WO2005002056A1 - Vco装置 - Google Patents

Vco装置 Download PDF

Info

Publication number
WO2005002056A1
WO2005002056A1 PCT/JP2004/009287 JP2004009287W WO2005002056A1 WO 2005002056 A1 WO2005002056 A1 WO 2005002056A1 JP 2004009287 W JP2004009287 W JP 2004009287W WO 2005002056 A1 WO2005002056 A1 WO 2005002056A1
Authority
WO
WIPO (PCT)
Prior art keywords
vco
circuit
signal
frequency
current
Prior art date
Application number
PCT/JP2004/009287
Other languages
English (en)
French (fr)
Inventor
Takeshi Fujii
Kenji Adachi
Hiroaki Ozeki
Mineyuki Iwaida
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2005510514A priority Critical patent/JP4055801B2/ja
Priority to US10/526,472 priority patent/US7457600B2/en
Priority to EP04746756A priority patent/EP1641125B1/en
Priority to CN2004800009301A priority patent/CN1701512B/zh
Priority to DE602004011769T priority patent/DE602004011769T2/de
Publication of WO2005002056A1 publication Critical patent/WO2005002056A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/10Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range
    • H03L7/101Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using an additional control signal to the controlled loop oscillator derived from a signal generated in the loop
    • H03L7/102Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using an additional control signal to the controlled loop oscillator derived from a signal generated in the loop the additional signal being directly applied to the controlled loop oscillator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L2207/00Indexing scheme relating to automatic control of frequency or phase and to synchronisation
    • H03L2207/06Phase locked loops with a controlled oscillator having at least two frequency control terminals

