) Microvalve normally in a closed position
US6749407B2 (en) Method of installing valves in a micro-pump
WO2013046330A1 (ja) マイクロダイヤフラムポンプ
US6247908B1 (en) Micropump
US6874999B2 (en) Micropumps with passive check valves
JP2011504560A (ja) 安全弁を含むポンプ装置
DK2556282T3 (en) Microvalve with valve elastically deformable lip, the preparation method and micropump
WO2004084274A2 (en) Piezoelectric actuator and pump using same
WO2017128297A1 (zh) 压电陶瓷气泵及其构筑方法
US20130068325A1 (en) Valve, layer structure comprising a first and a second valve, micropump and method of producing a valve
JP2015505349A (ja) 安全弁装置を含むポンプ装置
JP3202643B2 (ja) マイクロポンプおよびマイクロポンプの製造方法
JP4945661B2 (ja) マイクロダイヤフラムポンプ
JP2018123796A (ja) マイクロダイヤフラムポンプ
US9732743B2 (en) Pneumatic micropump
JPH10274164A (ja) マイクロポンプ
JP6089560B2 (ja) 気体制御装置
JP4472919B2 (ja) マイクロバルブ
JP2001317647A (ja) マイクロバルブおよびマイクロポンプ
US20100327211A1 (en) Method for the production of micro/nanofluidic devices for flow control and resulting device
JP2017057975A (ja) マイクロポンプ用漏出防止弁
JPH0466784A (ja) マイクロポンプおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09765414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09765414

Country of ref document: EP

Kind code of ref document: A1