WO2012057586A2 - 올레핀 조성물 - Google Patents

올레핀 조성물 Download PDF

Info

Publication number
WO2012057586A2
WO2012057586A2 PCT/KR2011/008189 KR2011008189W WO2012057586A2 WO 2012057586 A2 WO2012057586 A2 WO 2012057586A2 KR 2011008189 W KR2011008189 W KR 2011008189W WO 2012057586 A2 WO2012057586 A2 WO 2012057586A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
olefin
hydrolyzable
filler
formula
Prior art date
Application number
PCT/KR2011/008189
Other languages
English (en)
French (fr)
Other versions
WO2012057586A3 (ko
Inventor
서범두
채훈
이충훈
하종주
최성호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100106966A external-priority patent/KR101314371B1/ko
Priority claimed from KR1020100106964A external-priority patent/KR101314386B1/ko
Priority claimed from KR1020100106968A external-priority patent/KR101430783B1/ko
Priority claimed from KR1020100106965A external-priority patent/KR101367505B1/ko
Priority claimed from KR1020100106963A external-priority patent/KR101411776B1/ko
Priority claimed from KR20110049379A external-priority patent/KR101457744B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201180051676.8A priority Critical patent/CN103180378B/zh
Priority to EP11836678.0A priority patent/EP2634213B1/en
Publication of WO2012057586A2 publication Critical patent/WO2012057586A2/ko
Publication of WO2012057586A3 publication Critical patent/WO2012057586A3/ko
Priority to US13/871,638 priority patent/US9447210B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to olefin compositions, fillers and photovoltaic modules.
  • the filler may be used when encapsulating a light emitting part or an optical sensing part of an optoelectronic device such as a photovoltaic cell, a light emitting diode (LED), an organic light emitting diode (OLED), or the like. .
  • an optoelectronic device such as a photovoltaic cell, a light emitting diode (LED), an organic light emitting diode (OLED), or the like.
  • EVA polymer As the material of the filler, an ethylene-vinyl acetate (EVA) polymer mainly used in photovoltaic modules can be exemplified.
  • EVA polymer is inferior in adhesive strength, and the apparatus containing EVA polymer as a filler is not sufficient in durability or the like.
  • the EVA polymer is thermally decomposed in a heat compression step or the like to generate toxic gases such as acetic acid gas. Such toxic gases may deteriorate the working environment and cause deterioration of the performance of the apparatus.
  • An object of the present invention is to provide an olefin composition, a filler and a photovoltaic module.
  • Exemplary olefin compositions of the present invention may comprise a basic hydrolysis catalyst and an olefin polymer comprising a hydrolyzable group or comprising a hydrolyzate of the hydrolyzable group.
  • the olefin composition may be a composition for filler or a composition for filler of optoelectronic devices.
  • the composition for the filling material of the optoelectronic device may mean a composition used as a filling material for encapsulating the optoelectronic device, such as a photovoltaic cell, LED or OLED.
  • the olefin composition may be a lamination process material or a composition for an elevated temperature lamination process material.
  • the olefin polymer contained in the said composition contains a hydrolyzable group or the hydrolyzate of the said hydrolyzable group.
  • the term "olefin polymer” may refer to a polymer including at least one olefin monomer as a polymerized unit.
  • the range of the polymer in the above, the homopolymer (homopolymer) which is a homogeneous polymer made of the same kind of monomers; And copolymers having chemically different segments or blocks, even if they are prepared by the reaction of two or more different monomers or are formed of the same kind of monomers.
  • being included in a "polymerization unit” may mean the state in which the monomer forms the main chain or side chain of a polymer by a polymerization reaction.
  • the hydrolyzate of the hydrolyzable group may be hydrolyzed by the action of a basic hydrolysis catalyst contained in the composition.
  • Hydrolysates of hydrolyzable groups herein may also be referred to as reactive functional groups.
  • the hydrolyzable group and the reactive functional group can, for example, cause the filler to exhibit excellent adhesion when the composition is used in the filler.
  • the hydrolyzable group or the reactive functional group forms a physical bond such as a hydrogen bond with the functional group on the surface of the glass substrate, or forms a chemical covalent bond through a condensation reaction or the like.
  • the adhesiveness with can be improved.
  • the olefin polymer including a hydrolyzable group or including the hydrolyzate thereof may be referred to as a "modified olefin polymer".
  • hydrolyzable group is not specifically limited.
  • a hydrolyzable silyl group can be exemplified.
  • the olefin polymer in which the hydrolyzable group is a hydrolyzable silyl group may be referred to as a silane-modified olefin polymer.
  • hydrolyzable silyl group may mean a silyl group having one or more hydrolyzable moieties.
  • hydrolyzable silyl group As a hydrolyzable silyl group, the functional group represented by following formula (1) can be illustrated, for example.
  • X represents a hydrolyzable moiety bonded to a silicon atom
  • Y represents a non-hydrolyzable moiety bonded to a silicon atom
  • m represents a number from 1 to 3.
  • hydrolyzable residue (X) for example, a halogen atom, an alkoxy group, an aryloxy group, an acyloxy group, an alkylthio group or an alkyleneoxythio group can be exemplified.
  • fluorine (F), chlorine (Cl), bromine (Br) or iodine (I) may be exemplified, and chlorine (Cl) may be exemplified.
  • alkoxy group in Formula 1 an alkoxy group having 1 to 20 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms or 1 to 4 carbon atoms may be exemplified.
  • the alkoxy group may be linear, branched, or cyclic, and may be optionally substituted with one or more substituents.
  • the aryl group included in the aryloxy group in the general formula (1) is a concept including an aryl group as well as a so-called aralkyl group (arylalkyl group) or an arylalkyl group, for example, includes one or more benzene rings, or two or more benzene It may mean a monovalent moiety derived from a compound or a derivative thereof containing a structure in which a ring is linked or condensed.
  • the aryl group may be, for example, an aryl group having 6 to 25 carbon atoms, 6 to 21 carbon atoms, 6 to 18 carbon atoms, or 6 to 12 carbon atoms.
  • aryl group for example, a phenyl group, dichlorophenyl, chlorophenyl, phenylethyl group, phenylpropyl group, benzyl group, tolyl group, xylyl group (xylyl group) or naphthyl group and the like can be exemplified. Phenyl groups can be exemplified. The aryl group may be optionally substituted by one or more substituents.
  • an acyloxy group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, or 1 to 12 carbon atoms may be exemplified, which may be optionally substituted with one or more substituents.
  • an alkylthio group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, or 1 to 8 carbon atoms or 1 to 4 carbon atoms may be exemplified, and an alkyleneoxythio group.
  • An alkyleneoxythio group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, or 1 to 8 carbon atoms or 1 to 4 carbon atoms may be exemplified, and the alkylthio group or alkyleneoxythio group may be any one. It may be substituted by the above substituents.
  • Substituents which may be optionally substituted with a predetermined functional group in the present specification include hydroxy group, epoxy group, alkyl group, alkenyl group, alkynyl group, alkoxy group, acyl group, thiol group, acryloyl group, methacryloyl group, aryl group or Isocyanate groups and the like can be exemplified, but are not limited thereto.
  • X in Formula 1 may preferably be alkoxy.
  • the alkoxy group may be an alkoxy group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • the alkoxy group may be a straight chain, branched chain or cyclic alkoxy group, and may be optionally substituted with one or more substituents.
  • a methoxy group, ethoxy group, propoxy group, isopropoxy group or butoxy group and the like can be exemplified, and preferably a methoxy group or an ethoxy group can be used, but is not limited thereto.
  • non-hydrolyzable residue of Chemical Formula 1 hydrogen, an alkyl group or an aryl group may be exemplified.
  • the alkyl group may be, for example, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • the alkyl group may be optionally substituted.
  • aryl group in Y the aryl group described by the aryloxy group of X can be illustrated.
  • m is a number from 1 to 3, and in another example, may be 2 or 3, or 3.
  • the olefin polymer having a hydrolyzable silyl group may be prepared by copolymerizing an alpha-olefin and an unsaturated silane compound, or by grafting the unsaturated silane compound to an olefin polymer.
  • the olefin polymer may include a copolymer including alpha-olefin and an unsaturated silane compound represented by Chemical Formula 2 in a copolymerized form; Or a graft polymer in which an unsaturated silane compound of Formula 2 is grafted to an olefin polymer.
  • D is an alkenyl group bonded to a silicon atom
  • X, Y, and m are as defined in Formula 1 above.
  • alkenyl group in Formula 2 a straight, branched or cyclic alkenyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms may be exemplified.
  • the alkenyl group may be optionally substituted with one or more substituents.
  • a vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group, cyclohexenyl group or octenyl group can be used, and usually a vinyl group can be used. .
  • unsaturated silane compound of formula (2) examples include vinyltrimethoxy silane, vinyltriethoxy silane, vinyltripropoxy silane, vinyltriisopropoxy silane, vinyltributoxy silane, vinyltripentoxy silane, and vinyl.
  • Triphenoxy silane, vinyltriacetoxy silane and the like can be exemplified, but is not limited thereto.
  • alpha-olefin contained in the olefin polymer as described above C2-C20, C2-C16, C2-C12, C2-C8 or C2-C4 linear, branched or cyclic substituted or unsubstituted Alpha-olefins can be exemplified.
  • Specific examples of the alpha-olefins include ethylene, propylene, 1-butene, isobutylene, 1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 1-hexene, 1-heptane, 1-octene, 1-nonene or 1-decene and the like can be exemplified, and ethylene can be used, but is not limited thereto.
  • the olefin polymer is 0.1 parts by weight to 10.0 parts by weight or 0.5 parts by weight to 5.0 parts by weight of the unsaturated silane compound, based on 100 parts by weight of alpha-olefin in the case of a copolymer, and 100 parts by weight of olefin polymer in the case of a graft polymer. It may be included in parts by weight.
  • the unit weight part means the ratio of the weight between each component.
  • a graft polymer obtained by grafting the unsaturated silane compound of Formula 2 to the olefin polymer may be preferably used, but is not limited thereto.
  • the olefin polymer to which the unsaturated silane compound is grafted may be polyethylene.
  • polyethylene may also include homopolymers of ethylene as well as copolymers containing at least 50 mol% or more of ethylene as polymerized units, together with other alpha-olefins or other comonomers as polymerized units. .
  • the polyethylene may be, for example, one or more kinds of low density polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, ultra low density polyethylene, or linear low density polyethylene.
  • Polyethylene with many side chains may be used as the polyethylene to which the unsaturated silane compound is grafted. In polyethylene with many side chains, grafting can be made more efficiently. Polyethylene with many side chains is generally low in density, and polyethylene with few side chains is generally high in density. Therefore, low density polyethylene can be preferably used.
  • the polyethylene may have a density of about 0.85 g / cm 3 to about 0.96 g / cm 3 or about 0.85 g / cm 3 to about 0.92 g / cm 3 .
  • the polyethylene has a melt flow rate (MFR) of about 0.1 g / 10 minutes to about 50 g / 10 minutes, about 1.0 g / 10 minutes to about 50.0 g / 10 minutes, or about 1.0 g / 10 minutes at 190 ° C. To about 30.0 g / 10 minutes.
  • MFR melt flow rate
  • an unsaturated silane compound may be grafted more efficiently.
  • the composition may exhibit excellent moldability and adhesion.
  • the composition contains a basic hydrolysis catalyst.
  • the basic hydrolysis catalyst may be converted into a reactive functional group by forming a filler using the composition or by hydrolyzing the hydrolyzable group of the olefin polymer in the process of encapsulating the device with the composition or the filler.
  • the basic hydrolysis catalyst can appropriately maintain the degree of hydrolysis and can efficiently adjust the physical properties of the composition or the filler according to the purpose.
  • the basic hydrolysis catalyst does not adversely affect other components included in the composition, and therefore the overall physical properties can be stably maintained as intended.
  • the basic hydrolysis catalyst for example, one or more kinds of organic amine compounds, heterocyclic compounds containing nitrogen as ring constituent nitrogen, metal hydroxides or metal amides can be exemplified.
  • the organic amine compound include alkylamine or dialkylamine.
  • the alkyl group contained in the organic amine compound in the above may be, for example, an alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms or 1 to 4 carbon atoms.
  • the alkyl group may be linear, branched or cyclic, optionally substituted by one or more substituents, or may be in an unsubstituted state.
  • organic amine compound examples include, but are not limited to, ethylamine, hexylamine, n-propylamine, butylamine, dodecyl amine or dibutylamine.
  • the heterocyclic compound may mean a hydrocarbon ring compound including one or more nitrogen as a hetero atom constituting the ring.
  • the hydrocarbon ring compound which contains one or two nitrogen atoms as a hetero atom, and also has 3-8 ring constituent atoms can be illustrated, A specific example is pyridine.
  • examples of the metal hydroxide may include NaOH, KOH, RbOH, CsOH, and the like
  • examples of the metal amide may include NaNH 2 , KNH 2 , RbNH 2, or CsNH 2 .
  • an organic amine compound preferably an alkyl amine or a dialkyl amine, more preferably an alkyl amine having an alkyl group having 1 to 16 carbon atoms or a dialkyl amine having an alkyl group having 2 to 32 carbon atoms may be preferably used.
  • an organic amine compound preferably an alkyl amine or a dialkyl amine, more preferably an alkyl amine having an alkyl group having 1 to 16 carbon atoms or a dialkyl amine having an alkyl group having 2 to 32 carbon atoms
  • the present invention is not limited thereto.
  • the composition comprises a basic hydrolysis catalyst in an amount of 0.01 to 5 parts by weight, 0.01 to 2 parts by weight, 0.05 to 1.5 parts by weight or 0.05 to 1.0 parts by weight based on 100 parts by weight of the modified olefin polymer. can do. In this weight ratio, the physical properties of the composition can be effectively controlled.
  • the composition may further include one or more kinds selected from light stabilizers, ultraviolet absorbers, heat stabilizers, and the like, as necessary.
  • the light stabilizer may play a role of capturing active species of photodegradation initiation of the olefin polymer and preventing photooxidation.
  • a hindered amine compound or a hindered piperidine compound may be exemplified, but is not limited thereto.
  • a ultraviolet absorber can absorb the ultraviolet-ray which injects into a composition, convert it into a harmless thermal energy in a molecule
  • an organic or inorganic ultraviolet absorber such as benzophenone, benzotriazole, acrylonitrile, metal complex salt, hindered amine, ultrafine titanium oxide or ultrafine zinc oxide may be exemplified, but is not limited thereto. no.
  • heat stabilizer tris (2,4-di-tert-butylphenyl) phosphite, bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl] ethyl ester phosphorous acid, tetrakis ( Phosphorus such as 2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4'-diylbisphosphonate and bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite Heat stabilizers; Lactone-based heat stabilizers such as the reaction product of 8-hydroxy-5,7-di-tert-butyl-furan-2-one and o-xylene may be exemplified, but are not limited thereto.
  • the content of the light stabilizer, UV absorber and / or thermal stabilizer is not particularly limited.
  • the content of the additive may be appropriately selected in consideration of the use of the composition, the shape or density of the additive, and the like, and may be appropriately adjusted within the range of 0.01 parts by weight to 5 parts by weight based on 100 parts by weight of the total solids of the composition. .
  • composition may further appropriately include various additives known in the art, depending on the use.
  • the present invention also relates to a filler.
  • Exemplary fillers may include hydrolyzable groups or hydrolyzates of the hydrolyzable groups, ie olefin polymers comprising reactive functional groups.
  • the filler can be used, for example, in applications for encapsulating a variety of optoelectronic devices.
  • the filler may be, for example, sheet or film shape.
  • the thickness of the filler can be adjusted within about 10 to 2,000 ⁇ m, preferably about 100 to 1250 ⁇ m, in consideration of the support efficiency and the possibility of breakage of the device, the weight reduction or workability of the device.
  • the film thickness of the filler may be changed depending on the specific use applied.
