WO2004113896A2 - System and method for analysis of a biological fluid by the use electrical means - Google Patents

System and method for analysis of a biological fluid by the use electrical means Download PDF

Info

Publication number
WO2004113896A2
WO2004113896A2 PCT/US2004/019688 US2004019688W WO2004113896A2 WO 2004113896 A2 WO2004113896 A2 WO 2004113896A2 US 2004019688 W US2004019688 W US 2004019688W WO 2004113896 A2 WO2004113896 A2 WO 2004113896A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
response
test
measuring
sample
Prior art date
Application number
PCT/US2004/019688
Other languages
English (en)
French (fr)
Other versions
WO2004113896A3 (en
Inventor
David W. Burke
Lance S. Khun
Terry A. Beaty
Vladimir Svetnik
Original Assignee
Roche Diagnostics Gmbh
F. Hoffmann-La Roche Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roche Diagnostics Gmbh, F. Hoffmann-La Roche Ag filed Critical Roche Diagnostics Gmbh
Priority to EP04755696.4A priority Critical patent/EP1642123B1/en
Priority to JP2006517463A priority patent/JP4374020B2/ja
Priority to CA2529668A priority patent/CA2529668C/en
Publication of WO2004113896A2 publication Critical patent/WO2004113896A2/en
Publication of WO2004113896A3 publication Critical patent/WO2004113896A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3274Corrective measures, e.g. error detection, compensation for temperature or hematocrit, calibration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/112499Automated chemical analysis with sample on test slide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]
    • Y10T436/144444Glucose

