WO2005003861A1 - ポジ型レジスト組成物及びそれを用いたレジストパターン形成方法 - Google Patents

ポジ型レジスト組成物及びそれを用いたレジストパターン形成方法 Download PDF

Info

Publication number
WO2005003861A1
WO2005003861A1 PCT/JP2004/009455 JP2004009455W WO2005003861A1 WO 2005003861 A1 WO2005003861 A1 WO 2005003861A1 JP 2004009455 W JP2004009455 W JP 2004009455W WO 2005003861 A1 WO2005003861 A1 WO 2005003861A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural unit
resist composition
group
positive resist
acid
Prior art date
Application number
PCT/JP2004/009455
Other languages
English (en)
French (fr)
Inventor
Ryotaro Hayashi
Masaru Takeshita
Takeshi Iwai
Original Assignee
Tokyo Ohka Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co., Ltd. filed Critical Tokyo Ohka Kogyo Co., Ltd.
Priority to DE112004001155T priority Critical patent/DE112004001155B4/de
Priority to US10/561,830 priority patent/US20070111135A1/en
Publication of WO2005003861A1 publication Critical patent/WO2005003861A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds

Definitions

  • the present invention relates to a positive resist composition and a method for forming a resist pattern using the same.
  • the present invention relates to a positive resist composition and a method for forming a resist pattern.
  • the base resin of the chemically amplified resist for the ArF excimer laser a resin having high transparency to the ArF excimer laser is preferable.
  • Patent Document 1 Japanese Patent No. 288 1969
  • Patent Document 2 JP-A-5-346668
  • Patent Document 3 Japanese Patent Application Laid-Open No. 7-23451-1
  • Patent Document 4 JP-A-9-173173
  • Patent Document 5 JP-A-9-190637.
  • Patent Document 6 Japanese Patent Application Laid-Open No. Hei 10-161313
  • Patent Document 7 JP-A-10-319595
  • Patent Document 8 Japanese Patent Application Laid-Open No. 11-12326
  • the depth of focus is a range in which a good resolution can be obtained even if the exposure focus shifts.
  • the proximity effect means that the size and shape of the formed resist pattern are affected by the pattern in the vicinity. The larger the proximity effect is, the larger the difference in the dimension of the formed pattern is between the dense part (line and space part) and the non-pattern part (isolated pattern part) when the pattern size on the mask is the same. There is a problem that becomes large. It is necessary to reduce such dimensional differences, in other words, it is desired to reduce the proximity effect.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a resist composition and a method of forming a resist pattern that can reduce the proximity effect without reducing the depth of focus.
  • a first embodiment of the present invention comprises a resin component (A) whose solubility is increased by the action of an acid, an acid generator component (B) that generates an acid upon exposure, and an organic solvent (C).
  • a positive resist composition wherein the component (A) comprises (i) an acid dissociable, dissolution inhibiting group, and a structural unit (a 1) derived from a (meth) acrylate ester; Structural units ( a 2) containing an acid dissociable, dissolution inhibiting group that is less likely to dissociate than the acid dissociable, dissolution inhibiting groups contained in the structural unit (a 1), and derived from a (meth) acrylate ester, and ( iii) A positive resist composition containing a lactone functional group and having a structural unit (a3) derived from (meth) acrylic acid ester.
  • the positive resist composition of the first embodiment is coated on a substrate, pre-baked, selectively exposed, subjected to PEB (post-exposure baking), and alkali-developed.
  • PEB post-exposure baking
  • the positive resist composition of the present invention comprises the following structural unit (a 1), structural unit (a 2), and structural unit (a 3), and alkali solubility is increased by the action of an acid.
  • Resin component component (component (A)
  • an acid generator component component (component (B)) that generates an acid upon exposure
  • an organic solvent component (component (C)).
  • the alkali generated by the component (A) increases due to the action of the acid generated from the component (B) upon exposure to light. Exposure to light increases the alkali solubility of the exposed area, and a resist pattern can be formed by alkali development.
  • Both the structural unit (a 1) and the structural unit (a 2) are structural units derived from (meth) acrylate esters.
  • (Meth) acrylate is a general term for acrylate and methacrylate.
  • (Meth) acrylate is a general term for methacrylate and acrylate.
  • Both the structural unit (a1) and the structural unit (a2) contain an acid dissociable, dissolution inhibiting group.
  • the acid dissociable, dissolution inhibiting group contained in the structural unit ( a2 ) is included in the structural unit (a1). It has the property of being less likely to dissociate than the acid dissociable, dissolution inhibiting group contained. That is, the component (A) contains two or more types of acid dissociable, dissolution inhibiting groups having different dissociations (acid dissociation properties).
  • the acid dissociable, dissolution inhibiting group when used in a chemically amplified positive resist composition, has an alkali dissolution inhibiting property that renders the entire polymer insoluble before exposure, and (B) after exposure. ) Any material can be used as long as it can be dissociated by the action of the acid generated from the component and change the entire polymer to soluble. From the acid dissociable, dissolution inhibiting groups, two kinds having different acid dissociation properties can be selected and used.
  • the acid dissociable, dissolution inhibiting group those which form a cyclic or chain tertiary alkyl ester with the carboxyl group of (meth) acrylic acid are widely known.
  • An acid dissociable, dissolution inhibiting group containing an aliphatic polycyclic group is preferred from the viewpoints of excellent transparency and etching resistance.
  • the acid dissociable, dissolution inhibiting group containing a polycyclic group is suitable for a positive resist composition for an ArF excimer laser.
  • the polycyclic group include groups in which one hydrogen atom has been removed from bicycloalkane, tricycloalkane, tetracycloalkyl, or the like.
  • Specific examples include groups obtained by removing one hydrogen atom from polycycloalkanes such as adamantane, norbornane, isobornane, tricyclodecane, and tetracyclododecane.
  • Such a polycyclic group can be appropriately selected from a large number of proposed ones in a resist for an ArF excimer laser and a polymer (resin component) for a composition.
  • an adamantyl group, a norbornyl group, and a tetracyclododecanyl group are industrially preferable.
  • a structural unit containing an easily dissociable acid dissociable, dissolution inhibiting group (a1) is preferably at least one member selected from the following general formulas (I) and (II), and is preferably an acid which is difficult to dissociate. It is preferable that the structural unit (a 2) containing a dissociable, dissolution inhibiting group is at least one member selected from the following formulas (III) and (IV).
  • R is a hydrogen atom or a methyl group, and R 1 is a lower alkyl group having 2 or more carbon atoms.
  • R represents a hydrogen atom or a methyl group, 1 2 ⁇ Pi 1 3 each independently lower ⁇ alkyl group.
  • R is a hydrogen atom or a methyl group
  • R is a hydrogen atom or a methyl group
  • the structural unit represented by the above general formula (I) is a structural unit in which a hydrocarbon group is ester-bonded to a (meth) acrylic acid structural unit, and an oxygen atom (_) in an ester portion of the (meth) acrylate structural unit.
  • a tertiary alkyl group is formed on the ring skeleton of the adamantyl group by bonding a linear or branched alkyl group to the carbon atom of the adamantyl group adjacent to 0-).
  • R 1 is preferably a lower linear or branched alkyl group having 2 to 5 carbon atoms, such as an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group and a tert-butyl group. And a pentyl group, an isopentyl group and a neopentyl group. Among them, an ethyl group is preferred from an industrial viewpoint.
  • the structural unit represented by the general formula (II) is a structural unit in which a hydrocarbon group is ester-bonded to the (meth) atalilic acid structural unit in the same manner as the general formula (I).
  • the carbon atom adjacent to the oxygen atom (1O—) in the ester portion of the acrylate unit is a tertiary alkyl group, and the alkyl group further has a ring skeleton such as an adamantyl group.
  • R 2 and R 3 are preferably each independently a lower alkyl group having 1 to 5 carbon atoms.
  • R 2 and R 3 are each independently preferably a lower linear or branched alkyl group having 1 to 5 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group, isopene And a tyl group and a neopentyl group.
  • both R 2 and R 3 are methyl groups.
  • R 1 of the structural unit represented by the general formula (I) is replaced with a methyl group.
  • Such a structural unit has a lower acid dissociation property than any of the structural unit represented by the general formula (I) and the structural unit represented by the general formula (II).
  • the structural unit represented by the general formula (IV) is not an ester of the (meth) acrylic acid structural unit, but a tert_butyl group bonded to an oxygen atom (1 O—) of another ester; (Meth) The acrylate structural unit and the another ester are linked by a ring skeleton such as a tetracyclododecanyl group.
  • one COOC (CH 3 ) 3 may be bonded to the position 3 or 4 of the tetracyclododecanyl group shown in the formula, but it cannot be further specified because it is included as an isomer.
  • the carboxyl group residue of the (meth) acrylate constituent unit which may be bonded to the 8 or 9 position of the tetracyclododecanyl group, cannot be specified because it is included as an isomer in the same manner as described above.
  • a combination using a unit of the general formula (I) as the structural unit (a 1) and a unit of the general formula (III) as the structural unit (a 2) is preferable.
  • a mixture of resins containing each unit may be used.
  • the proportion of the structural units (a 1) is preferably 40 to 90 mol% based on the total of the structural units (a 1) and the structural unit (a 2), more preferably 50-8 5 mol 0 / 0 .
  • the contrast is excellent and the resolution is high.
  • the content is 90 mol% or less, the depth of focus is excellent and the proximity effect is reduced.
  • Structural unit (a 3) is a structural unit containing a lactone functional group and derived from (meth) acrylate ester.
  • the lactone functional group contributes to the effect of increasing the adhesiveness between the resist film and the substrate and increasing the hydrophilicity with the developer when the positive resist composition is formed.
  • ratatone functional groups include, for example, ratatone-containing monocyclic groups in which one hydrogen atom has been removed from butyrolataton.
  • examples of the rataton-containing polycyclic group include groups obtained by removing one hydrogen atom from a rataton-containing bicycloalkane having the following structural formula.
  • lactone-containing monocyclic or polycyclic group is one or more selected from the following general formulas.
  • a structural unit derived from a (meth) acrylic ester containing a rataton-containing monocycloalkyl group or a bicycloalkyl group represented by the following structural formula is preferred.
  • Structural units (a 3), relative to the combined total of all structural units constituting the component (A), to contain 2 0-6 0 mole 0/0 contains preferably 3 0-5 0 mol% Is more preferable. If it is smaller than the lower limit, the resolution may be reduced, and if it exceeds the upper limit, it may be difficult to dissolve in the resist solvent.
  • the component (A) in the present invention may further contain other structural units in addition to the structural units (a1) to (a3).
  • Examples of the other structural unit include a structural unit having a hydroxyl group (a4); or a structural unit (a5) other than the structural units (a1) to (a4).
  • the hydroxyl group is a polar group
  • the structural unit (a4) having a hydroxyl group is contained in the component (A)
  • the affinity of the component (A) for the alkali developer used when forming a resist pattern is increased. Increase. Therefore, when used for a positive resist composition, alkali solubility in an exposed portion is improved, which contributes to improvement in resolution, which is preferable.