  • the filler may have a gel fraction of 5% to 60% measured in accordance with the provisions of ASTM D 2765 after the filler is held in water at 90 ° C. for 18 hours.
  • the gel fraction may be 5% to 55%, 10% to 50% or 20% to 50%. If the gel fraction of the filler is within the above range, the filler may have an appropriate crosslinked structure.
  • the gel fraction can be controlled by adjusting, for example, the degree of introduction of the hydrolyzable group into the olefin polymer and / or the degree of hydrolysis of the hydrolyzable group.
  • the filler using a laminator, such as a vacuum laminator, may be a 90-degree peeling force measured after pressing the filler on a glass substrate at 150 °C for 10 minutes or more 70 N / 15mm.
  • the peel force may be 100 N / 15 mm or more, 120 N / 15 mm or more, or 160 N / 15 mm or more.
  • the said peeling force is a 90 degree peeling force measured after pressing and bonding the said filler to a glass substrate using a laminator machine, and specifically, it is a peeling force measured according to the system in the Example mentioned later.
  • the upper limit of the peel force is not particularly limited, and can be adjusted, for example, at 300 N / 15 mm or less.
  • the said peeling force can be controlled by adjusting the ratio of the hydrolysable group introduce
  • the filler, the index of the hydrolyzable group measured by Fourier Transform Infrared Spectrometry (FT-IR) may be 0.01 to 1.5, the index of the hydrolyzate of the hydrolyzable group may be 0.01 to 1.5.
  • the index of the hydrolyzable group and the index of the hydrolyzate are the degree to which the hydrolyzable group of the olefin polymer having the hydrolyzable group used in the preparation of the filler is hydrolyzed in the process of preparing the filler to convert the hydrolyzate, that is, the reactive functional group.
  • This can be an indicator.
  • the index of the hydrolyzable group is relatively high and the index of the hydrolyzate is relatively low, it may mean that the hydrolysis of the hydrolyzable group is relatively less progressed in the manufacturing process of the filler, and vice versa. In other words, it may mean that the hydrolysis proceeds relatively much.
  • the index of the hydrolyzable group and the hydrolyzate of the hydrolyzable group may be calculated according to the following general formulas (1) and (2).
  • H is an index of the hydrolyzable group
  • A is an intensity of a peak derived from the hydrolyzable group of the filler measured by FT-IR analysis
  • B is the FT-.
  • R is the index of the reactive functional group
  • C is the intensity of the peak derived from the reactive functional group of the filler during FT-IR measurement.
  • numerical value A is the intensity
  • the specific position of the said peak is specific of the hydrolyzable group It can be determined according to the type.
  • numerical value C is the intensity
  • the index of the hydrolyzable group (H in General Formula 1) in the filler may be 0.05 to 0.5, 0.05 to 0.3 or 0.1 to 0.2.
  • the index of the reactive functional group (R of the general formula 2) may be 0.03 to 0.5 or 0.03 to 0.1.
  • the filler may be prepared using the olefin composition.
  • the filler may further comprise a basic hydrolysis catalyst.
  • a composition containing an olefin polymer having a hydrolyzable group together with a basic hydrolysis catalyst compared to the case of using other types of catalysts such as organometallic catalysts, the gel fraction, peel force or hydrolyzable group described above or The index of the reactive functional group can be implemented more efficiently.
  • the olefin composition may be included in a state in which the above-described components are uniformly mixed as they are, or in a state in which at least some of the components are physically or chemically reacted.
  • the filler may be manufactured by molding the composition into a film or sheet by a molding method such as hot melt extrusion or T die molding.
  • the residual amount of basic hydrolysis catalyst in the prepared filler 1 ppm to 50,000 ppm, 3 ppm to 10,000 ppm, 10 ppm to 10,000 ppm, 50 ppm
  • the manufacturing conditions of the filler may be adjusted to be from 7,000 ppm or 300 ppm to 6,000 ppm.
  • the residual amount of the catalyst is a value measured by HPLC (High-performance liquid chromatography).
  • the amount of the catalyst blended in the raw material composition will remain the same even after being made of the filler.
  • the amount of the catalyst initially formulated does not necessarily correspond to the amount of remaining catalyst after the filler is prepared. Therefore, it is difficult to design a filler having the desired physical properties simply by considering only the amount of the catalyst blended into the composition.
  • the present invention also relates to a method for producing such a filler.
  • Exemplary methods may include molding a composition comprising an olefin polymer comprising a hydrolyzable group into a film or sheet shape.
  • Exemplary methods for preparing the filler may include molding the olefin composition comprising the basic hydrolysis catalyst described above into a film or sheet shape.
  • the method may include, for example, preparing an olefin composition and molding the prepared olefin composition into a film or sheet shape.
  • the olefin composition may, for example, mix an alpha-olefin and an unsaturated silane compound and then copolymerize the components contained in the mixture simultaneously or stepwise in the presence of a radical polymerization initiator to produce an olefin polymer and hydrolyze the polymer. It can be prepared by combining with a catalyst, for example, a basic hydrolysis catalyst. In the above process of mixing the alpha-olefin and the unsaturated silane compound, other comonomers may be mixed together as necessary. In addition, in the copolymerization step, an appropriate chain transfer agent may be used together as necessary.
  • additives such as light stabilizers, ultraviolet absorbers or thermal stabilizers
  • the polymerization of the olefin polymer and the combination of additives such as a catalyst may be performed in the same reactor.
  • the olefin composition further mixes the olefin polymer and the unsaturated silane compound, grafts the unsaturated silane compound to the olefin polymer in the presence of a radical generator to produce a modified olefin polymer, and then mixes it with additives such as a basic hydrolysis catalyst. It can also manufacture.
  • the olefin composition may be prepared by grafting a silane compound of Formula 2 to an olefin polymer, and mixing a polymer grafted with the silane compound and a basic hydrolysis catalyst.
  • the grafting of the silane compound in the above can be carried out in the presence of a radical generator.
  • the grafting and the mixing of the catalyst may be performed in the same reactor.
  • the kind of the reactor is not particularly limited.
  • a cylinder or an extruder having a hopper may be used.
  • a liquid silane compound and a radical generator are added to a heat-melted olefin polymer through an extruder and extruded, or a mixture of the olefin polymer, a radical generator and a silane compound is added to a hopper.
  • the reaction may be carried out by heating and melting in a cylinder to prepare an olefin polymer.
  • a hydrolysis catalyst can be introduced into the reactor in which the olefin polymer is produced before or after or simultaneously with the formation of the polymer.
  • other additives such as UV absorbers, thermal stabilizers or light stabilizers may be added as well as the hydrolysis catalyst.
  • the hydrolysis catalyst and / or other additives can be introduced as is into the reactor or mixed in the form of a master batch.
  • the master batch is a pellet-shaped raw material in which the additive is concentrated and dispersed at a high concentration.
  • the method of adding the additive in the reactor in which the olefin polymer is formed is not particularly limited.
  • a side feeder may be installed at an appropriate position of an extruder or a cylinder, and the additive in the form of a master batch is introduced through the feeder.
  • a method of mixing with an olefin polymer and the like in a hopper can be used.
  • the specific kind and design of the reactor, the conditions such as the heating and melting, the mixing or the temperature and time of the reaction, the kind of the radical generator and the manufacturing method of the master batch are not particularly limited. May be appropriately selected.
  • the method for molding the composition into a sheet or film shape is not particularly limited, and a conventional filming or sheeting process such as a T die process or extrusion can be used.
  • a conventional filming or sheeting process such as a T die process or extrusion can be used.
  • the invention also relates to an optoelectronic device.
  • exemplary optoelectronic devices may include optoelectronic devices encapsulated in the composition.
  • the optoelectronic device to be encapsulated may be, for example, a light emitting or photosensitive site such as a photovoltaic cell, LED or OLED.
  • the olefin polymer in the composition encapsulating the device forms a suitable crosslinked structure by a hydrolyzable group or a reactive functional group, and thus can maintain excellent adhesion with other components in the optoelectronic device.
  • the remaining amount of the hydrolysis catalyst in the composition encapsulating the device is 1 ppm to 50,000 ppm, and an appropriate crosslinking structure can be realized in this range.
  • the amount of catalyst formulated in the original composition will remain the same even during the preparation or encapsulation of the filler, but in a practical process, the amount of catalyst initially formulated and remaining catalyst after the filler preparation or after encapsulation It does not necessarily match the amount of. Therefore, it is difficult to design an optoelectronic device having the desired physical properties only by considering only the amount of the catalyst to be blended into the composition, but it is possible to control the remaining amount after encapsulation, thereby providing a suitable crosslinked structure in the filler.
  • the remaining amount may be 3 ppm to 10,000 ppm, 10 ppm to 10,000 ppm, 50 ppm to 7,000 ppm, or 300 ppm to 6,000 ppm.
  • the residual amount of the catalyst is a value measured by HPLC (High-performance liquid chromatography) after encapsulation, as will be described later.
  • the specific structure of the optoelectronic device or the method for encapsulating the optoelectronic device using the composition is not particularly limited, and the manner and structure commonly applied in the art may be applied according to the device.
  • the optoelectronic device when the optoelectronic device is a photovoltaic cell, the optoelectronic device may include the light receiving substrates 11 and 21, the back sheets 12 and 22, and the light receiving substrates 11 and 21, as shown in FIG. 1 or 2. And a photovoltaic module including photovoltaic elements 13 and 23 encapsulated with fillers 14 and 24 between the backsheets 12 and 22.
  • the fillers 14 and 24 may include the olefin composition described above.
  • 1 is a conventional structure of the apparatus 1 in the case of using a silicon wafer series active layer as the photovoltaic element 13, and FIG. 2 shows a thin film active layer formed by a vapor deposition method as the photovoltaic element 23. It is a normal structure of the apparatus 2 in the case of using.
  • the module stacks the light receiving substrates 11 and 21, the fillers 14 and 24, the photovoltaic elements 13 and 23, the back sheets 12 and 22, and the like, according to the target structure.
  • It can be manufactured by the usual shaping
  • Process conditions of the lamination method is not particularly limited, it can be carried out typically for 5 minutes to 60 minutes or 8 minutes to 40 minutes at a temperature of 90 °C to 230 °C or 110 °C to 190 °C.
  • the specific types of the light receiving substrates 11 and 21, the back sheets 12 and 22, and the photovoltaic elements 13 and 23 are not particularly limited.
  • the light receiving substrates 11 and 21 include plate glass; Or a transparent composite sheet in which glass, a fluoropolymer sheet, a weather resistant film and a barrier film are laminated, and the back sheets 12 and 22 may be laminated with a metal such as aluminum, a fluoropolymer sheet, a weather resistant film and a barrier film, or the like.
  • a metal such as aluminum, a fluoropolymer sheet, a weather resistant film and a barrier film, or the like.
  • One composite sheet and the like can be exemplified.
  • the photovoltaic elements 13 and 23 for example, a silicon wafer-based active layer or a thin film active layer formed by a deposition method may be exemplified.
  • 1 and 2 are schematic diagrams of exemplary photovoltaic modules.
  • FIG. 3 is an analysis spectrum of the FT-IR measured with respect to Example 1.
  • the following measurement method may be applied to the measurement of each physical property.
  • FT-IR analysis is performed on the fillers prepared in Examples and Comparative Examples using an FT-IR analyzer (FTS 3000, BIO-RAD).
  • FTS 3000 FT-IR analyzer
  • a peak at 1091 cm ⁇ 1 was observed due to the stretching motion of the methoxy group of methoxysilyl (Si-OCH 3 ), a hydrolyzable group introduced into the olefin polymer, and the hydrolyzable group was hydrolyzed.
  • the peak resulting from the stretching movement of the hydroxyl group of the reactive functional group (Si-OH) thus produced is observed at 3645 cm ⁇ 1 .
  • Equations 1 and 2 respectively.
  • the index of the hydrolyzable group and the reactive functional group is obtained.
  • 3 shows an analysis graph of the FT-IR measured for Example 1.
  • Filler is cut into specimens 15 mm long and 200 mm long.
  • the specimen is pressed and adhered to the plate glass using a vacuum laminator (manufacturer: Meier, trade name: ICOLAM) for 10 minutes under conditions of 150 °C.
  • the peeling force was measured while peeling the adhered filler at a peel rate of 50 mm / min and a peel angle of 90 degrees using a tensile tester (manufacturer: Lloyd, trade name: LEPlus).
  • a plate glass that is generally used as a light receiving substrate of a photovoltaic module may be used.
  • the filler is cut into specimens 10 mm long and 10 mm long.
  • the specimen is then gelled by staying in water at 90 ° C. for 18 hours. Thereafter, the gel fraction of the filler is measured according to the contents specified in ASTM D-2765.
  • the residual amount of catalyst in the filler after production of the photovoltaic module is measured according to the manufacturer's manual using an HPLC instrument (Model: Alliance 2690, Detector: PDL, Waters).
  • Silane was grafted onto the polyethylene. Further, 100 parts by weight of linear low density polyethylene having a density of 0.870 g / cm 3 , 4 parts by weight of a hindered amine light stabilizer, 2 parts by weight of a benzophenone ultraviolet absorber, 2 parts by weight of a phosphorus thermal stabilizer and dodecyl amine (C 12 1 part by weight of H 25 NH 2 ) was mixed, melted and processed into a pelletized masterbatch into the extruder at a ratio of 10 parts by weight to 100 parts by weight of the polyethylene to which the vinyl trimethoxy silane was grafted using a side feeder. And mixed to prepare an olefin composition.
  • linear low density polyethylene having a density of 0.870 g / cm 3 4 parts by weight of a hindered amine light stabilizer, 2 parts by weight of a benzophenone ultraviolet absorber, 2 parts by weight of a phosphorus thermal stabilizer and dodecyl amine (C 12 1 part
  • the composition was introduced into a side hopper of a film forming machine having a twin-screw extruder ( ⁇ 27 mm) and a T die (width: 500 mm), and the sheet was processed at an extrusion temperature of 200 ° C. and a ejection rate of 3 m / min to have a thickness of about 500 ⁇ m.
  • the filler on the bed was processed.
  • Fillers and modules were prepared in the manner according to Example 1 except that 1 part by weight of butyl amine (C 4 H 9 NH 2 ) was used instead of 1 part by weight of dodecyl amine (C 12 H 25 NH 2 ) in the preparation of the master batch. Prepared.
  • Fillers and modules were prepared in the same manner as in Example 1 except that the weight ratio of dodecyl amine (C 12 H 25 NH 2 ) was changed to 20 parts by weight at the time of preparation of the master batch.
  • Fillers and modules were prepared in the same manner as in Example 1 except that the weight ratio of dodecyl amine (C 12 H 25 NH 2 ) was changed to 40 parts by weight at the time of preparation of the master batch.
  • Fillers and modules were prepared in the same manner as in Example 1 except that the weight ratio of dodecyl amine (C 12 H 25 NH 2 ) was changed to 60 parts by weight at the time of preparation of the master batch.
  • Fillers and modules were prepared in the same manner as in Example 1 except that the weight ratio of dodecyl amine (C 12 H 25 NH 2 ) was changed to 80 parts by weight at the time of preparation of the master batch.
  • DBTDL dibutyl dilaurate
  • C 12 H 25 NH 2 dodecyl amine
  • Fillers and photovoltaic modules were prepared in the same manner as in Example 1 except that dodecyl amine (C 12 H 25 NH 2 ) was not used in the preparation of the master batch.
  • Example 1 Filler of photovoltaic module prepared in Example 1 (sample 1), photovoltaic cell prepared in the same manner as in Example 2 except that the proportion of butyl amine (C 4 H 9 NH 2 ) in the master batch was changed to 10 parts by weight.
  • the remaining amount of the basic hydrolysis catalyst was measured for Sample 4), and the results are shown in Table 2 below with the peel force and the gel fraction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 올레핀 조성물, 충진재 또는 광전자 장치에 관한 것이다. 본 발명의 예시적인 올레핀 조성물은, 다양한 광전자 장치의 충진 소재로 효과적으로 사용될 수 있다.

