WO2005012385A1 - エポキシ樹脂組成物及び耐熱性積層シートの製造方法 - Google Patents

エポキシ樹脂組成物及び耐熱性積層シートの製造方法 Download PDF

Info

Publication number
WO2005012385A1
WO2005012385A1 PCT/JP2004/011502 JP2004011502W WO2005012385A1 WO 2005012385 A1 WO2005012385 A1 WO 2005012385A1 JP 2004011502 W JP2004011502 W JP 2004011502W WO 2005012385 A1 WO2005012385 A1 WO 2005012385A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
polyamine
borate
heat
Prior art date
Application number
PCT/JP2004/011502
Other languages
English (en)
French (fr)
Inventor
Akira Ohbayashi
Kazutoshi Haraguchi
Original Assignee
Kawamura Institute Of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute Of Chemical Research filed Critical Kawamura Institute Of Chemical Research
Priority to KR1020067002304A priority Critical patent/KR101159549B1/ko
Priority to US10/566,719 priority patent/US20060247334A1/en
Priority to EP04771487A priority patent/EP1652869A4/en
Publication of WO2005012385A1 publication Critical patent/WO2005012385A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4078Curing agents not provided for by the groups C08G59/42 - C08G59/66 boron containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O

Definitions

  • the present invention relates to an epoxy resin composition and a method for producing a heat-resistant laminated sheet.
  • the present invention relates to an epoxy resin composition containing a polyamine borate and a method for producing a heat-resistant laminated sheet using the same. Ming background technology
  • boric acid in combination as an additive such as a curing inhibitor, as disclosed in Japanese Patent Application Laid-Open No. 4-227924, US Pat. No. 5,169,473. This is known from the specification of Japanese Patent Application Laid-Open (Kokai) No. 2003-213, and WO 03/0379985. In these cases, there is a problem that the amine compound is toxic and, depending on its type, has a strong odor and is difficult to handle. When the amount of boric acid to be added is small, the heat resistance of the obtained cured product is not sufficient.
  • a sealing agent for a tape carrier package containing an epoxy resin containing a phenol nopolak resin as a curing agent and 2-ethyl-4-methylimidazole / tetraphenylporate as a curing accelerator see, for example, Japanese Patent Application Laid-Open No. H11-157,837). See Japanese Patent Application Laid-Open No. 11-34-3992).
  • the 2-ethyl-4-methylimidazole tetraphenylporate used here is a compound in which tetraphenylporate is bonded to a boron atom and a fuel group without intervening an oxygen atom. It does not contribute to improving heat resistance. Disclosure of the invention
  • the present inventors have conducted intensive studies to achieve the above object, and as a curing agent for epoxy resin, obtained as a curing agent for an epoxy resin, a polyamine-based compound obtained by reacting a polyamine-based compound with inexpensive boric acid or boric acid ester. By using the compound, a borate group is introduced into the epoxy resin at the molecular level, and it has been found that a cured product having high heat resistance, that is, a high glass transition temperature can be obtained, and the present invention has been completed.
  • the present invention relates to an epoxy resin having two or more epoxy groups in the molecule, and a polyamine compound (A) having one or more amino group or imino group in the molecule as a curing agent for the epoxy resin. ) And a polyamine borate obtained from a boric acid compound (B) represented by the following general formula (1), and an epoxy resin composition containing as essential components:
  • FIG. 1 is a diagram showing the temperature dispersion of the storage elastic moduli (E and tan ⁇ ) of the epoxy resin cured products obtained in Example 1 and Comparative Example 1.
  • FIG. 2 is a diagram showing the storage elastic modulus ( ⁇ ,) and the temperature dispersion of tan ⁇ of the cured epoxy resin obtained in Example 12.
  • An object of the present invention is to provide an epoxy resin composition which can obtain a cured product having a high glass transition temperature (T g), suppresses pungent odor, is easy to handle and has excellent heat resistance and flame retardancy, and a method for producing the same. To provide.
  • T g glass transition temperature
  • Another object of the present invention is to provide a method for producing a heat-resistant laminated sheet using the above resin composition, which is particularly useful for a copper-clad laminate. That is, the present invention comprises, after providing an uncured coating layer of the above resin composition on a heat-resistant base sheet, heat-pressing the superposed base sheets and then curing the uncured coating layer. The present invention also relates to a method for producing a heat-resistant laminated sheet useful as a copper-clad laminate.
  • the epoxy resin in the present invention is a conventional epoxy resin having an average of two or more epoxy groups in one molecule, and the type thereof is not particularly limited.
  • the following various epoxy resins can be used alone or in combination of two or more.
  • a phenolic daricidyl ether epoxy resin obtained by reacting phenolic compounds such as bisphenol-A, bisphenol-F, tetrabromobisphenol-A, tetraphenylolethane, phenylnopolak and cresolnopolak with epichlorohydrin.
  • Alcoholic daricidyl ether type epoxy resin (a) a polyol obtained by the addition reaction of a phenol compound such as bisphenol-A, bisphenol-F, tetrabromobisphenol-A or tetraphenylolethane with an alkylene oxide, or a polyol such as hydrogenated bisphenol A And (b) an alcohol-based glycidyl ether type epoxy resin obtained by reacting with epichlorohydrin.
  • Diglycidyl ester type epoxy resins such as hexahydrophthalic acid diglycidyl ester and dimer acid glycidyl ester.
  • Daricidylamine type epoxy resin such as ricidyldiaminodiphenylmethane and triglycidylpara-aminophenol.
  • Epoxybenzoic acid such as epoxy resins obtained by the reaction of aminophenol or oxybenzoic acid with epichlorohydrin, cycloaliphatic epoxy resins having a cyclobenzene / dicyclopentene skeleton, and brominated epoxy resins .
  • the epoxy group equivalent of the epoxy resin is preferably 100 to 1000, more preferably Is from 110 to 800, particularly preferably from 120 to 500.
  • the polyamine borate used as a curing agent for an epoxy resin in the present invention is represented by the following general formula (1): a polyamine compound (A) having at least one of an amino group and an imino group in the molecule; Boric acid compounds (B) and are obtained from
  • n is an integer from 0 to 3,! 3 ⁇ 4C m H 2m + 1 is an alkyl group, and m is an integer from 1 to: L0.
  • polyamine borate removes a solvent from a reaction product obtained by reacting a polyamine compound (A) and a boric acid compound (B) in a solvent or water, In some cases, separation and purification can be performed to obtain a powdery polyamine borate having no pungent odor.
  • polyamine compound (A) used in the present invention a polyamine compound which can cure an epoxy resin and has at least one of an amino group and an imino group in a molecule is used.
  • a molecule having at least one of an amino group and an imino group in a molecule means that the polyamine compound contains one or more of an amino group and / or one or more imino groups in a molecule, or both. And that the contained group may be one or more types.
  • a polyamine-based compound is preferably an aliphatic polyamine, an aromatic polyamine, or an alicyclic polyamine, and may have a double-mouthed group in the molecule.
  • the general formula of a typical polyamine compound (A) used is shown in the following formula.
  • R 2 and R 3 in the general formula (2) represent hydrogen, an alkyl group having 1 to 20 carbon atoms, and an alkanol group having 1 to 20 carbon atoms.
  • X represents any one of hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkynol group having 1 to 20 carbon atoms, and an oxyalkylene group having 2 to 50 carbon atoms.
  • R p R 2 , R 3 and X is hydrogen.
  • Y represents a phenyl group, an alkylene or alkylene ether group having 2 to 50 carbon atoms, and n represents an integer of 1 to 5.
  • polyamine-based compound (A) an imidazole compound represented by the general formula (3) can also be mentioned.
  • R 4 represents methyl, ethyl, isopropyl, alkyl having 11 carbons, alkyl having 17 carbons, phenyl and the like
  • R 5 represents hydrogen, methyl and the like.
  • polyamine-based compound (A) examples include the following.
  • ethylenediamine diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, propylenediamine, dipropylenetriamine, cyclohexanediamine, hexamethylenediamine, triethylenediamine, 2,5-dimethyl Xamethylenediamine, trimethylhexamethylenediamine, bis (hexamethylene) triamine.
  • Polyamide amines produced by the reaction of aliphatic polyamines with polymerized fatty acids or benzoic acid such as lacqueramide TD-984epiclone B-053 (both manufactured by Dainippon Ink and Chemicals, Inc.).
  • N-methylpiperazine, hydroxyethylpidazine N-methylpiperazine, hydroxyethylpidazine.
  • boric acid compound (B) in the present invention boric acid represented by the general formula (1) And boric acid esters, and partial polycondensates of boric acid esters.
  • R is an alkyl group C m H 2m + i, m is an integer of 1 to 1 0.
  • boric acid examples include, for example, orthoboric acid, metaboric acid, tetraboric acid, and mixtures thereof.
  • borate esters include, for example, trimethyl borate, triethyl borate, tripropyl borate, tributyl borate and the like. These boric acids and boric esters can be used alone or in combination of two or more. Further, their partial hydrolysates and partial polycondensates can also be used. Of the above, boric acid is most preferably used.
  • the partial polycondensate can be obtained by mixing and stirring the borate represented by the general formula (1) together with water, a solvent, and, if necessary, an acid or base catalyst.
  • polyamine borate obtained by reacting the polyamine-based compound represented by the above general formula with a boric acid-based compound
  • a boric acid-based compound examples include ethylene diamine borate, diethylene triamine borate, and triethylene tetramine borate.
  • aliphatic polyamine borates such as tetraethylene pentamine borate.
  • small molecules of ethylenediamine and diethylenetriamine crystalline and non-crystalline polyamine borates can be produced separately, and both are used as effective polyamine borates in the present invention.
  • a crystalline polyamine borate is obtained.
  • water is used as the synthesis solvent, an amorphous polyamine borate is obtained.
  • the UB-NMR signal is shifted to a lower magnetic field side than the crystalline polyamine borate, and the absorption of the stretching vibration of the ⁇ -0 bond in FT-IR is crystalline.
  • a shift to a lower wavenumber than that of polyamine borate was observed, suggesting that the chemical structure of the borate group is different.
  • the measured boron content of both crystalline and non-crystalline polyamine borates is higher than the calculated boron content of the mononuclear borate. It was presumed that the main component of the polyamine borate was a polynuclear condensed borate.
  • polyamidoamine borate Another specific example of the polyamine borate of the present invention is polyamidoamine borate.
  • polyamidoamine When polyamidoamine is used, crystalline and non-crystalline polyamidoamine borates can be produced depending on the molar ratio of amine and boric acid. For example, when 1 mol or more of boric acid is added to 1 mol of the amino group and imino group in the amine, a crystalline polyamidoamine borate is obtained. On the other hand, when the charged amount of boric acid is less than 0.6 mol per 1 mol of the amino group or imino group, an amorphous polyamidoamine borate is obtained. The measurement of the boron content showed that the main component of the crystalline polyamidoamine borate was a polynuclear condensed borate.
  • the synthesis of the polyamine borate in the present invention can be performed, for example, as follows. That is, the boric acid is dissolved or suspended in a solvent or water, and the polyamine compound solution is added dropwise with stirring. In some cases, the boric acid solution may be added dropwise while the solvent or aqueous solution of the polyamine compound is being stirred while the order of addition is reversed. Subsequently, the reaction is carried out at room temperature or under heating for a certain period of time. As a result, polyamine borate precipitates, and the precipitate (polyamine borate) is recovered by suction filtration. On the other hand, the reaction product may be dissolved in the reaction solvent.
  • the solvent is distilled off using an evaporator to recover the polyamine borate.
  • the reaction product obtained as described above is repeatedly washed several times with N, N-dimethylformamide, acetone, etc., and then dried under vacuum to obtain a white powder of amine borate.
  • the solvent for synthesizing the polyamine borate in the present invention is required to dissolve at least one of a boric acid compound and a polyamine compound.
  • a boric acid compound and a polyamine compound for example, lower alcohols such as methanol, ethanol, and isopropanol, acetone, methyl ethyl ketone, tetrahydrofuran, ⁇ , ⁇ -dimethylformamide, ⁇ -methylpyrrolidone, ⁇ , ⁇ -dimethylacetamide , Dimethyl sulfoxide, water and the like, which can be used alone or in combination of two or more.
  • the solvent such that the solvent is used in an amount of 300 to 150 parts by mass with respect to 100 parts by mass of the total of the boric acid compound and the polyamine compound.
  • the molar ratio of the nitrogen-containing group in the polyamine compound to boron in the boric acid compound is important.
  • the ratio of the boric acid compound is increased, a polynuclear condensed borate is easily formed, and a polyamine borate having a high boron content can be obtained.
  • the proportion of the polyamine compound is increased, an amine borate having a lower boron content can be obtained.
  • the boron content is preferably 0.25 to 10 mol, more preferably 1 mol of the nitrogen-containing group in the polyamine-based compound, that is, 1 mol of the amino group, imino group and 2tri-mouth group in total.
  • reaction temperature varies depending on the type of the polyamine compound used, it is generally preferably from 15 ° C to 150 ° C, more preferably from 20 ° C to 120 ° C, and particularly preferably. Is 25 to 100 ° C.
  • the reaction time depends on the reaction temperature, but usually 1 to 15 hours is preferably used.
  • the polyamine borate used in the present invention is a solid powder having almost no irritating odor peculiar to amine, has a property of being soluble in water or a lower alcohol such as methanol, and is suitably used as a curing agent for epoxy resins.
  • a lower alcohol such as methanol
  • the curing agent for the epoxy resin in the present invention among the polyamine borates described above, in particular, ethylene diamine borate, diethylene triamine borate, liamine borate, and lacqueramide TD-984 Epiclone B And imidazole borates such as polyamidoamine borate, 2-ethyl-4-methylimidazole borate, etc., obtained from -5.3 and the like. Whether these polyamine borates are crystalline, non-crystalline, mononuclear borates, or polynuclear condensed borates, any of the effective epoxy Used as a resin curing agent.
  • the amount of the various polyamine borates used as the epoxy resin curing agent in the present invention can be determined based on the amount of the amine compound contained therein, which is generally used as the epoxy resin curing agent. In order to obtain sufficient heat resistance of the product, it can be used in a much larger amount. Generally, it is preferable to mix 4 to 120 parts by mass, that is, 4 to 12 Ophr with respect to 100 parts by mass of the epoxy resin. As a specific example, when a polyamine borate is used, 5 to 50 phr, more preferably 10 to 40 phr, and particularly preferably 15 to 3 O phr is used for the epoxy resin.
  • the amount of epoxy resin is preferably 4 to 35 phr, more preferably 4 to 35 phr. 6-30 phr, particularly preferably 8-25 phr, are used.
  • the polyamine borate has a boron content of 0.2 to 1 part by mass based on 100 parts by mass of the epoxy resin. It is preferably added so as to be 0 parts by mass.
  • the epoxy resin composition of the present invention can use a long pot life epoxy resin curing agent in addition to the polyamine borate.
  • the epoxy resin curing agent used in combination with the polyamine borate an epoxy resin curing agent for a laminate having a pot life to the epoxy resin of 10 days or more at room temperature is preferably used.
  • pot life is the time required for a composition comprising an epoxy resin, an epoxy resin curing agent and a solvent to be stored at room temperature and gelled (cured) by greasy contact.
  • the tertiary amine and imidazole compounds are based on the measurement that the active hydrogen of the curing agent is equivalent to 1 equivalent of the epoxy resin. Is based on the measurement using 2 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • an epoxy resin curing agent having a latent curing property or a long pot life is preferably used, and specifically, disiandiamide, phenolic nopolak resin, and metaphenylenediamine And tertiary amines and imidazole compounds which react with the epoxy resin.
  • the amount of these curing agents used varies depending on the amount of the amine borate used in combination.
  • the active hydrogen of the curing agent is 0.1 to 0 per equivalent of the epoxy resin. It is preferable to mix at 95 equivalents, and in the case of a tertiary amine or imidazole compound, it is preferable to mix at 1 to 3 phr with respect to the epoxy resin.
  • the amount of the polyamine borate used is such that the active hydrogen equivalent of the polyamine contained therein is 0.05 to 0.5 equivalent to 1 equivalent of the epoxy resin. Preferably, there is. Such a use amount is preferable because the resulting composition has good heat resistance, the composition has excellent storage stability, and is easily B-staged when producing a laminate.
  • the polyamine borate is used as a curing agent for an epoxy resin. It is essential.
  • monoamine borates for example, dipropylamine borates, which have been used as curing accelerators for conventional epoxy resins, have curability even when added to epoxy resins and cured. Insufficient or insufficient strength and heat resistance.
  • Examples of the solvent for the epoxy resin composition that can be used in the present invention include a solvent capable of uniformly dissolving the epoxy resin and the polyamine borate and a solvent capable of dissolving the epoxy resin without dissolving the polyamine borate. used.
  • a solvent capable of dissolving the epoxy resin and the polyamine borate a solvent containing a lower alcohol is usually used.
  • solvents such as acetone, methylethyl ketone, tetrahydrofuran, N, N-dimethylformamide, N-methylpyrrolidone, N, N-dimethylacetamide, dimethylsulfoxide, and methylethylcellosolve can be used in solvents such as methanol, ethanol, and isopropanol.