Definitions

  • the present invention relates to a VCO ( « ⁇ control circuit) device mounted on a communication Mffl receiver and a communication receiver, and more particularly to a VCO device having a wide wave number in a wide band.
  • the VCO device is used, for example, in a fiber for transmission and reception for communication, and is used as a circuit for generating a local frequency for selecting an arbitrary high-frequency signal.
  • FIG. 20 is a circuit block diagram of the VCO device of FIG.
  • the VCO circuit group 104 transmits a frequency signal corresponding to ⁇ ⁇ ⁇ ⁇ t, which is applied to frequency control.
  • the power supply circuit 105 sets the power supply of the oscillation transistor (not shown), which is a component * T of the VCO circuit group 104.
  • the signal selecting means 103 simulates the output signal of the VCO circuit group 104 and outputs the local signal fvco to the local signal output 3 ⁇ .
  • the PLL 106 is selected by the signal selecting means 103.
  • the divided local signal f V co is frequency-divided, and the phase with respect to the »signal is converted from the it3 ⁇ 4 difference to output the ffi signal.
  • the loop filter 107 outputs the output signal extracted from the PLL 106 And outputs a control signal Vt for controlling the wave number of the local signal fVc0.
  • FIG. 21 shows the relationship between the frequency control voltage Vt supplied to the first circuit 104 &, 104b and the VCO circuit 104c and the number of generated waves.
  • the VCO circuit in order to convert a high-frequency signal having a wide frequency range, such as for television broadcasting, to the first IF signal, the VCO circuit also needs to heal a local signal having a wide frequency range.
  • the VCO circuit 104a plays the role of the low frequency of the local signal as a wave number range in order to satisfy the skin number of the local signal over a wide band.
  • the VCO circuit 104b has the central frequency of the local Cheomgo as a small range
  • the VC ⁇ circuit 104c has the high frequency of the local signal as a small range.
  • the characteristic relationship between the offset frequency and the phase noise of the VCO circuits 104a, 104b and VCO circuit 104c as shown in FIG.
  • the signal oscillated by the VC0 circuit 104a which carries the low frequency of the local station, has JtK-like small phase noise with respect to the VCO circuit 104b and the VCO circuit 104c.
  • the Q (Quality Function) of the 3 ⁇ 4g circuit built in the VCO circuit depends on the frequency characteristics. As the wave number increases, the impedance of the signal wiring of the circuit and the stray capacitance introduced to the signal wiring cannot be ignored, and Q decreases. «When the Q of the circuit decreases, the phase noise increases in ⁇ 3 ⁇ 4.
  • the VCO device has a current source circuit 105 for setting the current of an oscillation transistor (not shown) provided in the VCO circuits 104a and 104b and the VCO circuit 104c. Or ⁇ ⁇ connected to each other, ⁇ was set to be almost the same.
  • the current source circuit 105 has the highest frequency range for low feffi noise.
  • the current is set so that it can be turned on. others Therefore, the VC ⁇ circuit 104a and the VCO circuit 104b, which are advantageous for extremely low phase noise, necessarily operate with a phase noise characteristic lower than the desired characteristic.
  • the VCO circuit 104a and the VCO circuit 104b satisfy the desired phase noise. However, it must supply the desired extra current, which results in increased power consumption.
  • the VCO device is installed on a mobile touch screen with a female machine, and the usage time is limited by a battery as a power supply for horses. For this reason, it is very important to reduce the power consumption of the transceiver and telecommunications installed in mobile terminals. Disclosure of the invention
  • An object of the present invention is to provide a VCO device capable of achieving both a wide band of a g-wave barrier and low power consumption, and a receiver using the same.
  • the VCO device of the present invention includes a plurality of VCO (VOL TAGE CONTROL ED ⁇ SCIL LATOR) circuits that provide a frequency signal in accordance with the control applied to the frequency control 3 ⁇ 4ffiVt and that have different ranges of wave numbers.
  • the circuit for setting the drive ft current of each transistor individually, the signal for switching the output signal of the VCO circuit, and the frequency division of the local signal generated by this signal And a PLL that outputs an output signal converted from the phase difference, and a loop filter that smoothes the output signal of the PLL and outputs a control 3 ⁇ 4mv t, which is frequency control. VCO equipment. According to this, it is possible to reduce power consumption according to the phase noise characteristics with respect to the generated SJ ⁇ wave number of each VCO circuit.
  • the VCO device of the present invention is capable of obtaining a phase noise equivalent to the phase noise generated by the VCO circuit having the highest range of the wave number in the VCO circuit.
  • This is a VCO device that uses the current of the source circuit. As a result, it is possible to reduce the power consumption of the VCO circuit, which particularly serves the low frequency side.
  • the VC ⁇ device of the present invention is a VCO device in which a current of a current source circuit driving a Vco circuit is used as a variable current source circuit. According to this, so-called environmental changes such as changes and power supply fluctuations The phase noise can be corrected in accordance with the fluctuation of the communication standard and the switching of the communication standard having different desired characteristics, so that a specific communication characteristic can be obtained.
  • the Vco device of the present invention forms a frequency signal according to the control 3 ⁇ 4mvt applied to the frequency control device, and generates a plurality of Vco circuits having different ranges of wave numbers; ⁇ ⁇
  • a variable current source circuit that sets the hidden current of each circuit separately, a local signal output from one of the multiple VCO circuits, and a received signal input from the high-frequency signal input
  • a Vco device comprising: a high-frequency signal processing unit that performs the switching operation; and a current control unit that switches the frequency of the variable current source circuit according to the number of waves output from the VC circuit group.
  • the VCO device of the present invention includes a plurality of VCO circuits that oscillate a frequency signal according to a control voltage Vt applied to the frequency control voltage terminal.
  • the Vco device having a power circuit for setting each of the horseshoe currents separately has a different frequency range according to the control voltage Vt applied to the frequency control.
  • This is a VC ⁇ device in which resonance circuits of individual V'CO circuits are set.
  • the VC ⁇ device of the present invention includes a plurality of VC ⁇ circuits having different ranges of wave numbers for providing a frequency signal according to the control voltage Vt applied to the frequency control, and each of the plurality of VCo circuits.
  • a VCO device having a current source circuit for individually setting the drive current
  • the control applied to the frequency control is different from the change in the control voltage Vt and the change in the wave number according to the control load Vt.
  • the VCO device of the present invention includes: a plurality of VC circuits that provide a frequency signal according to a control voltage Vt applied to a frequency control voltage terminal; And a MIX circuit connected to the output side of the VCO circuit and connected to the output side of the high-frequency input signal selection means.
  • a high-frequency signal processing means including two signals having different frequencies and outputting the signals, a selection means for switching the output signal of the VCO circuit, and a frequency division of the local signal selected by this signal means.
  • the phase with the signal ! A VC that consists of a PLL that outputs a voltage signal converted from the phase difference and a loop filter that smoothes the output signal of this PLL and outputs a control voltage Vt that controls the wave number. ⁇ Equipment.
  • the MIX circuit to which the output signal of the VC0 circuit having a wide wave number range over a wide band is connected is made up of a plurality of MIX circuits, and the frequency bands for signal processing in the individual MIX circuits are made to have different ranges.
  • Low power consumption can be eliminated because the increase in power consumption, which is a problem when using the MIX circuit in the IS ⁇ region, can be eliminated! It is possible to obtain a good communication student as well as possible.
  • the VCO device of the present invention is a VCO device in which a plurality of low-noise amplifiers (LOWNOISEAMPLIFIER; hereinafter, referred to as LNA) are used as high-frequency input signal selecting means.
  • LNA low-noise amplifiers
  • a desired high-frequency input signal can be selected if each of the plurality of LEDs has a power on / off function.
  • low communication power and low communication characteristics can be obtained without increasing the current consumption, which is a problem when the LNA band is increased.
  • the VCO device of the present invention is a VCO device in which the high-frequency input signal selection means is constituted by a plurality of LNA and BPF (BAND PAS S FILTER) circuits.
  • the multiple LNAs have a power on / off function, and the BPF circuit has a frequency selectable tuning function so that high frequency input signals can be selected.
  • the interference signal is included in the high-frequency 3 ⁇ 4 ⁇ power signal, and the electric field bow of the interference wave is particularly strong :! ⁇ Can obtain good communication characteristics by attenuating this interference wave with a BPF circuit.
  • the VCO device of the present invention includes a plurality of VC ⁇ circuits having different ranges of waves that generate a frequency signal according to the control voltage Vt applied to the frequency control voltage » and the plurality of VC ⁇ circuits.
  • Variable current source circuit that sets each of the horses' currents separately, high-frequency signal processing that mixes local signals output from a plurality of Vco circuits and received signals input from high-frequency signal input Means, digital signal demodulation processing of an analog signal output from the high-frequency signal processing means, and reception characteristic judging means for judging reception characteristics, and outputting a current or a current corresponding to the digital signal output from the reception characteristic judgment means. And a current controller for switching the current of the variable current source circuit.
  • the phase noise can be corrected according to the change in the communication state of the transmitting / receiving ⁇ system to be installed, and a unique communication characteristic can be obtained.
  • the VCO device of the present invention includes a plurality of VCO circuits having different ranges of the number of skins that provide a frequency signal corresponding to the control voltage Vt applied to the frequency control, and each of the plurality of VCO circuits.
  • a variable current source circuit for separately setting a horse sleep current; a high frequency signal processing means for mixing a local signal output from several VCO circuits with a reception signal input from a high frequency signal input; Digital demodulation processing of analog signals output from high-frequency signal processing means to determine digital tone! / VC modulation device that has a flow determining means and a current or a current according to the digital signal output from the digital modulation determining means and switches the flow of the variable electric field.
  • FIG. 1 is a circuit block diagram of the VC ⁇ device of the present invention
  • FIG. 3 is a characteristic diagram showing the relationship between the phase noise of the VCO circuit of the present invention and the current
  • FIG. 3 is the VCO of the present invention
  • FIG. 4 is a circuit block diagram of another embodiment of the device according to the present invention.
  • FIG. 5 is a block diagram of a VCO device using a «typical « circuit
  • FIG. 6 is a diagram showing the wave number range when the variation due to the IC process can be ignored
  • FIG. 7 is Fig. 8 shows the «J3 ⁇ 4 wave number range in which the variation due to the IC process is not negligible.
  • Fig. 1 is a circuit block diagram of the VC ⁇ device of the present invention
  • FIG. 3 is a characteristic diagram showing the relationship between the phase noise of the VCO circuit of the present invention and the current
  • FIG. 3 is the VCO of the present invention.
  • FIG. 4 is a circuit block diagram of another embodiment of the device according to the
  • FIG. 8 shows the oscillation frequency range when the ⁇ ⁇ ⁇ i degree is not constant in a plurality of VCO circuits.
  • FIG. 10 is a diagram showing a frequency range when the oscillation sensitivity is constant in a plurality of VCO circuits.
  • FIG. 10 is a circuit block diagram of another difficult embodiment of the VCO device according to the present invention.
  • FIG. 12 is a circuit block diagram of another embodiment of the VCO device according to the present invention
  • FIG. 12 is a circuit block diagram of another embodiment of the VC ⁇ device according to the present invention
  • FIG. 13 is a V block diagram of the present invention.
  • Circuit block diagram of other embodiment of CO device, FIG. 14 [VC according to pot invention] Circuit block diagram of another difficult embodiment of device, FIG. 15 VC according to forest invention FIG.
  • FIG. 16 is a flowchart showing an example of the operation of adjusting the current of the variable current source circuit according to the present invention
  • FIG. 17 is a VC device according to the present invention
  • 18 is a circuit block diagram of another embodiment of FIG. 18.
  • FIG. 18 is a correlation diagram of the wing phase noise and current of a VC ⁇ circuit corresponding to the digital modulation according to the present invention
  • FIG. 19 is the digital modulation according to the present invention.
  • A flow chart showing an example of the operation of adjusting the ⁇ -flow according to.
  • FIG. 20 is the circuit block diagram of the VC ⁇ device of 3 ⁇ 4 ⁇ *
  • FIG. 21 is the characteristic diagram of the control 3 ⁇ 4E and the wave number in the conventional VC ⁇ device
  • FIG. 22 is the offset frequency and phase noise of the VCO device of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing an example of the VCO device of the present invention.
  • the VCO device has high-frequency signal processing means 1.
  • the high-frequency signal processing means 1 can be applied to, for example, a communication circuit mounted on a terminal such as a return machine.
  • the high frequency signal processing means 1 is provided with a high frequency signal input »2a and a high frequency signal output eave 2b.
  • the VCO device of the present invention has a VCO circuit group 4.
  • the VCO circuit group 4 receives a signal having a frequency corresponding to the control voltage Vt applied to the frequency control voltage terminal 8.
  • LO signal! ⁇ Means 3 selects a desired output signal from VC0 circuit group 4.
  • the PLL 6 divides the frequency of the local signal fvco selected by the LO signal selection means 3, performs JK on the phase with the basic signal, and outputs an Australian signal converted from the phase difference between the two.
  • the loop filter 7 smoothes the output signal of the PLL 6 and outputs a control voltage Vt for controlling the frequency of the local signal fvco, and converts the local signal fVco selected by the LO signal 3 ⁇ 41 ⁇ means 3 to a high frequency. Output to signal processing means 1.
  • the VCO circuit group 4 of the present invention shown in FIG. 1 is suitable for receiving or transmitting a wide band frequency.
  • the VC ⁇ circuit group 4 has three VC ⁇ circuits, a VCO circuit 4a, a VCO circuit 4b, and a VCO circuit 4c. These three VCO times! Each is composed of a so-called transistor (not shown) that increases the TO frequency by 3 ⁇ 4S. .
  • the bacterial circuit group 5 includes an electric storage circuit 5a, a current source circuit 5b, and an electric storage circuit 5c.
  • Denzo circuit 5a is provided to drive VCO circuit 4a.
  • the current source circuit 5b is used to drive the VCO circuit 4b
  • the electric storage circuit 5c is used to drive the VC0 circuit 4c.
  • the current source circuit 5a, the current source circuit 5b and the current source circuit 5c are set to different current values. In other words, the roles and functions are divided so that they have different frequency ranges.
  • FIG. 2 is a diagram showing the relationship between the phase noise and the currents A, B and C applied to the ft flow source circuits 5a, 5b and 5c, respectively.
  • VCO circuit 4a that carries the low frequency
  • VCO circuit 4b that carries the medium TO frequency
  • VCO circuit 4c that carries the high frequency
  • VCO circuit 4c which is responsible for the high frequency side, is the most susceptible.
  • the VCO circuit that plays the lower frequency side is more advantageous for lowering the phase noise, and it is also possible and preferable that the current of the source circuit can be reduced.
  • FIG. 3 is a block diagram showing an example of another configuration of the VCO device according to the present invention. Components that are the same as or correspond to the components of the configuration 1 of ⁇ shown in FIG. 1 are given the same ⁇ ⁇ .
  • the configuration of the VCO circuit group 4 is the same as that of the form 1 (FIG.1). That is, it has a VCO circuit 4a, a VCO circuit 4b, and a VCO circuit 4c having different frequency ranges.
  • a current source circuit group 9 is provided to perform the VCO circuit group 4 job.
  • the ⁇ circuit group 9 includes a variable current source circuit 9a, a variable current source circuit 9b, and a variable current source circuit 9c.
  • the variable current source circuit 9a is provided for driving the VCO circuit 4a.
  • the current source 9b is provided for driving the VC0 circuit 4b
  • the current source circuit 4c is provided for driving the VC0 circuit 4c.
  • the VC ⁇ device shown in FIG. 3 differs from that shown in FIG. 1 in that the current source circuit group 9 is a variable current source.
  • the other configurations, namely, the VCO circuit group 4, high-frequency wave signal processing means 1, L0 signal selection means 3, PLL 6, and loop filter 7 are almost the same as those shown in FIG. Detailed description is omitted.
  • VCO circuit device of the present invention shown in FIG. 3 used for describing the second embodiment is a device for #T the variable current source circuit 9c, the 0 circuit 43, 4b and VCO circuit 4 c « ⁇ Not only the phase il characteristic with respect to the wave number, but also the peripheral characteristics of the power supply and the like. Nature can be realized.
  • FIG. 4 is a block diagram showing an example of another configuration of the VCO device of the present invention.
  • FIG. 1 used to explain Embodiment 1
  • FIG. 3 used to describe Embodiment 2 of FIG. 3
  • the detailed description will be omitted.
  • FIG. 4 shows current control means 13 for controlling each current of the variable current source circuits 9 a, 9 b and 9 c of the current source circuit group 9 in accordance with the local signal generation frequency fvco;
  • the second embodiment differs from the above two embodiments in that it has a channel selection means 14 for setting the frequency division ratio of the PLL circuit 9 and controlling the frequency of the CO circuit.
  • the current control means 13 outputs a voltage or a current signal for controlling the current of the current source circuit group 9 according to the frequency division ratio setting signal output from the tuning means 14. As a result, it is possible to switch the Eft® flow of the transistor (not shown) using the VCO circuits 4a, 4b, and 4c.
