WO2004112082A1 - 電子増倍管 - Google Patents

電子増倍管 Download PDF

Info

Publication number
WO2004112082A1
WO2004112082A1 PCT/JP2004/008443 JP2004008443W WO2004112082A1 WO 2004112082 A1 WO2004112082 A1 WO 2004112082A1 JP 2004008443 W JP2004008443 W JP 2004008443W WO 2004112082 A1 WO2004112082 A1 WO 2004112082A1
Authority
WO
WIPO (PCT)
Prior art keywords
dynode
stage
metal channel
electron multiplier
venetian blind
Prior art date
Application number
PCT/JP2004/008443
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Hanai
Suenori Kimura
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to US10/561,035 priority Critical patent/US20060145054A1/en
Priority to EP04745984.7A priority patent/EP1632982B1/en
Publication of WO2004112082A1 publication Critical patent/WO2004112082A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/22Dynodes consisting of electron-permeable material, e.g. foil, grid, tube, venetian blind

Definitions

  • the present invention relates to an electron multiplier including a dynode section in which a plurality of dynodes are arranged in multiple layers in a stacked state.
  • a dynode part of an electron multiplier As a dynode part of an electron multiplier, a dynode part in which a plurality of Venetian blind dynodes are arranged in multiple layers in a stacked state is conventionally known (for example, see Patent Document 1). In addition, a structure in which a plurality of metal channel dynodes are arranged in multiple layers in a stacked state is conventionally generally known (for example, see Patent Document 2).
  • the Venetian blind dynode has a plurality of louver-shaped electrode elements cut and raised at an angle of about 45 degrees from the substrate, and each electrode element is adjacent to each other and inclined in the same direction. are doing.
  • a secondary electron emission surface is formed on the outer surface of each electrode element for multiplying and emitting incident electrons.
  • the metal channel dynode has a plurality of through-holes formed of slit holes ⁇ ⁇ ⁇ ⁇ arranged in parallel with each other, circular holes or square holes arranged in a matrix shape, and is opened in the substrate.
  • the through-hole has an inner wall surface having a cross-sectional shape that is inclined so that the opening width on the emission side where electrons are emitted is wider than the opening width on the collection side where electrons are incident.
  • a secondary electron emission surface is formed on the inner wall surface of each through-hole to multiply and emit electrons incident from the collecting side.
  • Patent Document 1 Japanese Patent No. 2840853
  • Patent Document 2 Japanese Patent No. 3078905
  • the above-described Venetian blind dynode has a larger thickness than a metal channel dynode because a plurality of electrode elements are cut and raised in a louver shape. Therefore, if the number of dynodes is the same, all stages are Venetian blind dynos.
  • the electron multiplier with a dynode part composed of a metal node has a much longer overall length than an electron multiplier with a dynode part composed of metal channel dynodes at all stages, and the overall length can be reduced.
  • the required electron multiplier has drawbacks.
  • the present invention has been completed by finding that a Venetian blind dynode can efficiently collect incident electrons, and provides an electron multiplier capable of shortening the overall length and improving detection efficiency.
  • the task is to
  • An electron multiplier is an electron multiplier including a plurality of dynodes in which a plurality of dynodes are arranged in a stacked state in multiple stages. It is composed of blind dynodes, and the second and subsequent dynodes are composed of metal channel dynodes.
  • the first-stage Venetian blind dynode efficiently collects and multiplies the incident electrons, and multiplies the multiplied secondary electrons by the second-stage metal channel converter. Release toward the inode. Then, the second stage and subsequent metal channel dynodes sequentially and efficiently multiply the incident secondary electrons, so that the multiplied secondary electrons are efficiently detected as electric signals.
  • an auxiliary electrode for guiding secondary electrons emitted from the first-stage Venetian blind dynode toward the second-stage metal channel dynode can be provided.
  • the auxiliary electrode guides the secondary electrons emitted by the first-stage Venetian blind dynode to the second-stage metal channel dynode without waste, the detection efficiency of the electron multiplier is further improved.
  • the first stage Kunststoffian blind dynode efficiently collects and multiplies the incident electrons, and multiplies the multiplied secondary electrons in the second and subsequent stages. Since the metal channel dynodes are efficiently multiplied sequentially, the detection efficiency is improved.
  • the electron multiplier according to the present invention is configured by a metal channel dynode in which the second and subsequent dynodes of the dynode part can be thinned, so that the total length of the dynode part in the stacking direction is reduced. It can be made compact.
