WO2004109811A1 - 太陽電池モジュール用充填材層およびこれを用いた太陽電池モジュール - Google Patents

太陽電池モジュール用充填材層およびこれを用いた太陽電池モジュール Download PDF

Info

Publication number
WO2004109811A1
WO2004109811A1 PCT/JP2004/008009 JP2004008009W WO2004109811A1 WO 2004109811 A1 WO2004109811 A1 WO 2004109811A1 JP 2004008009 W JP2004008009 W JP 2004008009W WO 2004109811 A1 WO2004109811 A1 WO 2004109811A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
filler layer
polyethylene
silane
Prior art date
Application number
PCT/JP2004/008009
Other languages
English (en)
French (fr)
Inventor
Kasumi Oi
Hiroki Nakagawa
Takaki Miyachi
Isao Inoue
Koujiro Ohkawa
Original Assignee
Dai Nippon Printing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co., Ltd. filed Critical Dai Nippon Printing Co., Ltd.
Priority to DE112004000919T priority Critical patent/DE112004000919T5/de
Priority to US10/559,581 priority patent/US7521515B2/en
Publication of WO2004109811A1 publication Critical patent/WO2004109811A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a filler layer for a solar cell module having a silane-modified resin, and a solar cell module using the same. '
  • the above-mentioned solar cell module includes, for example, a transparent front substrate, a filler layer, a solar cell element as a photovoltaic element, a filler layer, and a back surface protection sheet, and the like. It is manufactured by using a lamination method in which heat is applied by suction.
  • ethylene 100 / Xm to 150 ⁇ m thick ethylene is used as a material constituting the filler layer for a solar cell module.
  • Bull acetate acetate resin is the most commonly used.
  • the filler layer made of ethylene monoacetate copolymer resin does not always have sufficient adhesive strength to the transparent front substrate or the back protective sheet, and its weak point is that it can be used outdoors for a long time. There is a problem of exposure. Furthermore, when a solar cell module is manufactured using a filler layer made of an ethylene-vinyl acetate copolymer resin, the ethylene-vinyl acetate copolymer resin undergoes thermal decomposition or the like depending on the conditions such as heating and pressure bonding. Acetic acid gas is generated, which not only deteriorates the working environment and the like, but also has a problem of adversely affecting the solar cell elements and electrodes, causing deterioration, reduction in power generation efficiency, and the like.
  • Copolymerization is a method in which a monomer, a catalyst, and an unsaturated silane compound are mixed, and a polymerization reaction is performed at a predetermined temperature and pressure.
  • Gel polymerization is a method in which a polymer, a free radical generator, and an unsaturated silane compound are mixed. This is a method in which the silane compound is polymerized on the polymer main chain and side chains by stirring at a predetermined temperature.
  • silane coupling is applied to ethylene-vinyl acetate copolymer resin in order to give rise to a bridging reaction in the resin that is the material of the filler layer during thermocompression bonding to impart strength, heat resistance, durability, etc. to the material itself.
  • a method using a resin sheet to which an agent and an organic peroxide are added Japanese Patent Publication No. 62-141111
  • Japanese Patent Publication No. 62-141111 Japanese Patent Publication No. 62-141111
  • Japanese Patent Publication No. 62-141111 Japanese Patent Publication No.
  • organic peroxides for ethylene-ethylenically unsaturated carboxylic acid ester-ethylenically unsaturated silane compound terpolymer resin Japanese Patent Publication No. 6-104729
  • Japanese Patent Publication No. 6-104729 Japanese Patent Publication No. 6-104729
  • the organic peroxide is decomposed to cause a crosslinking reaction of the resin, which makes sheet forming difficult, reduces workability during lamination, or causes decomposition products derived from the organic peroxide during lamination. It has disadvantages such as remaining at the bonding interface and causing adhesion inhibition.
  • silane compounds have a problem of high cost, and further improvement is still required.
  • the present invention provides an inexpensive, excellent adhesiveness to the transparent front substrate and the back surface protective sheet during the production of the solar cell module, does not deteriorate the working environment, does not adversely affect the solar cell element and the electrodes, etc.
  • the main purpose is to provide a filler layer for a solar cell module.
  • a filler layer for a solar cell module having a silane-modified resin obtained by polymerizing an ethylenically unsaturated silane compound and polyethylene for polymerization When the filler layer is used for a solar cell module, the gel fraction is 30% or less. Provide a material layer.
  • the filler layer for a solar cell module as described above has a silane-modified resin, it has excellent adhesion to a transparent front substrate and a back protective sheet for a solar cell module, such as glass, and has a main chain of polyethylene. It has the advantage of not generating harmful gas and not deteriorating the working environment.
  • a solar cell module by setting the gel fraction of the filler layer for the solar cell module within the above range, sealing can be performed in a short time, and there is an advantage that heat treatment or the like is not required. .
  • heat treatment or the like is not required.
  • it is possible to easily soften and melt the filler layer by heating so that, for example, a solar cell element used in a solar cell module or a transparent The front substrate and the like can be reused.
  • the filler layer for a solar cell module further has a polyethylene for addition. Since the silane-modified resin is expensive, it is preferable that the filler layer for a solar cell module contains an additive polyethylene.
  • the above-mentioned polyethylene for polymerization, the above-mentioned polyethylene for addition, and low-density polyethylene, medium-density polyethylene, high-density polyethylene, ultra-low-density polyethylene, ultra-low-density polyethylene, and linear low-density polyethylene are further comprised.
  • it is at least one polyethylene selected from the group.
  • the amount of the silane-modified resin contained in the solar cell module filler layer is preferably 1 to 80% by weight.
  • the silane-modified resin has an adhesive property to glass or the like by having an ethylenically unsaturated silane compound polymerized with polyethylene for polymerization. Therefore, by having the above-mentioned silane-modified resin in the filler layer for a solar cell module, the adhesion to the transparent front substrate for a solar cell module, the back surface protection sheet, and the solar cell element is enhanced. Therefore, if the above range is not satisfied, the adhesion to glass or the like will be insufficient, and if it exceeds the above range, the adhesion to glass or the like will not change and the cost will be high.
  • the filler layer for a solar cell module contains 8 ppm to 350 ppm of Si (silicon) and polymerization Si. For the same reason as described above, by having the amount of polymerized Si within this range, it is possible to improve the adhesion to the solar cell element and the transparent front substrate. Furthermore, in the present invention, it is preferable that the filler layer for a solar cell module does not substantially contain a silanol condensation catalyst.
  • the present invention is characterized in that the gel fraction in the filler layer is equal to or less than a predetermined value, and in a resin composition using an ethylenically unsaturated silane compound for water crosslinking or the like. This is because the desired gel fraction cannot be obtained if a silanol condensation catalyst that is generally blended is contained.
  • the present invention also provides a solar cell module comprising the above-mentioned solar cell module filler layer.
  • the solar cell module having the filler layer for a solar cell module of the present invention has the advantages of the above-described filler layer for a solar cell module, and also has the advantage of being cost-effective.
  • the filler layer for a solar cell module of the present invention has an advantage that it has excellent adhesion to glass used for a protective sheet for a solar cell module and does not deteriorate the working environment. Sealing can be performed in a short time, and there is an effect that heat treatment or the like is unnecessary. Further, the present invention has an effect that enables reuse of members included in the solar cell module.
  • FIG. 1 is a schematic sectional view showing an example of the solar cell module of the present invention. [Best Mode for Carrying Out the Invention]
  • the present invention includes a filler layer for a solar cell module and a solar cell module using the same.
  • the solar cell module filler layer and the solar cell module using the same will be described.
  • sheet means any of a sheet or a film
  • film means any of a film or a sheet. It is.
  • the filler layer for a solar cell module of the present invention is a filler layer for a solar cell module having a silane-modified resin obtained by polymerizing an ethylenically unsaturated silane compound and polyethylene for polymerization,
  • the gel fraction is not more than a predetermined value.
  • the silane-modified resin used in the present invention is obtained by polymerizing an ethylenically unsaturated silane compound and polyethylene for polymerization.
  • a silane-modified resin is prepared by mixing an ethylenically unsaturated silane compound, polyethylene for polymerization, and a radical generator, melting and stirring at a high temperature, and graft-polymerizing the ethylenically unsaturated silane compound onto the polyethylene for polymerization.
  • a radical generator melting and stirring at a high temperature
  • the polyethylene for polymerization used in the present invention is not particularly limited as long as it is a polyethylene-based polymer, and specific examples thereof include low-density polyethylene, medium-density polyethylene, high-density polyethylene, ultra-low-density polyethylene, and ultra-high-density polyethylene. Low density polyethylene or linear low density polyethylene is preferred. One or more of these may be used.
  • polyethylene having many side chains is preferable.
  • polyethylene having many side chains has low density
  • polyethylene having few side chains has high density. Therefore, it can be said that polyethylene having a low density is preferable.
  • the density of the polyethylene for polymerization in the present invention 0. 8 5 0 ⁇ 0. 9 6 0 g Z is preferably in the range of cm 3, more preferably 0. 8 6 5 ⁇ 0. 9 3 0 g / cm 3 Within the range. If the polyethylene for polymerization is polyethylene having many side chains, that is, polyethylene having a low density, the ethylenically unsaturated silane compound is likely to be graft-polymerized to the polyethylene for polymerization.
  • the ethylenically unsaturated silane compound used in the present invention is not particularly limited as long as it is capable of graft-polymerizing with the above-mentioned polymerization polyethylene.
  • Triisopropoxy silane, Burt tributoxy silane, Vinyl tripentic xylan, Burt triphenoxy silane, Vinyl tribenzyloxy silane, Burt methylene dioxy silane, Burt triethylene dioxy silane, Vinyl propionyl oxy silane, Vinyl Triacetoxysilane and butyltricarboxysilane At least one member selected from the group consisting of In the present invention, especially, trimethyl silane is preferably used.
  • the amount of the ethylenically unsaturated silane compound contained in the solar cell module filler layer is preferably at least 10 ppm, more preferably at least 2 ° ppm.
  • the filler layer for a solar cell module has a material used for a transparent front substrate and a back sheet for a solar cell module to be described later, for example, glass, etc. by having the ethylenically unsaturated silane compound polymerized with polyethylene for polymerization. Adhesion is realized. Therefore, if it is less than the above range, the adhesion to glass or the like is insufficient.
  • the upper limit of the amount of the ethylenically unsaturated silane compound is preferably at most 400 ppm, more preferably at most 300 ppm.
  • the upper limit is not limited in terms of adhesion to glass or the like, but if it exceeds the above range, adhesion to glass or the like will not change and the cost will increase.
  • the silane-modified resin is preferably contained in the filler layer for a solar cell module in the range of: to 80% by weight, more preferably 5 to 70% by weight. . Also in this case, similarly, the silane-modified resin is provided with adhesion to glass or the like by having an ethylene unsaturated silane compound polymerized with polyethylene for polymerization. Therefore, by having the silane-modified resin as described above, the filler layer for a solar cell module has high adhesion to glass or the like. Therefore, the above range is preferably used from the viewpoints of adhesion to glass and the like and cost.
  • the silane-modified resin preferably has a melt mass flow rate at 190 ° C. of 0.5 to 10 g / 10 minutes, more preferably 1 to 8 g / 10 minutes. . This is because the moldability of the filler layer for the solar cell module and the adhesion to the transparent front substrate and the back surface protection sheet are excellent. .
  • the melting point of the silane-modified resin is preferably 11 ° C. or less.
  • radical generator to be added to the silane-modified resin examples include hydroperoxides such as diisopropylpropylbenzene hydroperoxide and 2,5-dimethyl-2-, 5-di (hydroperoxy) hexane; One butyl peroxide, one butyl Dimer such as cumyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t-peroxy) hexine-13 Lucinole peroxides; bis-1,3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, benzoyl peroxide, o-methylbenzoyl peroxide, 2,4-dichloro Diarboxides such as benzoyl peroxide in the mouth; t-butyl peroxyacetate, t-butyl peroxy-2-ethylhex
  • t-butylperoxyisopropyl carbonate t-butylperoxybenzoate, di-tert-butylperoxyphthalate
  • 2,5-dimethyl-2,5-di (benzoylperoxy) hexane 2, Peroxyesters such as 5-dimethyl-2,5-di (benzoylperoxy) hexine-13
  • ketone peroxides such as methylethyl ketone peroxide and cyclohexanone peroxide
  • Organic peroxides, or azo compounds such as azobisisobutymouth-tolyl and azobis (2,4-dimethylpareronitrile) are exemplified.