  • a VCO device in which phase noise is substantially constant even in a wide frequency range can be obtained.
  • FIG. 5 is a block diagram of a VCO device using a typical resonance circuit example. In particular, it shows the specific circuit configuration of the VCO circuit. In addition, an example is shown in which two VCO circuits having different oscillation frequency ranges are prepared.
  • the VCO circuit 1 and the VCO circuit 2 are composed of a negative ftf strict part (1-R), which is given in parallel, and an LC parallel resonance of an inductor C.
  • the part where these are connected in parallel is a parallel ⁇ circuit with active eaves that supplies power such as transistors supplied with power supply ⁇ , and the negative 'I' ⁇ part (-R) in the circuit generates power It differs from the usual ⁇ ®5 !
  • C tota 1 is the combined capacitance value of the fixed capacitance capacitors C 10 and C 11 and the variable capacitance MS ⁇ C v 20.
  • the circuit shown in Fig. 5 was constructed: C tota 1 of ⁇ can be expressed by the following equation.
  • variable capacitance element CV whose capacitance changes in a simple manner between the two is used, and the capacitance CV of the variable capacitance element is controlled by the control load Vt output from the loop filter 3 ⁇ 4g You can change the wave number f out.
  • FIG. 6 and FIG. 7 illustrate the frequency ranges of the two VCO circuits 1 and 2 shown in FIG. F IG. 6 has negligible variation due to the I C process for manufacturing the VCO circuit 1 and the VCO circuit 2: indicates U in the wavenumber range of ⁇ .
  • FIG. 7 shows no variation due to the IC process: ⁇ y in the wavenumber range of ⁇ .
  • VCO circuit 1 1278MHz ⁇ fout 1 ⁇ 1513MHz
  • VCO circuit 2 1499MHz ⁇ fout 2 ⁇ 1801MHz It becomes.
  • the frequency range (1499 MHz to 1536 MHz) of the skin number of the VCO circuit 1 and the VCO circuit 2 overlaps according to the control voltage Vt applied to the frequency control voltage terminal 8.
  • the relative variation in the inductance (H) of inductor L10 and inductor L20 in the other circuits of VCO circuit 1 and VCO circuit 2 is 4% ( ⁇ 2%) or 5%, respectively. % ( ⁇ 2.5%), and the inductor is under the above conditions: f ou tl 'and f out 2, which are the «
  • VCO circuit 1 1266MHz ⁇ fout 1 ' ⁇ 1536MHz
  • VCO circuit 2 1522MHz ⁇ fout 2 ' ⁇ 1829MHz
  • VCO circuit 2 1518.lMHz ⁇ fout 2 ' ⁇ 1824.0 MHz
  • the inductor varies.
  • the same can be said for variations between the capacitor and the variable capacitance element, which are elements other than the inductance element.
  • the circuit constants of the individual VCO circuits 1 and 2 are set so that the wave areas of multiple VCO circuits overlap. decide.
  • the wave number range was stated as 5%. However, since the range of variation varies depending on the IC process, it is possible to overlap the 3 ⁇ 4g wave numbers of multiple VCO circuits according to the range of variation. This is one of the design days of individual VC ⁇ circuits.
  • the example using the semiconductor oscillation circuit has been described.
  • a balanced oscillation circuit using a differential amplifier circuit may be used.
  • variable capacitance is used in the form 4 of the bell, another element may be used as long as the capacitance value can be varied by a simple operation between
  • FIG. 8 and FIG. 9 show the degree of the VCO circuit.
  • FIG. 8 shows the relationship between the ⁇ wave number and the control ⁇ t where the 3 ⁇ 43 ⁇ 4S degree is not constant in a plurality of VCO circuits.
  • FIG. 9 shows the relationship between the wave number and the control voltage Vt when the degree is almost constant in a plurality of VCO circuits.
  • FIG. 8 shows the relationship between the number of generated waves of fout1 and fout2 already obtained above and the control voltage Vt.
  • the degree of the VCO circuit 1 is iout l / Vt and the degree of 3 ⁇ 4g of the VCO circuit 2 is f ont 2 / ⁇ t,
  • the vco circuit l with a large 3 ⁇ 4igi degree is more susceptible to control «ffiv t, and the phase noise is easily degraded. For this reason, it is difficult to obtain a constant phase noise performance over a wide frequency range.
  • FIG. 9 shows the relationship between the ⁇ wave number and the control voltage Vt when the degrees of the plurality of VCO circuits are almost constant.
  • the 3 ⁇ 4 ⁇ wave numbers of ⁇ circuit 1 and VCO circuit 2 are expressed as fout1 "and out2", respectively.
  • ⁇ S_L in the explanation is used, and only one element is used for the variable capacitance eave, and the wavenumber is controlled by a narrower control voltage Vt (1.0 V to 2.0 V).
  • Vt 1.0 V to 2.0 V
  • the degree is very high.
  • is a configuration in which a plurality of elements whose capacitance value can be varied by the potential difference between »applied to the elements are arranged in parallel. By using it, it is possible to lower the intensity.
  • FIG. 10 is a block diagram showing an example of another configuration of the VCO device. Components that are the same as or correspond to those of the embodiment 1 shown in FIG. 1 are denoted by the same! ⁇ , And detailed description is omitted.
  • the VCO circuit group 4 includes a VCO circuit 4a, a VC ⁇ circuit 4b, and a VCO circuit 4c having different wavenumber ranges.
  • the selecting means 3 selects one local signal from the three output signals (local signals) of the # 0 circuits 4 &, 4b and 4c. ? 116 divides the local signal ⁇ V c 0 selected by 11 by the 0 signal ⁇ 1 selecting means 3 and outputs a ⁇ signal obtained by converting the phase with the signal by Jt and converting from the phase difference.
  • the loop filter 7 smoothes the output signal output from the PLL 6 and generates a control signal EEVt for controlling the number of waves to be generated by the VCO circuit.
  • the control signal EEVt output from the loop filter 7 controls the number of waves generated in the VCO circuit group.
  • Form 5 shown in FIG. 10 further includes a MIX circuit group including a plurality of MIX circuits 20a, a MIX circuit 20b, an MM IX circuit 20c.
  • a MIX circuit group including a plurality of MIX circuits 20a, a MIX circuit 20b, an MM IX circuit 20c.
  • One of the inputs of the plurality of MIX circuits is connected to the output side of the high frequency input signal means 21.
  • the other inputs of the plurality of MIX circuits are connected to the output sides of the VCO circuits 4a, 4b and 4c, respectively.
  • the output side of each of the plurality of MIX circuits 20a, 20b and 20c is connected to a high frequency output signal means 22.
  • the frequency band in which signal processing is performed by a plurality of VCO circuits having different J ⁇ wavenumber ranges and individual MIX circuits each having a different frequency range does not have to be a wide band represented by television broadcasting.
  • a MIX circuit in which ⁇ g of the divided range is used as a signal processing band low power consumption and low power consumption can be achieved without increasing the power consumption that becomes a problem when the MIX circuit is widened. Communication characteristics can be obtained.
  • FIG. 11 is a block diagram showing an example of another configuration of the VCO device.
  • the same reference numerals are given to the constituent cranes that are the same as or correspond to the constituent elements of the fifth embodiment shown in FIG.10, and detailed description is omitted.
  • the VCO circuit group 4 includes a VCO circuit 4a, a VC ⁇ circuit 4b, and a VC ⁇ circuit 4c, which are configured to have different frequency ranges. Further, it has a current source circuit 9.
  • the heat source circuit 9 includes a variable current source circuit 9a, a drip source circuit 9b, and a polishing source circuit 9c.
  • the variable flow source 9a is the source of the VC ⁇ ⁇ circuit 4a.
  • the variable current source 9b and the current source 9c are signboards respectively connected to drive the VCO circuit 4b and the VCO circuit 4c.
  • variable current source circuits 9a and 9b and the variable current source circuit 9c are individually adjusted and the VC ⁇ circuits 4a and 4b and the VC ⁇ circuit 4c are ⁇ , »Phase noise characteristics for il wave number Not only that, it is possible to obtain a VC ⁇ device that has a plurality of desired characteristics that vary depending on the environment such as ffi and power supply and communication standards.
  • FIG. 12 is a block diagram showing an example of another configuration of the VCO device.
  • the same reference numerals are given to the same or corresponding components as those of the embodiment 6 shown in FIG. 11, and the detailed description is omitted.
  • the LNA group 23 is replaced with the high-frequency signal input 2a.
  • the LNA 23 group has LNA23a, LNA23b, and LNA23c with different frequency bands. Is input to the MIX circuit 2 Oa, the MIX circuit 20 b, and the MIX circuit 20 c having the same frequency band for signal processing.
  • the LNA 23a, LNA 23b and LNA 23c are separately provided with a switch function for turning on / off their power supply.
  • the power-on LN ⁇ ⁇ amplifies the input signal supplied from the high-frequency signal input 3 ⁇ 4 ⁇ 2a and outputs the amplified signal to the MIX circuits 20a, 2 Ob and 20c, respectively.
  • the high-frequency output selection means 22 selects the high-frequency output signals output from the MIX circuits 20a, 20b and the MIX circuit 20c, and outputs one of them to the high-frequency signal output terminal 2b.
  • the signal processing band of each LNA is a part of the broadband frequency range divided into a processing band, which enables low power consumption without increasing current consumption, which is a problem when widening LNA. It is possible to obtain a unique communication characteristic.
  • FIG. 13 is a block diagram showing an example of another configuration of the VCO device. Components that are the same as or correspond to those of the configuration 7 of embodiment 7 shown in FIG. 12 are given the same! ⁇ , And detailed description is omitted here. .
  • FIG. 12 differs from FIG. 12 in that a BPF (Pand-Pass Filter) circuit 24 having a tuning function capable of frequency selection is connected to the output side of the LNA group 23.
  • LNA group 23 comprises three LNAs, LNA23a, LNA23b and LNA23c, as also shown in FIG.
  • the output signal of the BPF circuit 24 is supplied to the MIX circuit 20a, 20bMMIX circuit 20c.
  • the BPF circuit 24 attenuates these interfering waves to obtain natural communication characteristics. be able to.
  • the BPF circuit 24 is arranged after the LNA group 23, but may be arranged before the LNA group 23, that is, after the high-frequency signal input terminal 2a. In addition, it may be arranged in both the front stage and the wheat stage of the LNA group 23. (Form 9)
  • FIG. 14 is a block diagram showing an example of the configuration of a key receiving device including a VCO device.
  • the same reference numerals are given to the same or corresponding components as those of the second embodiment shown in FIG. 3, and the detailed description is omitted.
  • the reception characteristic determination means 15 has a digital demodulation processing circuit 11 and a BER determination circuit 12.
  • the VCO device shown in FIG. 14 uses current control means 13 which is almost the same as that shown in FIG.
  • the digital demodulation circuit 11 digitally demodulates the output signal supplied from the high-frequency signal output 2b, and further detects a bit error rate (Bit Error Rate; hereinafter referred to as BER).
  • the BER determination circuit 12 outputs a digital signal according to the result of the BER detection. Note that " ⁇
  • ER indicates the reception quality of a digitally modulated signal, and is a ratio indicating how many error bits are included in a bit string received during a certain period of time.
  • the flow control means 13 outputs an analog signal corresponding to the digital signal output from the BER determination circuit 12, and outputs a «variable « ⁇ ⁇ ! Source circuit 9a built in the flow source circuit 9a, a variable droplet source circuit 9 » Adjust the current of b and the current source circuit 9c. .
  • FIG. 15 shows the phase noise (c, d, e) of the output signal FVCO of the VCO circuit 4 c shown in FIG. 14 when the vertical axis represents phase noise and the reason is current. 9 Jobs set in c (C, D,
  • the relationship between the above phase noise and the above current shows that the phase noise becomes the smallest at the current C and shows a characteristic curve of awakening.
  • the phase noise is In the direction of. For this reason, in order to reduce the phase noise and obtain excellent receiving performance, it is preferable to set the tube flow C to ⁇ .
  • the relationship between the phase noise and the job be readjusted on the basis of so-called operations such as surroundings and power supply.
  • the current of the source 9c is adjusted to the minimum value in accordance with the change in the reception performance, and the phase noise is set to be small.
  • FIG. 16 is a flowchart showing a procedure for adjusting the current. Note that, as a first step of the flowchart, that is, as an initial condition, the variable current source circuit 9c of the VCO circuit 4c shown in FIG. 15 is set to a current C at which feffi noise is minimized ( S 100).
  • the digital demodulation processing circuit 11 digitally demodulates the signal output from the high-frequency signal output # 2b of the receiving fiber including the VCO device, and detects BER-1 (S102). After a certain time, BER-2 is detected (S104).
  • BER represents i *, which is the number of error bits included in the pit string received at a certain time, so that BER is added to the time credits. Detect, j; R ".
  • the current control means 13 sets the flow of the variable current source circuit 9c so as to adjust the relationship between the phase noise and the current so that the current is lower than C and the current is lower than that of C (S108). ).
  • BER-3 is detected after a certain period of time after BER-2 is detected (S110). If BER-3 is smaller than BER-2, it is determined that the reception result has been improved (S112). At this time, the current of the variable power supply circuit 9c is set to D, which is lower than E. Similarly, after a fixed time ⁇ , BER-5 is detected (S116). BER-5 is smaller than BER-3 :! ⁇ Determines that the reception result has been further improved, and fibers the operation with the current set to D (S114). If BER-5 is larger than BER-3, it is determined that the reception result has further deteriorated, and the job is returned to the state of E (S108).
  • the phase noise characteristic of the VCO device is controlled by adjusting the current of the circuit 9 according to the fluctuation of the reception result while detecting and determining the BER.
  • the operation such as the power supply and the power supply can be destroyed.
  • the phase noise can also be corrected, and the effect of obtaining a VCO device having excellent phase noise characteristics in the range can be obtained.
  • FIG. 17 is a block diagram showing U of the configuration of the receiver including the VCO device.
  • the same reference numerals are given to the same or corresponding components as those of the second embodiment shown in FIG. 3 and the detailed description is omitted.
  • Form 10 described using FIG. 17 is also different from other forms of ⁇ g in that it has digital modulation: decision means 18.
  • the digital modulation / decision means 18 has a digital modulation / output circuit 16 and a digital modulation / decision circuit 17.
  • the digital modulation output circuit 16 detects the digital modulation method of the output signal output from the high-frequency signal output 2b and performs digital demodulation processing.
  • the digital modulation determination circuit 17 outputs an analog signal corresponding to the digital modulation detected by the digital modulation output circuit 16.
  • FIG. 17 further includes current control means 13.
  • the current control means 13 includes a variable digital flow source circuit 9a, a variable digital current source circuit provided in the digital current source circuit 9 in accordance with an analog signal from a digital! Adjust the current of 9b and the variable current source circuit 9c.
  • FIG. 18 shows the relationship between the digital signal: the desired CNR of the receiver and the corresponding desired phase noise of the VCO circuit.
  • digital modulation (1) digital modulation
  • digital modulation; ⁇ digital modulation
  • digital modulation (3) are assumed to be digital modulations with different modulation levels such as 256 QAM, 16 QAM and QPSK, respectively.
  • the desired CNR of the receiver and the desired phase of the VCO device mounted on the receiver are determined according to the digital modulation of the received signal.
  • wireless communication has adopted the Shintobodo standard, which modulates the modulation according to the application and usage environment to diversify the transmission g and transmission quality. Therefore, it is considered that the design is such that the demodulation rate of the digital demodulation process can be adjusted with desired characteristics according to each modulation without specifying the phase noise of the VC ⁇ device mounted on the receiver to a predetermined value.
  • FIG. Is the phase noise c, phase noise e and tj phase ⁇
  • the modulation ⁇
  • the modulation ⁇
  • V the flow of the CO circuit to the values of C, E, and D, respectively.
  • has the effect of low consumption.
  • FIG. 19 is a flow chart showing an example of the operation of adjusting the above-mentioned flow by digital modulation.
  • the variable current source circuit 9c of the VCO circuit 4c sets the current C to have the largest desired CNR, that is, the strictest, smaller phase noise c among the plurality of digital tones. (S200).
  • digital modulation: ⁇ is detected by the digital demodulation processing circuit 11 (S202), and the detection result is the modulation method (2) (S204).
  • the current is reduced to the current E (S206), and the phase noise e, at which the demodulation efficiency of modulation cancellation (2) can be reduced, is separated.
  • the modulation method is not the modulation method (2), it is determined whether or not the modulation method is the modulation method (3) (S208).
  • the current determined as the modulation (3) is set so that the current becomes even smaller D (S210). If the modulation method is not (3), the current is reset again to the current C (S200).
  • the digital modulation ⁇ is detected in the same manner.
  • modulation ⁇ such as modulation ⁇ ; (3), fiber operation with resetting to the current of the current source circuit that was modulated by the modulation ⁇ ;
  • the VC0 device of the present invention receives or transmits a high-frequency signal of a standard or communication standard using different digitally modulated signals in combination: ⁇ It is possible to variably adjust the current of each VC ⁇ circuit accordingly.
  • is VCO
  • CNR signal-to-noise ratio
  • the VCO circuit has three configurations.
  • the configuration is not limited to these, and the configuration of the VC0 circuit device having two or more VC Can be applied.
  • a switch circuit is used as signal means for switching a plurality of VCO circuits.
  • a configuration that electrically isolates multiple VCO circuits has been described.
  • signal amplification means is inserted between the VCO circuit and the MIX.
  • the configuration using the current control means as the job control means for switching the flow of the variable current source circuit has been described.
  • the VCO device of the present invention which has an effect of realizing both a wide frequency range and low power dissipation, can be widely used in a communication system including a receiver and a transmitter.
  • the VCO device of the present invention can cope with multiple communication standards having different frequency bands, and in particular, in a mopile device whose power supply is a battery, it is possible to use elephant, voice and data transmission for a longer time. You can get the effect that you can. Also;! ⁇ Tuners are becoming smaller and lighter, and even in cases where a tuner is built into a mobile device that uses a battery as a power supply source, the effect of being able to continuously play elephants and voices for a longer time can be expected.