Description

올레핀 조성물
본 발명은, 올레핀 조성물, 충진재 및 광전지 모듈에 대한 것이다.
충진재는, 광전지(Photovoltaic cell), LED(Light Emitting Diode) 또는 OLED(Organic Light Emitting Diode) 등과 같은 광전자 장치(Optoelectronic device)의 광 방출 부위나 광 감지 부위 등을 캡슐화(Encapsulation)할 때 사용될 수 있다.
충진재의 소재로는, 광전지 모듈에 주로 사용되는 EVA(ethylene-vinyl acetate) 중합체가 대표적으로 예시될 수 있다. 그러나, EVA 중합체는, 접착 강도가 떨어지고, EVA 중합체를 충진재로 포함하는 장치는 내구성 등이 충분하지 못하다. 또한, EVA 중합체는, 가열 압착 공정 등에서 열분해되어, 초산 가스 등의 유독 가스를 발생시킨다. 이러한 유독 가스는, 작업 환경을 악화시키고, 장치의 성능 저하 등을 유발할 수 있다.
본 발명은, 올레핀 조성물, 충진재 및 광전지 모듈을 제공하는 것을 목적으로 한다.
본 발명의 예시적인 올레핀 조성물은 가수분해성기를 포함하거나, 또는 상기 가수분해성기의 가수분해물을 포함하는 올레핀 중합체와 염기성 가수분해 촉매를 포함할 수 있다.
하나의 예시에서, 상기 올레핀 조성물은, 충진재용 조성물 또는 광전자 소자의 충진재용 조성물일 수 있다. 상기에서 광전자 소자의 충진재용 조성물은, 예를 들면, 광전지, LED 또는 OLED 등의 광전자 소자를 캡슐화하는 충진 소재로 사용되는 조성물을 의미할 수 있다. 또 다른 예시에서 상기 올레핀 조성물은, 라미네이션(lamination) 공정 소재 또는 승온 라미네이션 공정 소재용 조성물일 수 있다.
상기 조성물에 포함되는 올레핀 중합체는, 가수분해성기 또는 상기 가수분해성기의 가수분해물을 포함한다. 본 명세서에서 용어 「올레핀 중합체」는, 적어도 하나의 올레핀 단량체를 중합 단위로 포함하는 중합체를 의미할 수 있다. 또한, 상기에서 중합체의 범위에는, 동일한 종류의 단량체로 제조되는 균일한 중합체인 단일 중합체(homopolymer); 및 2종 이상의 다른 단량체의 반응에 의해 제조되거나, 또는 동일한 종류의 단량체로 형성되더라도 화학적으로 상이한 세그먼트 또는 블록을 가지는 공중합체(copolymer)가 모두 포함될 수 있다. 또한, 본 명세서에서 「중합 단위」로 포함된다는 것은 단량체가 중합 반응에 의해 중합체의 주쇄 또는 측쇄를 형성하고 있는 상태를 의미할 수 있다.
상기에서 가수분해성기의 가수분해물은, 조성물에 포함되어 있는 염기성 가수분해 촉매의 작용에 의해 가수분해된 것일 수 있다. 본 명세서에서 가수분해성기의 가수분해물은 또한 반응성 관능기로 호칭될 수 있다. 가수분해성기와 반응성 관능기는, 예를 들어, 상기 조성물이 충진재에 사용되는 경우에 상기 충진재가 우수한 접착성을 나타내도록 할 수 있다. 예를 들어, 충진재가 유리 기판과 접촉하면, 상기 가수분해성기 또는 반응성 관능기는 상기 유리 기판의 표면의 관능기와 수소 결합과 같은 물리적 결합을 형성하거나, 축합 반응 등을 통하여 화학적 공유 결합을 형성하여 충진재와의 접착성을 향상시킬 수 있다. 본 명세서에서 가수분해성기를 포함하거나, 또는 그 가수분해물을 포함하는 상기 올레핀 중합체는 「변성 올레핀 중합체」로 호칭될 수 있다.
가수분해성기의 종류는, 특별히 제한되지 않는다. 가수분해성기로는, 예를 들면, 가수분해성 실릴기가 예시될 수 있다. 본 명세서에서 가수분해성기가 가수분해성 실릴기인 올레핀 중합체는, 실란 변성 올레핀 중합체로 호칭될 수 있다. 용어 「가수분해성 실릴기」는, 하나 이상의 가수분해성 잔기를 가지는 실릴기를 의미할 수 있다.
가수분해성 실릴기로는, 예를 들면, 하기 화학식 1로 표시되는 관능기가 예시될 수 있다.
[화학식 1]
Figure PCTKR2011008189-appb-I000001
상기 화학식 1에서 X는, 규소 원자에 결합되어 있는 가수분해성 잔기를 나타내고, Y는 규소 원자에 결합되어 있는 비가수분해성 잔기를 나타내며, m은 1 내지 3의 수를 나타낸다.
상기 화학식 1에서 " Si" 의 좌측의 부호 "-" 상기 "Si" 표시되는 규소가 올레핀 중합체에 직접 또는 적절한 링커(linker)를 매개로 결합되어 있음을 의미한다.
가수분해성 잔기(X)로는, 예를 들면, 할로겐 원자, 알콕시기, 아릴옥시기, 아실옥시기, 알킬티오기 또는 알킬렌옥시티오기 등이 예시될 수 있다.
상기 화학식 1에서 할로겐 원자로는, 플루오르(F), 염소(Cl), 브롬(Br) 또는 요오드(I) 등이 예시될 수 있고, 바람직하게는 염소(Cl)가 예시될 수 있다.
또한, 상기 화학식 1에서 알콕시기로는, 탄소수 1 내지 20, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알콕시기가 예시될 수 있다. 상기 알콕시기는 직쇄, 분지쇄 또는 고리형일 수 있고, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
또한, 상기 화학식 1에서 아릴옥시기에 포함되는 아릴기는, 아릴기는 물론 소위 아르알킬기(aralkyl group) 또는 아릴알킬기 등이 포함하는 개념이고, 예를 들면, 하나 이상의 벤젠 고리를 포함하거나, 2개 이상의 벤젠 고리가 연결 또는 축합된 구조를 포함하는 화합물 또는 그 유도체로부터 유래하는 1가 잔기를 의미할 수 있다. 상기 아릴기는, 예를 들면, 탄소수 6 내지 25, 탄소수 6 내지 21, 탄소수 6 내지 18 또는 탄소수 6 내지 12의 아릴기일 수 있다. 상기 아릴기로는, 예를 들면, 페닐기, 디클로로페닐, 클로로페닐, 페닐에틸기, 페닐프로필기, 벤질기, 톨릴기, 크실릴기(xylyl group) 또는 나프틸기 등이 예시될 수 있고, 바람직하게는 페닐기가 예시될 수 있다. 상기 아릴기도 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
또한, 상기 화학식 1에서 아실옥시기로는, 탄소수 1 내지 20, 탄소수 1 내지 16 또는 탄소수 1 내지 12의 아실옥시기가 예시될 수 있고, 이는 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
또한, 상기 화학식 1에서 알킬티오기로는, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 또는 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬티오기가 예시될 수 있고, 알킬렌옥시티오기로는, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 또는 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌옥시티오기가 예시될 수 있으며, 상기 알킬티오기 또는 알킬렌옥시티오기도 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 명세서에서 소정 관능기에 임의적으로 치환되어 있을 수 있는 치환기로는, 히드록시기, 에폭시기, 알킬기, 알케닐기, 알키닐기, 알콕시기, 아실기, 티올기, 아크릴로일기, 메타크릴로일기, 아릴기 또는 이소시아네이트기 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
상기 화학식 1에서의 X는 바람직하게는 알콕시일 수 있다. 하나의 예시에서 상기 알콕시기는, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알콕시기일 수 있다. 상기 알콕시기는 직쇄, 분지쇄 또는 고리형 알콕시기일 수 있고, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다. 알콕시기로는, 메톡시기, 에톡시기, 프로폭시기, 이소프로폭시기 또는 부톡시기 등이 예시될 수 있고, 바람직하게는 메톡시기 또는 에톡시기 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 화학식 1의 비가수분해성 잔기로는, 수소, 알킬기 또는 아릴기 등이 예시될 수 있다.
상기에서 알킬기는, 예를 들면, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 직쇄상, 분지쇄상 또는 고리상의 알킬기일 수 있다. 상기 알킬기는 임의적으로 치환되어 있을 수 있다.
상기 Y에서 아릴기로는, X의 아릴옥시기에서 기술한 아릴기가 예시될 수 있다.
또한, 상기 화학식 1에서 m은, 1 내지 3의 수이고, 다른 예시에서는, 2 또는 3이거나, 또는 3일 수 있다.
가수분해성 실릴기를 가지는 올레핀 중합체는, 예를 들어, 알파-올레핀(alpha-olefin) 및 불포화 실란 화합물을 공중합시켜 제조하거나, 혹은 올레핀 중합체에 불포화 실란 화합물을 그래프팅시켜 제조할 수 있다.
하나의 예시에서 상기 올레핀 중합체는, 알파-올레핀 및 하기 화학식 2의 불포화 실란 화합물이 공중합된 형태로 포함되는 공중합체; 또는 올레핀 중합체에 하기 화학식 2의 불포화 실란 화합물이 그래프팅되어 있는 그래프트 중합체일 수 있다.
[화학식 2]
Figure PCTKR2011008189-appb-I000002
상기 화학식 2에서 D는 규소원자에 결합된 알케닐기이고, X, Y 및 m은 상기 화학식 1에서 정의한 바와 같다.
상기 화학식 2에서 알케닐기로는, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 직쇄, 분지쇄 또는 고리형의 알케닐기가 예시될 수 있다. 상기 알케닐기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다. 알케닐기로는, 예를 들면, 비닐기, 알릴기, 프로페닐기, 이소프로페닐기, 부테닐기, 헥세닐기, 시클로헥세닐기 또는 옥테닐기 등이 사용될 수 있고, 통상적으로는 비닐기가 사용될 수 있다.
화학식 2의 불포화 실란 화합물로는, 구체적으로는 비닐트리메톡시 실란, 비닐트리에톡시 실란, 비닐트리프로폭시 실란, 비닐트리이소프로폭시 실란, 비닐트리부톡시 실란, 비닐트리펜톡시 실란, 비닐트리페녹시 실란, 또는 비닐트리아세톡시 실란 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