  • a structural unit containing a hydroxyl group and derived from (meth) acrylic acid ester is preferable.
  • many resins have been proposed for a resin for a resist composition for an ArF excimer laser. Can be appropriately selected and used.
  • a structural unit containing a hydroxyl group-containing aliphatic polycyclic group and derived from a (meth) acrylate ester is more preferable.
  • the polycyclic group any of the same polycyclic groups as those exemplified in the description of the structural units (a 1) and (a 2) can be appropriately selected and used.
  • a hydroxyl group-containing adamantyl group (the number of hydroxyl groups is preferably 1 to 3, and more preferably 1.), a carboxyl group-containing tetradecanol group ( The number of carboxyl groups is preferably from 1 to 3, and more preferably 1.) is preferably used. More specifically, when a structural unit represented by the following general formula (V) is used, when used for a positive resist composition, the dry etching resistance is increased, and the vertical cross-sectional shape of the pattern is increased. It is preferred because it has the effect of enhancing the properties.
  • R is a hydrogen atom or a methyl group
  • _CO ⁇ H may be bonded to the position 3 or 4 of the tetracyclododecalyl group shown in the formula, however, since it is contained together as an isomer, it is more specific. Can not.
  • the carboxyl group residue of the (meth) atalylate constituent unit may be bonded at the 8 or 9 position of the tetracyclododecanyl group, but cannot be specified because it is included as an isomer as in the above. .
  • the structural unit (a4) is not an essential component of the component (A), when it is included in the component (A), the content of the component (A) is 5 to 10% of the total of all the structural units constituting the component (A). 5 0 molar%, preferably preferably contains 1 0-4 0 mol 0/0.
  • the structural unit (a5) is not particularly limited as long as it is another structural unit that is not classified into the structural units (a1) to (a4) described above. That is, it is only necessary that the group does not contain an acid dissociable, dissolution inhibiting group, ratatone functional group, or hydroxyl group.
  • a structural unit containing an aliphatic polycyclic group and derived from a (meth) acrylate is preferred.
  • a solution from an isolated pattern to a semi-dense pattern (a line-and-space pattern having a space width of 1.2 to 2 with respect to a line width of 1) when used for a positive resist composition is obtained. Excellent in image quality and preferable.
  • Examples of the polycyclic group include the same as those exemplified in the case of the structural units (a1) and (a2), and are conventionally known as ArF positive resist materials. It can be used by appropriately selecting from a large number of those described.
  • At least one selected from the group consisting of a tricyclodecanyl group, an adamantyl group and a tetracyclododecanyl group is preferred in view of industrial availability.
  • these structural units (a5) are shown in general formulas (W) to ( ⁇ ).
  • R is a hydrogen atom or a methyl group
  • R is a hydrogen atom or a methyl group
  • the structural unit (a5) is not an essential component of the component (A), when it is included in the component (A), the structural unit is calculated based on the total of all the structural units constituting the component (A). (a 5) from 1 to 30 mole 0/0, arbitrary preferably when 10 to 20 mol 0/0, preferred because good improvement in the resolution of the semi-dense patterns can be obtained from the isolated pattern.
  • the component (A) is only required to contain the component (a1), the component (a2), and the component (a3), and the form is not particularly limited.
  • the component (A) may include (a): a copolymer (A 1) having at least a structural unit (a 1) and a structural unit (a 2), and (port): at least a structural unit. It may contain a mixed resin (A2) of a polymer having the structural unit (a1) and a polymer having at least the structural unit (a2).
  • the copolymer (A1) may have a structural unit (a3) in addition to the structural unit (a1) and the structural unit (a2), or the (A1) a polymer prepared having a separate structural unit (a 3), which may be mixed with the copolymer (A1).
  • the structural unit (a1), the structural unit (a2), and the structural unit (a3) are copolymerized in order to obtain good adhesion between the resist film and the substrate.
  • At least one of the polymer having the structural unit (a1) and the polymer having the structural unit (a2) is a copolymer having the structural unit (a3). It may be a polymer.
  • a copolymer having the structural unit (a1) and the structural unit (a3), and a copolymer having the structural unit (a2) and the structural unit (a3) makes the resist film and the substrate Is more preferable in obtaining good adhesion.
  • the structural unit (a4) and / or (a5) is copolymerized with another structural unit.
  • the component (A) may be used alone or in appropriate combination.
  • a copolymer having a ratio of each unit can be easily obtained, and therefore, these copolymers and a mixture thereof can be used.
  • the pentameric copolymer may be Since it becomes difficult to obtain a copolymer having the ratio of each unit, it is more advantageous to use a mixed resin.
  • the quaternion of the structural units (a1), (a2), (a3) and (a4) A mixture of the copolymer and the quaternary copolymers of (a1), (a2), (a3) and (a5), (a1), (a3), (a4) and (a5
  • a mixture of the quaternary copolymer of (a) and the quaternary copolymers of (a2), (a3), (a4) and (a5) can be used.
  • the components When forming a mixture, the components may be appropriately mixed so as to have the ratio of each unit in the component (A).
  • the constituent unit of the component is a combination of the constituent units (a1), (a2) and (a3) with the constituent units (a4) and Z or (a5) selected appropriately according to the application and the like. Although it can be used, it is preferable that it further contains the structural unit (a4).
  • the structural units (a 1) is of the total of all the structural units 1 0-5 5 mol 0/0, preferably with 30-50 mole 0/0
  • the structural unit ( a 2) is 5 in all the structural units 50 mole 0/0, preferably 1 0 to 30 mole 0/0
  • (a 3) is 20 in all the structural units 6 0 mole 0/0, preferably 30-50 mole 0/0
  • (a 4) is 1 in all the structural units ⁇ ⁇ 40 mol 0/0, preferably equal to 1 0-30 mole 0/0, becomes high solubility in resist solvents resin, also resolution And preferred.
  • the weight average molecular weight of the copolymer (A1) constituting the component (A) or the polymer or copolymer constituting the mixed resin (A2) is not particularly limited, but is preferably 5,000 to 30,000, more preferably It is 7000-20000. If it is larger than this range, the solubility in the resist solvent will be deteriorated, and if it is smaller, the cross-sectional shape of the resist pattern may be deteriorated.
  • the polymer or copolymer that constitutes the copolymer (A1) or the mixed resin (A2) is obtained by subjecting the corresponding (meth) acrylate monomer or the like to radical polymerization such as azobisisobutyronitrile (AIBN). It can be easily produced by known radical polymerization using an initiator.
  • radical polymerization such as azobisisobutyronitrile (AIBN). It can be easily produced by known radical polymerization using an initiator.
  • component (B) an arbitrary one can be appropriately selected from those conventionally known as an acid generator in a chemically amplified resist.
  • Examples of the acid generator include diphenyl dimethyl trifluoromethanesulfonate, (4-methoxyphenyl) phenylenolide dimethyl trifluorophenol methanesulfonate, and bis (p-tert-butylphenyl) phosphonate.
  • an ionic salt having a fluorinated alkylsulfonic acid ion as an cation is preferable, and a sulfonium salt having a fluorinated alkylsulfonic acid ion as anion is more preferable.
  • This component (B) may be used alone or in combination of two or more. .
  • the compounding amount is 0.5 to 30 parts by mass, preferably 1 to 10 parts by mass, per 100 parts by mass of the component (A).
  • amount is 0.5 parts by mass or more, pattern formation is sufficiently performed.
  • amount is 30 parts by mass or less, a uniform solution is obtained, and storage stability tends to be improved.
  • the positive resist composition can be produced by dissolving the component (A), the component (B), and an optional component (D) described later, preferably in the component (C).
  • the amount of the component (C) in the photoresist composition is not particularly limited, and may be, for example, a concentration at which a positive resist composition that can be applied on a substrate or the like is obtained.
  • any component can be used as long as the component (A) and the component (B) can be dissolved to form a uniform solution. One or two or more of them can be appropriately selected and used.
  • ketones such as acetone, methylethylketone, cyclohexanone, methylisoaminoleketone, and 2-heptanone; ethylene glycol, ethylene glycolone monoacetate, diethylene glycolone, diethylene glycolone / lemonoacetate, propylene glycol, propylene glycol monoene
  • Polyhydric alcohols such as acetate, dipropylene glycol, or dipropylene glycol monoacetate, such as monomethyl ether, monoethynoleate, monopropynoleate, monobutynoleate or monophenyl ether, and polyhydric alcohols and derivatives thereof; Cyclic ethers such as dioxane, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl pyruvate, ethyl pyruvate, meth Shipuropion acid methylcarbamoyl
  • polar solvents having a hydroxy group or rataton functional group such as propylene dalycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), ethyl lactate (EL), and ⁇ -butyrolactone.
  • PGMEA propylene dalycol monomethyl ether acetate
  • PGME propylene glycol monomethyl ether
  • EL ethyl lactate
  • ⁇ -butyrolactone polar solvents having a hydroxy group or rataton functional group
  • the mass ratio of PGME A: EL is preferably 6: 4 to 4: 6.
  • the mass ratio of PGME A: PGME is preferably 8: 2 to 2: 8, and more preferably 8: 2 to 5: 5.
  • the organic solvent (C) a mixed solvent of at least one selected from PGME A and ethyl lactate with ⁇ -petit mouth ratatone is also preferable.
  • the mixing ratio of the former and the latter is preferably 70:30 to 95: 5.
  • the amount of the organic solvent (C) to be used is not particularly limited, but is set to a concentration that can be applied to a substrate or the like.
  • the solid content (solvent (C)) constituting the positive resist composition of the present invention is removed. (A component remaining as a solid upon leaving) is preferably in the range of 2 to 20% by mass, more preferably 3 to 15% by mass.
  • the positive resist composition further contains an optional amine (D), particularly a secondary lower aliphatic amine ⁇ a tertiary lower fatty acid, in order to improve the resist pattern shape and the stability of the resist pattern.
  • D optional amine
  • a group amine can be included.
  • the lower aliphatic amine refers to an alkyl or alkyl alcohol amine having 5 or less carbon atoms.
  • the secondary and tertiary amines include trimethylamine, getylamine, triethylamine, di-n-propylamine. And tri-n-propylamine, tripentylamine, diethanolamine, triethanolamine, and the like, with alkanolamine such as triethanolamine being particularly preferred.
  • amines are generally used in the range of 0.01 to 2 parts by mass based on 100 parts by mass of the component (II).
  • the positive resist composition may further include, as an optional (II) component, an organic carboxylic acid or phosphorus oxo acid or Its derivatives can be included.
  • an optional (II) component an organic carboxylic acid or phosphorus oxo acid or Its derivatives can be included.
  • the component (D) and the component (II) can be used in combination, or one of them can be used.
  • organic carboxylic acid for example, malonic acid, citric acid, malic acid, succinic acid, benzoic acid, salicylic acid and the like are suitable.
  • Phosphorus oxo acids or derivatives thereof include phosphoric acid, phosphoric acid such as di- ⁇ -butyl phosphate, diphenyl phosphate, or derivatives thereof such as phosphonic acid, phosphonic acid dimethyl ester, phosphonic acid Phosphonic acids such as -di- ⁇ -butynolester, pheninolephosphonic acid, diphenyl phosphonate, dibenzyl diphosphonate, and derivatives such as esters thereof; Examples thereof include phosphinic acids such as phosphinic acid and phenylphosphinic acid and derivatives thereof such as estenole, and among them, phosphonic acid is particularly preferable.