  • the amount of the radical generator used is preferably 0.01% by weight or more in the modified silane resin. If the amount is less than the above range, radical polymerization of the ethylenically unsaturated silane compound and the polyethylene for polymerization hardly occurs.
  • the silane-modified resin used in the present invention can be used for laminated glass.
  • Laminated glass is manufactured by heat-pressing with a flexible and tough resin sandwiched between glass, so use the above silane-modified resin in terms of adhesion to glass. Can be.
  • the filler layer for a solar cell module includes the silane-modified resin and polyethylene for addition.
  • the above-mentioned polyethylene for addition include those similar to those described in the above “1. Silane-modified resin”.
  • the polyethylene for addition is the same resin as the polyethylene for polymerization. Due to the high cost of the silane-modified resin, the silane-modified resin and the additive polyethylene are mixed to form a filler layer for the solar cell module, rather than forming the filler layer for the solar cell module with the silane-modified resin alone. Forming is more costly This is because it is economically advantageous.
  • the content of the polyethylene for caroten addition is preferably from 0.01 to 900 parts by weight, more preferably from 90 to 900 parts by weight, based on 100 parts by weight of the silane-modified resin. More preferred.
  • the content of polyethylene for added carohydrate is within the above-mentioned range of 5 to 100 parts by weight in total.
  • the polyethylene for addition preferably has a melt mass flow rate at 190 ° C. of 0.5 to 10 g Z10 minutes, more preferably 1 to 8 g / 10 minutes. V ,. This is because the moldability of the filler layer for a solar cell module is excellent.
  • the melting point of the polyethylene for addition is preferably 130 ° C. or less. The above range is preferable from the viewpoint of the addition properties at the time of manufacturing a solar cell module using the solar cell module filler layer.
  • the melting point is measured by differential scanning calorimetry (DSC) in accordance with the plastic transition temperature measuring method (JISK7121). If there are two or more melting point peaks, the higher temperature is taken as the melting point.
  • DSC differential scanning calorimetry
  • the filler layer for a solar cell module of the present invention has a silane-modified resin as described above, and a light stabilizer, an ultraviolet absorber, and a heat stabilizer are added to the resin layer to provide stable mechanical strength and adhesion for a long time. Strength, yellowing prevention, crack prevention, and excellent workability can be obtained.
  • the light stabilizer captures an active species that initiates photodegradation in a polymer used for the polymerization polyethylene and the addition polyethylene, and prevents photooxidation.
  • a compound selected from the group consisting of a hindered amine compound, a hindered piperidine compound, and others can be used.
  • the ultraviolet absorber absorbs harmful ultraviolet light in sunlight, converts it into harmless heat energy in the molecule, and converts the light in the polymer used in the polyethylene for polymerization and the polyethylene for addition into the polymer. It is intended to prevent the active species at the start of deterioration from being excited.
  • At least one selected from the group consisting of ultraviolet absorbers of inorganic type such as 0 ⁇ ) can be used.
  • heat stabilizer examples include tris (2,4-zy-tert-butylphenyl) phosphite, bis [2,4-bis (1,1-dimethylethyl) -16-methylphenyl] ethylester phosphite, tetrakis (2, Thermal stability of phosphorus-based compounds such as 4-G-tert-butylphenyl) [1,1-biphenyl] -4,4'-diylbisphosphonate and bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite
  • Ritatone heat stabilizers such as the reaction product of 8-hydroxy-5,7-ditert-butyl-2-furan-2-one and o-xylene.
  • a phosphorus-based heat stabilizer and a lactone-based heat stabilizer in combination.
  • the content of the above-mentioned light stabilizer, ultraviolet absorber, heat stabilizer and the like varies depending on the particle shape, density, etc., but is preferably within the range of 0.01 to 5% by weight in the filler layer for a solar cell module. preferable.
  • the filler layer for a solar cell module has a low gel fraction, which is a feature of the present invention. Therefore, the silane-modified resin has a crosslinked structure. No need to form. Therefore, a crosslinking agent or a catalyst for accelerating the condensation reaction of the silanol group is not particularly required.
  • dibutino! ⁇ Diacetate, dibutyl tin dilate, dibutino! ⁇ Di-octyl citrate, di-butyl octyl tin di-late and the silanol of the silicone obtained! Not included in the power s preferred.
  • substantially not contained means ⁇ which is not more than 0.05 part by weight with respect to 100 parts by weight of the resin constituting the filler layer for a solar cell module.
  • the thickness of the filler layer for a solar cell module of the present invention is preferably in the range of 100 to 200 ⁇ , and particularly preferably in the range of 100 to 125 ⁇ . If the thickness is smaller than the above range, the cell cannot be supported and the cell is likely to be damaged.If the thickness is larger than the above range, the module weight becomes heavy and the workability at the time of installation is not only bad, but also This is because the cost may be disadvantageous in some cases.
  • the Si (silicon) force polymerization Si amount is 8 ppm to 350 ppm, particularly 10 ppn! ⁇ 30000 ppm, especially 50 ppn!
  • the content is preferably in the range of 2200 ppm.
  • the amount of the polymerized Si is included within this range, the adhesion to the transparent front substrate and the solar cell element can be kept good, and the above-mentioned range is preferable from the viewpoint of cost. .
  • the polymerization S i weight as a method of measuring the polymerization S i weight, the polymerization S i from being converted into S io 2, ash content alkali melting by ashing by heating to burn only filler layer Then, after dissolving in pure water, the volume is determined, and the amount of the polymerized Si is quantified by the I.CP emission spectrometry (high-frequency plasma emission spectrometer: ICPS8100 manufactured by Shimadzu Corporation).
  • the resin constituting the filler layer for the solar cell module preferably has a melt mass flow rate at 190 ° C. of 0.5 to: 10 g Z 10 minutes, and 1 to 8 g. More preferably, it is / 10 minutes. This is because the moldability of the filler layer for the solar cell module and the adhesiveness to the transparent front substrate and the back protective sheet are excellent.
  • the melting point of the resin constituting the filler layer for a solar cell module is preferably 130 ° C. or less.
  • the above range is preferable from the viewpoint of workability and the like.
  • the melting point can be easily reused if the melting point is at this level. The method for measuring the melting point is the same as that described above, and the description is omitted here.
  • the gel fraction is preferably 30% or less, particularly preferably 10% or less, and particularly preferably 0%. Since the silane-modified resin used in the present invention does not form a crosslinked structure as described above, sealing can be performed in a short time, and post-treatment such as heat treatment is not required. On the other hand, when the gel fraction exceeds the above range, the processability during the production of the solar cell module is reduced, and no improvement in the adhesion to the transparent front substrate and the back surface protective sheet is observed. Furthermore, if the gel fraction exceeds the above range, it becomes difficult to regenerate members included in the solar cell module, for example, a solar cell element or a transparent front substrate.
  • the gel fraction when the solar cell module filler layer is used in a solar cell module includes, for example, a transparent front substrate, a solar cell module filler layer, a solar cell element, and a solar cell module filler layer. , And a backside protective sheet are sequentially laminated, and then integrated into a single unit using a normal forming method such as a lamination method in which vacuum suction is applied and heat-pressed to form a solar cell module. Means the gel fraction of the solar cell module filler layer.
  • a filler layer for a solar cell module is weighed and placed in an 80 mesh wire mesh bag.
  • a sample is put into the Soxhlet extractor ⁇ ⁇ together with the wire mesh, and xylene is refluxed at the boiling point.
  • the wire mesh and the sample are taken out, dried, weighed, the weight before and after extraction is measured, the weight% of residual insoluble matter is measured, and this is used as the gel fraction.
  • the silane-modified resin is obtained by mixing a mixture of an ethylenically unsaturated silane compound, a polyethylene for polymerization, and a radical generator by heating and melting, and graft-polymerizing a polyethylene-unsaturated silanized compound into polyethylene for polymerization.
  • a radical generator by heating and melting, and graft-polymerizing a polyethylene-unsaturated silanized compound into polyethylene for polymerization.
  • the method of heat-melting and mixing these mixtures there is no particular limitation on the method of heat-melting and mixing these mixtures.
  • the additives it is preferable to extrude and knead the additives, mix a master patch in the resin with the main raw material, and extrude and melt.
  • the heating temperature is preferably 300 ° C. or lower, more preferably 270 ° C. or lower.
  • the silane-modified resin is preferably melt-mixed within the above-mentioned range because the silanol group is easily crosslinked and gelled by heating.
  • the silane-modified resin is melted and mixed as described above, the resulting silane-modified resin can be pelletized, heated again, and extruded.However, the silane-modified resin is placed in a hopper of an extruder. It is also possible to mix and add the above-mentioned additive polyethylene and heat and melt it in a cylinder, and the latter is superior in terms of cost.
  • the above-mentioned resin is heated and melted, it is molded into a sheet having a thickness of 100 to 150 ⁇ by an existing method such as T-die, inflation and the like. can do.
  • the heating temperature at the time of reheating and melting is preferably 300 ° C. or lower, more preferably 270 ° C. or lower.
  • the silane-modified resin is liable to be gelled by heating because the silanol group is cross-linked by heating.
  • FIG. 1 is a schematic cross-sectional view showing an example of a solar cell module manufactured using a solar cell module filler layer.
  • a transparent front substrate 1 a filler layer 2 for a solar cell module, a solar cell element 3 as a photovoltaic element, a filler layer 2 for a solar cell module, and a backside protective sheet 4 are provided.
  • the solar cell module T can be manufactured by laminating the layers in order and then integrally forming the layers into an integral molded body by using a normal molding method such as a lamination method in which vacuum suction is applied and heat-compression is performed.
  • the lamination temperature when such a lamination method is used is preferably in the range of 90 ° C. to 230 ° C., particularly 110 ° C. to 190 ° C. It is preferable to be within the range. If the temperature is lower than the above range, it will not melt sufficiently and the adhesion to the transparent front substrate, auxiliary electrode, solar cell element, back protective sheet, etc. may be deteriorated. This is not preferable because the water cross-linking tends to progress and the gel fraction may increase.
  • the lamination time is preferably in the range of 5 to 60 minutes, particularly preferably in the range of 8 to 40 minutes.
  • the time is shorter than the above range, it may not be melted sufficiently and the adhesion to the same member may be deteriorated. If the time is longer, there may be a problem in the process. This is because it causes an increase. If the humidity is too high, the gel fraction may increase.If the humidity is too low, the adhesion to various components may be reduced. Absent.
  • the solar cell module filler layer may be provided between the transparent front substrate and the solar cell element, or may be provided between the transparent front substrate and the solar cell element. It may be provided between the sheet and the solar cell element.
  • transparent front substrate used in the solar cell module of the present invention glass, a fluorine-based resin sheet, a transparent composite sheet obtained by laminating a weather-resistant film and a barrier film, or the like can be used.
  • a metal such as aluminum, a fluorine-based resin sheet, a composite sheet obtained by laminating a weather-resistant film and a barrier film, and the like can be used.
  • the gel fraction in the filler layer in the case of a solar cell module as described above is not more than a predetermined range, problems occur during the used solar cell module and during the manufacturing process.
  • the components of the solar cell module, specifically, the solar cell element and the transparent front substrate can be reused.
  • such reuse will be described separately for a method of manufacturing a recycled solar cell element, a method of manufacturing a recycled transparent front substrate, and a method of recycling a solar cell module.
  • the method for manufacturing a solar cell element is a method for manufacturing a regenerated solar cell element that obtains a regenerated solar cell element from the solar cell module according to the present invention, wherein the solar cell module is a constituent material of a filler layer.
  • each step will be described.
  • the solar cell module is heated to a temperature equal to or higher than the softening point of the resin that is a constituent material of the filler layer.
  • the resin constituting the filler layer is softened and melted, and the filler layer can be easily removed.
  • the caro-heating method is a method of putting the solar cell module of the present invention into a container filled with a caro-heated gas, a solid such as liquid or powder, or a combination thereof, or [1.
  • a solar pond module is a temperature equal to or higher than the softening point of the resin that is a constituent material of the filler layer, and is appropriately selected according to the resin used.