Definitions

  • the present invention relates to a measurement method and apparatus for use in measuring concentrations of an analyte in a fluid.
  • the invention relates more particularly, but not exclusively, to a method and apparatus which may be used for measuring the concentration of glucose in blood.
  • Measuring the concentration of substances, particularly in the presence of other, confounding substances, is important in many fields, and especially in medical diagnosis.
  • the measurement of glucose in body fluids, such as blood is crucial to the effective treatment of diabetes.
  • Diabetic therapy typically involves two types of insulin treatment: basal, and meal-time.
  • Basal insulin refers to continuous, e.g. time-released insulin, often taken before bed.
  • Meal-time insulin treatment provides additional doses of faster acting insulin to regulate fluctuations in blood glucose caused by a variety of factors, including the metabolization of sugars and carbohydrates.
  • Proper regulation of blood glucose fluctuations requires accurate measurement of the concentration of glucose in the blood. Failure to do so can produce extreme complications, including blindness and loss of circulation in the extremities, which can ultimately deprive the diabetic of use of his or her fingers, hands, feet, etc.
  • optical methods generally involve reflectance or absorbance spectroscopy to observe the spectrum shift in a reagent. Such shifts are caused by a chemical reaction that produces a color change indicative of the concentration of the analyte.
  • Electrochemical methods generally involve, alternatively, amperometric or coulometric responses indicative of the concentration of the analyte. See, for example, U.S. Patent Nos.
  • the geometry of the blood sample is typically controlled by a sample- receiving portion of the testing apparatus.
  • the blood sample is typically placed onto a disposable test strip that plugs into the meter.
  • the test strip may have a sample chamber (capillary fill space) to define the geometry of the sample.
  • the effects of sample geometry may be limited by assuring an effectively infinite sample size.
  • the electrodes used for measuring the analyte may be spaced closely enough so that a drop of blood on the test strip extends substantially beyond the electrodes in all directions. Ensuring adequate coverage of the measurement electrodes by the sample, however, is an important factor in achieving accurate test results. This has proven to be problematic in the past, particularly with the use of capillary fill spaces.
  • hematocrit concentration of red blood cells
  • concentration of other chemicals in the blood can effect the signal generation of a blood sample.
  • Variations in the temperature of blood samples is yet another example of a confounding variable in measuring blood chemistry.
  • a system and method are needed that accurately measure blood glucose, even in the presence of confounding variables, including variations in temperature, hematocrit, and the concentrations of other chemicals in the blood.
  • a system and method are also needed to ensure adequate coverage of the measurement electrodes by the sample, particularly in capillary fill devices.
  • a system and method are likewise needed that accurately measure an analyte in a fluid. It is an object of the present invention to provide such a system and method.
  • a method for determining a concentration of a medically significant component of a biological fluid comprising the a) applying a first signal having an AC component to the biological fluid; b) measuring a first response to the first signal; c) applying a second signal to the biological fluid, wherein the second signal is a DC signal; d) measuring a second response to the second signal; and combining the first response with the second response to produce an indication of the concentration of the medically significant component.
  • a method of measuring a biological fluid test sample comprising measuring a first electrical response of the biological fluid test sample, the first electrical response having an AC component; measuring a second electrical response of the test sample; and determining a value indicative of a glucose concentration of the test sample based at least in part upon the first electrical response and the second electrical response.
  • a method for measuring a biological fluid test sample comprising measuring a first electrical response of the biological fluid test sample to a first test signal, the first test signal having an AC component; measuring a second electrical response of the test sample to a second test signal; and determining a value indicative of a glucose concentration in the test sample based at least in part upon the first electrical response and the second electrical response.
  • a method for determining a concentration of an analyte of a biological fluid comprising applying a first alternating signal to the biological fluid; measuring a response to the first signal; applying a second signal having a DC component to the biological fluid; measuring a response to the second signal; and analyzing the response to the first signal and the response to the second signal to produce an indication of the concentration of the analyte.
  • a method for determining a glucose concentration of a blood sample comprising applying a first signal to the blood sample, the first signal having an AC component; measuring a first response to the first signal; applying a second signal to the blood sample, the second signal having an AC component; measuring a second response to the second signal; applying a third signal to the blood sample, the third signal having a DC component; measuring a third response to the third signal; and determining a value indicative of a glucose concentration in the blood sample based at least in part upon the first response, the second response and the third response.
  • an apparatus for determining a glucose concentration of a blood sample comprising a test chamber adapted to receive the blood sample; a first electrode circuit adapted to apply a first test signal having an AC component and a second test signal having a DC component to the blood sample upon the sample being received in the test chamber; a second electrode circuit adapted to measure a first response to the first test signal and a second response to the second test signal; and a processor adapted to process the first response and the second response to determine a value indicating the glucose concentration of the blood sample.
  • a method for determining a hematocrit value of a blood sample comprising (a) applying a first signal having an AC component to the blood sample; (b) measuring an AC response to the first signal; (c) measuring a temperature of the blood sample; and (d) determining the hematocrit value of the blood sample using the AC response and the temperature.
  • a method for determining a glucose concentration of a blood sample comprising applying an alternating potential to the blood sample; measuring a first response to the alternating potential; applying a DC potential to the blood sample; measuring second response to DC potential; determining a first value relating to a hematocrit content of the blood sample using the first response; determining a second value relating to the temperature of the blood sample using the first value and the first response; and determining a third value relating to the glucose concentration of the blood sample using the first value, the second value, and the second response.
  • a method for determining a glucose concentration of a blood sample comprising the steps of: a) applying a first signal having an AC component to the blood sample; b) measuring an AC response to the first signal; c) applying a second signal to the blood sample, wherein the second signal is a DC signal; d) measuring a DC response to the second signal; d) determining a hematocrit value of the blood sample using the AC response; e) determining an estimated temperature of the blood sample using the hematocrit value and the AC response; and determining the glucose concentration of the blood sample using the hematocrit value, the estimated temperature, and the DC response.
  • a method for determining a glucose concentration of a blood sample comprising providing the blood sample, wherein the blood sample has a minimum sample volume of less than or equal to 0.4 ⁇ l; a) applying a signal having an AC component to the blood sample; b) measuring an AC response to the signal; and determining the glucose concentration of the blood sample using at least the AC response wherein the determination has a Total Test Time of within about 3 seconds or less.
  • a method for determining a glucose concentration of a blood sample comprising applying a signal having an AC component to the blood sample; a) measuring an AC response to the signal; and determining the glucose concentration of the blood sample using at least the AC response wherein the determination has a Total Test Time of within about 5.5 seconds or less.
  • a method for determining the concentration of a medically significant component of a biological fluid comprising providing a cell for receiving a sample of the fluid; providing on the cell a chemistry which reacts with the medically significant component and first and second terminals across which the reaction of the chemistry with the medically significant component can be assessed; providing an instrument having first and second terminals complementary to the first and second terminals, respectively, of the cell, placement of the first and second terminals of the cell in contact with the first and second terminals, respectively, of the instrument permitting the instrument to assess the reaction; and providing in the instrument an assessment controller configured to apply across the first and second terminals of the instrument a first signal, determine the identity of the sample in response of the cell to the first signal, and produce an indication of the identity of the sample.
  • a method for determining the concentration of a medically significant component of a biological fluid comprising the steps of applying a first signal having an AC component to the biological fluid; a) measuring a first response to the first signal; and determining an identity of the biological fluid based upon the first response.
  • Fig. 1 is a diagram of a first embodiment excitation signal suitable for use in a system and method according to the present invention, having a serially-applied AC component and DC component.
  • Fig. 2 is a diagram of a second embodiment excitation signal suitable for use in a system and method according to the present invention, having a simultaneously-applied AC component and DC component.
  • Figs. 3 A-B illustrate a first embodiment test strip of the present invention.
  • Fig. 4 is a diagram of an excitation signal utilized in the test of Example 1.
  • Fig. 5 is a plot of the correlation coefficient r 2 (glucose vs. DC current) versus Read Time for the test of Example 1 with no incubation time.
  • Fig. 6 is a plot of the correlation coefficient r 2 (glucose vs. DC current) versus Read Time for the test of Example 1 with varying incubation time.
  • Fig. 7 is a plot of AC admittance versus hematocrit for the test of Example 2.
  • Fig. 8 is a plot of uncompensated DC current versus glucose for the test of Example 2.
  • Fig. 9 is a plot of the predicted glucose response versus the actual glucose response for the test of Example 2.
  • Fig. 10 is a diagram of an excitation signal utilized in the test of Example 3.
  • Fig. 11 is a plot of the AC phase angle versus reference glucose for the test of Example 3.
  • Fig. 12 is a plot of the predicted glucose response versus the actual glucose response for the test of Example 3.
  • Fig. 13 is a diagram of an excitation signal utilized in the test of Example 4.
  • Fig. 14 is a plot of AC admittance versus hematocrit (parametrically displayed with temperature) for the test of Example 4.
  • Fig. 15 is a plot of the uncompensated DC response versus actual glucose for the test of Example 4.
  • Fig. 16 is a plot of the predicted glucose response versus actual glucose response for the test of Example 4.
  • Figs. 17 A-B illustrate a second embodiment test strip of the present invention.
  • Fig. 18 is a plot parametrically illustrating the correlation coefficient r 2 between the DC current response and glucose level as Read Time varies for three combinations of temperature and hematocrit in the test of Example 5.
  • Fig. 19 is a diagram of the excitation signal utilized in the test of Example 5.
  • Fig. 20 is a plot of AC admittance versus hematocrit as temperature is parametrically varied in the test of Example 5.
  • Fig. 21 is a plot of AC admittance phase angle versus hematocrit as temperature is parametrically varied in the test of Example 5.
  • Fig. 22 is a plot of the uncompensated DC response versus actual glucose for the test of Example 5.
  • Fig. 23 is a plot of the predicted glucose response versus actual glucose response for the test of Example 5.
  • Fig. 24 is a diagram of the excitation signal utilized in the test of Example 6.
  • Fig. 25 is a plot of the correlation coefficient r 2 between hematocrit and DC response current plotted against hematocrit in the test of Example 6.
  • Fig. 26 is a plot of AC admittance phase angle versus hematocrit for the test of Example 6.
  • Fig. 27 is a plot of the uncompensated DC response versus actual glucose for the test of Example 6.
  • Fig. 28 is a plot of the compensated DC response versus actual glucose for a 1.1 second Total Test Time of Example 6.
  • Fig. 29 is a plot of the compensated DC response versus actual glucose for a 1.5 second Total Test Time of Example 6.
  • Fig. 30 is a plot of the compensated DC response versus actual glucose for a 1.9 second Total Test Time of Example 6.
  • Fig. 31 is a table detailing the heights and widths of the capillary fill channels used in the test devices of Example 8, as well as schematic diagrams of convex and concave sample flow fronts in a capillary fill space.
  • Figs. 32A-C are schematic plan views of a test strip illustrating the potential for biased measurement results when a concave flow front encounters a prior art dose sufficiency electrode.
  • Fig. 33 is a schematic plan view of a test strip of the present invention having a pair of perpendicular dose sufficiency electrodes that are independent from the measurement electrodes.
  • Figs. 34A-B are schematic plan views of the test strip of FIG. 33 containing samples with convex and concave flow fronts, respectively.
  • Figs. 35A-B are schematic plan views of a test strip of the present invention having a pair of parallel dose sufficiency electrodes that are independent from the measurement electrodes.
  • Fig. 36 is a schematic plan view of the test strip of Fig. 35, schematically illustrating the electric field lines that communicate between the electrode gap when the electrodes are covered with sample.
  • a system and method according to the present invention permit the accurate measurement of an analyte in a fluid.
  • the measurement of the analyte remains accurate despite the presence of interferants, which would otherwise cause error.
  • a blood glucose meter according to the present invention measures the concentration of blood glucose without error that is typically caused by variations in the temperature and the hematocrit level of the sample.
  • the accurate measurement of blood glucose is invaluable to the prevention of blindness, loss of circulation, and other complications of inadequate regulation of blood glucose in diabetics.
  • An additional advantage of a system and method according to the present invention is that measurements can be made much more rapidly and with much smaller sample volumes, making it more convenient for the diabetic person to measure their blood glucose.
  • accurate and rapid measurement of other analytes in blood, urine, or other biological fluids provides for improved diagnosis and treatment of a wide range of medical conditions.
  • electrochemical blood glucose meters typically (but not always) measure the electrochemical response of a blood sample in the presence of a reagent.
  • the reagent reacts with the glucose to produce charge carriers that are not otherwise present in blood. Consequently, the electrochemical response of the blood in the presence of a given signal is intended to be primarily dependent upon the concentration of blood glucose.
  • the electrochemical response of the blood to a given signal is dependent upon other factors, including hematocrit and temperature. See, for example, U.S. Patents Nos.
  • a preferred embodiment system and method for measuring blood glucose according to the present invention operates generally by using the signal- dependence of the contribution of various factors to the impedance (from which admittance and phase angle may be derived) of a blood sample. Because the contribution of various factors to the impedance of a blood sample is a function of the applied signal, the effects of confounding factors (that is, those other than the factors sought to be measured) can be substantially reduced by measuring the impedance of the blood sample to multiple signals. In particular, the effects of confounding factors, (primarily temperature and hematocrit, but also including chemical interferants such as oxygen), contribute primarily to the resistivity of the sample, while the glucose-dependent reaction contributes primarily to the capacitance.
  • confounding factors primarily temperature and hematocrit, but also including chemical interferants such as oxygen
  • the effects of the confounding factors can be eliminated by measuring the impedance of the blood sample to an AC excitation, either alone or in combination with a DC excitation.
  • the impedance (or the impedance derived admittance and phase information) of the AC signal is then used to correct the DC signal or AC derived capacitance for the effects of interferants. It will be appreciated that measurements at sufficiently high AC frequencies are relatively insensitive to the capacitive component of the sample's impedance, while low frequency (including DC) measurements are increasingly (with decreasing frequency) sensitive to both the resistive and the capacitive components of the sample's impedance. The resistive and capacitive components of the impedance can be better isolated by measuring the impedance at a larger number of frequencies.
  • the impedance may be measured at greater than ten frequencies, but preferably at between two and ten frequencies, and most preferably at between two and five frequencies.
  • a signal having an AC component refers to a signal which has some alternating potential (voltage) portions.
  • the signal may be an "AC signal” having 100% alternating potential (voltage) and no
  • the signal may have AC and DC portions separated in time; or the signal may be AC with a DC offset (AC and DC signals superimposed).
  • Figure 1 illustrates a preferred embodiment excitation signal suitable for use in a system and method according to the present invention, indicated generally at 100, in which DC excitation and four frequencies of AC excitation are used.
  • Figure 1 also illustrates a typical response to the excitation when the excitation is applied to a sample of whole blood mixed with an appropriate reagent, the response indicated generally at 102.
  • a relatively high frequency signal is applied, starting at time 101.
  • the frequency is between about 10kHz and about 20kHz, and has an amplitude between about 12.4mV and about 56.6mV.
  • a frequency of 20kHz is used in the example of FIG. 1.
  • Those skilled in the art will appreciate that these values may be optimised to various parameters such as cell geometry and the particular cell chemistry.
  • a test strip is inserted into the meter and several possible responses to the insertion of the test strip into the glucose meter are shown.
  • the test strip may also be inserted before the excitation signal 100 is initiated (i.e. before time 101); however, the test strip itself may advantageously be tested as a control for the suitability of the strip. It is therefore desirable that the excitation signal 100 be initiated prior to test strip insertion.
  • relatively large current leakage as shown at 112 may occur if the strip is wet, either because the test strip was pre-dosed, or due to environmental moisture. If the test strip has been pre-dosed and permitted to largely or completely dry out, an intermediate current leakage may occur, as shown at 114.
  • insertion of the test strip will cause no or negligible leakage current due to an expected absence of charge carriers between the test electrodes, as shown at 116.
  • Measured current leakage above a predetermined threshold level will preferably cause an error message to be displayed and prevent the test from continuing.
  • the user doses the strip, as shown at time 120. While the blood sample is covering the electrodes the current response will rapidly increase, as the glucose reacts with the reagent and the contact area increases to maximum. The response current will reach a stable state, which indicates the impedance of the sample at this frequency.
  • the excitation frequency is then stepped down to about 10kHz in the preferred embodiment, as shown at time 130.
  • Another measurement is made and recorded by the test meter, and the frequency is stepped down to about 2kHz in the preferred embodiment, as shown at 140.
  • a third measurement is made and recorded by the test meter at this frequency.
  • a fourth measurement is made at about 1kHz in the preferred embodiment, as shown at 150.
  • measurements are taken at regular intervals (e.g. 10 points per cycle).
  • the stable state response may be measured as current or voltage (preferably both magnitude and phase) and the impedance and/or admittance can be calculated therefrom.
  • the present specification and claims may refer alternately to the AC response as impedance or admittance (magnitude and/or phase), resistance, conductivity, current or charge, and to the DC response as current, charge, resistance or conductivity, those skilled in the art will recognize that these measures are interchangeable, it only being necessary to adjust the measurement and correction mathematics to account for which measure is being employed.
  • the test meter applies a voltage to one electrode and measures the current response at the other electrode to obtain both the AC and DC response.
  • measurements are made at fewer or more frequencies.
  • measurements are made at at least two AC frequencies at least an order of magnitude apart. If more than two AC frequencies are used, then it is preferable that the highest and lowest frequencies be at least an order of magnitude apart.
  • AC signal may be used in an AC signal, including, for example, sinusoidal, trapezoidal, triangle, square and filtered square.
  • the AC signal has a filtered square waveform that approximates a sine wave. This waveform can be generated more economically than a true sine wave, using a square wave generator and one or more filters.
  • the signal is preferably briefly reduced to zero amplitude, as shown at 160.
  • the DC excitation is then begun, as shown at 170.
  • the amplitude of the DC excitation is advantageously selected based on the reagent being used, in order to maximise the resulting response or response robustness. For example, if ferricyanide is being used in a biamperometry system, the DC amplitude is preferably about 300mN. For another example, if a nitrosoaniline derivative is being used in a biamperometry system, the DC amplitude is preferably about 500-550mV.
  • the DC applitude is preferably 600 mV (versus the silver/silver chloride reference electrode) for ferricyanide, and 40-100 mV (versus the silver/silver chloride reference electrode) for nitrosoaniline derivative.
  • measurements are preferably made at a rate of 100 pts/sec.
  • the current response will follow a decay curve (known as a Cottrell curve), as the reaction is limited by the diffusion of unreacted glucose next to the working electrode.
  • the resulting stable-state amplitude (measured or projected) is used to determine a glucose estimation of the sample, as is known in the art.
  • a corrected estimation is then determined that corresponds more closely to the concentration of glucose in the blood, by using the impedance of the sample to the AC signal to correct for the effects of interferants, as explained in greater detail hereinbelow.
  • a method according to the present invention may also be used to measure the concentration of other analytes and in other fluids.
  • a method according to the present invention may be used to measure the concentration of a medically significant analyte in urine, saliva, spinal fluid, etc.
  • a method according to the present invention may be adapted to measure the concentration of, for example, lactic acid, hydroxybutyric acid, etc.