  • the component (E) is used in an amount of 0.01 to 5 parts by mass per 100 parts by mass of the component (A).
  • Positive resist compositions may further include additives that are miscible as desired, such as additional resins to improve resist film performance, surfactants to improve coatability, dissolution inhibitors, and plasticizers. Agents, stabilizers, coloring agents, antihalation agents and the like can be added.
  • this positive resist composition has high transparency at wavelengths of 200 nm or less, it is particularly useful as a positive resist composition for ArF excimer lasers. It is also effective against radiation such as F2 laser, EUV (extreme ultraviolet), VUV (vacuum ultraviolet), electron beam, X-ray, and soft X-ray.
  • radiation such as F2 laser, EUV (extreme ultraviolet), VUV (vacuum ultraviolet), electron beam, X-ray, and soft X-ray.
  • the positive resist composition contains two or more acid dissociable, dissolution inhibiting groups having different acid dissociation properties in the resin component (A), and contains the resin component (A).
  • the proximity effect can be reduced without reducing the depth of focus. For example, in a case where an isolated pattern is included in an example described later, the depth of focus can be increased and the proximity effect can be reduced.
  • This positive resist composition comprises, in addition to the structural units (a 1) and (a 2) having an acid dissociable dissolution inhibiting group having different acid dissociation properties in the resin component (A), a lactone functional group Since it contains the structural unit (a3) having the following characteristics, it is possible to obtain the advantage that the effect of improving the hydrophilicity by the rataton functional group is obtained and the depth of focus of the isolated pattern is improved.
  • the method of forming a resist pattern according to the present invention can be performed, for example, as follows. That is, first, the positive resist composition is applied on a substrate such as a silicon wafer with a spinner or the like, and a pre-beta is applied at a temperature of 80 to 150 ° C. for 40 to 120 seconds, preferably. 60 to 90 seconds, for example, using an ArF exposure device After selectively exposing an ArF excimer laser beam through a desired mask pattern, PEB (heating after exposure) is performed.
  • an alkali developing solution for example, 0.
  • an alkali developing solution for example, 0.
  • the resist pattern is obtained the shape of the mask pattern has been transferred.
  • An organic or inorganic antireflection film may be provided between the substrate and the coating layer of the resist composition.
  • the heating temperature when applying PEB is not lower than the lower limit of the temperature range (hereinafter referred to as PEBmin) in which the acid dissociable, dissolution inhibiting group contained in the structural unit (a1) present in the component (A) dissociates. It is preferable that the temperature be within the lower limit (hereinafter referred to as PEBmax) of the temperature range at which the acid dissociable, dissolution inhibiting group contained in the structural unit (a2) dissociates.
  • the acid dissociable, dissolution inhibiting group contained in the structural unit (a 1) is almost completely dissociated, but not completely dissociated.
  • the acid dissociable, contained in the structural unit (a 2) is dissociated.
  • a dissolution inhibiting group dissociates slightly, not without dissociation at all.
  • dissociation of the acid dissociable, dissolution inhibiting group contained in the structural unit (a1) does not mean 100% dissociation.
  • ⁇ less than the lower limit of the temperature range at which the acid dissociable, dissolution inhibiting group contained in the structural unit (a 2) dissociates '' the acid-angle fast-dissolving, dissolution inhibiting group contained in the structural unit (a 2) contains 0%. It does not mean dissociation.
  • the present invention contains the structural units (a1) and (a2) as acid dissociable, dissolution inhibiting groups, it is necessary to dissociate almost (al) and slightly dissociate (a2), It does not mean that 1) the acid dissociable, dissolution inhibiting group of the unit is dissociated 100%, and at the same time, (a 2) the acid dissociable, dissolution inhibiting group of the unit is not dissociated.
  • PEBmin is about 90 to: I 30 ° C
  • PEBmax is 110 to 140 ° C.
  • a preferable PEB in the method of the present invention is about 90 to 125 ° C, preferably 90-120 ° C.
  • the acid-dissociable, dissolution-inhibiting group contained in the structural unit (al) is more easily dissociated than the acid-dissociable, dissolution-inhibiting group contained in the structural unit (a2).
  • Dissolution group dissociates
  • the lower limit of the temperature range is lower than the lower limit of the temperature range at which the acid dissociable, dissolution inhibiting group contained in the structural unit (a2) dissociates.
  • a dissociation reaction of an acid dissociable, dissolution inhibiting group is performed during PEB, and the degree of the dissociation reaction determines solubility. It is preferable to set the heating conditions so that the profile of the resist pattern formed after the development processing is good.
  • the resist will be poorly soluble in alkali and will be well resolved. If the acid dissociable, dissolution inhibiting group contained in the structural unit (a 2) is too high than the lower limit of the temperature range at which it dissociates, two or more acids having different acid dissociation properties will be contained in the resin component (A). The effect of reducing the proximity effect without reducing the depth of focus due to the inclusion of the dissociable dissolution inhibiting group, or the effect of reducing the proximity effect while increasing the depth of focus, cannot be obtained.
  • the temperature range in which the acid dissociable, dissolution inhibiting group dissociates depends on the structure of the acid dissociable, dissolution inhibiting group, and also depends on the structure of the structural unit (al) or (a 2) other than the acid dissociable, dissolution inhibiting group. Although they are different, they are almost completely determined as long as they are resist compositions.
  • the temperature range at which the acid dissociable, dissolution inhibiting group contained in the structural unit (a l) dissociates (hereinafter sometimes referred to as the acid dissociation temperature range) is as follows:
  • R in the general formula (II) is a hydrogen atom and R 2 and R 3 are both methyl groups, about 90 to 120 ° C.
  • R in the general formula (II) is a methyl group and R 2 and R 3 are both methyl groups, the temperature is about 100 to 130 ° C.
  • the temperature range in which the acid dissociable, dissolution inhibiting group contained in the structural unit (a 2) dissociates is about 100 to 130 ° C. when R in the general formula (III) is a hydrogen atom, When R in the general formula (III) is a methyl group, about 110 to 140 ° C; when R in the general formula (IV) is a hydrogen atom, about 100 to 130 ° C; When R in (IV) is a methyl group, the temperature is about 110 to 140 ° C.
  • Component (A) The following monomers
  • N ratatotone 30% by mole of norbornane ratato acrylate (hereinafter referred to as N ratatotone) (corresponding to the structural unit (a3), and in the general formula (i), R is a hydrogen atom).
  • ADOH 3-hydroxy-1 1-adamantyl acrylate
  • R is a hydrogen atom) Copolymer (mass average molecular weight 10,000, dispersity 2.0) 100 parts by mass
  • Component (B) 3.0 parts by mass of triphenylsulfonium nononafluorobutanesulfonate
  • Component (C) Mixed solvent of 750 parts by mass of PGMEA and 30 parts by mass of y-butyrolactone
  • this positive resist composition is applied on a silicon wafer using a spinner, pre-beta (PAB treatment) for 110 10 for 90 seconds on a hot plate, and dried to form a 400 nm-thick resist layer.
  • PAB treatment pre-beta
  • the formed contact hole pattern having a width of 140 nm formed a Dense type in which the pattern interval was 1: 1.4, and an Iso type in which the pattern interval was 1:10.
  • the depth of focus at D en s e (denoted as D OF in the table, and so forth) was 400 nm, and the depth of focus at I s o was 30 O nm.
  • the value obtained by subtracting 140 nm from the pattern width after development in Dense when the exposure pattern width of the resist pattern after development in Iso was fixed at 140 nm (I / D
  • the dimensional difference was found to be 18 nm. It is preferable that the dimensional difference of the IZD is small because the proximity effect is small.
  • the preferred PEB temperature of the resist using the copolymer in this embodiment is 90 to 110 ° C.
  • a positive resist composition was produced in the same manner as in Example 1 except that the component (A) was changed.
  • the components (B) to (D) had the same composition as in Example 1.
  • the depth of focus at D en s e was 400 nm and at I s o was 30 nm.
  • the I / D size difference was 2 nm.
  • the preferred PEB temperature of the resist using the copolymer in this embodiment is 90 to 110 ° C. Comparative Example 1
  • a positive resist composition was produced in the same manner as in Example 1 except that the component (A) was changed in Example i.
  • the components (B) to (D) had the same composition as in Example 1.
  • ADOH corresponding to the structural unit (a4)
  • 20 mol% 20 mol%
  • 100 parts by mass of a copolymer weight average molecular weight 10,000, dispersity 2.0
  • a resist pattern was formed in Comparative Example 1, except that the PAB processing temperature was changed to 130 ° C and the PEB processing temperature was changed to 120 ° C.
  • the depth of focus at Dense was 300 nm and the depth of focus at Iso was 100 nm.
  • the I ZD dimension difference was 26 nm.
  • a positive resist composition was produced in the same manner as in Example 1 except that the component (A) was changed.
  • the components (B) to (D) had the same composition as in Example 1.
  • ADOH corresponding to the structural unit (a4)
  • 20 mol% 20 mol%
  • 100 parts by mass of a copolymer 100 parts by mass of a copolymer (mass average molecular weight 10,000, dispersity 2.0) were used as the component (A).
  • the depth of focus at Dense was 400 nm and the depth of focus at Iso was 200 nm.
  • the I ZD dimension difference was 30 nm.
  • Component (A) The following monomers
  • TCD Torishikurode force -
  • Rume Tatari rate (equivalent to the structural unit (a 5), in the general formula ( ⁇ ), R constitutes a unit is a methyl group) 15 mol 0/0 by copolymerizing Copolymer (weight average molecular weight 10,000, dispersity 2.0) 100 parts by mass
  • Component (C) A mixed solvent of 750 parts by mass of PGMEA and 30 parts by mass of ⁇ -butyrolataton
  • this positive resist composition is applied on a silicon wafer using a spinner, pre-beta (:) for 90 seconds on a hot plate, and dried to obtain a resist layer having a thickness of 300 nm. Was formed.
  • the formed line-and-space pattern having a width of 120 nm formed a Dense type having a pattern interval of 1: 1 and an Iso type having a pattern interval of 1:10.
  • the depth of focus at D en se was 800 nm and the depth of focus at I se o was 500 nm.
  • the preferred PEB temperature of the resist using the copolymer in this embodiment is 100 to 120 ° C.
  • Comparative Example 4 A positive resist composition was produced in the same manner as in Example 3, except that the component (A) was changed and the amount of the component (B) was changed to 2 parts by mass. The components (C) and (D) had the same composition as in Example 3.
  • Component (A) The following monomers
  • the resist pattern was formed.
  • the depth of focus at D en s e is 600 nm and the depth of focus at I s o is.
  • the I dimension difference was 26 nm.
  • a positive resist composition was produced in the same manner as in Example 3, except that the component (A) was changed and the amount of the component (B) was changed to 2 parts by mass.
  • the components (C) and (D) had the same composition as in Example 3.
  • Component (A) The following monomers 2- Echiru 2 ⁇ Dammann chill methacrylonitrile rate 35 mole 0/0 (structural unit (corresponding to a 1)),
  • the depth of focus at Dense was 800 nm and the depth of focus at Iso was 400 nm.
  • the I ZD dimension difference was 36 nm.
  • a resist composition and a method for forming a resist pattern that can reduce the proximity effect without reducing the depth of focus can be obtained, which is extremely useful in industry.