  • FIG. 1 is a longitudinal sectional end view showing an internal structure of an electron multiplier according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of main constituent members of a dynode unit shown in FIG. 1.
  • FIG. 3 is a perspective view of an auxiliary electrode provided between the Venetian blind dynode and the metal channel dynode of the dynode part shown in FIG. 1.
  • FIG. 1 is a longitudinal end view showing an internal structure of an electron multiplier according to one embodiment
  • FIG. 2 is a perspective view of main components of a dynode part shown in FIG.
  • a light-receiving surface plate 2 is hermetically fixed to an opening at one end of a cylindrical side tube 1, and is provided at an opening at the other end. It is configured as a head-on type PMT (photomultiplier tube) containing a focus electrode 4, a dynode part 5, an anode 6, etc. in a vacuum vessel with a stem plate 3 fixed in an airtight manner. .
  • PMT photomultiplier tube
  • the side tube 1 is composed of a Kovar metal tube having flanges formed at both ends, a peripheral portion of the light receiving surface plate 2 is heat-sealed to one end flange, and a stem plate is mounted to the other end flange.
  • the flange 3 is welded.
  • the light receiving surface plate 2 is made of, for example, circular Kovar glass having a thickness of about 0.7 mm, and a photoelectric surface (not shown) is formed on an inner surface of a portion facing the light incident window. .
  • the material of the light receiving face plate 2 can be appropriately changed to synthetic quartz, UV glass, borosilicate glass, or the like according to the required light transmission characteristics.
  • the stem plate 3 is made of Kovar metal, and is formed in a dish shape in which an insulating sealing material 3A made of borosilicate glass is filled.
  • a plurality of stem pins penetrate the stem plate 3 airtightly and are connected to the dynodes of the dynode unit 5.
  • This stem plate 3 An exhaust pipe 8 for evacuating the inside of the vacuum vessel is hermetically fitted and fixed to the center of the vacuum chamber, and the outer end thereof is closed.
  • each support 9 is air-tightly mounted on the insulating sealing material 3A with its base end portion penetrating through the stem plate 3.
  • An insulating pipe 10 is fitted to each of the columns 9.
  • the focus electrode 4 is formed in a rectangular cylindrical shape having a flange portion 4B in which a mounting hole 4A to be fitted to each column 9 is formed (a rectangular cylindrical shape). It is located inside the side tube 1 for
  • the dynode unit 5 includes a Venetian blind dynode 5A as the first dynode, and metal channel dynodes from the second tier, for example, up to the 14th dynode.
  • the Venetian blind dynode 5A is cut at an angle of approximately 45 degrees from the substrate 5A2 in which mounting holes 5A1 to be fitted into the respective insulating pipes 10 (see Fig. 1) are formed at four corners. It has a plurality of raised louver-shaped electrode elements 5A3. Each of the electrode elements 5A3 is adjacent to each other in parallel and inclined in the same direction, and has a blind appearance as a whole.
  • each electrode element 5A3 facing the light-receiving surface plate 2 receives photoelectrons emitted from the photocathode of the light-receiving surface plate 2 and converged by the focus electrode 4, and emits secondary electrons obtained by multiplying the photoelectrons.
  • a secondary electron emission surface is formed.
  • the secondary electron emission surfaces of the electrode elements 5A3 are adjacent to each other, and a large area is secured as a whole.
  • the second-stage Venetian blind dynode 5A can emit more secondary electrons.
  • the metal channel dynode 5B has a plurality of through holes 5B3 that are opened in a slit shape in a substrate 5B2 in which mounting holes 5B1 that fit into the respective insulating pipes 10 (see FIG. 1) are formed at four corners. You. Each through hole 5B3 extends parallel to each other along each electrode element 5A3 of the Venetian blind dynode 5A. [0027] Each through-hole 5B3 has an inner wall surface having a cross-sectional shape that is inclined so that the opening width on the emission side is wider than the opening width on the collection side of secondary electrons (see Fig. 1). Has a secondary electron emission surface that multiplies and emits secondary electrons incident from the collection side.
  • the opening width of each through hole 5B3 is set to be wider on the emission side than the opening width on the collection side of secondary electrons.
  • the braking electric field that induces the element toward the next metal channel dynode 5B penetrates deeply into the through hole 5B3 on the emission side. Therefore, the metal channel dynode 5B can efficiently guide secondary electrons to the next metal channel dynode 5B.
  • the first-stage Venetian blind dynode 5 A and the twelfth-stage metal channel dynode 5 B of the dynode unit 5 are stacked in an insulated state with the anode 6 and the anode 6. It is supported in multiple stages with the final stage dynode 5C.