  • Figure 2 illustrates an excitation signal suitable for use in a system and method according to the present invention in which some of the AC and DC components are applied simultaneously, indicated generally at 200, and having corresponding events numbered correspondingly to Figure 1 (so, for example, the signal 200 is initiated at time 201, and a strip is inserted at time 210, etc.).
  • the signal 200 has a frequency of about 10-20kHz and an amplitude of about 12.4-56.6mV.
  • a DC offset is superimposed, as shown at 270.
  • Typical AC and DC responses are shown in Figure 2. The AC and DC responses are measured simultaneously and mathematically deconvoluted and used to determine the impedance (admittance magnitude and phase) and the amperometric or coulometric response.
  • a system for measuring blood glucose advantageously employs a blood glucose meter and test strips generally similar to those used in prior art systems, such as those commercially available from Roche Diagnostics, and such as are described in U.S. Patents Nos. 6,270,637; and 5,989,917, which are hereby incorporated in their entireties.
  • These test strips provide apparati having a sample cell in which the blood sample is received for testing, and electrodes disposed within the sample cell through which the excitation signal is provided and the measurements are made.
  • these test strips and meters may advantageously be used for the measurement of glucose in blood, but that other apparati may be more suitable for the measurement of other analytes or other biological fluids when practising the present invention.
  • a suitable glucose meter may be adapted from such known meters by the addition of electronic circuitry that generates and measures signals having AC and DC components, such as those described hereinabove, and by being programmed to correct the DC measurement using the AC measurement(s), as described in greater detail hereinbelow.
  • AC and DC components such as those described hereinabove
  • the specific geometry and chemistry of the test strips can cause variations in the relationships between the concentration of glucose, hematocrit, and temperature, and the impedance of a sample.
  • a given combination of test strip geometry and chemistry must be calibrated, and the meter programmed with the corresponding algorithm.
  • the present invention comprehends the application of excitation signals in any order and combination. For example, the present invention comprehends the application of 1) AC only, 2) AC then DC, 3) AC then DC then AC, 4) DC then AC, and 5) AC with a DC offset, just to name a few of the possible permutations.
  • hematocrit value As an example, it is intended that such statements include not only determining the actual hematocrit value, but also a hematocrit correction factor vs. some nominal point. In other words, the process may never actually arrive at a number equal to the hematocrit value of the sample, but instead determine that the sample's hematocrit differs from a nominal value by a certain amount. Both concepts are intended to be covered by statements such as "determine the hematocrit value.”
  • Example 1 The measurements made in Example 1 were achieved using the test strip illustrated in Figures 3A-B and indicated generally at 300.
  • the test strip 300 includes a capillary fill space containing a relatively thick film reagent and working and counter electrodes, as described in U.S. Patent No. 5,997,817, which is hereby incorporated by reference.
  • the test strip 300 is commercially available from Roche Diagnostics Corporation (Indianapolis, IN) under the brand name Comfort Curve ®.
  • the ferricyanide reagent used had the composition described in Tables I and II.
  • a "dose response" study was performed, in which glycollyzed (glucose depleted) blood was divided into discrete aliquots and controlled levels of glucose were added to obtain five different known levels of glucose in the blood samples.
  • the resulting DC current profile was then examined as two parameters were varied.
  • the first parameter was the Incubation Time, or the time between the detection of the blood sample being applied to the test strip 300 and the application of the DC potential to the test strip 300.
  • the second parameter to be varied was the Read Time, or the time period after application of the DC potential and the measurement of the resulting current.
  • the length of time between detection of the blood sample being applied to the test strip to the taking of the last measurement used in the concentration determination calculations is the Total Test Time. In this study, therefore, the sum of the Incubation Time and the Read Time is the Total Test Time.
  • the results of this study are illustrated in Figures 5 and 6.
  • the barrier to implementation of such fast test times in a consumer glucose test device is the variation from blood sample to blood sample of the level of interference from the presence of blood cells in the sample.
  • the hematocrit (the percentage of the volume of a blood sample which is comprised of cells versus plasma) varies from individual to individual.
  • the interference effect of hematocrit on such measurements is fairly complex. In the tests of Example 1, however, all samples contained the same level of hematocrit. With no variable hematocrit influence at the different glucose levels, the hematocrit term cancels out in the correlation figures.
  • test strip 300 includes a capillary fll space containing a relatively thick film reagent and working and counter electrodes, as described in U.S. Patent No. 5,997,817, which is hereby incorporated herein by reference.
  • capillary blood samples from various fingerstick donors were applied to test strip 300 and the excitation potentials illustrated in Figure 4 were applied to the electrodes.
  • the excitation comprised a 2 kHz 40 mV rms AC signal applied between 0 seconds and approximately 4.5 seconds after sample application, followed by a 300 mV DC signal applied thereafter.
  • the AC response of the sample was derived as admittance (the inverse of impedance).
  • the admittance response is proportionate to the hematocrit level of the sample in a temperature dependent manner.
  • the relationship between admittance, hematocrit and testing temperature is illustrated in Figure 7.
  • the data used for the admittance charted in Figure 7 is the last admittance measurement made for each sample during the AC portion of the excitation illustrated in Figure 4.
  • Equation 1 Using this relationship to predict the blood hematocrit is accomplished using test temperature data reported by the temperature sensor in the meter and the measured admittance.
  • c 0 , c 1 and c 2 are constants
  • d ⁇ is the deviation in temperature from a center defined as “nominal” (24°C for example)
  • H est is the estimated deviation in hematocrit from a similar "nominal” value.
  • the actual hematocrit value is not necessary, and it is generally preferred to produce a response which is proportionate but centers around a nominal hematocrit.
  • the deviation from a nominal value of 42% would be 28%, while conversely for a 20% hematocrit the deviation from that same nominal value would be -22%.
  • the accuracy of the DC glucose response can be greatly improved by combining the estimated hematocrit, temperature and DC response to correct for the hematocrit interference in the DC response as follows:
  • Equation 2 where DC is the measured glucose current response to the applied DC signal and PRED is the compensated (predicted) glucose response corrected for the effects of hematocrit and temperature.
  • the constants (a 0j hcti, hct 2? taui, tau 2 , ai, hct 3j hct ⁇ tau and tau 4 ) in Equation 2 can be determined using regression analysis, as is known in the art.
  • Figure 8 illustrates the uncompensated 5.5 second DC glucose response of all of the capillary blood samples as temperature varies (ignoring the AC measurement data). As will be appreciated, there is a wide variation in the DC current response as temperature and hematocrit vary.
  • Figure 9 illustrates the correlation between the actual blood glucose level of the sample versus the predicted response using Equation 2. As can be seen, when the DC response is compensated for hematocrit levels using the AC response data, r 2 values of 0.9404 to 0.9605 are achieved with a Total Test Time of 5.5 seconds.
  • Example 3 Use of AC Phase Angle to Estimate Blood Glucose Levels and Hematocrit
  • Example 3 The measurements made in Example 3 were also achieved using the test strip illustrated in Figures 3A-B and indicated generally at 300.
  • the test strip 300 includes a capillary fill space containing a relatively thick film reagent and working and counter electrodes, as described in U.S. Patent No. 5,997,817, which is hereby incorporated by reference. Because hematocrit levels from capillary blood samples typically vary only between 30% - 50%, spiked venous blood samples having a hematocrit range from 20% - 70% were used for this Example 3. Five levels of glucose, temperature (14, 21, 27, 36 and 42 °C) and hematocrit (20, 30, 45, 60 and 70%) were independently varied, producing a covariance study with 125 samples.
  • the excitation comprised a 2 kHz AC signal for approximately 4.1 seconds, a 1 kHz AC signal for approximately 0.1 seconds, and a 200 Hz signal for approximately 0.1 seconds. All three AC signals had an amplitude of 56.56 mV peak. No DC excitation was used in this example.
  • the Total Test Time was 4.3 seconds from sample application time.
  • phase angle is also a function of the sample glucose level in the case of this test strip and reagent.
  • Figure 11 where the AC phase angle for each of the three test frequencies is plotted versus the reference glucose level. Regression analysis for each of the three frequencies produces AC phase angle-to-reference glucose level r 2 correlation values of 0.9114 at 2 kHz, 0.9354 at 1 kHz, and 0.9635 at 200 Hz.
  • the present invention therefore comprehends the use of the AC phase angle to measure glucose levels.
  • the AC excitation frequency producing the measured phase angle is preferably 2 kHz or below, more preferably 1 kHz or below, and most preferably 200 Hz or below, but not including DC excitation.
  • the linearized relationship between the 200 Hz phase angle response and the blood glucose level is as follows:
  • the resulting compensated (predicted) response PRED versus glucose for the 125 blood samples is shown in Figure 12.
  • This Example 3 demonstrates again the value of AC measurements for compensating for interferants that reduce the accuracy of blood glucose measurements. Using an existing commercially available sensor, the present invention yields a 4.3 second Total Test Time with an overall r 2 of 0.9870.
  • Glu is the known glucose concentration
  • HCT is the known hematocrit concentration
  • Temp is the known temperature.
  • the determined coefficients revealed that the temperature coefficient (c 3 ) was essentially zero at 20 kHz and 10 kHz, cancelling temperature from the equation at these frequencies.
  • the glucose coefficient (ci) is essentially zero at all of the AC frequencies because, as explained hereinabove, the higher frequency AC impedance measurements are largely unaffected by glucose levels and are therefore useful for measuring the levels of interfering substances. It was therefore found that the hematocrit level could be determined independent of temperature and glucose level using only the AC phase angle measurements. In a preferred embodiment, the hematocrit may be measured using the phase angle data from all four measured frequencies:
  • the coefficients can be empirically determined for any particular test strip architecture and reagent chemistry.
  • the present invention therefore may be used to estimate hematocrit using only AC phase angle measurements preferably made at at least one AC frequency, more preferably made at at least two AC frequencies, and most preferably made at at least four AC frequencies.
  • Example 4 The measurements made in Example 4 were also achieved using the test strip illustrated in Figures 3A-B and indicated generally at 300.
  • the test strip 300 includes a capillary fill space containing a relatively thick film reagent and working and counter electrodes, as described in U.S. Patent No. 5,997,817, which is hereby incorporated by reference.
  • the test strip was modified from that described in U.S. Patent No. 5,997,817, however, by the use of a different reagent.
  • the nitrosoaniline reagent used had the composition described in Tables III and IV.
  • nitrosoaniline reagent is as follows:
  • Step 1 Prepare a buffer solution by adding 1.54g of dibasic potassium phosphate (anhydrous) to 43.5 g of deionized water. Mix until the potassium phosphate is dissolved.
  • Step 2 To the solution from step 1, add 1.14g of monobasic potassium phosphate and mix until dissolved.
  • Step 3 To the solution from step 2, add 0.59g of disodium succinate (hexahydrate) and mix until dissolved.
  • Step 4 Verify that the pH of the solution from step 3 is 6.7 +/- 0.1. Adjustment should not be necessary.
  • Step 5 Prepare a 5g aliquot of the solution from step 4, and to this add 113 kilounits (by DCJP assay) of the apoenzyme of quinoprotein glucose dehydrogenase (EC#: 1.1.99.17). This is approximately 0.1646g. Mix, slowly, until the protein is dissolved.
  • Step 6 To the solution from step 5, add 4.2 milligrams of PQQ and mix for no less than 2 hours to allow the PQQ and the apoenzyme to reassociate in order to provide functional enzyme.
  • Step 7 To the solution from step 4, add 0.66g of the mediator precursor, N,N- bis(hydroxyethyl)-3-methoxy-4-nitrosoaniline (hydrochloride) (BM 31.1144). Mix until dissolved (this solution will have a greenish black coloration).
  • Step 8 Measure the pH of the solution from step 7 and adjust the pH to a target of 7.0 +/- 0.1. Normally this is accomplished with 1.197g of 5N potassium hydroxide. Because the specific amount of potassium hydroxide may vary as needed to reach the desired pH, generally deviations in mass from the 1.197g are made up from an aliquot of 3.309g deionized water which is also added at this step.
  • Step 9 Prepare a solution of Natrosol 250M (available from Aqualon), by slowly sprinkling 0.047g over 44.57g of deionized water which is mixed (using a rotary mixer and blade impeller) at a rate of approximately 600 rpm in a vessel of sufficient depth such that the rotor blades are not exposed nor the solution running over. Mix until the Natrosol is completely dissolved.
  • Step 10 Prepare a suspension of Avicel RC-591F (available from FMS), by slowly sprinkling 0.54g onto the surface of the solution from step 9, mixing at a rate of approximately 600 rpm for not less than 60 minutes before proceeding.
  • Step 11 To the suspension from step 10, gradually add 0.81g of Polyethylene oxide of 300kDa mean molecular weight while mixing and continue to mix for not less than 60 minutes before proceeding.
  • Step 12 Gradually add the solution from step 8 to the suspension from step 11 while mixing. Reduce the mixing rate to 400 rpm.
  • Step 13 To the reagent from step 12, add 1.89g of Trehalose and continue mixing for not less than 15 minutes.
  • Step 14 To the reagent from step 13, add 32.7mg of Triton X-100 (available from Roche Diagnostics) and continue mixing.
  • Triton X-100 available from Roche Diagnostics
  • Step 15 To the reagent from step 14, add the enzyme solution from step 6. Mix for no less than 30 minutes. At this point the reagent is complete. At room teperature the wet reagent mass is considered acceptable for use for 24 hours.
  • Spiked venous blood samples were used. Five levels of glucose, four temperatures (19, 23, 32 and 38 °C) and five levels of hematocrit (20, 30, 45, 60 and 70%) were independently varied, producing a covariance study with 100 samples. 16 test strips 300 were tested for each unique combination of glucose, temperature and hematocrit. The blood samples were applied to test strip 300 and the excitation potentials illustrated in Figure 13 were applied to the electrodes.
  • the excitation comprised a 3.2 kHz AC signal for approximately 4.0 seconds, a 2.13 kHz AC signal for approximately 0.1 seconds, a 1.07 kHz AC signal for approximately 0.1 seconds, a 200 Hz AC signal for approximately 0.1 seconds, a 25 Hz AC signal for approximately 0.1 seconds, followed by a DC signal of 550 mV for approximately 1.0 second. All four AC signals had an amplitude of 56.56 mV peak.
  • the Total Test Time was 5.5 seconds from sample application time.
  • the AC response of the sample was derived as admittance (the inverse of impedance).
  • the admittance response is proportionate to the hematocrit level of the sample in a temperature dependent manner.
  • the relationship between admittance, hematocrit and testing temperature is illustrated in Figure 14.
  • T x HCT cross product term
  • Equation 7 Co, ci, c 2 and c 3 are constants, dT is the deviation in temperature from a center defined as “nominal” (24°C for example), and Hest is the estimated deviation in hematocrit from a similar "nominal" value.
  • the actual hematocrit value is not necessary, and it is generally preferred to produce a response which is proportionate but centers around a nominal hematocrit.
  • Equation 8 The constants in Equation 8 can be determined using regression analysis, as is known in the art.
  • Figure 15 illustrates the uncompensated 5.5 second DC glucose response of all of the blood samples as hematocrit and temperature vary (ignoring the AC measurement data). As will be appreciated, there is a wide variation in the DC current response as temperature and hematocrit vary.
  • Figure 16 illustrates the correlation between the actual blood glucose level of the sample versus the predicted response using Equation 8. As can be seen, when the DC response is compensated for hematocrit levels using the AC response data, an overall r value of 0.9818 is achieved with a Total Test Time of 5.5 seconds. This demonstrates the applicability of the present invention in achieving high accuracy and fast test times with a different reagent class than was used in Examples 1-3.
  • Example 5 Combined AC and DC Measurement Using a 0.397 ⁇ l Sample
  • test strip 1700 comprises a bottom foil layer 1702 formed from an opaque piece of 350 ⁇ m thick polyester (in the preferred embodiment this is Melinex 329 available from DuPont) coated with a 50 nm conductive (gold) layer (by sputtering or vapor deposition, for example). Electrodes and connecting traces are then patterned in the conductive layer by a laser ablation process to form working, counter, and dose sufficiency electrodes (described in greater detail hereinbelow) as shown.
  • Melinex 329 available from DuPont
  • the laser ablation process is performed by means of an excimer laser which passes through a chrome-on-quartz mask.
  • the mask pattern causes parts of the laser field to be reflected while allowing other parts of the field to pass through, creating a pattern on the gold which is ejected from the surface where contacted by the laser light.
  • the bottom foil layer 1702 is then coated in the area extending over the electrodes with a reagent layer 1704 in the form of an extremely thin reagent film.
  • This procedure places a stripe of approximately 7.2 millimeters width across the bottom foil 1702 in the region labelled "Reagent Layer" on Figure 17. In the present Example, this region is coated at a wet-coat weight of 50 grams per square meter of coated surface area leaving a dried reagent less than 20 ⁇ m thick.
  • the reagent stripe is dried conventionally with an in-line drying system where the nominal air temperature is at 110°C. The rate of processing is nominally 30-38 meters per minute and depends upon the rheology of the reagent.
  • the materials are processed in continuous reels such that the electrode pattern is orthogonal to the length of the reel, in the case of the bottom foil 1702.
  • the spacer is slit and placed in a reel-to-reel process onto the bottom foil 1702.
  • Two spacers 1706 formed from 100 ⁇ m polyester (in the preferred embodiment this is Melinex 329 available from DuPont) coated with 25 ⁇ m PSA (hydrophobic adhesive) on both the dorsal and ventral surfaces are applied to the bottom foil layer 1702, such that the spacers 1706 are separated by 1.5 mm and the working, counter and dose sufficiency electrodes are centered in this gap.
  • the hydrophilic film is coated with a mixture of Vitel and Rhodapex surfactant at a nominal thickness of 10 microns.
  • the top foil layer 1708 is laminated using a reel-to-reel process. The sensors can then be produced from the resulting reels of material by means of slitting and cutting.
  • the 1.5 mm gap in the spacers 1706 therefore forms a capillary fill space between the bottom foil layer 1702 and the top foil layer 1708.
  • the hydrophobic adhesive on the spacers 1706 prevents the test sample from flowing into the reagent under the spacers 1706, thereby defining the test chamber volume. Because the test strip 1700 is 5 mm wide and the combined height of the spacer 1706 and conductive layer is 0.15 mm, the sample receiving chamber volume is
  • the distance from the sample application port 1710 and the dose sufficiency electrodes is 1.765 mm.
  • the volume of sample needed to sufficiently cover the working, counter and dose sufficiency electrodes i.e. the minimum sample volume necessary for a measurement.
  • the reagent composition for the test strip 1700 is given in Tables V and VI.
  • Mass per Sensor is the amount of the component within the capillary; this does not reflect the reagent that is outside of the capillary.
  • Step 1 Prepare a buffer solution by adding 1.654g of dibasic potassium phosphate (trihydrous) to 31.394 g of deionized water. Mix until the potassium phosphate is dissolved.
  • Step 2 To the solution from step 1, add 0.941g of monobasic potassium phosphate and mix until dissolved.
  • Step 3 To the solution from step 2, add 0.285g of disodium succinate (hexahydrate) and mix until dissolved.
  • Step 4 Verify that the pH of the solution from step 3 is 6.8 +/- 0.1. Adjustment should not be necessary.
  • Step 5 Prepare a 4.68g aliquot of the solution from step 4, and to this add 229 kilounits (by DCIP assay) of the apoenzyme of quinoprotein glucose dehydrogenase (EC#: 1.1.99.17). This is approximately 0.3321g. Mix, slowly, until the protein is dissolved.
  • Step 6 To the solution from step 5, add 9.3 milligrams of PQQ and mix for no less than 2 hours to allow the PQQ and the apoenzyme to reassociate in order to provide functional enzyme.
  • Step 7 Prepare a solution by dissolving 0.772g of Trehalose into 1.218g of deionized water.
  • Step 8 After enzyme reassociation, add the solution from step 7 to the solution from step 6 and continue mixing for not less than 30 minutes.
  • Step 9 To the solution from step 4, add 0.690g of the mediator precursor BM 31.1144. Mix until dissolved (this solution will have a greenish black coloration).
  • Step 10 Measure the pH of the solution from step 9 and adjust the pH to a target of 7.0 +/- 0.1. Normally this is accomplished with 1.006g of 5N potassium hydroxide. Because the specific amount of potassium hydroxide may vary as needed to reach the desired pH, generally deviations in mass from the 1.006g are made up from an aliquot of 3.767g deionized water which is also added at this step.
  • Step 11 Prepare a solution of Natrosol 250M (available from Aqualon), by slowly sprinkling 0.350g over 56.191g of deionized water which is mixed (using a rotary mixer and blade impeller) at an initial rate of approximately 600 rpm in a vessel of sufficient depth such that the rotor blades are not exposed nor the solution running over. As the Natrosol dissolves, the mixing rate needs to be increased to a speed of 1.2 - 1.4 krpm. Mix until the Natrosol is completely dissolved. Note that the resulting matrix will be extremely viscous - this is expected.
  • Natrosol 250M available from Aqualon
  • Step 12 To the solution from step 11, gradually add 0.350g of Sodium- Carboxymethylcellulose 7HF (available from Aqualon). Mix until the polymer is dissolved.
  • Sodium- Carboxymethylcellulose 7HF available from Aqualon
  • Step 13 To the suspension from step 13, gradually add 1.0 lg of Polyethylene oxide of 300kDa mean molecular weight while mixing and continue to mix for not less than 60 minutes before proceeding.
  • Step 14 Gradually add the solution from step 10 to the suspension from step 13 while mixing.
  • Step 15 To the reagent from step 14, add 34.2mg of Triton X-100 (available from Roche Diagnostics) and continue mixing.
  • Step 16 To the reagent from step 15, add the enzyme solution from step 8. Mix for no less than 30 minutes. At this point the reagent is complete. At room teperature the wet reagent mass is considered acceptable for use for 24 hours.