  • the softening point means a vicat softening temperature measured based on the Jis standard K7206 of the thermoplastic resin.
  • the heating temperature in the heating step is preferably the same as the Vicat softening temperature, or 0 ° C to 250 ° C or higher and higher than the Vicat temperature, more preferably 10 ° C to 150 ° C. C or more, more preferably in the range of 20 ° C to 130 ° C or more.
  • the specific heating temperature in the heating step is preferably in the range of 20 ° C to 450 ° C, more preferably 30 ° C to 350 ° C, and still more preferably 1 ° C to 350 ° C. It is in the range of 10 ° C to 170 ° C.
  • the separation step in the present invention is a step of separating the solar cell element by utilizing the fact that the filler layer is softened and melted by heating in the heating step.
  • the separation method may be any method as long as it can be separated without damaging the solar cell elements.
  • Examples of the separation method include a method using separation means, a method of applying shear stress, and the like.
  • the method using the separating means includes a filler layer disposed between the front transparent substrate and the solar cell element of the solar cell module heated in the heating step described above, This is a method in which the filler layer interposed is cut by passing through a separating means to separate the front transparent substrate and the back protective sheet from the solar cell element.
  • a wire or the like can be cited as a preferred example.
  • a lateral direction is applied to at least one of the solar cell element or the transparent front substrate of the solar cell module heated in the above-mentioned heating step and at least one of the solar cell element or the back surface protection sheet.
  • a shearing force is applied to the filler layer by extruding the filler, thereby separating the front transparent substrate and the back protective sheet from the solar cell element.
  • the filler layer attached to the separated solar cell element is removed.
  • the removal method include physical cleaning for physically removing the filler layer, chemical cleaning for chemically removing the filler layer, and a method using a combination thereof.
  • Examples of the physical cleaning include a method of spraying a gas, a liquid, a solid, or a combination thereof, and a method of wiping with a cloth or the like.
  • the physical cleaning is preferably performed while the filler layer is heated.
  • there is an air blast method a shot blast method, in which a steel ball shot is injected at high speed using compressed air or centrifugal force in a heated atmosphere. If the deposits correspond to the filler layer, physical cleaning can be useful.
  • the particle size of the fine particles is 5! It is preferably in the range of from 50 ° to ⁇ .
  • solids that can be used for physical cleaning include steel abrasives, stainless steel abrasives, zinc abrasives, copper abrasives, alumina abrasives, silicon carbide abrasives, glass abrasives, and resin abrasives. Wood, silica sand, ceramic beads, zirconia, slag, calcium carbonate, baking soda and the like.
  • liquid examples include a heated organic solvent and a metal liquid.
  • the gas examples include an inert gas such as air, nitrogen gas, argon gas, and helium gas.
  • a method in which a separated solar cell element is immersed in an organic solvent such as xylene and xylene is refluxed to remove a release layer from the surface of the solar cell element can be used.
  • Examples of the chemical cleaning include a method of treating with an acid or an alkali, and a method of dissolving with a solvent or the like.
  • the solvent that can be used for chemical cleaning can be appropriately selected according to the attached filler layer.
  • a method of combining physical cleaning and chemical cleaning for example, there is a method of completely immersing the adhered substance in a liquid that dissolves the adhered substance and then completely removing the adhered substance by an air blast method or a shot blast method. .
  • the method of manufacturing a reclaimed front sickle is a method of manufacturing a recycled transparent front substrate for obtaining a recycled transparent front substrate from the above-described solar cell module of the present invention, wherein the solar cell module is made of a constituent material of a filler layer.
  • each step will be described.
  • the front transparent substrate can be easily separated from the filler layer by heating the solar cell module to a temperature higher than the softening point of the resin that is the constituent material of the filler layer. is there.
  • the heating method and the heating temperature are the same as those described in the section of “(1) Manufacturing method of regenerated solar cell element”, and therefore the description is omitted here.
  • the transparent front substrate is peeled off and separated from the filler layer melted and melted by heating in the heating step.
  • the separation method is not particularly limited as long as it does not damage the transparent front substrate.
  • the method using the separation means and the method of applying a shearing stress described in the section “: B. Method for Manufacturing Regenerated Solar Cell Element” can be used.
  • the filler layer attached to the transparent front substrate is removed.
  • the removal can be performed by physical cleaning, chemical cleaning, or a combination thereof, as described in the section of “(1) Method for manufacturing regenerated solar cell element”. Since the details are as described above, the description here is omitted.
  • the method is a method of reusing a solar cell module that reuses members from the solar cell module described in the section of “B.
  • Solar cell module wherein the solar cell module is made of a resin that is a constituent material of a filler layer. It has a heating step of heating to a temperature equal to or higher than the softening point, and a separation step of separating and separating the member from the filler layer plasticized by heating.
  • a solar cell module recycling method for example, a solar cell module recovered after use, such as a solar cell element included in a solar cell module that was determined to be defective during processing of the solar cell module. It is acceptable to reuse (recycle or reuse) the solar cell elements, etc., and it is not only ⁇ U in terms of cost, but also suitable for the earth: ⁇ .
  • the solar cell module judged to be defective in the manufacturing process of the solar mm module ⁇ , and the solar cell module recovered after use Can be mentioned.
  • such a solar cell module is subjected to a calo-heat process and a separation process.
  • the heating process and the separation process are performed in the above-described “(1) Regeneration solar cell element”.
  • the method is the same as that described in “Method for Manufacturing” or “(2) Method for Manufacturing Recycled Transparent Front Substrate”, and therefore, description thereof is omitted here.
  • the backside protective sheet separating step is performed simultaneously with the separating step.
  • the backside protection sheet is separated from the solar cell module in the backside protection sheet separation step, so that the solar cell module can be reused. This is because the generation of harmful gases due to heating of the back protection sheet during use can be prevented, and the environmental load can be reduced.
  • the separation of the back protective sheet may be performed simultaneously with the separation of the solar cell element or the transparent front substrate, or may be performed before separating these members.
  • the treatment after the separation step differs depending on whether the member is used as it is (reuse) or the member is used as a material (recycle).
  • reuse for example, when the member is a solar cell element or a transparent front substrate, the above “(1) Regenerated solar cell element Using the processing method described in “(2) Manufacturing method of recycled transparent front substrate” above.
  • it is recycled it is recycled according to the recycling law described later.
  • whether to reuse or recycle is determined at the stage of the solar cell module, for example, when it is clear that the solar cell element or the like is already damaged. In some cases, it is determined by looking at the state of members constituting a solar cell module such as a battery element and a transparent front substrate.
  • the element is recycled without using the above-described removal step or after performing the step, and then using the solar cell element for another purpose. Specifically, it is used for re-melting to re-form and recycle Si ingots, or for other uses when Si contains a lot of impurities.
  • the above-described removal step is not performed, or is performed, and is used as a different application from the transparent front substrate. Specifically, it is a method of collecting as glass raw material (cullet), melting it, and reforming the glass sheet.
  • Density 8 9 8 g / cm 3, 1 9 0 ° melt mass flow rate at C (in the table, and MFR 2 gZl 0 min linear low density polyethylene (referred to as LLDPE in the table) 98 parts by weight, 2 parts by weight of butyltrimethoxysilane and 0.1 part by weight of dicumyl peroxide as a radical generator were mixed. The mixture was heated, melted and stirred at 200 ° C to obtain a modified silane resin.
  • the mixture was put into a hopper of a ⁇ 25 mm extruder and a film forming machine having a 300 mm width T die, and a 400 / zm thick film was formed at an extrusion temperature of 230 ° C and a take-up speed of 3 mZmin. .
  • the above film formation could be performed without any trouble.
  • a filler layer for a solar cell module was obtained.
  • the filler layer for a solar cell module a glass plate with a thickness of 3 mm, the filler layer for a solar cell module with a thickness of 400 m created in (2) above, a crystalline silicon solar cell element, Filler layer for photovoltaic module with thickness of 400 / im, polyvinyl fluoride resin sheet (PVF) with thickness of 38 ⁇ m, aluminum foil with thickness of 30; zm, and polyvinyl fluoride with thickness of 38 m
  • a laminated sheet consisting of a resin sheet (PVF) is laminated via an acrylic resin adhesive layer, with the solar cell element surface facing upwards and 150 ° C using a vacuum laminator for solar cell module production. For 15 minutes to obtain a solar cell module.
  • a silane-modified resin was obtained in the same manner as in Example 1, except that the polyethylene for polymerization, the ethylenic silane compound, the radical generator, and the mixing ratio shown in Table 1 were used. (Table 1)
  • a filler layer for a solar cell module was obtained in the same manner as in Example 1.
  • VLDPE ultra low density polyethylene
  • LDPE low density polyethylene
  • Example 28 a solar cell module was obtained in the same manner as in Example 1.
  • the thermocompression bonding using a vacuum laminator was performed at 170 ° C. for 15 minutes, and for Example 11 the results were obtained at 170 ° C. for 30 minutes.
  • a solar cell module was obtained in the same manner as described above.
  • Example 1 was repeated except that the silane-modified resin was not used.
  • Example 1 was the same as Example 1 except that no master patch was used.
  • the procedure was the same as in Example 1 except that the filler layer for the solar cell module was obtained in the same manner as in Example 1 under the conditions shown in Table 1-2.
  • the cross-linking agent was prepared by mixing 5 parts by weight of a master batch containing 1 part by weight of dibutyltin diallate with the master batch containing the silane-modified resin, LLDPE light stabilizer, UVA and antioxidant described in Example 1. Same film formation was added.
  • the total light transmittance, for the solar cell module filler layer after manufacturing the solar cell module, glass adhesion, The gel fraction, the filler removal state, and the solar cell module were measured for the electromotive force reduction rate under the following conditions. Table 3 shows the evaluation results.
  • the total light transmittance of the filler layer for the solar cell module was measured using a color computer. Specifically, the above-mentioned filler layer sheet for a solar cell module is sandwiched between front and back ethylene tetrafluoroethylene copolymer films (manufactured by Asahi Glass Co., Ltd., trade name: AFLEX 10 ON), and used for manufacturing a solar cell module. After pressing at 150 ° C. for 15 minutes using a vacuum laminator, the ethylene tetrafluoroethylene copolymer film was peeled off, and only the heated filler layer sheet for a solar cell module was measured.
  • ethylene tetrafluoroethylene copolymer films manufactured by Asahi Glass Co., Ltd., trade name: AFLEX 10 ON
  • the peel strength between the filler layer for the solar cell module and the glass as the transparent front substrate was measured.
  • a solar cell module was manufactured, and after cooling, the solar cell element and the rear surface protection sheet were separated from the transparent front substrate (glass plate) in a silicone oil heated to 180 ° C using wires. Thereafter, the silicone oil was washed away, and the transparent front substrate (glass plate) with the filler layer remaining was placed on a hot plate maintained at 180 ° C, and the remaining filler layer was wiped off with a cloth. The ease of wiping at that time and the remaining state after wiping were evaluated.
  • the filler layer for the solar cell module of the example had good appearance and total light transmittance.
  • the appearance of the solar cell module of the example did not change even after being left for 1000 hours in a high-temperature and high-humidity state at a temperature of 85 ° C and a humidity of 85%.
  • the filler layer for the solar cell module was in a good state without easily peeling off from the glass.
  • the rate of decrease in electromotive force of the solar cell module of the example was also good.
  • the filler layer for the solar cell module of Comparative Example 1 did not adhere to the glass because the silane-modified resin was not used, and the electromotive force reduction rate could not be evaluated.
  • the solar cell module filler layer of Comparative Example 2 did not use a master patch, yellowing was observed when left in a hot and humid state at a temperature of 85 ° C and a humidity of 85% for 100 hours.
  • the solar cell module filler layer of Comparative Example 2 did not use a master patch, yellowing was observed when