Abstract

このポジ型レジスト組成物は、酸の作用によりアルカリ可溶性が増大する樹脂成分(A)と、露光により酸を発生する酸発生剤成分(B)と、有機溶剤(C)とを含む。(A)成分は、(i)酸解離性溶解抑制基を含み(メタ)アクリル酸エステルから誘導される構成単位(a1)、(ii)構成単位(a1)に含まれる前記酸解離性溶解抑制基よりも解離しにくい酸解離性溶解抑制基を含み(メタ)アクリル酸エステルから誘導される構成単位(a2)、および(iii)ラクトン官能基を含み、(メタ)アクリル酸エステルから誘導される構成単位(a3)を有する。

Description

明 細 書
ポジ型レジスト組成物及びそれを用いたレジストパターン形成方法 技術分野
本発明はポジ型レジスト組成物及びレジストパターン形成方法に関する。
本願は、 2003年 7月 1日に出願された特願 2003— 189707号と 2 004年 4月 14日に出願された特願 2004- 1 19498号とに対し優先権 を主張し、 その内容をここに援用する。 背景技術
最近は、 半導体素子の微細化はますます進み、 例えば A r Fエキシマレーザー (1 93 nm)を用いたリソグラフィプロセスの開発が精力的に進められている。
A r Fエキシマレーザー用の化学増幅型レジストのベース樹脂としては、 Ar F エキシマレーザーに対して透明性の高いものが好ましい。
.例えば、エステル部にァダマンタン骨格のような多環式炭化水素基を有する(メ タ)アクリル酸エステルから誘導される構成単位を主鎖に有する樹脂が注目され、 これまでに多数の提案がなされている (下記特許文献 1〜8など) 。
特許文献 1 :特許 288 1 969号公報 ·
特許文献 2 :特開平 5— 346668号公報
特許文献 3 :特開平 7— 23451 1号公報
特許文献 4 :特開平 9一 73173号公報
特許文献 5 :特開平 9一 90637号公報 .
特許文献 6 :特開平 10 -1 61313号公報
特許文献 7 :特開平 10 -3 19595号公報
特許文献 8 :特開平 1 1 - 1 2326号公報
ところで、 リソグラフイプロセスに用いられるレジスト材料に要求される重要 なパラメータに、 焦点深度 (DOF) と近接効果がある。
焦点深度は、 露光焦点がずれても良好な解像度が得られる範囲のことであり、 大きいほど好ましい。 近接効果は、 形成されるレジストパターンの寸法および形状が、 その近傍のパ ターンによって影響されてしまうことをいう。 近接効果が大きくなるほど、 マス クにおけるパターン寸法が同じである場合に、パターンが密な部位(ラインアンド スペース部)と、 そうでない部位(孤立パターン部) とでは、形成されるパターン の寸法の差が大きくなつてしまうという問題がある。 このような寸法差を小さく する必要があり、 換言すれば、 近接効果を小さくすることが望まれている。 本発明は前記事情に鑑てなされたもので、 焦点深度を低減させずに近接効果を 低減させることができるレジスト組成物およびレジストパターン形成方法を提供 することを課題とする。
発明の開示
本発明の第 1の態様は、 酸の作用によりアル力リ可溶性が増大する樹脂成分 (A) と、 露光により酸を発生する酸発生剤成分 (B ) と、 有機溶剤 (C ) とを 含むポジ型レジスト組成物であって、前記(A) 成分が、 (i)酸解離性溶解抑制基 を含み、 かつ (メタ) ァクリル酸エステルから誘導される構成単位(a 1 ) 、 (ii) 前記構成単位 ( a 1 ) に含まれる前記酸解離性溶解抑制基よりも解離しにくい酸 解離性溶解抑制基を含み、 かつ (メタ) アクリル酸エステルから誘導される構成 単位 (a 2 ) 、 および(iii)ラクトン官能基を含み、 かつ (メタ) アクリル酸エス テルから誘導される構成単位 ( a 3 ) を有するポジ型レジスト組成物である。 第 2の態様は、 第 1の態様のポジ型レジスト組成物を基板上に塗布し、 プレべ ークし、 選択的に露光した後、 P E B (露光後加熱) を施し、 アルカリ現像して レジストパターンを形成するレジストパターン形成方法である。 発明を実施するための最良の形態
以下、 本発明に係る実施の形態について、 例を挙げて詳細に説明する。
[ポジ型レジスト組成物]
本発明のポジ型レジスト組成物は、下記構成単位(a 1 ) 、構成単位(a 2 ) 、 および構成単位 ( a 3 ) を有してなり、 酸の作用によりアルカリ可溶性が増大す る樹脂成分 ((A)成分) と、 露光により酸を発生する酸発生剤成分 ((B )成分) と、 有機溶剤 ((C)成分) とを含有する。
前記ポジ型レジスト組成物にあっては、 露光により前記 (B ) 成分から発生し た酸が作用することにより (A) 成分のアルカリ可溶性が増大するので、 レジス ト膜に対してマスクパターンを介して露光すると、 露光部のアルカリ可溶性が増 大し、 アルカリ現像することによってレジストパターンを形成できる。
(A) 成分
•構成単位 ( a 1 ) ( a 2 )
構成単位 (a 1 ) および構成単位 ( a 2 ) はいずれも (メタ) アクリル酸エス テルから誘導される構成単位である。 (メタ) アクリル酸エステルとはアクリル 酸エステルとメタクリノレ酸エステルの総称である。 (メタ) アタリレートとは、 メタタリレートとァクリレートの総称である。
構成単位 ( a 1 ) および構成単位 ( a 2 ) はいずれも酸解離性溶解抑制基を含 み、 構成単位 (a 2 ) に含まれる酸解離性溶解抑制基は、 構成単位 ( a 1 ) に含 まれる酸解離性溶解抑制基よりも解離しにくい特性を有する。 すなわち、 (A) 成分には、 解離しやすさ (酸解離性) が異なる 2種類以上の酸解離性溶解抑制基 が含まれている。
酸解離性溶解抑制基は、 化学増幅型のポジ型レジスト組成物に用いたときに、 露光前はポリマー全体をアル力リ不溶とするアルカリ溶解抑制性を有するととも に、 露光後は (B ) 成分から発生した酸の作用により解離して、 ポリマー全体を アル力リ可溶性へ変化させ得るものであればよい。 前記酸解離性溶解抑制基の中 から酸解離性が異なる 2種を選択して用いることができる。
酸解離性溶解抑制基として、 一般的には、 (メタ) アクリル酸のカルボキシル 基と環状又は鎖状の第 3級アルキルエステルを形成するものが広く知られている。 透明性と耐ェツチング性に優れる点から、 脂肪族多環式基を含有する酸解離性 溶解抑制基が好ましい。 前記多環式基含有酸解離性溶解抑制基は、 A r Fエキシ マレーザー用のポジ型レジス ト組成物に好適である。 前記多環式基としては、 ビシクロアルカン、 トリシクロアルカン、 テトラシク 口アル力ンなどから 1個の水素原子を除いた基などを例示できる。
具体的には、ァダマンタン、 ノルボルナン、ィソボルナン、 トリシク口デカン、 テトラシクロドデカンなどのポリシクロアルカンから 1個の水素原子を除いた基 などが挙げられる。
この様な多環式基は、 A r Fエキシマレーザー用レジスト,組成物用のポリマー (樹脂成分) において、 多数提案されているものの中から適宜選択して用いるこ とができる。
これらの多環式基の中でもァダマンチル基、 ノルボルニル基、 テトラシクロド デカニル基が工業上好ましい。
具体的には、 解離しやすい酸解離性溶解抑制基を含む構成単位 ( a 1 ) 力 下 記一般式(I )または(I I )から選択される少なくとも 1種であると好ましく、 解離しにくい酸解離性溶解抑制基を含む構成単位 (a 2 ) 下記一般式 (I I I ) または (I V) 力 ら選択される少なくとも 1種であると好ましい。
Figure imgf000005_0001
(式中、 Rは水素原子またはメチル基、 R 1は炭素数 2以上の低級アルキル基で ある。 )
Figure imgf000006_0001
(式中、 Rは水素原子またはメチル基、 1 2及ぴ1 3は、 それぞれ独立に、 低級ァ ルキル基である。 )
Figure imgf000006_0002
(式中、 Rは水素原子またはメチル基である)
Figure imgf000007_0001
7 5
(式中、 Rは水素原子またはメチル基である)
前記一般式 ( I ) で表される構成単位は、 (メタ) アタリル酸構成単位に炭化 水素基がエステル結合したものであって、 (メタ) ァクリ レート構成単位のエス テル部の酸素原子 (_ 0—) に隣接するァダマンチル基の炭素原子に、 直鎖また は分岐鎖のアルキル基が結合することにより、 このァダマンチル基の環骨格上に 第 3級アルキル基が形成されている。
式中、 R 1としては、 炭素数 2〜 5の低級の直鎖又は分岐状のアルキル基が好 ましく、 ェチル基、 プロピル基、イソプロピル基、 n—ブチル基、ィソブチル基、 tert -ブチル基、ペンチル基、ィソペンチル基、ネォペンチル基などが挙げられる。 中でも、 工業的観点からェチル基が好ましい。
前記一般式 (I I ) で表される構成単位は、 前記一般式 (I ) と同様に (メタ) アタリル酸構成単位に炭化水素基がエステル結合したものであって、この場合は、 (メタ) アタリ レート構成単位のエステル部の酸素原子 (一 O—) に隣接する炭 素原子が第 3級アルキル基であり、 前記アルキル基中にさらにァダマンチル基の ような環骨格が存在する。
R 2及ぴ R 3は、 それぞれ独立に、 炭素数 1〜 5の低級アルキル基であると好ま しい。
具体的に、 R 2、 R 3としては、 それぞれ独立して、 炭素数 1〜5の低級の直鎖 又は分岐状のアルキル基が好ましく、 メチル基、 ェチル基、 プロピル基、 イソプ 口ピル基、 n—ブチル基、 イソブチル基、 tert -ブチル基、 ペンチル基、 イソペン チル基、 ネオペンチル基などが挙げられる。 中でも、 R2、 R 3が共にメチル基で ある場合が工業的に好ましい。
前記一般式 (I I I) で表される構成単位では、 前記一般式 (I) で表される 構成単位の R1がメチル基に置き換えられている。 このような構成単位は、 前記 一般式 (I) で表される構成単位および前記一般式 (I I) で表される構成単位 のいずれよりも酸解離性が低い。
前記一般式 (I V) で表される構成単位は、 (メタ) アクリルレート構成単位 のエステルではなく、 別のエステルの酸素原子 (一 O—) に tert_ブチル基が結 合しており、 (メタ) アクリル酸エステル構成単位と前記別のエステルとがテト ラシクロドデカニル基のような環骨格で連結されている。
式中、 一 COOC (CH3) 3は、 式中に示したテトラシクロドデカニル基の 3 又は 4の位置に結合していてよいが、 異性体として共に含まれるのでこれ以上は 特定できない。
(メタ) ァクリレート構成単位のカルボキシル基残基は、 テトラシクロドデカ ニル基の 8又は 9の位置に結合していてよレ、が、 上記と同様に、 異性体として共 に含まれるので特定できない。
これらの中でも、構成単位 (a 1) として一般式 (I) の単位を用い、 構成単位 (a 2) として一般式(III) の単位を用いる組み合わせが好ましく、 それらは共 重合体であってもよく、 各単位を含む樹脂の混合物でもよい。 ·
構成単位 (a 1) の割合は、 前記構成単位 (a 1) と前記構成単位 (a 2) の 合計に対して 40〜 90モル%であることが好ましく、 より好ましくは 50〜 8 5モル0 /0である。
40モル%以上とすることにより、 コントラストに優れ、 高解像性となるし、 9 0モル%以下とすることにより、 焦点深度に優れ、 また近接効果の低減効果に優 れ ο
(A) 成分を構成する構成単位の合計に対して、 構成単位 (a 1) と構成単位 (a 2) の合計が 30〜60モル0 /0、 好ましくは 40〜55モル0 /0含まれている ことが望ましい。 下限値以上とすることにより、 ポジ型レジスト組成物として用 いたときに、 ポリマーの溶解性が酸の作用によって変化しやすくなる。 上限値を こえると他の構成単位とのバランス等の点から不都合となるおそれがある。
,構成単位 (a 3 )
構成単位 (a 3 ) は、 ラク トン官能基を含み、 かつ (メタ) アクリル酸エステ ルから誘導される構成単位である。 ラク トン官能基は、 ポジ型レジスト糸且成物を 構成したときに、 レジスト膜と基板の密着性を高めたり、 現像液との親水性を高 める効果に寄与する。
ラタ トン官能基の例としては、 例えばラタ トン含有単環式基としては、 ブ チロラタトンから水素原子 1つを除いた基などが挙げられる。 ラタ トン含有多環 式基としては、 以下の構造式を有するラタ トン含有ビシクロアルカンから水素原 子を 1つを除いた基などが挙げられる。
Figure imgf000009_0001
さらには、 前記ラク トン含有単環又は多環式基が以下の一般式から選択される 1種以上であると好ましい。
Figure imgf000010_0001