  • a mounting hole 6A and a mounting hole 5C1 to be fitted into each insulating pipe 10 are provided at the four corners of the anode 6 and the final stage dynode 5C. Each is formed. Further, as shown in FIG. 1, a plurality of washer-shaped insulating spacers 11 and a plurality of insulating rings 12, 13 to be fitted to each insulating pipe 10 are provided, and a tip end of each support 9 is provided. A plurality of nuts 14 are provided which are screwed into the male screw portion 9A formed in the nut.
  • an insulating ring 12 for each insulating pipe 10, an insulating ring 12, a mounting hole 5 Cl of the final dynode 5 C, an insulating spacer 11, a mounting hole 6 A of the anode 6, and an insulating spacer 11 are arranged in this order.
  • the mounting holes 5B1 and insulating spacers 11 of the metal channel dynode 5B are alternately fitted to each insulating pipe 10, and the mounting holes 5A1 and insulating rings 13 of the Venetian blind dynode 5A are connected to each insulating pipe.
  • the first-stage Venetian blind dynode 5A and the second-stage metal channel dynode 5B are arranged in multiple layers with the anode 6 and the last dynode 5C in a stacked state mutually insulated. Have been.
  • each mounting hole 4A formed in the flange portion 4B of the focus electrode 4 is fitted to the distal end of each support 9 and is screwed to the male screw portion 9A at the distal end of each support 9.
  • Each of the nuts 14 presses the insulating ring 13 through the flange portion 4B of the focus electrode 4, thereby The occass electrode 4, the first-stage Venetian blind dynode 5A, the 2-14th metal channel dynode 5B, the anode 6, and the last dynode 5C are integrally and firmly attached to each support 9 together with each insulating spacer 11. It is supported.
  • the electron multiplier when light to be measured is applied to the light receiving surface plate 2, the photoelectric surface on the back surface emits photoelectrons, and the emitted photoelectrons are focused. The light is converged on the first stage Venetian blind dynode 5A by the action of the electrode 4 .
  • the focus electrode 4 Since the secondary electron emission surfaces of the electrode elements 5A3 are adjacent to each other and a large area is secured as a whole, the focus electrode 4 The converged photoelectrons are efficiently collected and multiplied, and the multiplied secondary electrons are emitted toward the second-stage metal channel dynode 5B.
  • the metal channel dynode 5B of the second to fourteenth stages has the opening width of each through hole 5B3 on the emission side wider than the opening width on the collection side of the secondary electron.
  • the collection efficiency of the secondary electrons collected by the metal channel dynode 5B at the next stage from the metal channel dynode 5B is high.
  • the second-stage metal channel dynode 5B efficiently multiplies the secondary electrons that the first-stage Venetian blind dynode 5A efficiently collects and multiplies.
  • the secondary electrons thus efficiently multiplied are efficiently detected by the anode 6 as electric signals.
  • the first-stage dynode having a detection efficiency of the measured light of 66% was a Venetian-blind dynode 5A.
  • the detection efficiency of the measured light was increased to 74%.
  • the electron multiplier of one embodiment is formed of the metal channel dynode 5B in which the dynodes of the 2nd to 14th stages of the dynode section 5 can be thinned, so that the dynode section 5 Can be configured to be short and compact in the stacking direction.
  • the electron multiplier of one embodiment it is possible to simultaneously improve the detection efficiency of the measured light and shorten the overall length.
  • a Venetian bridge constituting the dynode unit 5 is provided.
  • the dynode 5A, each metal channel dynode 5B, and each insulating spacer 11 are integrally and firmly supported on the support 9 together with the anode 6 and the final dynode 5C.
  • the electron multiplier according to the present invention is not limited to one embodiment.
  • a metal channel dynode 5B constituting the second and subsequent dynodes of the dynode section 5 is formed by arranging a plurality of circular or square through holes arranged in a matrix, rather than a slit-like through hole. But hi.
  • secondary electrons emitted by the first-stage Venetian blind dynode 5A are provided between the first-stage Venetian blind dynode 5A and the second-stage metal channel dynode 5B.
  • the auxiliary electrode 15 may be provided in the form of a slit, which guides the current toward the second-stage metal channel dynode 5B. In this case, since the auxiliary electrode 15 guides the secondary electrons emitted by the first-stage Venetian blind dynode 5A to the second-stage metal channel dynode 5B without waste, the detection efficiency of the measured light is further improved.
  • the electron multiplier of the present invention may be an electron multiplier having no photocathode.
  • the first stage Kunststoffian blind dynode efficiently collects and multiplies the incident electrons, and the multiplied secondary electrons are efficiently multiplied by the second and subsequent metal channel dynodes. Since the power is sequentially multiplied, an electron multiplier having improved detection efficiency can be provided.