  • solvents such as methanol, ethanol, and isopropanol.
  • examples thereof include a mixture of solvents to which a lower alcohol having about 1 to 6 carbon atoms such as 1 liter is added.
  • a solvent that does not dissolve the polyamine borate but dissolves the epoxy resin it is preferable to use a solvent that does not dissolve the polyamine borate but dissolves the epoxy resin.
  • acetone, methylethyl ketone, tetrahydrofuran, ⁇ , ⁇ -dimethylformamide, ⁇ -methylpyrrolidone, ⁇ , ⁇ -dimethylacetoamide, methylethyl cellosolve, etc. may be used alone or in combination of two or more. Can be used in a mixture.
  • the heat treatment in the solution state refers to heating without substantially removing the solvent, that is, heating in a closed system, and furthermore, performing the solution so as not to gel.
  • the obtained solution The composition obtained by removing the solvent is uniformly transparent without aggregation of the polyamine borate.
  • polyamine borate is precipitated together with the solvent removal, and the obtained cured product becomes an opaque and brittle material.
  • the conditions for the heat treatment in the solution state vary depending on the ease of reaction or interaction between the polyamine borate used and the epoxy resin. Basically, as the lower and upper limits of the heat treatment, it is important to perform the heat treatment within a range where the polyamine borate does not precipitate due to the subsequent solvent removal (lower limit) and a range where the solution does not gel (upper limit). It is. If the heat treatment is performed excessively, the composition thickens or gels, and a non-gelled resin composition cannot be obtained, which is not preferable in terms of practicality.
  • the heat treatment temperature in the solution state is specifically 25 to 100 ° C., more preferably 30 to 100 ° C. when aliphatic polyamine borate and polyamidoamine borate are used as the curing agent. It can be carried out at 90 ° C, particularly preferably at 40 to 80 ° C.
  • the heat treatment time varies depending on the heat treatment temperature, but is preferably 0.1 to 40 hours, more preferably 0.2 to 30 hours, particularly preferably 0.3 to 20 hours.
  • the heat treatment temperature in a solution state is preferably 30 to 150 ° C, more preferably 40 to 130 ° C, and particularly preferably 50 to 130 ° C. ⁇ 110 ° C.
  • the heat treatment time varies depending on the heat treatment temperature, but is preferably 0.3 to 50 hours, more preferably 0.5 to 40 hours, and particularly preferably 1 to 25 hours.
  • the polyamine borate is dissolved in an epoxy resin or an epoxy resin solution obtained by diluting the resin with a solvent without dissolving the polyamine borate in the epoxy resin.
  • the method for finely dispersing the polyamine borate is as follows: (1) a method in which a polyamine borate is added to an epoxy resin and kneaded using a mixer or a roll; and (2) a method in which the polyamine borate and a solvent are mixed with the epoxy resin. (3) Addition of polyamine borate, solvent and glass beads to epoxy resin and mixing and dispersing using a shear force, etc.
  • the polyamine borate can be reduced to or less than —They are finely dispersed in epoxy resin and become a latent curing agent that does not react with epoxy resin at room temperature.
  • the resulting composition becomes a homogeneous material without aggregation or sedimentation of the polyamine borate.
  • a solvent-free epoxy resin composition By removing the solvent from the epoxy resin composition obtained in the present invention while preventing the curing reaction from proceeding, a solvent-free epoxy resin composition can be produced.
  • the solvent removal temperature varies depending on the curing agent used, but drying at a low temperature is preferred, that is, it is preferably 100 ° C or lower, more preferably 80 ° C or lower, and particularly preferably 60 ° C or lower.
  • the solution-type thermosetting epoxy resin composition produced by the above method can be used as a heat-resistant paint for substrates such as metals, ceramics and heat-resistant plastics, and also as a heat-resistant impregnant for glass fibers. can do.
  • an uncured coating film of this solution-type thermosetting epoxy resin composition is provided on the surface of a heat-resistant base sheet.
  • a heat-pressable base sheet is heated and pressed to cure the uncured coating layer. Production of heat-resistant laminated sheets can be mentioned.
  • heat-resistant base sheet examples include inorganic materials such as copper, aluminum, titanium, and ceramic; organic materials such as heat-resistant polyester, polyamide, and polyimide; and organic materials such as glass fiber-reinforced polyester and glass fiber-reinforced epoxy resin.
  • inorganic composite • Sheet made of heat-resistant material selected from materials.
  • the epoxy resin composition is applied or impregnated on a heat-resistant substrate, and then dried to obtain a pre-preda.
  • a copper-clad laminate can be manufactured by laminating a copper foil on this pre-preda and heating and compressing it.
  • a copper-clad laminate can be produced by directly applying the epoxy resin composition to a copper foil, drying the copper foil, and superposing the epoxy resin composition on an epoxy resin glass cloth plate, followed by heating and compression.
  • the copper-clad laminate manufactured by the above method has excellent heat resistance, moisture resistance and solder resistance, and is suitably used as an electronic component.
  • the epoxy resin and the polyamine borate are uniformly dissolved in a solvent containing a lower alcohol, and the resulting solution is used. After the heat treatment, the solvent can be removed, and the resulting solid thermosetting epoxy resin composition can be pulverized to produce the composition.
  • the removal of the solvent from the solution-type thermosetting epoxy resin composition can be carried out by a conventional method using a hot air dryer, a freeze dryer, a vacuum dryer, or the like. It is preferable to remove the solvent by heating the solution of the thermosetting epoxy resin composition in an air atmosphere, under a flow of a heated gas or under reduced pressure, at a temperature in the range of 25 to 120 ° C.
  • the preferred range of the solvent removal temperature varies depending on the type of the solvent and the type of the polyamine borate used, and is, for example, 30 ° C to 100 ° C.
  • the pulverization can be carried out by a known and commonly used method, preferably pulverization to an average particle size of 300 or less, and further drying the obtained powder at a temperature of 30 to 100 ° C. under reduced pressure. .
  • the powdery thermosetting epoxy resin composition produced by the above-described method is compression-molded under heating and, if necessary, further cured by heat treatment to obtain a heat-resistant cured molded article.
  • the molding temperature at that time depends on the epoxy resin and polyamine borate used, and is not particularly limited, but is usually 90 ° (: up to 200 ° C.).
  • thermosetting epoxy resin composition of the present invention has a glass transition temperature of 100 ° C. to 230 ° C. or higher than a cured product of an epoxy resin using only an ordinary amine-based curing agent. Is obtained.
  • thermosetting epoxy resin composition of the present invention not only has a higher glass transition temperature than a cured product of an epoxy resin using an ordinary amine-based curing agent, but also has low mechanical properties such as elastic modulus and strength. Thermal properties such as a coefficient of linear thermal expansion and a high modulus of elasticity at high temperatures, and excellent flame retardancy can be imparted to the cured product.
  • the storage-stable solution-like and powder-like thermosetting epoxy resin compositions of the present invention not only provide a cured product having a high glass transition temperature, but also have the convenience of use of the product and have a long-term storage of the product. Is also possible.
  • thermosetting epoxy resin composition of the present invention has the above-mentioned excellent properties, and is useful for electric and electronic members, particularly copper-clad laminates useful as circuit wiring boards, general molding materials, paints or adhesives. It is preferably used in a wide range of fields.
  • Example Next, the present invention will be described specifically with reference to Synthesis Examples and Examples.
  • FTHR Fourier transform infrared absorption scan Bae spectrum
  • the mass spectrometry was performed by using the mass spectrometer GCMS 9100-MK manufactured by Shimadzu Corporation by the EIS measurement method in which the sample was directly introduced.
  • the boron content was determined by ICP measurement using Optima 3300DV manufactured by Perkn Elmer, and quantified by a calibration curve prepared in advance using boric acid.
  • Amines were quantified by 1 H-NMR internal standard method. That is, a fixed amount of benzene or black form was added to the sample as an internal standard, and quantification was performed based on the area ratio between the peak and a fixed amount of the specific peak of the amine of the amine borate.
  • Ethylenediamine (EDA): Special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.
  • Polyamideamine lactamide TD-984 manufactured by Dainippon Ink and Chemicals, active hydrogen equivalent 97 g / eq
  • Methanol Special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.
  • Dicyandiamide (DICY): manufactured by Wako Pure Chemical Industries, Ltd., reagent grade phenol nopolak resin TD 2090-60 ⁇ : manufactured by Dainippon Ink and Chemicals, active hydrogen equivalent 105 g / eq, solid content 60%
  • the light transmittance was measured by using NDH-30OA manufactured by Nippon Denshoku Industries Co., Ltd., for the parallel transmittance of a film having a thickness of 300 m.
  • the glass transition temperature and storage modulus ( ⁇ ') were measured using a solid dynamic viscoelasticity measuring device (DMA-200 manufactured by Seiko Instruments Inc.) at a measurement frequency of 1 ⁇ and a heating rate of 2 ° C / min. .
  • the glass transition temperature (Tg) was set at tan ⁇ 5 peak temperature (tan0max).
  • the water absorption was measured by measuring the initial weight and the weight increase after being left for 70 hours in an atmosphere of 100% humidity, and calculating the ratio.
  • MEK was added dropwise while stirring a solution of 24.4 g of ethylenediamine condensed borate 1a in 80 g of methanol.
  • Bisphenol A type epoxy resin Epiclone 850 manufactured by Dainippon Ink and Chemicals, Inc., epoxy equivalent
  • a cured product of the epoxy resin composition was obtained.
  • the obtained cured product was calcined in an air atmosphere at 1000 for 2 hours to obtain 11.5 g of black ash.
  • the above cured product had excellent transparency, and the light transmittance in the visible light region was 93% (100 m thickness conversion). In addition, there were no cracks, wrinkles, or bubbles, and a good surface morphology was exhibited. Table 4 shows the evaluation results of the obtained cured products.
  • FIG. 1 shows the relationship between the obtained storage modulus ( ⁇ '), tanS, and temperature.
  • the vertical axis in Fig. 1 is the storage modulus (E ⁇ and the horizontal axis is the temperature CC).
  • FIG. 1 also shows the results of Comparative Example 1, which is a cured product of the same epoxy resin composition except that ethylenediamine was used instead of ethylenediamine condensed borate.
  • the peak temperature (T g ) of tanS was 54.3, whereas that of the cured epoxy resin of Example 1 was 286.5.
  • Example 2 was carried out except that Loebrombisphenol A-type epoxy resin Epiclone EXA-9101 (Dainippon Ink and Chemicals, Inc., epoxy equivalent: 368 g / eq, solid content: 80.5%) was used. In the same manner as in Example 1, an epoxy resin composition and a cured product thereof were prepared. The evaluation results of the obtained cured product are shown in Table 4 as in Example 1. Table 4
  • Example 1 Example 2 Comparative Example 1 Epoxy resin D 850 EXA-9101 850 Weight (g) 100 124.2 100 Epoxy equivalent (g / eq) 190 368 190
  • Example 3 a clear solution of an epoxy resin and a polyamine borate prepared except that tetraethylene pen evening with Min condensed borate 1 d in the same manner as in Example 1, further on in 8 0 D C Heat treatment was performed in a solution state for 30 minutes. Using the obtained epoxy resin composition solution, a hardened product was prepared in the same manner as in Example 1. When the dynamic viscosity of the obtained cured product was measured, the T g was 289 ° C.
  • Example 4 uses triethylenetetramine condensed borate 1c
  • Example 5 uses epiclone 1121N-80M and triethylenetetramine condensed borate 1c
  • Example 6 uses epiclone 1121 N-
  • a transparent solution of an epoxy resin and a polyamine borate was prepared in the same manner as in Example 1 except that 80M and 1 d of tetraethylene pentamine condensed borate were used. The heat treatment in the solution state was performed.
  • a cured product was prepared in the same manner as in Example 1. All of the obtained cured products exhibited excellent transparency and a high glass transition temperature (T g ). It also exhibited relatively low water absorption despite having a high T g .
  • Table 6 shows the evaluation results of the obtained cured products.
  • Example 7 uses B-0 53 ⁇ condensed borate 1 e
  • Example 8 uses B-0 53 ⁇ borate 2 e
  • Example 9 uses 2-ethyl-
  • a clear solution of an epoxy resin and a polyamine borate was prepared in the same manner as in Example 1 except that 4-methylimidazole condensed borate lk was used. Heat treatment was performed. Same as Example 1 using the obtained epoxy resin composition solution. Thus, a cured product was prepared. Measurement of the dynamic viscoelasticity of the resulting cured product, T g of the cured product of the epoxy resin composition obtained in Example 7-9 was significantly improved. Table 7 shows the evaluation results of the obtained cured products. Table 7
  • Example 10 was prepared by mixing epiclone 85100 g, diethylenetriamine condensed borate 1b24 g, and diluent MEK 47 g, and placing the container together with glass beads in a container.
  • the polyamine borate was uniformly finely dispersed in the epoxy resin by vibrating for 15 hours using one force.
  • the obtained composition was left at 50 ° C for more than two months. At this time, the solution did not thicken and showed no storage or aggregation of the amine borate, indicating excellent storage stability.
  • a cured product of the epoxy resin composition was produced in the same manner as in Example 1 except that heat treatment was performed at 180 ° C. for 5 hours. Cured product obtained showed very high T g.
  • Example 11 a storage-stable epoxy resin composition and a storage-stable epoxy resin composition were prepared in the same manner as in Example 10 except that Epiclone EXA-9101 and tetraethylenepentamine borate 1d were used. The cured product was produced. Table 8 shows the evaluation results. Table 8
  • the obtained powdery thermosetting epoxy resin composition was hot-pressed at 150 to produce a 1 mm thick plate-like epoxy resin molded piece.
  • the pressed product was heat-treated at 150 ° C for 2 hours and then at 180 ° C for 4 hours.
  • the cured product was excellent in heat resistance and had a glass transition temperature of 243 as measured by dynamic viscoelasticity. ( Figure 2). Further, the transparency was excellent, and the light transmittance of the above molded piece in the visible light region was 80%.
  • the physical properties of the hot pressed and cured products were measured.The same results were obtained, and the storage stability was excellent. confirmed.
  • Dynamic viscoelasticity measurement (frequency 1 Hz) and water absorption measurement were performed using the cured films having a thickness of 300 m obtained in Examples and Comparative Examples.
  • the peak temperature (Tg) of tanS obtained in Example 13 was 180 ° C.
  • the peak temperature (Tg) at tan ⁇ 5 was 154 ° C.
  • Polyamine borate and dicyandia It is clear that the heat resistance of the epoxy resin cured product using the amide is improved. Further, the water absorption was 2.0% in Example 13 compared to 1.8% in Comparative Example 4. When polyamine borate and dicyandiamide were used in combination, the water absorption hardly increased even though the heat resistance was improved. Table 9 shows the results of these evaluations.
  • Example 14 uses TD 2090-60M
  • Example 15 uses m-PDA
  • Example 16 an epoxy resin composition and a cured product thereof were produced in the same manner as in Example 13 except that 2E4MZ was used.
  • Table 10 shows the evaluation results of the obtained cured products.
  • Example 17 was performed using Hybromobisphenol A-type epoxy resin Epiclone 153-X (manufactured by Dainippon Ink and Chemicals, Inc., epoxy equivalent 3996 gZeq, Br content 48%) and bisphenol A-type epoxy.
  • An epoxy resin composition and a cured product thereof were produced in the same manner as in Example 13 except that resin Epiclone 850 was used.
  • Table 11 shows the evaluation results of the obtained cured products.
  • Example 18 an epoxy resin composition and a cured product thereof were produced in the same manner as in Example 17 except that tetraethylenepentamine condensed borate 2d was used. Table 11 shows the evaluation results of the obtained cured products.
  • Example 17 Example 18 Epoxy resin D1 153X 153X Weight (g) 41.6 41.6 Epoxy equivalent (g / eq) 396 396 Epoxy resin D2 850 850 Weight (g) 58.4 58.4 Epoxy equivalent (g / eq) 188 188
  • the polyamine borate used in the present invention has almost no amine-stimulating odor, It has the property of dissolving well in water and is used as an effective curing agent for epoxy resins. Further, the boron content contained in the epoxy resin composition can be increased as compared with the case where a boric acid-based compound as a curing property adjusting agent is added as in the related art.
  • the epoxy resin composition of the present invention can provide a cured product having an extremely high glass transition temperature by using the polyamine borate as a curing agent. In addition, the cured product can be provided with mechanical properties such as elastic modulus and strength, low linear thermal expansion coefficient, high elastic modulus at high temperatures and thermal characteristics, and excellent flame retardancy.
  • the powdery thermosetting epoxy resin composition using the polyamine borate of the present invention has excellent storage stability and flowability.
  • solution-type epoxy resin composition obtained by using the polyamine borate of the present invention in combination with an epoxy resin curing agent having a long pot life provides, for example, moldability and moisture resistance as excellent as conventional materials for laminates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Description