Landscapes

  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本発明は、太陽電池モジュールの製造時において、透明前面基板および裏面保護シートとの接着性に優れ、作業環境等を悪化させず、太陽電池素子や電極等に悪影響を与えない、安価な太陽電池モジュール用充填材層を提供することを主目的とするものである。上記目的を達成するために、本発明は、エチレン性不飽和シラン化合物と重合用ポリエチレンとを重合させてなるシラン変成樹脂を有する太陽電池モジュール用充填材層であって、前記太陽電池モジュール用充填材層を太陽電池モジュールに用いた場合、ゲル分率が30%以下であることを特徴とする太陽電池モジュール用充填材層を提供する。

Description

太陽電池モジュール用充填材層およびこれを用いた太陽電池モジュール [技術分野:!
本発明は、 シラン変成樹脂を有する太陽電池モジュール用充填材層、 および、 これ を用いた太陽電池モジュールに関する。 '
t [背景技術]
近年、 環境問題に対する意識の高まりから、書クリーンなエネルギー源としての太陽 電池が注目され、 現在、 種々の形態からなる太陽電池モジュールが開発され、 提案さ れている。
一般に、 上記の太陽電池モジュールは、 例えば、 透明前面基板、 充填材層、 光起電 力素子としての太陽電池素子、 充填材層、 および、 裏面保護シート等の順に積層し、 次いで、 これらを真空吸引して加熱圧着するラミネーシヨン法等を利用して製造され る。
現在、 太陽電池モジュール用充填材層を構成する材料としては、 その加工性、 施工 性、 製造コスト、 その他等の観点から、 厚さ 1 0 0 /X m〜 1 5 0 0 μ mのエチレン一 酢酸ビュル共重合体樹脂が、 最も一般的なものとして使用されている。
し力 しながら、 エチレン一酢酸ビニル共重合体榭脂からなる充填材層は、 透明前面 基板、 あるいは裏面保護シートとの接着強度が必ずしも十分ではなく、 屋外での長時 間使用にその弱点が露呈するという問題がある。 さらに、 エチレン一酢酸ビニル共重 合体樹脂からなる充填材層を使用して太陽電池モジュールを製造する場合、 その加熱 圧着等の条件により、 エチレン一酢酸ビニル共重合体樹脂が熱分解等を起こし、 酢酸 ガス等を発生し、 これらが、 作業環境等を悪化させるばかりではなく、 太陽電池素子 や電極等に悪影響を与え、 劣化、 発電効率の低下等を引き起こすという問題もある。 そこで、 充填材層の材料である樹脂に、 透明前面基板あるいは裏面保護シートに用 いられるガラスや金属等との接着性を付与する方法として、 樹脂にシラン化合物を重 合させる方法が行われている。 一般に、 重合方法としては、 共重合、 グラフト重合の 2つがある。 共重合は、 モノ マーと触媒と不飽和シラン化合物を混合し、 所定の温度 ·圧力で重合反応させる方法 であり、 グラフト重合は、 ポリマーと遊離ラジカル発生剤と不飽和シラン化合物を混 合し、 所定の温度で撹拌しポリマー主鎖や側鎖にシラン化合物を重合させる方法であ る。
例えば、 加熱圧着時に充填材層の材料である樹脂に架撟反応を生起させて材料自体 の強度、 および耐熱性や耐久性等を付与すべく、 エチレン一酢酸ビニル共重合体樹脂 にシランカツプリング剤および有機過酸化物を添加した樹脂シートを用いる方法 (特 公昭 6 2— 1 4 1 1 1号公報) 、 有機シラン化合物でグラフト変性したエチレン一酢 酸ビニル共重合体樹脂に有機過酸化物を添加した樹脂シートを用いる方法 (特公昭 6 2— 9 2 3 2号公報) 、 および、 エチレン一エチレン性不飽和カルボン酸エステル一 ェチレン性不飽和シラン化合物三元共重合体樹脂に有機過酸化物を添加した樹脂シー トを用いる方法 (特公平 6— 1 0 4 7 2 9号公報) が提案されているが、 いずれも有 機過酸化物を含有させていることから、 それらのシート成形時にぉ 、て有機過酸化物 が分解して樹脂の架橋反応を惹起し、 シート成形が困難となったり、 積層時の加工性 が低下したり、 あるいは、 積層時に有機過酸化物由来の分解生成物が接着界面に残存 して接着阻害を引き起こす等の欠点を有している。
また、 シラン化合物はコストが高いという問題もあり、 依然として更なる改良が求 められている。
[発明の開示]
そこで本発明は、 太陽電池モジュールの製造時において、 透明前面基板および裏面 保護シートとの接着性に優れ、 作業環境等を悪化させず、 太陽電池素子や電極等に悪 影響を与えない、 安価な太陽電池モジュール用充填材層を提供することを主目的とす る。
本発明においては、 上記目的を達成するために、 エチレン性不飽和シラン化合物と 重合用ポリエチレンとを重合させてなるシラン変成樹脂を有する太陽電池モジュール 用充填材層であって、 前記太陽電池モジュール用充填材層を太陽電池モジュールに用 いた場合、 ゲル分率が 3 0 %以下であることを特徴とする太陽電池モジュール用充填 材層を提供する。
上記のような太陽電池モジュール用充填材層は、 シラン変成樹脂を有しているため、 太陽電池モジュール用透明前面基板および裏面保護シート、 例えばガラス等との密着 性に優れ、 かつ主鎖がポリエチレンからなるものであることから有害なガスを発生さ せず、 作業環境を悪化させないという利点を有する。 また、 太陽電池モジュールに用 いた場合、 太陽電池モジュール用充填材層のゲル分率が上記範囲とすることにより、 短時間でのシールが可能となり、 さらに加熱処理等が不要であるという利点を有する。 さらに、 このようにゲル分率が低いことから、 加熱することにより容易に充填材層を 軟化 '溶融させることが可能であり、 これにより、 例えば太陽電池モジュールに用い られている太陽電池素子や透明前面基板等の再利用を可能とすることができる。
本発明においては、 上記太陽電池モジュール用充填材層が、 さらに添加用ポリェチ レンを有することが好ましい。 上記シラン変成樹脂はコス トが高いため、 太陽電池モ ジュール用充填材層が添加用ポリエチレンを含有することが好ましいのである。
本発明においては、 さらに上記重合用ポリエチレンと上記添加用ポリエチレンと力 低密度ポリエチレン、 中密度ポリエチレン、 高密度ポリエチレン、 超低密度ポリェチ レン、 極超低密度ポリエチレン、 および直鎖状低密度ポリエチレンからなる群から選 択される少なくとも一つのポリエチレンであることが好ましい。
さらに、 上記太陽電池モジュール用充填材層中に含まれる上記シラン変成樹脂の量 が、 1〜8 0重量%であることが好ましい。 上記シラン変成榭脂は、 重合用ポリェチ レンと重合させたエチレン性不飽和シラン化合物を有することにより、 ガラス等との 密着性が付与されるものである。 よって、 上記太陽電池モジュール用充填材層は、 上 記のようなシラン変成樹脂を有することにより、 太陽電池モジュール用透明前面基板、 裏面保護シート、 および太陽電池素子との密着性が高くなる。 ゆえに、 上記範囲に満 たない場合は、 ガラス等との密着性が不足し、 上記範囲を超えると、 ガラス等との密 着性は変わらずコスト高となると考えられるからである。
さらに、 上記太陽電池モジュール用充填材層中に、 S i (珪素) 、 重合 S i量と して 8 p p m〜3 5 0 0 p p m含有されていることが好ましい。 上述した理由と同様 に、 この範囲内で重合 S i量を有することにより、 太陽電池素子や透明前面基板との 接着性を良好なものとすることができるからである。 さらに、 本発明においては、 上記太陽電池モジュール用充填材層中に、 シラノール 縮合触媒が実質的に含まれていないことが好ましレ、。 本発明においては、 充填材層中 のゲル分率が所定の値以下であるところに特徴を有するものであり、 エチレン性不飽 和シラン化合物を用いた榭脂組成物において水架橋等のために一般的に配合されるシ ラノール縮合触媒が含有されていたのでは、 上記所望のゲル分率を得ることができな いからである。
本発明においては、 また、 上記太陽電池モジュール用充填材層を有することを特徴 とする太陽電池モジュールを提供する。 本発明の太陽電池モジュール用充填材層を有 する太陽電池モジュールは、 上述したような太陽電池モジュール用充填材層の利点を 有し、 かつコスト的に有利であるという利点を有するものである。
本発明の太陽電池モジュール用充填材層は、 太陽電池モジュール用保護シートに用 いられるガラスとの密着性に優れ、 作業環境を悪化させないという利点を有する、 ま た、 太陽電池モジュールの製造時において短時間でのシールが可能となり、 加熱処理 等が不要であるといった効果を奏する。 さらに、 太陽電池モジュールに含まれる部材 の再利甩を可能とするといつた効果も有するものである。
[図面の簡単な説明]
図 1は、 本発明の太陽電池モジュールの一例を示す概略断面図である。 [発明を実施するための最良の形態]
本発明には、 太陽電池モジュール用充填材層、 およびこれを用いた太陽電池モジュ ールが含まれる。 以下、 太陽電池モジュール用充填材層とこれを用いた太陽電池モジ ユールについて説明する。 なお、 本発明において、 シートとは、 シート状物ないしフ イルム状物のいずれの場合も意味するものであり、 また、 フィルムとは、 フィルム状 物ないしシート状物のいずれの場合も意味するものである。
A. 太陽電池モジュール用充填材層
まず、 本発明の太陽電池モジュール用充填材層について説明する。 本発明の太陽電 池モジュール用充填材層は、 ェチレン性不飽和シラン化合物と重合用ポリエチレンと を重合させてなるシラン変成樹脂を有する太陽電池モジュール用充填材層であって、 前記太陽電池モジュール用充填材層を太陽電池モジュールに用いた場合、 ゲル分率が 所定の値以下であることを特徴とするものである。
以下このような太陽電池モジュール用充填材層の各構成について説明する。
1 . シラン変成樹脂
本発明に用いられるシラン変成樹脂は、 ェチレン性不飽和シラン化合物と重合用ポ リエチレンとを重合させてなるものである。 このようなシラン変成樹脂は、 エチレン 性不飽和シラン化合物と重合用ポリエチレンとラジカル発生剤とを混合し、 高温で溶 融撹拌し、 エチレン性不飽和シラン化合物を重合用ポリエチレンにグラフト重合させ ることにより得ることができる。
本発明に用いられる重合用ポリエチレンとしては、 ポリエチレン系のポリマーであ れば特に限定されえないが、具体的には、低密度ポリエチレン、 中密度ポリエチレン、 高密度ポリエチレン、 超低密度ポリエチレン、 極超低密度ポリエチレン、 または直鎖 状低密度ポリエチレンが好ましい。 また、 これらを 1種ないし 2種以上を用いること もできる。
さらに、 上記重合用ポリエチレンとしては、 側鎖の多いポリエチレンが好ましい。 ここで通常、側鎖の多いポリエチレンは、密度が低く、側鎖の少ないポリエチレンは、 密度が高いものである。 したがって、 密度の低いポリエチレンが好ましいといえる。 本発明における重合用ポリエチレンの密度としては、 0 . 8 5 0〜0 . 9 6 0 g Z c m 3の範囲内が好ましく、 より好ましくは 0 . 8 6 5〜0 . 9 3 0 g / c m 3の範囲内 である。 重合用ポリエチレンが側鎖の多いポリエチレン、 すなわち密度の低いポリェ チレンであれば、 エチレン性不飽和シラン化合物が重合用ポリエチレンにグラフト重 合しやすくなるからである。
一方、 本発明に用いられるエチレン性不飽和シラン化合物としては、 上記重合用ポ リエチレンとグラフト重合するものであれば特に限定されないが、 例えばビニルトリ メ トキシシラン、 ビニルトリエトキシシラン、 ビュルトリプロポキシシラン、 ビュル トリイソプロポキシシラン、 ビュルトリブトキシシラン、 ビニルトリペンチ口キシシ ラン、 ビュルトリフエノキシシラン、 ビニルトリベンジルォキシシラン、 ビュルトリ メチレンジォキシシラン、 ビュルトリエチレンジォキシシラン、 ビニルプロピオニル ォキシシラン、 ビニルトリァセトキシシラン、 および、 ビュルトリカルボキシシラン からなる群から選択される少なくとも 1種類のものを用いることができる。 本発明に おいては、 中でも、 ビュルトリメトキシシランが好適に用いられる。
本発明においては、 太陽電池モジュール用充填材層中に含まれるェチレン性不飽和 シラン化合物の量は、 1 0 p p m以上が好ましく、 より好ましくは 2◦ p p m以上で ある。 上記太陽電池モジュール用充填材層は、 重合用ポリエチレンと重合させた上記 エチレン性不飽和シラン化合物を有することにより、 後述する太陽電池モジュール用 透明前面基板および裏面シートに用いられる材料、 例えばガラス等との密着性が実現 するものである。 よって、 上述した範囲に満たない場合は、 ガラス等との密着性が不 足するからである。 また、 エチレン性不飽和シラン化合物の量の上限は、 4 0 0 0 p p m以下が好ましく、 より好ましくは 3 0 0 0 p p m以下である。 上限値は、 ガラス 等との密着性の点からは限定されるものではないが、 上述した範囲を超えると、 ガラ ス等との密着性は変わらずコストが高くなるからである。
また、 上記シラン変成樹脂は、 上記太陽電池モジュール用充填材層中に好ましくは :!〜 8 0重量%の範囲内、 さらに 5〜7 0重量%の範囲内で含有されることが好まし い。 この場合も同様に、 上記シラン変成樹脂は、 重合用ポリエチレンと重合させたェ チレン性不飽和シラン化合物を有することにより、 ガラス等との密着性が付与される ものである。 よって、 上記太陽電池モジュール用充填材層は、 上記のようなシラン変 成樹脂を有することにより、 ガラス等との密着性が高くなる。 ゆえに、 ガラス等との 密着性、 かつコストの点から、 上述した範囲内が好適に用いられる。
さらに、 上記シラン変成樹脂は、 1 9 0 °Cでのメルトマスフローレートが 0 . 5〜 1 0 g / 1 0分であるものが好ましく、 1〜8 g / 1 0分であるものがより好ましい。 太陽電池モジュール用充填材層の成形性、 透明前面基板および裏面保護シートとの接 着性等に優れるからである。 .
また、 上記シラン変成榭脂の融点は、 1 1 o °c以下であることが好ましい。 上記太 陽電池モジュール用充填材層を用いた太陽電池モジュールの製造時において、 加工性 等の面から上記範囲が好適である。
上記シラン変成樹脂に添加するラジカル発生剤としては、 例えば、 ジィソプロピル ベンゼンヒドロパーオキサイド、 2 , 5—ジメチ^^— 2 , 5—ジ (ヒドロパーォキシ) へキサン等のヒドロパーォキサイド類;ジー t一プチルパーォキサイド、 t一プチル クミルパーオキサイド、 ジクミルパーオキサイド、 2, 5—ジメチルー 2, 5—ジ (t 一ブチルパーォキシ) へキサン、 2 , 5—ジメチルー 2 , 5—ジ (t—パーォキシ) へキシン一 3等のジァルキノレパーオキサイド類; ビス一 3 , 5 , 5—トリメチルへキ サノィルパーォキサイド、ォクタノィルパーォキサイ ド、ベンゾィルパーォキサイド、 o—メチルベンゾィルパーオキサイド、 2, 4ージクロ口ベンゾィルパーオキサイド 等のジァシルバーォキサイド類; t—プチルパーォキシァセテ一ト、 t—プチルパー ォキシ一 2—ェチルへキサノエート、 t一ブチルパーォキシピパレート、 t—ブチル パーォキシォクトエート。 t一ブチルパーォキシイソプロピルカーボネート、 t—ブ チルパーォキシベンゾエート、 ジー t—ブチルパーォキシフタレート、 2, 5—ジメ チルー 2, 5—ジ (ベンゾィルパーォキシ) へキサン、 2 , 5—ジメチルー 2 , 5— ジ (ベンゾィルパ一ォキシ) へキシン一 3等のパーォキシエステル類; メチルェチル ケトンパーォキサイド、 シクロへキサノンパーォキサイ ド等のケトンパーォキサイド 類等の有機過酸化物、 または、 ァゾビスイソブチ口-トリル、 ァゾビス ( 2, 4一ジ メチルパレロニトリル) 等のァゾ化合物等が挙げられる。
.上記ラジカル発生剤の使用量は、 上記シラン変成榭脂中に 0 . 0 0 1重量%以上含 まれることが好ましい。 上記範囲未満では、 エチレン性不飽和シラン化合物と重合用 ポリエチレンとのラジカル重合が起こりにくいからである。
なお、 本発明に用いられるシラン変成樹脂は、 合わせガラス用途にも使用できるも のである。 合わせガラスは、 ガラスとガラスとの間に柔軟で強靭な樹脂等をはさんで 加熱圧着して作製されるものであるので、 ガラスとの密着性の点から、 上記シラン変 成樹脂を用いることができる。
2 . 添 ¾1用ポリエチレン
本発明においては、上記太陽電池モジュール用充填材層が、上記シラン変成樹脂と、 添加用ポリエチレンとを有することが好ましい。 上記添加用ポリエチレンとしては、 上述した「1 . シラン変成樹脂」 に記載したものと同様なものを挙げることができる。 本発明においては、 上記添加用ポリエチレンが上記重合用ポリエチレンと同一の樹脂 であることが特に好ましい。 上記シラン変成樹脂はコストが高いため、 シラン変成樹 脂のみで太陽電池モジュール用充填材層を形成するよりも、 シラン変成樹脂と、 添加 用ポリエチレンとを混合して太陽電池モジュール用充填材層を形成する方が、 コス ト 的に有利であるからである。
添カロ用ポリエチレンの含有量は、上記シラン変成樹脂 1 0 0重量部に対し、 0. 0 1重量部 〜 9 9 0 0重量部が好ましく、 9 0重量部〜 9 , 9 0 0重量部がより好ましい。
上記シラン変成榭脂を2種類以上用いる ¾ ^には、その合計量 1 0 0重量部に対し、添カロ用 ポリエチレンの含有量が上言 ¾5囲となることが好ま LV、。
また、 上記添加用ポリエチレンは、 1 9 0 °Cでのメルトマスフローレートが 0 . 5 〜1 0 g Z l 0分であるものが好ましく、 1〜8 g / 1 0分であるものがより好まし V、。 太陽電池モジュール用充填材層の成形性等に優れるからである。
さらに、 上記添加用ポリエチレンの融点は、 1 3 0 °C以下であることが好ましい。 上記太陽電池モジュール用充填材層を用いた太陽電池モジュールの製造時における加 ェ性等の面から上記範囲が好適である。
なお、 融点の測定方法としては、 プラスチックの転移温度測定方法 (JISK7121) に 準拠し、 示差走査熱量分析 (DSC) により行う。 なお、 その際、 融点ピークが 2っ以 上存在する場合は高い温度の方を融点とする。
3 . 添加剤
本発明においては、 必要により光安定剤、 紫外線吸収剤、 熱安定剤等の添加剤を用 いることができる。 本発明の太陽電池モジュール用充填材層が、 上述したようなシラ ン変成樹脂を有し、 これに光安定剤、 紫外線吸収剤、 熱安定剤を添加することで長期 にわたり安定した機械強度、 接着強度、 黄変防止、 ひび割れ防止、 優れた加工適性を 得ることができる。
上記光安定剤は、 上記重合用ポリエチレンおよび上記添加用ポリエチレンに用いら れるポリマー中の光劣化開始の活性種を捕捉し、 光酸化を防止するものである。 具体 的には、 ヒンダードアミン系化合物、 ヒンダードピペリジン系化合物、 およびその他 等からなる群から選択される少なくとも 1種類のものを使用することができる。
上記紫外線吸収剤は、 太陽光中の有害な紫外線を吸収して、 分子内で無害な熱エネ ルギ一^ .と変換し、 上記重合用ポリエチレンおよび上記添加用ポリエチレンに用いら れるポリマー中の光劣化開始の活性種が励起されるのを防止するものである。 具体的 には、 ベンゾフエノン系、 ベンゾトリアゾール系、 サルチレート系、 アクリル-トリ ル系、 金属錯塩系、 ヒンダードアミン系、 および、 超微粒子酸化チタン (粒子径: 0 . 0 1 μ n!〜 0 . 0 6 t m) あるいは超微粒子酸化亜鉛 (粒子径: 0 . 0 1 μ π!〜 0 .
0 μ ηι) 等の無機系等の紫外線吸収剤からなる群から選択される少なくとも 1種類 のものを使用することができる。
また、 上記熱安定剤としては、 トリス (2, 4ージー tert—プチルフエニル) フォス ファイ ト、 ビス [ 2, 4一ビス (1 , 1ージメチルェチル) 一 6—メチルフエニル〕 ェチルエステル亜リン酸、 テトラキス (2, 4ージー tert—ブチルフエニル) [ 1, 1 ービフエニル] ー4, 4 '一ジィルビスホスフォナイ ト、 および、 ビス (2 , 4—ジ 一 tert—ブチルフエニル) ペンタエリスリ トールジフォスフアイ ト等のリン系熱安定 斉 IJ; 8—ヒ ドロキシー 5, 7—ジー tert—プチルーフラン一 2—オンと o—キシレンと の反応生成物等のラタトン系熱安定剤を挙げることができる。 また、 これらを 1種ま たは 2種以上を用いることもできる。 中でも、 リン系熱安定剤およぴラクトン系熱安 定剤を併用して用いることが好ましい。
上記光安定剤、 紫外線吸収剤、 熱安定剤等の含有量としては、 その粒子形状、 密度 等によって異なるが、 太陽電池モジュール用充填材層中、 0 . 0 1〜5重量%の範囲 内が好ましい。
また、 上記太陽電池モジュール用充填材層には、 後述するように太陽電池モジユー ルに用いた場合、 ゲル分率が低いことが本発明の特長であり、 このため、 シラン変成 樹脂が架橋構造を形成する必要がない。 したがって、 架橋剤またはシラノール基の縮 合反応を促進させる触媒等は特に必要ないものである。
具体的には、ジブチノ!^ジァセテート、ジブチル錫ジラゥレート、ジブチノ!^ジ才クテート、 ジ才クチル錫ジラゥレートとレヽつたシリコーンのシラノール間の!^縮合 SiSを促進するシラ ノーノ ^^媒が、 実質的に含まれていないこと力 s好ましい。 ここで、 実質的に含まれていな いとは、 太陽電池モジュール用充填材層を構成する樹脂 1 0 0重量部に対して、 0 . 0 5 重量部以下である^^をいう。
4 . 太陽電池モジュール用充填材層
本発明の太陽電池モジュール用充填材層の膜厚は、 好ましくは 1 0〜2 0 0 0 μ πι の範囲内、 特に 1 0 0〜1 2 5 0 μ ιηの範囲内であることが好ましい。 上記範囲より 薄い場合は、 セルを支持することができずセルの破損が生じやすくなり、 上記範囲よ り厚い場合は、 モジュール重量が重くなり設置時などの作業性が悪いばかりでなく、 コスト面でも不利となる場合もあるからである。
さらに、 本発明においては、 上記太陽電池モジュール用充填材層中に、 S i (珪素) 力 重合 S i量として、 8 p p m〜3 5 0 0 p p m、 特に 1 0 p p n!〜 3 0 0 0 p p m、 中でも 5 0 p p n!〜 2 0 0 0 p p mの範囲内で含有されていることが好ましい。 この範囲内で重合 S i量を含む場合は、 透明前面基板や太陽電池素子との密着性を良 好に保つことができるからであり、 またコスト面からも上述した範囲が好適であると いえる。
なお、 本発明において、 重合 S i量を測定する方法としては、 充填材層のみを加熱 し燃焼させ灰化することにより重合 S iは S i o 2に変換されることから、灰分をアル カリ融解し、 純水に溶解後定容し I .C P発光分析 (高周波プラズマ発光分析装置:㈱ 島津製作所製 ICPS8100) 法により重合 S i量の定量を行う方法が用いられる。
さらに、 上記太陽電池モジュール用充填材層を構成する樹脂は、 1 9 0 °Cでのメル トマスフローレートが 0 . 5〜: 1 0 g Z l 0分であるものが好ましく、 l〜8 g / l 0分であるものがより好ましい。 太陽電池モジュール用充填材層の成形性、 透明前面 基板おょぴ裏面保護シートとの接着性等に優れるからである。
また、 上記太陽電池モジュール用充填材層を構成する樹脂の融点は、 1 3 0 °C以下 であることが好ましい。 上記太陽電池モジュール用充填材層を用いた太陽電池モジュ ールの製造時において、 加工性等の面から上記範囲が好適である。 また、 太陽電池モ ジュールを構成する部品、 例えば太陽電池素子や透明前面基板を再利用する場合に、 融点がこの程度であれば容易に再利用することができるからである。 なお、 融点の測 定方法は、 上述したものと同様であるので、 ここでの説明は省略する。
また、 本発明の太陽電池モジュール用充填材層を太陽電池モジュ一ルに用いた場合、 ゲル分率が 3 0 %以下、 特に 1 0 %以下、 中でも 0 %であることが好ましい。 本発明 に用いられるシラン変成樹脂は、 このように架橋構造を形成しないため、 短時間での シールが可能となり、 加熱処理等の後処理が不要となる。 また、 ゲル分率が上記範囲 を超えると、 太陽電池モジュール製造時の加工性が低下し、 透明前面基板および裏面 保護シートとの密着性の改良が認められないこととなる。 さらに、 ゲル分率が上記範 囲を超えると、 太陽電池モジュールに含まれる部材、 例えば太陽電池素子や透明前面 基板を再生することが困難となるからである。 なお、 太陽電池モジュール用充填材層を太陽電池モジュールに用いた場合のゲル分 率とは、 例えば、 透明前面基板、 太陽電池モジュール用充填材層、 太陽電池素子、 太 陽電池モジュール用充填材層、 および裏面保護シートを順次に積層し、 次いでこれら を一体として、 真空吸引して加熱圧着するラミネーション法等の通常の成形法を利用 して、 各層を一体成形体として太陽電池モジュールを製造した後の太陽電池モジユー ル用充填材層のゲル分率をいう。
このようなゲル分率の測定方法としては、太陽電池モジュール用充填材層を 1 g秤量し、 8 0メッシュの金網袋に入れる。 ソックスレー抽出器內に金網ごとサンプル投入し、 キシレンを沸点下において還流させる。 1 0時間連続抽出したのち、 金網ごとサンプ ルごと取出し乾燥処理後秤量し、 抽出前後の重量比較を行い残留不溶分の重量%を測 定し、 これをゲル分率とする方法が用いられる。
5 . 太陽電池モジュール用充填材層の製造方法
次に、 本発明の太陽電池モジュール用充填材層の製造方法について説明する。
まず、 本発明に用いられるシラン変成樹脂の調製方法について説明する。 上記シラ ン変成樹脂は、 エチレン性不飽和シラン化合物と重合用ポリエチレンとラジカル発生 剤との混合物を、 加熱溶融混合し、 ヱチレン性不飽和シラン化^ ^物を重合用ポリェチ レンにグラフト重合させることにより得ることができる。
これらの混合物の加熱溶融混合方法としては、 特に限定するものはないが、 添加剤 については予め添加剤を混練し樹脂に含有させたマスターパッチを主原料に混合し押 出し溶融させる方法が望ましい。 また、 加熱温度は、 3 0 0 °C以下が好ましく、 さら には 2 7 0 °C以下が好ましい。 上記シラン変成樹脂は、 加熱によりシラノール基部分 が架橋しゲル化しやすいので、 上記範囲で溶融混合するのが好適である。
次に、 本発明の太陽電池モジュール用充填材層の形成方法について説明する。 上述 したようにシラン変成樹脂を加熱溶融混合した後、 得られたシラン変成樹脂をペレツ ト化し、 再度加熱溶融して押出し加工することも可能であるが、 押出し機のホッパ内 に上記シラン変成樹脂と、 上記添加用ポリエチレンとを混合して投入し、 シリンダ内 で加熱溶融することも可能であり、 コストの点では後者が優れている。
上述したような樹脂を加熱溶融した後、 Tダイ、ィンフレなどの既存の方法により、 1 0 0〜1 5 0 0 μ πιの厚みのシート状に成形し、 太陽電池モジュール用充填材層と することができる。
再度加熱溶融する際の加熱温度は、 3 0 0 °C以下が好ましく、 より好ましくは 2 7 0 °C以下である。 上述したように、 シラン変成樹脂は加熱によりシラノール基部分が 架橋しゲル化しやすいので、 上記範囲で樹脂を加熱溶融して押出すことが望ましい。
B . 太陽電池モジュール
次に、 本発明の太陽電池モジュールについて説明する。 本発明の太陽電池モジユー ルは、 上述した本発明の太陽電池モジュール用充填材層を有することを特徴とするも のである。 図 1は、 太陽電池モジュール用充填材層を使用して製造した太陽電池モジ ユールの例を示す概略断面図である。 図 1に示すように、 透明前面基板 1、 太陽電池 モジュール用充填材層 2、 光起電力素子としての太陽電池素子 3、 太陽電池モジユー ル用充填材層 2、 および、 裏面保護シート 4等を順次に積層し、 次いで、 これらを一 体として、 真空吸引して加熱圧着するラミネーション法等の通常の成形法を利用し、 各層を一体成形体として太陽電池モジュール Tを製造することができる。
本発明において、 このようなラミネーシヨン法を用いた際のラミネート温度は、 9 0 °C〜2 3 0 °Cの範囲内であることが好ましく、 特に 1 1 0 °C〜1 9 0 °Cの範囲内と することが好ましい。 上記範囲より温度が低いと十分に溶融せず透明前面基板、 補助 電極や太陽電池素子、 裏面保護シートなどとの密着性が悪くなる可能性があり、 上記 範囲より温度が高いと大気中の水蒸気による水架橋が進行しやすくなりゲル分率がお おきくなる可能性があるため好ましくない。 ラミネート時間は、 5〜6 0分の範囲内 が好ましく、 特に 8〜4 0分の範囲内が好ましい。 上記範囲より時間が短いと十分に 溶融せず同上の部材との密着性が悪くなる可能性があり、 長いと工程上の問題となる 場合があり、 特に温度や湿度条件次第ではゲル分率の増加の要因となるからである。 なお、 湿度に関しては、 高すぎるとゲル分率の増加につながり、 低すぎると各種部材 との密着性を低下させる可能性があるが、 通常の大気環境下における湿度であれば特 に問題は生じない。
本発明においては、 太陽電池モジュール用充填材層は、 透明前面基板と太陽電池素 子との間に設けてもよいし、 あるいは、 透明前面基板と太陽電池素子との間おょぴ裏 面保護シートと太陽電池素子との間に設けてもょレ、。
また、 上記太陽電池モジュールにおいては、 太陽光の吸収性、 補強、 その他等の目 的のもとに、 さらに、 他の層を任意に加えて積層することができるものである。
本発明の太陽電池モジュールに用いられる透明前面基板としては、 ガラス、 フッ素 系樹脂シート、 耐候性フイルムとバリアフィルムをラミネート積層した透明複合シー ト等を用いることができる。
また、 本発明の太陽電池モジュールに用いられる裏面保護シートとしては、 アルミ ニゥム等の金属、 フッ素系樹脂シート、 耐候性フィルムとパリアフィルムをラミネ一 ト積層した複合シート等を用いることができる。
C . 太陽電池モジュールの再利用
本発明においては、 上述したように太陽電池モジュールとした場合の充填材層にお けるゲル分率が、 所定の範囲以下であるので、 使用後の太陽電池モジュールや、 製造 工程中に不具合が生じた太陽電池モジュールの部材、 具体的には太陽電池素子や透明 前面基板の再利用を行うことができる。 以下、 このような再利用について、 再生太陽 電池素子の製造方法、 再生透明前面基板の製造方法、 および太陽電池モジュールの再 利用方法に分けて説明する。
( 1 ) 再生太陽電池素子の製造方法
まず、再生太陽電池素子の製造方法について説明する。再^:陽電池素子の製造方法は、 ±¾6した本発明の太陽電池モジュールから再生太陽電池素子を得る再生太陽電池素子の 製造方法であって、 太陽電池モジュールを充填材層の構成材料である樹脂の軟化点以 上の温度に加熱する加熱工程と、 加熱により可塑化した充填材層から太陽電池素子を 剥離して分離する分離工程と、 太陽電池素子に付着した充填材層を除去する除去工程 とを有することを特徴としている。 以下、 各工程について説明する。
1 . 加熱工程
上記加熱工程においては、 太陽電池モジュールを充填材層の構成材料である樹脂の 軟化点以上の温度に加熱する。 このように充填材層を構成する樹脂の軟化点以上の温 度に加熱することにより、 充填材層の構成材料である樹脂が軟化溶融し、 充填材層を 容易に除去することが可能となる。
カロ熱方法は、カロ熱した気体、 液体もしくは粉末等の固体またはこれらの組み合わせを充填し た容器の中に、 本発明の太陽電池モジュールを投入する方法、 あるい〖 [1熱した熱板上に太陽 池モジュ ルを する などが挙げられる。 加熱温度は、 充填材層の構成材料である樹脂の軟化点以上の温度であり、 用いられ ている樹脂に応じて適宜選択される。 ここで軟化点とは、 上記熱可塑性樹脂の J i s 規格 K 7 2 0 6に基づいて測定されるビカツト軟化温度をいうものである。 加熱工程 における加熱温度としては、 このビカット軟化温度と同じ温度か、 または 0 °C〜 2 5 0 °C以上ビカット温度より高温であることが好ましく、 より好ましくは 1 0 °C〜 1 5 0 °C以上、 さらに好ましくは 2 0 °C〜 1 3 0 °C以上の範囲内であることが好ましい。 上記加熱工程における具体的な加熱温度としては、 2 0 °C〜 4 5 0 °Cの範囲内であ ることが好ましく、 より好ましくは 3 0 °C〜 3 5 0 °C、 さらに好ましくは 1 1 0 °C〜 1 7 0 °Cの範囲内である。
2 . 分離工程
本発明における分離工程では、 上記加熱工程において加熱により充填材層が軟化溶 融していることを利用して太陽電池素子を分離する工程である。 分離方法は、 太陽電 池素子を損傷させることなく分離できるのであればいかなる方法により分離してもよ い。
分離方法としては、 分離手段を用いる方法、 せん断応力を加える方法等を挙げるこ とができる。
分離手段を用いる方法とは、 上述した加熱工程において加熱した太陽電池モジユー ルの前面透明基板と太陽電池素子との間に配置された充填材層、 およぴ太陽電池素子 と裏面保護シートとの間に配置された充填材層を、 分離手段を通すことにより切断し、 太陽電池素子から前面透明基板と裏面保護シートとを分離する方法であり、 このよう な分離手段としては、 軟化状態の充填材層を切断できる手段であれば特に限定される ものではないが、 ワイヤ等を好適な例として挙げることができる。
また、 せん断力を加える方法としては、 上述した加熱工程において加熱した太陽電 池モジュールの太陽電池素子もしくは透明前面基板の少なくとも一方、 および太陽電 池素子もしくは裏面保護シートの少なくとも一方に対して横方向に押し出すことによ り、 充填材層にせん断力を加え、 これにより太陽電池素子から前面透明基板と裏面保 護シートとを分離する方法である。
3 . 除去工程
. 本発明における除去工程では、 分離後の太陽電池素子に付着した充填材層を除去す る。 この除去方法としては、 物理的に充填材層を除去する物理的洗浄、 化学的に充填 材層を除去する化学的洗浄、 またはこれらの組み合わせにより行う方法等を挙げるこ とができる。
上記物理的洗浄としては、 気体、 液体もしくは固体またはこれらの組み合わせを吹 き付ける方法や、 布等で拭き取る方法などが挙げられる。 物理的洗浄は、 充填材層を 加熱した状態で行うのが好ましい。 例えば、 加熱雰囲気中で圧縮空気や遠心力などを 用いて鋼球ショットを高速に噴射するエアープラスト法ゃショットブラスト法などが 挙げられる。 付着物が充填材層に相当する部分である場合には、 物理的洗浄が有用で める。
この物理的洗浄においては、 再生太陽電池素子が損傷しないように付着物を除去す ることが必要である。 そのため、 例えば、 微粒子を吹き付けて充填材層を除去する場 合には、 微粒子の粒径は、 5 !〜 5 0◦ μ πιの範囲内であることが好ましい。 例え ば、 物理的洗浄に使用できる固体としては、 スチール系研削材、 ステンレス研削材、 亜鉛研削材、 銅研削材、 アルミナ系研削材、 炭化ケィ素系研削材、 ガラス系研削材、 樹脂系研削材、 珪砂、 セラミックビーズ、 ジルコユア、 スラグ、 炭酸カルシウム、 重 曹などを挙げることができる。
また、 液体としては、 例えば、 熱した有機溶剤や金属液体などが挙げられる。
気体としては、 空気、 窒素ガス、 アルゴンガス、 ヘリウムガス等の不活性気体など が挙げられる。
具体的には、 キシレン等の有機溶媒に分離した太陽電池素子を浸漬させ、 キシレン を還流させることにより、 太陽電池素子表面から剥離層を除去する方法等を挙げるこ とができる。
化学的洗浄としては、 酸もしくはアルカリで処理する方法や、 溶媒等により溶かし 出す方法などが挙げられる。 化学的洗浄に使用できる溶媒としては、 付着した充填材 層に応じて適宜選択することができる。
物理的洗浄と化学的洗浄とを組み合わせる方法としては、 例えば、 付着物を溶解す る液体にある程度浸漬した後、 エアーブラスト法ゃショットブラスト法などにより付 着物を完全に除去する方法などが挙げられる。
以上のようにして、 付着物を除去することができ、 必要に応じてアルコール等により洗浄し て、使用済みの太陽電池モジュ ! ^から容易に再 «陽鼋池素子を製造することができる。
( 2 ) 再生透明前面基板の製造方法
次に、 再腿明前面謙の製造方法について説明する。 再麵明前面鎌の製駄法は、 上 述した本発明の太陽電池モジュールから再生透明前面基板を得る再生透明前面基板の製 造方法であって、 太陽電池モジュールを充填材層の構成材料であるゲル分率が所定の 値以下である樹脂の軟化点以上の温度に加熱する加熱工程と、 加熱により可塑化した 充填材層を剥離して再生透明前面基板を分離する分離工程と、 透明前面基板に付着し た充填材層を除去する除去工程とを有することを特徴としている。 以下、 各工程につ いて説明する。