さらに具体的には、 例えば以下の構造式で表される、 ラタトン含有モノシクロ アルキル基又はビシクロアルキル基を含む (メタ) アクリル酸エステルから誘導 される構成単位が好ましい。
Figure imgf000010_0002
• · · (i)
(式中、 Rは上記の場合と同様である。 )
Figure imgf000011_0001
• · · ( ϋ )
(式中、 Rは上記の場合と同様である。 )
Figure imgf000011_0002
(式中、 Rは上記の場合と同様である。 )
これらの中でも、 α炭素にエステル結合を有する (メタ) アクリル酸の γ—ブ チロラク トンエステル又はノルボルナンラク トンエステルが、 特に工業上入手し やすく好ましい。 構成単位 ( a 3 ) は、 (A) 成分を構成する全構成単位の合計に対して、 2 0 〜6 0モル0 /0含まれていることが好ましく、 3 0〜5 0モル%含まれているとよ り好ましい。 下限値より小さいと、 解像性が低下し、 上限値をこえるとレジスト 溶剤に溶けにくくなるおそれがある。
•その他の構成単位
本発明における (A) 成分は、 構成単位 (a 1 ) ないし (a 3 ) の他に、 さら' に他の構成単位を含むものであってもよい。
他の構成単位としては、 水酸基を有する構成単位 (a 4 ) ;あるいは、 構成単 位 (a 1 ) ないし (a 4 ) 以外の構成単位 (a 5 ) 等が挙げられる。
• ·構成単位 ( a 4 )
水酸基は極性基であるため、 水酸基を有する構成単位 ( a 4 ) を (A) 成分に 含有させると、 (A) 成分の、 レジストパターンを形成する際に用いられるアル カリ現像液に対する親和性が高まる。 そのため、 ポジ型レジスト組成物用として 用いた場合に、 露光部におけるアルカリ溶解性が向上し、 解像性の向上に寄与す るので好ましい。
構成単位 ( a 4 ) としては、 水酸基を含有し、 かつ (メタ) アクリル酸エステ ルから誘導される構成単位が好ましく、 例えば A r Fエキシマレーザー用レジス ト組成物用の樹脂において、 多数提案されているものの中から適宜選択して用い ることができる。
また水酸基含有脂肪族多環式基を含み、 かつ (メタ) アクリル酸エステルから 誘導される構成単位がより好ましい。 前記多環式基としては、 前記構成単位 (a 1 ) および (a 2 ) の説明において例示したものと同様の多数の多環式基から適 宜選択して用いることができる。
具体的に、 構成単位 ( a 4 ) としては、 水酸基含有ァダマンチル基 (水酸基の 数は好ましくは 1〜3、 さらに好ましくは 1である。 ) 、 カルボキシル基含有テ トラシク口ドデ力-ル基 (カルボキシル基の数は好ましくは 1〜 3、 さらに好ま しくは 1である。 ) を有するものが好ましく用いられる。 さらに具体的には、 下記一般式 (V) で表される構成単位を用いると、 ポジ型 レジス ト組成物用として用いたときに、 耐ドライエッチング性を上昇させ、 バタ ーン断面形状の垂直性を高める効果を有するため、 好ましい。
Figure imgf000013_0001
(式中 Rは水素原子又はメチル基である)
また、 下記一般式 (V I ) で表される構成単位を用いると、 ポジ型レジス ト組 成物用として用いたときに、 耐ドライエッチング性を上昇させ、 パターン断面形 状の垂直性を高める効果を有するため、 好ましい。
Figure imgf000013_0002
(式中 Rは水素原子又はメチル基である) 一般式 (V I ) において、 _ C O〇Hは、 式中に示したテトラシクロドデカ二 ル基の 3又は 4の位置に結合していてよいが、 異性体として共に含まれるのでこ れ以上は特定できない。 一方、 (メタ) アタリレート構成単位のカルボキシル基 残基は、 テトラシクロドデカニル基の 8又は 9の位置に結合していてよいが、 上 記と同様に、 異性体として共に含まれるので特定できない。
構成単位 (a 4 ) は (A) 成分の必須成分ではないが、 これを (A) 成分に含 有させる際には、 (A) 成分を構成する全構成単位の合計に対して、 5〜5 0モ ル%、 好ましくは 1 0〜4 0モル0 /0含まれていると好ましい。 下限値以上とする ことにより、 L E R (ラインエッジラフネス) の向上効果が良好となり、 上限値 をこえると他の構成単位のバランスの点等からレジス トパターン形状が劣化する おそれがある。
• ·構成単位 ( a 5 )
構成単位 ( a 5 ) は、 上述の構成単位 (a l ) ないし (a 4 ) に分類されない 他の構成単位であれば特に限定するものではない。すなわち酸解離性溶解抑制基、 ラタトン官能基、 水酸基を含有しないものであればよい。 例えば脂肪族多環式基 を含み、 かつ (メタ) アクリル酸エステルから誘導される構成単位などが好まし レ、。この様な構成単位を用いると、ポジ型レジスト組成物用として用いたときに、 孤立パターンからセミデンスパターン (ライン幅 1に対してスペース幅が 1 . 2 〜 2のラインアンドスペースパターン) の解像性に優れ、 好ましい。
前記多環式基は、 例えば、 前記の構成単位 ( a 1 ) および (a 2 ) の場合に例 示したものと同様のものを例示することができ、 A r Fポジレジスト材料として 従来から知られている多数のものから適宜選択して使用可能である。
特にトリシクロデカニル基、 ァダマンチル基、 テトラシクロドデカニル基から 選ばれる少なくとも 1種以上であると、 工業上入手し易いなどの点で好ましい。 これら構成単位 ( a 5 ) の例示を一般式 (W) 〜 (Κ) に示す。
Figure imgf000015_0001
Figure imgf000015_0002
(葡
(式中 Rは水素原子又はメチル基である)
Figure imgf000016_0001
(IX)
(式中 Rは水素原子又はメチル基である)
構成単位 (a 5) は (A) 成分の必須成分ではないが、 これを (A) 成分に含 有させる際には、 (A)成分を構成する全構成単位の合計に対して、構成単位(a 5) を 1〜30モル0 /0、 好ましくは 10〜20モル0 /0含有させると、 孤立パター ンからセミデンスパターンの解像性において良好な向上効果が得られるので好ま しい。
• (A) 成分の形態
(A) 成分には、 構成成分 (a 1) 、 構成成分 (a 2) 、 および構成成分 (a 3) が含まれていればよく、 その形態は特に限定されない。
前記 (A) 成分は、 (ィ) :少なくとも構成単位 (a 1) と構成単位 (a 2) を有する共重合体 (A 1) を含むものであってもよいし、 (口) :少なくとも構 成単位 (a 1) を有する重合体と、 少なくとも構成単位 (a 2) を有する重合体 との混合樹脂 (A2) を含むものであってもよい。
(ィ) :前記共重合体 (A1) は、構成単位 (a 1) と構成単位 (a 2) の他に、 構成単位 (a 3) を有するものであってもよく、 または、 共重合体 (A1) とは 別に構成単位 (a 3) を有する重合体を調製し、 これを共重合体 (A1) と混合 させてもよい。 特に、 構成単位 (a 1) と構成単位 (a 2) と構成単位 (a 3) とが共重合さ れている方が、レジスト膜と基板との良好な密着性を得るうえで、より好ましレ、。
(口) :前記混合樹脂 (A2) において、 構成単位 (a 1) を有する重合体およ ぴ構成単位 (a 2) を有する重合体の少なくとも一方が、 構成単位 (a 3) を有 する共重合体であってもよい。 特に、 構成単位 (a 1) と構成単位 (a 3) を 有する共重合体、 および構成単位 (a 2) と構成単位 (a 3) を有する共重合体 を用いる方が、レジスト膜と基板との良好な密着性を得るうえで、より好ましい。
(A) 成分に、 構成単位 (a 4) および Zまたは構成単位 (a 5) を含有させ る場合、 構成単位 (a 4) および/または (a 5) を他の構成単位と共重合させ た形態で用いてもよく、 または他の構成単位を有する重合体または共重合体とは 別に、 構成単位 (a 4) および/または (a 5) を有する重合体または共重合体 を調製し、 これらを混合してもよレ、。
これらの形態中でも、 特に、 構成単位 (a 1) , (a 2) , (a 3) 及び (a 4) 又は (a 5) の四元単位を含む場合、
(a 1) , ( a 3) 及ぴ ( a 4 ) の三元共重合体、
(a 2) , ( a 3) 及び (a 4) の三元共重合体、 '
(a 1) , ( a 3) 及び ( a 5 ) の三元共重合体、
(a 2) , ( a 3) ,及び (a 5) の三元共重合体
(a 1) , ( a 2) , (a 3) 及び (a 4) の四元共重合体、
(a 1) , ( a 2) , (a 3) 及び (a 5) の四元共重合体、
(a 1) , ( a 3) , (a 4) 及び (a 5) の四元共重合体、
(a 2) , ( a 3) , (a 4) 及び (a 5) の四元共重合体等から、
単独又は適宜組み合わせて (A) 成分とすればよい。 このような三元又は四元単 位を含む場合は、 安定して各単位の割合を有する共重合体が得られやすいことか ら、 これらの共重合体やその混合物を用いることができる。
構成単位 (a 1) , (a 2) , (a 3) , ( a 4 ) 及び ( a 5 ) の五元単位を 含む場合は、 五元共重合体でもかまわないが、 安定して同一の各単位の割合を有 する共重合体が得られにくくなることから、 混合樹脂とした方が有利である。 そ の際には、 前記した構成単位 (a 1) , (a 2) , (a 3) 及び (a 4) の四元 共重合体と (a 1) , (a 2) , (a 3)及び(a 5) の四元共重合体の混合物、 (a 1) , (a 3) , (a 4) 及び (a 5) の四元共重合体と (a 2) , (a 3) , (a 4) 及び (a 5) の四元共重合体の混合物等を用いることができる。
混合物とする際は、 前記した (A) 成分中の各単位の割合となるように適宜混 合すればよい。
(A) 成分の構成単位は、 構成単位 (a 1) 、 (a 2) 及び (a 3) に対し構成 単位 (a 4) 及び Z又は (a 5) を用途等によって適宜選択して組み合わせて用 いることができるが、 さらに構成単位 (a 4) を含むものが好ましい。
構成単位 (a 4) を含む四元系の場合は、 構成単位 (a 1) は全構成単位中 1 0〜 5 5モル0 /0、 好ましくは 30〜 50モル0 /0とし、 構成単位 (a 2) は全構成 単位中 5〜 50モル0 /0、 好ましくは 1 0〜 30モル0 /0、 (a 3) は全構成単位中 20〜 6 0モル0 /0、 好ましくは 30〜 50モル0 /0、 (a 4) は全構成単位中 1 ◦ 〜 40モル0 /0、 好ましくは 1 0〜 30モル0 /0とすると、 レジスト溶媒の溶解性の 高い樹脂となり、 また解像性に優れ好ましい。
さらに構成単位 (a 5) を含む五元系の場合は、 前記四元系において、 (a5) の構成を全構成単位中 1〜 30モル0 /0、 好ましくは 2〜 20モル0 /0とすると、 上 記特性を維持しつつ、 孤立パターン、 セミデンスパターンの解像性に優れ好まし レ、。
(A)成分を構成する共重合体(A 1) 、 または混合樹脂 (A2) を構成する、 重合体または共重合体の質量平均分子量は特に限定するものではないが 5000 〜30000、 さらに好ましくは 7000〜20000とされる。 この範囲より も大きいとレジスト溶剤への溶解性が悪くなり、 小さいとレジストパターン断面 形状が悪くなるおそれがある。
共重合体 (A1) や混合樹脂 (A2) を構成する重合体または共重合体は、 相 当する (メタ) アクリル酸エステルモノマーなどをァゾビスイソプチロニトリル (A I BN) のようなラジカル重合開始剤を用いる公知のラジカル重合等により 容易に製造することかできる。
前記構成単位 (a 1) ないし (a 5) に相当するモノマーは上市されており入 手可能である。 ( B ) 成分
( B ) 成分としては、 従来化学増幅型レジストにおける酸発生剤として公知の ものの中から任意のものを適宜選択して用いることができる。
この酸発生剤の例としては、 ジフエ二ルョードニゥムトリフルォロメタンスル ホネート、 (4ーメ トキシフエニル) フエニノレョードニゥムトリフノレオロメタン スルホネート、 ビス (p _ t e r t—ブチルフエニル) ョードニゥムトリフルォ ロメタンスノレホネート、 トリフエニノレスノレホニゥムトリフノレオ口メタンスノレホネ ート、 (4ーメ トキシフエニル) ジフエニルスルホニゥムトリフルォロメタンス ルホネート、 (4一メチルフエニル) ジフエニルスルホニゥムノナフルォロブタ ンスノレホネート、 ( p— t e r t—ブチルフエ二ノレ) ジフエニノレス/レホニゥムト リフノレオ口メタンス/レホネート、 ジフエニノレョードニゥムノナフノレォロブタンス ルホネート、 ビス (p— t e r t _ブチルフエ-ル) ョードニゥムノナフルォロ ブタンスノレホネート、 トリフエニノレスノレホニゥムノナフノレォロブタンスルホネー トなどのォニゥム塩などを挙げることができる。 特にフッ素化アルキルスルホン 酸イオンをァユオンとするォニゥム塩が好ましく、 フッ素化アルキルスルホン酸 イオンをァニオンとするスルホニム塩がより好ましい。