  • the measurement results illustrated in FIG. 18 show the correlation coefficient r 2 between the DC current response and the glucose level as the Read Time varies for three combinations of temperature and hematocrit. These results demonstrate that a robust DC response should be anticipated for tests as fast as 1 second. However, those skilled in the art will recognise that there are undesirable variations in the sensor accuracy (correlation) due to the interfering effects of temperature and hematocrit levels, suggesting that the combined AC and DC measurement method of the present invention should produce more closely correlated results.
  • the excitation comprised a 10 kHz AC signal applied for approximately 1.8 seconds, a 20 kHz AC signal applied for approximately 0.2 seconds, a 2 Hz AC signal applied for approximately 0.2 seconds, a 1Hz AC signal applied for approximately 0.2 seconds, and a DC signal applied for approximately 0.5 seconds.
  • the AC signals had an amplitude of 12.7 mV peak, while the DC signal had an amplitude of 550 mV.
  • the Total Test Time was 3.0 seconds.
  • phase angle of the 20 kHz AC response is plotted versus hematocrit in Figure 21.
  • the results for phase angle measured at 10 kHz are similar.
  • the hematocrit of the blood sample may therefore be reliably estimated using only the phase angle information as follows:
  • the correlation between phase angle and hematocrit was better at higher frequencies. Because of this, the c 2 constant approaches zero and H es t can reliably be estimated using only the 10 kHz and 20 kHz data. Use of lower frequencies, however, allows for slight improvements in the strip-to-strip variability of the H es t function.
  • the present invention therefore may be used to estimate hematocrit using only AC phase angle measurements preferably made at at least one AC frequency, more preferably made at at least two AC frequencies, and most preferably made at at least four AC frequencies. Because the hematocrit can be determined using only the AC response data, and we know from Figure 20 that admittance is linearly related to hematocrit and temperature, we can now determine the temperature of the sample under analysis using only the AC response as follows:
  • a thermistor is placed in the test meter near where the test strip is inserted into the meter. Because the thermistor is measuring a temperature remote from the actual sample, it is at best only a rough approximation of the true sample temperature. Furthermore, if the sample temperature is changing (for example due to evaporation), then the thermal inertia of the test meter and even the thermistor itself will prevent the meter-mounted thermistor from accurately reflecting the true temperature of the sample under test.
  • the temperature estimation of the present invention is derived from measurements made within the sample under test (i.e. within the reaction zone in which the sample under test reacts with the reagent), thereby eliminating any error introduced by the sample being remote from the measuring location. Additionally, the temperature estimation of the present invention is made using data that was collected very close in time to the glucose measurement data that will be corrected using the temperature estimation, thereby further improving accuracy. This represents a significant improvement over the prior art methods.
  • the accuracy of the DC glucose response can be greatly improved by combining the estimated hematocrit, temperature and DC response to correct for the hematocrit and temperature interference in the DC response as follows:
  • Equation 13 (ao + hcttHest + hct 2 He St 2 + tautest + tau 2 Test) (Equation 13) + (a ⁇ DC)(l + hctsHest + hct 4 H es t 2 )(l + tau 3 T est + tau 4 T est )
  • the constants in Equation 13 can be determined using regression analysis, as is known in the art.
  • the present invention therefore allows one to estimate hematocrit by using the AC phase angle response (Equation 11).
  • the estimated hematocrit and the measured AC admittance can be used to determine the estimated temperature (Equation 12).
  • the estimated hematocrit and estimated temperature can be used with the measured DC response to obtain the predicted glucose concentration (Equation 13).
  • the excitation profile illustrated in Figure 24 was utilized in order to decrease the Total Test Time. As described above with respect to Example 5, it was determined that the phase angle at 20 kHz and at 10 kHz were most closely correlated with the hematocrit estimation. It was therefore decided to limit the AC portion of the excitation to these two frequencies in Example 6 in order to decrease the Total Test Time. In order to make further reductions in Total Test Time, the 10 kHz AC excitation was applied simultaneously with the DC signal (i.e. an AC signal with a DC offset), the theory being that this combined mode would allow for the collection of simultaneous results for DC current, AC phase and AC admittance, providing the fastest possible results.
  • the DC signal i.e. an AC signal with a DC offset
  • the 20 kHz signal was applied for 0.9 seconds. Thereafter, the 10 kHz and DC signals were applied simultaneously for 1.0 second after a 0.1 second interval.
  • 49 spiked venous blood samples representing seven glucose levels and seven hematocrit levels were tested.
  • the correlation coefficient r 2 between the DC current and the blood hematocrit was then examined at three DC measurement times: 1.1 seconds, 1.5 seconds and 1.9 seconds after sample application. These correlations are plotted versus hematocrit level in Figure 25. All of these results are comparable, although the correlation is generally poorest at 1.1 seconds and generally best at 1.5 seconds. The minimum correlation coefficient, however, exceeds 0.99.
  • Figure 26 illustrates the phase angle at 20 kHz plotted against hematocrit levels.
  • the correlation between these two sets of data is very good, therefore it was decided that the 10 kHz data was unnecessary for estimating hematocrit.
  • the hematocrit can therefore be estimated solely from the 20 kHz phase angle data as follows:
  • Figure 27 illustrates the DC current response versus glucose level for all measured hematocrit levels as the read time is varied between 1.1 seconds, 1.5 seconds and 1.9 seconds. Not surprisingly, the DC current at 1.1 seconds is greater than the DC current at 1.5 seconds, which is greater than the DC current at 1.9 seconds. Those skilled in the art will recognise that the hematocrit level has a large effect on the DC current, particularly at high glucose concentrations.
  • the accuracy of the DC glucose response can be greatly improved by compensating for the interference caused by hematocrit as follows:
  • Equation 15 does not include temperature compensation terms since temperature variation was not included in the experiment of this Example 6, it can be reasonably inferred from previous examples that a Test term could be included using the 10 kHz and 20 kHz admittance values in combination with the H es t term. Because the hematocrit can be reliably estimated using only the 20 kHz phase angle measurement data, the hematocrit compensated predicted glucose response can be determined using only this phase angle information and the measured DC response.
  • the compensated DC response versus glucose level for only the DC read at 1.1 seconds (representing a 1.1 second Total Test Time) is illustrated in Figure 28. The data shows an overall r 2 correlation of 0.9947 with a 1.1 second Total Test Time.
  • Example 7 Use of AC Phase Angle to Detect an Abused Sensor
  • CFR Cottrell Failsafe Ratio
  • the Cottrell response of the biosensor in the Confidence system can be given by:
  • n electrons freed per glucose molecule
  • F Faraday's Constant
  • D diffusion coefficient
  • NCFR Cottrell failsafe ratio
  • a Current Sum Failsafe can be devised that places a check on the Cottrell response of the sensor by summing all of the acquired currents during sensor measurement. When the final current is acquired, it is multiplied by two constants
  • the preferred embodiment performs the following check when there is a single DC block:
  • MCFR Modified Cottrell Failsafe Ratio
  • the preferred embodiment performs the following check when there are two DC blocks:
  • the NCFR (and MCFR) is correlated with hematocrit.
  • the AC phase angle is also correlated with hematocrit. It follows then, that the AC phase angle and the NCFR are correlated with one another. This relationship holds only if the sensor is unabused. The correlation degrades for an abused sensor.
  • Equation 21 the intercept term fso can be chosen such that a
  • each of these solutions each incorporate one or the other electrode of the measurement pair in communication with either the upstream or the downstream indicator electrodes to assess the presence of a sufficient volume of sample to avoid biased test results.
  • failure modes persist wherein the devices remain prone to misinterpretation of sample sufficiency.
  • the present inventors have determined that such erroneous conclusions are related primarily to the distances between a downstream member of a measurement electrode pair (coplanar or opposing geometries) and the dose detection electrode, in combination with the diversity of non-uniform flow fronts.
  • a sample traversing the capillary fill space having an aberrant (uneven) flow front can close the circuit between a measurement electrode and an indicator electrode and erroneously advise the system that sufficient sample is present to avoid a biased measurement result.
  • Another problem with prior art dose sufficiency methodologies determined by the present inventors relates to the use of one or the other of the available measurement electrodes in electrical communication with an upstream or downstream dose detection electrode.
  • the stoichiometry of the measurement zone (the area above or between the measurement electrodes) is perturbed during the dose detect/dose sufficiency test cycle prior to making a measurement of the analyte of interest residing in the measurement zone.
  • sample matrices vary radically in make-up, the fill properties of these samples also vary, resulting in timing differences between sample types.
  • Such erratic timing routines act as an additional source of imprecision and expanded total system error metrics.
  • Example 8 Determination of Fluid Flow Front Behavior in a Capillary Fill Space
  • test fixtures comprising two sheets of clear polycarbonate sheets joined together with double-sided adhesive tape were used, where the capillary fill space was formed by cutting a channel in the double- sided tape.
  • Use of the polycarbonate upper and lower sheets allowed the flow fronts of the sample to be videotaped as it flowed through the capillary fill space.
  • the test devices were laminated using laser cut 1mm thick Lexan® polycarbonate sheets (obtained from Cadillac Plastics Ltd., Westlea, Swindon SN5 7EX, United Kingdom). The top and bottom polycarbonate sheets were coupled together using double-sided adhesive tapes (#200MP High
  • the capillary channels were defined by laser cutting the required width openings into the double-sided tape. Tape thicknesses of 0.05 ⁇ m, 0.125 ⁇ m, and 0.225 ⁇ m were used to give the required channel heights. The dimensions of the capillary spaces of the test devices are tabulated in FIG. 31.
  • top and bottom polycarbonate parts were laminated together with the laser cut adhesive tapes using a custom-built jig to ensure reproducible fabrication.
  • a fluid receptor region defining the entrance to the capillary channel was formed by an opening pre-cut into the upper polycarbonate sheet and adhesive tape components.
  • channel widths 0.5mm, 1.00mm, 1.5mm, 2.00mm, 3.00mm, and 4.00mm were fabricated.
  • the capillary channel length for all devices was 50mm. Twenty-eight (28) of each of the eighteen (18) device types were constructed.
  • the assembled devices were plasma treated by Weidman Plastics Technology of Dortmund, Germany. The following plasma treatment conditions were used:
  • Microwave plasma processor 400 Microwave plasma processor 400
  • the plasma-treated devices were stored at 2 - 8°C when not in use. The devices were allowed to equilibrate to room temperature for one (1) hour minimum before use.
  • Each of the test devices was dosed with a fixed volume of venous blood having a hematocrit value of 45%.
  • Flow and flow front behavior was captured on videotape for later analysis. It was determined that the relative dimensions of the capillary fill channel determined the flow front behavior.
  • Devices to the left of the dashed line in FIG. 31 (devices A2, A4, B2, B4, B5, C2, C4, and C5) resulted in a convex flow front behavior, while devices to the right of the dashed line (devices A6, A8, All, B6, B8, Bll, C6, C8, and Cll) displayed a concave flow front behavior.
  • Both the convex and concave flow front behaviors are schematically illustrated in FIG. 31. This data shows that the aspect ratio between the height and the width of the capillary fill space is a determining factor in whether the sample flow front is convex or concave.
  • FIGs. 32A-C The problems associated with a concave flow front in a capillary fill space are illustrated in FIGs. 32A-C.
  • the test strip includes a working electrode 3200, a reference electrode 3202, and a downstream dose sufficiency electrode 3204 that works in conjunction with one of the measurement electrodes 3200 or 3202.
  • FIGs. 32A-C illustrate that a sample flow front exhibiting a concave shape can also cause biased measurement results. In each drawing, the direction of sample travel is shown by the arrow. In FIG.
  • the portions of the sample adjacent to the capillary walls have reached the dose sufficiency electrode 3204, thereby electrically completing the DC circuit between this electrode and one of the measurement electrode pair that is being monitored by the test meter in order to make the dose sufficiency determination.
  • the test meter will conclude that there is sufficient sample to make a measurement at this time, the sample clearly has barely reached the reference electrode 3202 and any measurement results obtained at this time will be highly biased.
  • FIG. 32B illustrates the situation where the dose sufficiency electrode 3204 has been contacted (indicating that the measurement should be started), but the reference electrode 3202 is only partially covered by the sample. Although the sample has reached the reference electrode 3202 at this time, the reference electrode 3202 is not completely covered by sample, therefore any measurement results obtained at this time will be partially biased. Both of the situations illustrated in FIGs. 32A-B will therefore indicate a false positive for dose sufficiency, thereby biasing the measurement test results. Only in the situation illustrated in FIG. 32C, where the reference electrode 3202 is completely covered by the sample, will the measurement results be unbiased due to the extent of capillary fill in the measurement zone.
  • the present invention solves the stoichiometric problems associated with the prior art designs pairing the dose sufficiency electrode with one of the measurement electrodes when making the dose sufficiency determination.
  • the present invention comprehends a test strip having an independent pair of dose sufficiency electrodes positioned downstream from the measurement electrodes.
  • the test strip is indicated generally as 3300, and includes a measurement electrode pair consisting of a counter electrode 3302 and a working electrode 3304.
  • the electrodes may be formed upon any suitable substrate in a multilayer test strip configuration as is known in the art and described hereinabove.
  • the multilayer configuration of the test strip provides for the formation of a capillary fill space 3306, also as known in the art.
  • a dose sufficiency working electrode 3308 and a dose sufficiency counter electrode 3310 are formed within the capillary fill space 3306, and downstream (relative to the direction of sample flow) from the measurement electrodes 3302 and 3304.
  • the test meter When the test strip 3300 is inserted into the test meter, the test meter will continuously check for a conduction path between the dose sufficiency electrodes 3308 and 3310 in order to determine when the sample has migrated to this region of the capillary fill space. Once the sample has reached this level, the test meter may be programmed to conclude that the measurement electrodes are covered with sample and the sample measurement sequence may be begun. It will be appreciated that, unlike as required with prior art designs, no voltage or current need be applied to either of the measurement electrodes 3302 and 3304 during the dose sufficiency test using the test strip design of FIG. 33.
  • the test strip 3300 is also desirable for judging dose sufficiency when the capillary fill space is designed to produce samples that exhibit a convex flow front while filling the capillary fill space 3306, as illustrated in FIG. 34A. As can be seen, the measurement zone above the measurement electrodes 3302 and 3304 is covered with sample when the convex flow front reaches the dose sufficiency electrode pair 3308,3310.
  • the test strip design 3300 may not, however, produce ideal results if the capillary fill space 3306 allows the sample to exhibit a concave flow front while filling, as shown in FIG. 34B.
  • the peripheral edges of the concave flow front reach the dose sufficiency electrodes 3308,3310 before the measurement zone has been completely covered with sample.
  • the dose sufficiency electrodes 3308,3310 will indicate sample sufficiency as soon as they are both touched by the edges of the flow front. Therefore, the dose sufficiency electrode design shown in the test strip of FIG. 33 works best when the sample filling the capillary space 3306 exhibits a convex flow front.
  • the dose sufficiency electrodes 3308,3310 have their longest axis within the capillary fill space 3306 oriented perpendicular to the longitudinal axis of the capillary fill space 3306. Such electrodes are referred to herein as "perpendicular dose sufficiency electrodes.”
  • An alternative dose sufficiency electrode arrangement is illustrated in FIGs. 35A-B. As shown in FIG. 35A, the present invention also comprehends a test strip having an independent pair of dose sufficiency electrodes positioned downstream from the measurement electrodes, where the dose sufficiency electrodes have their longest axis within the capillary fill space oriented parallel to the longitudinal axis of the capillary fill space.
  • the test strip in FIG. 35 is indicated generally as 3500, and includes a measurement electrode pair consisting of a counter electrode 3502 and a working electrode 3504.
  • the electrodes may be formed upon any suitable substrate in a multilayer test strip configuration as is known in the art and described hereinabove.
  • the multilayer configuration of the test strip provides for the formation of a capillary fill space 3506, also as known in the art.
  • a dose sufficiency working electrode 3508 and a dose sufficiency counter electrode 3510 together forming a parallel dose sufficiency electrode pair.
  • test meter When the test strip 3500 is inserted into the test meter, the test meter will continuously check for a conduction path between the dose sufficiency electrodes 3508 and 3510 in order to determine when the sample has migrated to this region of the capillary fill space. Once the sample has reached this level, the test meter may be programmed to conclude that the measurement electrodes are covered with sample and the sample measurement sequence may be begun. It will be appreciated that, as with the test strip 3300 (and unlike as required with prior art designs), no voltage or current need be applied to either of the measurement electrodes 3502 and 3504 during the dose sufficiency test using the test strip design of FIG. 35.
  • the stoichiometry of the measurement zone is not perturbed during the dose sufficiency test cycle prior to making a measurement of the analyte of interest residing in the measurement zone. This represents a significant improvement over the dose sufficiency test methodologies of the prior art.
  • a further improved operation is realized with the parallel dose sufficiency electrodes of the test strip 3500 when the dose sufficiency electrodes are energized with a relatively high frequency AC excitation signal.
  • the dose sufficiency electrodes 3508,3510 display significant edge effects, wherein the excitation signal traverses the gap between the electrodes only when the electrode edges along the gap are covered with the sample fluid.
  • the test strip 3500 is illustrated in enlarged size in FIG. 36 (with only the electrode portions lying within the capillary fill space 3506 and the strip-to-meter electrode contact pads visible).
  • the gap width GW between the edges of the dose sufficiency electrodes 3508,3510 is preferably 100-300 ⁇ m, more preferably 150- 260 ⁇ m, and most preferably 255 ⁇ m.
  • a smaller gap width GW increases the amount of signal transmitted between dose sufficiency electrodes whose edges are at least partially covered by sample; however, the capacitance of the signal transmission path increases with decreasing gap width GW.
  • An advantage of the parallel dose sufficiency electrode design of FIGs. 35 and 36, when used with AC excitation, is that there is substantially no electrical communication between the electrodes until the sample covers at least a portion of the edges along the electrode gap. Therefore, a sample exhibiting the concave flow front of FIG. 35 A, where the illustrated sample is touching both of the dose sufficiency electrodes 3508,3510 but is not touching the electrode edges along the gap, will not produce any significant electrical communication between the dose sufficiency electrodes. The test meter will therefore not form a conclusion of dose sufficiency until the sample has actually bridged the dose sufficiency electrodes between the electrode edges along the gap.
  • a conclusion of dose sufficiency can therefore be withheld until the sample has covered a predetermined portion of the dose sufficiency electrode gap edge.
  • an analysis of the dose sufficiency signal will allow the test meter to record the percentage of fill of the capillary fill space for each measurement made by the test meter, if desired. While the electrode geometry itself demonstrates an advantage over previous embodiments in terms of detecting an adequate sample, particularly in the case of a convex flow front, it was found that further improvement is achieved in the use of AC responses over DC responses for sample detection. DC responses have the problems of being sensitive to variations in, for example, temperature, hematocrit and the analyte (glucose for example).
  • AC responses at sufficiently high frequency can be made robust to the variation in the analyte concentration.
  • the AC response generated at sufficiently high frequencies in such capillary fill devices is primarily limited by the amount of the parallel gap between the electrode edges which is filled by the sample.
  • little or no AC response in this case admittance
  • the sensor can be made more or less sensitive as is deemed advantageous, with a higher threshold for admittance requiring more of the parallel gap to be filled before test initiation.
  • a further limitation of existing devices is the inability of the electrode geometry to discern the amount of time needed to fill the capillary space of the sensor.
  • a signal is first applied across the measurement electrodes prior to dosing. When a response is observed, the potential is immediately switched off and a second signal is applied across the dose sufficiency electrodes during which time the system both looks for a response to the signal (indicating electrode coverage) and marks the duration between the first event (when a response is observed at the measurement electrodes) and the second event (when a response is observed at the dose sufficiency electrodes).
  • the preferred embodiment uses an AC signal at sufficiently high frequency to avoid unnecessarily perturbing the electrochemical response at the measurement electrodes and to provide robust detection with respect to flow front irregularities.
PCT/US2004/019688 2003-06-20 2004-06-18 System and method for analysis of a biological fluid by the use electrical means WO2004113896A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04755696.4A EP1642123B1 (en) 2003-06-20 2004-06-18 Method for analysis of a biological fluid by the use of electrical means
JP2006517463A JP4374020B2 (ja) 2003-06-20 2004-06-18 Ac励起を用いた検体測定システムおよび方法
CA2529668A CA2529668C (en) 2003-06-20 2004-06-18 System and method for analyte measurement using ac excitation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US48029803P 2003-06-20 2003-06-20
US60/480,298 2003-06-20
US10/688,343 2003-10-17
US10/688,343 US7407811B2 (en) 1997-12-22 2003-10-17 System and method for analyte measurement using AC excitation