상기에서 올레핀 중합체에 포함되는 알파-올레핀으로는, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 직쇄, 분지쇄 또는 고리형의 치환 또는 비치환된 알파-올레핀이 예시될 수 있다. 알파-올레핀으로는, 구체적으로는, 에틸렌, 프로필렌, 1-부텐, 이소부틸렌, 1-펜텐, 2-메틸-1-부텐, 3-메틸-1-부텐, 1-헥센, 1-헵탄, 1-옥텐, 1-노넨 또는 1-데센 등이 예시될 수 있고, 통상적으로는 에틸렌이 사용될 수 있으나, 이에 제한되는 것은 아니다.
상기 올레핀 중합체는 상기 불포화 실란 화합물을, 공중합체의 경우, 알파-올레핀 100 중량부에 대하여, 그래프트 중합체의 경우, 올레핀 중합체 100 중량부에 대하여, 0.1 중량부 내지 10.0 중량부 또는 0.5 중량부 내지 5.0 중량부로 포함할 수 있다. 본 명세서에서는, 특별히 달리 규정하지 않는 한, 단위 중량부는 각 성분간의 중량의 비율을 의미한다.
실란 변성 올레핀 중합체로는, 올레핀 중합체에 상기 화학식 2의 불포화 실란 화합물을 그래프팅시킨 그래프트 중합체가 바람직하게 사용될 수 있으나, 이에 제한되는 것은 아니다.
하나의 예시에서 불포화 실란 화합물이 그래프팅되는 올레핀 중합체는, 폴리에틸렌일 수 있다. 상기 용어 「폴리에틸렌」에는, 에틸렌의 단독 중합체는 물론 적어도 50 mol% 이상의 에틸렌을 중합 단위로 포함하면서, 다른 알파-올레핀이나 그 외의 다른 공단량체를 중합 단위로 함께 포함하고 있는 공중합체도 포함될 수 있다.
폴리에틸렌은, 예를 들면, 저밀도 폴리에틸렌, 중밀도 폴리에틸렌, 고밀도 폴리에틸렌, 초저밀도 폴리에틸렌, 극초저밀도 폴리에틸렌 또는 직쇄상 저밀도 폴리에틸렌의 일종 또는 이종 이상일 수 있다.
불포화 실란 화합물이 그래프팅되는 폴리에틸렌으로 측쇄가 많은 폴리에틸렌을 사용할 수 있다. 측쇄가 많은 폴리에틸렌에는, 그래프팅이 보다 효율적으로 이루어질 수 있다. 측쇄가 많은 폴리에틸렌은, 일반적으로 밀도가 낮고, 측쇄가 적은 폴리에틸렌은, 일반적으로 밀도가 높다. 따라서, 저밀도의 폴리에틸렌이 바람직하게 사용될 수 있다.
하나의 예시에서 상기 폴리에틸렌은, 밀도가 약 0.85 g/cm3 내지 약 0.96 g/cm3 또는 약 0.85 g/cm3 내지 약 0.92 g/cm3일 수 있다.
또한, 상기 폴리에틸렌은, MFR(Melt Flow Rate)이 190℃에서 약 0.1 g/10분 내지 약 50 g/10분, 약 1.0 g/10분 내지 약 50.0 g/10분 또는 약 1.0 g/10분 내지 약 30.0 g/10분일 수 있다.
상기 물성을 가지는 폴리에틸렌에는, 불포화 실란 화합물이 보다 효율적으로 그래프팅될 수 있다. 또한, 상기 물성을 가지는 폴리에틸렌을 포함하면, 조성물이 우수한 성형성 및 접착성 등을 나타낼 수 있다.
상기 조성물은, 염기성 가수분해 촉매를 포함한다. 염기성 가수분해 촉매는, 상기 조성물을 사용하여 충진재를 형성하거나, 상기 조성물 또는 충진재로 소자를 캡슐화하는 과정에서 올레핀 중합체의 가수분해성기를 가수분해시켜서, 반응성 관능기로 전환시킬 수 있다.
염기성의 가수분해 촉매는, 상기 가수분해의 정도를 적절하게 유지시켜, 조성물 또는 충진재의 물성을 목적에 따라 효율적으로 조절할 수 있다. 또한, 염기성 가수분해 촉매는, 조성물에 포함되는 다른 성분에도 악영향을 미치지 않고, 따라서 전체적인 물성을 의도한 대로 안정적으로 유지할 수 있다.
염기성 가수분해 촉매로는, 예를 들면, 유기 아민 화합물, 고리 구성 원자로 질소를 포함하는 헤테로고리 화합물, 금속 수산화물(metal hydroxide) 또는 금속 아마이드(metal amide) 등의 일종 또는 이종 이상이 예시될 수 있다. 상기에서 유기 아민 화합물로는, 알킬아민 또는 디알킬아민 등이 예시될 수 있다. 상기에서 유기 아민 화합물에 포함되는 알킬기는, 예를 들면, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기가 예시될 수 있다. 상기 알킬기는, 직쇄상, 분지쇄상 또는 고리상일 수 있고, 임의적으로 하나 이상의 치환기에 의해 치환되어 있거나, 비치환된 상태일 수 있다.
유기 아민 화합물로는, 구체적으로는 에틸아민, 헥실아민, n-프로필아민, 부틸아민, 도데실 아민 또는 디부틸아민 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
상기에서 헤테로고리 화합물은, 고리를 구성하는 헤테로 원자로서 하나 이상의 질소를 포함하는 탄화수소 고리 화합물을 의미할 수 있다. 헤테로고리 화합물로는, 하나 또는 두 개의 질소 원자를 헤테로 원자로서 포함하고, 또한 3개 내지 8개의 고리 구성 원자를 가지는 탄화수소 고리 화합물이 예시될 수 있고, 구체적인 예로는 피리딘을 들 수 있다.
또한, 금속 수산화물로는, NaOH, KOH, RbOH 또는 CsOH 등이 예시될 수 있고, 금속 아마이드로는, NaNH2, KNH2, RbNH2 또는 CsNH2 등이 예시될 수 있다.
상기 촉매 중에서 유기 아민 화합물, 바람직하게는 알킬 아민 또는 디알킬 아민, 보다 바람직하게는 탄소수 1 내지 16의 알킬기를 가지는 알킬 아민 또는 탄소수 2 내지 32의 알킬기를 가지는 디알킬 아민 등이 바람직하게 사용될 수 있으나, 이에 제한되는 것은 아니다.
상기 조성물은, 염기성 가수분해 촉매를 상기 변성 올레핀 중합체 100 중량부에 대하여 0.01 중량부 내지 5 중량부, 0.01 중량부 내지 2 중량부, 0.05 중량부 내지 1.5 중량부 또는 0.05 중량부 내지 1.0 중량부로 포함할 수 있다. 이러한 중량 비율에서 조성물의 물성을 효과적으로 조절할 수 있다.
상기 조성물은, 필요에 따라서 광안정제, 자외선 흡수제 및 열안정제 등으로부터 선택되는 일종 또는 이종 이상을 추가로 포함할 수 있다.
광안정제는, 올레핀 중합체의 광열화 개시의 활성종을 포착하여, 광산화를 방지하는 역할을 할 수 있다. 광안정제로는, 예를 들면, 힌더드 아민 화합물 또는 힌더드 피페리딘 화합물 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
또한, 자외선 흡수제는, 조성물에 입사되는 자외선을 흡수하고, 분자 내에서 무해한 열 에너지로 변환시켜, 올레핀 중합체 중의 광열화 개시의 활성종이 여기되는 것을 방지할 수 있다. 자외선 흡수제로는, 벤조페논계, 벤조트리아졸계, 아크릴니트릴계, 금속 착염계, 힌더드 아민계, 초미립자 산화 티탄 또는 초미립자 산화 아연 등의 유기계 또는 무기계 자외선 흡수제가 예시될 수 있으나, 이에 제한되는 것은 아니다.
또한, 열안정제로는, 트리스(2,4-디-tert-부틸페닐)포스파이트, 비스[2,4-비스(1,1-디메틸에틸)-6-메틸페닐]에틸에스테르 아인산, 테트라키스(2,4-디-tert-부틸페닐)[1,1-비페닐]-4,4'-디일비스포스포네이트 및 비스(2,4-디-tert-부틸페닐)펜타에리쓰리톨디포스파이트 등의 인계 열안정제; 8-히드록시-5,7-디-tert-부틸-푸란-2-온과 o-크실렌과의 반응 생성물과 같은 락톤계 열안정제 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
상기 광안정제, UV 흡수제 및/또는 열안정제의 함량은 특별히 한정되지 않는다. 상기 첨가제의 함량은, 조성물의 용도, 첨가제의 형상이나 밀도 등을 고려하여 적절히 선택할 수 있고, 통상적으로 조성물의 전체 고형분 100 중량부에 대하여 0.01 중량부 내지 5 중량부의 범위 내에서 적절히 조절될 수 있다.
상기 조성물은, 상기 성분 외에도, 용도에 따라, 해당 분야에서 공지되어 있는 다양한 첨가제를 적절히 추가로 포함할 수 있다.
본 발명은 또한 충진재에 관한 것이다. 예시적인 충진재는, 가수분해성기 또는 상기 가수분해성기의 가수분해물, 즉 반응성 관능기를 포함하는 올레핀 중합체를 포함할 수 있다. 상기 충진재는, 예를 들면, 다양한 광전자 소자를 캡슐화하는 용도에 사용될 수 있다.
상기 충진재는, 예를 들면, 시트 또는 필름 형상일 수 있다. 상기 충진재의 두께는, 소자의 지지 효율 및 파손 가능성, 장치의 경량화나 작업성 등을 고려하여, 약 10 ㎛ 내지 2,000 ㎛ 내, 바람직하게는 약 100 ㎛ 내지 1250 ㎛ 으로 조절할 수 있다. 그러나, 충진재의 막두께는, 적용되는 구체적인 용도에 따라서 변경될 수 있다.
하나의 예시에서 상기 충진재는, 상기 충진재를 90℃ 의 물에 18 시간 동안 체류시킨 후에 ASTM D 2765의 규정에 따라 측정한 겔 분율이 5% 내지 60%일 수 있다.
다른 예시에서 상기 충진재는, 상기 겔 분율이 5% 내지 55%, 10% 내지 50% 또는 20% 내지 50%일 수 있다. 충진재의 겔 분율이 상기 범위 내이면, 충진재는 적절한 가교 구조를 가질 수 있다. 겔 분율은, 예를 들면, 올레핀 중합체로의 가수분해성기의 도입 정도 및/또는 상기 가수분해성기의 가수 분해의 정도를 조절하여 제어할 수 있다.
다른 예시에서 상기 충진재는, 진공 라미네이터기 등과 같은 라미네이터기를 사용하여, 상기 충진재를 150℃에서 유리 기판에 10분 동안 압착시킨 후에 측정한 90도 박리력이 70 N/15mm 이상일 수 있다.
상기 박리력은, 100 N/15mm 이상, 120 N/15mm 이상 또는 160 N/15mm 이상일 수 있다. 상기 박리력은, 라미네이터기를 사용하여, 상기 충진재를 유리 기판에 압착하여 접착시킨 후에 측정한 90도 박리력이며, 구체적으로는, 후술하는 실시예에서의 방식에 따라 측정한 박리력이다. 상기 박리력의 상한은 특별히 제한되지 않으며, 예를 들면, 300 N/15mm 이하에서 조절할 수 있다.
상기 박리력은, 예를 들면, 올레핀 중합체에 도입되는 가수분해성기의 비율이나 그 가수분해성기의 가수 분해의 정도를 조절하여 제어할 수 있다.
다른 예시에서 상기 충진재는, FT-IR(Fourier Transform Infrared Spectrometry)로 측정한 가수분해성기의 지수가 0.01 내지 1.5이고, 상기 가수분해성기의 가수분해물의 지수가 0.01 내지 1.5일 수 있다.