この (B ) 成分は単独で用いてもよいし、 2種以上を組み合わせて用いてもよ レ、。 .
その配合量は、 (A) 成分 1 0 0質量部に対し、 0 . 5〜3 0質量部、 好まし くは 1〜1 0質量部とされる。 0 . 5質量部以上とすることにより、 パターン形 成が十分に行われる様になり、 3 0質量部以下とすることにより均一な溶液が得 られ、 保存安定性が向上する傾向がある。
( C ) 成分
ポジ型レジスト組成物は、 前記 (A) 成分と前記 (B ) 成分と、 後述する任意 の (D ) 成分を、 好ましくは (C ) 成分に溶解させて製造することができる。 ポ ジ型レジスト組成物の (C ) 成分の量は特に限定されず、 例えば基板等の上に塗 布可能なポジ型レジスト組成物が得られる濃度とされる。 ( C ) 成分としては、 前記 (A) 成分と前記 (B ) 成分を溶解し、 均一な溶液 とすることができるものであればよく、 従来化学増幅型レジストの溶剤として公 知の有機溶剤の中から任意のものを 1種又は 2種以上適宜選択して用いることが できる。
例えば、 アセトン、 メチルェチルケトン、 シクロへキサノン、 メチルイソアミ ノレケトン、 2—ヘプタノンなどのケトン類や、 エチレングリコール、 エチレング リコーノレモノアセテート、 ジエチレングリコーノレ、 ジエチレングリコー/レモノア セテート、 プロピレングリコール、 プロピレングリコールモノアセテート、 ジプ ロピレングリコール、 又はジプロピレングリコールモノアセテートのモノメチル エーテノレ、 モノエチノレエーテ/レ、 モノプロピノレエーテノレ、 モノブチノレエーテノレ又 はモノフエニルエーテルなどの多価アルコール類及びその誘導体や、 ジォキサン のような環式エーテル類や、乳酸メチル、乳酸ェチル、酢酸メチル、酢酸ェチル、 酢酸ブチル、 ピルビン酸メチル、 ピルビン酸ェチル、 メ トキシプロピオン酸メチ 'ル、 ェトキシプロピオン酸ェチルなどのエステル類などを挙げることができる。 これらの有機溶剤は単独で用いてもよく、 2種以上の混合溶剤として用いてもよ レ、。
特に、プロピレンダリコールモノメチルエーテルァセテ一ト(P GME A) と、 プロピレングリコールモノメチルエーテル (P GME ) 、 乳酸ェチル (E L ) 、 γ—プチロラク トン等のヒ ドロキシ基やラタトン官能基を有する極性溶剤との混 合溶剤は、 ポジ型レジスト組成物の保存安定性が向上するため、 好ましい。
E Lを配合する場合は、 P GME A: E Lの質量比が 6 : 4〜4 : 6であると 好ましい。
P GMEを配合する場合は、 P GME A: P GM Eの質量比が 8 : 2ないし 2 : 8、 好ましくは 8 : 2ないし 5 : 5であると好ましい。
有機溶剤 (C ) として、 他には P GME A及び乳酸ェチルの中から選ばれる少 なくとも 1種と γ—プチ口ラタ トンとの混合溶剤も好ましい。 この場合、 混合割 合としては、 前者と後者の質量比が好ましくは 7 0 : 3 0〜9 5 : 5とされる。 有機溶剤 (C ) の使用量は特に限定されないが、 基板等に塗布可能な濃度とされ る。 例えば、 本発明ポジ型レジス ト組成物を構成する固形分 (溶剤 (C ) を取り 去ったとき固体として残る成分) を 2〜 2 0質量%、 更には 3〜 1 5質量%の範 囲で含む量が好ましい。
(D ) 成分
ポジ型レジスト組成物には、 レジス トパターン形状、 引き置き安定性等の向上 のために、 さらに任意の (D) 成分としてァミン、 特には第 2級低級脂肪族アミ ンゃ第 3級低級脂肪族アミンを含有させることができる。
ここで低級脂肪族ァミンとは炭素数 5以下のアルキルまたはアルキルアルコー ルのァミンを言い、この第 2級や第 3級ァミンの例としては、トリメチルァミン、 ジェチルァミン、 トリェチルァミン、 ジ _ n—プロピルァミン、 トリー n—プロ ピルァミン、 トリペンチルァミン、 ジエタノールァミン、 トリエタノールァミン などが挙げられるが、 特にトリエタノールァミンのようなアル力ノールァミンが 好ましい。
これらは単独で用いてもよいし、 ·2種以上を組み合わせて用いてもよい。 これらのアミンは、 (Α) 成分 1 0 0質量部に対して通常 0 . 0 1〜 2質量部 の範囲で用いられる。
( Ε ) 有機カルボン酸又はリンのォキソ酸若しくはその誘導体
ポジ型レジスト組成物には、 前記 (D) 成分と同様のレジストパターン形状、 引き置き安定性等の向上の目的で、 さらに任意の (Ε ) 成分として、 有機カルボ ン酸又はリンのォキソ酸若しくはその誘導体を含有させることができる。 (D) 成分と (Ε ) 成分は併用することもできるし、 いずれか 1種を用いることもでき る。
有機カルボン酸としては、例えば、マロン酸、 クェン酸、 リンゴ酸、 コハク酸、 安息香酸、 サリチル酸などが好適である。
リンのォキソ酸若しくはその誘導体としては、 リン酸、 リン酸ジ - η -ブチル エステル、 リン酸ジフエニルエステルなどのリン酸又はそれらのエステルのよう な誘導体、 ホスホン酸、 ホスホン酸ジメチルエステル、 ホスホン酸-ジ- η -ブ チノレエステル、 フエ二ノレホスホン酸、 ホスホン酸ジフエニルエステル、 ホスホン 酸ジべンジルェステルなどのホスホン酸及ぴそれらのエステルのような誘導体、 ホスフィン酸、 フエニルホスフィン酸などのホスフィン酸及びそれらのエステノレ のような誘導体が挙げられ、 これらの中で特にホスホン酸が好ましい。
( E ) 成分は、 (A) 成分 1 0 0質量部当り 0 . 0 1〜5質量部の割合で用い られる。
ポジ型レジスト組成物には、 さらに所望により混和性のある添加剤、 例えばレ ジスト膜の性能を改良するための付加的樹脂、 塗布性を向上させるための界面活 性剤、 溶解抑制剤、 可塑剤、 安定剤、 着色剤、 ハレーション防止剤などを添加含 有させることができる。
このポジ型レジスト組成物は、 波長 2 0 0 n m以下の波長に対して透明性が高 いので、 特に A r Fエキシマレーザー用のポジ型レジスト組成物として有用であ るが、 それより短波長の F 2レーザー、 E U V (極紫外線) 、 V U V (真空紫外 線) 、 電子線、 X線、 軟 X線などの放射線に対しても有効である。
このポジ型レジスト組成物は、 樹脂成分 (A) 中に、 酸解離性が異なる 2種以 上の酸解離性溶解抑制基が含有されており、 前記榭脂成分 (A) を含有するポジ 型レジスト組成物によれば、 焦点深度を低減させずに近接効果を低減させること ができる。 後述の実施例における孤立パターンを含む場合など、 焦点深度を増大 させるとともに近接効果を低減させることができる。
このポジ型レジスト組成物は、 樹脂成分 (A) 中に、 酸解離性が互いに異なる 酸解離性溶解抑制基を有する前記構成単位 ( a 1 ) および (a 2 ) に加えて、 ラ クトン官能基を有する構成単位 ( a 3 ) を含有するので、 前記ラタトン官能基に よる親水性の向上効果が得られるほ力、 孤立パタ一ンの焦点深度が向上するとい う利点が得られる。
[レジス トパターン形成方法 (製造方法) ]
本発明のレジストパターン形成方法は例えば以下の様にして行うことができる。 すなわち、 まずシリコンゥヱーハのような基板上に、 上記ポジ型レジス ト組成 物をスピンナーなどで塗布し、 8 0〜1 5 0 °Cの温度条件下、 プレベータを 4 0 〜 1 2 0秒間、 好ましくは 6 0〜 9 0秒間施し、 これに例えば A r F露光装置な どにより、 A r Fエキシマレーザー光を所望のマスクパターンを介して選択的に 露光した後、 PEB (露光後加熱) を施す。
その後、 これをアルカリ現像液、 例えば 0. 1〜10質量0 /0テトラメチルアン モニゥムヒ ドロキシド水溶液を用いて現像処理することにより、 マスクパターン の形状が転写されたレジストパターンが得られる。
基板とレジスト組成物の塗布層との間には、 有機系または無機系の反射防止膜 を設けることもできる。
P E Bを施す際の加熱温度は、 (A) 成分中に存在する、前記構成単位 (a 1) に含まれる酸解離性溶解抑制基が解離する温度範囲の下限値 (以下 PEBminと いう) 以上で、 かつ前記構成単位 (a 2) に含まれる酸解離性溶解抑制基が解離 する温度範囲の下限値 (以下 PEBmaxという) 未満の範囲内とすることが好ま しい。
PEBminにおいては、 前記構成単位 (a 1) に含まれる酸解離性溶解抑制基 がほとんど解離するが、 完全に解離するものではなく、 また PEBmaxにおいて 前記構成単位 (a 2) に含まれる酸解離性溶解抑制基はわずかに解離し、 全く解 離しないわけではない。
従って、 『構成単位 (a 1) に含まれる酸解離性溶解抑制基が解離する』 とは 100%解離を意味するものではない。 『構成単位 (a 2) に含まれる酸解離性 溶解抑制基が解離する温度範囲の下限値未満』 にて、 構成単位 (a 2) に含まれ る酸角早離性溶解抑制基が 0 %解離を意味するものではない。
本発明は構成単位(a 1) と (a 2)を酸解離性溶解抑制基として含むものの、 そのうち (a l) をほとんど解離させ、 (a 2) はわずかに解離させる必要があ り、 (a 1) 単位の酸解離性溶解抑制基を 100%解離させ、 同時に (a 2) 単 位の酸解離性溶解抑制基まつたく解離させないことにあるわけではない。
したがって、 PEBminは約 90〜: I 30°Cであり、 PEBmaxは 1 10〜: 14 0°Cであるが、 以上のことから、 本発明方法における好ましい PEBは約 90〜 125°C、 好ましくは 90〜 120°Cである。 構成単位 (a l) に含まれる酸解 離性溶解抑制基は、 構成単位 (a 2) に含まれる酸解離性溶解抑制基よりも解離 し易く、 したがって構成単位 (a l) に含まれる酸解離性溶解抑制基が解離する 温度範囲の下限値は、 構成単位 (a 2) に含まれる酸解離性溶解抑制基が解離す る温度範囲の下限値よりも低い。
化学増幅型のポジ型レジスト組成物にあっては、 P E B時に酸解離性溶解抑制 基の解離反応が行われ、 前記解離反応の程度によってアル力リ可溶性が決まるの で、 前記温度範囲内で、 現像処理後に形成されるレジス トパターンのプロフアイ ルが良好となるような加熱条件に設定することが好ましい。
PEB時の加熱温度が、 構成単位 (a 1) に含まれる酸解離性溶解抑制基が解 離する温度範囲の下限値よりも低いと、 レジストのアルカリ可溶性が不足して良 好に解像されず、 構成単位 (a 2) に含まれる酸解離性溶解抑制基が解離する温 度範囲の下限値よりも高すぎると、 樹脂成分 (A) 中に、 酸解離性が異なる 2種 以上の酸解離性溶解抑制基を含有させたことによる、 焦点深度を低減させずに近 接効果を低減させる効果、 または焦点深度を増大させるとともに近接効果を低減 させる効果が十分に得られない。
酸解離性溶解抑制基が解離する温度範囲は、 前記酸解離性溶解抑制基の構造に よって異なり、 また構成単位 (a l) または (a 2) の酸解離性溶解抑制基以外 の部分の構造によって異なるが、 レジスト組成物である以上それぞれほぼ決まつ ている。
.例えば、 構成単位 (a l) に含まれる酸解離性溶解抑制基が解離する温度範囲 (以下、 酸解離温度範囲ということもある) は、
前記一般式(I)の Rが水素原子で R1がェチル基である場合は 90〜120°C 程度、 ' 前記一般式 (I) の Rがメチル基で R1がェチル基である場合は 1 00〜13 0°C程度、
前記一般式 (I I) の Rが水素原子で R 2及び R 3がともにメチル基である場合 は 90〜 120°C程度、
前記一般式(I I) の Rがメチル基で R2及び R3がともにメチル基である場合 は 100〜 130°C程度である。
構成単位 (a 2) に含まれる酸解離性溶解抑制基が解離する温度範囲は、 前記一般式 (I I I) の Rが水素原子である場合は 100〜1 30°C程度、 前記一般式 (I I I) の Rがメチル基である場合は 1 10〜140°C程度、 前記一般式 ( I V) の Rが水素原子である場合は 100〜 1 30°C程度、 前記一般式( I V)の Rがメチル基である場合は 1 10〜140°C程度である。 実施例
以下、 本発明を実施例を示して詳しく説明する。 実施例 1