Publications (2)

Publication Number Publication Date
WO2004113896A2 true WO2004113896A2 (en) 2004-12-29
WO2004113896A3 WO2004113896A3 (en) 2005-02-17

Family

ID=33544438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/019688 WO2004113896A2 (en) 2003-06-20 2004-06-18 System and method for analysis of a biological fluid by the use electrical means

Country Status (5)

Country Link
US (1) US7407811B2 (US20040157339A1-20040812-M00006.png)
EP (1) EP1642123B1 (US20040157339A1-20040812-M00006.png)
JP (1) JP4374020B2 (US20040157339A1-20040812-M00006.png)
CA (1) CA2529668C (US20040157339A1-20040812-M00006.png)
WO (1) WO2004113896A2 (US20040157339A1-20040812-M00006.png)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030981A (ja) * 2007-07-24 2009-02-12 Tanita Corp 液体成分測定装置、基準液、液体成分測定方法
JP2009528540A (ja) * 2006-02-27 2009-08-06 バイエル・ヘルスケア・エルエルシー バイオセンサー系における温度補正被分析物決定
WO2011082820A1 (en) * 2010-01-08 2011-07-14 Roche Diagnostics Gmbh Sample characterization based on ac measurement methods
WO2011079938A3 (en) * 2009-12-30 2011-08-25 Roche Diagnostics Gmbh System and method for determining the concentration of an analyte in a sample fluid
US8617381B2 (en) 2009-06-23 2013-12-31 Bayer Healthcare Llc System and apparatus for determining temperatures in a fluid analyte system
US8721851B2 (en) 2008-11-28 2014-05-13 Panasonic Healthcare Co., Ltd. Sensor chip, biosensor system, method for measuring temperature of biological sample, method for measuring temperature of blood sample, and method for measuring concentration of analyte in blood sample
US8859292B2 (en) 2009-01-30 2014-10-14 Panasonic Healthcare Co., Ltd. Method for measuring temperature of biological sample, method for measuring concentration of biological sample, sensor chip and biosensor system
US9835582B2 (en) 2005-09-30 2017-12-05 Ascensia Diabetes Care Holdings Ag Devices using gated voltammetry methods
US9933385B2 (en) 2007-12-10 2018-04-03 Ascensia Diabetes Care Holdings Ag Method of using an electrochemical test sensor
US10067082B2 (en) 2004-02-06 2018-09-04 Ascensia Diabetes Care Holdings Ag Biosensor for determining an analyte concentration
US10190150B2 (en) 2006-10-24 2019-01-29 Ascensia Diabetes Care Holdings Ag Determining analyte concentration from variant concentration distribution in measurable species
US10347371B2 (en) 2007-05-30 2019-07-09 Ascensia Diabetes Care Holdings Ag Fluid analyte meter system
US11125712B2 (en) 2016-12-21 2021-09-21 Roche Diagnostics Operations, Inc. Method and device for determining a concentration of at least one analyte