エポキシ樹脂組成物及び耐熱性積層シートの製造方法 技術分野
本発明は、 ポリアミンホウ酸塩を含有するエポキシ樹脂組成物及びそれを用い る耐熱性積層シートの製造方法に関する。 明背景技術
モノアミン、 ジァミンなどのアミン化田合物とホウ酸との反応生成物は古くから 研究されている (特公昭 5 4— 4 3 7 7号公書報および特開平 4— 3 3 8 3 5 5号 公報参照)。 これらの文献では、ァミン化合物とホウ酸とを反応させて得られる水 溶液を、そのままラテックスの凝固剤あるいは α -アルキルァクロレインの製造用 触媒として用いている。 また、 最近では、 セメント組成物の成分として用いる例 が報告されている (特表 2 0 0 3 - 5 0 4 2 9 4号公報及び U S Ρ 6 1 3 3 3 4 7号明細書参照)。
一方、 各種産業分野で使われているエポキシ樹脂に対して、 耐熱性への要求が ますます厳しいものになりつつある。 耐熱性を向上させる有力手段の一つに硬化 剤の選択がある。 エポキシ樹脂用硬化剤としては、 ァミン化合物が最も広く使用 されている。 しかし、 アミン系硬ィ匕剤を用いた樹脂硬ィ匕物のガラス転移温度 (T g ) は高くても 1 5 0 °C前後であり、 耐熱性は充分とは言えない。 また、 ァミン 化合物の多くは刺激臭があり、 取扱上に安全性の問題がある。
エポキシ樹脂に硬化剤としてアミン化合物を使用する場合、 ホウ酸を硬化抑制 剤などの添加剤として併用することが、 特開平 4— 2 2 7 9 2 4号公報、 U S P 5 1 6 9 4 7 3号明細書及び W 0 0 3 / 0 3 7 9 8 5公報などにより知られてい る。 これらの場合には、 ァミン化合物に毒性があったり、 その種類によっては臭 気が強く取扱いが面倒である、 という問題がある。 また、 添加するホウ酸の量が 少ない場合には、 得られる硬化物の耐熱性が十分でなく、 一方、 ホウ酸量を多く すると、 保存安定性に劣ったり、 得られる硬化物に低温度の Tgを与え、 例えば 107°Cに tan (5のサブピークが観測され、硬化物の特性に悪影響を与えることにな る。,
又、 エポキシ樹脂に有機リン系化合物の硬化剤及び硬化促進剤としてモノアミ ンポレートを併用した組成物を用いた積層板の製法が報告されている (U S P 3 7 3 8 8 6 2号明細書参照)。 し力 ^し、使用されるモノアミンポレ一トが硬化剤と して作用しないため、 得られる硬化物の耐熱性が大きく向上されることはなかつ た。
更に、 エポキシ樹脂に硬化剤としてフエノールノポラック樹脂及び硬化促進剤 として 2—ェチルー 4一メチルイミダゾ一ル ·テトラフェニルポレー卜を含有す るテープキヤリァパッケージの封止剤が知られている (特開平 1 1一 3 4 3 3 9 2号公報参照)。 ここで使用される 2—ェチルー 4ーメチルイミダゾール ·テトラ フエ二ルポレートは、 テトラフエ二ルポレートが酸素原子を介在せずにホウ素原 子とフエエル基と結合したものであり、 組成物の硬化物に対して耐熱性の向上に 寄与するものでない。 発明の開示
本発明者等は、 前記目的を達成すべく、 鋭意検討を重ねた結果、 ポリアミン 系化合物と安価なホウ酸又はホウ酸エステルとを反応させて得られるポリアミン ホウ酸塩をエポキシ樹脂用硬化剤として用いることにより、 ホウ酸塩基が分子レ ベルでエポキシ樹脂に導入され、 高い耐熱性、 即ち高いガラス転移温度を有する 硬化物が得られることを見出し、 本発明を完成するに至った。
即ち、 本発明は、 分子中にエポキシ基を 2個以上有するエポキシ樹脂と、 ェポ キシ樹脂用硬化剤として、 分子中にアミノ基およびィミノ基のいずれか 1個以上 を有するポリアミン系化合物 (A) と下記一般式(1 ) で表わされるホウ酸系化 合物 (B ) とから得られるポリアミンホウ酸塩と、 を必須成分として含有するェ ポキシ樹脂組成物に関する。
B (O R) n (OH) 3 - n (1)
(式中、 nは 0〜3までの整数、 Rは CmH2m+1のアルキル基であり、 mは 1〜1 0の整数を表す。) 図面の簡単な説明
図 1は、 実施例 1及び比較例 1で得られたエポキシ樹脂硬化物の貯蔵弾性率 (Eゥ と tan δの温度分散を示す図である。
図 2は、 実施例 1 2で得られたエポキシ樹脂硬化物の貯蔵弾性率 (Ε,) と tan δの温度分散を示す図である。 発明を実施するための最良の形態
以下、 本発明の好適な例について説明する。 ただし、 本発明は以下の各例に限 定されるものではなく、 例えばこれら例の構成要素同士を適宜組み合わせてもよ い。
本発明の目的は、 高いガラス転移温度 (T g) を有する硬化物が得られ、 且つ 刺激臭が抑制されて、 取り扱いやすい耐熱性や難燃性に優れたエポキシ樹脂組成 物及びその製造方法を提供することにある。
本発明の他の目的は、 上記樹脂組成物を用いた、 特に銅張積層板に有用な耐熱 性積層シートの製造方法を提供することにある。 すなわち、 本発明は、 耐熱性基 材シートに上記樹脂組成物の未硬化塗膜層を設けた後、 重ね合わせた基材シート を加熱圧着してから未硬化塗膜層を硬化させることからなる、 銅張積層板として 有用な耐熱性積層シートの製造方法にも関する。
本発明におけるエポキシ樹脂としては、 1分子内に平均 2個以上のエポキシ基 を有する慣用のエポキシ樹脂であり、 その種類は特に限定されない。 例えば、 次 に掲げる各種のエポキシ樹脂を単独又は 2種以上組み合わせて使用できる。
( 1 ) フエノ—ル系グリシジルエーテル型エポキシ樹脂:
ビスフエノールー A、 ビスフエノールー F、 テトラブロモビスフエノールー A、 テトラフエ二ロールェタン、 フェニールノポラック、 クレゾールノポラックなど のフエノール化合物とェピクロルヒドリンとの反応により得られるフエノール系 ダリシジルエーテル型エポキシ樹脂。
( 2 ) アルコール系ダリシジルエーテル型エポキシ樹脂: (a) ビスフエノール一 A、 ビスフエノールー F、 テトラブロモビスフエノール 一 A、 テトラフエ二ロールェタンなどのフエノール化合物とアルキレンォキサイ ド.との付加反応により得られるポリオール、又は水添ビスフエノール Aなどのポ リオールと、 (b) ェピクロルヒドリンとの反応により得られるアルコール系グ リシジルエーテル型エポキシ樹脂。
(3) ダリシジルエステル型エポキシ樹脂:
へキサヒドロフタル酸ジグリシジルエステル、 ダイマー酸グリシジルエステル 等のジグリシジルエステル型エポキシ樹脂。
(4) ダリシジルアミン型エポキシ樹脂: リシジルジァミノジフエニルメタン、 トリグリシジルーパラアミノフエノ一ル等 のダリシジルァミン型エポキシ樹脂。
(5) 混合型エポキシ樹脂:
ァミノフエノール又はォキシ安息香酸とェピクロルヒドリンとの反応により得 られるエポキシ樹脂、 シクロべ夕ジェンゃジシクロペン夕ジェン骨格を有する脂 環式型エポキシ樹脂、 臭素化エポキシ樹脂等の混合型エポキシ樹脂。
本発明に於いて、 エポキシ樹脂組成物の硬化物が充分高いガラス転移温度と優 れた力学物性を獲得する為には、 エポキシ樹脂のエポキシ基当量は、 好ましくは 100〜 1000であり、 より好ましくは 110〜 800であり、 特に好ましく は 120〜500である。
本発明においてエポキシ樹脂用硬化剤として用いられるポリアミンホウ酸塩は、 分子中にアミノ基およびィミノ基のいずれか 1個以上を有するポリアミン系化合 物 (A) と、 一般式 (1) で表わされるホウ酸系化合物 (B) と、 から得られる ものである。
B (OR) n (OH) 3- n (1)
(式中、 nは 0〜3までの整数、! ¾CmH2m+1のアルキル基であり、 mは 1〜: L0 の整数を表す。)
例えば、 ポリアミンホウ酸塩は、溶媒または水の中でポリアミン系化合物(A) とホウ酸系化合物 (B) とを反応させて得られた反応生成物から溶媒を除去し、 場合によっては分離、 精製を行い、 ァミン刺激臭のない粉末状のポリアミンホウ 酸塩として得ることができる。
本発明で用いられるポリアミン系化合物 (A) としては、 エポキシ樹脂を硬化 することができる、 分子中にアミノ基およびィミノ基のいずれか 1偭以上を有す るポリアミン化合物が用いられる。 分子中にアミノ基およびィミノ基のいずれか 1個以上を有するとは、 ポリアミン系化合物が、 分子中に 1つ以上のァミノ基お よび 1 つ以上のイミノ基のどちらか、 あるいは両方を、 含み得るものであって、 かつ含まれる基が一種類以上であってよいこと、 を示すものである。 このような ポリアミン系化合物は、 好ましくは脂肪族ポリアミン、 芳香族ポリアミンおよび 脂環族ポリアミンであり、 分子中に二トリ口基を有するものであってもよい。 用いられる代表的なポリアミン系化合物 (A) の一般式を、 次式に示す。
Figure imgf000007_0001
一般式 ( 2 ) における Rい R2、 R 3 は、 水素、 炭素原子 1〜2 0を有するァ ルキル基、 炭素原子 1〜2 0を有するアルカノ一ル基を表す。 Xは、 水素、 炭素 原子 1〜 2 0を有するアルキル基、 炭素原子 1〜 2 0を有するアル力ノール基、 または炭素原子 2〜 5 0を有するォキシアルキレン基のいずれかを表す。 但し、 R p R 2、 R 3及び Xのうちの少なくとも 1個は水素である。 また Yはフエニル 基、 炭素原子 2〜 5 0を有するアルキレンまたはアルキレンエーテル基を表し、 nは 1〜5の整数を表す。
また、 ポリアミン系化合物 (A) として一般式 ( 3 ) に示すィミダゾール化合 物も挙げられる。
Figure imgf000007_0002
一般式 (3) 中、 R4 はメチル、 ェチル、 イソプロピル、 炭素数 11のアルキ ル、 炭素数 17のアルキル、 フエニルなどを表し、 R5 は水素、 メチルなどを表 す。
具体的なポリアミン系化合物 (A) としては以下のものがあげられる。
(1) 脂肪族ポリアミン:
エチレンジァミン、 ジエチレントリアミン、 トリエチレンテトラミン、 テ卜ラ エチレンペン夕ミン、 ペンタエチレンへキサミン、 プロピレンジァミン、 ジプロ ピレントリアミン、 シクロへキサンジァミン、 へキサメチレンジァミン、 トリエ チレンジァミン、 2,5-ジメチルへキサメチレンジァミン、 トリメチルへキサメチ レンジァミン、 ビス (へキサメチレン) トリアミン。
(2) 脂環族ポリアミン:
メタセンジァミン、イソホロンジアミン、 N-アミノエチルピペラジン、 ビス(4- ァミノ- 3-メチルシクロへキシル) メタン、 ビス (4-アミノシクロへキシル) メタ ン、 1,3,5-卜リス (アミノメチル) ベンゼン。.
(3) 芳香族ポリアミン:
m-フエ二レンジァミン、 メタキシレンジアミン、 ジアミノジフエ二ルメタン、 ジアミノジフエニルスルホン。
(4) ポリアミドアミン:
脂肪族ポリアミンと重合脂肪酸や安息香酸の反応で製造されるポリアミドアミ ン、 例えば、 ラッカーマイド TD— 984ゃェピクロン B-053 (いずれも大日 本インキ化学工業 (株) 製) など。
(5) 2級ァミン化合物:
N-メチルピペラジン、 ヒドロキシェチルピぺラジン。
(6) イミダゾール化合物:
2-メチルイミダゾ一ル、 2-ェチル -4-メチルイミダゾール、 2-ゥンデシルイミダ ゾール、 2-ヘプ夕デシルイミダゾール、 2-フエ二ルイミダゾール、 1-ベンジル -2- メチルイミダゾール、 1-シァノェチル -2-メチルイミダゾ一ル。
(7) ジシアンジアミド
本発明でのホウ酸系化合物 (B) としては、 一般式 (1) で表わされるホウ酸 およびホウ酸エステル、 ホウ酸エステルの部分重縮合物が用いられる。
B (O R) n (OH) 3_n (1)
(式中、 nは 0〜3までの整数、 Rは CmH2m+iのアルキル基であり、 mは 1〜1 0の整数を表す。)
ホウ酸の具体的な例としては、 例えばオルトホウ酸、 メタホウ酸、 四ホウ酸、 およびそれらの混合物である。 また、 ホウ酸エステルの具体的なものとしては、 例えばホウ酸トリメチル、 ホウ酸トリエチル、 ホウ酸トリプロピル、 ホウ酸トリ ブチル等が挙げられる。 これらのホウ酸及びホウ酸エステルは、 単独又は 2種以 上組み合わせて使用できる。 また、 それらの部分加水分解物や部分重縮合物も用 いることができる。 上記の中ではホウ酸が最も好ましく用いられる。
なお、前記の部分重縮合物は、一般式(1 )で表されるホウ酸エステルを、水、 溶媒、 及び必要により酸又は塩基触媒と共に混合攪拌する方法によって得ること ができる。
上記一般式で表されるポリアミン系化合物とホウ酸系化合物との反応によって 得られるポリアミンホウ酸塩の具体例としては、 エチレンジァミンホウ酸塩、 ジ エチレントリアミンホウ酸塩、 トリエチレンテトラミンホウ酸塩、 テトラエチレ ンペン夕ミンホウ酸塩などの脂肪族ポリアミンホウ酸塩が挙げられる。 小さい分 子のエチレンジァミン、 ジエチレントリアミンの場合、 結晶性と非結晶性のポリ ァミンホウ酸塩を作り分けることができ、 いずれも本発明で有効なポリアミンホ ゥ酸塩として用いられる。
例えば、 Ν,Ν-ジメチルホルムアミドなどの溶媒を合成溶媒として用いた場合、 結晶性のポリアミンホウ酸塩が得られる。 これに対して、 水を合成溶媒とした場 合、 非結晶性のポリアミンホウ酸塩が得られる。 この非結晶性のポリアミンホウ 酸塩では、 U B-NMRのシグナルが結晶性ポリアミンホウ酸塩より低磁場側にシ フトすることや FT-IRにおける Β-0結合の伸縮振動の吸収が結晶性ポリアミン ホウ酸塩より低波数側にシフトすることが観測され、 ホウ酸塩基の化学構造が異 なることが示唆された。