Landscapes

  • Electron Tubes For Measurement (AREA)
  • Measurement Of Radiation (AREA)

Description

明 細 書
電子增倍管
技術分野
[0001] 本発明は、複数のダイノードが積層状態で多段に配置されたダイノード部を備える 電子増倍管に関するものである。
背景技術
[0002] 電子増倍管のダイノード部として、複数のベネシアンブラインドダイノードが積層状 態で多段に配置されたものが従来一般に知られている(例えば特許文献 1参照)。ま た、複数のメタルチャンネルダイノードが積層状態で多段に配置されたものも従来一 般に知られている (例えば特許文献 2参照)。
[0003] ここで、ベネシアンブラインドダイノードは、基板から略 45度の角度で切り起こされ たルーバ状の複数の電極エレメントを有するものであり、各電極エレメントは、相互に 隣接して同方向に傾斜している。そして、各電極エレメントの外面には、入射された 電子を増倍して放出する 2次電子放出面が形成されている。
[0004] 一方、メタルチャンネルダイノードは、相互に平行に配列されたスリット孔ゃ、マトリツ タス状に配列された円形孔または角孔からなる複数の貫通孔が基板に開口されたも のであり、各貫通孔は、電子が入射される収集側の開口幅に較べて電子が放出され る放出側の開口幅が広くなるように傾斜した断面形状の内壁面を有する。そして、各 貫通孔の内壁面には、収集側から入射された電子を増倍して放出する 2次電子放出 面が形成されている。
特許文献 1:特許第 2840853号公報
特許文献 2:特許第 3078905号公報
発明の開示
発明が解決しょうとする課題
[0005] ところで、前述したベネシアンブラインドダイノードは、複数の電極エレメントがルー バ状に切り起こされているため、メタルチャンネルダイノードに較べて厚みが大きくな る。このため、ダイノードの段数を同じとした場合、全段がベネシアンブラインドダイノ ードで構成されたダイノード部を備える電子増倍管は、全段がメタルチャンネルダイノ ードで構成されたダイノード部を備える電子増倍管に較べて全長がかなり長くなり、 全長の短縮化が要求される電子増倍管としては難点がある。
[0006] 本発明は、ベネシアンブラインドダイノードが入射される電子を効率良く収集できる ことを見出して完成されたものであり、全長の短縮化と同時に検出効率の向上を達成 できる電子増倍管を提供することを課題とする。
課題を解決するための手段
[0007] 本発明に係る電子増倍管は、複数のダイノードが積層状態で多段に配置されたダ イノード部を備える電子増倍管であって、ダイノード部は、 1段目のダイノードがベネ シアンブラインドダイノードで構成され、 2段目以降のダイノードがメタルチャンネルダ ィノードで構成されてレ、ることを特徴とする。
[0008] 本発明に係る電子増倍管では、入射された電子を 1段目のベネシアンブラインドダ ィノードが効率良く収集して増倍し、増倍した 2次電子を 2段目のメタルチャンネルダ ィノードに向けて放出する。そして、 2段目以降のメタルチャンネルダイノードが入射 された 2次電子を順次効率よく増倍することにより、増倍された 2次電子が電気信号と して効率良く検出される。
[0009] 本発明の電子増倍管においては、 1段目のベネシアンブラインドダイノードが放出 する 2次電子を 2段目のメタルチャンネルダイノードに向けて誘導する補助電極を設 けること力できる。この場合、 1段目のベネシアンブラインドダイノードが放出する 2次 電子を補助電極が無駄無く 2段目のメタルチャンネルダイノードに誘導するため、電 子増倍管の検出効率が更に向上する。 発明の効果
[0010] 本発明に係る電子増倍管によれば、入射された電子を 1段目のベネシアンブライン ドダイノードが効率良く収集して増倍し、増倍された 2次電子を 2段目以降のメタルチ ヤンネルダイノードが効率良く順次増倍するので、検出効率が向上する。
[0011] また、本発明の電子増倍管は、ダイノード部の 2段目以降のダイノードが積層状態 を薄くできるメタルチャンネルダイノードで構成されてレ、るため、ダイノード部の積層 方向の全長を短くコンパクトに構成することができる。 図面の簡単な説明
[0012] [図 1]本発明の一実施形態に係る電子増倍管の内部構造を示す縦断端面図である。
[図 2]図 2は図 1に示したダイノード部の主要構成部材の斜視図である。
[図 3]図 3は図 1に示したダイノード部のベネシアンブラインドダイノードとメタルチャン ネルダイノードとの間に介設される補助電極の斜視図である。
符号の説明
[0013] 1…側管、 2…受光面板、 3…ステム板、 4…フォーカス電極、 5…ダイノード部、 5A …ベネシアンブラインドダイノード、 5B…メタルチャンネルダイノード、 6…アノード、 7 · · ·シーノレリンク、、、 8· · ·お気管、 9· · ·支柱、 10· · ·絶縁ノィプ、 11 · · ·絶縁スぺーサ、 12 …絶縁];ング、 13…絶縁];ング、 14…ナツ卜、 15—ネ甫助電極。
発明を実施するための最良の形態