Families Citing this family (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US8071384B2 (en) * 1997-12-22 2011-12-06 Roche Diagnostics Operations, Inc. Control and calibration solutions and methods for their use
US7494816B2 (en) * 1997-12-22 2009-02-24 Roche Diagnostic Operations, Inc. System and method for determining a temperature during analyte measurement
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US6666295B2 (en) * 2001-01-23 2003-12-23 Etymotic Research, Inc. Acoustic resistor for hearing improvement and audiometric applications, and method of making same
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
ES2357887T3 (es) 2001-06-12 2011-05-03 Pelikan Technologies Inc. Aparato para mejorar la tasa de éxito de obtención de sangre a partir de una punción capilar.
AU2002315180A1 (en) 2001-06-12 2002-12-23 Pelikan Technologies, Inc. Electric lancet actuator
DE60234598D1 (de) 2001-06-12 2010-01-14 Pelikan Technologies Inc Selbstoptimierende lanzettenvorrichtung mit adaptationsmittel für zeitliche schwankungen von hauteigenschaften
DE60234597D1 (de) 2001-06-12 2010-01-14 Pelikan Technologies Inc Gerät und verfahren zur entnahme von blutproben
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
AU2002348683A1 (en) 2001-06-12 2002-12-23 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
KR20040077722A (ko) * 2002-01-15 2004-09-06 아가매트릭스, 인코포레이티드 전기 화학 신호를 프로세싱하기 위한 방법 및 장치
US7004928B2 (en) 2002-02-08 2006-02-28 Rosedale Medical, Inc. Autonomous, ambulatory analyte monitor or drug delivery device
WO2003069304A2 (en) 2002-02-10 2003-08-21 Agamatrix, Inc Method and apparatus for assay of electrochemical properties
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7175642B2 (en) 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7226461B2 (en) 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
EP2238892A3 (en) 2003-05-30 2011-02-09 Pelikan Technologies Inc. Apparatus for body fluid sampling
WO2004107964A2 (en) 2003-06-06 2004-12-16 Pelikan Technologies, Inc. Blood harvesting device with electronic control
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US7488601B2 (en) 2003-06-20 2009-02-10 Roche Diagnostic Operations, Inc. System and method for determining an abused sensor during analyte measurement
US7452457B2 (en) 2003-06-20 2008-11-18 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
EP1680014A4 (en) 2003-10-14 2009-01-21 Pelikan Technologies Inc METHOD AND APPARATUS PROVIDING A VARIABLE USER INTERFACE
US8532730B2 (en) 2006-10-04 2013-09-10 Dexcom, Inc. Analyte sensor
US8364231B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
WO2005065414A2 (en) 2003-12-31 2005-07-21 Pelikan Technologies, Inc. Method and apparatus for improving fluidic flow and sample capture
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
WO2006011062A2 (en) 2004-05-20 2006-02-02 Albatros Technologies Gmbh & Co. Kg Printable hydrogel for biosensors
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
EP1765194A4 (en) 2004-06-03 2010-09-29 Pelikan Technologies Inc METHOD AND APPARATUS FOR MANUFACTURING A DEVICE FOR SAMPLING LIQUIDS
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
WO2006096619A2 (en) * 2005-03-04 2006-09-14 Bayer Healthcare Llc Stabilizing the activity of pqq-dependent glucose dehydrogenase in electrochemical biosensors
AU2011205161B2 (en) * 2005-04-15 2013-03-14 Agamatrix, Inc. Analyte determination method and analyte meter
US7964089B2 (en) 2005-04-15 2011-06-21 Agamatrix, Inc. Analyte determination method and analyte meter
KR101503072B1 (ko) 2005-07-20 2015-03-16 바이엘 헬스케어 엘엘씨 게이트형 전류 측정법
EP3461406A1 (en) 2005-09-30 2019-04-03 Intuity Medical, Inc. Multi-site body fluid sampling and analysis cartridge
US8529751B2 (en) * 2006-03-31 2013-09-10 Lifescan, Inc. Systems and methods for discriminating control solution from a physiological sample
US8398443B2 (en) * 2006-04-21 2013-03-19 Roche Diagnostics Operations, Inc. Biological testing system and connector therefor
US20080297169A1 (en) * 2007-05-31 2008-12-04 Greenquist Alfred C Particle Fraction Determination of A Sample
US8343331B2 (en) * 2007-09-27 2013-01-01 Philosys Co., Ltd. Method for correcting erroneous results of measurement in biosensors and apparatus using the same
US8778168B2 (en) 2007-09-28 2014-07-15 Lifescan, Inc. Systems and methods of discriminating control solution from a physiological sample
US8603768B2 (en) * 2008-01-17 2013-12-10 Lifescan, Inc. System and method for measuring an analyte in a sample
USD612279S1 (en) 2008-01-18 2010-03-23 Lifescan Scotland Limited User interface in an analyte meter
USD615431S1 (en) 2008-03-21 2010-05-11 Lifescan Scotland Limited Analyte test meter
IL197532A0 (en) 2008-03-21 2009-12-24 Lifescan Scotland Ltd Analyte testing method and system
USD611853S1 (en) 2008-03-21 2010-03-16 Lifescan Scotland Limited Analyte test meter
USD612275S1 (en) 2008-03-21 2010-03-23 Lifescan Scotland, Ltd. Analyte test meter
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
JP5816080B2 (ja) 2008-05-30 2015-11-17 インテュイティ メディカル インコーポレイテッド 体液採取装置及び採取部位インターフェイス
US10383556B2 (en) 2008-06-06 2019-08-20 Intuity Medical, Inc. Medical diagnostic devices and methods
JP5642066B2 (ja) * 2008-06-06 2014-12-17 インテュイティ メディカル インコーポレイテッド 体液の試料内に含まれている検体の存在または濃度を決定する検定を行う方法および装置
US8551320B2 (en) 2008-06-09 2013-10-08 Lifescan, Inc. System and method for measuring an analyte in a sample
USD611151S1 (en) 2008-06-10 2010-03-02 Lifescan Scotland, Ltd. Test meter
USD611489S1 (en) 2008-07-25 2010-03-09 Lifescan, Inc. User interface display for a glucose meter
USD611372S1 (en) 2008-09-19 2010-03-09 Lifescan Scotland Limited Analyte test meter
CA2739091A1 (en) * 2008-10-03 2010-04-08 Bayer Healthcare Llc System and method for predicting ambient temperature in a fluid analyte meter
CN102203574B (zh) * 2008-10-21 2013-10-30 生命扫描有限公司 测试条的红外温度测量
US8313237B2 (en) * 2008-10-21 2012-11-20 Lifescan, Inc. Multiple temperature measurements coupled with modeling
US9149220B2 (en) 2011-04-15 2015-10-06 Dexcom, Inc. Advanced analyte sensor calibration and error detection
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US8608937B2 (en) 2009-03-30 2013-12-17 Roche Diagnostics Operations, Inc. Biosensor with predetermined dose response curve and method of manufacturing
CA2782047C (en) 2009-11-30 2019-10-29 Intuity Medical, Inc. Calibration material delivery devices and methods
TWI440853B (zh) 2009-12-14 2014-06-11 Taidoc Technology Corp 具有校正血容比功能之分析物測量電化學生物感測試紙、生物感測器裝置、系統以及測量方法
US8101065B2 (en) 2009-12-30 2012-01-24 Lifescan, Inc. Systems, devices, and methods for improving accuracy of biosensors using fill time
US8877034B2 (en) * 2009-12-30 2014-11-04 Lifescan, Inc. Systems, devices, and methods for measuring whole blood hematocrit based on initial fill velocity
US20110208435A1 (en) * 2010-02-25 2011-08-25 Lifescan Scotland Ltd. Capacitance detection in electrochemical assays
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US10330667B2 (en) 2010-06-25 2019-06-25 Intuity Medical, Inc. Analyte monitoring methods and systems
WO2012010308A1 (en) 2010-07-23 2012-01-26 Roche Diagnostics Gmbh Zwitterion buffer containing compositions and uses in electroanalytical devices and methods
US8932445B2 (en) 2010-09-30 2015-01-13 Cilag Gmbh International Systems and methods for improved stability of electrochemical sensors
US8617370B2 (en) 2010-09-30 2013-12-31 Cilag Gmbh International Systems and methods of discriminating between a control sample and a test fluid using capacitance
WO2012084194A1 (en) 2010-12-22 2012-06-28 Roche Diagnostics Gmbh Systems and methods to compensate for sources of error during electrochemical testing
CN103348239B (zh) 2011-02-23 2015-09-30 松下健康医疗控股株式会社 生物体样品测定装置
EP3407064B1 (en) 2011-08-03 2020-04-22 Intuity Medical, Inc. Body fluid sampling arrangement
US8896292B2 (en) 2011-12-22 2014-11-25 Semiconductor Components Industries, Llc System and method for gain adjustment in transimpedance amplifier configurations for analyte measurement
US9903830B2 (en) * 2011-12-29 2018-02-27 Lifescan Scotland Limited Accurate analyte measurements for electrochemical test strip based on sensed physical characteristic(s) of the sample containing the analyte
US9700253B2 (en) 2012-03-16 2017-07-11 Dexcom, Inc. Systems and methods for processing analyte sensor data
TWI513978B (zh) 2012-06-08 2015-12-21 Hmd Biomedical Inc 檢測試片、檢測裝置及檢測方法
TWI481863B (zh) 2012-07-20 2015-04-21 Apex Biotechnology Corp 電極試片及感測試片及其製造方法及具有校正血容比之感測系統
TWI493186B (zh) 2013-02-08 2015-07-21 Hmd Biomedical Inc 檢測試片、檢測裝置及檢測方法
CN105247358B (zh) 2013-03-15 2017-11-07 豪夫迈·罗氏有限公司 利用具有脉冲式dc块的测试序列电化学测量分析物的方法及结合其的设备、装置和系统
JP6356706B2 (ja) 2013-03-15 2018-07-11 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 分析物を電気化学的に測定するディスクリプタ・ベースの方法およびデバイス、装置とそれらを組み込むシステム
EP3385707A1 (en) 2013-03-15 2018-10-10 Roche Diabetes Care GmbH Methods of scaling data used to construct biosensor algorithms as well as devices, apparatuses and systems incorporating the same
CA2900694C (en) 2013-03-15 2017-10-24 F. Hoffmann-La Roche Ag Methods of using information from recovery pulses in electrochemical analyte measurements as well as devices, apparatuses and systems incorporating the same
WO2014140172A1 (en) 2013-03-15 2014-09-18 Roche Diagnostics Gmbh Methods of failsafing electrochemical measurements of an analyte as well as devices, apparatuses and systems incorporating the same
KR101743382B1 (ko) 2013-03-15 2017-06-02 에프. 호프만-라 로슈 아게 전기화학적 측정 중 높은 항산화제 레벨들을 검출하고 그로부터 분석물질 농도를 페일세이프하는 방법들 뿐만 아니라 상기 방법들을 통합한 기기들, 장치들 및 시스템들
JP6158133B2 (ja) 2013-05-02 2017-07-05 アークレイ株式会社 測定装置、及び測定方法
KR20160009619A (ko) 2013-06-10 2016-01-26 에프. 호프만-라 로슈 아게 체액에서 분석물을 검출하기 위한 방법 및 시스템
CA2912283A1 (en) 2013-06-21 2014-12-21 Intuity Medical, Inc. Analyte monitoring system with audible feedback
US9243276B2 (en) 2013-08-29 2016-01-26 Lifescan Scotland Limited Method and system to determine hematocrit-insensitive glucose values in a fluid sample
US9459231B2 (en) 2013-08-29 2016-10-04 Lifescan Scotland Limited Method and system to determine erroneous measurement signals during a test measurement sequence
TWI504889B (zh) 2013-11-19 2015-10-21 Apex Biotechnology Corp 血容比量測系統及利用其量測的方法
KR101666978B1 (ko) 2014-09-17 2016-10-24 주식회사 아이센스 생체시료 내 분석대상물질의 농도측정방법 및 측정장치
WO2016073395A1 (en) 2014-11-03 2016-05-12 Roche Diabetes Care, Inc. Electrode arrangements for electrochemical test elements and methods of use thereof
EP3088880B1 (en) * 2015-04-28 2024-04-24 Industrial Technology Research Institute Methods for measuring analyte concentration
JP6607437B2 (ja) * 2015-06-26 2019-11-20 国立研究開発法人産業技術総合研究所 バイオセンサ
KR102372113B1 (ko) 2016-10-05 2022-03-07 에프. 호프만-라 로슈 아게 다중 분석물 진단 테스트 엘리먼트들을 위한 검출 시약들 및 전극 배열들, 그리고 그것을 사용하는 방법들
JP6916311B2 (ja) 2017-06-08 2021-08-11 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 電極破損の検出
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
US11943876B2 (en) 2017-10-24 2024-03-26 Dexcom, Inc. Pre-connected analyte sensors
CN111239228A (zh) * 2020-02-24 2020-06-05 江苏鱼跃医疗设备股份有限公司 一种电化学生物传感器及测量血液阻抗相角的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3643263A1 (de) * 1986-12-18 1988-07-07 Horst Dipl Ing Hommel Verfahren und vorrichtung zur erkennung von stoffwechselstoerungen durch harnuntersuchung, insbesondere zur frueherkennung einer steinbildungsneigung des harnspenders
US4919770A (en) * 1982-07-30 1990-04-24 Siemens Aktiengesellschaft Method for determining the concentration of electro-chemically convertible substances
EP0417796A2 (en) * 1989-09-13 1991-03-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Hematocrit measuring instrument
EP0640832A2 (en) * 1993-08-30 1995-03-01 Hughes Aircraft Company Electrochemical immunosensor system
WO1997039343A1 (en) * 1996-04-17 1997-10-23 British Nuclear Fuels Plc Biosensors
US6300123B1 (en) * 1996-10-26 2001-10-09 The Victoria University Of Manchester Sensor employing impedance measurements
EP1143245A2 (en) * 2000-04-03 2001-10-10 Roche Diagnostics Corporation Biosensor electromagnetic noise cancellation
US20010053535A1 (en) * 2000-04-17 2001-12-20 Purdue Research Foundation Biosensor and related method
US20020033345A1 (en) * 1997-06-12 2002-03-21 Clinical Micro Sensors, Inc. Detection of analytes using reorganization energy
US20030064525A1 (en) * 1997-12-22 2003-04-03 Liess Martin Dieter Meter
EP1312919A2 (en) * 2001-11-20 2003-05-21 Lifescan, Inc. Sample volume metering apparatus