以下の (A) ないし (D) 成分を混合、 溶解してポジ型レジスト組成物を製造 した。
(A) 成分:以下のモノマー
2ーェチル一 2—ァダマンチルァクリレート 40モル0 /0 (構成単位 (a 1) に相当) 、
2—メチルー 2—ァダマンチルァタリ レート 10モル0 /0 (構成単位 (a 2) に相当) 、
ノルボルナンラタ トンァクリレート(以下 Nラタ トンという) 30モル% (構 成単位 (a 3) に相当し、 一般式 (i) において、 Rは水素原子である単位を構 成する) 、
3—ヒ ドロキシ一 1ーァダマンチルァクリレート (以下 ADOHという) 20 モル% (構成単位 (a 4) に相当し、 一般式 (V)において、 Rは水素原子) を共重 合させた共重合体 (質量平均分子量 10000、 分散度 2. 0) 100質量部
(B) 成分: トリフエニルスルホニゥムノナフルォロブタンスルホネート 3. 0質量部
(C) 成分: PGMEA 750質量部と、 y—プチロラクトン 30質量部と の混合溶剤
(D) 成分: トリエタノールァミン 0. 1質量部
ついで、 このポジ型レジスト組成物をスピンナーを用いてシリコンゥエーハ上 に塗布し、ホットプレート上で 1 10^、 90秒間プレベータ (PAB処理) し、 乾燥することにより、 膜厚 400 nmのレジスト層を形成した。 ついで、 A r F露光装置 NSR— S 302 A (ニコン社製; NA (開口数) = 0. 60, σ = 0. 75) により、 A r Fエキシマレーザー ( 1 93 n m) を、 ハーフトーンマスクパターンを介して選択的に照射した。
100°C、 90秒間の条件で PEB処理し、 2. 38質量%テトラメチルアン モニゥムヒドロキシド水溶液で、 23 °Cの温度条件下で 60秒間パドル現像し、 その後 20秒間水洗して乾燥してレジストパターンを形成した。
形成された幅 140 nmのコンタク トホールパターンは、 パターン間隔を 1 : 1. 4とした D e n s eタイプと、 パターン間隔を 1 : 10とした I s oタイプ とをそれぞれ形成した。
D e n s eにおける焦点深度 (表では D O Fと記載する、 以下同様) は 400 nmであり、 I s oにおける焦点深度は 30 O nmであった。
近接効果を評価するために、 I s oにおける現像後のレジストパターン幅が 1 40 nmとなる露光量に固定したときの、 D e n s eにおける現像後のパターン 幅から 140 nmを減じた値 ( I /D寸法差) を求めたところ、 18 nmであつ た。 前記 I ZD寸法差が小さいと近接効果が小さく好ましい。
これらの結果を下記表 1にまとめて示す。 .
本実施例における共重合体を用いたレジストの好適な PEB温度は 90〜1 1 0°Cである。 実施例 2
実施例 1において、 (A) 成分を変更したほかは、 実施例 1と同様にしてポジ 型レジスト組成物を製造した。 (B) ないし (D) 成分については実施例 1と同 じ組成とした。
(A) 成分:
以下のモノマー
2—ェチルー 2—ァダマンチルァクリレート 50モル0 /0 (構成単位 ( a 1 ) に相当) 、
Nラタトン 30モル0 /0 (構成単位 (a 3) に相当) 、 ADOH 20モル。 /0 (構成単位 (a 4) に相当) を共重合させた第 1の共重 合体 (質量平均分子量 10000、 分散度 2. 0) 80質量部と、
以下のモノマー
2—メチルー 2—ァダマンチルァクリ レート 50モル0 /0 (構成単位 (a 2) に相当) 、
Nラクトン 30モル0 /0 (構成単位 (a 3) に相当) 、
ADOH 20モル% (構成単位 (a 4) に相当) 、 を共重合させた第 2の共 重合体 (質量平均分子量 10000、 分散度 2. 0) 20質量部とを混合した 混合樹脂 100質量部を (A) 成分とした。
得られたポジ型レジスト組成物を用いて、 実施例 1と同じ製造条件でコンタク トホールパターンを形成した。
D e n s eにおける焦点深度は 400 nmであり、 I s oにおける焦点深度は 30 Θ nmであった。 また I/D寸法差は 2ひ nmであった。
これらの結果を下記表 1にまとめて示す。
本実施例における共重合体を用いたレジストの好適な PEB温度は 90〜1 1 0°Cである。 比較例 1
実施例 iにおいて、 (A) 成分を変更したほかは、 実施例 1と同様にしてポジ 型レジス ト組成物を製造した。 (B) ないし (D) 成分については実施例 1と同 じ組成とした。
(A) 成分:
以下のモノマー
2—メチルー 2—ァダマンチルアタリ レート 50
Figure imgf000027_0001
(構成単位 (a 2) に相当) 、
Nラクトン 30モル% (構成単位 (a 3) に相当) 、
ADOH (構成単位 (a 4) に相当) 20モル%、 を共重合させた共重合体 (質量平均分子量 1 0000、 分散度 2. 0) 100質量部を (A) 成分とし た。 得られたポジ型レジスト組成物を用いて、 実施例 1と同じ製造条件でレジスト パターンを形成しようとしたが、 06 !1 3 6ぉょび1 S Oのいずれも解像しなか つた 比較例 2
比較例 1において、 P AB処理温度を 130°Cに変更し、 PEB処理温度を 1 20°Cに変更した他は同様にしたところ、 レジストパターンが形成された。
De n s eにおける焦点深度は 300 n mであり、 I s oにおける焦点深度は 100 nmであった。 また I ZD寸法差は 26 nmであった。
これらの結果を下記表 1にまとめて示す。 比較例 3 "
実施例 1において、 (A) 成分を変更したほかは、 実施例 1と同様にしてポジ 型レジスト組成物を製造した。 (B) ないし (D) 成分については実施例 1と同 じ組成とした。
(A) 成分:
以下のモノマー
2—ェチルー 2—ァダマンチルァクリ レート 50モル0 /0 (構成単位 ( a 1 ) に相当) 、
Nラクトン 30モル0 /0 (構成単位 (a 3) に相当) 、
ADOH (構成単位 (a 4) に相当) 20モル%、 を共重合させた共重合体 (質量平均分子量 10000、 分散度 2. 0) 100質量部を (A) 成分とし た。
得られたポジ型レジスト組成物を用いて、 実施例 1と同じ製造条件でコンタク トホールパターンを形成した。
De n s eにおける焦点深度は 400 nmであり、 I s oにおける焦点深度は 200 nmであった。 また I ZD寸法差は 30 nmであった。
これらの結果を下記表 1にまとめて示す。 表 1
Figure imgf000029_0001
実施例 3
以下の (A) ないし (D) 成分を混合、 溶解してポジ型レジスト組成物を製造 した。
(A) 成分:以下のモノマー
2ーェチルー 2—ァダマンチルメタクリ レート 20モル0 /0 (構成単位 (a 1) に相当) 、
2—メチルー 2ーァダマンチルメタクリ レート 15モル% (構成単位 (a 2) に相当) 、
7—プチ口ラタトンァクリレート(以下 γ ラクトンという) 35モル0 /0(構 成単位 (a 3) に相当し、 一般式 (iii) において、 Rは水素原子である単位を構 成する) 、
ADOH 15モル0 /0 (構成単位 (a 4) に相当) 、
トリシクロデ力-ルメタタリレート (以下 TCDという) 15モル0 /0 (構成 単位 (a 5) に相当し、 一般式 (ΥΠ) において、 Rはメチル基である単位を構成 する) を共重合させた共重合体(質量平均分子量 10000、分散度 2. 0) 1 00質量部 (B) 成分: トリフエニルスルホニゥムノナフルォロブタンスルホネート 3. 0質量部
(C) 成分: PGMEA 750質量部と、 · γ—ブチロラタトン 30質量部と の混合溶剤
(D) 成分: トリエタノールァミン 0. 2質量部
ついで、 このポジ型レジスト組成物をスピンナーを用いてシリコンゥヱーハ上 に塗布し、ホットプレート上で 1 10° (:、 90秒間プレベータ (ΡΑΒ処理) し、 乾燥することにより、 膜厚 300 nmのレジスト層を形成した。
ついで、 Ar F露光装置 NSR— S 302 A (ニコン社製; NA (開口数) = 0. 60, σ = 0. 75) により、 A r Fエキシマレーザー ( 1 93 n m) を、 マスクパターンを介して選択的に照射した。
1 10°C、 90秒間の条件で P EB処理し、 さらに 2. 38質量%テトラメチ ルアンモニゥムヒドロキシド水溶液で、 23°Cの温度条件下で 60秒間パドル現 像し、 その後 20秒間水洗して乾燥してレジストパターンを形成した。
形成された幅 1 20 nmのラインアンドスペースパターンは、 パターン間隔を 1 : 1とした D e n s eタイプと、 パターン間隔を 1 : 10とした I s oタイプ とをそれぞれ形成した。
D e n s eにおける焦点深度は 800 n mであり、 I s oにおける焦点深度は 500 nmであった。
近接効果を評価するために、 I s oにおける現像後のレジストパターン幅が 1 20 nmとなる露光量に固定したときの、 D e n s eにおける現像後のパターン 幅から 120 nmを減じた値 ( I ZD寸法差) を求めたところ、 21 nmであつ た。
これらの結果を下記表 2にまとめて示す。
本実施例における共重合体を用いたレジストの好適な PEB温度は 100〜1 20°Cである。 比較例 4 実施例 3において、 (A) 成分を変更するとともに、 (B) 成分の配合量を 2 質量部に変更したほかは、 実施例 3と同様にしてポジ型レジスト組成物を製造し た。 (C) および (D) 成分については実施例 3と同じ組成とした。
(A) 成分:以下のモノマー
2—メチルー 2—ァダマンチルァタリ レート 35モル0 /0 (構成単位 ( a 2 ) に相当) 、
γ ラタトン 35モル0 /0 (構成単位 (a 3) に相当) 、
ADOH 1 5モル0 /0 (構成単位 (a 4) に相当) 、
TCD 1 5モル% (構成単位 (a 5) に相当) を共重合させた共重合体 (質 量平均分子量 10000、 分散度 2. 0) 100質量部
(B) 成分: トリフエニルスルホニゥムノナフルォロブタンスルホネート 2. 0質量部
¼られたポジ型レジスト組成物を用いて、 実施例 3と同じ製造条件でレジスト パターンを形成しようと,したが、 06 11 3 6ぉょび1 S Oのいずれも解像せず、
D e n s eにおいては T—トップが生じていた。 比較例 5
比較例 4において、 PAB処理温度を 1 30°Cに変更し、 PEB処理温度を 1
30°Cに変更した他は同様にしたところ、 レジストパターンが形成された。
D e n s eにおける焦点深度は 600 n mであり、 I s oにおける焦点深度は .
400 nmであった。 また I 寸法差は 26 nmであった。
これらの結果を下記表 2にまとめて示す。 比較例 6
実施例 3において、 (A) 成分を変更するとともに、 (B) 成分の配合量を 2 質量部に変更したほかは、 実施例 3と同様にしてポジ型レジスト組成物を製造し た。 (C) および (D) 成分については実施例 3と同じ組成とした。
(A) 成分: . 以下のモノマー 2—ェチルー 2—ァダマンチルメタクリ レート 35モル0 /0 (構成単位( a 1 ) に相当) 、
γ ラクトン 35モル0 /0 (構成単位 (a 3) に相当) 、
ADOH 15モル0 /0 (構成単位 (a 4) に相当) 、
TCD 1 5モル% (構成単位 (a 5) に相当) を共重合させた共重合体 (質 量平均分子量 10000、 分散度 2. 0) 100質量部
(B) 成分: トリフエニルスルホニゥムノナフルォロブタンスルホネート 2. 0質量部
得られたポジ型レジスト組成物を用いて、 実施例 3と同じ製造条件でラインァ ンドスペースパターンを形成した。
De n s eにおける焦点深度は 800 n mであり、 I s oにおける焦点深度は 400 nmであった。 また I ZD寸法差は 36 nmであった。
これらの結果を下記表 2にまとめて示す。
表 2
Figure imgf000032_0001
表 1の結果より、 実施例 1, 2は比較例 2, 3に比べて、 焦点深度は同等また は向上しており、 近接効果の指標となる I/D寸法差は大幅に低減されていた。 表 2の結果より、 実施例 3は比較例 5, 6に比べて、 焦点深度は同等または向 上しており、 近接効果の指標となる Iノ D寸法差は大幅に低減されていた。 産業上の利用の可能性
以上説明したように、 本発明によれば、 焦点深度を低減させずに近接効果を低 減させることができるレジスト組成物およびレジストパターン形成方法が得られ るから産業上極めて有用である。