[0014] 以下、図面を参照して本発明に係る電子増倍管の実施の形態を説明する。参照す る図面において、図 1は一実施形態に係る電子増倍管の内部構造を示す縦断端面 図、図 2は図 1に示したダイノード部の主要構成部材の斜視図である。
[0015] 図 1に示すように、一実施形態に係る電子増倍管は、例えば円筒状の側管 1の一 端の開口部に受光面板 2が気密に固定され、他端の開口部にステム板 3が気密に固 定された構造の真空容器内にフォーカス電極 4、ダイノード部 5、アノード 6などが収 容されたヘッドオン型の PMT (光電子増倍管)として構成されてレ、る。
[0016] 側管 1は、両端部にフランジが形成されたコバール金属管で構成されており、一端 のフランジには受光面板 2の周縁部が熱融着され、他端のフランジにはステム板 3の フランジが溶接にて接合されてレ、る。
[0017] 受光面板 2は、例えば厚さが 0. 7mm程度の円形のコバールガラスで構成されてお り、光入射窓に対面する部分の内面には光電面(図示省略)が形成されている。
[0018] なお、受光面板 2の材質は、必要とする光の透過特性に応じて合成石英、 UVガラ ス、硼珪酸ガラスなどに適宜変更することができる。
[0019] ステム板 3は、コバール金属製であり、内部に硼硅酸ガラスからなる絶縁シール材 3 Aが充填される皿状に形成されている。このステム板 3には、図示しない複数のステム ピンが気密に貫通してダイノード部 5の各ダイノードに接続されている。このステム板 3 の中心部には、真空容器内を真空引きするための排気管 8が気密に嵌合して固定さ れており、その外端部は閉塞されている。
[0020] ここで、ステム板 3には、フォーカス電極 4、ダイノード部 5の各段のダイノードおよび アノード 6を堅固に支持するための支柱 9が例えば 4本立設されている。各支柱 9は、 基端部がステム板 3を貫通した状態で絶縁シール材 3Aに気密に坦設されてレ、る。そ して、各支柱 9には、それぞれ絶縁パイプ 10が嵌合されている。
[0021] フォーカス電極 4は、各支柱 9に嵌合する装着孔 4Aが形成されたフランジ部 4Bを 有する短い円筒状ほたは角筒状)に形成されており、その開口部を受光面板 2に向 けて側管 1の内側に配置されてレ、る。
[0022] ここで、ダイノード部 5は、 1段目のダイノードがベネシアンブラインドダイノード 5Aで 構成され、 2段目以降、例えば 14段目までのダイノードがメタルチャンネルダイノード
5Bで構成されている。
[0023] ベネシアンブラインドダイノード 5Aは、図 2に示すように、各絶縁パイプ 10 (図 1参 照)に嵌合する装着孔 5A1が 4隅に形成された基板 5A2から略 45度の角度で切り 起こされたルーバ状の複数の電極エレメント 5A3を有する。各電極エレメント 5A3は 、相互に平行に隣接して同方向に傾斜しており、全体としてブラインド状の外観を呈 する。
[0024] 各電極エレメント 5A3の受光面板 2側に向く外面には、受光面板 2の光電面から放 出されてフォーカス電極 4により収束される光電子を受け、これを増倍した 2次電子を 放出する 2次電子放出面が形成されている。
[0025] このような構造のベネシアンブラインドダイノード 5Aは、各電極エレメント 5A3の 2次 電子放出面が相互に隣接しており、全体として広い面積を確保しているため、光電 子の収集効率が高ぐ 2段目のベネシアンブラインドダイノード 5Aに対し、より多くの 2 次電子を放出することができる。
[0026] メタルチャンネルダイノード 5Bは、各絶縁パイプ 10 (図 1参照)に嵌合する装着孔 5 B1が 4隅に形成された基板 5B2にスリット状に開口された複数の貫通孔 5B3を有す る。各貫通孔 5B3は、ベネシアンブラインドダイノード 5Aの各電極エレメント 5A3に 沿って相互に平行に延びている。 [0027] 各貫通孔 5B3は、 2次電子の収集側の開口幅に較べて放出側の開口幅が広くなる ように傾斜した断面形状の内壁面を有し(図 1参照)、その内壁面には、収集側から 入射された 2次電子を増倍して放出する 2次電子放出面が形成されている。
[0028] このような構造のメタルチャンネルダイノード 5Bは、各貫通孔 5B3の開口幅が 2次 電子の収集側の開口幅に較べて放出側の開口幅が広く設定されているため、 2次電 子を次段のメタルチャンネルダイノード 5Bに向けて誘導する制動電界が放出側の開 ロカ、ら貫通孔 5B3の内部に深く入り込む。このため、メタルチャンネルダイノード 5B は、次段のメタルチャンネルダイノード 5Bに効率よく 2次電子を導くことができる。
[0029] ここで、図 1に示すように、ダイノード部 5の 1段目のベネシアンブラインドダイノード 5 Aおよび 2 14段目のメタルチャンネルダイノード 5Bは、相互に絶縁された積層状 態でアノード 6および最終段のダイノード 5Cと共に多段に支持される。
[0030] そのための構造として、アノード 6および最終段のダイノード 5Cの 4隅には、図 2に 示すように、各絶縁パイプ 10 (図 1参照)に嵌合する装着孔 6Aおよび装着孔 5C1が それぞれ形成されている。また、図 1に示すように、各絶縁パイプ 10に嵌合される複 数のヮッシャ状の絶縁スぺーサ 11および複数の絶縁リング 12, 13が設けられると共 に、各支柱 9の先端部に形成されたォネジ部 9Aに螺合される複数のナット 14が設け られている。