また、 結晶性と非結晶性のポリアミンホウ酸塩のいずれも、 ホウ素含有量の測 定値が単核ホウ酸塩のホウ素含有量の計算値より高いことから、 得られた脂肪族 ポリアミンホウ酸塩の主成分が多核縮合ホウ酸塩であると推定された。 一方、 結 晶性エチレンジァミンホウ酸塩をメタノールに溶解した後、 一晩冷却により得ら れた単結晶の X線構造解析の結果、 次式 (4 ) で表される単核ホウ酸塩の構造と 一致することがわかった。 この単核ホウ酸塩は式 (5 ) で表される単核ホウ酸塩 のエステル化により得られたものと考えられ、 結晶性エチレンジァミンホウ酸塩 の中に式 (5 ) で表される単核ホウ酸塩も含まれていると結論された。
CH2NH3 + B(OCH3)4
I , 一 (4)
CH2NH3+ B(OCH3)4
CH2NH3 T ΒίΟΗ)4
I (5)
CH2NH3+ B(OH)4— 一方、 大きい分子のトリエチレンテトラミン、 テトラエチレンペンタミンを用 いた場合、合成溶媒が N,N-ジメチルホルムァミドなどの溶媒であっても、非結晶 性のポリアミンホウ酸塩のみが得られる。 また、 測定されたホウ素含有量及びァ ミン含有量から、 得られたポリアミンホウ酸塩の主成分が多核縮合ホウ酸塩であ ると結論した。
本発明のポリアミンホウ酸塩の他の具体例として、 ポリアミドアミンホウ酸塩 が挙げられる。 ポリアミドアミンを用いた場合、 ァミンとホウ酸とのモル比によ つて、結晶性と非結晶性のポリアミドアミンホウ酸塩を作り分けることができる。 例えば、 ァミンの中のアミノ基およびィミノ基の 1モルに対して、 ホウ酸を 1モ ル以上仕込んだ場合、 結晶性ポリアミドアミンホウ酸塩が得られる。 これに対し て、 アミノ基またはィミノ基の 1モルに対して、 ホウ酸の仕込量が 0 . 6モル未 満の場合、 非結晶性ポリアミドアミンホウ酸塩が得られる。 また、 ホウ素含有量 の測定から、 結晶性ポリアミドアミンホウ酸塩の主成分が多核縮合ホウ酸塩であ ることがわかった。
また、 イミダゾールホウ酸塩の具体例として、 2-ェチル -4-メチルイミダゾール ホウ酸塩が挙げられる。 X線回折のパ夕一ン及びホウ素含有率の測定値から、 結 晶性ィミダゾール縮合ホウ酸塩が得られたことがわかった。
本発明におけるポリアミンホウ酸塩の合成は、 例えば次のようにして行うこと ができる。 即ち、 溶媒または水にホウ酸を溶解または懸濁させて攪拌しながら、 ポリアミン系化合物溶液を滴下する。 場合によっては、 添加順序を逆にしてポリ アミン系化合物の溶媒溶液または水溶液を攪拌しながら、 ホウ酸溶液を滴下する 場合もある。 続いて、 室温または加熱下、 一定時間において反応を行う。 これに よりポリアミンホウ酸塩が析出し、吸引濾過により沈殿物(ポリアミンホウ酸塩) を回収する。 一方、 反応生成物が反応溶媒に溶けている場合があり、 その場合は ェパポレー夕一により溶媒を留去してポリアミンホウ酸塩を回収する。 以上のよ うにして得られた反応生成物を N,N-ジメチルホルムアミド、ァセトンなどを用い て数回繰り返し洗浄した後、 真空乾燥することにより白色粉末のァミンホウ酸塩. が得られる。
本発明におけるポリアミンホウ酸塩の合成溶媒としては、 ホウ酸系化合物また はポリアミン系化合物の少なくとも一種を溶解するようなものが必要である。 具 体的には、 例えば、 メタノール、 エタノール、 ィソプロパノ一ルなどの低級アル コール、 アセトン、 メチルェチルケトン、 テトラヒドロフラン、 Ν,Ν-ジメチルホ ルムアミド、 Ν-メチルピロリドン、 Ν,Ν-ジメチルァセトアミド、 ジメチルスルホ キシド、 水などが挙げられ、 これらは単独又は二種以上の混合で使用できる。 そ の中では、特に Ν,Ν-ジメチルホルムアミド又は水を用いることが好ましい。溶媒 の使用量は、 ホウ酸系化合物およびポリアミン系化合物の合計 1 0 0質量部に対 して溶媒が 3 0 0〜1 5 0 0質量部となるように用いることが好ましい。
本発明におけるポリアミンホウ酸塩の合成条件として、 ポリアミン系化合物の 中の窒素含有基とホウ酸系化合物のホウ素とのモル比が重要である。 ホウ酸系化 合物の比率を増やすと、 多核縮合ホウ酸塩が形成しやすく、 高いホウ素含有量の ポリアミンホウ酸塩が得られる。 これに対してポリアミン系化合物の比率を増や すと、 より低いホウ素含有量のァミンホウ酸塩を得ることができる。 一般的にポ リアミン系化合物の中の窒素含有基、 即ちアミノ基、 イミノ基及び二トリ口基の 合計 1モルに対して、 ホウ素が 0 . 2 5〜1 0モルが好ましく、 より好ましくは 0 . 5〜8モル、 特に好ましくは 1〜6モルである。 0 . 2 5モル未満又は 1 0 モルを超える場合、 ポリアミンホウ酸塩の収率が低く、 経済的に不利になり、 好 ましくない。 また、 反応温度について、 用いるポリアミン系化合物の種類によつ ては異なるが、 一般的に 1 5 °C〜1 5 0 が好ましく、 より好ましくは 2 0 〜 1 2 0 °Cであり、 特に好ましくは 2 5 〜 1 0 0 °Cである。 反応時間は反応温度 にもよるが、 通常 1〜1 5時間が好ましく用いられる。
本発明で用いられるポリアミンホウ酸塩は、 ァミン特有の刺激臭が殆どない固 形状粉末であり、 水またはメタノールなどの低級アルコールによく溶ける性質を 持っており、 エポキシ樹脂の硬化剤として好適に用いられる。
本発明におけるエポキシ樹脂の硬化剤としては、 以上に述べたポリアミンホウ 酸塩のうち、 特にエチレンジァミンホウ酸塩、 ジエチレントリアミンホウ酸塩、 リアミンホウ酸塩、 ラッカーマイド T D - 9 8 4ゃェピクロン B - 0 5 3などから 得られるポリアミドアミンホウ酸塩、 2-ェチル -4-メチルイミダゾールホウ酸塩な どのイミダゾールホウ酸塩などが好ましく用いられる。 これらのポリアミンホウ 酸塩は結晶性であっても、 非結晶性であっても、 単核ホウ酸塩であっても、 多核 縮合ホウ酸塩であっても、 いずれも本発明における有効なエポキシ樹脂の硬化剤 として用いられる。
本発明でエポキシ樹脂硬化剤として用いる各種ポリアミンホウ酸塩の使用量は、 それぞれ含まれているアミン系化合物がエポキシ樹脂硬化剤として通常用いられ る量に基づいて決めることができるが、 得られる硬化物の充分な耐熱性を得るた めには、 その使用量を大きく超えて用いることもできる。 一般的には、 エポキシ 樹脂 1 0 0質量部に対して、 4〜 1 2 0質量部、 即ち 4〜1 2 O phr配合するこ とが好ましい。 具体例としては、 ポリアミンホウ酸塩を用いる場合、 エポキシ樹 脂に対して、 5〜5 0 phr、 より好ましくは 1 0〜4 0phr、 特に好ましくは 1 5 〜 3 O phrが用いられる。 また、 ポリアミドアミンホウ酸塩を用いる場合は、 ェ ポキシ樹脂に対して、 1 0〜1 2 O phr, より好ましくは 1 5〜8 0 phr 特に好 ましくは 2 0〜6 O phrが用いられる。 また、 2-ェチル -4-メチルイミダゾールホ ゥ酸塩を用いる場合は、 エポキシ樹脂に対して、 4〜3 5 phr、 より好ましくは 6 - 3 0 phr、 特に好ましくは 8〜 2 5 phrが用いられる。
尚、 ポリアミンホウ酸塩は、 エポキシ樹脂の硬化物の耐熱性,強度及びその他の 物性を好ましいものとする観点からは、 ホウ素含有量がエポキシ樹脂 1 0 0質量 部に対して 0 . 2〜1 0質量部となるように添加されるのが好ましい。
本発明のエポキシ樹脂組成物は、 前記ポリアミンホウ酸塩以外に、 ポットライ フの長いエポキシ樹脂硬化剤を併用することができる。 ここでポリアミンホウ酸 塩と併用するエポキシ樹脂硬化剤としては、 エポキシ樹脂に対するポットライフ が室温で 1 0日以上である積層板用のエポキシ樹脂硬化剤が好ましく用いられる 。 このようなポットライフは、 具体的にはエポキシ樹脂、 エポキシ樹脂硬化剤及 び溶媒からなる組成物を室温で保存して脂触によりゲル化 (硬化) するまでに要 した時間であり、 前記硬ィ匕剤がエポキシ樹脂と反応する硬化剤タイプについては エポキシ樹脂 1当量に対して硬化剤の活性水素が 1当量となるようにして測定す ることを基準とし、 3級ァミン、 イミダゾ一ル化合物についてはエポキシ樹脂 1 0 0質量部に対して 2質量部を用いて測定することを基準としている。
本発明で用いられる上述の他のエポキシ樹脂硬化剤としては、 好ましくは潜在 硬化性やポットライフの長いエポキシ樹脂硬化剤が用いられ、 具体的には、 ジシ アンジアミド、 フエノ一ルノポラック樹脂、 メタフエ二レンジァミンなどのェポ キシ樹脂と反応する硬化剤及び 3級ァミン、 イミダゾール化合物が挙げられる。 これらの硬化剤の使用量は、併用するァミンホウ酸塩の添加量によって異なるが、 エポキシ樹脂と反応する硬化剤の場合はエポキシ樹脂 1当量に対して硬化剤の活 性水素が 0 . 1〜0 . 9 5当量で配合することが好ましく、 3級ァミン、 イミダ ゾ一ル化合物の場合はエポキシ樹脂に対して 1〜 3 phrで配合することが好まし い。
一方、 かかる他のエポキシ樹脂硬化剤を用いる場合、 ポリアミンホウ酸塩の使 用量は、 それに含まれているポリアミンの活性水素当量がエポキシ樹脂 1当量に 対して 0 . 0 5〜0 . 5当量であることが好ましい。 かかる使用量であれば、 得 られる組成物の耐熱性が良好であり、 組成物の保存安定性も優れ、 積層板を製造 する際、 B-ステージ化が容易であるため、 好ましい。
本発明では、 前記ポリアミンホウ酸塩をエポキシ樹脂の硬化剤として使用する ことが必須である。 これに対し、 従来のエポキシ樹脂の硬化促進剤として用いら れたことのあるモノアミンホウ酸塩、 例えばジプロピルァミンホウ酸塩、 はェポ キシ樹脂に添加して硬化せしめても硬化性が不十分だつたり、 強度や耐熱性が十 分ではない。
また、 エポキシ樹脂に硬化剤としてポリアミン及び硬化抑制剤としてホウ酸又 はホウ酸エステルを個別に添加して硬化せしめても、 ホウ酸量が少ない場合には 硬化物の耐熱性が劣り、 またホウ酸量をかなり多く添加すると、 硬化性を損ない 強度の低下した硬化物しか得られない。
本発明において用いることができるエポキシ樹脂組成物の溶媒としては、 ェポ キシ樹脂およびポリアミンホウ酸塩を均一に溶解できる溶媒やポリアミンホウ酸 塩を溶解せず、 エポキシ樹脂を溶解するような溶媒が使用される。 エポキシ樹脂 およびポリアミンホウ酸塩を溶解できる溶媒としては、 通常低級アルコールを含 有するものが使用される。 例えば、 アセトン、 メチルェチルケトン、 テトラヒド 口フラン、 N,N-ジメチルホルムアミド、 N-メチルピロリドン、 N,N-ジメチルァ セトアミド、 ジメチルスルホキシド、 メチルェチルセルソルブなど溶媒にメタノ ール、 エタノール、 ィソプロパノ一ルなどの炭素数 1〜 6程度の低級アルコール を添加した溶媒の混合物が挙げられる。 また、 優れた保存安定性を有するェポキ シ樹脂組成物を目的とする場合には、 溶媒として、 ポリアミンホウ酸塩を溶解せ ず、 エポキシ樹脂を溶解するような溶媒を使用することが好ましい。 例えば、 ァ セトン、メチルェチルケトン、テトラヒドロフラン、 Ν,Ν-ジメチルホルムアミド、 Ν-メチルピロリドン、 Ν,Ν-ジメチルァセトアミド、 メチルェチルセルソルブなど が挙げられ、 これらは単独又は二種以上の混合で使用できる。
本発明におけるエポキシ樹脂組成物の製造方法に於いて、 エポキシ樹脂および ポリアミンホウ酸塩を溶媒に均一に溶解した溶液状態で加熱処理を行うことは均 一透明なエポキシ樹脂組成物を得るために極めて重要である。 溶液状態での加熱 処理とは、実質的に溶媒を除去することなぐ即ちクローズドシステムで加熱し、 しかも溶液がゲル化しないように行うことを云う。 かかる加熱処理を行うことに より、 エポキシ樹脂とポリアミンホウ酸塩とが反応あるいは相互作用し、 ポリア ミンホウ酸塩がエポキシ樹脂溶液中に分子レベルで均一に相溶する。 得られた溶 液を脱溶媒して得られる組成物はポリアミンホウ酸塩の凝集がなく均一透明とな る。 これに対して溶液状態での加熱処理がない場合は、 脱溶媒と共にポリアミン ホウ酸塩が析出してしまい、 得られる硬化物は不透明で脆い材料となる。
溶液状態での加熱処理の条件は、 用いるポリアミンホウ酸塩とエポキシ樹脂と の反応あるいは相互作用の容易さにより異なる。 基本的には加熱処理の下限及び 上限としては、 その後の脱溶媒によりポリアミンホウ酸塩が析出しなくなる範囲 (下限)、 且つ溶液がゲル化しない範囲 (上限)で加熱処理を行うこと、 が重要で ある。 加熱処理を過度に行った場合、 組成物が増粘またはゲル化してしまい、 非 ゲル状の樹脂組成物が得られず、 実用性の点から好ましくない。
溶液状態での加熱処理温度は、 具体的には硬化剤として脂肪族ポリアミンホウ 酸塩及びポリアミドアミンホウ酸塩を用いた場合、 2 5〜1 0 0 °C、 より好まし くは 3 0〜9 0 °C、 特に好ましくは 4 0〜8 0 °Cで行える。 加熱処理時間は加熱 処理温度により異なるが、 0 . 1〜4 0時間が好ましく、 より好ましくは 0 . 2 〜3 0時間、 特に好ましくは 0 . 3〜2 0時間である。