1 . 加熱工程
加熱工程においては、 太陽電池モジュールを充填材層の構成材料である樹脂の軟化 点以上の温度に加熱することにより、 充填材層から前面透明基板を容易に剥離するこ とを可能とするものである。 加熱方法および加熱温度については 「 (1 ) 再生太陽電 池素子の製造方法」 の欄で述べたものと同様であるのでここでの記載は省略する。
2 . 分離工程
分離工程においては、 上記加熱工程において加熱により軟ィ匕 ·溶融した充填材層か ら透明前面基板剥離して分離する。 分離方法は、 透明前面基板を損傷させるものでな ければ特に限定されるものではない。
具体的には、 上記 「: B . 再生太陽電池素子の製造方法」 の欄で説明した分離手段を 用いる方法、 せん断応力を加える方法を挙げることができる。
3 . 除去工程
除去工程においては、 透明前面基板に付着した充填材層を除去する。 除去方法は、 「 (1 ) 再生太陽電池素子の製造方法」 の欄で述べたものと同様、 物理的洗浄、 化学 的洗浄、 またはこれらの組み合わせにより行うことができる。 詳しくは、 前述したと おりであるので、 ここでの記载は省略する。
充填材層を除去した後は、 必要によりアルコール等の洗浄し、 使用済みの太陽電池モ ジュールから容易に再^!明前面 を製造することができる。
(3 ) 太陽霪池モジュールの再利用 去
最後に、 太陽 池モジュールの再利用 去について説明する。 太陽電池モジュ "ルの再利用 方法は、 「B.太陽電池モジュール」の欄で説明した太陽電池モジュールから部材を再利用 する太陽電池モジュールの再利用方法であって、 太陽電池モジュールを充填材層の構 成材料である樹脂の軟化点以上の温度に加熱する加熱工程と、 加熱により可塑化した 充填材層から部材を剥離して分離する分離工程とを有することを特徴とするものであ る。
このような太陽篙池モジュールの再利用方法によれば、 例えば太陽電池モジュール加工時に 不良品とされた太陽鼇池モジュールに含まれる太陽 1¾素子等の咅附ゃ使用後回収した太陽電 池モジュールの太陽電池素子等の咅附を、 再利用 (リサイクルもしくはリユース) することが 可肯 gとなり、 コスト面で辩 Uとなりばかりでなく、 地球 を考慮した:^に好適であるとい える。
太陽鹭池モジュールの 用雄に供される太陽 モジュールとしては、 _ ϋしたように、 太陽 mmモジュールの製造工程に不良品と判断された太陽電池モジユーノ^、使用後に回収さ れた太陽 ¾池モジュールを挙げることができる。
本宪明においては、 このような太陽 池モジュールに対して、カロ熱工程およ ϋ¾離工程を施 すのであるが、 この加熱工程およ 離工程は、上記「(1)再生太陽電池素子の製造方法」 もしくは上記 「 (2 ) 再生透明前面基板の製造方法」 に記載されたものと同様である ので、 ここでの説明は省略する。
なお、 このような太陽電池モジュールの再利用方法においては、 上記分離工程にお いて、 同時に裏面保護シート分離工程が行われることが好ましい。
例えば、 裏面保護シートとしてフッ素系樹脂などの加熱により有害ガスを発生する 材料を用いる場合は、 裏面保護シート分離工程において、 太陽電池モジュールから裏 面保護シートを分離することにより、 太陽電池モジュールの再利用時に裏面保護シー トの加熱による有害ガスの発生を防止できるので、 環境負荷を低減することができる からである。
裏面保護シートの分離は、 上記太陽電池素子もしくは透明前面基板の分離と同時に 行ってもよく、 これらの部材を分離する前に行つてもよレ、。
本発明においては、 部材としてそのまま用いる (リユース) 力、 部材を材料として 用いる (リサイクル) かにより、 分離工程後の処理が異なる。 リユースする場合は、 例えば部材が太陽電池素子や透明前面基板である場合は、 上記 「 (1 )再生太陽電池素 子の製造方法」 もしくは上記 「 (2 ) 再生透明前面基板の製造方法」 に記載の処理法 等を用いてリュ スされる。 一方、 リサイクルされる場合は、 後述するリサイクル法 によりリサイクルされる。
このように、 リユースするかリサイクルするかは、 例えば太陽電池素子等がすでに 破損していることが明らかである等、 太陽電池モジュールの段階で決定されている場 合と、 上記分離工程後、 太陽電池素子や透明前面基板等の太陽電池モジュールを構成 する部材の状態を見て決定される場合がある。
(リサイクル法)
本発明の太陽電池モジュールの再利用方法において、 太陽電池モジュールの部材の 内、 太陽電池素子おょぴ透明前面基板のリサイクル方法について説明する。
1 . 太陽電池素子
分離工程後、 素子が破損されている等の場合は、 上述した除去工程を行わずに、 も しくは行った後、 太陽電池素子とは別の用途に用いることによりリサイクルされる。 具体的には、 再溶融して S iインゴットを再形成しリサイクルする方法や、 S i中 に不純物が多い場合は、 その他の用途に用いられる。
2 . 透明前面基板
この場合も、 分離工程後、 上述した除去工程を行わずに、 もしくは行った後、 透明 前面基板とは別の用途として用いられる。 具体的には、 ガラス原料 (カレット) とし て回収し、 溶融して板ガラスを再形成する等の方法である。
なお、 本発明は、 上記実施形態に限定されるものではない。 上記実施形態は、 例示 であり、 本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有 し、 同様な作用効果を奏するものは、 いかなるものであっても本発明の技術的範囲に 包含される。 [実施例]
以下に実施例を示し、 本発明をさらに説明する。
[実施例 1 ]
( 1 ) シラン変成樹脂の調製
密度 8 9 8 g / c m 3、 1 9 0 °Cでのメルトマスフローレート (表中、 M F Rと 称する) 2 gZl 0分の直鎖状低密度ポリエチレン (表中、 LLDPEと称する) 9 8重量部に対し、 ビュルトリメ トキシシラン 2重量部、 ラジカル発生剤としてジクミ ルパーオキサイド 0. 1重量部を混合し、 200°Cで加熱溶融撹拌し、 シラン変成樹 脂を得た。
(2) 太陽電池モジュール用充填材層の形成
上記シラン変成樹脂 5重量部と、 密度 0. S S S gZc m3の直鎖状低密度ポリェチ レン 95重量部、 別に作製した耐光剤、 UVA、 酸化防止剤入マスターバッチ 5重量 部 (直鎖状低密度ポリエチレン 85重量部に対し、 ヒンダードアミン系光安定剤 2. 5重量部、 ベンゾフエノン系紫外線吸収剤 7. 5重量部、 リン系熱安定剤 5重量部を 混合して溶融 ·加工しペレツト化) を混合し、 φ 25 mm押出し機、 300 mm幅の Tダイスを有するフィルム成型機のホッパに投入し、 押出し温度 230°C、 引取り速 度 3mZm i nで厚さ 400 /zmのシートを成膜した。 上記の成膜化は、 支障なく実 施することができた。 これら一連の操作により、 太陽電池モジュール用充填材層を得 た。
(3) 太陽電池モジュールの作製
上記の太陽電池モジュール用充填材層を使用し、 厚さ 3mmのガラス板、 上記 (2) で作成した厚さ 400 mの太陽電池モジュール用充填材層、 結晶系シリコン太陽電 池素子、 上記の厚さ 400 /imの太陽電池モジュール用充填材層、 および、 厚さ 38 μ mのポリフッ化ビニル系樹脂シート (PVF) と厚さ 30 ;zmのアルミニウム箔と 厚さ 38 mのポリフッ化ビュル系樹脂シート (PVF) とからなる積層シートとを アクリル系榭脂の接着剤層を介して積層し、 その太陽電池素子面を上に向けて、 太陽 電池モジュール製造用の真空ラミネーターにて 150°Cで 15分間圧着し、 太陽電池 モジュールを得た。
[実施例 2〜: 11 ]
(1) シラン変成樹脂の調製
表一 1に示す重合用ポリエチレン、 エチレン性シラン化合物、 ラジカル発生剤、 お ょぴその混合比にて、 実施例 1と同様にして、 シラン変成樹脂を得た。 (表一 1 )
Figure imgf000021_0001
( 2 ) 太陽電池モジュール用充填材層の形成
表一 2に示す条件にて、 実施例 1と同様にして、 太陽電池モジュール用充填材層を 得た。 なお、 表中、 VLDPEは超低密度ポリエチレン、 LDPEは低密度ポリェチ レンを示す。
(表一 2 )
Figure imgf000022_0001
( 3 ) 太陽電池モジュールの作製
実施例 2 8については、 実施例 1と同様にして太陽電池モジュールを得た。 実施 例 9および 1 0については、 真空ラミネーターによる加熱圧着を 1 7 0 °Cで 1 5分間 とし、 実施例 1 1については、 1 7 0 °Cで 3 0分とした以外は、 実施例 1と同様にし て太陽電池モジュールを得た。
[比較例 1 ]
シラン変成樹脂を用いなかった以外は、 実施例 1と同様とした。
[比較例 2 ]
マスターパッチを用いなかった以外は、 実施例 1と同様とした。
[比較例 3 4 ]
表一 2に示す条件にて、 実施例 1と同様にして太陽電池モジュール用充填材層を得 た以外は、 実施例 1と同様とした。 架橋剤は、 ジブチル錫ジラゥレート 1重量部を含 有するマスターバッチ 5重量部を、実施例 1に記載したシラン変性樹脂、 L L D P E 耐光剤、 U V A, 酸化防止剤入マスターバッチと混合して実施例 1と同様に成膜する ことにより添加した。
' [評価]
実施例 1〜 1 1および比較例 1〜 4により得られた太陽電池モジュール用充填材層 について、 全光線透過率を、 太陽電池モジュール製造後の太陽電池モジュール用充填 材層について、 ガラス密着性、 ゲル分率、 充填材除去状態を、 および太陽電池モジュ ールについて、 起電力低下率を以下の条件で測定した。 評価結果を表— 3に示す。
(全光線透過率)
太陽電池モジュール用充填材層について、 カラーコンピューターを使用して全光線 透過率を測定した。 具体的には、 上記太陽電池モジュール用充填材層シートを表裏ェ チレンテトラフルォロエチレン共重合体フィルム (旭硝子社製、 商品名 : A F L E X 1 0 O N)に挟みこみ、太陽電池モジュール製造用の真空ラミネーターにより 1 5 0 °C 1 5分間圧着した後、 上記エチレンテトラフルォロエチレン共重合体フィルムを剥離 し、 加熱された上記太陽電池モジュール用充填材層シートのみを測定した。
太陽電池モジュールを温度 8 5 °C湿度 8 5 %の高温多湿状態にて 1 0 0 0時間放置 した後、 太陽電池モジュール用充填材層と透明前面基板であるガラスとの剥離強度を 測定した。
(ゲル分率)
上記「A. 太陽電池モジュール用充填材層」 の欄で説明した方法を用いて測定した。
(充填材除去状態)
太陽電池モジュールを製造し、 冷却後 1 8 0 °Cに加温したシリコーンオイル中で、 ワイヤを用いて、 太陽電池素子および裏面保護シートを透明前面基板 (ガラス板) か ら分離した。 その後、 シリコーンオイルを洗浄除去し、 1 8 0 °Cに保持したホットプ レート上に充填材層が残存した透明前面基板 (ガラス板) を載せて、 布により残った 充填材層を拭き取った。 そのときの拭き取りやすさ、 拭き取り後の残存状態を評価し た。
(起電力低下率)
J I S規格 C 8 9 1 7 - 1 9 8 9に基づいて、 太陽電池モジュールの環境試験を行 レ、、 試験前後の光起電力の出力を測定した。 (表一3 )
Figure imgf000024_0001
表— 3から明らかなように、 実施例の太陽電池モジュール用充填材層は、 外観およ び全光線透過率が良好であった。 また、 ガラスとの剥離強度に関しては、 温度 8 5 °C 湿度 8 5 %の高温多湿状態にて 1 0 0 0時間放置した後でも、 実施例の太陽電池モジ ユールの外観に変化はみられず、 太陽電池モジュール用充填材層はガラスと容易に剥 離することなく良好な状態であった。 さらに、 実施例の太陽電池モジュールの起電力 低下率も良好であった。 一方、 比較例 1の太陽電池モジュール用充填材層は、 シラン 変成樹脂を用いなかったためガラスと密着せず、 起電力低下率の評価を行うことがで きなかった。 また、 比較例 2の太陽電池モジュール用充填材層は、 マスターパッチを 用いなかったため、 温度 8 5 °C湿度 8 5 %の高温多湿状態にて 1 0 0 0時間放置する と黄変が見られた。