[0031] そして、各絶縁パイプ 10に対し、絶縁リング 12、最終段のダイノード 5Cの装着孔 5 Cl、絶縁スぺーサ 11、アノード 6の装着孔 6A、絶縁スぺーサ 11がこれらの順序で 嵌合され、続いてメタルチャンネルダイノード 5Bの装着孔 5B1および絶縁スぺーサ 1 1が交互に各絶縁パイプ 10に嵌合され、さらにベネシアンブラインドダイノード 5Aの 装着孔 5A1および絶縁リング 13が各絶縁パイプ 10に嵌合されることにより、 1段目の ベネシアンブラインドダイノード 5Aおよび 2 14段目のメタルチャンネルダイノード 5 Bが相互に絶縁された積層状態でアノード 6および最終段のダイノード 5Cと共に多 段に配置されている。
[0032] ここで、各支柱 9の先端部にはフォーカス電極 4のフランジ部 4Bに形成された各装 着孔 4Aが嵌合されており、各支柱 9の先端部のォネジ部 9Aに螺合された各ナット 1 4がフォーカス電極 4のフランジ部 4Bを介して絶縁リング 13を押圧することにより、フ オーカス電極 4、 1段目のベネシアンブラインドダイノード 5A、 2— 14段目のメタルチ ヤンネルダイノード 5B、アノード 6および最終段のダイノード 5Cが各絶縁スぺーサ 11 と共に各支柱 9に一体的に堅固に支持されてレ、る。
[0033] 以上のように構成された一実施形態の電子増倍管では、被測定光が受光面板 2に 照射されると、その裏面の光電面が光電子を放出し、放出された光電子がフォーカス 電極 4の作用により 1段目のベネシアンブラインドダイノード 5Aに収束される。
[0034] ここで、 1段目のベネシアンブラインドダイノード 5Aは、各電極エレメント 5A3の 2次 電子放出面が相互に隣接しており、全体として広い面積を確保しているため、フォー カス電極 4により収束された光電子を効率良く収集して増倍し、増倍した 2次電子を 2 段目のメタルチャンネルダイノード 5Bに向けて放出する。
[0035] 2— 14段目のメタルチャンネルダイノード 5Bは、各貫通孔 5B3の開口幅が 2次電 子の収集側の開口幅に較べて放出側の開口幅が広く設定されているため、前段のメ タルチャンネルダイノード 5Bから次段のメタルチャンネルダイノード 5Bが収集する 2 次電子の収集効率が高い。その結果、 1段目のベネシアンブラインドダイノード 5Aが 効率良く収集して増倍した 2次電子を 2— 14段目のメタルチャンネルダイノード 5Bが 効率良く順次増倍する。
[0036] そして、このように効率的に増倍された 2次電子は、アノード 6により電気信号として 効率良く検出される。
[0037] ちなみに、 1段目のダイノードもメタルチャンネルダイノード 5Bとした電子増倍管で は、被測定光の検出効率が 66%であった力 1段目のダイノードをベネシアンブライ ンドダイノード 5Aとした一実施形態の電子増倍管では、被測定光の検出効率が 74 %に上昇した。
[0038] ここで、一実施形態の電子増倍管は、ダイノード部 5の 2— 14段目までのダイノード が積層状態を薄くできるメタルチャンネルダイノード 5Bで構成されているため、ダイノ ード部 5の積層方向の全長を短くコンパクトに構成することができる。
[0039] すなわち、一実施形態の電子増倍管によれば、被測定光の検出効率の向上およ び全長の短縮化を同時に達成することができる。
[0040] なお、一実施形態の電子増倍管では、ダイノード部 5を構成するベネシアンブライ ンドダイノード 5A、各メタルチャンネルダイノード 5Bおよび各絶縁スぺーサ 11がァノ ード 6および最終段のダイノード 5Cと共に支柱 9に対し一体的に堅固に支持されて いるため、これらが振動や衝撃により不用意に横ずれを起こすことがなぐダイノード 部 5は優れた耐振性能を発揮する。
[0041] 本発明に係る電子増倍管は、一実施形態に限定されるものではなレ、。例えば、ダイ ノード部 5の 2段目以降のダイノードを構成するメタルチャンネルダイノード 5Bは、スリ ット状の貫通孔ではなぐ円形または四角形の複数の貫通孔がマトリックス状に配置 して形成されたものでもよレ、。
[0042] また、図 3に示すように、 1段目のベネシアンブラインドダイノード 5Aと 2段目のメタ ルチヤンネルダイノード 5Bとの間には、 1段目のベネシアンブラインドダイノード 5Aが 放出する 2次電子を 2段目のメタルチャンネルダイノード 5Bに向けて誘導するスリット 状の補助電極 15を設けることもできる。この場合、 1段目のベネシアンブラインドダイ ノード 5Aが放出する 2次電子を補助電極 15が無駄無く 2段目のメタルチャンネルダ ィノード 5Bに誘導するため、被測定光の検出効率が更に向上する。
[0043] さらに、本発明の電子増倍管は、光電面を有しない電子増倍管としてもよい。
産業上の利用可能性
[0044] 本発明によれば、入射された電子を 1段目のベネシアンブラインドダイノードが効率 良く収集して増倍し、増倍された 2次電子を 2段目以降のメタルチャンネルダイノード が効率良く順次増倍するので、検出効率が向上する電子増倍管を提供できる。