상기에서 가수분해성기의 지수와 가수분해물의 지수는, 충진재의 제조 시에 사용된 가수분해성기를 가지는 올레핀 중합체의 상기 가수분해성기가 충진재 제조 과정에서 가수분해되어 가수분해물, 즉 반응성 관능기로 전환되는 정도를 나타낼 수 있는 지표이다. 예를 들면, 가수분해성기의 지수가 상대적으로 높고, 가수분해물의 지수가 상대적으로 낮은 경우에는 충진재의 제조 과정에서 가수분해성기의 가수 분해가 상대적으로 적게 진행된 것을 의미할 수 있고, 반대의 경우는, 가수 분해가 상대적으로 많이 진행된 것을 의미할 수 있다. 가수분해성기의 지수 및 가수분해물의 지수를 상기 범위 내로 조절하면, 접착성을 포함하는 충진재의 물성을 적합하게 유지할 수 있다.
상기에서 가수분해성기의 지수 및 상기 가수분해성기의 가수분해물, 즉 반응성 관능기의 지수는, 하기 일반식 1 및 2에 따라 계산될 수 있다.
[일반식 1]
H = A/B
[일반식 2]
R = C/B
상기 일반식 1 및 2에서 H는 가수분해성기의 지수이고, A는, FT-IR 분석에 의해 측정되는 상기 충진재의 가수분해성기로부터 유래되는 피크의 강도(intensity)이며, B는, 상기 FT-IR 분석 시에 720 cm-1에서 관찰되는 피크의 강도(intensity)이고, R은 반응성 관능기의 지수이며, C는 FT-IR 측정 시에 상기 충진재의 반응성 관능기로부터 유래되는 피크의 강도(intensity)이다.
상기에서 FT-IR 분석은, 후술하는 실시예에서 기재된 방식으로 수행된다. 또한, 수치 A는, 올레핀 중합체에 도입되어 있는 가수분해성기의 종류에 따라서, FT-IR 분석 시에 관찰되는 상기 가수분해성기에 대응되는 피크의 강도이며, 상기 피크의 구체적인 위치는 가수분해성기의 구체적인 종류에 따라서 결정될 수 있다. 또한, 수치 C는, 올레핀 중합체에 도입되어 있는 가수분해성기가 가수분해되어 생성되는 반응성 관능기의 종류에 따라서, FT-IR 분석 시에 관찰되는 상기 반응성 관능기의 피크의 강도이며, 상기 피크의 구체적인 위치는 반응성 관능기의 구체적인 종류에 따라서 결정될 수 있다. 또한, FT-IR 분석 시에 720 cm-1에서 관찰되는 피크는, 중합체의 모든 -CH2-의 락킹(rocking) 운동에 기인하여 유도되는 피크이고, 상기 일반식 1 및 2에서 상기 피크의 강도(C)는 기준 수치(reference value)로 사용된다.
상기 충진재에서 가수분해성기의 지수(일반식 1의 H)는, 0.05 내지 0.5, 0.05 내지 0.3 또는 0.1 내지 0.2일 수 있다. 또한, 반응성 관능기의 지수(일반식 2의 R)는 0.03 내지 0.5 또는 0.03 내지 0.1일 수 있다.
하나의 예시에서 상기 충진재는, 상기 올레핀 조성물을 사용하여 제조된 것일 수 있다. 따라서, 상기 충진재는, 염기성 가수분해 촉매를 추가로 포함할 수 있다. 이와 같이 가수분해성기를 가지는 올레핀 중합체를 염기성의 가수분해 촉매와 함께 포함하는 조성물을 사용하면, 유기금속 촉매 등 다른 종류의 촉매를 사용한 경우에 비하여, 이미 기술한 겔 분율, 박리력 또는 가수분해성기 또는 반응성 관능기의 지수를 보다 효율적으로 구현할 수 있다.
상기 충진재에서, 상기 올레핀 조성물은, 이미 기술한 성분들이 그대로 균일하게 혼합되어 있는 상태로 포함되어 있거나, 적어도 일부의 성분들이 물리적 또는 화학적으로 반응하고 있는 상태로 포함되어 있을 수 있다. 하나의 예시에서는, 상기 조성물을 가열 용융 압출 또는 T 다이 성형 등과 같은 성형 방식에 의하여 필름 또는 시트 형상으로 성형함으로써 상기 충진재를 제조할 수 있다.
하나의 예시에서 상기 충진재가 상기 올레핀 조성물을 사용하여 제조되는 경우, 제조된 충진재 내에서 염기성 가수분해 촉매의 잔존량이, 1 ppm 내지 50,000 ppm, 3 ppm 내지 10,000 ppm, 10 ppm 내지 10,000 ppm, 50 ppm 내지 7,000 ppm 또는 300 ppm 내지 6,000 ppm이 되도록 충진재의 제조 조건을 조절할 수 있다. 상기 촉매의 잔존량은, HPLC(High-performance liquid chromatography)로 측정한 수치이다.
이론적으로 촉매는, 가수분해성기의 가수분해 반응의 속도를 조절하고, 반응의 종료 후에도 원래의 상태를 유지하는 것이므로, 원료인 조성물 내에 배합된 촉매의 양은 충진재로 제조된 후에도 동일하게 유지될 것이다. 그렇지만, 실제로 조성물을 사용하여 충진재의 제조하는 과정에서는 배합된 촉매가 소실되거나, 혹은 가수분해 반응에 기여하는 과정에서 그 화학 구조나 속성이 변화되는 경우도 존재한다. 따라서 최초 배합된 촉매의 양은 충진재로 제조된 후의 잔존 촉매의 양과 반드시 일치하는 것은 아니다. 따라서 단순히 조성물에 배합되는 촉매의 양만을 감안하여서는 목적 물성을 가지는 충진재를 설계하는 것이 곤란하다.
그렇지만, 염기성 가수분해 촉매의 충진재 내에서 잔존량을 상기 범위로 제어할 경우에 충진재에 적합한 가교 구조를 부여하고, 이에 따라 목적하는 물성의 효율적으로 확보할 수 있다.
본 발명은 또한 상기와 같은 충진재를 제조하는 방법에 관한 것이다. 예시적인 상기 방법은, 가수분해성기를 포함하는 올레핀 중합체를 포함하는 조성물을 필름 또는 시트 형상으로 성형하는 것을 포함할 수 있다. 예시적인 충진재의 제조 방법은, 이미 기술한 염기성 가수분해 촉매를 포함하는 올레핀 조성물을 필름 또는 시트 형상으로 성형하는 것을 포함할 수 있다.
상기 방법은, 예를 들면, 올레핀 조성물을 제조하고, 제조된 올레핀 조성물을 필름 또는 시트 형상으로 성형하는 것을 포함할 수 있다.
올레핀 조성물은, 예를 들면, 알파-올레핀 및 불포화 실란 화합물을 혼합하고, 이어서 라디칼 중합 개시제의 존재 하에서 상기 혼합물에 포함된 성분을 동시에 또는 단계적으로 공중합시켜서 올레핀 중합체를 제조하고, 상기 중합체를 가수분해 촉매, 예를 들면, 염기성의 가수분해 촉매와 배합하여 제조할 수 있다. 상기에서 알파-올레핀과 불포화 실란 화합물을 혼합하는 과정에서는, 필요에 따라서 다른 공단량체가 함께 혼합될 수 있다. 또한, 상기 공중합 단계에서는 필요에 따라서 적절한 사슬 이동제가 함께 사용될 수 있다. 또한, 상기 촉매의 배합 전 또는 후, 또는 상기 배합과 동시에 광안정제, 자외선 흡수제 또는 열안정제 등의 다른 첨가제도 함께 배합될 수 있다. 하나의 예시에서 상기 올레핀 중합체의 중합 및 촉매 등의 첨가제의 배합은 동일한 하나의 반응기 내에서 수행될 수 있다.
올레핀 조성물은, 또한 올레핀 중합체 및 불포화 실란 화합물을 혼합하고, 라디칼 발생제의 존재 하에서 상기 불포화 실란 화합물을 올레핀 중합체에 그래프팅시켜서, 변성 올레핀 중합체를 제조한 후, 염기성 가수분해 촉매 등의 첨가제와 혼합하여 제조할 수도 있다.
하나의 예시에서 상기 올레핀 조성물은 올레핀 중합체에 상기 화학식 2의 실란 화합물을 그래프팅시키고, 실란 화합물이 그래프트된 중합체와 염기성 가수분해 촉매를 혼합하여 제조할 수 있다. 상기에서 실란 화합물의 그래프팅은 라디칼 발생제의 존재 하에 수행될 수 있다. 또한 상기 그래프팅과 촉매의 혼합은 동일 반응기 내에서 진행될 수 있다.
상기 반응기의 종류는, 특별히 제한되지 않는다. 상기 반응기로는, 예를 들면, 호퍼를 구비한 실린더 또는 압출기 등이 사용될 수 있다. 이러한 반응기를 사용하면, 예를 들면, 압출기를 통해 가열 용융된 올레핀 중합체에 액상의 실란 화합물 및 라디칼 발생제를 투입하여 압출 가공하거나, 혹은 호퍼에서 올레핀 중합체, 라디칼 발생제 및 실란 화합물을 혼합하여 투입한 후에 실린더 내에서 가열 용융하여 반응시켜 올레핀 중합체를 제조할 수 있다.
상기 방법에서는, 올레핀 중합체가 제조되는 반응기 내로 상기 중합체의 형성 전 또는 후, 또는 형성과 동시에 가수분해 촉매를 투입할 수 있다. 또한, 가수분해 촉매는 물론 자외선 흡수제, 열안정제 또는 광안정제 등의 다른 첨가제도 함께 투입될 수 있다.
이러한 중합체의 제조 및 첨가제의 혼합을 하나의 단일 반응기 내에서 진행하면, 공정을 단순화할 수 있다.
가수분해 촉매 및/또는 다른 첨가제는, 반응기 내로 그대로 투입되거나, 혹은 마스터 배치(master batch)의 형태로 투입되어 혼합될 수 있다. 마스터 배치는 첨가제를 고농도로 농축하여 분산시켜 놓은 펠릿(pellet) 형상의 원료이다.
올레핀 중합체가 형성되는 반응기 내에 첨가제를 투입하는 방법은 특별히 제한되지 않으며, 예를 들면, 압출기 또는 실린더의 적절한 위치에 측면 공급기(side feeder)를 설치하고, 상기 공급기를 통하여 마스터 배치 형태의 첨가제를 투입하는 방법이나, 호퍼에서 올레핀 중합체 등과 혼합하여 투입하는 방법을 사용할 수 있다.
상기의 방법에서, 반응기의 구체적인 종류 및 설계, 가열 용융, 혼합 또는 반응의 온도 및 시간 등의 조건이나 라디칼 발생제의 종류 및 마스터 배치의 제조 방법은 특별히 제한되지 않고, 사용되는 원료 등을 고려하여 적절하게 선택될 수 있다.
또한, 상기 조성물을 시트 또는 필름 형상으로 성형하는 방법도 특별히 제한되지 않고, 예를 들면, T 다이 공정 또는 압출 등과 같은 통상적인 필름화 또는 시트화 공정을 사용할 수 있다. 상기 방법에서는, 전술한 조성물의 제조 공정 및 필름화 또는 시트화 공정이 서로 연결되어 있는 장치를 사용하여 in situ 공정으로 진행되는 것이 바람직하다.
본 발명은 또한, 광전자 장치에 관한 것이다. 예시적인 광전자 장치는, 상기 조성물로 캡슐화되어 있는 광전자 소자를 포함할 수 있다.
캡슐화되는 상기 광전자 소자는, 예를 들면, 광전지, LED 또는 OLED 등의 광 방출 또는 광 감지 부위일 수 있다.
상기 소자를 캡슐화하고 있는 조성물 내에서의 올레핀 중합체는, 가수분해성기 또는 반응성 관능기에 의해 적절한 가교 구조를 형성하고, 이에 따라 광전자 장치 내에서 다른 부품과의 접착성 등을 우수하게 유지할 수 있다.
하나의 예시에서 상기 소자를 캡슐화하고 있는 조성물 내에서 가수분해 촉매의 잔존량은 1 ppm 내지 50,000 ppm이고, 이러한 범위에서 적절한 가교 구조가 구현될 수 있다. 상기 기술한 바와 같이, 이론적으로는, 최초 조성물 내에 배합된 촉매의 양은 충진재의 제조 과정 또는 캡슐화 후에도 동일하게 유지될 것이지만, 실제 공정에서는, 최초 배합된 촉매의 양과 충진재 제조 후 또는 캡슐화된 후의 잔존 촉매의 양과 반드시 일치하는 것은 아니다. 따라서 단순히 조성물에 배합되는 촉매의 양만을 감안하여서는 목적 물성을 가지는 광전자 장치를 설계하는 것이 곤란하지만, 캡슐화 후의 잔존량을 제어하여, 충진재 내에 적합한 가교 구조를 부여할 수 있다.