また、 イミダゾールホウ酸塩を用いた場合は、 溶液状態での加熱処理温度は 3 0〜 1 5 0 °Cが好ましく、 より好ましくは 4 0〜 1 3 0 °Cであり、 特に好ましく は 5 0〜1 1 0 °Cである。 加熱処理時間は加熱処理温度により異なるが、 0 . 3 〜 5 0時間が好ましく、 より好ましくは 0 . 5〜4 0時間、 特に好ましくは 1〜 2 5時間である。
本発明の保存安定性を有するエポキシ樹脂組成物の製造方法において、 ェポキ シ樹脂の中にポリアミンホウ酸塩を溶解せず、 エポキシ樹脂又は前記樹脂を溶媒 で希釈したエポキシ樹脂溶液中に前記ポリアミンホウ酸塩を均一に、 微分散処理 を行うことにより、 保存安定性に優れるエポキシ樹脂組成物が得られる。 ポリア ミンホウ酸塩を微分散する方法としては、 (1 )ポリアミンホウ酸塩をエポキシ樹 脂に添加して、 ミキサーまたはロールなどを用いて混練する方法、 (2 )ポリアミ ンホウ酸塩及び溶媒をエポキシ樹脂に添加して、 プレンダーなどを用いて粉砕混 合する方法、 (3 )ポリアミンホウ酸塩、溶媒及びガラスビーズをエポキシ樹脂に 添加して、 シェ一力などを用いて混合分散する方法、 などが挙げられる。 これら の処理方法を行うことにより、 ポリアミンホウ酸塩がミク口ン又はそれ以下のォ —ダ一でエポキシ樹脂の中に微分散され、 常温ではエポキシ樹脂と反応しない潜 在性硬化剤となる。 得られた組成物はポリアミンホウ酸塩の凝集や沈降などがな く均一材料になる。
本発明で得られるエポキシ樹脂組成物から、 硬化反応を進めないようにして溶 媒を除去することにより、 無溶媒のエポキシ樹脂組成物が製造できる。 脱溶媒温 度は用いる硬化剤により異なるが、 低温で乾燥が好ましく、 すなわち、 1 0 0 °C 以下が好ましく、より好ましくは 8 0 °C以下、特に好ましくは 6 0 °C以下である。 上述の方法により製造される溶液状の熱硬化性エポキシ樹脂組成物は、 金属、 セラミック、 耐熱性プラスチックなどの基材に対する耐熱性塗料として利用でき るほか、 ガラス繊維の耐熱性含浸剤としても利用することができる。
また、 本発明の溶液状の熱硬化性エポキシ樹脂組成物の応用例の一つとして、 耐熱性基材シートの表面上に、 この溶液状の熱硬化性エポキシ樹脂組成物の未硬 化塗膜層を設け、 前記未硬化塗膜層の上に更に別の耐熱性基材シートを重ね合わ せ、 これら両耐熱性基材シートを加熱圧着して前記未硬化塗膜層を硬化させるこ となどによる耐熱性積層シートの製造を挙げることができる。
耐熱性基材シートとしては、 銅、 アルミ、 チタン、 セラミックなどの無機質材 料や、 耐熱性のポリエステル、 ポリアミド、 ポリイミドなどの有機質材料や、 ガ ラス繊維強化ポリエステルやガラス繊維強化エポキシ樹脂などの有機 ·無機複合 •材料などから選ばれる耐熱性材料からなるシー卜が挙げられる。
例えば、 上記エポキシ樹脂組成物を耐熱性基材に塗布又は含浸させた後、 乾燥し てプリプレダとする。 このプリプレダに銅箔を重ね合わせ、 加熱圧縮することに より銅張積層板を製造することができる。
また、 上記エポキシ樹脂組成物を直接銅箔に塗布し、 乾燥した後、 それをェポ キシ樹脂ガラスクロス板と重ね合わせ、 加熱圧縮することにより銅張積層板を製 造することもできる。
上述の方法により製造される銅張り積層板は、 耐熱性、 耐湿耐半田性に優れ、 電子部品として好適に用いられる。
本発明における粉末状の熱硬化性エポキシ樹脂を得る場合は、 エポキシ樹脂と ポリアミンホウ酸塩を低級アルコールを含む溶媒に均一に溶解させ、 その溶液を 加熱処理してから、 溶媒を除去し、 得られる固形状の熱硬化性エポキシ樹脂組成 物を粉砕することにより製造できる。
上記溶液状の熱硬化性エポキシ樹脂組成物中の溶媒の除去は、 熱風乾燥機、.凍 結乾燥機、 真空乾燥機などを用いて慣用の方法で行うことができる。 溶液状の熱 硬化性エポキシ樹脂組成物を大気雰囲気中、 加熱ガス流通下もしくは減圧下に、 2 5 〜 1 2 0 °Cの温度範囲で加熱して溶媒を除去することが好ましい。 溶媒の 除去温度は溶媒の種類のほか、 用いるポリアミンホウ酸塩の種類によっても好ま しい範囲が異なるが、 例えば、 3 0 °C〜1 0 0 °Cである。 粉砕は公知慣用の方法 で行うことができ、 好ましくは平均粒径 3 0 0 以下に粉砕し、 得られた粉末 を減圧下に 3 0〜1 0 0 °Cの温度で更に乾燥させることが好ましい。
上述の方法により製造される粉末状の熱硬化性エポキシ樹脂組成物を加熱下に 圧縮成形して、 場合によって更に熱処理することにより硬化させ、 耐熱性の硬化 物成型物が得られる。 その際の成形温度は、 用いるエポキシ樹脂やポリアミンホ ゥ酸塩により異なり、 特に限定されないが、 通常 9 0 ° (:〜 2 0 0 °Cである。
本発明の熱硬化性エポキシ樹脂組成物は、 通常のアミン系硬化剤のみを用いた エポキシ樹脂の硬化物よりもガラス転移温度が 1 0 0 °C〜2 3 0 °C又はそれ以上 高い硬化物が得られる。
また、 本発明の熱硬化性エポキシ樹脂組成物は、 通常のアミン系硬化剤を用い たエポキシ樹脂の硬化物と比べて高いガラス転移温度を有するだけでなく、 弾性 率や強度といった力学物性、低線熱膨張係数や高温での高弾性率といった熱特性、 更には優れた難燃性などを硬化物に付与することができる。
さらに、 本発明の保存安定な溶液状及び粉末状の熱硬化性ェポキシ樹脂組成物 は、 高いガラス転移温度を有する硬化物を与えるほかに、 製品の使用利便性を有 し、 且つ製品の長期保存も可能である。
本発明の熱硬化性エポキシ樹脂組成物は上述の優れた特性を有し、 電気 ·電子 部材、 特に回路配線板として有用な銅張積層板をはじめ、 一般の成形材料、 塗料 または接着剤などの広い分野で好ましく用いられる。 実施例 次いで、 本発明を合成例、 実施例によって具体的に説明する。
また、 以下の合成例において、 核磁気共鳴スペクトル(NMR) の測定は日本電 子(株) 製 L amb d a 300を用いた。 iiB-NMRスぺクトルは重水中のホウ 酸ピ一クを基準とした。
フ一リエ変換赤外吸収スぺクトル(FTHR) は日本分光工業(株) 製 FT/I R - 550を用い、 4000 cm -1〜 400 c m-1の範囲で測定を行った。
粉末 X線回折の測定は、 理学電機(株)製の X線回折装置 R I NT ULT I MA+ を使用した。
質量分析は島津製作所製質量分析装置 GCMS 9100-MKを用いて、試料を 直接導入の EI S測定法により行つた。
ホウ素含有量は Perkn Elmer社製 Optima 3300DVを用いて、 ICPの測 定を行い、 予めホウ酸を用いて作成しておいた検量線により定量した。
ァミンの定量は 1 H-NMRの内部標準法により行った。 すなわち、 試料に一定 量のベンゼンまたはクロ口ホルムを内部標準として添加し、 そのピークと一定量 のァミンホウ酸塩のァミンの特定ピークとの面積比により定量した。
なお、 本発明の合成例について次の試薬が使用された。
(1) アミン系化合物
エチレンジァミン (EDA):和光純薬工業株式会社製、 試薬特級
ジエチレントリアミン (DETA):和光純薬工業株式会社製、 試薬特級 トリエチレンテトラミン (TETA):和光純薬工業株式会社製、 試薬特級 テトラエチレンペンタミン (TEPA):和光純薬工業株式会社製、 試薬特級 ポリアミドアミン ェピクロン B-053 :大日本ィンキ化学工業株式会社製、 活性水素当量 77 g/eq
ポリアミドアミン ラッカマイド TD-984 :大日本インキ化学工業株式会社 製、 活性水素当量 97 g/eq
2-ェチル -4-メチルイミダゾール (2E4MZ):和光純薬工業株式会社製、 試 薬特級
(2) ホウ酸:和光純薬工業株式会社製、 試薬特級
(3) 溶媒 Ν,Ν-ジメチルホルムアミド (DMF):和光純薬工業株式会社製、 試薬特級 メチルェチルケトン (ΜΕΚ) :和光純薬工業株式会社製、 試薬特級 アセトン:和光純薬工業株式会社製、 試薬 1級
テトラヒドロフラン (THF) :和光純薬工業株式会社製、 試薬特級 へキサン:和光純薬工業株式会社製、 試薬 1級
メタノール:和光純薬工業株式会社製、 試薬特級
(4) 硬化剤
ジシアンジアミド (D I CY) :和光純薬工業株式会社製、 試薬特級 フエノールノポラック樹脂 TD 2090-60Μ:大日本インキ化学工業株式会 社製、 活性水素当量 105 g/eq, 固形分 60%
メタフエ二レンジァミン (m-PDA):和光純薬工業株式会社製、 試薬特級 (合成例 1 ) [ェチレンジアミン縮合ホウ酸塩の合成]
ホウ酸 10 g (0. 162mo 1 ) を DMF 70 gに溶かした溶液を攪拌しな がら、 エチレンジァミン EDA 4. 86 g (0. 08 lmo 1 ) を滴下した。 白 色沈殿が直ちに析出した。 室温で 2時間攪拌して、 吸引濾過により沈殿物を回収 した。 続いて、 得た沈殿物を DMF、 アセトンの順に洗浄し、 50 、 2時間真 空乾燥により、 6. 34 gの白色粉末 1 aを得た。 また、 濾液をェパポレー夕一 で DMFを留去し、 得た白色固体をアセトンで洗った。 50t、 2時間真空乾燥 により 1 aと同一の化合物の白色粉末 4. 58 gを得た。 原料に対して反応生成 物の収率は 73. 5%であった。 分析結果を表 1、 表 2及び表 3に示す。
(合成例 2) [エチレンジァミン縮合ホウ酸塩の合成]
ホウ酸 40 g (0. 647mo 1 ) を DMF 250 gに溶かした溶液を攪拌し ながら、 エチレンジァミン EDA 9. 72 g (0. 162mo 1 ) を滴下した。 白色沈殿が直ちに析出した。 室温で 4時間攪拌して、 吸引濾過により沈殿物を回 収した。 続いて、 得た沈殿物を DMF、 アセトンの順に洗浄し、 50°C、 15時 間真空乾燥したところ、 原料に対して 71. 2%の収率で反応生成物の白色粉末 2 aの 35. 4 gを得た。 NMRスぺクトルは 1 aと同様であつたが、 他の分析 結果を表 2と表 3に示す。
(合成例 3) [エチレンジァミン縮合ホウ酸塩の合成] ホウ酸 30 g (0. 485mo 1 ) を DMF 250 gに溶かした溶液を攪拌し ながら、 エチレンジァミン EDA 29. 2 g (0. 485mo 1 ) を滴下した。 白色沈殿が直ちに析出した。 室温で 15時間攪拌して、 吸引濾過により沈殿物を 回収した。 続いて、 得た沈殿物を DMF、 アセトンの順に洗浄し、 50°C、 15 時間真空乾燥したところ、 原料に対して 47. 4%の収率で反応生成物の白色粉 末 3 aの 28. l gを得た。 NMRスペクトルは 1 aと同様であつたが、 他の分 析結果を表 2と表 3に示す。
(合成例 4) [エチレンジァミン縮合ホウ酸塩の合成]
ホウ酸 30 g (0. 485mo 1) を蒸留水 H20 120 gに溶かした溶液を 攪拌しながら、 エチレンジァミン EDA 14. 6 g (0. 243mo 1 ) を滴下 した。室温で 2時間反応した。そして、ェパポレーターで水を留去し、更に 60 、 5時間真空乾燥したところ、 原料に対して 77%の収率で反応生成物の白色粉末 4 aの 34. 2 gを得た。 NM3Rスペクトルは 1 aと同様であつたが、 他の分析 結果を表 2と表 3に示す。
(合成例 5) [ジエチレントリアミン縮合ホウ酸塩の合成]
ホウ酸 60 g (0. 97 lmo 1 ) を DMF 500 gに溶かした溶液を攪拌し ながら、 ジエチレントリアミン DETA 33. 4g (0. 324mo 1 ) を滴下 した。 白色沈殿が直ちに析出した。 室温で 5時間攪拌して、 吸引濾過により沈殿 物を回収した。続いて、得た沈殿物を DMF、 アセトン、 へキサンの順に洗浄し、 50°C、 15時間真空乾燥により、 原料に対して収率 69. 4%で反応生成物の 白色粉末 l bの 64. 8 gを得た。 分析結果を表 1、 表 2及ぴ表 3に示す。
(合成例 6) [ジ: Elチレントリアミン縮合ホウ酸塩の合成]
ホウ酸 60 g (0. 97 lmo 1 ) を DMF 500 gに溶かした溶液を攪拌し ながら、 ジエチレントリアミン DETA 1 1. 1 g (0. 108mo 1) を滴下 した。 白色沈殿が直ちに析出した。 室温で 13時間攪拌して、 吸引濾過により沈 殿物を回収した。続いて、得た沈殿物を DMF、 アセトンの順に洗浄し、 50°C、 12時間真空乾燥により、 原料に対して収率 67. 9%で反応生成物の白色粉末 2 bの 48. 3 gを得た。 NMRスぺクトルは 1 bと同様であつたが、 他の分析 結果を表 2と表 3に示す。 (合成例 7) [ジエチレントリアミン縮合ホウ酸塩の合成]
ジエチレントリアミン DETA 33. 4 g (0. 32 mo 1 ) を DMF 25 0 gに希釈した溶液を攪拌しながら、 ホウ酸 30 g (0. 485mo 1) を DMF 150 gに溶かした溶液を滴下した。 白色沈殿が直ちに析出した。 室温で 14時 間攪拌して、 吸引濾過により沈殿物を回収した。 続いて、 得た沈殿物を DMF、 アセトンの順に洗浄し、 50°C、 5時間真空乾燥により、原料に対して収率 45% で反応生成物の白色粉末 3 bの 28. 5 gを得た。 NMRスぺクトルは 1 bと同 様であつたが、 他の分析結果を表 2と表 3に示す。