Claims

請求の範囲
[1] 複数のダイノードが積層状態で多段に配置されたダイノード部を備える電子増倍管 であって、
前記ダイノード部は、 1段目のダイノードがベネシアンブラインドダイノードで構成さ れ、 2段目以降のダイノードがメタルチャンネルダイノードで構成されていることを特徴 とする電子増倍管。
[2] 前記 1段目のベネシアンブラインドダイノードが放出する 2次電子を 2段目のメタルチ ヤンネルダイノードに向けて誘導する補助電極を備えていることを特徴とする請求項 1に記載の電子増倍管。
PCT/JP2004/008443 2003-06-17 2004-06-16 電子増倍管 WO2004112082A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/561,035 US20060145054A1 (en) 2003-06-17 2004-06-16 Electron multiplier
EP04745984.7A EP1632982B1 (en) 2003-06-17 2004-06-16 Electron multiplier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-172494 2003-06-17
JP2003172494A JP4249548B2 (ja) 2003-06-17 2003-06-17 電子増倍管

Publications (1)

Publication Number Publication Date
WO2004112082A1 true WO2004112082A1 (ja) 2004-12-23

Family

ID=33549474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008443 WO2004112082A1 (ja) 2003-06-17 2004-06-16 電子増倍管

Country Status (4)