Claims

請求の範囲
1 . ェチレン性不飽和シラン化合物と重合用ポリエチレンとを重合させてなるシラ ン変成樹脂を有する太陽電池モジュール用充填材層であって、 前記太陽電池モジユー ル用充填材層を太陽電池モジュールに用いた場合、 ゲル分率が 3 0 %以下であること を特徴とする太陽電池モジュール用充填材層。
2 . 前記太陽電池モジュール用充填材層が、 さらに添加用ポリエチレンを有するこ とを特徴とする請求の範囲第 1項に記載の太陽電池モジュール用充填材層。
3 .前記重合用ポリエチレンと前記添加用ポリエチレンとが、低密度ポリエチレン、 中密度ポリエチレン、 高密度ポリエチレン、 超低密度ポリエチレン、 極超低密度ポリ エチレン、 および直鎖状低密度ポリエチレンからなる群から選択される少なくとも一 つのポリエチレンであることを特徴とする請求の範囲第 1項または第 2項に記載の太 陽電池モジュール用充填材層。
4 . 前記太陽電池モジュール用充填材層中に含まれる前記シラン変成樹脂の量が、 1〜8 0重量%の範囲内であることを特徴とする請求の範囲第 1項から第 3項までの レ、ずれかに記載の太陽電池モジュール用充填材層。
5 . 前記太陽電池モジュール用充填材層中に、 S i (珪素) 重合 S i量として、 8 ρ ρ π!〜 3 5 0 0 p p m含有されていることを特徴とする請求の範囲第 1項から第 4項までのいずれかに記載の太陽電池モジュール。
6 . 前記太陽電池モジュール用充填材層中に、 シラノール縮合触媒が実質的に含ま れていないことを特徴とする請求の範囲第 1項から第 5項までのいずれかに記載の太 陽電池モジュール用充填材層。
7 . 請求の範囲第 1項から第 6項までのいずれかに記載太陽電池モジュール用充填 材層を有することを特徴とする太陽電池モジュール。
PCT/JP2004/008009 2003-06-03 2004-06-02 太陽電池モジュール用充填材層およびこれを用いた太陽電池モジュール WO2004109811A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112004000919T DE112004000919T5 (de) 2003-06-03 2004-06-02 Zwischenschicht für ein Solarzellenmodul und Solarzellenmodul, bei dem die Zwischenschicht eingesetzt wird
US10/559,581 US7521515B2 (en) 2003-06-03 2004-06-02 Filler layer for solar cell module and solar cell module using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-158267 2003-06-03
JP2003158267 2003-06-03

Publications (1)

Publication Number Publication Date
WO2004109811A1 true WO2004109811A1 (ja) 2004-12-16

Family

ID=33508424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008009 WO2004109811A1 (ja) 2003-06-03 2004-06-02 太陽電池モジュール用充填材層およびこれを用いた太陽電池モジュール

Country Status (4)

Country Link
US (1) US7521515B2 (ja)
CN (1) CN100546052C (ja)
DE (1) DE112004000919T5 (ja)
WO (1) WO2004109811A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080276983A1 (en) * 2005-11-04 2008-11-13 Robert Andrew Drake Encapsulation of Photovoltaic Cells
BRPI0715034B1 (pt) * 2006-09-20 2019-05-14 Dow Global Technologies Inc. Módulo de dispositivo eletrônico
US8581094B2 (en) * 2006-09-20 2013-11-12 Dow Global Technologies, Llc Electronic device module comprising polyolefin copolymer
CN102449060B (zh) * 2009-06-01 2013-09-25 三井化学株式会社 乙烯系树脂组合物、太阳能电池密封材料和使用其的太阳能电池组件
WO2011059009A1 (ja) * 2009-11-13 2011-05-19 三井・デュポンポリケミカル株式会社 アモルファスシリコン太陽電池モジュール
DE102009056308A1 (de) * 2009-11-30 2011-06-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Metallisch kontaktiertes Substrat sowie Verfahren zu dessen Herstellung
US20130092235A1 (en) * 2010-06-03 2013-04-18 Kaneka Corporation Back sheet for solar battery and solar battery module
CA2809757A1 (en) * 2010-08-30 2012-03-08 Mitsubishi Plastics, Inc. Solar cell sealing material and solar cell module produced by using same
EP2623526B1 (en) * 2010-09-29 2017-07-26 Zeon Corporation Hydrogenated block copolymer having alkoxysilyl group, and use therefor
WO2012057586A2 (ko) * 2010-10-29 2012-05-03 주식회사 엘지화학 올레핀 조성물
KR101460843B1 (ko) * 2011-05-25 2014-11-12 주식회사 엘지화학 광전자 장치용 충전재
CN103688115A (zh) * 2011-06-02 2014-03-26 道康宁公司 光伏模块组件及其组装方法
TWI459569B (zh) * 2011-08-16 2014-11-01 Ind Tech Res Inst 太陽能電池模組之回收方法
JP5900511B2 (ja) 2011-12-05 2016-04-06 大日本印刷株式会社 太陽電池モジュール用封止材シート
EP2713405B1 (en) 2012-02-29 2018-05-16 Dai Nippon Printing Co., Ltd. Collector sheet for solar cell and solar cell module employing same
CN106062067B (zh) * 2014-02-26 2019-06-11 Lg化学株式会社 用于光伏组件的密封剂、其制造方法以及包含该密封剂的光伏组件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860579A (ja) * 1981-10-06 1983-04-11 Du Pont Mitsui Polychem Co Ltd 太陽電池用充填接着材シ−トおよびそれを用いる接着方法
JPS5863178A (ja) * 1981-10-12 1983-04-14 Du Pont Mitsui Polychem Co Ltd 太陽電池用充填接着材シ−トおよびそれを用いる接着方法
JPH05186610A (ja) * 1992-01-16 1993-07-27 Mitsubishi Petrochem Co Ltd 太陽電池モジュール用接着シート
JP2002009309A (ja) * 2000-06-26 2002-01-11 Mitsubishi Chemicals Corp 太陽電池モジュールの製造方法
JP2003046104A (ja) * 2001-08-02 2003-02-14 Dainippon Printing Co Ltd 太陽電池モジュ−ル
JP2003046105A (ja) * 2001-08-02 2003-02-14 Dainippon Printing Co Ltd 太陽電池モジュ−ル用充填剤層
JP2003049004A (ja) * 2001-08-06 2003-02-21 Mitsubishi Plastics Ind Ltd 軟質樹脂シート、太陽電池用充填材及びそれを用いた太陽電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4614764A (en) * 1985-03-06 1986-09-30 Mobil Oil Corporation Linear low density ethylene polymers blended with modified linear low density ethylene polymers
US5169900A (en) * 1988-08-05 1992-12-08 Du Pont Canada Inc. Polyolefin coatings and films having release characteristics
JPH03207644A (ja) 1990-01-09 1991-09-10 Sekisui Chem Co Ltd ポリエチレン被覆金属体の製造方法
JPH047145A (ja) 1990-04-25 1992-01-10 Sekisui Chem Co Ltd シラングラフト変性ポリエチレン被覆金属体の製造方法
DE10394373B4 (de) * 2002-12-16 2016-06-02 Dai Nippon Printing Co., Ltd. Zwischenfolie für ein Solarzellenmodul und Solarzellenmodul, bei dem die Zwischenfolie eingesetzt wird

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860579A (ja) * 1981-10-06 1983-04-11 Du Pont Mitsui Polychem Co Ltd 太陽電池用充填接着材シ−トおよびそれを用いる接着方法
JPS5863178A (ja) * 1981-10-12 1983-04-14 Du Pont Mitsui Polychem Co Ltd 太陽電池用充填接着材シ−トおよびそれを用いる接着方法
JPH05186610A (ja) * 1992-01-16 1993-07-27 Mitsubishi Petrochem Co Ltd 太陽電池モジュール用接着シート
JP2002009309A (ja) * 2000-06-26 2002-01-11 Mitsubishi Chemicals Corp 太陽電池モジュールの製造方法
JP2003046104A (ja) * 2001-08-02 2003-02-14 Dainippon Printing Co Ltd 太陽電池モジュ−ル
JP2003046105A (ja) * 2001-08-02 2003-02-14 Dainippon Printing Co Ltd 太陽電池モジュ−ル用充填剤層
JP2003049004A (ja) * 2001-08-06 2003-02-21 Mitsubishi Plastics Ind Ltd 軟質樹脂シート、太陽電池用充填材及びそれを用いた太陽電池

Also Published As

Publication number Publication date
CN1799147A (zh) 2006-07-05
CN100546052C (zh) 2009-09-30
US7521515B2 (en) 2009-04-21
US20060142490A1 (en) 2006-06-29
DE112004000919T5 (de) 2006-06-29

Similar Documents

Publication Publication Date Title
JP2005019975A (ja) 太陽電池モジュール用充填材層およびこれを用いた太陽電池モジュール
US8497140B2 (en) Encapsulant layer for photovoltaic module, photovoltaic module and method for manufacturing regenerated photovoltaic cell and regenerated transparent front face substrate
WO2004109811A1 (ja) 太陽電池モジュール用充填材層およびこれを用いた太陽電池モジュール
KR101919294B1 (ko) 경화성 캡슐화제 및 그의 용도
CN102449060B (zh) 乙烯系树脂组合物、太阳能电池密封材料和使用其的太阳能电池组件
JP4605527B2 (ja) 太陽電池用接着シート
JP6295962B2 (ja) 樹脂組成物およびそれからなる成形体
JP2006210405A (ja) 太陽電池モジュール
JP2006013413A (ja) 太陽電池モジュール用充填材層、太陽電池モジュール、ならびに再生太陽電池素子および再生透明前面基板の製造方法
JP4662805B2 (ja) 太陽電池用接着シートの製造方法
JP5034175B2 (ja) 太陽電池モジュール
JP2013512984A (ja) 官能性ポリオレフィンを含む架橋性マスターバッチとしての使用に適した組成物
TWI534194B (zh) 太陽電池密封用樹脂片、使用其的太陽電池模組以及其製造方法
JP5010240B2 (ja) 太陽電池用接着シート
EP2790231A1 (en) Sealing material sheet for solar cell modules
JP5099819B2 (ja) 太陽電池モジュール部材の回収方法
JP2006210389A (ja) 太陽電池モジュール用充填材層および太陽電池モジュール
JP2012195561A (ja) 太陽電池モジュール用封止材シート
JP6073787B2 (ja) 封止材及びその製造方法
JP4977111B2 (ja) 太陽電池モジュールの分離回収方法
JP2007318008A (ja) 太陽電池モジュール用充填材、太陽電池モジュール用充填材層、および太陽電池モジュール
JP2006032618A (ja) 太陽電池モジュール用充填材層およびこれを用いた太陽電池モジュール
CN106715571A (zh) 密封片、太阳能电池模块以及密封片的制造方法
JP2011204970A (ja) 太陽電池モジュールの製造方法
CN115926658B (zh) 一种环保透明自粘膜及其制备方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006142490

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10559581

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048155609

Country of ref document: CN

RET De translation (de og part 6b)

Ref document number: 112004000919

Country of ref document: DE

Date of ref document: 20060629

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112004000919

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 10559581

Country of ref document: US

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607