Family Cites Families (173)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526480A (en) 1966-12-15 1970-09-01 Xerox Corp Automated chemical analyzer
US3551295A (en) 1967-11-29 1970-12-29 Northrop Corp Microbiological detection and identification system
US3621381A (en) 1968-10-16 1971-11-16 Leeds & Northrup Co Coulometric system having compensation for temperature induced viscosity changes
BE754658A (fr) * 1969-08-12 1971-02-10 Merck Patent Gmbh Lamelle indicatrice, se composant d'une matiere capillaire impregnee, absorbante et gainee de feuilles
US3770607A (en) 1970-04-07 1973-11-06 Secretary Glucose determination apparatus
US3919627A (en) 1970-08-06 1975-11-11 Gerald F Allen Conductivity measuring method and apparatus utilizing coaxial electrode cells
US3776832A (en) 1970-11-10 1973-12-04 Energetics Science Electrochemical detection cell
US3720093A (en) * 1970-12-03 1973-03-13 Us Navy Carbon dioxide indicating meter
CH559912A5 (US20040157339A1-20040812-M00006.png) 1971-09-09 1975-03-14 Hoffmann La Roche
US3763422A (en) 1971-10-21 1973-10-02 Corning Glass Works Method and apparatus for electrochemical analysis of small samples of blood
US3925183A (en) 1972-06-16 1975-12-09 Energetics Science Gas detecting and quantitative measuring device
US3902970A (en) 1973-07-30 1975-09-02 Leeds & Northrup Co Flow-through amperometric measuring system and method
CH585907A5 (US20040157339A1-20040812-M00006.png) * 1973-08-06 1977-03-15 Hoffmann La Roche
US3937615A (en) * 1974-12-17 1976-02-10 Leeds & Northrup Company Auto-ranging glucose measuring system
FR2295419A1 (fr) 1974-12-21 1976-07-16 Kyoto Daiichi Kagaku Kk Dispositif de mesure de reflectance et structure de papier de test composite faisant l'objet d'une telle mesure
US4052596A (en) 1974-12-23 1977-10-04 Hycel, Inc. Automatic hematology analyzer
US4008448A (en) * 1975-10-03 1977-02-15 Polaroid Corporation Solenoid with selectively arrestible plunger movement
US4230537A (en) 1975-12-18 1980-10-28 Monsanto Company Discrete biochemical electrode system
US4040908A (en) 1976-03-12 1977-08-09 Children's Hospital Medical Center Polarographic analysis of cholesterol and other macromolecular substances
US4065263A (en) 1976-04-02 1977-12-27 Woodbridge Iii Richard G Analytical test strip apparatus
US4053381A (en) 1976-05-19 1977-10-11 Eastman Kodak Company Device for determining ionic activity of components of liquid drops
US4123701A (en) 1976-07-01 1978-10-31 United States Surgical Corporation Disposable sample card having a well with electrodes for testing a liquid sample
US4127448A (en) 1977-02-28 1978-11-28 Schick Karl G Amperometric-non-enzymatic method of determining sugars and other polyhydroxy compounds
JPS5912135B2 (ja) 1977-09-28 1984-03-21 松下電器産業株式会社 酵素電極
JPS5460996A (en) 1977-10-22 1979-05-16 Mitsubishi Chem Ind Method of measuring amount of sugar
US4214968A (en) 1978-04-05 1980-07-29 Eastman Kodak Company Ion-selective electrode
DE2817363C2 (de) 1978-04-20 1984-01-26 Siemens AG, 1000 Berlin und 8000 München Verfahren zur Konzentrationsbestimmung von Zucker und dafür geeigneter elektrokatalytischer Zuckersensor
DE2823485C2 (de) 1978-05-30 1986-03-27 Albert Prof. Dr. 3550 Marburg Huch Trogelektrode
US4184936A (en) * 1978-07-24 1980-01-22 Eastman Kodak Company Device for determining ionic activity
US4233029A (en) 1978-10-25 1980-11-11 Eastman Kodak Company Liquid transport device and method
US4225410A (en) 1978-12-04 1980-09-30 Technicon Instruments Corporation Integrated array of electrochemical sensors
US4329642A (en) 1979-03-09 1982-05-11 Siliconix, Incorporated Carrier and test socket for leadless integrated circuit
US4273134A (en) 1979-05-22 1981-06-16 Biochem International Inc. Fixation ring assembly and method of assembling a sensor head
US4273639A (en) 1979-06-20 1981-06-16 Eastman Kodak Company Capillary bridge in apparatus for determining ionic activity
US4297569A (en) 1979-06-28 1981-10-27 Datakey, Inc. Microelectronic memory key with receptacle and systems therefor
US4265250A (en) 1979-07-23 1981-05-05 Battle Research And Development Associates Electrode
US4263343A (en) 1979-08-13 1981-04-21 Eastman Kodak Company Reference elements for ion-selective membrane electrodes
US4303887A (en) 1979-10-29 1981-12-01 United States Surgical Corporation Electrical liquid conductivity measuring system
US4301412A (en) 1979-10-29 1981-11-17 United States Surgical Corporation Liquid conductivity measuring system and sample cards therefor
US4628193A (en) 1980-01-30 1986-12-09 Blum Alvin S Code reading operations supervisor
US4323536A (en) 1980-02-06 1982-04-06 Eastman Kodak Company Multi-analyte test device
US4413407A (en) 1980-03-10 1983-11-08 Eastman Kodak Company Method for forming an electrode-containing device with capillary transport between electrodes
DE3029579C2 (de) 1980-08-05 1985-12-12 Boehringer Mannheim Gmbh, 6800 Mannheim Verfahren und Mittel zur Abtrennung von Plasma oder Serum aus Vollblut
US4816224A (en) * 1980-08-05 1989-03-28 Boehringer Mannheim Gmbh Device for separating plasma or serum from whole blood and analyzing the same
US4407959A (en) 1980-10-29 1983-10-04 Fuji Electric Co., Ltd. Blood sugar analyzing apparatus
US4413628A (en) 1980-11-19 1983-11-08 Tamulis Walter G pH Monitor electrode electrolyte cartridge
US4420564A (en) 1980-11-21 1983-12-13 Fuji Electric Company, Ltd. Blood sugar analyzer having fixed enzyme membrane sensor
DE3047782A1 (de) * 1980-12-18 1982-07-08 Drägerwerk AG, 2400 Lübeck Schaltungsanordnung zur korrektur der sensorausgangsgroesse
US4436094A (en) * 1981-03-09 1984-03-13 Evreka, Inc. Monitor for continuous in vivo measurement of glucose concentration
US4407290A (en) 1981-04-01 1983-10-04 Biox Technology, Inc. Blood constituent measuring device and method
AT369254B (de) 1981-05-07 1982-12-27 Otto Dipl Ing Dr Tech Prohaska Medizinische sonde
US4440175A (en) 1981-08-10 1984-04-03 University Patents, Inc. Membrane electrode for non-ionic species
DE3133826A1 (de) 1981-08-27 1983-03-10 Boehringer Mannheim Gmbh, 6800 Mannheim Analyseteststreifen und verfahren zu seiner herstellung
DE3137174A1 (de) 1981-09-18 1983-04-07 Boehringer Mannheim Gmbh, 6800 Mannheim Vorrichtung zur optischen erkennung einer codierung auf einem diagnoseteststreifen
EP0078636B2 (en) 1981-10-23 1997-04-02 MediSense, Inc. Sensor for components of a liquid mixture
US4431004A (en) * 1981-10-27 1984-02-14 Bessman Samuel P Implantable glucose sensor
NZ199380A (en) * 1981-12-23 1986-08-08 J R Baker Determination of serum glucose levels in blood samples
DE3202067C2 (de) 1982-01-23 1984-06-20 Holger Dr. 5100 Aachen Kiesewetter Vorrichtung zur Bestimmung des Hämatokritwertes
DE3228551A1 (de) 1982-07-30 1984-02-02 Siemens AG, 1000 Berlin und 8000 München Verfahren zur bestimmung der zuckerkonzentration
US4571292A (en) * 1982-08-12 1986-02-18 Case Western Reserve University Apparatus for electrochemical measurements
US4679562A (en) 1983-02-16 1987-07-14 Cardiac Pacemakers, Inc. Glucose sensor
CA1219040A (en) 1983-05-05 1987-03-10 Elliot V. Plotkin Measurement of enzyme-catalysed reactions
DE3326689A1 (de) * 1983-07-23 1985-01-31 Boehringer Mannheim Gmbh, 6800 Mannheim Verfahren und vorrichtung zur herstellung eines teststreifens
US4517291A (en) 1983-08-15 1985-05-14 E. I. Du Pont De Nemours And Company Biological detection process using polymer-coated electrodes
US4552458A (en) 1983-10-11 1985-11-12 Eastman Kodak Company Compact reflectometer
SE8305704D0 (sv) * 1983-10-18 1983-10-18 Leo Ab Cuvette
US4703017C1 (en) 1984-02-14 2001-12-04 Becton Dickinson Co Solid phase assay with visual readout
DE3407754A1 (de) 1984-03-02 1985-09-12 Boehringer Mannheim Gmbh, 6800 Mannheim Geraet zur bestimmung des diffusen reflexionsvermoegens einer probenflaeche kleiner abmessungen
US4849330A (en) 1984-04-27 1989-07-18 Molecular Devices Corporation Photoresponsive redox detection and discrimination
US4820399A (en) 1984-08-31 1989-04-11 Shimadzu Corporation Enzyme electrodes
US4648665A (en) * 1984-10-16 1987-03-10 Amp Incorporated Electronic key assemblies
US4713347A (en) 1985-01-14 1987-12-15 Sensor Diagnostics, Inc. Measurement of ligand/anti-ligand interactions using bulk conductance
GB8504521D0 (en) 1985-02-21 1985-03-27 Genetics Int Inc Electrochemical assay
US5279294A (en) * 1985-04-08 1994-01-18 Cascade Medical, Inc. Medical diagnostic system
US4652830A (en) * 1985-04-18 1987-03-24 Eg&G Ocean Products, Inc. Analyzer for comparative measurements of bulk conductivity
US4671288A (en) 1985-06-13 1987-06-09 The Regents Of The University Of California Electrochemical cell sensor for continuous short-term use in tissues and blood
DE3687646T3 (de) * 1985-06-21 2001-05-31 Matsushita Electric Ind Co Ltd Biosensor und dessen herstellung.
US4686479A (en) 1985-07-22 1987-08-11 Young Chung C Apparatus and control kit for analyzing blood sample values including hematocrit
US4806311A (en) * 1985-08-28 1989-02-21 Miles Inc. Multizone analytical element having labeled reagent concentration zone
US4806312A (en) * 1985-08-28 1989-02-21 Miles Inc. Multizone analytical element having detectable signal concentrating zone
US4734184A (en) * 1985-08-29 1988-03-29 Diamond Sensor Systems, Inc. Self-activating hydratable solid-state electrode apparatus
US4805624A (en) * 1985-09-09 1989-02-21 The Montefiore Hospital Association Of Western Pa Low-potential electrochemical redox sensors
EP0215669A3 (en) 1985-09-17 1989-08-30 Seiko Instruments Inc. Analytical device and method for analysis of biochemicals, microbes and cells
US5500350A (en) * 1985-10-30 1996-03-19 Celltech Limited Binding assay device
US4714874A (en) 1985-11-12 1987-12-22 Miles Inc. Test strip identification and instrument calibration
US4795542A (en) * 1986-04-24 1989-01-03 St. Jude Medical, Inc. Electrochemical concentration detector device
US4703756A (en) 1986-05-06 1987-11-03 The Regents Of The University Of California Complete glucose monitoring system with an implantable, telemetered sensor module
US4731726A (en) * 1986-05-19 1988-03-15 Healthware Corporation Patient-operated glucose monitor and diabetes management system
US4750496A (en) 1987-01-28 1988-06-14 Xienta, Inc. Method and apparatus for measuring blood glucose concentration
JPS636451A (ja) 1986-06-27 1988-01-12 Terumo Corp 酵素センサ
US4935346A (en) * 1986-08-13 1990-06-19 Lifescan, Inc. Minimum procedure system for the determination of analytes
US4865873A (en) 1986-09-15 1989-09-12 General Electric Company Electroless deposition employing laser-patterned masking layer
US4897162A (en) * 1986-11-14 1990-01-30 The Cleveland Clinic Foundation Pulse voltammetry
JPH039267Y2 (US20040157339A1-20040812-M00006.png) * 1986-12-27 1991-03-07
GB2201248B (en) 1987-02-24 1991-04-17 Ici Plc Enzyme electrode sensors
US4759828A (en) 1987-04-09 1988-07-26 Nova Biomedical Corporation Glucose electrode and method of determining glucose
DE3715938A1 (de) 1987-05-13 1988-11-24 Boehringer Mannheim Gmbh Behaelter fuer teststreifen
US4797256A (en) * 1987-06-05 1989-01-10 Boehringer Mannheim Corporation Registration device for blood test strips
US4929426A (en) * 1987-11-02 1990-05-29 Biologix, Inc. Portable blood chemistry measuring apparatus
US4832814A (en) 1987-12-28 1989-05-23 E. I. Du Pont De Nemours And Company Electrofusion cell and method of making the same
US4877580A (en) 1988-02-09 1989-10-31 Technimed Corporation Assay kit including an analyte test strip and a color comparator
US5096669A (en) * 1988-09-15 1992-03-17 I-Stat Corporation Disposable sensing device for real time fluid analysis
US4999632A (en) * 1989-12-15 1991-03-12 Boehringer Mannheim Corporation Analog to digital conversion with noise reduction
KR0171222B1 (ko) * 1989-12-15 1999-02-18 스티브 올드함 산화 환원 조정시약 및 바이오센서
US4999582A (en) * 1989-12-15 1991-03-12 Boehringer Mannheim Corp. Biosensor electrode excitation circuit
US5286362A (en) * 1990-02-03 1994-02-15 Boehringer Mannheim Gmbh Method and sensor electrode system for the electrochemical determination of an analyte or an oxidoreductase as well as the use of suitable compounds therefor
US5187100A (en) * 1990-05-29 1993-02-16 Lifescan, Inc. Dispersion to limit penetration of aqueous solutions into a membrane
US5182707A (en) * 1990-07-23 1993-01-26 Healthdyne, Inc. Apparatus for recording reagent test strip data by comparison to color lights on a reference panel
DE4041905A1 (de) * 1990-12-27 1992-07-02 Boehringer Mannheim Gmbh Testtraeger-analysesystem
JP3118552B2 (ja) * 1991-02-27 2000-12-18 ロッシュ ダイアグノスティックス コーポレイション 体液の分析装置及び方法
WO1992015950A1 (en) * 1991-02-27 1992-09-17 Boehringer Mannheim Corporation Method of communicating with microcomputer controlled instruments
US5593852A (en) * 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
US5192415A (en) * 1991-03-04 1993-03-09 Matsushita Electric Industrial Co., Ltd. Biosensor utilizing enzyme and a method for producing the same
US5179288A (en) * 1991-09-30 1993-01-12 Ortho Pharmaceutical Corporation Apparatus and method for measuring a bodily constituent
US5605662A (en) * 1993-11-01 1997-02-25 Nanogen, Inc. Active programmable electronic devices for molecular biological analysis and diagnostics
US5261411A (en) * 1991-12-27 1993-11-16 Abbott Laboratories Thermal drift correction while continuously monitoring cardiac output
US5296192A (en) * 1992-04-03 1994-03-22 Home Diagnostics, Inc. Diagnostic test strip
US5232667A (en) * 1992-05-21 1993-08-03 Diametrics Medical, Inc. Temperature control for portable diagnostic system using a non-contact temperature probe
US5389215A (en) * 1992-11-05 1995-02-14 Nippon Telegraph And Telephone Corporation Electrochemical detection method and apparatus therefor
US6168563B1 (en) * 1992-11-17 2001-01-02 Health Hero Network, Inc. Remote health monitoring and maintenance system
US5371687A (en) * 1992-11-20 1994-12-06 Boehringer Mannheim Corporation Glucose test data acquisition and management system
FR2701117B1 (fr) * 1993-02-04 1995-03-10 Asulab Sa Système de mesures électrochimiques à capteur multizones, et son application au dosage du glucose.
DE59408870D1 (de) * 1993-04-23 1999-12-09 Roche Diagnostics Gmbh System zur Bevorratung und Zurverfügungstellung von Testelementen
US5385846A (en) * 1993-06-03 1995-01-31 Boehringer Mannheim Corporation Biosensor and method for hematocrit determination
US5748002A (en) * 1996-01-26 1998-05-05 Phase Dynamics Inc. RF probe for montoring composition of substances
US5522255A (en) * 1993-08-31 1996-06-04 Boehringer Mannheim Corporation Fluid dose, flow and coagulation sensor for medical instrument
US5536249A (en) * 1994-03-09 1996-07-16 Visionary Medical Products, Inc. Pen-type injector with a microprocessor and blood characteristic monitor
US6335203B1 (en) * 1994-09-08 2002-01-01 Lifescan, Inc. Optically readable strip for analyte detection having on-strip orientation index
DE4437274C2 (de) * 1994-10-18 1998-11-05 Inst Chemo Biosensorik Analytselektiver Sensor
US5597532A (en) * 1994-10-20 1997-01-28 Connolly; James Apparatus for determining substances contained in a body fluid
EP0727925A1 (de) * 1995-02-14 1996-08-21 Lpkf Cad/Cam Systeme Gmbh Verfahren zur strukturierten Metallisierung der Oberfläche von Substraten
US6170318B1 (en) * 1995-03-27 2001-01-09 California Institute Of Technology Methods of use for sensor based fluid detection devices
JP3498105B2 (ja) * 1995-04-07 2004-02-16 アークレイ株式会社 センサ、その製造方法およびセンサを使用する測定方法
US5873990A (en) * 1995-08-22 1999-02-23 Andcare, Inc. Handheld electromonitor device
US6521110B1 (en) * 1995-11-16 2003-02-18 Lifescan, Inc. Electrochemical cell
AUPN661995A0 (en) * 1995-11-16 1995-12-07 Memtec America Corporation Electrochemical cell 2
US6174420B1 (en) * 1996-11-15 2001-01-16 Usf Filtration And Separations Group, Inc. Electrochemical cell
US5605837A (en) * 1996-02-14 1997-02-25 Lifescan, Inc. Control solution for a blood glucose monitor
US5708247A (en) * 1996-02-14 1998-01-13 Selfcare, Inc. Disposable glucose test strips, and methods and compositions for making same
US6001307A (en) * 1996-04-26 1999-12-14 Kyoto Daiichi Kagaku Co., Ltd. Device for analyzing a sample
DE19621241C2 (de) * 1996-05-25 2000-03-16 Manfred Kessler Membranelektrode zur Messung der Glucosekonzentration in Flüssigkeiten
US5719667A (en) * 1996-07-30 1998-02-17 Bayer Corporation Apparatus for filtering a laser beam in an analytical instrument
US5856195A (en) * 1996-10-30 1999-01-05 Bayer Corporation Method and apparatus for calibrating a sensor element
US6168957B1 (en) * 1997-06-25 2001-01-02 Lifescan, Inc. Diagnostic test strip having on-strip calibration
US6071391A (en) * 1997-09-12 2000-06-06 Nok Corporation Enzyme electrode structure
JP3978489B2 (ja) * 1998-02-26 2007-09-19 アークレイ株式会社 血液測定装置
WO1999051974A1 (fr) * 1998-04-02 1999-10-14 Matsushita Electric Industrial Co., Ltd. Procede de determination d'un substrat
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6526298B1 (en) * 1998-05-18 2003-02-25 Abbott Laboratories Method for the non-invasive determination of analytes in a selected volume of tissue
JP3389106B2 (ja) * 1998-06-11 2003-03-24 松下電器産業株式会社 電気化学分析素子
US6294281B1 (en) * 1998-06-17 2001-09-25 Therasense, Inc. Biological fuel cell and method
WO1999067019A1 (en) * 1998-06-24 1999-12-29 Therasense, Inc. Combinatorial electrochemical syntheses
US6521182B1 (en) * 1998-07-20 2003-02-18 Lifescan, Inc. Fluidic device for medical diagnostics
US6180416B1 (en) * 1998-09-30 2001-01-30 Cygnus, Inc. Method and device for predicting physiological values
US6338790B1 (en) * 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6193873B1 (en) * 1999-06-15 2001-02-27 Lifescan, Inc. Sample detection to initiate timing of an electrochemical assay
US6514769B2 (en) * 1999-07-29 2003-02-04 Jin Po Lee Multiple analyte assay device with sample integrity monitoring system
DE19936693A1 (de) * 1999-08-04 2001-02-08 Lre Technology Partner Gmbh Verfahren zur ampereometrischen Bestimmung der Konzentration einer Substanz in einer Flüssigkeit
JP4646475B2 (ja) * 1999-11-22 2011-03-09 パナソニック株式会社 コレステロールセンサおよびコレステロールの定量方法
JP2001159618A (ja) * 1999-12-03 2001-06-12 Matsushita Electric Ind Co Ltd バイオセンサ
RU2258922C2 (ru) * 2000-03-28 2005-08-20 Дайэбитиз Дайэгностикс, Инк Одноразовые электрохимические датчики
TW548095B (en) * 2000-06-01 2003-08-21 Chih-Hui Lee Electrochemical electrode test piece and method for producing the same
WO2002000112A2 (en) * 2000-06-26 2002-01-03 Boston Medical Technologies, Inc. Glucose metering system
DE10032775B4 (de) * 2000-07-06 2007-06-14 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung des Füllstandes eines Füllguts in einem Behälter
US6561989B2 (en) * 2000-07-10 2003-05-13 Bayer Healthcare, Llc Thin lance and test sensor having same
EP1304566B1 (en) * 2000-07-24 2009-09-23 Panasonic Corporation Biosensor
US6512986B1 (en) * 2000-12-30 2003-01-28 Lifescan, Inc. Method for automated exception-based quality control compliance for point-of-care devices
US6525330B2 (en) * 2001-02-28 2003-02-25 Home Diagnostics, Inc. Method of strip insertion detection
JP3690683B2 (ja) * 2001-05-29 2005-08-31 松下電器産業株式会社 バイオセンサ
US20030036202A1 (en) * 2001-08-01 2003-02-20 Maria Teodorcyzk Methods and devices for use in analyte concentration determination assays
US7018843B2 (en) * 2001-11-07 2006-03-28 Roche Diagnostics Operations, Inc. Instrument
US6689411B2 (en) * 2001-11-28 2004-02-10 Lifescan, Inc. Solution striping system
CN1467496A (zh) * 2002-06-03 2004-01-14 松下电器产业株式会社 生物传感器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919770A (en) * 1982-07-30 1990-04-24 Siemens Aktiengesellschaft Method for determining the concentration of electro-chemically convertible substances
DE3643263A1 (de) * 1986-12-18 1988-07-07 Horst Dipl Ing Hommel Verfahren und vorrichtung zur erkennung von stoffwechselstoerungen durch harnuntersuchung, insbesondere zur frueherkennung einer steinbildungsneigung des harnspenders
EP0417796A2 (en) * 1989-09-13 1991-03-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Hematocrit measuring instrument
EP0640832A2 (en) * 1993-08-30 1995-03-01 Hughes Aircraft Company Electrochemical immunosensor system
WO1997039343A1 (en) * 1996-04-17 1997-10-23 British Nuclear Fuels Plc Biosensors
US6300123B1 (en) * 1996-10-26 2001-10-09 The Victoria University Of Manchester Sensor employing impedance measurements
US20020033345A1 (en) * 1997-06-12 2002-03-21 Clinical Micro Sensors, Inc. Detection of analytes using reorganization energy
US20030064525A1 (en) * 1997-12-22 2003-04-03 Liess Martin Dieter Meter
EP1143245A2 (en) * 2000-04-03 2001-10-10 Roche Diagnostics Corporation Biosensor electromagnetic noise cancellation
US20010053535A1 (en) * 2000-04-17 2001-12-20 Purdue Research Foundation Biosensor and related method
EP1312919A2 (en) * 2001-11-20 2003-05-21 Lifescan, Inc. Sample volume metering apparatus