Abstract

テレビジョン放送受信機等の無線装置に用いられるVCO(電圧制御発振回路)装置に関する。発振周波数が広帯域にわたり、かつ低消費電力化が実現できるVCO装置を提供する。VCO回路群(4)は、周波数制御電圧端子(8)に印加される制御電圧(Vt)に応じた周波数の信号を発振する。LO信号選択手段(3)はVCO回路群(4)の中から所望の出力信号を選択する。PLL(6)は、LO信号選択手段(3)で選択された局部信号(fvco)を分周して基準信号との位相を比較し位相差から変換した信号を出力する。ループフィルタ(7)は、PLL(6)の出力信号を平滑して周波数制御電圧である制御電圧(Vt)を出力し、LO信号選択手段(3)で選択された局部信号を高周波信号処理手段(1)へ出力する。

Description

VC O装置 漏分野
本発明は放 Mffl受讓、 通信用鼓信機に搭載される V C O («Ε制御薩回路) 装置に関し、 特に 波数が広帯域にわたる V C 0装置に関するものである。 背景擁
V CO装置はたとえば、 放翻受纖ゃ通信用受繊に使用され 任意の高周波信号を選局す るための局部周波数を作り出す回路として使用される。
F I G. 2 0は の VCO装置の回路ブロック図である。 F I G. 2 0において、, VCO 回路群 1 0 4は周波数制御 好に印加される制御 ®ΐν tに応じた周波数信号を簾する。 電源流回路 1 0 5は、 V CO回路群 1 0 4の一構成 *Tである発振トランジスタ (図 ず) の 馬睡鹭流を設定する。 信" ^択手段 1 0 3は V CO回路群 1 0 4の出力信号を魔し局部信号出 力 3 ^に局部信号 f v c oを出力する。 P L L 1 0 6は、 信号選 手段 1 0 3で選択された局部 信号 f V c oを分周して » 号との位相を it¾し做目差から変換した ffi信号を出力する。 ル ープフィルタ 1 0 7は、 P L L 1 0 6力ら取り出された出力信号を平滑して局部信号 f V c 0の 波数を制御する制御葡王 V tを出力する。
婦«機を有した移動体受信器においては、 V C O回路群 1 0 4に示すように ¾ 波数 範囲が異なる複数個の V C 0回路 1 0 4 a, 1 0 4 b及び V C O回路 1 0 4 cを iすることは 有用である。 なぜならば、移動体受 »に搭載される I Cの小型化や低消費電力化を実現するた めにも、 また低電源 «ΕΕで正常な動作を確保するためにも、 また、 広レ调波数範囲で 子な位相 雑音特性を得るためにも な回路構成であるからである。 FIG. 21は じ0回路104&, 104b及び VCO回路 104cに供給される周波数 制御電圧 V tとその発 ¾波数との関係を示す。 特にテレビジョン用放 などの周波数範 囲の広い高周波信号を第 1の I F信号に周波数変換するには、 V CO回路も同様に周波讓囲の 広い局部信号を癒させる必要がある。 局部信号の 皮数を広帯域にわたって満足させるた めに V C O回路 104aは局部信号の低 波数を 波数範囲としての役割を担う。 また、 V C O回路 104bは局き瞻号の中顧波数を麵範囲として、 V C〇回路 104 cは局部信号 の高賴波数を麵範囲としてそれぞれ担っている。 こうした V C O回路の役割分担により、 所 定の周波数範囲を させて所望の電気的特性を得ている。
なお、 この種に関連する先行漏としては、 例えば、 日本公開特許、 特開平 9 - 10275 2号公報に紹介されている。
しかしながら、 «の c o装置を用いて発振周波数範囲の広帯域化を図る場合においては、 FIG. 22に示すように VCO回路 104 a, 104 b及び VCO回路 104 cのオフセット 周波数と位相雑音の特性関係から明らかなように局咅隨号の低域側周波数を担う V C 0回路 10 4 aが発振する信号は V CO回路 104 bおよび VCO回路 104cに対して JtK的小さな位相 雑音になる。
これは、 V CO回路に内蔵される ¾g回路の Q (Qua l i ty f ac tor) が周波数 特性に依存するからである。 波数が高域になるに従って回路の信号配線のィンピ一ダンス や信号配線にもたらされる浮遊容量が無視できなくなり Qが低下する。 «回路の Qが低下する と ~¾に位相雑音が大きくなる。
FIG. 20に示すように、 の VCO装置は VCO回路 104 a, 104b及び VCO 回路 104 cに用意された発振トランジスタ (図示せず) の電流を設定する電流源回路 105は 各 V CO回路に共用されているか、 または、 各別に接続されている « ^には ®巟はほぼ同じに設 定されていた。
このよう構成においては鹭流源回路 105の ®巟は周波数範囲が一番高ぐ 低 feffi雑音化に
Figure imgf000004_0001
きるように電流が設定される。 このた め、 的低位相雑音化に有利な VC〇回路 1 0 4 a及び V CO回路 1 0 4 bは必然的に所望特 性以下の位相雑音特性で動 ることになる。 VC O回路 1 0 4 a, VCO回路 1 0 4 bは所望 の位相雑音を満足する。 しかし、 望である余分な電流を供給しなければならないので、 消費 電力の増加につながる。
婦 機を有した移動觸末機に VCO装置を搭 «ΤΤる ¾ ^には馬隱用電源としてのパッ テリーによって 铳使用時間が制限される。 このため、 移動 末機に搭載する放翻受纏お よび通信用 の低消費電力化は非常に重要な である。 発明の開示
本発明は、 ¾g 波難囲の広帯域化と低消費電力化の両方が舰できる V CO装置とこれ を用いた受信機を提供することを目的とする。
本発明の V CO装置は、 周波数制御 に印加される制御 ¾ffiV tに応じた周波数信号を する ¾g ^波数の範囲が異なる複数個の VCO (VOL TAGE CONTROL ED 〇 S C I L LATOR) 回路と、 この複数個の V CO回路力 ¾ する ^トランジスタの各々の駆動 ft流を各別に設定する 回路と、 V CO回路の出力信号を切替える信^ «手段と、 この信 ^«手段で された局部信号を分周して 号との位相を] ¾し位相差から変換した出力 信号を出力する P L Lと、 この P L Lの出力信号を平滑して周波数制御 ®ϊである制御 ¾mv t を出力するループフィルタとを有した VCO装置である。 これによれば、 個々の V CO回路の発 SJ¾波数に対する位相雑音の特性に応じて低消費電力化を することができる。
また、 本発明の V C O装置は、 V C O回路の中で ¾ί鍋波数の範囲が一番高い V CO回路が ¾Sする位相雑音と同等の位相雑音が得られる翁流を他の複数の V c o回路の 流源回路の電流 とした V C O装置である。 これにより、 特に低域側周波数を担う V C O回路を低消費電力化する ことができる。
また本発明の V C〇装置は、 V c o回路を駆動する電流源回路の電流を可変電流源回路とし た VCO装置である。 これによれば、 変化や電源赃変動といったいわゆる動 {锁境 の変動や、 異なる所望特性の通信規格の切替えに応じて位相雑音を補正し、 子な通信特性を得 ることができる。
また本発明の V co装置は、 周波数制御赃»に印加される制御 ¾mv tに応じた周波数 信号を画し、 発 «波数の範囲が異なる複数個の V co回路と、 この複数個の V c〇回路の 各々の馬隱電流を各別に設定する可変電流源回路と、 複数個の V C O回路のいずれか 1つから出 力される局部信号と、 高周波信号入力 から入力された受信信号とを混合する高周波信号処理 手段と、 V C〇回路群から出力される発 ¾波数に応じて可変電流源回路の€ ^を切替える鹭流 制御手段とを有した V c o装置である。
こうした構成は、 V C O回路に構成された «回路素子の Qや寄生容 の周波数特' I生によ つて変動する位相雑音を赚卜ランジス夕の馬鐵€¾ΠΓ'捕正することができる。 これによつて、
«域な周波数範囲にわたってより一定の位相雑音性能を得ることができる。
また本発明の V CO装置は、 周波数制御電圧端子に印加される制御電圧 V tに応じた周波数 信号を発振する »il波数の範囲が異なる複数個の V C O回路と、 この複数個の V c o回路の 各々の馬睡電流を各別に設定する電 »回路を有した V c o装置にぉレ r、 周波数制御 に印加される制御電圧 V tに応じて する周波数の範囲の一部が重複するように個々の V'CO 回路の共振回路が設定された V C〇装置である。
個々の V C O回路を構成するそれぞれの共振回路に相対的なばらつきが発生し、 個々の V C O回路で設定した 波数範囲が高周波数の方向 Z«波数の方向^ ffi反してばらついた においても所望の ¾g ^波数の範囲を 続して可変することができる。
また本発明の V C〇装置は、 周波数制御 に印加される制御 ®£V tに応じた周波数 信号を する 波数の範囲が異なる複数個の V C〇回路と、 この複数個の V C o回路の 各々の馬隨電流を各別に設定する電流源回路を有した V C O装置において、 周波数制御 に印加される制御 «£V tの変化と、 この制御載 V tに応じた 波数の変化からなる薩 感度が個々の V C 0回路でほぼ同等となるように個々の V C O回路の共振回路を設定した V C 0 装置である。 制御電圧 V tによる可変容量素子の容量変動が大きくなり、 結果として ¾J¾波数 変動が大きくなることによる位相雑音への影響を個々の V C。回路で同等とすることで、 広帯域 な周波 囲にわたってより一定の位相雑音 i生能を得ることができる。
また本発明の V CO装置は、 周波数制御電圧端子に印加される制御電圧 V tに応じた周波数 信号を する «i¾波数の範囲が異なる複数個の V C〇回路と、 この複数個の V C〇回路の 各々の馬睡電流を各別に設定する鹭流源回路と、 V CO回路の出力側に接铳され、 かつ、 高周 波入力信号選択手段の出力側に接続された M I X回路(M I X回路は、 周波数の異なる 2つの信 号を籍して出力する回路) を含む高周波信号処理手段と、 VC O回路の出力信号を切替える信 択手段と、 この信 手段で選択された局部信号を分周して »信号との位相を!: し位 相差から変換した電圧信号を出力する P L Lと、 この P L Lの出力信号を平滑して » ^波数を 制御する制御電圧 V tを出力するループフィルタからなる V C〇装置である。
こうした構成によって、 広帯域にわたる « ^波数範囲を有する V C 0回路の出力信号が接 続される M I X回路を複数個の M I X回路とし、,個々の M I X回路で信号処理する周波数帯域を 異なる範囲とすることができる。 M I X回路を IS^域化する際に問題となる消»流の増加を排 除できるので低消費電力化が^!できるとともに^子な通信特 I生を得ることができる。
また本発明の V CO装置は、 高周波入力信^ 3択手段に複数個の低雑音増幅器 (L OW N O I S E AMP L I F I E R;以下 LNAと ¾τΤる) を »した VC O装置である。
これによつて、 複数個の L Ν Αそれぞれに電源オン .オフ機能を有するならば所望の高周波 入力信号を選択することができる。 また、 LNA ¾域化する際に問題となる消費電流を増カロ させることなく低消費電力で 子な通信特性を得ることができる。
また本発明の VCO装置は、 高周波入力信号選択手段を複数個の LN Aおよび B P F (BA ND PAS S F I L TER) 回路で構成した VC O装置である。
複数個の L N Aは電源オン .オフ機能を有し、 また B P F回路には周波数選択可能な同調機 能を有することで高周波入力信号を選択可能とする。 また、 受 #Τる電波状況において高周 ¾λ 力信号に妨害波が含まれ 特に妨害波の電界弓嫉が強い:!^は B P F回路でこの妨害波を減衰さ せることで良好な通信特性を得ることができる。 また本発明の V CO装置は、 周波数制御電圧 »に印加される制御匍王 V tに応じた周波数 信号を薩する 波 の範囲が異なる複数個の VC〇回路と、 この複数個の V C〇回路の 各々の馬睡鹭流を各別に設定する可変電流源回路と、 複数個の V c o回路から出力される局部信 号と、 高周波信号入力 ¾ΐから入力された受信信号とを混合する高周波信号処理手段と、 高周波 信号処理手段から出力されるアナログ信号をデジタル復調処理し受信特性を判 ¾Τる受信特性判 定手段と、 この受信特性判定手段から出力されるデジタル信号に応じた もしくは電流を出力 して可変電流源回路の電流を切替える電流制御手段を有した V C〇装置である。
搭 «Γする送受 βシステムの通信 態の変動に応じて位相雑音を補正することができ、 ^子 な通信特' I生が得ることができる。
また本発明の V CO装置は、 周波数制御 に印加される制御 ¾£V tに応じた周波数 信号を する 皮数の範囲が異なる複数個の V C O回路と、 この複数個の V c o回路の 各々の馬睡戆流を各別に設定する可変電流源回路と、 ネ复数個の V C O回路から出力される局部信 号と、 高周波信号入力 »から入力された受信信号とを混合する高周波信号処理手段と、 高周波 信号処理手段から出力されるアナログ信号をデジタル復調処理しデジタ 調 を判定するデ ジタ!/ ¾調 判定手段と、 このデジタル変調 判定手段から出力されるデジタル信号に応じ た ®王もしくは電流を出力して可変電満原の »流を切替える ®流制御手段を有した V C〇装置で ある。
搭載する 信機システムが対応する放識格ゃ通讓格が複数のデジタル変調:^:を併用 する齢は、 これらのデジタル変調 で決定する振幅や位相軸上の多 figに反して低消費電力 化が できる。 図面の簡単な説明
F I G. 1は、 本発明の VC〇装置に係る回路ブロック図、 F I G. 発明の VCO回 路の位相雑音と馬隨電流との関係を示す特性図、 F I G. 3は本発明の V C O装置に係る他の実 施の形態の回路ブロック図、 F I G. 4は φ:発明に係る V CO装置の他の案拖の形態の回路プロ ック図、 FIG. 5は ~«的な «回路を用いた V CO装置のブロック図、 FIG. 6は ICプ ロセスによるばらつきが無視できる場合の発 «波数範囲を示す図、 FIG. 7は ICプロセス によるばらつきが無視できなレ^^の «J¾波数範囲を示す図、 F IG. 8は ¾i度を複数個 の V CO回路で一定としない場合の発振周波数範囲を示す図、 FIG. 9は発振感度を複数個の V CO回路で一定とした場合の発 波数範囲を示す図、 FIG. 10は本発明に係る V CO装 置の他の難の形態の回路ブロック図、 FIG. 11〖鉢発明に係る V CO装置の他の麵の形 態の回路プロック図、 FIG. 12は本発明に係る V C〇装置の他の実施の形態の回路プロック 図、 FIG. 13は本発明に係る V CO装置の他の実施の形態の回路ブロック図、 FIG. 14 【鉢発明に係る VC〇装置の他の難の形態の回路ブロック図、 FIG. 15〖林発明に係る V CO回路における位相雑音と,隨鼇流との相関図、 FIG. 16〖林発明に係る可変電流源回路 の鹭流を調整する動作一例を示すフローチャート、 FIG. 17は本発明に係る V C〇装置の他 の»の形態、の回路ブロック図、 FIG. 18は本発明に係るデジタル変調^;に対応する VC 〇回路の所翅立相雑音と電流の相関図、 FIG. 19 発明に係るデジタル変調^:に応じて β~流を調整する動 ί乍一例を示すフローチヤ一卜である。
FIG. 20は ¾έ*の VC〇装置の回路ブロック図、 FIG. 21は従来の VC〇装置にお ける制御 ¾Eと 波数の特性関係図、 FIG. 22は の V CO装置におけるオフセット 周波数と位相雑音の特性関係図を示す。 発明を実施するための最良の形態
以下、 本発明の難の形態について説明する。
難の形態 1)
F I G. 1は本発明の V C O装置に係る一例を示すブロック図である。
本発明に係る V CO装置は、 高周波信号処理手段 1を有する。 高周波信号処理手段 1はたと えば、 歸薩機のよう 動 末機に搭載される 信回路に適用することができる。 高周 波信号処理手段 1には高周波信号入力 »2 a, 高周波信号出力軒 2 bが備え付けられている。 また、 本発明の V CO装置は VCO回路群 4を有する。 V CO回路群 4は、 周波数制御電圧 端子 8に印加される制御電圧 V tに応じた周波数の信号を «する。 L O信号!^手段 3は V C 0回路群 4の中から所望の出力信号を選択する。 P L L 6は、 L O信 ¾1択手段 3で選択された 局部信号 f v c oを分周して基精号との位相を J Kし、 両者の位相差から変換した豪信号を 出力する。 ループフィルタ 7は、 P L L 6の出力信号を平滑して局部信号 f v c oの発 波数 を制御するための制御電圧 V tを出力し、 L O信 ¾1 ^手段 3で選択された局部信号 f V c oを 高周波信号処理手段 1へ出力する。
さて、 移動 末機には Hl¾的に小型化、 低消費電力化が要求されている。 したがって、 移 動梯末機に搭載される VC O装置にも当然のことながら小型化, 低消費電力化が要求される。 また、 V CO装置は^ ¾的に I C化されているのが""" S的である。 このため、 I Cパッケージの 小型化や低電源 でも正常に fi することができる I cが要求されている。 .
F I G. 1に示した本発明の V C O回路群 4は広帯域な周波 囲を受信または送 するた めに好適である。 VC〇回路群 4は VCO回路 4 a, VC O回路 4 b及び VCO回路 4 cの 3つ の V C〇回路を有する。 これらの 3つの V C O回!^れぞれには TOの周波 囲を ¾Sする、 いわゆる懇トランジスタ (図 ず) が構成されている。 .
電菌回路群 5は、 電蔵回路 5 a, 電流源回路 5 b及び電蔵回路 5 cを有する。 電藏 回路 5 aは V CO回路 4 aを駆動するために供されている。 同様に、 電流源回路 5 bは VC O回 路 4 bを、 電蔵回路 5 cは V C 0回路 4 cをそれぞれ馬隨するために供される。 電流源回路 5 a, 戆 原回路 5 b及び電流原回路 5 c ¾Sいに異なる電流の値に設定されている。 すなわち、 互いに異なる周波数範囲を するように役割、 機能が分担されている。
こうした構成をもった本発明の V CO装置は、 «J¾波数範囲が異なる個々の V CO回路の 波数に対する位相 β特性に応じて各別に嫌を設定して動作させることができる。 これ により、 周波数特性や機器所望の特 I生に応じて個々の V C Ο回路の位相雑音の最適値を設定する ことができる。 F I G. 2は上記位相雑音と、 ft流源回路 5 a, 5 b及び 5 cそれぞれに対 JSTる電流 A, B 及び Cとの関係を示した図である。
波数の範囲が異なる 3つの V CO回路、 すなわち、 低域側周波数を担う V CO回路 4 a、 中 TO波数を担う VCO回路 4 b及び高域側周波数を担う VCO回路 4 cと、 これらを β するそれぞれの電流源回路 5 a , 電流源回路 5 b及び電流源回路 5 cに設定された電流 A, B及 びじの値と位相雑音との関係を示す。
こうした V C〇回路は回路のィンピーダンスや浮遊容量に影響されることを是認しなければ ならない。 特に高域側周波数を担う V CO回路 4 cはその影響を最も受けやすい。言い換えれば 低位相雑音化には低域側周波数を担う V CO回路ほど、 有利であり、 また 源回路の電流を削 減することも可能であり好ましい。
(¾の形態 2)
F I G. .3は本発明に係る V C O装置の他の構成の一例を示すブロック図である。 F I G. 1に示した麵の形態 1の構成驟と同一または対応する構成要素には同一の ί ^を付与した。
VC O回路群 4の構成は錢の形態 1 (F I G. 1 ) と同じである。 すなわち、 ¾ 波数 範囲が相異なる V CO回路 4 a, V C O回路 4 b及び V CO回路 4 cを有する。 VCO回路群 4 を馬職するために電流原回路群 9が備えられている。 鹭 β回路群 9は可変電流源回路 9 a , 可 変電流源回路 9 b及び可変電流源回路 9 cを有する。 可変電流源回路 9 aは VCO回路 4 aを駆 動するために供されている。 同様に 電流源 9 bは V C 0回路 4 bを、 電流源回路 4 cは V C 〇回路 4 cをそれぞれ駆動するために供されている。
F I G. 3に示した V C〇装置は F I G. 1に示したものと電流源回路群 9が可変電流源で あることで相違する。 その他の構成、 すなわち、 V CO回路群 4, 高周波波信号処理手段 1, L 0信号選択手段 3 , P L L 6およびループフィルタ 7の構成は F I G. 1に示したものとほぼ同 じであるので詳細な説明は省略する。
¾の形態 2の説明のために用いられた F I G. 3に示した本発明の V C O回路装置は可変 電流源回路 9 cを #Tるものであるから、 〇0回路4 3 , 4 b及び V C O回路 4 cが する « ^波数に対する位相 il 特性だけでなく、 や電源 などの周辺動 {懐境の変動や、 通 ィ言規格により、 すなわち周囲環境や通 通信装 の電気的特 I生に合わせて複数の所望特 性を実現することができる。
(雄の形態 3)
F I G. 4は本発明の V C O装置の他の構成の一例を示すプロック図である。実施の形態 1 を説明するために用いた F I G. 1及 ϋ 拖の形態 2を説明するために用いた F I G. 3の構成 難と同一または対応する構成要素には同一の ί¾^·を付与し詳細な説明は省略する。
F I G. 4は、 電流源回路群 9の可変電流源回路 9 a, 9 b及び 9 cの各電流を局咅信号発 ¾波数 f v c oに応じて制御するための鹭流制御手段 1 3と、 P L L回路 9の分周比を設定し C O回路で する周波数を制御する選局手段 1 4を備えている点で、 上記 2つの実施の形 態とは相»る。
電流制御手段 1 3は、 選局手段 1 4から出力される分周比設定信号に応じて電流源回路群 9 の電流を制御する電圧または電流信号を出力する。 これにより、 VC O回路 4 a, 4 b及び 4 c か する 卜ランジスタ (図 ず) の Eft®流を切替えることができる。 ■ F I G. 4を用いて説明される実施の形態 3の構成によれば広帯域な周波数範囲でも位相雑 音をほぼ一定とした V C O装置を得ることができる。
醜の形態 4)
F I G. 5は一般的な共振回路例を用いた VC O装置のブロック図である。 特に VC O回路 の具体的な回路構成を示している。 また、 発振周波数 囲の異なる VC O回路を 2つ用意したも のを例示した。 V C O回路 1及び V CO回路 2は、 並列賺された負 ftf厳部 (一 R) 、 インダ クタし コンデンサ Cの L C並列共振により構成されている。
これらが並列接続された部分は電源 ®Ξを供給されたトランジスタ等の電力を する能動 軒を有した並列 «回路で、 回路中の負' I' 鹏部 (― R) は電力を生 るという主旨で通常 の ί®5! [とは異なる。 L C««による ^¾波数 f o u tは次式で求めることができる。 f on t = 1/ 2κ し 10 · C t o t a 1
ここで、 C t o t a 1 は固定容量のコンデンサ C 10と C 11 と、 可変容 MS^C v 20に よる合成容量値のことである。 F I G. 5に示した 回路を構成した: ^の C t o t a 1は次 式で表すことができる。
Figure imgf000013_0001
波数 ί o u tを変化させるにはその両»間の簡 4¾で容量が変化する可変容量素子 C Vが使われ ループフィルタ 7より出力される制御載 V tによって可変容量素子の容量 C V を制御して ¾g ^波数 f ou tを変 {匕させることができる。
F I G. 6と F IG. 7は、 F IG. 5に示した 2つの V CO回路 1, VCO回路 2の赚 周波数範囲を図示したものである。 F IG. 6は V CO回路 1及び V CO回路 2を製造する I C プロセスによるばらつきが無視できる:^の¾«波数範囲の Uを示す。 F IG. 7は I Cプ ロセスによるばらつきが無見できない:^の 波数範囲の^ yを示す。
ここで、 F I G. 5に示した V C O装置力 ¾ する V C〇回路 1及び V C O回路 2のそれぞれ の共 ¾J¾波数 f o u t 1と f o u t 2について具体:例を用いて求める。 可変容量素子 C Vの制御 ¾1£ 1;を 1=1. 0V, V2 = 2. 0Vとし、 «BEV tを V 1〜V 2の範囲で変化させたと きの V CO回路 1と VCO回路 2の 波数の範囲は、
L 10 = 5. 5nH、 C 10 = 1. 0pF、 C 11=20.0 pF, L20 = 4. 0nH、 C 20 = 1. 0 pF、 C21 = 20pF、 Cv 10 = Cv20 = 2. OpF (V t=Vl = l. 0 Vの時)
Cv 10 = Cv20 = 1. OpF (Vt=V2 = 2. 0Vの時)
とすると、
VCO回路 1 : 1278MHz<f ou t 1 <1513 MHz
VCO回路 2: 1499MHz<f ou t 2 <1801MHz となる。
すなわち、 V C O回路 1と V C O回路 2とは周波数制御電圧端子 8に印加される制御電圧 V tに応じて 皮数のうち の周波薩囲 (1499 MHzから 1536 MHz) が重複す ることになる。
次に、 それぞ、れの VCO回路 1及び VCO回路 2の «回路に構成するインダクタ L 10と インダクタ L 20のインダク夕ンス (H) に相対的なばらつきが 4% (±2%) もしくは 5% (±2. 5%) 発生したと し、 インダクタ は上記の条件とした:^の V CO回路 1と V CO回路 2の «|¾波数の範囲である f ou t l' と f out 2, は、 ィンダクタンスの相対的 なばらつきを 4% (±2%) と ^し、
L 10 = 5. 61 ηΗ=5. 5ηΗΧ1. 02 (+2%のばらつき)
L20 = 3. 92nH=5. 5nHX0. 98 (—2%のばらつき)
とすると、
VCO回路 1 : 1266MHz<f ou t 1' <1536MHz
VCO回路 2 : 1522MHz<f ou t 2' <1829MHz
となる。
また、 インダクタンスの相対的なばらつきを 5% (±2. 5%) と仮定し、
L 10 = 5. 64nH=5. 5nHX 1. 025 (+2. 5%のばらつき)
L20 = 3. 90 nH=5. 5nHX0. 975 (-2. 5%のばらつき)
とすると、
VCO回路 1 ·· 1263. 0MHz<f ou t 1' <1517. 1MHz
VCO回路 2 : 1518. lMHz<f ou t 2' <1824. 0 MHz
となる。
すなわち、 インダク夕の相対的なばらつきが 5%を超えると、 VCO回路 1と VCO回路 2 のどちらも出力できない周波数範囲である 1517. 1MHzから 1518. 1MHzができて しまうことになる。 つまり、 上記インダクタの相対的なばらつきによって、 镜的に可変できない ¾J¾波数が できてしまうため、 複数個の V CO回路で構成された V CO装置では、 周波数制御 ®£¾?8に 印加される制御 ®£V tに応じた周波数信号を ¾Sする 波数の範囲のうち"^を重複させ る構成とする。
なお、 実施の形態 4においては、 インダクタがばらついた場合の例について述べた。 しかし、 ィンダク夕以外の素子であるコンデンサゃ可変容量素子のばらつきについても同様のことが言え る。 このため、 インダクタ, コンデンサ及び 変容量素子の複合的なばらつきを勘案して、 複数 個の V C O回路の » 波難囲の が重複するように、 個々の V C O回路 1及び V C O回路 2の回路定数を決定する。
また、 鐘の形態 4においては、 1つの例としてインダクタの相対的なばらつきを 4 %、
5%として 波数の範囲を述べた。 しかし、 I Cプロセスによってばらつきの範囲は異なつ てくるので、 そのばらつきの範囲に応じて、 複数個の V CO回路の ¾g 波数の^ ¾を重複させ ることも可能である。 こうしたことは個々の V C〇回路の設計事頃の 1つである。
また、 麵の形態 4においては、 不 ψ«型発振回路を用いた例について説明した。 もちろん、 差動増幅回路を用いた平衡型発振回路を用いてもよい。
また、 鐘の形態 4においては、 可変容量 を用いたが、 »間の簡 によって容量値 が可変できる素子であれば、 別の素子を用いることも可倉 gである。
さて、 FIG.. 8と FIG. 9は、 VCO回路の «¾度を示す。 FIG. 8は ¾¾S度を 複数個の VCO回路で一定にしない の¾ ^波数と制御 ®ϊν tの関ィ系を示す。 FIG. 9 は 度を複数個の V C O回路でほぼ一定にした場合の 波数と制御電圧 V tの関係を示 している。 F I G. 8は既に上記で求めた f o u t 1と f o u t 2の発¾波数と制御電圧 V t の関係を示す。
F IG. 5に示した V CO回路 1と VCO回路 2は、 コンデンサ (C10 = C20 = 1. 0 pF、 C 11=C21 = 20.0 pF) と可変容量素子 (V t=Vl = l 0 V時に C v 10 = C v 20 = 2. 0pF、 Vt=V2 = 2. OV時に Cv 10=C v 20 = 1. OpF) を同一の構 成として、 インダクタ 10 (=5. 5nH) とインダクタ 20 (=4. OnH) の定数だけを変 えて異なる周波数範囲を得ている。
ここで、 VCO回路 1の ¾ 度を、 iout l/ Vt、 VCO回路 2の ¾g度を f ont 2/ΔΝ tとすると、
ΔίθΜ Ϊ 1/AY t = (f ou t lma - f ou t lmi n) / (2. 0 - 1. 0) =3 02MHz/V
f ou t 2/Δ t = (f ou t 2ma - f ou t 2m i n) / (2. 0 - 1. 0) =2 58MHz/V
となり «度は異なる。
¾igi度の大きい v c o回路 lの方が制御 «ffiv tの影響を受けやすく位相雑音は劣化しや すい。 このため、 広帯域にわたる周波数範囲で一定の位相雑音性能を得ることは難くなる。
FIG. 9は、 複数個の V C O回路の 度をほぼ一定とした の¾ ^波数と制御電 圧 V tとの関係を示す。 〇〇回路1と VCO回路 2の ¾ ^波数をそれぞれ f o u t 1" と ou t 2" として表す。
個々の «S度の調整には、 インダクタ (L10, L20) とコンデンサ (CI 1, C2
1) を用いた。 これら ¾ 後の定数は、 L10 = 5. 3nH, L20 = 4. 1 nH, CI 1=4
5. 0 pF, C21 = 9. 5pFである。
ここで、 上記同様に定麵整後の 度を示す。 VCO回路 1の菊滅度を f ou t
1" / Vt、 VCO回路 2の¾¾度を f ou t 2" / Vtとすると、
^ f ou t 1" /Δ = (f ou t l" max - f ou t l" mi n) / (2. 0 - 1.
0) =274MHz/V
l f ou t 2" IV t= (f ou t 2" max - f ou t 2" mi n) / (2. 0 - 1.
0) =275MHz/V
となる。 上記から明らかなように、 VCO回路 1と VC〇回路 2の ¾S度がほぼ一定となっている ため、 制御赃 Vtによる位相雑音への影響も一定となり、 «域にわたる周波隱囲で、 より 一定の位相雑音 I生能を得ることができる。
なお、 雄の形態 4においては、 説明の^ S_L、 可変容量軒を 1素子だけを用い、 さらに 狭い制御電圧の Vt (1. 0V〜2. 0V) で発 «波数を制御する構成としたため ¾g度は 非常に高くなる。 しかし、 好ましくは 度を低くした方が良く、 特に広帯域にわたって、 周 波数範囲を させる:^は、 素子に印加する »間の電位差によって容量値が可変できる素子 を複数個並列に ¾ ^した構成を用いることによって ¾ 度を低くすることも可能である。
(雄の形態 5)
FIG. 10は V CO装置の他の構成の一例を示すブロック図である。 FIG. 1に示した の形態 1の構成要素と同一または対応する構成 には同一の! ^を付与し、 詳細な説明は 省略する。
V CO回路群 4は互いに 波数範囲が異なる V CO回路 4 a, VC〇回路 4 b及び VC O回路 4 cを有する。 LO信^!択手段 3は、 〇0回路4&, 4 b及び 4 cの 3つの出力信号 (局部信号) の中から 1つの局部信号を選択する。 ?し1^6は 0信^1択手段3で11択された 局部信号 ί V c 0を分周して 号との位相を Jt¾し位相差から変換した赃信号を出力する。 ループフィルタ 7は、 PLL 6から出力された出力信号を平滑して V CO回路で ¾gする発 ¾波数を制御する制御 «EEV tを生成する。 ループフィルタ 7から出力された制御 ¾EEV tは V C O回路群 で赚される発 «波数を制御する。
FIG. 10に示した の形態 5はさらに、 複数個の M I X回路 20 a, MI X回路 20 bMM I X回路 20 cからなる M I X回路群を有する。 これら複数個の M I X回路の一方の入 力は高周波入力信^ ^手段 21の出力側に接続されている。 また、 複数個の MIX回路の他方 の入力は V CO回路 4 a, V CO回路 4 b及び V CO回路 4 cの出力側にそれぞれ接続されてい る。複数個の M I X回路 20 a、 M I X回路 20 b及び M I X回路 20 cそれぞれの出力側は高 周波出力信号 «手段 22に接続されている。 こうした構成によれば、 «J¾波数範囲の異なる複数個の V CO回路と各別に膽された 個々の M I X回路で信号処理する周波数帯域はテレビジョン放送を代表とする広帯域な範囲とす ることなく、 この 域な範囲を分割した内の ~gを信号処理帯域とした M I X回路とすること で、 MI X回路を広帯域化する際に問題となる消費 «を増加させることなく低消費電力で 子 な通信特性を得ることができる。
(無の形態 6)
FIG. 11は V CO装置の他の構成の一例を示すブロック図である。 F I G. 10に示し た¾の形態 5の構成要素と同一または対応する構成鶴には同一の符号を付与し、 詳細な説明 は省略する。
VCO回路群 4は、 発 ¾波数範囲が異なるように構成した、 VCO回路 4a, VC〇回路 4 b及び V C〇回路 4 cを有する。 また、 電流源回路 9を有する。 鹭流源回路 9は可変電流源回 路 9 a, 鹭滴原回路 9 b及び 変磨 源回路 9 cで構成されている。 可変鼇流源 9 aは VC ■ 〇回路 4 aの馬隨鹭流源である。 同様に、 可変電流源 9b, 電流源 9 cは VCO回路 4 b, VCO回路 4 cを駆動するために各別に接続された看滴原である。
可変電流源回路 9 a, 9 b及 変電流源回路 9 cの電流を各別に調整し、 V C〇回路 4 a , 4 b及び VC〇回路 4 cを βさせるならば »il波数に対する位相雑音特性だけでなく、 ffi や電源 ®£などの "^環境の変動や、 通信規格により異なる複数の所望特性をもった V C〇装置 を得ることができる。
(難の形態 7)
FIG. 12は VCO装置の他の構成の一例を示すブロック図である。 FIG. 11に示し た の形態 6の構成要素と同一または対応する構成要素には同一の符号を付与し、 詳細な説明 は省略する。
高周波信号入力 ¾ 2 aには L N A群 23が換铳されている。 L N A 23群は周波数帯域の 異なる LNA23 a, LNA23 b及び LNA23 cを有し、 これら複数個の LN Aのそれぞ、れ の出力信号を同じく信号処理する周波数帯域の異なる M I X回路 2 Oa, MI X回路 20 b及び M I X回路 20 cに入力する構成としている。
LNA23 a, LNA23 b及び LNA23 cには図示はしないが、 各別にそれらの 電 源をオン ·オフするスィッチ機能が備え付けられている。 電源がオンされた LN Αは高周波信号 入力 ¾ί 2 aから供給された入力信号を増幅し、 増幅した信号を MIX回路 20 a, 2 Ob及び 20cにそれぞれ出力する。 高周波出力選択手段 22は M I X回路 20 a, 20 bMM I X回 路 20 cから出力された高周波出力信号を選択して、 そのうちの 1つを高周波信号出力端子 2 b に出力する。
なお、 個々の LNAの信号処理帯域は広帯域な周波数範囲を分割した内の一部を処理帯域と することで、 LN Aを広帯域化する際に問題となる消費電流を増加させることなく低消費電力で »な通信特性を得ることができる。
(麵の形態 8)
FIG. 13は V CO装置の他の構成の一例を示すブロック図である。 F I G. 12に示し た の形態 7の構成藤と同一または対応する構成要素には同一の!^を付与し、 詳細な説明 〖ま省略する。 .
LNA群 23の出力側に周波数選択可能な同調機能を有した BP F (パンドパスフィルタ) 回路 24を接铳したことで FIG. 12とは相違する。 LNA群 23には F I G. 12にも示し たように LNA23a, LNA23 b及び LNA23 cの 3つの LNAを構成する。 BPF回路 24の出力信号は M I X回路 20 a, 20 bMM I X回路 20 c供給される。
高周波信号入力 2 aに入力される高周波信号に 望な妨害波が含まれ 特に妨害波の 電界強度が ぃ« ^には B P F回路 24でこれらの妨害波を減衰させることで 子な通信特性を 得ることができる。
なお、 FIG. 13においては BPF回路 24を、 LN A群 23の後段に配置させたが、 L NA群 23の前段、 すなわち、 高周波信号入力端子 2 aの後に配置してもよい。 また、 LNA群 23の前段及 麦段の両方に配置してもよい。 (麵の形態 9)
FIG. 14は V CO装置を含む受鍵の構成の一例を示すブロック図である。 なお、 F I G. 3に示した鍾の形態 2の構成要素と同一または対応する構成要素には同一の符号を付与し、 詳細な説明は省略する。
FIG. 14に示した V C〇装置は受信特 I生判定手段 15を有する。 受信特性判定手段 15 は、 デジタル復調処理回路 11及び BE R判定回路 12を有する。
FIG. 14に示した VCO装置は F I G. 4に示したものとほぼ同じ電流制御手段 13を
¾Tる。 デジタル復調回路 11は、 高周波信号出力 2 bから供給された出力信号をデジタル 復調処理し、 さらにビット誤り率 (B i t Er ror Ra t e ;以下 BERと Tる) を検出 する。 B E R判定回路 12は觸己 B E R検出結果に応じたデジタル信号を出力する。 なお、 "Β
ER" とは、 デジタル変調信号の受信品質を表すものであり、 ある一定時間に受信したビット列 の中にどのくらいの誤りピッ卜が含まれているかを表す比率である。
戴流制御手段 13は BER判定回路 12から出力されたデジタル信号に応じたアナログ信号 を出力して、 «流源回路 9に内蔵された可変 «¾!源回路 9 a,可変電滴原回路 9 b及び 変 流 源回路 9 cの電流を調整する。 .
次に、 一例として、 FIG. 14に示した V C〇回路 4 cの可変鹭流源回路 9 cの電流が、 デジタル復調処理回路 11 , B ER判定回路 12及び電流制御手段 13によってどのように調整 されるかについて F I G. 15及び F I G. 16を用いて説明する。
FIG. 15は、 縦軸を位相雑音、 職由を電流としたときの F I G. 14に示す V CO回路 4 cの出力信号 FV COの位相雑音 (c, d, e) と、 電 ί¾回路 9 cで設定する職 (C, D,
E) との関係を示す。 F IG. 15では、 上記位相雑音と上記電流の関係が、 電流 Cで位相雑音 が最も小さくなり、 すり醒の特性カーブを示す。 ¾流をじよりも小さくして D, Eで示した値 に設定しても、 また、 Cで示した値よりも大きくして F, Gで示した値に設定しても位相雑音は いずれの方向においても大きくなる。 このため、 位相雑音を小さくして優れた受信性能を «するには ~¾に管流 Cに設定するの が好ましい。 ただし、 これらの位相雑音と職との関係は、 周辺 や電源 «ΕΕといったいわゆ る動 件に基づき再調整することが好ましい。 すなわち、 動1^¾^変化すれば位相雑音 をより小さくするための最適な電流は電流 Cではなくなることに留意しなければならない。従つ て、 優れた受信性能を鰣するには受信性能の変化に対応させて職源 9 cの戆流を最 値に調 整し、 位相雑音を小さくなるように設定する。
次に、 FIG. 14, FIG. 15を参照しながら F I G. 16に示したフローチャートにつ いて説明する。 FIG. 16は電流を調整する手順を示したフローチャートである。 なお、 フロ —チャートの第 1のステップ、 すなわち初期条件として、 FIG. 15に示した V CO回路 4 c の可変鹭流源回路 9 cは feffi雑音が最も小さくなる電流 Cに設定されている (S 100) 。
次にデジタル復調処理回路 11は、 VC O装置を含む受纖の高周波信号出力 ¾ί 2 bから出 力された信号をデジタル復調処理し BE R - 1を検出する (S 102) 。 その一定時間後に BE R - 2を検出する (S 104) 。
前にも述べたが "BER,,はある一定時間に受信したピット列の中にどのくらいの誤りビット が含まれているかという i *を表すものであるから、 時間の謝麦にそれぞれ BE Rを検出し、 j; R "ることになる。
判定回路 12は BER - 1と BER - 2を Jt¾し、 BER - 2が BER - 1より大きい:^ は受信結果が劣化したと判断する (S 106) 。 このときに、 電流制御手段 13は位相雑音と電 流の関係を調 ¾Tるために可変 ¾·流源回路 9 cの 流を Cより低レ f直の Εになるように設定する (S 108) 。
その後同様にして、 BER - 2を検出した後一定時間をおいて BE R - 3を検出する (S 1 10) 。 BER - 3が BER - 2より小さい場合は、 受信結果が改善したと判断する (S 11 2) 。 このときには、 可変 ® 源回路 9 cの鹭流を Eより更に低い Dに設定する。 同様にして、 —定時間 β後、 BER - 5を検出する (S 116) 。 BER - 5が BER - 3より小さい:!^ は受信結果がさらに改善したと判断し、 電流を Dの設定の状態で動作を纖する (S 114) 。 BER- 5が BER- 3より大きレ は受信結果がさらに劣化したと判断し、 職を Eの状態 に戻す (S 108) 。
さらに、 BER- 3が BER- 2より大きいと検出された場合は、 受信結果が劣化したと判断 し、 可変鼇流源回路 9 cの電流を Eから Fに設定する (S 118) 。 その後、 BER - 4を検出 (S 120) し、 BER - 3と BER - 4とを I lfet "る (S 130) 。 BER - 4が BER - 3より小さい » &は受信結果がさらに劣化したと判断し、 電流を Fよりさらに大きな Gの値に設 ¾Tる (S 124) 。 その後、 BER - 6を検出 (S 126) し、 BER - 4と BER - 6とを J feTTる (S 128) 。 BER - 6が BER - 4より小さい « ^は受信結果が改善したと判断し、 電流を Gの設定の:!犬 ϋで動作を¾続する (S 124) 。 BER - 6が、 BER - 4より大きい:^ は受信結果が劣化したと判断し、 電流を Gの設定の状態 (S 118) で動作を H^ "る。
以下同様にして、 BERの検出と判定を行いながら受信結果の変動に応じて ® 回路 9の 電流を調整することで V C O装置の位相雑音特性を制御する。
以上のように、 受信機の特' I生の «を表す BE Rの変 ίヒに応じて、 個々の VCO回路の 流を 調整することで、 や電源 といった動^ ¾動壞ィ匕しても位相雑音を補正し、 域に良 好な位相雑音特性となる V C O装置を ¾Ϊする効果を得ることができる。
(難の形態 10)
FIG. 17は V CO装置を含む受信器の構成の Uを示すブロック図である。 なお、 F I G. 3に示した ¾の形態 2の構成要素と同一または対応する構成要素には同一の符号を付与し、 詳細な説明は省略する。
また、 F I G. 17を用いて説明される の形態 10は、 デジタル変調:^判定手段 18 を有したことでもこれまでの他の^ gの形態とは相違する。 デジタル変調^;判定手段 18はデ ジタル変調^出回路 16とデジタル変調^;判定回路 17を有する。 デジタル変調^^出 回路 16は、 高周波信号出力 2 bから出力される出力信号のデジタレ変調方式を検出すると ともに、 デジタル復調処理を行う。 デジタル変調^;判定回路 17は、 デジタル変調 出回路 16で検出されたデジタル変 調^;に応じたアナログ信号を出力する。 FIG. 17はさらに電流制御手段 13を有する。 電 流制御手段 13は、 デジタリ!/ ¾調¾¾判定回路 17カゝらのアナ口グ信号に応じて鹭流源回路 9に 備えられた、 可変鼇流源回路 9 a, 可変鹭流源回路 9 b及び可変電流源回路 9 cの電流を調整す る。
次にデジタリレ変調^出回路 16, デジタル変調 判定回路 17及び鹭流制御手段 13 によって、 可変電流源回路 9 cによる V CO回路 4 cの電流調整の動作を F I G. 15, F IG. 18及び F I G. 19を用いて説明する。
FIG. 18は、 デジタ^¾調:^; (受信機の所望 CNR) とこれに対応する V CO回路の 所望位相雑音おょぴ鹭流の関係を示す。 ここで、 デジタル変調 (1) , デジタル変調;^:
( 2 ) 及びデジタ 調 ( 3 ) はそれぞれ 256 QAM, 16 Q AM及び Q P S Kといった 変調多 が異なるデジタル変調 を想定している。
~¾的なデジタル変調 において、 能が く変調多重化された 256QAM等の は、 単位周波数帯域あたりの伝 5 «を向上することができる。 し力、しながら、 伝送信号路から 高周波信号処理部を経てデジタル復調処理手段に入力する I F信号の信号対雑音電力比 (CN R) を大きく確保する必要;がある。
受信信号のデジタレ変調 に応じて、 受信機の所望 CNRおよび受信機に搭 ¾Tる VCO 装置の所望位相赔が される。 近年の無線通信においては、 その用途や使用環境に応じて変 調: ¾を切替えて伝 ¾¾gや伝送品質を多様化した放藤信規格が ¾Τる。 したがって、 受信 機に搭載する VC〇装置の位相雑音を所定の値に特定しないで、 それぞれの変調^;に«した 所望特性でデジタル復調処理の復調率を麟することが な設計と考えられる。
そこで、 FIG. i sに示すように、 変調^; (1), m ^ (2) mw (3) それぞれに応じた位相雑音 c, 位相雑音 e及 tj立相 ¾|^dを設定し、 V CO回路の翁流をそれぞ れ C, E及び Dの値に調 ることで、 変調多 βの i ^的小さいデジタル変調^ ¾の信号を受 る:!^は低消費翁流化の効果が得られる。 F I G. 1 9は、 デジタル変調 によって上記鼇流を調 る動作の一例を示したフローチ ヤートである。 まず、 V CO回路 4 cの可変電流源回路 9 cは、 複数のデジタ 調^;のうち、 所望 CNRが最も大きく、 すなわち最も厳しく、 より小さい位相雑音 cを難するための電流 C に設定する (S 2 0 0) 。
次にデジタル復調処理回路 1 1でデジタル変調:^:を検出 (S 2 0 2) し、 検出結果が変調方 式 (2) である (S 2 0 4) は、 可変電»回路 9 cの電流を電流 Eに減少させ (S 2 0 6) 、 かつ、 変調滅 ( 2) の復調効率が緞寺できる位相雑音 eを離する。
変調方式が変調方式 (2) ではない場合には変調方式 (3) であるか否かを判定する (S 2 0 8 ) 。 変調 (3) と判定された は電流をさらに少なめ目の Dになるように設定する (S 2 1 0) 。 変調方式 (3) でない場合には、 再度電流 Cになるように再設定を行う (S 2 0 0 ) 。
その後同様にして、 デジタル変調^を検出する。 異なる変調 である驗、 たとえば変 調^; ( 3) は、 変調^;に¾5した 電流源回路の電流に再設定した状態で動作を纖する。 以上のように本発明の V C 0装置は、 異なるレ くつかのデジタリレ変調信号を併用する放 »格 もしくは通信規格の高周波信号を受信もしくは送 Τる:^において、 受 ίΤΤるデジタル変調方 式に応じて個々の V C〇回路の電流を可変調整することが可能である。
例えば、 デジタル変調のうち 1 6 QAMなど J !¾的! ^間が雄し、 信号対雑音電力比 (C NR) による信号劣化の影響の大きい^ の高周波信号を処理する:^は、 V CO回路の電流を 多くし、 一方 QP S Kなど i K的符号間が雄しておらず、 信号対雑音電力比 (CNR) による 信号劣化の影響の小さい の高周波信号を処理する^^は、 V CO回路の電流を積極的に少な くするという調整を行うことから、 広帯域かつ低消 流な V C O装置を する効果を得るこ とができる。
なお、 本発明の各難の形態においては、 V CO回路は 3つの構成としたが、 これらに β胺 されるものではなく、 2つ以上の V C Ο回路を有した V C 0回路装置の構成に適用することがで きる。 また、 本発明の各実施の形態においては、 複数個の V C O回路を切替える信号 手段とし て、 スィッチ回路を用いる例についてのみ説明してきた。 しかし、 複数個構成した相互の V C O 回路を電気的にアイソレーションする構成を用いることも可能である。 加えて、 V C O回路と M I X間に信号増幅手段を挿入する構成を用いることも可能である。
また、 本発明の各難の形態においては、 高周波信号処理手段の構成にシングルコンパージ ヨン を用いる例についてのみ説明してきた。 しカゝし、 ダブルコンパ一ジョン やダイレク トコンバ一ジョン方式や、 I Q出力形式を採用して直交 M I Xを有した受信器の構成に本発明に 記載の V C〇装置を用いることも可會である。
また、 本発明の各無の形態においては、 可変電流源回路の鼇流を切替える職制御手段と して、 電流制御手段を用いる構成について説明してきた。 しかし、 職切替え手段を加味したレ ギュレー夕回路や、 流の異なる複数の固定翁流源を配置してこれら固定電流源を切替えるとい つた ¾¾¾周整手段を用いることも可能である。 また、 複数の V CO回路のうち選局に必要な V C 〇回路を除く他の複数個の V C 0回路については電流が流れないように電流源回路をオフさせる ' ことも可肯である。
また、 本発明の各 の形態においては、 V C O装置を受 βに用いる例についてのみ説明 してきた。 しかし、 ¾域な ¾¾¾波 囲と低消 »¾流化の両方を実現する効果を有する本発 明の VC O装置は、 受信機と送信機を含む通信システムに広く用いることも可能である。 また、 異なる周波数帯域を有した複数の通信規格に対応できるとともに、 特に電力供給源が電池である 歸« ^のモパイル機器においては、 象や音声やデータの 信をより長時間纖使用する ことができるという効果を得ることはできる。 また;! ^チューナの小型軽量化が進み、 電力供給 源が電池である ^のモバイル機器にチューナを内蔵するケースにおいても、 S¾{象や音声 をより長時間の連铳再生ができるという効果が期待できる。
また、 本発明の各 の形態においては、 可変 源回路の電流を調 S "るための判定手段 として、 B E Rやデジタレ変調^;といった判雜標を用いる構成についてのみ説明してきたが、 その他の判赵旨標を用いることも可能である。 産業上の利用可置
以上のように、 本発明によれば、 ¾W波薩囲の 域化と低消費電力化の両方を舰した V C〇装置を提供することができるので、 その産業上の利用価値は高い。

Claims

請求の範囲
1 . 周波数制御電圧端子に印加される制御電圧に応じた周波数信号を発振する発 波数 の範囲が異なる複数個の V C〇回路と、 この複数個の V c o回路が する トランジス夕の駆 動電流を各別に設定する鹭蔵回路と、 ifSHV CO回路の出力信号を切替える信^ «手段と、 fflB信^ S 手段で選択された局部信号を分周して »^号との位相を it!皎し 目差から変換し た信号を出力する P L Lと、 この P L Lの出力信号を平滑して |ίίίΒ¾»波数を制御する Ιίίϊ己制 御電圧を出力するループフィルタを有する V C〇装置。
2. 請求項 1に記載の V C Ο装置において、 複数個の V C O回路の各々の位相艦を同等 とするために、 V CO回路の中で発振周波数の範囲が一番高い V C O回路の «ft号の位相雑音 を柳にして、 他の V C O回路の電流源回路の戆流値を設定した V c o装置。
3. 請求項 1に記載の V C O装置において、 回路は可変電満原回路とした V C〇装 置。
4. 請求項:!〜 3のいずれか 1項に記載の V C O装置において、 VCO回路から出力され る » ^波数に応じて可変鹭流源回路の ¾~流を切替える電流制御手段を有する V C O装置。
5. 請求項:!〜 4のいずれか 1項に記載の V C O装置において、 複数個の V C O回路から 各別に出力される 波数は が雄复しており、 かつ、 所望の発 ¾波数の範囲に 続して 可変できる V CO装置。
6. 請求項 1〜 5のいずれか 1項に記載の V C O装置において、 複数個の V C O回路のそ れぞれは周波数制御 に印加される制御 «ΕΕの変化と、 この制御 ®Bこ応じた ¾¾波数 の変化による ¾S度がほぼ同等である V C 0装置。
7. 請求項 1〜 6のいずれか 1項に記載の V C〇装置において、 周波数制御 に印 カロされる制御 ffiに応じて異なる周波数の信号を させる複数個の V C〇回路と、 この複数個 の V C O回路の各々の Ε«Λ流を各別に設定する可変電流源回路と、 複数個の V C 0回路の出力 信号と高周波入力信" 8択手段とに接続された M I X回路を含む高周波信号処理手段と、 VC O 回路の出力信号を切替える信^ S択手段と、 この信 択手段で選択された局咅隨号を分周して 号との位相を]: し拉ォ目差から変換した ¾EE信号を出力する P L Lと、 この P L Lの出力 信号を平滑して 波数を制御する制御載を出力するループフィルタとを衬る V C 0装置。
8. 請求項 7に記載の V C〇装置において、 高周 ¾λ力信^ g択手段は低雑音増幅器を含 み、 さらに嫌己低雑音増幅器は電源オン .オフ機能を有する V CO装置。
9. 請求項 8に記載の V C O装置において、 高周波入力信 ¾択手段は低雑音増幅器を含 み、 ΙίίΐΞ低雑音増幅器の前段または後段、 もしくは ΙίίΙΕ前段及«段の両方に配置した B P F回 路を有し、 さらに低雑音増幅器は電源オン ·オフ機能を有し、 さらに ΙίΠΞΒ P F回路は周波薩 択可能な同調機能を有する V CO装置。 '
1 0. 請求項 3〜 9のいずれか 1項に記載の V CO装置において、 周波数制御 ®B ^に印 加される制御電圧に応じた周波数信号を発振する 波数の範囲が異なる複数個の V C Ο回路 と、 この複数個の V CO回路の各々の, i隨赣流を各別に設定する可変霞超回路と、 複数個の V CO回路のいずれか 1つから出力される局部信号と、 高周波信号入力 »から入力される受信信 号とを混合する高周波信号処理手段と、 高周波信号処理手段から出力されるアナログ信号をデジ タル復調処理し受信特性を判定する受信特性判定手段と、 この受信特性判定手段から出力される デジタル信号に応じた載もしくは電流を出力して聽可変電流源回路の電流を切替える電流制 御手段を有する V CO装置。
1 1. 請求項 3〜 9のいずれか 1項に記載の V CO装置において、 周波数制御赃 に 印加される制御電圧に応じた周波数信号を発振する 波数の範囲が異なる複数個の V C O回 路と、 この複数個の VCO回路の各々の馬幽 流を各別に設定する可変電 原回路と、 複数個の V C O回路のいずれか 1つから出力される局部信号と、 高周波信号入力 »から入力される受信 信号とを混合する高周波信号処理手段と、 高周波信号処理手段から出力されるアナログ信号をデ ジタル復調処理しデジ夕 Jレ変調城を判定するデジ夕ノレ変調 判定手段と、 このデジタル変調 判定手段から出力されるデジタル信号に応じた ¾)£もしくは鼇流を出力して llH可変瘤 回路の電流を切替える電流制御手段を有する V C。装置。
PCT/JP2004/009287 2003-06-27 2004-06-24 Vco装置 WO2005002056A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005510514A JP4055801B2 (ja) 2003-06-27 2004-06-24 Vco装置
US10/526,472 US7457600B2 (en) 2003-06-27 2004-06-24 VCO device
EP04746756A EP1641125B1 (en) 2003-06-27 2004-06-24 Vco device
CN2004800009301A CN1701512B (zh) 2003-06-27 2004-06-24 Vco装置
DE602004011769T DE602004011769T2 (de) 2003-06-27 2004-06-24 Vco-einrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003184169 2003-06-27
JP2003-184169 2003-06-27

Publications (1)

Publication Number Publication Date
WO2005002056A1 true WO2005002056A1 (ja) 2005-01-06

Family

ID=33549603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009287 WO2005002056A1 (ja) 2003-06-27 2004-06-24 Vco装置

Country Status (6)

Country Link
US (1) US7457600B2 (ja)
EP (1) EP1641125B1 (ja)
JP (1) JP4055801B2 (ja)
CN (1) CN1701512B (ja)
DE (1) DE602004011769T2 (ja)
WO (1) WO2005002056A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120023A (ja) * 2010-12-02 2012-06-21 Lapis Semiconductor Co Ltd 無線通信装置
JP2015119504A (ja) * 2015-02-19 2015-06-25 ラピスセミコンダクタ株式会社 無線通信装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7502587B2 (en) * 2004-05-28 2009-03-10 Echostar Technologies Corporation Method and device for band translation
US7606541B1 (en) * 2006-04-12 2009-10-20 Nortel Network Limited Enhanced holdover for synchronous networks employing packet switched network backhaul
ITUB20154230A1 (it) * 2015-10-08 2017-04-08 St Microelectronics Srl Circuito oscillatore, apparecchiatura e procedimento corrispondenti"

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303134A (ja) * 1993-04-15 1994-10-28 Hitachi Ltd Pll回路
JP2001339295A (ja) * 2000-05-26 2001-12-07 Kenwood Corp 発振信号生成器
JP2003318731A (ja) * 2002-04-22 2003-11-07 Sharp Corp ローカル信号発生回路およびそれを搭載する集積回路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133705A (en) * 1981-02-12 1982-08-18 Toshiba Corp Variable frequency oscillating circuit
US4568888A (en) * 1983-11-08 1986-02-04 Trw Inc. PLL Fast frequency synthesizer with memories for coarse tuning and loop gain correction
JP3227358B2 (ja) 1995-10-06 2001-11-12 株式会社日立製作所 チューナ装置
JP3254427B2 (ja) * 1998-10-09 2002-02-04 インターナショナル・ビジネス・マシーンズ・コーポレーション Vco特性のキャリブレーション方法
JP2002016493A (ja) 2000-06-30 2002-01-18 Hitachi Ltd 半導体集積回路および光伝送用送信回路
US6995618B1 (en) * 2003-09-11 2006-02-07 Xilinx, Inc. VCO feedback loop to reduce phase noise
US7038552B2 (en) * 2003-10-07 2006-05-02 Analog Devices, Inc. Voltage controlled oscillator having improved phase noise
US7015766B1 (en) * 2004-07-27 2006-03-21 Pericom Semiconductor Corp. CMOS voltage-controlled oscillator (VCO) with a current-adaptive resistor for improved linearity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303134A (ja) * 1993-04-15 1994-10-28 Hitachi Ltd Pll回路
JP2001339295A (ja) * 2000-05-26 2001-12-07 Kenwood Corp 発振信号生成器
JP2003318731A (ja) * 2002-04-22 2003-11-07 Sharp Corp ローカル信号発生回路およびそれを搭載する集積回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1641125A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120023A (ja) * 2010-12-02 2012-06-21 Lapis Semiconductor Co Ltd 無線通信装置
JP2015119504A (ja) * 2015-02-19 2015-06-25 ラピスセミコンダクタ株式会社 無線通信装置

Also Published As

Publication number Publication date
EP1641125A4 (en) 2006-08-23
JPWO2005002056A1 (ja) 2006-08-10
CN1701512A (zh) 2005-11-23
DE602004011769T2 (de) 2009-02-05
JP4055801B2 (ja) 2008-03-05
EP1641125A1 (en) 2006-03-29
US20060128335A1 (en) 2006-06-15
DE602004011769D1 (de) 2008-03-27
EP1641125B1 (en) 2008-02-13
US7457600B2 (en) 2008-11-25
CN1701512B (zh) 2010-06-02

Similar Documents

Publication Publication Date Title
US8036619B2 (en) Oscillator having controllable bias modes and power consumption
US7193459B1 (en) Power amplifier control technique for enhanced efficiency
US8064867B2 (en) RX dual-band mixer
US6980786B1 (en) Adaptive receiver system that adjusts to the level of interfering signals
US7486942B2 (en) Receiver
US7460890B2 (en) Bi-modal RF architecture for low power devices
US10277173B1 (en) Amplifier linearizer with wide bandwidth
US7271674B1 (en) Automatic level control for radio frequency amplifiers
JP4992903B2 (ja) 局部発振器とこれを用いた受信装置及び電子機器
US7515648B2 (en) Transmitter and wireless communication apparatus using same
US20100093303A1 (en) Circuit current generation apparatus and method thereof, and signal processing apparatus
US8238839B2 (en) Receiver, transceiver, and mobile terminal device
WO2005002056A1 (ja) Vco装置
US7110724B1 (en) System and method for detecting compression of a power amplifier circuit
US9008600B2 (en) Wireless communication receiver having one signal processing circuit whose operation mode is adjusted by monitoring signal level of specific signal of preceding signal processing circuit and related wireless communication method
US20090257522A1 (en) Communication apparatus
US20050136847A1 (en) Communication semiconductor integrated circuit device and electrical apparatus
JP2008103970A (ja) ミキサ及び受信装置
US7471074B2 (en) Re-referencing a reference voltage
JP2003078433A (ja) 周波数変換回路
KR100716909B1 (ko) 다이버서티 방식의 rf모듈
JP2006166009A (ja) 受信装置
KR20000035736A (ko) 라디오 수신기
KR100835084B1 (ko) 주파수 대역 자동 조정기능을 갖는 수신기
JP2001103106A (ja) ディジタル受信機及びディジタル無線機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005510514

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2004746756

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048009301

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2006128335

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10526472

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004746756

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10526472

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004746756

Country of ref document: EP