다른 예시에서 상기 잔존량은, 3 ppm 내지 10,000 ppm, 10 ppm 내지 10,000 ppm, 50 ppm 내지 7,000 ppm 또는 300 ppm 내지 6,000 ppm일 수 있다. 상기 촉매의 잔존량은, 후술하는 바와 같이, 캡슐화 후에 HPLC(High-performance liquid chromatography)로 측정한 수치이다.
상기 광전자 장치의 구체적인 구조 또는 상기 조성물을 사용하여 광전자 소자를 캡슐화하는 방법은 특별히 제한되지 않고, 해당 장치에 따라서 그 분야에서 통상적으로 적용되는 방식 및 구조를 적용하면 된다.
예를 들어, 상기 광전자 장치가 광전지일 경우, 상기 광전자 장치는, 도 1 또는 2에 나타난 바와 같이, 수광 기판(11, 21), 이면 시트(12, 22) 및 상기 수광 기판(11, 21)과 이면 시트(12, 22)의 사이에서 충진재(14, 24)로 캡슐화되어 있는 광기전력 소자(13, 23)를 포함하는 광전지 모듈일 수 있다. 상기에서 충진재(14, 24)는 상기 기술한 올레핀 조성물이 포함될 수 있다. 도 1은, 광기전력 소자(13)로서, 실리콘 웨이퍼 계열의 활성층을 사용한 경우의 장치(1)의 통상적인 구조이며, 도 2는, 광기전력 소자(23)로서, 증착 방식으로 형성된 박막 활성층을 사용한 경우의 장치(2)의 통상적인 구조이다.
상기 모듈은, 예를 들면, 목적 구조에 따라서, 수광 기판(11, 21), 충진재(14, 24), 광기전력 소자(13, 23) 및 이면 시트(12, 22) 등을 적층하고, 이어서 이를 일체로서 진공 흡인하면서 가열 압착하는 라미네이션법 등의 통상의 성형법으로 제조할 수 있다. 상기 라미네이션법의 공정 조건은 특별히 제한되지 않으며, 통상적으로 90℃ 내지 230 ℃ 또는 110 ℃내지 190℃ 의 온도에서 5분 내지 60분 또는 8분 내지 40분 동안 수행할 수 있다.
상기에서 수광 기판(11, 21), 이면 시트(12, 22) 및 광기전력 소자(13, 23) 등의 구체적인 종류는 특별히 제한되지 않는다. 예를 들면, 상기 수광 기판(11, 21)으로는, 판유리; 또는 유리, 불소 중합체 시트, 내후성 필름과 배리어 필름을 적층한 투명 복합 시트 등이 예시될 수 있고, 이면 시트(12, 22)로는 알루미늄 등과 같은 금속, 불소 중합체 시트, 내후성 필름과 배리어 필름 등을 적층한 복합 시트 등이 예시될 수 있다. 또한, 광기전력 소자(13, 23)로는, 예를 들면, 실리콘 웨이퍼 계열의 활성층 또는 증착 방식으로 형성된 박막 활성층 등이 예시될 수 있다.
본 발명에서는, 예를 들면, 충진 소재로 효과적으로 사용될 수 있는 올레핀 조성물을 제공할 수 있다.
도 1 및 2는, 예시적인 광전지 모듈의 모식도이다.
도 3은, 실시예 1에 대하여 측정한 FT-IR의 분석 스펙트럼이다.
이하 본 발명에 따르는 실시예 및 본 발명에 따르지 않는 비교예를 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
본 명세서에서는, 각 물성의 측정에는 다음의 측정 방식이 적용될 수 있다.
1. FT-IR 분석
실시예 및 비교예에서 제조된 충진재에 대하여 FT-IR 분석 기기(FTS 3000, BIO-RAD(제))를 사용하여 FT-IR 분석을 수행한다. 분석된 FT-IR 스펙트럼에는 올레핀 중합체에 도입되어 있는 가수분해성기인 메톡시실릴(Si-OCH3)의 메톡시기의 스트레칭 운동에 기인하는 피크가 1091 cm-1에서 관측되고, 상기 가수분해성기가 가수분해되어 생성된 반응성 관능기(Si-OH)의 히드록시기의 스트레칭 운동에 기인하는 피크가 3645 cm-1에서 관측된다. 이에 따라, 상기 1091 cm-1에서 관측되는 피크의 강도(intensity), 720 cm-1에서 관측되는 피크의 강도 및 3645 cm-1에서 관측되는 피크의 강도를 각각 상기 일반식 1 및 2에 대입한 하기 일반식 3 및 4에 대입하여, 가수분해성기 및 반응성 관능기의 지수를 구한다. 도 3은, 실시예 1에 대하여 측정한 FT-IR의 분석 그래프를 나타낸다.
[일반식 3]
가수분해성기의 지수 = (1091 cm-1에서의 피크 강도)/(720 cm-1에서의 피크 강
도)
[일반식 4]
반응성 관능기의 지수 = (3645 cm-1에서의 피크 강도)/(720 cm-1에서의 피크
강도)
2. 박리력의 측정
충진재를 가로의 길이가 15 mm이고, 세로의 길이가 200 mm인 시편으로 재단한다. 상기 시편을 판유리에 진공 라미네이터(제조사: Meier, 상품명: ICOLAM)를 사용하여 150℃의 조건 하에서 10분 동안 압착하여 접착시킨다. 그 후, 인장 시험기(제조사: Lloyd, 상품명: LEPlus)를 사용하여 상기 접착된 충진재를 50 mm/min의 박리 속도 및 90도의 박리 각도로 박리하면서 박리력을 측정한다. 상기에서 판유리로는, 광전지 모듈의 수광 기판으로 범용되는 판유리가 사용될 수 있다.
3. 겔 분율의 측정
충진재를 가로 및 세로의 길이가 각각 10mm인 시편으로 재단한다. 이어서 시편을 90℃ 의 물에 18 시간 동안 체류시켜서 겔화시킨다. 그 후, ASTM D-2765에 규정된 내용에 따라서 충진재의 겔 분율을 측정한다
4. 촉매의 잔존량 분석
광전지 모듈의 제조 후의 충진재 내의 촉매의 잔존량은 HPLC 기기(모델명: Alliance 2690, Detector: PDL, Waters사(제))를 사용하여 제조사의 매뉴얼에 따라 측정한다.
실시예 1
충진재의 제조
밀도가 0.880 g/cm3이고, MFR이 190℃에서 5 g/10분인 폴리에틸렌 98 중량부, 비닐 트리메톡시 실란 2 중량부 및 디쿠밀 퍼옥시드 0.1 중량부를 압출기 내에서 혼합하고, 200℃ 에서 가열에 의해 용융 및 교반시켜서, 상기 비닐 트리메톡시
실란을 상기 폴리에틸렌에 그래프팅시켰다. 또한, 밀도가 0.870 g/cm3인 직쇄상의 저밀도 폴리에틸렌 100 중량부, 힌더드 아민 광안정제 4 중량부, 벤조 페논계 자외선 흡수제 2 중량부, 인계 열안정제 2 중량부 및 도데실 아민(C12H25NH2) 1 중량부를 혼합하고, 용융, 가공하여 펠릿화한 마스터 배치를 측면 공급기를 사용하여, 상기 비닐 트리메톡시 실란이 그래프트된 폴리에틸렌 100 중량부 대비 10 중량부의 비율로 상기 압출기로 투입하고, 혼합하여 올레핀 조성물을 제조하였다. 이어서 이축 압출기(φ 27mm) 및 T 다이스(폭: 500 mm)를 가지는 필름 성형기의 사이드 호퍼로 상기 조성물을 투입하고, 압출 온도 200℃, 취출 속도 3 m/min에서 가공하여 두께가 약 500μm인 시트상의 충진재를 가공하였다.
광전지 모듈의 제조
두께가 약 3 mm인 판유리, 제조된 충진재, 결정계 실리콘 웨이퍼 광기전력 소자 및 이면 시트(폴리불화비닐 시트(두께: 38μm), 알루미늄 박(두께: 30μm) 및 폴리불화비닐 시트(두께: 38μm)의 적층 시트)를 판유리, 충진재, 광기전력 소자, 충진재 및 이면 시트의 순서로 적층하고, 진공 라미네이터로 150℃ 에서 15분 동안 압착하여 광전지 모듈을 제조하였다.
실시예 2
마스터 배치의 제조 시에 도데실 아민(C12H25NH2) 1 중량부 대신 부틸 아민(C4H9NH2) 1 중량부를 사용한 것을 제외하고는 실시예 1에 준한 방식으로 충진재 및 모듈을 제조하였다.
실시예 3
마스터 배치의 제조 시에 도데실 아민(C12H25NH2)의 중량 비율을 20 중량부로 변경한 것을 제외하고는 실시예 1에 준한 방식으로 충진재 및 모듈을 제조하였다.
실시예 4
마스터 배치의 제조 시에 도데실 아민(C12H25NH2)의 중량 비율을 40 중량부로 변경한 것을 제외하고는 실시예 1에 준한 방식으로 충진재 및 모듈을 제조하였다.
실시예 5
마스터 배치의 제조 시에 도데실 아민(C12H25NH2)의 중량 비율을 60 중량부로 변경한 것을 제외하고는 실시예 1에 준한 방식으로 충진재 및 모듈을 제조하였다.
실시예 6
마스터 배치의 제조 시에 도데실 아민(C12H25NH2)의 중량 비율을 80 중량부로 변경한 것을 제외하고는 실시예 1에 준한 방식으로 충진재 및 모듈을 제조하였다.
비교예 1
마스터 배치의 제조 시에 도데실 아민(C12H25NH2) 1 중량부 대신, DBTDL(dibutyl dilaurate) 1 중량부를 사용한 것을 제외하고는 실시예 1에 준한 방식으로 충진재 및 광전지 모듈을 제조하였다.
비교예 2
마스터 배치의 제조 시에 도데실 아민(C12H25NH2)을 사용하지 않은 것을 제외하고는 실시예 1에 준한 방식으로 충진재 및 광전지 모듈을 제조하였다.
실시예 및 비교예에 대한 분석 결과를 하기 표 1에 정리하여 기재하였다.
표 1
FT-IR 박리력 (N/15mm) 겔 분율(중량%)
반응성 관능기 지수 가수분해성기 지수
실시예 1 0.08 0.12 210 44
실시예 2 0.05 0.16 180 27
실시예 3 0.1 0.1 200 50
실시예 4 0.5 0.05 190 55
실시예 5 0.9 0.03 180 57
실시예 6 1.2 0.02 170 52
비교예 1 0.12 0.06 20 81
비교예 2 0.00 0.20 50 2
시험예: 촉매의 잔존량에 따른 물성 검토
실시예 1에서 제조된 광전지 모듈의 충진재(샘플 1), 마스터 배치 내에 부틸 아민 (C4H9NH2)의 비율을 10 중량부로 변경한 것을 제외하고는 실시예 2와 동일한 방식으로 제조된 광전지 모듈의 충진재(샘플 2),DBTLD의 비율을 10 중량부로 변경한 것을 제외하고는 비교예 1과 동일한 방식으로 제조된 광전지 모듈의 충진재(샘플 3) 및 비교예 2에서 제조된 광전지 모듈의 충진재(샘플 4)에 대하여 염기성의 가수분해 촉매의 잔존량을 측정하고, 그 결과를 박리력 및 겔 분율과 함께 하기 표 2에 기재하였다.
표 2
염기성 가수분해 촉매의 잔존량(ppm) 박리력 (N/15mm)
샘플 1 470 210
샘플 2 5,000 200
샘플 3 - 20
샘플 4 0 50
표 2의 결과로부터, 모듈화 후에 충진재 내의 염기성의 가수분해 촉매의 잔존량을 조절함으로써, 접착성과 같은 물성을 효과적으로 구현 및 조절할 수 있음을 확인할 수 있다.
(부호의 설명)
1, 2: 광전지 모듈 11, 21: 수광 기판
12, 22: 광기전력 소자 13, 23: 이면 시트
14, 24: 충진재