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8298828B2 (en) 2003-06-20 2012-10-30 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8586373B2 (en) 2003-06-20 2013-11-19 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US10067082B2 (en) 2004-02-06 2018-09-04 Ascensia Diabetes Care Holdings Ag Biosensor for determining an analyte concentration
US11435312B2 (en) 2005-09-30 2022-09-06 Ascensia Diabetes Care Holdings Ag Devices using gated voltammetry methods
US9835582B2 (en) 2005-09-30 2017-12-05 Ascensia Diabetes Care Holdings Ag Devices using gated voltammetry methods
US10670553B2 (en) 2005-09-30 2020-06-02 Ascensia Diabetes Care Holdings Ag Devices using gated voltammetry methods
JP2009528540A (ja) * 2006-02-27 2009-08-06 バイエル・ヘルスケア・エルエルシー バイオセンサー系における温度補正被分析物決定
US10190150B2 (en) 2006-10-24 2019-01-29 Ascensia Diabetes Care Holdings Ag Determining analyte concentration from variant concentration distribution in measurable species
US11091790B2 (en) 2006-10-24 2021-08-17 Ascensia Diabetes Care Holdings Ag Determining analyte concentration from variant concentration distribution in measurable species
US10347371B2 (en) 2007-05-30 2019-07-09 Ascensia Diabetes Care Holdings Ag Fluid analyte meter system
JP2009030981A (ja) * 2007-07-24 2009-02-12 Tanita Corp 液体成分測定装置、基準液、液体成分測定方法
US10690614B2 (en) 2007-12-10 2020-06-23 Ascensia Diabetes Care Holdings Ag Method of using an electrochemical test sensor
US9933385B2 (en) 2007-12-10 2018-04-03 Ascensia Diabetes Care Holdings Ag Method of using an electrochemical test sensor
US8721851B2 (en) 2008-11-28 2014-05-13 Panasonic Healthcare Co., Ltd. Sensor chip, biosensor system, method for measuring temperature of biological sample, method for measuring temperature of blood sample, and method for measuring concentration of analyte in blood sample
US9658182B2 (en) 2008-11-28 2017-05-23 Panasonic Healthcare Holdings Co., Ltd. Method for measuring concentration of analyte in blood sample, and biosensor system
US10690620B2 (en) 2008-11-28 2020-06-23 Phc Holdings Corporation Method for measuring concentration of analyte in blood sample, and biosensor system
US9664639B2 (en) 2009-01-30 2017-05-30 Panasonic Healthcare Holdings Co., Ltd. Method for measuring temperature of biological sample, measuring device, and biosensor system
US10520461B2 (en) 2009-01-30 2019-12-31 Phc Holdings Corporation Method for measuring temperature of biological sample, measuring device, and biosensor system
US8859292B2 (en) 2009-01-30 2014-10-14 Panasonic Healthcare Co., Ltd. Method for measuring temperature of biological sample, method for measuring concentration of biological sample, sensor chip and biosensor system
US9874537B2 (en) 2009-01-30 2018-01-23 Panasonic Healthcare Holdings Co., Ltd. Method for measuring temperature of biological sample, measuring device, and biosensor system
US9395320B2 (en) 2009-01-30 2016-07-19 Panasonic Healthcare Holdings Co., Ltd. Method for measuring temperature of biological sample, measuring device, and biosensor system
US9097650B2 (en) 2009-06-23 2015-08-04 Bayer Healthcare Llc System and apparatus for determining temperatures in a fluid analyte system
US9664644B2 (en) 2009-06-23 2017-05-30 Ascensia Diabetes Care Holdings Ag System and apparatus for determining temperatures in a fluid analyte system
US8617381B2 (en) 2009-06-23 2013-12-31 Bayer Healthcare Llc System and apparatus for determining temperatures in a fluid analyte system
CN102667476B (zh) * 2009-12-30 2015-10-21 霍夫曼-拉罗奇有限公司 用于确定样本流体中的分析物的浓度的系统和方法
EP3244207A1 (en) * 2009-12-30 2017-11-15 Roche Diabetes Care GmbH System and method for determining the concentration of an analyte in a sample fluid
KR101625708B1 (ko) 2009-12-30 2016-05-30 에프. 호프만-라 로슈 아게 샘플 유체내 피검물의 농도를 결정하는 시스템 및 방법
CN102667476A (zh) * 2009-12-30 2012-09-12 霍夫曼-拉罗奇有限公司 用于确定样本流体中的分析物的浓度的系统和方法
WO2011079938A3 (en) * 2009-12-30 2011-08-25 Roche Diagnostics Gmbh System and method for determining the concentration of an analyte in a sample fluid
WO2011082820A1 (en) * 2010-01-08 2011-07-14 Roche Diagnostics Gmbh Sample characterization based on ac measurement methods
US11125712B2 (en) 2016-12-21 2021-09-21 Roche Diagnostics Operations, Inc. Method and device for determining a concentration of at least one analyte
US11782009B2 (en) 2016-12-21 2023-10-10 Roche Diagnostics Operations, Inc. Method and device for determining a concentration of at least one analyte

Also Published As

Publication number Publication date
EP1642123A2 (en) 2006-04-05
EP1642123B1 (en) 2018-12-26
CA2529668C (en) 2011-08-02
JP2007524825A (ja) 2007-08-30
US20040157339A1 (en) 2004-08-12
WO2004113896A3 (en) 2005-02-17
US7407811B2 (en) 2008-08-05
JP4374020B2 (ja) 2009-12-02
CA2529668A1 (en) 2004-12-29

Similar Documents

Publication Publication Date Title
CA2529668C (en) System and method for analyte measurement using ac excitation
EP1639355B1 (en) Method for analyte measurement of biological fluids using dose sufficiency electrodes
US8691152B2 (en) System and method for analyte measurement
US7390667B2 (en) System and method for analyte measurement using AC phase angle measurements
EP1639357B1 (en) Method for determining an abused sensor during analyte measurement in a blood sample
US7597793B2 (en) System and method for analyte measurement employing maximum dosing time delay
EP2344878B1 (en) Identification of control and calibration solutions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004755696

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2529668

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006517463

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004755696

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)