(合成例 8) [ジエチレントリアミン縮合ホウ酸塩の合成]
ホウ酸 20 g (0. 324mo 1) を蒸留水 H20 16 O gに溶かした溶液を 攪拌しながら、 ジエチレントリアミン DETA 1 1. 2 g (0. 108mo 1 ) を加えた。 室温で 12時間反応した。 そして、 ェパポレー夕一で水を留去し、 更 に 60°C、 17時間真空乾燥したところ、 原料に対して 80%の収率で反応生成 物の白色粉末 4 b 25 gを得た。 NMRスペクトルは 1 bと同様であつたが、 他 の分析結果を表 2と表 3に示す。
(合成例 9) [ジエチレントリアミン縮合ホウ酸塩の合成]
ホウ酸 20 g (0. 324mo 1) を蒸留水 H20 200 gに溶かした溶液を 攪拌しながら、 ジエチレントリアミン DETA 22. 4 g (0. 216mo 1 ) を加えた。室温で 13時間反応した。続いて、ェパポレーターで水を留去した後、 アセトンを加えて洗った。 得た白色粉末を 50t、 4時間真空乾燥したところ、 原料に対して 63. 2 %の収率で反応生成物 5 bの 26. 8 gを得た。 NMR及 び スぺクトルは 4 bと同様であつたが、 他の分析結果を表 3に示す。
(合成例 10 ) [トリエチレンテトラミンホウ酸塩の合成]
ホウ酸 60 g (0. 97 lmo 1 ) を DMF 600 gに溶かした溶液を攪拌しな がら、 トリエチレンテトラミン TETA 35. 5 g (0. 243mo l) を滴下し た。 白色沈殿が直ちに析出した。 室温で 12時間攪拌して、 吸引濾過により沈殿 物を回収した。続いて、得た沈殿物を DMF、 アセトン、 へキサンの順に洗浄し、
50°C, 15時間真空乾燥により、 原料に対して収率 73. 2%で反応生成物の 白色粉末 1 cの 69. 9 gを得た。 分析結果を表 1、 表 2及び表 3に示す。 (合成例 11) [トリエチレンテトラミンホウ酸塩の合成]
ホウ酸 20 g (0. 324mo 1) を蒸留水 H20 16 O gに溶かした溶液を 攪拌しながら、 トリエチレンテトラミン TETA 11. 85 g (0. 08 lmo 1 ) を加えた。 室温で 15時間反応した。 そして、 ェパポレーターで水を留去し、 更 に 60° (、 5時間真空乾燥したところ、 原料に対して 84. 3%の収率で反応生 成物の白色粉末 2 cの 26. 9 を得た。 NMR及ぴ F IRスぺクトルは 1 cと 同様であつたが、 他の分析結果を表 3に示す。
(合成例 12) [テトラエチレンペン夕ミンホウ酸塩の合成]
ホウ酸 60 g (0. 97 lmo 1) を DMF 600 gに溶かした溶液を攪拌し ながら、 テトラエチレンペン夕ミン TEPA 36. 8 g (0. 194mo 1) を滴 下した。 白色沈殿が直ちに析出した。 室温で 1.3時間攪拌して、 吸引濾過により 沈殿物を回収した。 続いて、 得た沈殿物を DMF、 アセトン、 へキサンの順に洗 浄し、 50°C、 9時間真空乾燥により、 原料に対して収率 73%で反応生成物の 白色粉末 1 dの 70. 7 gを得た。 分析結果を表 1、 表 2及び表 3に示す。
(合成例 13) [テトラエチレンペン夕ミンホウ酸塩の合成]
ホウ酸 60 g (0. 97 lmo 1 ) を DMF 500 gに溶かした溶液を攪拌しな がら、 テトラエチレンペン夕ミン TEPA 18. 4 g (0. 0972mo 1 ) を滴 下した。 白色沈殿が直ちに析出した。 室温で 17時間攪拌して、 吸引濾過により 沈殿物を回収した。続いて、得た沈殿物を DMF、アセトンの順に洗浄し、 70°C, 5時間真空乾燥により、原料に対して収率 77%で反応生成物の白色粉末(2 d) を 60 g得た。 NMR を測定したところ、 I dと同様なスべクトルが得られた。 他の分析結果を表 3に示す。
(合成例 14) [テトラエチレンペン夕ミンホウ酸塩の合成]
ホウ酸 20 g (0. 324mo 1) を蒸留水 H20 16 O gに溶かした溶液を 攪拌しながら、 テトラエチレンペン夕ミン TEPA 12. 27 g (0. 065mo 1)を加えた。室温で 15時間反応した。そして、ェパポレーターで水を留去し、 更に 60で、 2時間真空乾燥したところ、 原料に対して 86. 6%の収率で反応 生成物の白色粉末 3 dの 28 gを得た。 NMR及び FT-IRスぺクトルは 1 dと同 様であつたが、 他の分析結果を表 3に示す。 (合成例 15) [ェピクロン B— 053縮合ホウ酸塩の合成]
ホウ酸 30 g (0. 485mo 1 ) を MEK 200 に懸濁させた溶液を攪拌 しながら、ェピクロン B— 053 37. 4 gを滴下した。室温で 24時間攪拌し て、 吸引濾過により白色沈殿物を回収した。 続いて、 得た沈殿物を DMF、 ァセ トン、 へキサンの順に洗浄し、 50°C、 15時間真空乾燥により、 原料に対して 収率 31%で反応生成物の黄土色粉末 1 e 20. 9 gを得た。分析結果を表 2及 び表 3に示す。
(合成例 16) [ェピクロン B— 053ホウ酸塩の合成]
ホウ酸 45 g (0. 728mo 1 ) を DMF 500 gに溶かした溶液を攪拌し ながら、ェピクロン B-053 1 12.1 gを滴下した。白色沈殿が直ちに析出した。 室温で 7時間攪拌して、 吸引濾過により沈殿物を回収した。 続いて、 得た沈殿物 をアセトン、 へキサンの順に洗浄し、 50° (:、 15時間真空乾燥により、 原料に 対して収率 31. 8%で、 反応生成物の薄黄土色粉末 2 e.の 50. l gを得た。 分析結果を表 2と表 3に示す。
(合成例 17)[TD— 984ホウ酸塩の合成]
ホウ酸 30 g (0. 485mo 1 ) を DMF 500 gに溶かした溶液を攪拌し ながら、 ラッカマイド TD— 984 94. 1 gを流し込んだ。 沈殿が直ちに析 出した。 室温で 13時間攪拌して、 吸引濾過により沈殿物を回収した。 続いて、 得た沈殿物を DMF、 アセトンの順に洗浄し、 50°C、 4時間真空乾燥により、 原料に対して収率 37. 1 %で、反応生成物の薄黄土色粉末 1 fの 46 gを得た。 分析結果を表 2及び表 3に示す。
(合成例 18) [2-ェチル -4-メチルイミダゾール縮合ホウ酸塩の合成]
ホウ酸 20g (0.324m o 1 ) を DMF 80 gに溶かした溶液を攪拌しながら、 2-ェチル -4-メチルイミダゾ一ル 2 E4MZ 17. 8 g (0. 162mo 1 ) の DMF 40 g溶液を滴下した。 白色沈殿が直ちに析出した。 室温で 13時間攪拌 して、 吸引濾過により沈殿物を回収した。 続いて、 得た沈殿物を DMF、 ァセト ンの順に洗浄し、 50T:、 4時間真空乾燥により、 原料に対して収率 34. 1% で反応生成物の白色粉末 1 k 12. 9 gを得た。分析結果を表 1、表 2及び表 3 に示す。 また、 質量分析では、 2-ェチル -4-メチルイミダゾールに相当する質量数 110のピークが検出された。
(合成例 19) [ジプロピルアミン縮合ホウ酸塩の合成]
ホウ酸 15. 3 g (0. 25mo 1 ) を DMF 80 gに溶かした溶液を攪拌 しながら、 ジプロピルァミン 25 g (0. 25mo 1) を滴下した。 室温で 19 時間反応した。 そして、 ェパポレー夕一で DMFを留去し、 得た固形物をァセト ンで 3回繰り返して洗浄した。 更に 70°C、 3時間真空乾燥したところ、 原料に 対して 37. 5%の収率でジプロピルァミンホウ酸塩の白色粉末 1 1の 15 gを 得た。 分析結果を表 3に示す。
表 1
Figure imgf000025_0001
表 2
ァミンホウ酸塩 FT-IR吸収スべクトル (cm-i)
合成例 1 ΕϋΑ ·縮合ホウ酸塩 la 3420,1353,1060
合成例 2 EDA,縮合ホウ酸塩 2a 3420,1362,1063,922,870,815
合成例 3 EDA '縮合ホウ酸塩 3a 3420, 1347, 1062,940,870,815
合成例 4 EDA *縮合ホウ酸塩 4a 3400,1340,1060,940,820
合成例 5 DETA ·縮合ホウ酸塩 lb 3200,1363,1060
合成例 6 DETA '縮合ホウ酸塩 2b 3420,1361, 1273, 1073,940,860,810,707
合成例 7 DETA '縮合ホウ酸塩 3b 3420, 1345, 1060,940,860,810
合成例 8 DETA ·縮合ホウ酸塩 4b 3420,1340,1060,940,820
合成例 10 TETA ·縮合ホウ酸塩 lc 3412,1348, 1063,935,860,815,705
合成例 12 TEPA ·縮合ホウ酸塩 Id 3392,2900,2840,1350,1066,940,860,815,720
合成例 15 B-053 ·縮合ホウ酵塩 le 3307, 1422,1312,1073,923,778,706,470
合成例 16 B-053 ·縮合ホウ酸塩 2e 3434,2927,2854, 1349, 1066,864,810,708
合成例 17 TD-984 ·ホウ酸塩 If 3432,2925,2853, 1608, 1545, 1458, 1361, 1067,864,810,721 合成例 18 2E4MZ ·縮合ホウ酸塩 lk 3300,3136,3060, 1419, 1315, 1190, 1078, 1028,926,775,706,482
表 3
Figure imgf000027_0001
(*) "一" は、 ァミン含有量を測定する事ができなかった事を示す。 以下の実施例および比較例において、 光透過率は日本電色工業株式会社製 N D H- 30 OAを用いて、 厚さ 300 mのフィルムの平行透過率を測定した。 ガ ラス転移温度及び貯蔵弾性率 (Ε') は、 固体動的粘弾性測定装置 (セイコー電子 工業株式会社製 DMA— 200) を用い、 測定周波数 1Ηζ、 昇温速度 2 °C/分で 測定した。 なお、 ガラス転移温度 (Tg) は tan<5ピーク温度 (tan0max) とし た。 また、 吸水率は、 初期の重量と、 100%湿度の雰囲気下で 70時間放置し た後の重量増加とを測定し、 その比率により算出した。
(実施例 1及び比較例 1)
エチレンジァミン縮合ホウ酸塩 1 a 24.4 gをメタノール 80 gに溶かした 溶液を攪拌しながら、 MEKを滴下した。 得た透明溶液にビスフエノール A型ェ ポキシ樹脂ェピクロン 850 (大日本インキ化学工業株式会社製、 エポキシ当量
190 g/eq) 100 gを加え、 攪拌混合した後、 50 °Cで 1. 5時間の溶液 状態での加熱処理を行い、 エポキシ樹脂組成物溶液を得た。 続いて前記溶液を清 浄なアルミ箔上に塗布し、 12時間、溶媒キャストを行った後、 50°C、 60°C、
70で、 80 、 90°Cで各 1時間乾燥し、 更に、 150°C、 180°Cで各 2時 間の熱処理を行い、 前記エポキシ樹脂組成物の硬化物を得た。 得られた硬化物を 空気雰囲気中 1000 で 2時間焼成したところ、 黒色の灰分 11. 5 gが得ら れた。
上記の硬化物は透明性に優れ、 可視光域での光透過率は 93% (100 m厚 み換算)であった。 また、 クラックやしわ、 気泡なども無く、 良好な表面形態を示 した。 得られた硬化物の評価結果を表 4に示す。
実施例 1で得られた厚み 300 m の硬化フィルムを用いて動的粘弹性測定 (周波数 1Hz)を行った。得られた貯蔵弾性率(Ε') と tanSと温度との関係を図 1 に示す。 図 1の縦軸は貯蔵弾性率 (Eゥ を横軸は温度 CC) である。 なお、 図 1 にはエチレンジァミン縮合ホウ酸塩の変わりにエチレンジァミンを用いた以外は 同じエポキシ樹脂組成の硬化物である比較例 1の結果も併せて示す。 比較例 1で は、 tanSのピーク温度 (Tg) が 54. 3 であるのに対し、 実施例 1 のェポキ シ樹脂硬化物では 286. 5 であった。 ポリアミンホウ酸塩を硬化剤としたェ ポキシ樹脂硬化物の耐熱性が大きく向上していることが明らかである。 (実施例 2 )
実施例 2はローブロムビスフエノール A型ェポキシ樹脂 ェピクロン EXA- 9 1 0 1 (大日本インキ化学工業株式会社製、 エポキシ当量 3 6 8 g/eq、 固形分 8 0 . 5 %) を用いた以外は実施例 1と同様にしてエポキシ樹脂組成物及びその硬 化物を作成した。 得られた硬化物の評価結果を実施例 1と同様に表 4に示す。 表 4
実施例 1 実施例 2 比較例 1 エポキシ樹脂 D 850 EXA-9101 850 重量 (g) 100 124.2 100 エポキシ当量 (g/eq) 190 368 190
X
ポ ァミンホウ酸塩 la 同左 EDA キ
シ 重量 (g) 24.4 19 7.9 樹
脂 ァミン含有量 (g) 7.9 6.2
成 エポキシ当量比 (%) 100 152 100 物
Dに対するホウ素含有量 (質量%) 4.4 3.4
MeOH
80 MEK 溶媒 (g)
MEK 160
80
溶液状態での加熱処理 50°C,1.5hrs 同左 ― 硬 光透過率 (%) 93 88 92 化
物 Tg (°C) 286.5 258.3 54.3
(実施例 3及び比較例 2〜3)
実施例 3は、 テトラエチレンペン夕ミン縮合ホウ酸塩 1 dを用いた以外は実施 例 1と同様にしてエポキシ樹脂とポリアミンホウ酸塩との透明溶液を調製し、 更 に 8 0 DCで 3 0分の溶液状態での加熱処理を行った。 得られたエポキシ樹脂組成 物溶液を用いて実施例 1と同様にしてその硬ィ匕物を作成した。 得られた硬化物の 動的粘弹性を測定したところ、 Tgが 2 8 9 °Cであった。
これに対して、 モノアミンホウ酸塩のジプロピルアミン縮合ホウ酸塩を硬化促 進剤及びジシアンジアミド (DICY) をァミン硬化剤として用いた比較例 2の硬 化物では、 Tgがわずか 1 4 4 °Cであり、耐熱性の向上は認められなかった。また、 ポリアミンホウ酸塩の変わりにホウ酸と TEPA硬化剤を用いてエポキシ樹脂に混 合させて得られた硬化物について、 ホウ酸添加量が少ない比較例 3の場合、 が わずか 1 4 3 °Cであり、 耐熱性の向上は認められなかった。 一方、 ホウ酸添加量 を実施例 3に相当するように増やした場合、 1 0 7 °Cに tan <5のサブピークが観 測され、一部の樹脂硬化物の Tgが低かったことを示した。 これらの結果を表 5に まとめて示す。
表 5
Figure imgf000031_0001
(実施例 4〜6)
実施例 4は、 トリエチレンテトラミン縮合ホウ酸塩 1 cを用いること、 実施例 5は、ェピクロン 1121N-80M及びトリエチレンテトラミン縮合ホウ酸塩 1 cを用いること、 実施例 6は、 ェピクロン 1121 N-80M及びテトラエチレン ペン夕ミン縮合ホウ酸塩 1 dを用いること、 それ以外は実施例 1と同様にしてェ ポキシ樹脂とポリアミンホウ酸塩との透明溶液を調製し、 更に表 6に示した条件 で溶液状態での加熱処理を行った。 得られたエポキシ樹脂組成物溶液を用いて実 施例 1と同様にしてその硬化物を作成した。 得られた硬化物はいずれも優れた透 明性と高いガラス転移温度(Tg) を示した。 また、 高い Tgを有するにもかかわら ず、 比較的に低い吸水率をも示した。 尚、 得られた硬化物の評価結果を表 6に示 す。
表 6
Figure imgf000032_0001
(実施例 7〜 9 )
実施例 7は、 B— 0 5 3 ·縮合ホウ酸塩 1 eを用いること、 実施例 8は、 B- 0 5 3 ·ホウ酸塩 2 eを用いること、 実施例 9は、 2-ェチル -4-メチルイミダゾール 縮合ホウ酸塩 l kを用いること、 それ以外は実施例 1と同様にしてエポキシ樹脂 とポリアミンホウ酸塩との透明溶液を調製し、 更に表 7に示した条件で溶液状態 での加熱処理を行った。 得られたエポキシ樹脂組成物溶液を用いて実施例 1と同 様にしてその硬化物を作成した。得られた硬化物の動的粘弾性を測定したところ、 実施例 7〜 9で得られたエポキシ樹脂組成物の硬化物の Tgが大幅に向上した。尚、 得られた硬化物の評価結果を表 7に示す。 表 7
Figure imgf000033_0001
( * ) 表の保存安定性の "―" は、 測定が行われなかった事を示す。
(実施例 1 0と 1 1 )
実施例 1 0は、ェピクロン 8 5 0 1 0 0 gと、ジエチレントリアミン縮合ホウ 酸塩 1 b 2 4 gと、 希釈剤 MEK 4 7 gとを混合し、 ガラスビーズと一緒に容 器にいれ、 シェ一力を用いて 1 5時間振動させて、 ポリアミンホウ酸塩を均一に エポキシ樹脂に微分散した。 得られた組成物は 5 0 °Cにて二ヶ月以上放置したと ころ、 溶液が増粘せず、 ァミンホウ酸塩の凝集や沈降などもなく、 優れた保存安 定性を示した。 この組成物を用いて、 1 8 0 °C、 5時間の熱処理を行う以外は実 施例 1と同様にして、 エポキシ樹脂組成物の硬化物を作製した。 得られた硬化物 は極めて高い Tgを示した。
また、 実施例 1 1は、 ェピクロン E XA— 9 1 0 1、 テトラエチレンペンタミ ンホウ酸塩 1 dを用いた以外は実施例 1 0と同様にして、 保存安定なエポキシ樹 脂組成物及ぴその硬化物を作製した。 それらの評価結果を表 8に示す。 表 8
Figure imgf000034_0001
(実施例 1 2)
テトラエチレンペン夕ミン縮合ホウ酸塩 1 d 2 1 . 3 gをメタノール 8 0 gに 溶かした溶液を攪拌しながら、 MEK 8 O gを滴下した。 得た透明溶液にェピク ロン 8 5 0 1 0 0 gを加え、攪拌混合した後、 8 0 で 5 0分の溶液状態での加 熱処理を行い、 エポキシ樹脂組成物溶液を得た。 続いて前記溶液をトレーに流延 し、大気中、室温で 12時間、溶媒キャストを行った後、熱風乾燥機にて 50°C、 60°Cで各 1時間乾燥し、 更に、 70°Cで 1時間の真空乾燥を行った。 得られた 試料を液体窒素で凍結して、 300 m以下の大きさに粉砕した。 引き続き得た 粉末を真空下 60°Cで 2時間乾燥し、 粉末状の熱硬化性エポキシ樹脂組成物を得 た。
次に、 得られた粉末状の熱硬化性エポキシ樹脂組成物を 150 で熱プレスし て、 1mm厚みの板状エポキシ樹脂成形片を作製した。 このプレス成形片を引き 続き 150°Cにて 2時間、更に 180°Cにて 4 時間熱処理して得られた硬化物は 耐熱性に優れ、 動的粘弾性の測定によるガラス転移温度は 243 であった (図 2)。 また、 透明性にも優れ、 上記の成形片の可視光域での光透過率は 80%であ つた。更にこの粉末状の熱硬化性エポキシ樹脂組成物を 3ヶ月常温で保持した後、 熱プレス及び硬化物の物性測定を行ったところ、 同様な結果が得られ、 保存安定 性に優れていることが確認された。
(実施例 13及び比較例 7)
テトラエチレンペン夕ミンホウ酸塩 1 d 5 gをメタノール 60 gに溶かした 溶液を攪拌しながら、 ジシアンジアミド (D I CY) 2. 8 gと 2-ェチル -4-メ チルイミダゾール (2 E4MZ) 0. 4 gと DMF 80 gからなる溶液を滴下し た。 得た透明溶液にローブロムビスフエノール A型エポキシ樹脂 ェピクロン E XA- 9101 125 gを加え、攪拌混合した後、 50 °Cで 4時間の溶液状態で の加熱処理を行い、 エポキシ樹脂組成物溶液を得た。 得られた組成物は 50°Cに て 20日放置したところ、 溶液が増粘せず、 優れた保存安定性を示した。 続いて 前記溶液を用いて実施例 1と同様にして前記エポキシ樹脂組成物の硬化物を作製 した。 また、 比較例 4においてテトラエチレンペン夕ミンホウ酸塩を使用せずジ シアンジアミドのみを用いて、 実施例 13と同様にしてエポキシ樹脂の硬化物を 作製した。
.実施例及び比較例で得られた厚み 300 m の硬化フィルムを用いて動的粘 弾性測定 (周波数 1Hz) 及び吸水率測定を行った。 得られた実施例 13の tanS のピーク温度 (Tg) は 180°Cであった。 これに対して、 比較例 4では tan<5 のピーク温度 (Tg) が 154°Cであった。 ポリアミンホウ酸塩とジシアンジァ ミドを併用したエポキシ樹脂硬化物の耐熱性が向上していることが明らかである。 また、 吸水率については、 比較例 4の 1 . 8 %に対して実施例 1 3が 2. 0 %で あった。 ポリアミンホウ酸塩とジシアンジアミドを併用した場合、 耐熱性が向上 したにもかかわらず、 吸水率は殆ど上昇しなかった。 尚、 これらの評価結果を表 9に示す。
表 9
Figure imgf000037_0001
(*) 保存安定性において、 ">" がついているものは、 記載される日以上放置しても好適な流動 性等が保持された事を示す。 ついていないものは、 記載される日に好適な流動性等が得られなく なった事を示す (判断は目視による)。
(実施例 14〜16)
実施例 14は、 TD 2090-60Mを用いること、 実施例 15は、 m-PDA を用いること、 実施例 16は、 2E4MZを用いること、 それ以外は実施例 13 と同様にしてエポキシ樹脂組成物及びその硬化物を作製した。 得られた硬化物の 評価結果を表 10に示す。
表 10
Figure imgf000039_0001
(*) 表の実施例 16のエポキシ当量の欄に記載されているのは配合量である。 (実施例 1 7 )
実施例 1 7は、ハイブロムビスフエノール A型エポキシ樹脂ェピクロン 1 5 3 -X (大日本インキ化学工業株式会社製、 エポキシ当量 3 9 6 gZeq、 Br含有率 4 8 %)及びビスフエノール A型エポキシ樹脂ェピクロン 850を用いた以外は実 施例 1 3と同様にしてエポキシ樹脂組成物及びその硬化物を作製した。 得られた 硬化物の評価結果を表 1 1に示す。
(実施例 1 8)
実施例 1 8は、 テトラエチレンペンタミン縮合ホウ酸塩 2 dを用いること以外 は実施例 1 7と同様にしてエポキシ樹脂組成物及びその硬ィ匕物を作製した。 得ら れた硬化物の評価結果を表 1 1に示す。
表 1 1
実施例 1 7 実施例 1 8 エポキシ樹脂 D1 153X 153X 重量 (g) 41.6 41.6 エポキシ当量 (g/eq) 396 396 エポキシ樹脂 D2 850 850 重量 (g) 58.4 58.4 エポキシ当量 (g/eq) 188 188 ェ
Br含有量 (質量%)
ポ 20 20 キ ァミンホウ酸塩 Id 2d シ
重重 、g) 7.2 8.2 ァミン含有量 (g) 3.4 3.4 成
エポキシ当量比 (%) 30 30 物
Dに対するホウ素含有量 (質量%) 0.58 1.56 硬化剤 (C) DICY DICY 重量 (g) 4 4 エポキシ当量比 (%) 50 50
MeOH MeOH
60 60 溶媒 (g)
DMF DMF
100 100 溶液状態での加熱処理 50 , 6hrs 50X:,6hrs 保存安定性 >20曰 / 50 >20曰 / 50 光透過率 (%) 91 90 硬
化 Tg (。C) 227 251 物
吸水率 (%) 2.6 2.7 (実施例 19)
テトラエチレンペンタミン縮合ホウ酸塩 1 d 14.5 gをメタノール 33 gに 溶かした溶液を攪拌しながら、 MEK 33 gを滴下した。 得た透明溶液にェピク ロン 1121N-80M 125 gを加え、 攪拌混合した後、 80°Cで 30分の溶 液状態での加熱処理を行い、 均一透明なエポキシ樹脂組成物溶液を得た。 前記組 成物溶液を用いて作製した硬化フィルムの動的粘弾性測定によりガラス転移温度 は 268°Cであった。 続いて上記の組成物溶液を 0. 25mmのアプリケ一夕一 を用いて銅箔 (32ミクロン厚み) に塗装し、 大気中 2時間溶媒キャストを行つ た。 引き続き、 25°C、 13時間真空乾燥して、 硬化性エポキシ樹脂組成物の未 硬化層を設けた銅箔を得た。 未硬化塗膜層の厚みは約 60 imであった。 前記塗 装銅箔をガラスクロス樹脂成形板と重ねて、 150°C、 10 OMPaの条件で熱プ レスすることにより、 銅貼積層板を作製した。 得られた銅貼積層板を 121 水 蒸気中で 2時間処理した後、 260での半田浴に 30秒浸漬する耐湿耐半田試験 を行った。 その結果、 膨れ、 気泡、 クラックなどの発生の ;ない良好な耐湿耐半田 を示した。
(実施例 20)
テトラエチレンペン夕ミンホウ酸塩 1 d 10.8 gをメタノール 50 gに溶か した溶液を攪拌しながら、 ジシアンジアミド (D I CY) 6 gと DMF 50 g からなる溶液を滴下した。得た透明溶液にェピクロン 850 87. 6 g及びェピク ロン 153X 62. 4 gを加え、攪拌混合した後、 50°Cで 6時間の溶液状態で の加熱処理を行い、 均一透明なエポキシ樹脂組成物溶液を得た。 前記組成物溶液 を用いて作製した硬化フィルムの動的粘弾性測定によりガラス転移温度は 23 0°Cであった。 続いて上記の組成物溶液は実施例 19と同様にして、 銅張積層板 を作製した。 得られた銅貼積層板を 121°C水蒸気中で 2時間処理した後、 26 0 の半田浴に 30秒浸漬する耐湿耐半田試験を行ったところ、 膨れ、 気泡、 ク ラックなどの発生のない良好な耐湿耐半田を示した。 産業上の利用の可能性
本発明で用いられるポリアミンホウ酸塩はァミン刺激臭が殆どなく、 メタノー ルによく溶ける性質を有し、 且つ効果的なエポキシ樹脂用硬化剤として用いられ る。 また、 従来のように硬化特性の調整剤としてのホウ酸系化合物を添加した場 合に比べてエポキシ樹脂組成物に含まれるホウ素含有量を高くすることができる。 本発明のエポキシ樹脂組成物は、 前記ポリアミンホウ酸塩を硬化剤として用い ることにより、極めて高いガラス転移温度を有する硬化物を与えることができる。 また弾性率や強度といつた力学物性、 低線熱膨張係数や高温での高弾性率といつ た熱特性、 更には優れた難燃性などを硬化物に付与することができる。
また、 本発明のポリアミンホウ酸塩を用いた粉末状の熱硬化性エポキシ樹脂組 成物は、 保存安定性と流通移送性にも優れている。
更に、 本発明のポリアミンホウ酸塩をポットライフの長いエポキシ樹脂硬化剤 と併用することによって得られる溶液状エポキシ樹脂組成物は、 例えば積層板用 材料として従来と同程度に優れた成形性、 耐湿性及びプリプレダの保存安定性を 有すると共に、 ガラス転移温度、 力学物性、 熱特性、 難燃性などが向上した耐熱 性銅張積層板をもたらすことができる。 '

Claims

請求の範囲
1. 分子中にエポキシ基を 2個以上有するエポキシ樹脂と、 エポキシ樹脂用硬 化剤として、 分子中にアミノ基およびィミノ基のいずれか 1個以上を有するポリ アミン系化合物 (A) と下記一般式 (1) で表わされるホウ酸系化合物 (B) と から得られるポリアミンホウ酸塩と、 を必須成分として含有する、 エポキシ樹脂 組成物。
B (OR) n (OH) 3-„ (1)
(式中、 nは 0〜3までの整数、 Rは CmH2m+1のアルキル基であり、 mは 1〜1 0の整数を表す。)
2. 前記エポキシ樹脂が、 エポキシ当量 100〜1000である、 請求項 1記載 のエポキシ樹脂組成物。
3. 前記ポリアミン系化合物 (A) が、 脂肪族ポリアミン、 芳香族ポリアミン及 び脂環族ポリアミンの少なくとも 1つである、 請求項 1に記載のエポキシ樹脂組 成物。
4. 前記ポリアミン系化合物 (A) の窒素含有基と前記ホウ酸系化合物 (B) のホウ素との含有比率が、 モル比で 1:1〜1:6である、 請求項 1に記載のェポキ シ樹脂組成物。
5. 前記ポリアミンホウ酸塩が、 前記エポキシ樹脂 100質量部に対して 4〜1 20質量部含まれている、 請求項 1に記載のエポキシ樹脂組成物。
6. 前記ポリアミンホウ酸塩中のホウ素量が、 前記エポキシ樹脂 100質量部に 対して 0. 2〜10質量部である、 請求項 1に記載のエポキシ樹脂組成物。
7. 前記エポキシ樹脂と前記ポリアミンホウ酸塩とを低級アルコ一ルを含む溶媒 に均一に溶解してなる、 請求項 1に記載のエポキシ樹脂組成物。
8 . エポキシ樹脂用硬化剤として、 さらに前記ポリアミンホウ酸塩以外の硬化剤 を含有する、 請求項 1に記載のエポキシ樹脂組成物。
9 . 前記ポリアミンホウ酸塩以外の硬化剤が、 ジシアンジアミド、 芳香族ポリア ミン、 フエノールノポラック樹脂及びイミダゾール化合物から選ばれる少なくと も一種である、 請求項 1に記載のエポキシ樹脂組成物。
1 0 . 請求項 7に記載のエポキシ樹脂組成物を、 溶液状態でゲル化しない範囲で 加熱処理を行う工程を含む、 非ゲル状のエポキシ樹脂組成物の製造方法。
1 1 . 請求項 1に記載の前記エポキシ樹脂又は前記樹脂を溶媒で希釈したェポキ シ樹脂溶液中に前記ポリアミンホウ酸塩を均一に微分散する工程を含む、 非ゲル 状のエポキシ樹脂組成物の製造方法。
1 2 . 請求項 1 0又は 1 1で得られる非ゲル状熱硬化性樹脂組成物を、 その硬化 反応を進めないように 1 0 0 =C以下の低温で乾燥し、溶媒を除去する工程を含む、 エポキシ樹脂組成物の製造方法。
1 3 . 請求項 1 2で得られる固形状物を粉砕する工程を含む、 粉末状のエポキシ 樹脂組成物の製造方法。
1 4 .請求項 1 3で得られる粉末状のエポキシ樹脂組成物を加熱下に圧縮成形し、 硬化させる工程を含む、 成型物の製造方法。
1 5 . 耐熱性基材シートの表面に、 請求項 1に記載のエポキシ樹脂組成物の未硬 化塗膜層を設ける工程と、 前記未硬化塗膜層の上に更に別の耐熱性基材シートを 重ね合わせる工程と、 これら両耐熱性基材シートを加熱圧着してから前記未硬化 塗膜層を硬化させる工程を含む、 耐熱性積層シートの製造方法。
16. 耐熱性積層シートが銅張積層板である、 請求項 15の耐熱性積層シートの 製造方法。
PCT/JP2004/011502 2003-08-05 2004-08-04 エポキシ樹脂組成物及び耐熱性積層シートの製造方法 WO2005012385A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020067002304A KR101159549B1 (ko) 2003-08-05 2004-08-04 에폭시 수지 조성물 및 내열성 적층 시트의 제조 방법
US10/566,719 US20060247334A1 (en) 2003-08-05 2004-08-04 Epoxy resin composition and method for producing heat-resistant laminate sheet
EP04771487A EP1652869A4 (en) 2003-08-05 2004-08-04 EPOXY RESIN COMPOSITION AND METHOD FOR PRODUCING HEAT RESISTANT SHEET

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003206012 2003-08-05
JP2003-206012 2003-08-05

Publications (1)

Publication Number Publication Date
WO2005012385A1 true WO2005012385A1 (ja) 2005-02-10

Family

ID=34113698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011502 WO2005012385A1 (ja) 2003-08-05 2004-08-04 エポキシ樹脂組成物及び耐熱性積層シートの製造方法

Country Status (6)

Country Link
US (1) US20060247334A1 (ja)
EP (1) EP1652869A4 (ja)
KR (1) KR101159549B1 (ja)
CN (1) CN100366656C (ja)
TW (1) TW200512252A (ja)
WO (1) WO2005012385A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005029146A1 (de) * 2005-06-23 2006-12-28 Cognis Ip Management Gmbh Härter für Überzugmassen (IV)
US8404310B2 (en) * 2007-08-02 2013-03-26 Dow Global Technologies Llc Thermoset dampener material
JP5136573B2 (ja) 2009-02-24 2013-02-06 日立化成工業株式会社 ワニス、プリプレグ、樹脂付きフィルム、金属箔張積層板、プリント配線板
WO2012151171A1 (en) * 2011-05-02 2012-11-08 Dow Global Technologies Llc Trimethyl borate in epoxy resins
FR3026340B1 (fr) * 2014-09-30 2017-03-17 Snecma Procede de moulage d'une resine thermodurcissable
CN114773578B (zh) * 2022-03-24 2023-12-26 武汉工程大学 一种环氧树脂共固化剂和制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3738862A (en) 1971-11-08 1973-06-12 Shell Oil Co Process for preparing reinforced laminates in situ with epoxy-polyhydric phenol condensates
US4001101A (en) 1969-07-10 1977-01-04 Ppg Industries, Inc. Electrodeposition of epoxy compositions
JPH11343392A (ja) 1998-06-02 1999-12-14 Hitachi Chem Co Ltd テープキャリアパッケージ用エポキシ樹脂組成物
JP2002338787A (ja) * 2001-05-15 2002-11-27 Kawamura Inst Of Chem Res エポキシ樹脂組成物及びその硬化物
JP2003201335A (ja) * 2001-10-31 2003-07-18 Kawamura Inst Of Chem Res 硬化性エポキシ樹脂組成物およびその製造方法
JP2004292737A (ja) * 2003-03-28 2004-10-21 Asahi Denka Kogyo Kk エポキシ樹脂用硬化剤組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU75333A1 (ja) * 1976-07-08 1978-02-08
SG43193A1 (en) * 1990-05-21 1997-10-17 Dow Chemical Co Latent catalysts cure-inhibited epoxy resin compositions and laminates prepared therfrom
TW466256B (en) * 1995-11-24 2001-12-01 Ciba Sc Holding Ag Borate photoinitiator compounds and compositions comprising the same
CA2322517C (en) * 1998-12-28 2008-10-14 Nof Corporation Thermosetting composition containing polyhemiacetal ester resin and powdery thermosetting composition
US6733698B2 (en) * 2001-02-15 2004-05-11 Pabu Services, Inc. Mixture of mono-, bis- and tris-(hydroxyaryl) phosphine oxides useful to make polyglycidyl ethers or in epoxy compositions
CN1274760C (zh) * 2001-10-31 2006-09-13 财团法人川村理化学研究所 可固化环氧树脂组合物及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001101A (en) 1969-07-10 1977-01-04 Ppg Industries, Inc. Electrodeposition of epoxy compositions
US3738862A (en) 1971-11-08 1973-06-12 Shell Oil Co Process for preparing reinforced laminates in situ with epoxy-polyhydric phenol condensates
JPH11343392A (ja) 1998-06-02 1999-12-14 Hitachi Chem Co Ltd テープキャリアパッケージ用エポキシ樹脂組成物
JP2002338787A (ja) * 2001-05-15 2002-11-27 Kawamura Inst Of Chem Res エポキシ樹脂組成物及びその硬化物
JP2003201335A (ja) * 2001-10-31 2003-07-18 Kawamura Inst Of Chem Res 硬化性エポキシ樹脂組成物およびその製造方法
JP2004292737A (ja) * 2003-03-28 2004-10-21 Asahi Denka Kogyo Kk エポキシ樹脂用硬化剤組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1652869A4 *

Also Published As

Publication number Publication date
EP1652869A1 (en) 2006-05-03
CN100366656C (zh) 2008-02-06
KR101159549B1 (ko) 2012-06-26
KR20060069438A (ko) 2006-06-21
TW200512252A (en) 2005-04-01
CN1829757A (zh) 2006-09-06
EP1652869A4 (en) 2006-08-02
US20060247334A1 (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP5415947B2 (ja) 一液型シアネート−エポキシ複合樹脂組成物
JP6839980B2 (ja) 繊維マトリックス半製品のためのエポキシ樹脂組成物
KR900005054B1 (ko) 이미드를 함유하는 안정한 조성물
CN111770947A (zh) 可固化组合物、由其制得的制品,及其制造和使用方法
WO2005012385A1 (ja) エポキシ樹脂組成物及び耐熱性積層シートの製造方法
JP4895487B2 (ja) 熱硬化性樹脂組成物及びその製造方法、成型物の製造方法
WO2006068185A1 (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
WO2022040125A1 (en) Thermoset resin compositions
WO2011125665A1 (ja) ベンゾオキサジン環を有する熱硬化性樹脂組成物及びその製造方法、並びにその成形体及び硬化体
EP1441008B1 (en) Curable epoxy resin compositions and process for production thereof
JP2000248053A (ja) 液状エポキシ樹脂組成物
CN108811501B (zh) 聚酰亚胺前体组合物、聚酰亚胺树脂的制造方法及聚酰亚胺树脂
KR101907419B1 (ko) 에폭시수지용 경화촉진제 및 이를 이용한 에폭시 조성물
JP2002338787A (ja) エポキシ樹脂組成物及びその硬化物
JPH1081733A (ja) エポキシ樹脂系用硬化剤
JP4558359B2 (ja) エポキシ樹脂組成物及びそれを用いた銅張積層板
JP4011458B2 (ja) 硬化性エポキシ樹脂組成物およびその製造方法
JP2021098836A (ja) フェノキシ樹脂およびその用途
JP2011068835A (ja) ガスバリア性コートフィルム
JP4509539B2 (ja) エポキシ樹脂組成物シート
JP3995244B2 (ja) エポキシ樹脂、エポキシ樹脂の製法、エポキシ樹脂組成物及びその硬化物
JP4490653B2 (ja) 非ゲル状エポキシ樹脂組成物の製造方法
JP2008222910A (ja) エポキシ樹脂組成物
JP2006321826A (ja) フェノール樹脂組成物、エポキシ樹脂組成物、及びその硬化物
JPH01193319A (ja) 硬化性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480021838.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006247334

Country of ref document: US

Ref document number: 10566719

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067002304

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004771487

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004771487

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067002304

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10566719

Country of ref document: US