Claims (20)

  1. 가수분해성기 또는 상기 가수분해성기의 가수분해물을 가지는 올레핀 중합체; 및 염기성 가수분해 촉매를 포함하는 올레핀 조성물
  2. 제 1 항에 있어서, 가수분해성기가 가수분해성 실릴기인 올레핀 조성물.
  3. 제 1 항에 있어서, 가수분해성기가 하기 화학식 1로 표시되는 올레핀 조성물:
    [화학식 1]
    Figure PCTKR2011008189-appb-I000003
    상기 화학식 1에서 X는, 규소 원자에 결합되어 있는 가수분해성 잔기를 나타내고, Y는 규소 원자에 결합되어 있는 비가수분해성 잔기를 나타내며, m은 1 내지 3의 수를 나타낸다.
  4. 제 3 항에 있어서, 가수분해성 잔기가 할로겐 원자, 알콕시기, 아릴옥시기, 아실옥시기, 알킬티오기 또는 알킬렌옥시티오기인 올레핀 조성물.
  5. 제 3 항에 있어서, 비가수분해성 잔기가 수소, 알킬기 또는 아릴기인 올레핀 조성물.
  6. 제 1 항에 있어서, 올레핀 중합체는, 알파-올레핀 및 하기 화학식 2의 불포화 실란 화합물이 공중합된 형태로 포함되는 공중합체; 또는 올레핀 중합체에 하기 화학식 2의 불포화 실란 화합물이 그래프팅되어 있는 그래프트 중합체인 올레핀 조성물:
    [화학식 2]
    Figure PCTKR2011008189-appb-I000004
    상기 화학식 2에서 D는 규소원자에 결합된 알케닐기이고, X는, 규소 원자에 결합되어 있는 가수분해성 잔기이며, Y는 규소 원자에 결합되어 있는 비가수분해성 잔기이고, m은 1 내지 3의 수이다.
  7. 6 항에 있어서, 공중합체는, 불포화 실란 화합물을 알파-올레핀 100 중량부에 대하여, 0.1 중량부 내지 10.0 중량부로 포함하고, 그래프트 중합체는, 불포화 실란 화합물을 올레핀 중합체 100 중량부에 대하여, 0.1 중량부 내지 10.0 중량부로 포함하는 올레핀 조성물.
  8. 제 1 항에 있어서, 올레핀 중합체는, 폴리에틸렌에 하기 화학식 2의 불포화 실란 화합물이 그래프팅되어 있는 그래프트 중합체인 올레핀 조성물:
    [화학식 2]
    Figure PCTKR2011008189-appb-I000005
    상기 화학식 2에서 D는 규소원자에 결합된 알케닐기이고, X는, 규소 원자에 결합되어 있는 가수분해성 잔기이며, Y는 규소 원자에 결합되어 있는 비가수분해성 잔기이고, m은 1 내지 3의 수이다.
  9. 제 8 항에 있어서, 폴리에틸렌은, 밀도가 0.85 g/cm3 내지 0.96 g/cm3인 올레핀 조성물.
  10. 제 8 항에 있어서, 폴리에틸렌은, MFR이 190℃ 에서 0.1 g/10분 내지 50 g/10분인 올레핀 조성물.
  11. 제 1 항에 있어서, 염기성 가수분해 촉매는, 유기 아민 화합물, 고리 구성 원자로 질소를 포함하는 헤테로고리 화합물, 금속 수산화물 또는 금속 아마이드인 올레핀 조성물.
  12. 제 1 항에 있어서, 염기성 가수분해 촉매는, 알킬아민 또는 디알킬아민인 올레핀 조성물.
  13. 제 1 항에 있어서, 염기성 가수분해 촉매를 올레핀 중합체 100 중량부에 대하여 0.01 중량부 내지 5 중량부로 포함하는 올레핀 조성물.
  14. 가수분해성기 또는 상기 가수분해성기의 가수분해물을 가지는 올레핀 중합체를 포함하는 충진재.
  15. 제 14 항에 있어서, 90℃ 의 물에 18 시간 동안 체류시킨 후에 ASTM D 2765의 규정에 따라 측정한 겔 분율이 5% 내지 60%인 충진재.
  16. 제 14 항에 있어서, 라미네이터기를 사용하여, 150℃ 에서 유리 기판에 10분 동안 압착시킨 후에 측정한 90도 박리력이 70 N/15mm 이상인 충진재.
  17. 제 14 항에 있어서, 올레핀 중합체는, FT-IR로 측정한 가수분해성기의 지수가 0.01 내지 1.5이고, 상기 가수분해성기의 가수분해물의 지수가 0.01 내지 1.5인 충진재.
  18. 제 14 항에 있어서, 염기성 가수분해 촉매를 추가로 포함하는 충진재.
  19. 제 1 항에 따른 조성물로 캡슐화되어 있는 광전자 소자를 포함하는 광전자 장치.
  20. 제 19 항에 있어서, 광전자 소자를 캡슐화하고 있는 조성물 내의 가수분해 촉매의 잔존량은 1 ppm 내지 50,000 ppm인 광전자 장치.
PCT/KR2011/008189 2010-10-29 2011-10-31 올레핀 조성물 WO2012057586A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180051676.8A CN103180378B (zh) 2010-10-29 2011-10-31 烯烃组合物
EP11836678.0A EP2634213B1 (en) 2010-10-29 2011-10-31 Olefin composition
US13/871,638 US9447210B2 (en) 2010-10-29 2013-04-26 Olefin composition