Country Link
US (1) US20060145054A1 (ja)
EP (1) EP1632982B1 (ja)
JP (1) JP4249548B2 (ja)
WO (1) WO2004112082A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112185784A (zh) * 2020-08-27 2021-01-05 西安交通大学 一种电子倍增器打拿极的装配工装及装配方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4849521B2 (ja) * 2006-02-28 2012-01-11 浜松ホトニクス株式会社 光電子増倍管および放射線検出装置
US8571012B2 (en) * 2006-05-12 2013-10-29 Oracle International Corporation Customized sip routing to cross firewalls
US8853617B1 (en) * 2013-03-14 2014-10-07 Schlumberger Technology Corporation Photomultiplier for well-logging tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2866914A (en) 1955-12-26 1958-12-30 Schlumberger Well Surv Corp Photomultiplier
US3229142A (en) 1962-10-22 1966-01-11 Kalibjian Ralph Wide band multichannel electron multiplier having improved path shielding and gain characteristics
JPS6240147A (ja) * 1985-08-14 1987-02-21 Shimadzu Corp イオン検出装置
JPH02291657A (ja) * 1989-04-28 1990-12-03 Hamamatsu Photonics Kk 2次電子増倍管およびこの2次電子増倍管を用いた光電子増倍管
JP2000003693A (ja) * 1998-06-15 2000-01-07 Hamamatsu Photonics Kk 電子管及び光電子増倍管

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2925020B2 (ja) * 1989-11-10 1999-07-26 浜松ホトニクス株式会社 光電子増倍管
JP3056771B2 (ja) * 1990-08-15 2000-06-26 浜松ホトニクス株式会社 電子増倍管
JPH06150876A (ja) * 1992-11-09 1994-05-31 Hamamatsu Photonics Kk 光電子増倍管及び電子増倍管
US5410221A (en) * 1993-04-23 1995-04-25 Philips Electronics North America Corporation Lamp ballast with frequency modulated lamp frequency
JP3392240B2 (ja) * 1994-11-18 2003-03-31 浜松ホトニクス株式会社 電子増倍管
JP3598173B2 (ja) * 1996-04-24 2004-12-08 浜松ホトニクス株式会社 電子増倍器及び光電子増倍管
JP4237308B2 (ja) * 1998-11-10 2009-03-11 浜松ホトニクス株式会社 光電子増倍管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2866914A (en) 1955-12-26 1958-12-30 Schlumberger Well Surv Corp Photomultiplier
US3229142A (en) 1962-10-22 1966-01-11 Kalibjian Ralph Wide band multichannel electron multiplier having improved path shielding and gain characteristics
JPS6240147A (ja) * 1985-08-14 1987-02-21 Shimadzu Corp イオン検出装置
JPH02291657A (ja) * 1989-04-28 1990-12-03 Hamamatsu Photonics Kk 2次電子増倍管およびこの2次電子増倍管を用いた光電子増倍管
JP2000003693A (ja) * 1998-06-15 2000-01-07 Hamamatsu Photonics Kk 電子管及び光電子増倍管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1632982A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112185784A (zh) * 2020-08-27 2021-01-05 西安交通大学 一种电子倍增器打拿极的装配工装及装配方法

Also Published As

Publication number Publication date
US20060145054A1 (en) 2006-07-06
EP1632982B1 (en) 2015-01-07
EP1632982A4 (en) 2008-09-17
JP2005011591A (ja) 2005-01-13
JP4249548B2 (ja) 2009-04-02
EP1632982A1 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
JP3466712B2 (ja) 電子管
JP3598173B2 (ja) 電子増倍器及び光電子増倍管
US8507838B2 (en) Microstructure photomultiplier assembly
US20100213838A1 (en) Photomultiplier tube
US7495392B2 (en) Electron multiplier unit including first and second support members and photomultiplier including the same
WO1999066534A1 (fr) Tube electronique
JP4246879B2 (ja) 電子増倍管及び光電子増倍管
JP3535094B2 (ja) 光電子増倍管用パッケージ
JP3078905B2 (ja) 電子増倍器を備えた電子管
WO2004112081A1 (ja) 電子増倍管
WO2007099958A1 (ja) 光電子増倍管、放射線検出装置および光電子増倍管の製造方法
JP4249548B2 (ja) 電子増倍管
JPH09306416A (ja) 電子増倍器及び光電子増倍管
US5453609A (en) Non cross talk multi-channel photomultiplier using guided electron multipliers
JP2007520048A (ja) イオンフィードバックを抑制した平行板型電子増倍管
JP2002008528A (ja) ダイノードの製造方法及び構造
WO2003098658A1 (fr) Tube photomultiplicateur et son procédé d'utilisation
WO2005091332A1 (ja) マルチアノード型光電子増倍管
JP2009200044A (ja) 光電子増倍管
JP3620920B2 (ja) 電子増倍器及び光電子増倍管
JP4917280B2 (ja) 電子増倍管
WO2005091333A1 (ja) 光電子増倍管
JPS6378448A (ja) 光電子増倍管

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004745984

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006145054

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10561035

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004745984

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10561035

Country of ref document: US