Claims

請求の範囲
1. 酸の作用によりアルカリ可溶性が増大する樹脂成分 (A) と、 露光により 酸を発生する酸発生剤成分 (B) と、 有機溶剤 (C) とを含むポジ型レジス ト組 成物であって、
前記 (A) 成分が、
(i)酸解離性溶解抑制基を含み、 かつ (メタ) アクリル酸エステルから誘導され る構成単位 (a 1) 、
(ii)前記構成単位 (a 1) に含まれる前記酸解離性溶解抑制基よりも解離しに くい酸解離性溶解抑制基を含み、 かつ (メタ) アクリル酸エステルから誘導され る構成単位 (a 2) 、 および
(iii)ラクトン官能基を含み、かつ (メタ) アクリル酸エステルから誘導される 構成単位 (a 3) を有するポジ型レジスト組成物。 ,
2. 前記構成単位(a 1)が、 下記一般式 (I) または (I I) から選択される 少なくとも 1種であり、
前記構成単位(a 2)が、 下記一般式 (I I I) または (I V) から選択される 少なくとも 1種である請求項 1記載のポジ型レジスト組成物。
Figure imgf000034_0001
(式中、 Rは水素原子またはメチル基、 R1は炭素数 2以上の低級アルキル基で ある。 )
Figure imgf000035_0001
(式中、 Rは水素原子またはメチル基、 1 2及び1 3は、 それぞれ独立に、 低級ァ ルキル基である。 )
Figure imgf000035_0002
(式中、 Rは水素原子またはメチル基である)
Figure imgf000036_0001
(式中、 Rは水素原子またはメチル基である)
3. 前記構成単位 (a 1) と前記構成単位 (a 2) の合計に対して構成単位(a
1) が 40〜90モル%含まれている請求項 1に記載のポジ型レジスト組成物。
4. 前記 (A) 成分を構成する構成単位の合計に対して、 前記構成単位 (a 1) と前記構成単位 (a 2) の含有量の合計が 30〜60モル%である請求項 1に記 載のポジ型レジスト組成物。
5. 前記 (A) 成分を構成する構成単位の合計に対して、 前記構成単位 (a 3) が 20〜60モル%含まれている請求項 1に記載のポジ型レジスト組成物。
6. 前記 (A) 成分が、 少なくとも前記構成単位 (a 1) と前記構成単位 (a
2) を有する共重合体 (A1) を含む請求項 1に記載のポジ型レジスト組成物。
7. 前記共重合体 (A1) 力 S、 さらに前記構成単位 (a 3) を有する共重合体 である請求項 6記載のポジ型レジス ト組成物。
8. 前記共重合体 (A1) と、 前記構成単位 (a 3) を有する重合体が混合さ れている請求項 6記載のポジ型レジスト組成物。
9. 前記 (A) 成分が、 少なくとも前記構成単位 (a 1) を有する重合体と、 少なくとも前記構成単位 (a 2) を有する重合体との混合樹脂 (A2) を含む請 求項 1に記載のポジ型レジスト組成物。
10. 前記構球単位 (a 1) を有する重合体、 および前記構成単位 (a 2) を 有する重合体の少なくとも一方が、 前記構成単位 (a 3) を有する共重合体であ る請求項 9記載のポジ型レジスト組成物。
1 1. 前記構成単位 (a 1) を有する重合体、 および前記構成単位 (a 2) を 有する重合体の両方が、 前記構成単位 (a 3) を有する共重合体である請求項 1 0記載のポジ型レジスト ,組成物。
1 2. 前記酸発生剤成分 (B) 力 フッ素化アルキルスルホン酸イオンをァニ オンとするォユウム塩である、 請求項 1に記載のポジ型レジス ト組成物。 .
13. 請求項 1に記載のポジ型レジスト組成物において、 'さらにァミン (D) を含むポジ型レジスト組成物。
14. 請求項 1に記載のポジ型レジスト組成物を基板上に塗布し、 : レベータ し、 選択的に露光した後、 PEB (露光後加熱) を施し、 アルカリ現像してレジ ストパターンを形成するレジストパターン形成方法。
1 5. 前記 PEBを施す際の加熱温度を、 前記構成単位 (a 1) に含まれる酸 解離性溶解抑制基が解離する温度範囲の下限値以上で、かつ前記構成単位 (a 2) に含まれる酸解離性溶解抑制基が解離する温度範囲の下限値未満の範囲内とする 請求項 14記載のレジストパターン形成方法。
16. 前記 PEBを施す際の加熱温度が 90〜1 25 °Cの範囲内とする請求項 15記載のレジストパターン形成方法。
PCT/JP2004/009455 2003-07-01 2004-06-28 ポジ型レジスト組成物及びそれを用いたレジストパターン形成方法 WO2005003861A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112004001155T DE112004001155B4 (de) 2003-07-01 2004-06-28 Positivresist-Zusammensetzung und Methode zur Bildung von Resistmustern unter Verwendung derselben
US10/561,830 US20070111135A1 (en) 2003-07-01 2004-06-28 Positive resist composition and method of forming resist pattern using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-189707 2003-07-01
JP2003189707 2003-07-01
JP2004119498A JP4327003B2 (ja) 2003-07-01 2004-04-14 ポジ型レジスト組成物及びそれを用いたレジストパターン形成方法
JP2004-119498 2004-04-14

Publications (1)

Publication Number Publication Date
WO2005003861A1 true WO2005003861A1 (ja) 2005-01-13

Family

ID=33566741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009455 WO2005003861A1 (ja) 2003-07-01 2004-06-28 ポジ型レジスト組成物及びそれを用いたレジストパターン形成方法

Country Status (6)

Country Link
US (1) US20070111135A1 (ja)
JP (1) JP4327003B2 (ja)
KR (1) KR100671192B1 (ja)
DE (1) DE112004001155B4 (ja)
TW (1) TWI307452B (ja)
WO (1) WO2005003861A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148492A1 (ja) * 2006-06-23 2007-12-27 Tokyo Ohka Kogyo Co., Ltd. ポジ型レジスト組成物およびレジストパターン形成方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112005003399B4 (de) * 2005-02-10 2017-04-13 Tokyo Ohka Kogyo Co., Ltd. Positivresist-Zusammensetzung und Verfahren zur Erzeugung eines Resistmusters
CN1955846B (zh) * 2005-10-28 2011-12-07 住友化学株式会社 适合于酸生成剂的盐和含有该盐的化学放大型抗蚀剂组合物
US7862980B2 (en) * 2006-08-02 2011-01-04 Sumitomo Chemical Company, Limited Salt suitable for an acid generator and a chemically amplified positive resist composition containing the same
TWI412888B (zh) * 2006-08-18 2013-10-21 Sumitomo Chemical Co 適合作為酸產生劑之鹽及含有該鹽之化學放大型正光阻組成物
JP5060986B2 (ja) 2007-02-27 2012-10-31 富士フイルム株式会社 ポジ型レジスト組成物及びパターン形成方法
JP4998112B2 (ja) * 2007-06-27 2012-08-15 住友化学株式会社 化学増幅型ポジ型レジスト組成物
WO2009011289A1 (ja) 2007-07-13 2009-01-22 Fujifilm Corporation ポジ型レジスト組成物およびそれを用いたパターン形成方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002311590A (ja) * 2001-04-12 2002-10-23 Jsr Corp 感放射線性樹脂組成物
JP2003084436A (ja) * 2001-09-10 2003-03-19 Tokyo Ohka Kogyo Co Ltd 化学増幅型レジスト組成物
JP2003167347A (ja) * 2001-12-03 2003-06-13 Tokyo Ohka Kogyo Co Ltd ポジ型レジスト組成物及びレジストパターンの形成方法
JP2003173026A (ja) * 2001-01-18 2003-06-20 Jsr Corp 感放射線性樹脂組成物
JP2003246825A (ja) * 2001-12-21 2003-09-05 Mitsubishi Rayon Co Ltd レジスト用共重合体およびその製造方法、ならびにレジスト組成物
JP2003280201A (ja) * 2002-03-25 2003-10-02 Jsr Corp 感放射線性樹脂組成物
JP2003337419A (ja) * 2002-03-15 2003-11-28 Jsr Corp 感放射線性樹脂組成物
JP2003337417A (ja) * 2002-05-21 2003-11-28 Jsr Corp 感放射線性樹脂組成物

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291118B1 (en) * 1998-03-27 2001-09-18 Industrial Technology Research Institute Elimination of proximity effect in photoresist
US6291130B1 (en) * 1998-07-27 2001-09-18 Fuji Photo Film Co., Ltd. Positive photosensitive composition
CN1190706C (zh) * 1998-08-26 2005-02-23 住友化学工业株式会社 一种化学增强型正光刻胶组合物
JP4576737B2 (ja) * 2000-06-09 2010-11-10 Jsr株式会社 感放射線性樹脂組成物
US6838225B2 (en) * 2001-01-18 2005-01-04 Jsr Corporation Radiation-sensitive resin composition
JP4187949B2 (ja) * 2001-06-21 2008-11-26 富士フイルム株式会社 ポジ型レジスト組成物
JP3895224B2 (ja) * 2001-12-03 2007-03-22 東京応化工業株式会社 ポジ型レジスト組成物及びそれを用いたレジストパターン形成方法
JP3836359B2 (ja) * 2001-12-03 2006-10-25 東京応化工業株式会社 ポジ型レジスト組成物及びレジストパターン形成方法
US7531286B2 (en) * 2002-03-15 2009-05-12 Jsr Corporation Radiation-sensitive resin composition
TWI288299B (en) * 2002-05-21 2007-10-11 Sumitomo Chemical Co Chemical amplification type positive resist composition
TWI314943B (en) * 2002-08-29 2009-09-21 Radiation-sensitive resin composition
JP4232577B2 (ja) * 2002-08-29 2009-03-04 Jsr株式会社 感放射線性樹脂組成物
JP4502308B2 (ja) * 2003-05-06 2010-07-14 三菱レイヨン株式会社 共重合体
JP4296033B2 (ja) * 2003-05-15 2009-07-15 富士フイルム株式会社 ポジ型レジスト組成物
JP4399192B2 (ja) * 2003-06-03 2010-01-13 富士フイルム株式会社 感光性組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173026A (ja) * 2001-01-18 2003-06-20 Jsr Corp 感放射線性樹脂組成物
JP2002311590A (ja) * 2001-04-12 2002-10-23 Jsr Corp 感放射線性樹脂組成物
JP2003084436A (ja) * 2001-09-10 2003-03-19 Tokyo Ohka Kogyo Co Ltd 化学増幅型レジスト組成物
JP2003167347A (ja) * 2001-12-03 2003-06-13 Tokyo Ohka Kogyo Co Ltd ポジ型レジスト組成物及びレジストパターンの形成方法
JP2003246825A (ja) * 2001-12-21 2003-09-05 Mitsubishi Rayon Co Ltd レジスト用共重合体およびその製造方法、ならびにレジスト組成物
JP2003337419A (ja) * 2002-03-15 2003-11-28 Jsr Corp 感放射線性樹脂組成物
JP2003280201A (ja) * 2002-03-25 2003-10-02 Jsr Corp 感放射線性樹脂組成物
JP2003337417A (ja) * 2002-05-21 2003-11-28 Jsr Corp 感放射線性樹脂組成物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148492A1 (ja) * 2006-06-23 2007-12-27 Tokyo Ohka Kogyo Co., Ltd. ポジ型レジスト組成物およびレジストパターン形成方法
JP2008003381A (ja) * 2006-06-23 2008-01-10 Tokyo Ohka Kogyo Co Ltd ポジ型レジスト組成物およびレジストパターン形成方法
JP4574595B2 (ja) * 2006-06-23 2010-11-04 東京応化工業株式会社 ポジ型レジスト組成物およびレジストパターン形成方法
US8216764B2 (en) 2006-06-23 2012-07-10 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition and method of forming resist pattern

Also Published As

Publication number Publication date
US20070111135A1 (en) 2007-05-17
DE112004001155B4 (de) 2012-05-31
TWI307452B (en) 2009-03-11
KR20060024443A (ko) 2006-03-16
DE112004001155T8 (de) 2008-08-28
DE112004001155T5 (de) 2008-05-15
TW200508802A (en) 2005-03-01
JP2005037893A (ja) 2005-02-10
KR100671192B1 (ko) 2007-01-19
JP4327003B2 (ja) 2009-09-09

Similar Documents

Publication Publication Date Title
JP4583790B2 (ja) ポジ型レジスト組成物及びそれを用いたレジストパターン形成方法
JP5470328B2 (ja) ポジ型レジスト組成物及びレジストパターン形成方法
US20070065748A1 (en) Resin for photoresist composition, photoresist composition and method for forming resist pattern
WO2005006078A1 (ja) レジスト組成物、積層体、及びレジストパターン形成方法
WO2006059569A1 (ja) ポジ型レジスト組成物およびレジストパターン形成方法
WO2005057287A1 (ja) ポジ型レジスト組成物およびレジストパターン形成方法
WO2005003861A1 (ja) ポジ型レジスト組成物及びそれを用いたレジストパターン形成方法
US20090269706A1 (en) Method for forming resist pattern
WO2007148525A1 (ja) ポジ型レジスト組成物およびレジストパターン形成方法
WO2007148492A1 (ja) ポジ型レジスト組成物およびレジストパターン形成方法
JP2004175981A (ja) 樹脂の製造方法、樹脂、レジスト組成物、レジストパターン形成方法
KR100796962B1 (ko) 전자선 또는 euv 용 레지스트 조성물
WO2004104703A1 (ja) 化学増幅型ポジ型ホトレジスト組成物及びレジストパターン形成方法
JP2009020185A (ja) ポジ型レジスト組成物およびレジストパターン形成方法
WO2005116769A1 (ja) ポジ型レジスト組成物及びレジストパターン形成方法
WO2006085419A1 (ja) ポジ型レジスト組成物およびレジストパターン形成方法
KR100593231B1 (ko) 포지티브형 레지스트 조성물 및 레지스트 패턴 형성방법
KR20060044947A (ko) 포지티브형 레지스트 조성물
US7858286B2 (en) Positive resist composition and method for forming resist pattern
JP4401840B2 (ja) ポジ型レジスト組成物及びそれを用いたレジストパターン形成方法
JP2005042092A (ja) ポジ型レジスト組成物及びそれを用いたレジストパターン形成方法
WO2007148491A1 (ja) ポジ型レジスト組成物およびレジストパターン形成方法
JP2005249807A (ja) ホトマスク用ホトレジスト組成物及びレジストパターン形成方法
JP2005165096A (ja) ポジ型ホトレジスト組成物およびレジストパターン形成方法
JP2004219989A (ja) ポジ型レジスト組成物及びそれを用いたレジストパターンの形成方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007111135

Country of ref document: US

Ref document number: 10561830

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057024946

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048182150

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057024946

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10561830

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112004001155

Country of ref document: DE

Date of ref document: 20080515

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607