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
KR10-2010-0106966 2010-10-29
KR1020100106966A KR101314371B1 (ko) 2010-10-29 2010-10-29 충진재
KR10-2010-0106963 2010-10-29
KR1020100106964A KR101314386B1 (ko) 2010-10-29 2010-10-29 충진재
KR1020100106968A KR101430783B1 (ko) 2010-10-29 2010-10-29 태양전지 모듈
KR10-2010-0106968 2010-10-29
KR10-2010-0106972 2010-10-29
KR10-2010-0106965 2010-10-29
KR1020100106965A KR101367505B1 (ko) 2010-10-29 2010-10-29 충진재
KR10-2010-0106964 2010-10-29
KR20100106972 2010-10-29
KR1020100106963A KR101411776B1 (ko) 2010-10-29 2010-10-29 올레핀 수지 조성물
KR20110049379A KR101457744B1 (ko) 2010-10-29 2011-05-25 광전자 장치용 충진재
KR10-2011-0049379 2011-05-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/871,638 Continuation US9447210B2 (en) 2010-10-29 2013-04-26 Olefin composition

Publications (2)

Publication Number Publication Date
WO2012057586A2 true WO2012057586A2 (ko) 2012-05-03
WO2012057586A3 WO2012057586A3 (ko) 2012-07-05

Family

ID=48639384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008189 WO2012057586A2 (ko) 2010-10-29 2011-10-31 올레핀 조성물

Country Status (4)

Country Link
US (2) US9130090B2 (ko)
EP (1) EP2634213B1 (ko)
CN (1) CN103180378B (ko)
WO (1) WO2012057586A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170077463A (ko) * 2015-12-28 2017-07-06 주식회사 엘지화학 광전지 모듈

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6115742B2 (ja) 2012-12-24 2017-04-19 エルジー・ケム・リミテッド 封止材フィルム
JP6286986B2 (ja) * 2013-09-26 2018-03-07 大日本印刷株式会社 太陽電池モジュール用の封止材マスターバッチ及びその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE794718Q (fr) * 1968-12-20 1973-05-16 Dow Corning Ltd Procede de reticulation d'olefines
US4409370A (en) * 1980-07-03 1983-10-11 Celanese Corporation Thermoplastic blend of oxymethylene copolymers exhibiting improved impact resistance
US4871789A (en) * 1988-04-18 1989-10-03 The Dow Chemical Company Reinforced polymer compositions having excellent distinctness of image
SE462752B (sv) 1988-12-23 1990-08-27 Neste Oy Silanfoernaetningsbar polymerkomposition innehaallande en silanfoerening som motverkar foer tidig haerdning
KR100242146B1 (ko) * 1991-05-31 2000-03-02 데이 수잔 자넷 가교성 중합체 조성물
JPH0649365A (ja) 1992-07-29 1994-02-22 Kanegafuchi Chem Ind Co Ltd 太陽電池裏面封止材料用組成物、および太陽電池裏面封止材料
EP1305349A2 (en) * 2000-07-28 2003-05-02 E.I. Dupont De Nemours And Company Grafting of polyolefins
DE60217500T2 (de) * 2001-07-17 2007-05-16 Dow Global Technologies, Inc., Midland Elastische, hitze- und feuchtigkeitsbeständige bikomponenten- und bikonstituentenfasern
US20040105994A1 (en) * 2002-12-03 2004-06-03 Pang-Chia Lu Thermoplastic film structures with a low melting point outer layer
WO2004055908A1 (ja) * 2002-12-16 2004-07-01 Dai Nippon Printing Co., Ltd. 太陽電池モジュール用充填材シートおよびそれを使用した太陽電池モジュール
WO2004072135A1 (en) * 2003-02-05 2004-08-26 Dow Global Technologies Inc. Silane moisture cured heat resistant fibers made from polyolefin elastomers
DE112004000919T5 (de) * 2003-06-03 2006-06-29 Dai Nippon Printing Co., Ltd. Zwischenschicht für ein Solarzellenmodul und Solarzellenmodul, bei dem die Zwischenschicht eingesetzt wird
WO2006017391A2 (en) * 2004-08-05 2006-02-16 Dow Global Technologies Inc. Moisture-curable, silane crosslinkable composition
US20110174356A1 (en) * 2008-10-03 2011-07-21 Techno Polymer Co., Ltd. Solar cell back surface protective film, and solar cell module provided with same
JP2010212381A (ja) 2009-03-09 2010-09-24 Dainippon Printing Co Ltd 太陽電池モジュール用熱線遮蔽部材及びそれを用いた太陽電池モジュール
US8507605B2 (en) * 2011-02-23 2013-08-13 University Of Ottawa Latex compositions and uses thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2634213A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170077463A (ko) * 2015-12-28 2017-07-06 주식회사 엘지화학 광전지 모듈

Also Published As

Publication number Publication date
CN103180378B (zh) 2016-03-30
EP2634213B1 (en) 2016-12-28
US9130090B2 (en) 2015-09-08
EP2634213A4 (en) 2014-04-23
US9447210B2 (en) 2016-09-20
US20120139132A1 (en) 2012-06-07
CN103180378A (zh) 2013-06-26
WO2012057586A3 (ko) 2012-07-05
EP2634213A2 (en) 2013-09-04
US20130317177A1 (en) 2013-11-28

Similar Documents

Publication Publication Date Title
WO2012070915A2 (ko) 봉지재 조성물 및 광전지 모듈
WO2012144838A2 (ko) 올레핀계 아이오노머 수지 조성물
WO2014104718A1 (ko) 올레핀 수지 조성물
KR20200024231A (ko) 광전지 봉지재 필름용 폴리올레핀 조성물
EP3704744B1 (en) Polyolefin compositions for photovoltaic encapsulant films
WO2014204223A1 (ko) 봉지재 필름용 조성물, 봉지재 필름 및 이를 포함하는 전자장치
WO2015130101A1 (ko) 광 모듈용 봉지재, 이의 제조방법 및 광 모듈
WO2012093907A2 (ko) 경화성 조성물
TW201922808A (zh) 用於光伏包封膜之聚烯烴組合物
WO2011090363A2 (ko) 광전지 모듈
WO2012057586A2 (ko) 올레핀 조성물
KR20130140675A (ko) 에틸렌-알파 올레핀 테이퍼드 블록 공중합체 및 임의로 비닐 실란을 포함하는 전자 소자 모듈
WO2021060917A1 (ko) 에틸렌/알파-올레핀 공중합체 및 이의 제조방법
KR20140082578A (ko) 수지 조성물
KR101367505B1 (ko) 충진재
KR101411776B1 (ko) 올레핀 수지 조성물
WO2023096395A1 (ko) 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름
WO2015065069A1 (ko) 올레핀 수지
WO2023085805A1 (ko) 광소자용 봉지재 조성물 및 이를 이용한 광소자용 봉지재 필름
WO2023224363A1 (ko) 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름
WO2024071561A1 (ko) 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름
WO2024043449A1 (ko) 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름
KR101430783B1 (ko) 태양전지 모듈
WO2024014712A1 (ko) 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름
WO2024014812A1 (ko) 올레핀계 공중합체용 가교제 조성물, 이를 포함하는 광소자용 봉지재 조성물 및 광소자용 봉지재 필름

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180051676.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836678

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2011836678

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011836678

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE