WO2021060917A1 - 에틸렌/알파-올레핀 공중합체 및 이의 제조방법 - Google Patents

에틸렌/알파-올레핀 공중합체 및 이의 제조방법 Download PDF

Info

Publication number
WO2021060917A1
WO2021060917A1 PCT/KR2020/013077 KR2020013077W WO2021060917A1 WO 2021060917 A1 WO2021060917 A1 WO 2021060917A1 KR 2020013077 W KR2020013077 W KR 2020013077W WO 2021060917 A1 WO2021060917 A1 WO 2021060917A1
Authority
WO
WIPO (PCT)
Prior art keywords
alpha
ethylene
olefin copolymer
molecular weight
present
Prior art date
Application number
PCT/KR2020/013077
Other languages
English (en)
French (fr)
Inventor
이영우
김슬기
이대웅
이진국
이은정
공진삼
전정호
이준혁
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080029788.2A priority Critical patent/CN113767118B/zh
Priority to EP20869254.1A priority patent/EP3909990A4/en
Priority to US17/430,909 priority patent/US20220081501A1/en
Priority to SG11202108865YA priority patent/SG11202108865YA/en
Priority to JP2021544835A priority patent/JP2022519109A/ja
Publication of WO2021060917A1 publication Critical patent/WO2021060917A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/06Treatment of polymer solutions
    • C08F6/12Separation of polymers from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/02Cp or analog bridged to a non-Cp X anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/06Cp analog where at least one of the carbon atoms of the non-coordinating part of the condensed ring is replaced by a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/18Bulk density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an ethylene/alpha-olefin copolymer that can be usefully used as an insulating material by improving volume resistance by shortening the stress relaxation time, a composition for an encapsulant film using the same, and an encapsulant film including the same.
  • solar cells are attracting attention as a means of generating energy that is free from environmental pollution and depletion.
  • a solar cell When a solar cell is used outdoors, such as a roof of a building, it is generally used in the form of a solar cell module.
  • a solar cell module protective sheet surface side protective member
  • solar cell encapsulant/crystalline solar cell element/solar cell encapsulant/solar cell module protective sheet rear side
  • the protective members are laminated in the order of.
  • the thin-film solar cell element/solar cell encapsulant/solar cell module protective sheet (rear side protective member) are sequentially stacked.
  • the solar cell encapsulant an ethylene/vinyl acetate copolymer or an ethylene/alpha-olefin copolymer having excellent transparency, flexibility, and adhesion is generally used.
  • the solar cell module is generally used outside for a long period of time, and problems such as performance degradation due to various external stimuli are continuously observed.
  • PID Pressure Induced Degradation
  • An object of the present invention is to provide an ethylene/alpha-olefin copolymer exhibiting high volume resistance due to a short stress relaxation time.
  • an object of the present invention is to provide a composition for an encapsulant film comprising the ethylene/alpha-olefin copolymer.
  • an object of the present invention is to provide an encapsulant film comprising the composition for an encapsulant film.
  • an object of the present invention is to provide a solar cell module including the encapsulant film.
  • the present invention provides an ethylene/alpha-olefin copolymer satisfying the following conditions (a) to (c).
  • the weight average molecular weight is 40,000 to 150,000 g/mol
  • the present invention provides a composition for an encapsulant film comprising the ethylene/alpha-olefin copolymer.
  • the present invention provides an encapsulant film comprising the composition for the encapsulant film.
  • the present invention provides a solar cell module including the encapsulant film.
  • the ethylene/alpha-olefin copolymer of the present invention is an ethylene/alpha-olefin copolymer having a high weight average molecular weight and a narrow molecular weight distribution, and at the same time shortening the stress relaxation time. Since the ethylene/alpha-olefin copolymer exhibits high volume resistance and excellent insulation, it can be used for various purposes in the battery electronics industry.
  • the ethylene/alpha-olefin copolymer of the present invention is characterized by satisfying the following conditions (a) to (c).
  • the weight average molecular weight is 40,000 to 150,000 g/mol
  • the ethylene/alpha-olefin copolymer of the present invention is subjected to a post-treatment in which the polymerization product of ethylene and alpha-olefin monomer is dissolved in an organic solvent and mixed with alcohol to form a precipitate as described below. Is manufactured.
  • the ethylene/alpha-olefin copolymer is dissolved in an organic solvent capable of completely dissolving, and then slowly added dropwise to alcohol to obtain a precipitate in a state in which the branched structure portion having a low molecular weight is removed.
  • the stress relaxation time of the ethylene/alpha-olefin copolymer of the present invention is shortened to less than a specific value, and at the same time has a high molecular weight and a narrow molecular weight distribution.
  • the ethylene/alpha-olefin copolymer of the present invention is characterized in that (a) a Characteristic Relaxation Time ( ⁇ ) of less than 10.0 ms (millisecond) under conditions of (a) 190° C., 0.1 to 500 rad/s shear rate.
  • the stress relaxation time may be less than 10.0 ms, specifically less than 9.5 ms, less than 9.3 ms, or more than 1.0 ms.
  • the stress relaxation time means a time for the stress inside the polymer to return to an equilibrium state after applying a certain strain to the polymer.
  • the stress relaxation time is related to the entanglement structure of the polymer.
  • the entanglement of the chain increases, which causes the stress relaxation time to become longer. That is, the reduction in the stress relaxation time of the polymer means that the degree of entanglement of the chain is lowered, and it is interpreted that the branched structure is reduced due to the removal of some branched structures in the polymer or transformation into a linear structure.
  • both a low molecular weight region and a high molecular weight region are generated in the copolymer.
  • a large amount of alpha-olefin monomer is inserted into the main chain to remove beta-hydrogen ( ⁇ -hydride). It is created as early termination occurs due to elimination. Therefore, the low molecular weight region has a structure with a low molecular weight and a high branching degree.
  • the branched structure increases the free volume of the polymer, inhibits crystal formation and reduces the volume resistance, it is necessary to remove the low molecular weight and high branched regions in the copolymer to improve the volume resistance. It is important.
  • the polymerization product of ethylene and alpha-olefin monomer was dissolved and then precipitated in alcohol, which is a poor solvent, so that the high molecular weight region in the copolymer was precipitated in alcohol and the low molecular weight region was dissolved in alcohol to separate. That is, the ethylene/alpha-olefin copolymer of the present invention is obtained by obtaining a high molecular weight portion precipitated in alcohol as a final product. As described above, it contains a small branched structure, and the free volume of the polymer is small, so that the movement of electrons or ions is limited, and the volume resistance can be excellent.
  • the ethylene/alpha-olefin copolymer of the present invention is characterized in that (b) a weight average molecular weight is 40,000 to 150,000 g/mol, and (c) a molecular weight distribution is 1.5 to 2.5.
  • the weight average molecular weight may be 40,000 to 150,000 g/mol, specifically 40,000 g/mol or more, 41,000 g/mol or more, 42,000 g/mol or more, 43,000 g/mol or more, 44,000 g/mol or more, and 150,000 It may be less than or equal to g/mol, less than or equal to 130,000 g/mol, or less than or equal to 100,000 g/mol.
  • the molecular weight distribution may be 1.5 to 2.5, specifically 1.50 or more, 1.80 or more, 2.50 or less, 2.40 or less, 2.30 or less, 2.25 or less.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) are molecular weights in terms of polystyrene analyzed by gel permeation chromatography (GPC), and the molecular weight distribution can be calculated from the ratio of Mw/Mn.
  • the termination rate varies depending on the reaction temperature gradient inside the reactor, and side reactions such as beta-hydrogen removal occur. It is done. As a result, it is difficult to control that a branched structure in the polymer is generated, a low molecular weight chain is generated, and the molecular weight distribution is widened, and the stress relaxation time of the polymer is lengthened. This reduced the impact strength and mechanical properties of the copolymer and acted as a problem of inducing a blocking phenomenon.
  • the copolymer of the present invention removes the low molecular weight portion of the branched structure through the process of dissolving in an organic solvent and precipitating in alcohol as described above, so that the molecular weight distribution is narrow and the stress relaxation time is shortened. It appears at the same time.
  • the copolymer of the present invention is characterized by a short stress relaxation time, a high weight average molecular weight, and a narrow molecular weight distribution, thereby implementing excellent volume resistance.
  • the stress relaxation time of the copolymer becomes longer, and this structural characteristic indicates that the free volume in the copolymer is large, which reduces the volume resistance. Becomes.
  • the molecular weight distribution appears wide, it inevitably includes a large number of low molecular weight regions, and the volume resistance decreases due to high charging properties in the low molecular weight region.
  • the ethylene/alpha-olefin copolymer may have a density measured according to ASTM D-792 of 0.850 to 0.910 g/cc. Specifically, the density may be 0.850 g/cc or more, 0.855 g/cc or more, 0.860 g/cc or more, or 0.865 or more, and 0.910 g/cc or less, 0.900 g/cc or less, or 0.890 g/cc or less.
  • the ethylene/alpha-olefin copolymer may have a melt index (Melt Index, MI 2.16 , 190° C., 2.16 kg load condition) of 0.1 to 50 g/10min. Specifically, 0.1 g/10min or more, 1 g/10min or more, 1.5 g/10min or more. It may be 2.0 g/10min or more, 50.0 g/10min or less, 40.0 g/10min or less, 35.0 g/10min or less, 30.0 g/10min or less.
  • the alpha-olefin is derived from an alpha-olefin monomer, which is a comonomer, and may be an alpha-olefin monomer having 4 to 20 carbon atoms.
  • alpha-olefin monomer which is a comonomer
  • specific examples include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetra Decene, 1-hexadecene, 1-eicosene, and the like, and one of them alone or a mixture of two or more may be used.
  • the alpha-olefin monomer may be 1-butene, 1-hexene or 1-octene, and most preferably 1-butene.
  • the content of the alpha-olefin may be appropriately selected within a range that satisfies the above-described physical property requirements, and specifically, more than 0 mol%, 99 mol% or less, or It may be 10 to 50 mol%, but is not limited thereto.
  • the method for producing an ethylene/alpha-olefin copolymer of the present invention comprises the steps of: (S1) preparing a polymerization product of ethylene and an alpha-olefin monomer; (S2) dissolving the polymerization product in an organic solvent; And (S3) forming a precipitate by mixing with an alcohol having 2 to 5 carbon atoms.
  • the step (S1) is a step of preparing a polymerization product of ethylene and alpha-olefin monomers.
  • the polymerization product is a composition in which the ethylene/alpha-olefin copolymer is not separately separated or purified after polymerization of ethylene and alpha-olefin monomers, or a solid phase by separating only the ethylene/alpha-olefin copolymer after polymerization It can be used in the sense of including all those obtained by.
  • the polymerization product is a composition in which the ethylene/alpha-olefin copolymer is not separately separated or purified after polymerization of ethylene and alpha-olefin monomers, in addition to the ethylene/alpha-olefin copolymer prepared by the polymerization reaction , Unreacted ethylene, unreacted alpha-olefin monomer, a catalyst used for polymerization, and the like.
  • the polymerization product may include all of the above-described substances and a hydrocarbon solvent used for polymerization.
  • the ethylene/alpha-olefin copolymer may be partially or completely swelled in the polymerization product, and the remainder may be present in a state of being dispersed in a hydrocarbon solvent.
  • the polymerization product is a solid obtained by separating only the ethylene/alpha-olefin copolymer after polymerization
  • direct polymerization of ethylene and alpha-olefin monomers and then the solvent and unreacted reactants are removed. Any method such as preparing a commercially available solid ethylene/alpha-olefin copolymer may be used.
  • the polymerization reaction may be carried out through conventional reaction conditions and methods.
  • polymerization method such as continuous or batch polymerization is not limited, and polymerization conditions such as polymerization temperature and pressure can also be appropriately adjusted by a person skilled in the art.
  • the step (S2) is a step of dissolving the polymerization product in an organic solvent, and is a step for dissolving an ethylene/alpha-olefin copolymer present in a swelled state or in a solid state in the polymerization product.
  • the step of dissolving the ethylene/alpha-olefin copolymer that is insoluble, swelled or solid in the solution to release the chain is first Because it has to be done.
  • the organic solvent may preferably be a compound having 7 to 16 carbon atoms.
  • the solubility in the ethylene/alpha-olefin copolymer may not be sufficient, and the boiling point of the organic solvent is lower than that of the ethylene/alpha-olefin copolymer, so step (S2) is performed.
  • the organic solvent may be dried.
  • the number of carbon atoms of the organic solvent is 17 or more, the organic solvent is present in a solid state at room temperature, so that it may be difficult to dissolve the ethylene/alpha-olefin copolymer.
  • the organic solvent may be at least one selected from the group consisting of heptane, octane, isooctane, toluene, xylene, and cumene, and preferably heptane, but is not limited thereto.
  • the step (S3) is a step of forming a precipitate by mixing with an alcohol having 2 to 5 carbon atoms, in order to remove the low molecular weight fraction of the dissolved ethylene/alpha-olefin copolymer and obtain a high molecular weight fraction as a precipitate.
  • the high molecular weight fraction precipitated in the alcohol was compared with the polymerization product before performing the steps (S2) and (S3), and the low molecular weight in the ethylene/alpha-olefin copolymer and portions containing a large number of branched chains were removed. . Accordingly, the copolymer obtained therefrom contains a small amount of free volume and the volume resistance is improved.
  • the alcohols having 2 to 5 carbon atoms are ethanol, propan-1-ol, propan-2-ol, butan-1-ol ), butan-2-ol, 2-methylpropan-2-ol (2-methylpropan-2-ol), pentan-1-ol, pentan-2- Ol (pentan-2-ol), pentan-3-ol (pentan-3-ol), 2-methylbutan-2-ol (2-methylbutan-2-ol) and 3-methylbutan-2-ol (3 -methylbutan-2-ol) may be one or more selected from the group consisting of, but is not limited thereto.
  • the alcohol having 2 to 5 carbon atoms may be propan-2-ol or butan-2-ol, more preferably propan-2-ol (isopropyl alcohol).
  • Methanol with 1 carbon atoms is a non-solvent and has insignificant removal effect of low molecular weight parts, and alcohols with 6 or more carbon atoms have excessive solubility with the copolymer and dissolves even the high molecular weight parts.Thus, ethylene/alpha- There may be a problem in that the yield of obtaining only the high molecular weight portion of the olefin copolymer is lowered.
  • step (S2) and step (S3) may be performed alternately by repeating 2 to 5 times, respectively, preferably step (S2) and step (S3) may be alternately repeated 4 times or 5 times, respectively. You can do it.
  • performing alternately repeating two times means performing step (S2), step (S3), step (S2), and step (S3) sequentially
  • performing alternately repeating four times means step (S2), step ( S3), step (S2), step (S3), step (S2), step (S3), step (S2), step (S3), step (S2), step (S3) are sequentially performed.
  • the number of repeated alternations of the steps (S2) and (S3) increases, the low molecular weight fraction that has not been removed can be dissolved and removed, but when the number of washings is more than 6 times, a distinct change in molecular weight distribution or volume resistance does not appear. . In consideration of the cleaning effect and economical efficiency, it is desirable that the number of cleanings be 4 or 5 times.
  • the manufacturing method may further include filtering the resultant product of step (S3), washing and drying the filtrate to obtain an ethylene/alpha-olefin copolymer.
  • the ethylene/alpha-olefin copolymer of the present invention may be prepared as a resin composition including an additional material, and the resin composition may be molded by injection, extrusion, or the like, and used as various molded articles. Specifically, it may be used as an encapsulant that encapsulates an element in various optoelectronic devices, and may be used as an industrial material applied to, for example, a heating lamination process, but the use is not limited thereto.
  • the ethylene/alpha-olefin copolymer of the present invention may be processed into a composition for an encapsulant film or the like, and, for example, a silane-modified resin composition or an amino silane-modified resin composition may be prepared.
  • the composition for the encapsulant film may include a known crosslinking agent, a crosslinking aid, a silane coupling agent, etc. in addition to the ethylene/alpha-olefin copolymer described above.
  • the crosslinking agent is a radical initiator in the manufacturing step of the silane-modified resin composition, and may serve to initiate a reaction in which an unsaturated silane compound is grafted onto the resin composition.
  • a crosslinking bond between the silane-modified resin composition or between the silane-modified resin composition and the non-modified resin composition in the step of laminating during the manufacture of an optoelectronic device, it is possible to improve the heat resistance durability of the final product, such as an encapsulant film. have.
  • crosslinking agent is a crosslinkable compound capable of initiating radical polymerization of a vinyl group or forming a crosslinking bond
  • various crosslinking agents known in the art may be used in various ways.
  • organic peroxides, hydroperoxides and azo compounds One or two or more selected from the group consisting of may be used.
  • t-bufilcumyl peroxide di-t-butyl peroxide, di-cumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, 2,5-dimethyl Dialkyl peroxides such as -2,5-di(t-butylperoxy)-3-hexine;
  • Hydroperoxides such as cumene hydroperoxide, diisopropylbenzene hydroperoxide, 2,5-dimethyl-2,5-di(hydroperoxy)hexane, and t-butyl hydroperoxide;
  • Diacyl peroxides such as bis-3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, benzoyl peroxide, o-methylbenzoyl peroxide, and 2,4-dichlorobenzoyl peroxide;
  • t-butylperoxyisobutylate
  • the organic peroxide may be an organic peroxide having a 1 hour half-life temperature of 120 to 135°C, for example, 120 to 130°C, 120 to 125°C, and preferably 121°C.
  • the "1 hour half-life temperature” means a temperature at which the half-life of the crosslinking agent becomes 1 hour.
  • the temperature at which the radical initiation reaction efficiently occurs is different, and therefore, when an organic peroxide having a 1 hour half-life temperature in the above-described range is used as a crosslinking agent, the lamination process temperature for manufacturing an optoelectronic device In the radical initiation reaction, that is, the crosslinking reaction can proceed effectively.
  • the crosslinking agent may be included in an amount of 0.01 to 1 parts by weight, for example, 0.05 to 0.55 parts by weight, 0.1 to 0.5 parts by weight, or 0.15 to 0.45 parts by weight, based on 100 parts by weight of the composition for the encapsulant film. If the crosslinking agent is less than 0.01 part by weight, the effect of improving heat resistance is insignificant, and if it exceeds 1 part by weight, the moldability of the encapsulant film decreases, which may cause process restrictions, and may affect the physical properties of the encapsulant.
  • composition for the encapsulant film may include a crosslinking aid in addition to the crosslinking agent.
  • crosslinking aid By including the crosslinking aid, it is possible to increase the degree of crosslinking between the composition for an encapsulant film by the above-described crosslinking agent, and accordingly, the heat resistance durability of the final product, for example, the encapsulant film can be further improved.
  • crosslinking aid various crosslinking aids known in the art may be used, and for example, a compound containing at least one unsaturated group such as an allyl group or a (meth)acryloxy group may be used.
  • the compound containing an allyl group may be a polyallyl compound such as triallyl isocyanurate (TAIC), triallyl cyanurate, diallyl phthalate, diallyl fumarate or diallyl maleate, and the like, and the (
  • the compound containing a meth)acryloxy group may be exemplified by poly(meth)acryloxy compounds such as ethylene glycol diacrylate, ethylene glycol dimethacrylate, and trimethylolpropane trimethacrylate, but is not limited thereto. .
  • the crosslinking aid may be included in an amount of 0.01 to 0.5 parts by weight, for example, 0.01 to 0.3 100, 0.015 to 0.2 100, or 0.016 to 0.16 parts by weight based on 100 parts by weight of the composition for the sealing material film. If the crosslinking aid is less than 0.01 parts by weight, the effect of improving heat resistance is insignificant, and if it exceeds 0.5 parts by weight, a problem affecting the physical properties of the final product, such as an encapsulant film, may occur and production cost may increase.
  • composition for the encapsulant film may further include a silane coupling agent in addition to the ethylene/alpha-olefin copolymer, a crosslinking agent and a crosslinking aid.
  • silane coupling agent examples include N-( ⁇ -aminoethyl)- ⁇ -aminopropyltrimethoxysilane, N-( ⁇ -aminoethyl)- ⁇ -aminopropylmethyldimethoxysilane, and ⁇ -aminopropyltriethoxy
  • One or more selected from the group consisting of silane, ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -methacryloxypropyltrimethoxysilane (MEMO) may be used.
  • the silane coupling agent may be included in an amount of 0.1 to 1 part by weight based on 100 parts by weight of the composition for an encapsulant film. If the amount is less than 0.1 part by weight, the adhesion to the glass is poor when manufacturing the solar module, so moisture immersion becomes easy, and long-term performance of the module cannot be guaranteed. If it exceeds 1 part by weight, it is not preferable because it acts as a factor of increasing Y.I.
  • composition for the encapsulant film may further include an unsaturated silane compound and an amino silane compound.
  • the unsaturated silane compound is grafted to the main chain containing the polymerized unit of the monomer of the ethylene/alpha-olefin copolymer of the present invention in the presence of a radical initiator, etc., and polymerized in a silane-modified resin composition or an amino silane-modified resin composition. Can be included as.
  • the unsaturated silane compound is vinyl trimethoxy silane, vinyl triethoxy silane, vinyl tripropoxy silane, vinyl triisopropoxy silane, vinyl tributoxy silane, vinyl tripentoxy silane, vinyl triphenoxy silane, or vinyl Triacetoxy silane may be used, and vinyl trimethoxy silane or vinyl triethoxy silane may be used as an example, but the present invention is not limited thereto.
  • the amino silane compound is an unsaturated silane compound grafted to the main chain of the copolymer in the grafting modification step of the ethylene/alpha-olefin copolymer, for example, a valence for converting a reactive functional group such as an alkoxy group of vinyltriethoxysilane to a hydroxy group.
  • a valence for converting a reactive functional group such as an alkoxy group of vinyltriethoxysilane to a hydroxy group.
  • the amino silane compound is not particularly limited as long as it is a silane compound containing an amine group, as long as it is a primary amine or a secondary amine.
  • amino silane compound aminotrialkoxysilane, aminodialkoxysilane, and the like may be used. Examples include 3-aminopropyltrimethoxysilane (APTMS), 3-aminopropyltriethoxysilane.
  • the content of the unsaturated silane compound and/or amino silane compound is not particularly limited.
  • composition for the encapsulant film may further include one or more additives selected from a light stabilizer, a UV absorber, and a heat stabilizer, if necessary.
  • the light stabilizer may play a role of preventing photo-oxidation by capturing active species that initiate photo-deterioration of the resin depending on the application to which the composition is applied.
  • the kind of light stabilizer that can be used is not particularly limited, and for example, a known compound such as a hindered amine compound or a hindered piperidine compound may be used.
  • the UV absorber absorbs ultraviolet rays from sunlight or the like and converts it into harmless thermal energy in the molecule, thereby preventing the active species of the initiation of photodeterioration in the composition from being excited.
  • Specific types of UV absorbers that can be used are not particularly limited, and for example, inorganic UV such as benzophenone-based, benzotriazole-based, acrylonitrile-based, metal complex salt-based, hindered amine-based, ultrafine titanium oxide or ultrafine zinc oxide.
  • an absorbent may be used.
  • examples of the heat stabilizer include tris(2,4-di-tert-butylphenyl)phosphite, bis[2,4-bis(1,1-dimethylethyl)-6-methylphenyl]ethyl ester phosphorous acid, tetrakis (2,4-di-tert-butylphenyl)[1,1-biphenyl]-4,4'-diylbisphosphonate and bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, etc.
  • Phosphorus thermal stabilizer and lactone-based heat stabilizers such as a reaction product of 8-hydroxy-5,7-di-tert-butyl-furan-2-one and o-xylene, and one or two or more of the above may be used. have.
  • the content of the light stabilizer, UV absorber and/or heat stabilizer is not particularly limited. That is, the content of the additive may be appropriately selected in consideration of the use of the resin composition, the shape or density of the additive, and generally, within a range of 0.01 to 5 parts by weight based on 100 parts by weight of the total solid content of the composition for an encapsulant film. Can be adjusted appropriately.
  • composition for an encapsulant film of the present invention may appropriately additionally include various additives known in the field according to the application to which the resin component is applied in addition to the above components.
  • the present invention provides an encapsulant film comprising the composition for the encapsulant film.
  • the sealing material film of the present invention can be produced by molding the composition for sealing material film into a film or sheet shape.
  • a molding method is not particularly limited, and may be produced by forming a sheet or film by a conventional process such as, for example, a T-die process or extrusion.
  • the preparation of the encapsulant film is performed in an in-situ process using a device in which the manufacturing and filming or sheeting processes of the modified resin composition using the composition for the encapsulant film are connected to each other. can do.
  • the thickness of the encapsulant film may be adjusted to about 10 to 2,000 ⁇ m, or about 100 to 1,250 ⁇ m, in consideration of the device support efficiency and the possibility of breakage in the optoelectronic device, weight reduction or workability of the device, etc., depending on the specific use. can be changed.
  • the present invention provides a solar cell module including the encapsulant film.
  • the solar cell module has a configuration in which solar cells arranged in series or parallel are filled with a gap with the encapsulant film of the present invention, and a glass surface is disposed on the side where sunlight strikes, and the back surface is protected by a back sheet.
  • the present invention is not limited thereto, and various types and forms of solar cell modules manufactured including an encapsulant film in the art may be applied to the present invention.
  • the glass surface may use tempered glass to protect the solar cell from external impact and to prevent damage, and low iron tempered glass with a low iron content to prevent reflection of sunlight and increase the transmittance of sunlight. Can be used, but is not limited thereto.
  • the back sheet is a weather-resistant film that protects the back surface of the solar cell module from the outside, for example, a fluorine-based resin sheet, a metal plate or metal foil such as aluminum, a cyclic olefin-based resin sheet, a polycarbonate-based resin sheet, and a poly(meth)acrylic resin.
  • a sheet, a polyamide resin sheet, a polyester resin sheet, a composite sheet obtained by laminating a weather-resistant film and a barrier film, and the like are provided, but are not limited thereto.
  • the solar cell module of the present invention may be manufactured without limitation according to a method known in the art, except for including the above-described encapsulant film.
  • the solar cell module of the present invention is manufactured using an encapsulant film having excellent volume resistance, and it is possible to prevent current leakage to the outside by moving electrons in the solar cell module through the encapsulant film, and thus the insulation is deteriorated. As a result, it is possible to greatly suppress the phenomenon of PID (Potential Induced Degradation), which causes leakage current and rapidly deteriorates the output of the module.
  • PID Physical Induced Degradation
  • the ligand compound (1.06 g, 3.22 mmol/1.0 eq) and MTBE 16.0 mL (0.2 M) were added to a 50 mL Schlenk flask and stirred first. At -40 °C, n-BuLi (2.64 mL, 6.60 mmol/2.05 eq, 2.5 M in THF) was added and reacted overnight at room temperature. Then, MeMgBr (2.68 mL, 8.05 mmol/2.5eq, 3.0M in diethyl ether) was slowly added dropwise at -40 °C, and then TiCl 4 (2.68 mL, 3.22 mmol/1.0eq, 1.0M in toluene) was added in order. It was reacted overnight at room temperature. Thereafter, the reaction mixture was filtered through Celite using hexane. After drying the solvent, a brown solid was obtained in a yield of 1.07 g (82%).
  • a 1.5 L continuous process reactor was preheated at 120° C. while 5.00 kg/h of hexane solvent and 1.30 kg/h of 1-butene were added.
  • Triisobutylaluminum (Tibal, Triisobutylaluminum, 60 ⁇ mol/min), the transition metal compound of [Chemical Formula 1] (0.35 ⁇ mol/min), dimethylanilinium tetrakis (pentafluorophenyl) borate cocatalyst (1.05 ⁇ mol/min) ) was introduced into the reactor at the same time.
  • ethylene 0.87 kg/h
  • hydrogen gas (20 cc/min
  • An ethylene/alpha-olefin copolymer was prepared in the same manner as in Preparation Example 1, except that the polymerization conditions were changed as shown in Table 1 below.
  • the transparent composition was added dropwise to 1.4 L of isopropyl alcohol that was being stirred. After the dropwise addition was completed, the liquid portion was removed and the portion precipitated as a solid was separated, followed by vacuum drying at 110° C. for 48 hours.
  • An ethylene/alpha-olefin copolymer was prepared in the same manner as in Example 1, except that the type of the ethylene/alpha-olefin copolymer and the number of times of step (S2) and step (S3) were changed as shown in Table 2 below. .
  • the complex viscosity according to the angular velocity of the copolymer was obtained with 5% strain in the range of 190°C and 0.1 to 500 rad/s angular velocity, and the stress relaxation time was calculated by the following Carreau-Yasuda equation. It was calculated by fitting with.
  • n shear thinning index
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) were measured using gel permeation chromatography (GPC, Gel Permeation Chromatography), and the molecular weight distribution was determined by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn). Calculated.
  • Example 1 4.9 73,000 2.08 0.864 4.7 Example 2 4.8 72,000 2.03 0.873 5.0
  • Example 4-1 4.1 49,000 2.16 0.880 18.5
  • Example 4-2 3.5 50,000 2.00 0.880 17.1
  • Example 5-1 8.0 44,000 2.25 0.871 30.0
  • Example 5-2 5.3 44,000 2.19 0.871 29.5
  • Example 5-3 4.2 46,000 2.10 0.871 27.2
  • Example 6 9.2 83,000 1.92 0.901 2.4
  • Example 7 4.4 70,000 2.02 0.902 6.0
  • the stress relaxation time, Mw, and MWD are all specific values in the present invention. It was confirmed that the range was satisfied.
  • Comparative Example 3-2 in which neither an organic solvent nor alcohol was used, as well as Comparative Example 3-2, which was not dissolved in an organic solvent and directly precipitated in alcohol, the copolymer chain was not sufficiently dissolved and thus the copolymer was not sufficiently precipitated in alcohol, and thus a low molecular weight portion This was not removed, and thus it was confirmed that the stress relaxation time was still long.
  • Comparative Example 7-2 which was only dissolved in an organic solvent but not precipitated in alcohol, the removal of the branched low molecular weight portion was not performed, resulting in a long stress relaxation time.
  • the volume resistance and light transmittance were measured and shown according to the following method.
  • a voltage of 1000V was applied for 600 seconds using an Agilent 4339B High-Resistance meter (manufactured by Agilent Technology Co., Ltd.) at 23 ⁇ 1°C temperature and 50 ⁇ 3% humidity.
  • the light transmittance at 550 nm was measured using a Shimadzu UV-3600 spectrophotometer.
  • Example 4-1 3.40 ⁇ 10 16 89.3
  • Example 4-2 4.50 ⁇ 10 16 89.5 Comparative
  • Example 4 1.40 ⁇ 10 14 89.2
  • Example 5-1 8.90 ⁇ 10 15 90.2
  • Example 5-2 2.20 ⁇ 10 16 90.2
  • Example 5-3 3.00 ⁇ 10 16 90.3
  • Example 5-4 4.10 ⁇ 10 16 90.5 Comparative Example 5 3.20 ⁇ 10 14 90.2
  • Example 7 1.60 ⁇ 10 16 88.6 Comparative Example 7-1 4.60 ⁇ 10 14 88.5 Comparative Example 7-2 4.42 ⁇ 10 14 88.5
  • the ethylene/alpha-olefin copolymer that satisfies all of the stress relaxation time, Mw, and MWD defined in the present invention could realize an excellent level of volume resistance and light transmittance without using a separate additive.

Abstract

본 발명은 높은 중량평균 분자량과 좁은 분자량 분포를 가지면서도, 이와 동시에 응력완화시간이 단축되어 우수한 물리적 특성을 나타내는 에틸렌/알파-올레핀 공중합체, 및 이의 제조방법에 관한 것이다. 본 발명의 에틸렌/알파-올레핀 공중합체는 높은 중량평균 분자량 및 좁은 분자량 분포를 가지고, 이를 이용하여 체적저항이 향상되고 우수한 광 투과율을 나타내는 수지 조성물을 제조할 수 있어 전기전자 산업 분야에서 다양한 용도로 이용이 가능하다.

Description

에틸렌/알파-올레핀 공중합체 및 이의 제조방법
관련 출원과의 상호 인용
본 출원은 2019년 9월 27일자 한국 특허 출원 2019-0120125에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 응력완화시간이 단축됨으로써 체적저항이 개선되어 절연재로 유용하게 활용가능한 에틸렌/알파-올레핀 공중합체, 이를 이용한 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름에 관한 것이다.
지구 환경 문제, 에너지 문제 등이 갈수록 심각해지고 있는 가운데, 환경 오염과 고갈 우려가 없는 에너지 생성 수단으로서 태양전지가 주목받고 있다. 태양전지를 건물의 지붕 등 옥외에서 사용하는 경우, 일반적으로 태양전지의 모듈 형태로 사용한다. 태양전지 모듈 제조시 결정형 태양전지 모듈을 얻기 위해서는, 태양전지 모듈용 보호 시트(표면측 보호 부재)/태양전지 봉지재/결정형 태양전지 소자/태양전지 봉지재/태양전지 모듈용 보호 시트(이면측 보호 부재)의 순서대로 적층한다. 또한, 박막계 태양전지 모듈 제조시에는, 박막형 태양전지 소자/태양전지 봉지재/태양전지 모듈용 보호 시트(이면측 보호 부재)의 순서대로 적층한다. 상기 태양전지 봉지재로서, 일반적으로 투명성, 유연성, 접착성 등이 우수한 에틸렌/아세트산비닐 공중합체나 에틸렌/알파-올레핀 공중합체 등이 사용된다.
한편, 상기 태양전지 모듈은 일반적으로 외부에서 장기간 사용되는데, 여러가지 외부 자극에 의한 성능 저하 등의 문제가 지속적으로 관찰된다. 특히, 고출력의 발전소 형태에서 발견되는 PID(Potential Induced Degradation) 현상의 해결이 시급하다.
다수의 태양전지 모듈을 연결하여 높은 전압을 얻는 대용량 발전형 시스템에서, 설치된 장소의 온도 및 습도가 높아짐에 따라 봉지재의 체적저항이 낮아지게 되고, 태양전지 셀과 프레임 사이 전위 차가 발생한다. 결국 여러 개의 태양전지 모듈이 직렬 연결된 어레이의 끝으로 갈수록, 태양전지 셀과 프레임 사이의 전위 차이는 증가하게 된다. 이러한 전위 차가 존재한 상태에서 누설 전류가 발생하게 되어, 발전 효율이 급격하게 저하되는 것을 PID 현상이라 한다.
상기와 같은 배경 하에, 광 투과율을 저하시키지 않으면서 체적저항을 개선하여 PID 현상을 지속적으로 방지할 수 있는 에틸렌/알파-올레핀 공중합체의 개발이 요구된다.
[선행기술문헌]
[특허문헌]
일본 공개특허 2015-211189
본 발명의 목적은 응력완화시간이 단축되어 체적저항이 높게 나타나는 에틸렌/알파-올레핀 공중합체를 제공하는 것이다.
또한, 본 발명의 목적은 상기 에틸렌/알파-올레핀 공중합체를 포함하는 봉지재 필름용 조성물을 제공하는 것이다.
또한, 본 발명의 목적은 상기 봉지재 필름용 조성물을 포함하는 봉지재 필름을 제공하는 것이다.
또한, 본 발명의 목적은 상기 봉지재 필름을 포함하는 태양전지 모듈을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 하기 (a) 내지 (c) 조건을 충족하는 에틸렌/알파-올레핀 공중합체를 제공한다.
(a) 190 ℃, 0.1 내지 500 rad/s 전단 속도 조건에서의 응력완화시간(Characteristic Relaxation Time, λ)은 10.0 ms(millisecond) 미만이고;
(b) 중량평균 분자량은 40,000 내지 150,000 g/mol이고; 및
(c) 분자량 분포는 1.5 내지 2.5이다.
또한, 본 발명은 상기 에틸렌/알파-올레핀 공중합체를 포함하는 봉지재 필름용 조성물을 제공한다.
또한, 본 발명은 상기 봉지재 필름용 조성물을 포함하는 봉지재 필름을 제공한다.
또한, 본 발명은 상기 봉지재 필름을 포함하는 태양전지 모듈을 제공한다.
본 발명의 에틸렌/알파-올레핀 공중합체는 높은 중량평균 분자량 및 좁은 분자량 분포를 가지고, 이와 동시에 응력완화시간이 단축된 특성을 가지는 에틸렌/알파-올레핀 공중합체이다. 상기 에틸렌/알파-올레핀 공중합체는 체적저항이 높게 나타나 절연성이 뛰어나므로, 전지전자 산업 분야에서 다양한 용도로 이용가능하다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
에틸렌/알파-올레핀 공중합체
본 발명의 에틸렌/알파-올레핀 공중합체는 하기 (a) 내지 (c) 조건을 충족하는 것을 특징으로 한다.
(a) 190 ℃, 0.1 내지 500 rad/s 전단 속도 조건에서의 응력완화시간(Characteristic Relaxation Time, λ)은 10.0 ms(millisecond) 미만이고;
(b) 중량평균 분자량은 40,000 내지 150,000 g/mol이고; 및
(c) 분자량 분포는 1.5 내지 2.5이다.
본 발명의 에틸렌/알파-올레핀 공중합체는, 후술하는 바와 같이 에틸렌 및 알파-올레핀 단량체의 중합 생성물을 유기 용매에 용해하는 단계 및 알코올과 혼합하여 침전물을 형성하는 단계를 연속 수행하는 후처리를 거쳐 제조된다.
상기 용해 단계 및 침전물 형성 단계에서는, 에틸렌/알파-올레핀 공중합체를 완전히 용해시킬 수 있는 유기 용매에 녹인 후 알코올에 천천히 적가하여 저분자량의 분지형 구조 부분이 제거된 상태의 침전물을 수득하게 된다. 상기 후처리를 통해 본 발명의 에틸렌/알파-올레핀 공중합체는 응력완화시간이 특정 값 미만으로 단축되고, 동시에 고분자량 및 좁은 분자량 분포를 가지게 되는 것이다.
본 발명의 에틸렌/알파-올레핀 공중합체는 (a) 190 ℃, 0.1 내지 500 rad/s 전단 속도 조건에서의 응력완화시간(Characteristic Relaxation Time, λ)은 10.0 ms(millisecond) 미만인 것을 특징으로 한다. 상기 응력완화시간은 10.0 ms 미만, 구체적으로 9.5 ms 미만, 9.3 ms 미만, 1.0 ms 이상일 수 있다.
상기 응력완화시간이란, 중합체에 일정한 변형을 가한 후 중합체 내부의 응력이 평형 상태로 돌아오는 시간을 의미한다. 응력완화시간은 중합체의 얽힘(entanglement) 구조와 관련성이 있다. 중합체가 장쇄 분지를 가지게 되면 사슬의 얽힘이 증가하게 되고 이는 응력완화시간이 길어지는 원인이 된다. 즉, 중합체의 응력완화시간이 단축되는 것은 사슬의 얽힘 정도가 낮아졌다는 것으로, 중합체 내 일부 분지형 구조가 제거되거나 선형 구조로 변형되어 분지형 구조가 감소한 것으로 해석된다.
에틸렌과 알파-올레핀 단량체가 중합되면서 공중합체에는 저분자량 영역과 고분자량 영역이 모두 생성되는데, 이 중 저분자량 영역은 주 사슬에 다량의 알파-올레핀 단량체가 삽입되어 베타-수소 제거(β-hydride elimination)로 인해 조기 종결(termination)이 일어나면서 생성된다. 따라서 저분자량 영역은 분자량이 낮으면서 분지도가 높은 구조를 가지게 된다.
분지형 구조는 중합체의 자유 부피(free volume)를 증가시켜 결정 형성을 저해하고 체적저항의 감소를 초래하게 되므로, 체적저항을 향상시키기 위해서는 공중합체 내 저분자량이면서 분지도가 높은 영역을 제거하는 것이 중요하다.
본 발명에서는 에틸렌과 알파-올레핀 단량체의 중합 생성물을 용해 후 빈용매(poor solvent)인 알코올에 침전시킴으로써, 공중합체 내 고분자량 영역은 알코올에 침전시키고 저분자량 영역은 알코올에 용해시켜 분리하였다. 즉, 본 발명의 에틸렌/알파-올레핀 공중합체는 알코올에 침전된 고분자량 부분을 최종 생성물로 수득한 것이다. 이는 전술한 것처럼 분지형 구조를 적게 함유하며, 중합체의 자유 부피가 적어 전자 또는 이온의 이동이 제한된 구조로서 체적저항이 우수하게 나타날 수 있다.
본 발명의 에틸렌/알파-올레핀 공중합체는 (b) 중량평균 분자량은 40,000 내지 150,000 g/mol이고, (c) 분자량 분포는 1.5 내지 2.5인 것을 특징으로 한다.
또한, 상기 중량평균 분자량은 40,000 내지 150,000 g/mol이고, 구체적으로 40,000 g/mol 이상, 41,000 g/mol 이상, 42,000 g/mol 이상, 43,000 g/mol 이상, 44,000 g/mol 이상일 수 있고, 150,000 g/mol 이하, 130,000 g/mol 이하, 100,000 g/mol 이하일 수 있다.
또한, 상기 분자량 분포(MWD)는 1.5 내지 2.5이고, 구체적으로 1.50 이상, 1.80 이상, 2.50 이하, 2.40 이하, 2.30 이하, 2.25 이하일 수 있다.
상기 중량평균 분자량(Mw)과 수평균 분자량(Mn)은 겔 투과형 크로마토그래피(GPC; gel permeation chromatography)로 분석되는 폴리스티렌 환산 분자량이며, 상기 분자량 분포는 Mw/Mn의 비로부터 계산될 수 있다.
통상 2종 이상의 단량체를 중합할 경우, 예컨대 에틸렌과 알파-올레핀 단량체를 중합하여 공중합체를 제조할 경우, 반응기 내부 반응 온도 구배에 따라 종결속도가 달라지고, 베타-수소 제거가 일어나는 등 부반응도 발생하게 된다. 이로 인해 중합체 내 분지형 구조가 생성되고, 저분자량 사슬이 생성되어 분자량 분포가 넓어지는 것을 제어하기 어려우며, 중합체의 응력완화시간도 길어지게 된다. 이는 공중합체의 충격 강도와 기계적 물성 등을 감소시키며 블로킹 현상을 유도하는 문제점으로 작용하였다.
반면, 본 발명의 공중합체는, 전술한 것처럼 유기 용매에 용해시키고 알코올에 침전시키는 과정을 통해 분지형 구조의 저분자량 부분을 제거하여, 고분자량이면서 분자량 분포가 좁게 나타나고 응력완화시간도 단축된 특징이 동시에 나타나는 것이다.
한편, 본 발명의 공중합체는 응력완화시간이 짧으면서도 동시에 중량평균 분자량이 높고 분자량 분포는 좁은 것이 특징이며, 이를 통해 우수한 체적저항을 구현할 수 있다.
예컨대, 분자량 분포가 좁더라도 공중합체에 분지형 구조가 다수 포함되어 있을 경우 공중합체의 응력완화시간은 길어지게 되고 이러한 구조적 특징은 공중합체 내 자유 부피가 크다는 것을 나타내기 때문에 체적저항을 저하시키는 요인이 된다. 또한, 선형도가 높아 응력완화시간이 짧은 공중합체라 하더라도 분자량 분포가 넓게 나타난다면, 저분자량 영역을 많이 포함할 수 밖에 없고, 저분자량 영역에서의 높은 대전성으로 인해 체적저항이 낮아지게 되는 것이다.
본 발명에서, 상기 에틸렌/알파-올레핀 공중합체는 ASTM D-792에 따라 측정한 밀도가 0.850 내지 0.910 g/cc일 수 있다. 구체적으로는 상기 밀도는 0.850 g/cc 이상, 0.855 g/cc 이상, 0.860 g/cc 이상, 또는 0.865 이상일 수 있고, 0.910 g/cc 이하, 0.900 g/cc 이하, 0.890 g/cc 이하일 수 있다.
본 발명에서, 상기 에틸렌/알파-올레핀 공중합체는 용융 지수(Melt Index, MI2.16, 190 ℃, 2.16 kg 하중 조건)가 0.1 내지 50 g/10min일 수 있다. 구체적으로, 0.1 g/10min 이상, 1 g/10min 이상, 1.5 g/10min 이상. 2.0 g/10min 이상, 50.0 g/10min 이하, 40.0 g/10min 이하, 35.0 g/10min 이하, 30.0 g/10min 이하일 수 있다.
상기 에틸렌/알파-올레핀 공중합체에서, 상기 알파-올레핀은 공단량체인 알파-올레핀 단량체로부터 유래된 것으로,이는 탄소수 4 내지 20의 알파-올레핀 단량체일 수 있다. 구체적인 예로는 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 또는 1-에이코센 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
이 중에서도 상기 알파-올레핀 단량체는 1-부텐, 1-헥센 또는 1-옥텐일 수 있으며, 가장 바람직하게는 1-부텐일 수 있다.
또한, 상기 에틸렌/알파-올레핀 공중합체에서, 상기 알파-올레핀의 함량은 상기한 물성적 요건을 충족하는 범위 내에서 적절히 선택될 수 있으며, 구체적으로는 0 몰% 초과, 99 몰% 이하, 또는 10 내지 50 몰%일 수 있으나, 이에 제한되지 않는다.
에틸렌/알파-올레핀 공중합체의 제조방법
본 발명의 에틸렌/알파-올레핀 공중합체의 제조방법은, (S1) 에틸렌 및 알파-올레핀 단량체의 중합 생성물을 준비하는 단계; (S2) 상기 중합 생성물을 유기 용매에 용해하는 단계; 및 (S3) 탄소수 2 내지 5의 알코올과 혼합하여 침전물을 형성하는 단계;를 포함하는 것을 특징으로 한다.
단계 (S1)
상기 단계 (S1)은 에틸렌 및 알파-올레핀 단량체의 중합 생성물을 준비하는 단계이다.
상기 중합 생성물이란, 에틸렌 및 알파-올레핀 단량체의 중합 반응을 수행한 후 에틸렌/알파-올레핀 공중합체를 별도로 분리하거나 정제하지 않은 상태의 조성물이거나, 중합 이후 에틸렌/알파-올레핀 공중합체만을 분리하여 고상으로 수득한 것을 모두 포함하는 의미로 사용될 수 있다.
상기 중합 생성물이 에틸렌 및 알파-올레핀 단량체의 중합 반응을 수행한 후 에틸렌/알파-올레핀 공중합체를 별도로 분리하거나 정제하지 않은 상태의 조성물일 경우, 중합 반응으로 제조된 에틸렌/알파-올레핀 공중합체 외에도, 미반응 에틸렌, 미반응 알파-올레핀 단량체, 중합에 사용된 촉매 등을 포함할 수 있다. 또한, 에틸렌 및 알파-올레핀 단량체의 중합이 용액 중합일 경우, 상기 중합 생성물은 전술한 물질을 모두 포함하면서 중합에 사용된 탄화수소 용매를 함께 포함할 수 있다. 이 때 에틸렌/알파-올레핀 공중합체는 중합 생성물 내에서, 일부 또는 전부가 스웰링(swelling)되고, 나머지는 탄화수소 용매에 분산된 상태로 존재할 수 있다.
또한, 상기 중합 생성물이 중합 이후 에틸렌/알파-올레핀 공중합체만을 분리하여 수득한 고상일 경우, 중합 생성물을 준비하기 위해서는, 직접 에틸렌 및 알파-올레핀 단량체를 중합한 후 용매, 미반응 반응물 등을 제거하여 준비하거나, 시판되는 고상의 에틸렌/알파-올레핀 공중합체를 구입하는 등의 방법이 모두 사용가능하다.
상기 에틸렌 및 알파-올레핀 단량체의 중합을 위해 사용되는 방법에는 아무런 제한이 없다. 예컨대 공지된 전이금속 화합물 및 조촉매를 포함하는 촉매 조성물을 이용하여, 통상의 반응 조건 및 방법을 통해 중합 반응을 수행할 수 있다.
예컨대, 유기 용매의 존재 하, 기체 또는 액체의 단량체를 공급하여 중합을 수행하는 슬러리 중합, 액체 단량체 존재 하에 중합을 수행하는 벌크 중합, 기체상의 단량체 존재 하에 중합을 수행하는 기상 중합 등을 들 수 있고, 연속적 또는 배치식 중합 등 중합 방법은 제한되지 않으며, 중합 온도나 압력 등 중합 조건 또한 통상의 기술자가 적절히 조절할 수 있다.
단계 (S2)
상기 단계 (S2)는 상기 중합 생성물을 유기 용매에 용해하는 단계로서, 상기 중합 생성물에 스웰링된 상태로 존재하거나 고상으로 존재하는 에틸렌/알파-올레핀 공중합체를 용해시키기 위한 단계이다. 단계 (S3)에서 알코올 침전을 통해 저분자량 분획을 제거하는 효과를 극대화하기 위해서는, 용액 내 용해되지 못하고 스웰링되어 있거나 고체 상태인 에틸렌/알파-올레핀 공중합체를 용해시켜 사슬을 풀어주는 단계가 먼저 수행되어야 하기 때문이다.
상기 목적을 바람직하게 구현하기 위한 측면에서, 상기 유기 용매는 탄소수 7 내지 16의 화합물이 바람직하게 사용될 수 있다. 유기 용매의 탄소수가 6 이하일 경우, 에틸렌/알파-올레핀 공중합체에 대한 용해도가 충분하지 않을 수 있고, 에틸렌/알파-올레핀 공중합체보다 유기 용매의 끓는점(boiling point)이 낮아 단계 (S2)가 수행되는 온도에 따라 유기 용매가 건조되어 버리는 문제가 발생할 수 있다. 또한, 유기 용매의 탄소수가 17 이상일 경우, 유기 용매가 상온에서 고체 상태로 존재하게 되어 상기 에틸렌/알파-올레핀 공중합체를 용해시키기 어려운 문제점이 발생할 수 있다.
상기 유기 용매는 헵탄, 옥탄, 이소옥탄, 톨루엔, 자일렌 및 큐멘으로 이루어진 군에서 선택된 1종 이상일 수 있고, 바람직하게는 헵탄일 수 있으나, 이에 제한되지 않는다.
단계 (S3)
상기 단계 (S3)는 탄소수 2 내지 5의 알코올과 혼합하여 침전물을 형성하는 단계로, 용해된 에틸렌/알파-올레핀 공중합체 중 저분자량 분획을 제거하고 고분자량 분획을 침전물로 수득하기 위함이다.
상기 알코올에 침전된 고분자량 분획은 단계 (S2) 및 (S3)를 수행하기 이전의 중합 생성물과 비교하여, 에틸렌/알파-올레핀 공중합체 내 저분자량이면서 분지형 사슬을 많이 포함하는 부분들이 제거되었다. 따라서 이로부터 수득한 공중합체는 자유 부피를 적게 포함하고 체적저항이 개선된다.
상기 탄소수 2 내지 5의 알코올은 에탄올(ethanol), 프로판-1-올(propan-1-ol), 프로판-2-올(propan-2-ol), 부탄-1-올(butan-1-ol), 부탄-2-올(butan-2-ol), 2-메틸프로판-2-ol(2-methylpropan-2-ol), 펜탄-1-올(pentan-1-ol), 펜탄-2-올(pentan-2-ol), 펜탄-3-올(pentan-3-ol), 2-메틸부탄-2-올(2-methylbutan-2-ol) 및 3-메틸부탄-2-올(3-methylbutan-2-ol)로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되지 않는다. 바람직하게는, 상기 탄소수 2 내지 5의 알코올은 프로판-2-올 또는 부탄-2-올일 수 있고, 보다 바람직하게는 프로판-2-올(이소프로필알코올)일 수 있다.
탄소수 1의 메탄올은 무용제(non-solvent)로서 저분자량 부분의 제거 효과가 미미하고, 탄소수 6 이상의 알코올은 공중합체와의 용해성이 과도하게 좋아 고분자량 부분까지 용해시키게 되므로 침전물을 통해 에틸렌/알파-올레핀 공중합체의 고분자량 부분만을 수득하려는 수율이 낮아지게 되는 문제가 발생할 수 있다.
본 발명에서, 상기 단계 (S2) 및 단계 (S3)는 각각 2 내지 5회 반복 교대로 수행할 수 있다, 바람직하게는 단계 (S2) 및 단계 (S3)를 각각 4회 또는 5회 반복 교대로 수행할 수 있다. 여기서, 2회 반복 교대로 수행한다는 것은 단계 (S2), 단계 (S3), 단계 (S2), 단계 (S3)를 순차적으로 수행하고, 4회 반복 교대로 수행한다는 것은 단계 (S2), 단계 (S3), 단계 (S2), 단계 (S3), 단계 (S2), 단계 (S3), 단계 (S2), 단계 (S3)를 순차적으로 수행한다는 것이다.
상기 단계 (S2) 및 단계 (S3)의 반복 교대 횟수가 증가할수록 제거되지 못한 저분자량 분획을 용해시켜 제거할 수 있으나, 세척 횟수가 6회 이상일 경우 분자량 분포나 체적저항의 뚜렷한 변화가 나타나지 않게 된다. 세척 효과와 경제성을 고려하여 세척 횟수는 4회 또는 5회로 하는 것이 바람직하다.
또한, 상기 제조방법은, 단계 (S3)의 결과물을 여과하고, 여과물을 세척 및 건조하여 에틸렌/알파-올레핀 공중합체를 수득하는 단계;를 더 포함할 수 있다.
봉지재 필름용 조성물 및 봉지재 필름
본 발명의 에틸렌/알파-올레핀 공중합체는 추가적인 물질을 포함하여 수지 조성물로 제조될 수 있고, 상기 수지 조성물은 사출, 압출 등의 방법으로 성형하여 다양한 성형품으로 활용될 수 있다. 구체적으로 다양한 광전자 장치(optoelectronic device)에서 소자를 캡슐화하는 봉지재(encapsulant)로 사용될 수 있고, 예를 들어 승온 라미네이션 공정 등에 적용되는 산업용 소재로도 사용될 수 있으나, 용도가 이에 제한되는 것은 아니다.
구체적으로 본 발명의 에틸렌/알파-올레핀 공중합체는 봉지재 필름용 조성물 등으로 가공될 수 있고, 예를 들어 실란 변성 수지 조성물 또는 아미노 실란 변성 수지 조성물을 제조할 수 있다.
구체적으로, 상기 봉지재 필름용 조성물은 전술한 에틸렌/알파-올레핀 공중합체 외에도 공지의 가교제, 가교 조제, 실란 커플링제 등을 포함할 수 있다.
상기 가교제는 실란 변성 수지 조성물의 제조 단계에서는 라디칼 개시제로서, 수지 조성물에 불포화 실란 화합물이 그래프트되는 반응을 개시하는 역할을 할 수 있다. 또한, 광전자 장치의 제조 시에 라미네이션하는 단계에서 상기 실란 변성 수지 조성물 사이 또는 실란 변성 수지 조성물과 비변성 수지 조성물 사이의 가교 결합을 형성함으로써, 최종 제품, 예컨대 봉지재 필름의 내열 내구성을 향상시킬 수 있다.
상기 가교제는 비닐기의 라디칼 중합을 개시할 수 있거나 가교 결합을 형성할 수 있는 가교성 화합물이라면 기술 분야에서 공지된 다양한 가교제를 다양하게 사용할 수 있으며, 예를 들면, 유기 과산화물, 히드로과산화물 및 아조 화합물로 이루어진 군에서 선택되는 1종 또는 2종 이상을 사용할 수 있다.
구체적으로는, t-부필큐밀 퍼옥사이드, 디-t-부틸 퍼옥사이드, 디-큐밀 퍼옥사이드, 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산, 2,5-디메틸-2,5-디(t-부틸퍼옥시)-3-헥신 등의 디알킬 퍼옥사이드류; 큐멘 히드로퍼옥사이드, 디이소프로필벤젠 히드로퍼옥사이드, 2,5-디메틸-2,5-디(히드로퍼옥시)헥산, t-부틸 히드로퍼옥사이드 등의 히드로퍼옥사이드류; 비스-3,5,5-트리메틸헥사노일 퍼옥사이드, 옥타노일 퍼옥사이드, 벤조일 퍼옥사이드, o-메틸벤조일 퍼옥사이드, 2,4-디클로로벤조일 퍼옥사이드 등의 디아실 퍼옥사이드류; t-부틸퍼옥시아이소 부틸레이트, t-부틸퍼옥시아세테이트, t-부틸퍼옥시-2-에틸헥실카보네이트(TBEC), t-부틸퍼옥시-2-에틸헥사노에이트, t-부틸퍼옥시피바레이트, t-부틸퍼옥시옥토에이트, t-부틸퍼옥시아이소프로필 카보네이트, t-부틸퍼옥시벤조에이트, 디-t-부틸퍼옥시프탈레이트, 2,5-디메틸-2,5-디(벤조일퍼옥시)헥산, 2,5-디메틸-2,5-디(벤조일퍼옥시)-3-헥신 등의 퍼옥시 에스터류; 및 메틸에틸케톤 퍼옥사이드, 사이클로헥사논 퍼옥사이드, 라우릴 퍼옥사이드 등의 케톤 퍼옥사이드류; 아조비스이소부티로니트릴, 아조비스(2,4-디메틸발레로니트릴) 등의 아조 화합물로 이루어진 군에서 선택된 1종 이상을 들 수 있으나, 이에 제한되는 것은 아니다.
상기 유기 과산화물은 120 내지 135 ℃, 예를 들어, 120 내지 130 ℃, 120 내지 125 ℃, 바람직하게는 121 ℃의 1시간 반감기 온도를 가지는 유기 과산화물일 수 있다. 상기 "1시간 반감기 온도"란 상기 가교제의 반감기가 1시간이 되는 온도를 의미한다. 상기 1시간 반감기 온도에 따라, 라디칼 개시 반응이 효율적으로 일어나는 온도가 상이해지며, 따라서, 전술한 범위의 1시간 반감기 온도를 가지는 유기 과산화물을 가교제로서 사용할 경우, 광전자 장치를 제조하기 위한 라미네이션 공정 온도에서 라디칼 개시 반응, 즉, 가교 반응이 효과적으로 진행될 수 있다.
상기 가교제는 상기 봉지재 필름용 조성물 100 중량부에 대하여 0.01 내지 1 중량부, 예를 들면, 0.05 내지 0.55 중량부, 0.1 내지 0.5 중량부 또는 0.15 내지 0.45 중량부의 함량으로 포함될 수 있다. 상기 가교제가 0.01 중량부 미만일 경우 내열 특성의 향상 효과가 미미하며, 1 중량부 초과일 경우 봉지재 필름의 성형성이 감소하여 공정상 제약이 발생할 수 있고, 봉지재의 물성에 영향을 줄 수 있다.
또한, 상기 봉지재 필름용 조성물은 상기 가교제 이외에도 가교 조제를 포함할 수 있다. 상기 가교 조제가 포함됨으로써, 전술한 가교제에 의한 봉지재 필름용 조성물 사이의 가교도를 높일 수 있으며 이에 따라 최종 제품, 예컨대 봉지재 필름의 내열 내구성을 보다 향상시킬 수 있다.
상기 가교 조제는 기술분야에서 공지된 다양한 가교 조제를 사용할 수 있으며, 예를 들어, 알릴기 또는 (메타)아크릴옥시기 등의 불포화기를 적어도 하나 이상 함유하는 화합물을 사용할 수 있다.
상기 알릴기를 함유하는 화합물은 트리알릴 이소시아누레이트(TAIC), 트리알릴 시아누레이트, 디알릴 프탈레이트, 디알릴 푸마레이트 또는 디알릴 말레에이트와 같은 폴리알릴화합물 등이 예시될 수 있고, 상기 (메타)아크릴 옥시기를 함유하는 화합물은 에틸렌글리콜 디아크릴레이트, 에틸렌글리콜 디메타크릴레이트, 트리메틸올프로판 트라이메타크릴레이트와 같은 폴리(메타)아크릴록시화합물 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
상기 가교 조제는 상기 봉지재 필름용 조성물 100 중량부에 대하여 0.01 내지 0.5 중량부, 예를 들면, 0.01 내지 0.3 100, 0.015 내지 0.2 100 또는 0.016 내지 0.16 중량부의 함량으로 포함될 수 있다. 상기 가교 조제가 0.01 중량부 미만일 경우 내열 특성의 향상 효과가 미미하며, 0.5 중량부 초과일 경우 최종 제품, 예컨대 봉지재 필름의 물성에 영향을 미치는 문제가 발생하고 생산 단가가 증가할 수 있다.
또한, 상기 봉지재 필름용 조성물은 상기 에틸렌/알파-올레핀 공중합체, 가교제 및 가교 조제 이외에, 실란 커플링제를 추가로 포함할 수 있다.
상기 실란 커플링제로는, N-(β-아미노에틸)-γ-아미노프로필트리메톡시실란, N-(β-아미노에틸)-γ-아미노프로필메틸디메톡시실란, γ-아미노프로필트리에톡시실란,γ-글리시독시프로필트리메톡시실란 및 γ-메타크릴옥시프로필트리메톡시실란(MEMO)으로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
상기 실란 커플링제는 봉지재 필름용 조성물 100 중량부에 대하여 0.1 내지 1 중량부로 포함될 수 있다. 0.1 중량부 미만일 경우 태양광 모듈 제작시 유리와의 접착력이 불량하여 수분 침부가 용이해져 모듈의 장기 성능을 보장 할 수 없으며 1 중량부 초과일 경우 Y.I의 증가 요인으로 작용하여 바람직하지 않다.
또한, 상기 봉지재 필름용 조성물은 불포화 실란 화합물, 아미노 실란 화합물을 추가로 포함할 수 있다.
상기 불포화 실란 화합물은 라디칼 개시제 등의 존재 하에서 본 발명 에틸렌/알파-올레핀 공중합체의 단량체의 중합단위를 포함하는 주쇄에 그래프팅(grafting)되어 실란 변성 수지 조성물 또는 아미노 실란 변성 수지 조성물에 중합된 형태로 포함될 수 있다.
상기 불포화 실란 화합물은 비닐트리메톡시 실란, 비닐트리에톡시 실란, 비닐트리프로폭시 실란, 비닐트리이소프로폭시 실란, 비닐트리부톡시 실란, 비닐트리펜톡시 실란, 비닐트리페녹시 실란, 또는 비닐트리아세톡시 실란 등일 수 있고, 일 예로서 이 중 비닐트리메톡시 실란 또는 비닐트리에톡시 실란을 사용할 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 아미노 실란 화합물은 에틸렌/알파-올레핀 공중합체의 그래프팅 변성 단계에서 공중합체의 주쇄에 그래프팅된 불포화 실란 화합물, 예컨대 비닐트리에톡시실란의 알콕시기와 같은 반응성 관능기를 히드록시기로 전환하는 가수분해 반응을 촉진시키는 촉매로서 작용함으로써, 상 하부의 유리기판 또는 불소 수지 등으로 구성되는 이면 시트와 접착 강도를 보다 향상시킬 수 있다. 또한, 상기 아미노 실란 화합물은 직접 공중합 반응에 반응물로서도 관여함으로써 아미노 실란 변성 수지 조성물에 아민 관능기를 가지는 모이어티를 제공할 수 있다.
상기 아미노 실란 화합물로는, 아민기를 포함하는 실란 화합물로서, 1차 아민 또는 2차 아민이면 특별히 제한되지 아니한다. 예를 들어, 아미노 실란 화합물로는 아미노트리알콕시실란, 아미노디알콕시실란 등을 사용할 수 있으며, 예로는 3-아미노프로필트리메톡시실란(3-aminopropyltrimethoxysilane; APTMS), 3-아미노프로필트리에톡시실란(3-aminopropyltriethoxysilane; APTES), 비스[(3-트리에톡시실릴)프로필]아민, 비스[(3-트리메톡시실릴)프로필]아민, 3-아미노프로필메틸디에톡시실란, 3-아미노프로필메틸디메톡시실란, N-[3-(트리메톡시실릴)프로필]에틸렌디아민 (N-[3-(Trimethoxysilyl)propyl]ethylenediamine; DAS), 아미노에틸아미노프로필트리에톡시실란, 아미노에틸아미노프로필메틸디메톡시실란, 아미노에틸아미노프로필메틸디에톡시실란, 아미노에틸아미노메틸트리에톡시실란, 아미노에틸아미노메틸메틸디에톡시실란, 디에틸렌트리아미노프로필트리메톡시실란, 디에틸렌트리아미노프로필트리에톡시실란, 디에틸렌트리아미노프로필메틸디메톡시실란, 디에틸렌아미노메틸메틸디에톡시실란, (N-페닐아미노)메틸트리메톡시실란, (N-페닐아미노)메틸트리에톡시실란, (N-페닐아미노)메틸메틸디메톡시실란, (N-페닐아미노)메틸메틸디에톡시실란, 3-(N-페닐아미노)프로필트리메톡시실란, 3-(N-페닐아미노)프로필트리에톡시실란, 3-(N-페닐아미노)프로필메틸디메톡시실란, 3-(N-페닐아미노)프로필메틸디에톡시실란, 및 N-(N-부틸)-3-아미노프로필트리메톡시실란으로 이루어진 군에서 선택되는 1종 이상을 들 수 있다. 상기 아미노 실란 화합물은 단독으로 또는 혼합하여 사용할 수 있다.
상기 불포화 실란 화합물 및/또는 아미노 실란 화합물의 함량은 특별히 한정되지 않는다.
또한, 상기 봉지재 필름용 조성물은 필요에 따라 광안정제, UV 흡수제 및 열안정제 등으로부터 선택되는 1종 이상의 첨가제를 추가로 포함할 수 있다.
상기 광안정제는 상기 조성물이 적용되는 용도에 따라서 수지의 광열화 개시의 활성종을 포착하여 광산화를 방지하는 역할을 할 수 있다. 사용할 수 있는 광안정제의 종류는 특별히 제한되지 않고, 예를 들면, 힌더드 아민계 화합물 또는 힌더드 피페리딘계 화합물 등과 같은 공지의 화합물을 사용할 수 있다.
상기 UV 흡수제는 조성물의 용도에 따라서 태양광 등으로부터의 자외선을 흡수하여 분자 내에서 무해한 열 에너지로 변환시켜, 조성물 중의 광열화 개시의 활성종이 여기되는 것을 방지하는 역할을 할 수 있다. 사용할 수 있는 UV 흡수제의 구체적인 종류는 특별히 제한되지 않으며, 예를 들면, 벤조페논계, 벤조트리아졸계, 아크릴니트릴계, 금속 착염계, 힌더드 아민계, 초미립자 산화 티탄 또는 초미립자 산화 아연 등의 무기계 UV 흡수제 등의 1종 또는 2종 이상의 혼합물을 사용할 수 있다.
또한, 상기 열안정제의 예로는 트리스(2,4-디-tert-부틸페닐)포스파이트, 비스[2,4-비스(1,1-디메틸에틸)-6-메틸페닐]에틸에스테르 아인산, 테트라키스(2,4-디-tert-부틸페닐)[1,1-비페닐]-4,4'-디일비스포스포네이트 및 비스(2,4-디-tert-부틸페닐)펜타에리쓰리톨디포스파이트 등의 인계 열안정제; 8-히드록시-5,7-디-tert-부틸-푸란-2-온과 o-크실렌과의 반응 생성물 등의 락톤계 열안정제를 들 수 있고, 상기 중 1종 또는 2종 이상을 사용할 수 있다.
상기 광안정제, UV 흡수제 및/또는 열안정제의 함량은 특별히 한정되지 않는다. 즉, 상기 첨가제의 함량은, 수지 조성물의 용도, 첨가제의 형상이나 밀도 등을 고려하여 적절히 선택할 수 있고, 통상적으로 봉지재 필름용 조성물의 전체 고형분 100 중량부에 대하여 0.01 내지 5 중량부의 범위 내에서 적절히 조절될 수 있다.
또한, 본 발명의 봉지재 필름용 조성물은 상기 성분 외에도 수지 성분이 적용되는 용도에 따라 해당 분야에서 공지되어 있는 다양한 첨가제를 적절히 추가로 포함할 수 있다.
또한, 본 발명은 상기 봉지재 필름용 조성물을 포함하는 봉지재 필름을 제공한다.
본 발명의 봉지재 필름은 상기 봉지재 필름용 조성물을 필름 또는 시트 형상으로 성형함으로써 제조할 수 있다. 이와 같은 성형 방법은 특별히 제한되지 않으며, 예를 들면, T 다이 공정 또는 압출 등과 같은 통상적인 공정으로 시트화 또는 필름화하여 제조할 수 있다. 예를 들어, 상기 봉지재 필름의 제조는 상기 봉지재 필름용 조성물을 이용한 변성 수지 조성물의 제조 및 필름화 또는 시트화 공정이 서로 연결되어 있는 장치를 사용하여 인-시츄(in situ) 공정으로 수행할 수 있다.
상기 봉지재 필름의 두께는 광전자 장치에서 소자의 지지 효율 및 파손 가능성, 장치의 경량화나 작업성 등을 고려하여, 약 10 내지 2,000 μm, 또는 약 100 내지 1,250 μm으로 조절할 수 있으며, 구체적인 용도에 따라서 변경될 수 있다.
태양전지 모듈
또한, 본 발명은 상기 봉지재 필름을 포함하는 태양전지 모듈을 제공한다. 본 발명에서 태양전지 모듈은 직렬 또는 병렬로 배치된 태양전지 셀을 상기 본 발명의 봉지재 필름으로 간격을 메우고, 태양광이 부딪히는 면에는 유리면이 배치되고, 이면은 백시트로 보호하는 구성을 가질 수 있으나 이에 제한되는 것은 아니며, 당해 기술분야에서 봉지재 필름을 포함하여 제조한 태양전지 모듈의 다양한 종류와 형태가 모두 본 발명에 적용될 수 있다.
상기 유리면은 외부의 충격으로부터 태양전지를 보호하고 파손 방지하기 위해 강화 유리를 사용할 수 있고, 태양광의 반사를 방지하고 태양광의 투과율을 높이기 위해 철 성분 함량이 낮은 저철분 강화 유리(low iron tempered glass)를 사용할 수 있으나, 이에 제한되지 않는다.
상기 백시트는 태양전지 모듈의 이면을 외부로부터 보호하는 내후성 필름으로서, 예컨대, 불소계 수지 시트, 알루미늄 등의 금속판 또는 금속박, 고리형 올레핀계 수지 시트, 폴리카보네이트계 수지 시트, 폴리(메타)아크릴계 수지 시트, 폴리아미드계 수지 시트, 폴리에스테르계 수지 시트, 내후성 필름과 배리어 필름을 라미네이트 적층한 복합 시트 등이 있으나, 이에 제한되지 않는다.
이외에도, 본 발명의 태양전지 모듈은 전술한 봉지재 필름을 포함하는 것을 제외하고는, 당해 기술분야에 알려진 방법에 따라 제한되지 않고 제조할 수 있다.
본 발명의 태양전지 모듈은 체적저항이 우수한 봉지재 필름을 이용하여 제조된 것으로서, 봉지재 필름을 통해 태양전지 모듈 내의 전자가 이동하여 외부로 전류가 유출되는 것을 방지할 수 있으며, 따라서 절연성이 악화되어 누설전류가 발생하고 모듈의 출력이 급격히 저하되는 PID(Potential Induced Degradation) 현상을 크게 억제시킬 수 있다.
실시예
이하, 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로 이들만으로 본 발명의 범위가 한정되는 것은 아니다.
촉매의 제조
(1) 리간드 화합물의 제조
<N-tert-butyl-1-(1,2-dimethyl-3H-benzo[b]cyclopenta[d]thiophen-3-yl)-1,1-dimethylsilanamine의 합성>
100 mL 쉬렝크 플라스크에 클로로(1,2-디메틸-6,7-디히드로-3H-벤조[b]시클로펜타[d]티오펜-3-일)디메틸실란의 화합물 4.65 g(15.88 mmol)을 정량하여 첨가한 후 THF 80 mL를 투입하였다. 상온에서 tBuNH2(4 eq, 6.68 mL)을 투입한 후 상온에서 3일 동안 반응시켰다. 반응 후 THF를 제거하고 헥산으로 여과하였다. 용매 건조 후 노란색 액체를 4.50 g(86%)의 수율로 얻었다.
1H NMR(in CDCl3, 500 MHz): δ 7.99(d, 1H), δ 7.83(d, 1H), δ 7.35(dd, 1H), δ 7.24(dd, 1H), δ 3.49(s, 1H), δ 2.37(s, 3H), δ 2.17(s, 3H), δ 1.27(s, 9H), δ 0.19(s, 3H), δ -0.17(s, 3H).
(2) 전이금속 화합물의 제조
[화학식 1]
Figure PCTKR2020013077-appb-I000001
50 mL 쉬렝크 플라스크에 상기 리간드 화합물(1.06 g, 3.22 mmol/1.0 eq) 및 MTBE 16.0 mL(0.2 M)를 넣고 먼저 교반시켰다. -40 ℃에서 n-BuLi(2.64 mL, 6.60 mmol/2.05 eq, 2.5 M in THF)을 넣고 상온에서 밤새 반응시켰다. 이후, -40 ℃에서 MeMgBr(2.68 mL, 8.05 mmol/2.5eq, 3.0M in diethyl ether)를 천천히 적가한후, TiCl4(2.68 mL, 3.22 mmol/1.0eq, 1.0M in toluene)을 순서대로 넣고 상온에서 밤새 반응시켰다. 이후 반응 혼합물을 헥산을 이용하여 셀라이트(Celite)를 통과하여 여과하였다. 용매 건조 후 갈색 고체를 1.07 g(82%)의 수율로 얻었다.
1H-NMR(in CDCl3, 500 MHz): δ 7.99(d, 1H), δ 7.68(d, 1H), δ 7.40(dd, 1H), δ 7.30(dd, 1H), δ 3.22(s, 1H), δ 2.67(s, 3H), δ 2.05(s, 3H), δ 1.54(s, 9H), δ 0.58(s, 3H), δ 0.57(s, 3H), δ 0.40(s, 3H), δ -0.45(s, 3H).
제조예 1
1.5 L 연속 공정 반응기에 헥산 용매를 5.00 kg/h, 1-부텐을 1.30 kg/h 투입하면서 120 ℃에서 예열하였다. 트리이소부틸알루미늄(Tibal, Triisobutylaluminum, 60 μmol/min), 상기 [화학식 1]의 전이금속 화합물(0.35 μmol/min), 디메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트 조촉매(1.05 μmol/min)를 동시에 반응기로 투입하였다. 이어서, 상기 반응기 속으로 에틸렌(0.87 kg/h) 및 수소 가스(20 cc/min)를 투입하여 89 bar의 압력으로 연속 공정에서 150 ℃로 60분 이상 유지시켜 공중합 반응을 진행하여 공중합체를 얻었다. 이후 진공 오븐에서 12시간 이상 건조시켜 에틸렌/알파-올레핀 공중합체를 제조하였다.
제조예 2 내지 8
중합 조건을 하기 표 1과 같이 변경한 것을 제외하고는 제조예 1과 동일하게 에틸렌/알파-올레핀 공중합체를 제조하였다.
C2 알파-올레핀 Cat. Co-cat. Tibal 용매 중합 온도
kg/h 종류 kg/h μmol/min μmol/min kg/h
제조예 1 0.87 1-C4 1.30 0.35 1.05 60 5.00 150
제조예 2 0.87 1-C4 0.90 0.15 0.45 20 5.00 140
제조예 3 0.87 1-C4 0.90 0.25 0.75 30 7.00 150
제조예 4 0.87 1-C4 1.00 0.20 0.60 30 5.00 145
제조예 5 0.87 1-C4 1.50 0.44 1.32 30 4.65 160
제조예 6 0.87 1-C8 0.48 0.48 0.43 30 5.00 160
제조예 7 0.87 1-C8 0.50 0.55 1.65 30 5.00 160
제조예 8 0.87 1-C8 1.30 0.70 2.10 60 4.00 160
실시예 1
단계 (S2)
상기 제조예 1의 에틸렌/알파-올레핀 공중합체 20 g과 헵탄 400 mL을 혼합하여 조성물을 제조한 후, 80 ℃에서 공중합체가 완전히 용해되어 육안상으로 투명해질 때까지 교반하였다.
단계 (S3)
상온으로 온도를 낮춘 후, 교반 중이던 이소프로필 알코올 1.4 L에 상기 투명한 조성물을 적가하였다. 적가 완료 후 액상 부분을 제거하고 고상으로 침전된 부분을 분리한 후, 110 ℃에서 48시간 동안 진공 건조하였다.
상기 단계 (S2) 및 단계 (S3)을 각각 4회씩 반복 교대로 수행하여 에틸렌/알파-올레핀 공중합체를 제조하였다.
실시예 2 내지 8, 비교예 1 내지 8
에틸렌/알파-올레핀 공중합체의 종류, 단계 (S2) 및 단계 (S3)의 수행 횟수를 하기 표 2과 같이 변경한 것을 제외하고는 실시예 1과 동일하게 에틸렌/알파-올레핀 공중합체를 제조하였다.
에틸렌/알파-올레핀 공중합체 단계 (S2) 횟수 단계 (S3) 횟수
실시예 1 제조예 1 4 4
실시예 2 제조예 2 4 4
실시예 3 제조예 3 4 4
실시예 4-1 제조예 4 3 3
실시예 4-2 제조예 4 4 4
실시예 5-1 제조예 5 1 1
실시예 5-2 제조예 5 2 2
실시예 5-3 제조예 5 3 3
실시예 5-4 제조예 5 4 4
실시예 6 제조예 6 4 4
실시예 7 제조예 7 4 4
실시예 8 제조예 8 4 4
비교예 1 제조예 1 0 0
비교예 2 제조예 2 0 0
비교예 3-1 제조예 3 0 0
비교예 3-2 제조예 3 0 1
비교예 4 제조예 4 0 0
비교예 5 제조예 5 0 0
비교예 6 제조예 6 0 0
비교예 7-1 제조예 7 0 0
비교예 7-2 제조예 7 1 0
비교예 8 제조예 8 0 0
실험예 1
상기 실시예 및 비교예에서 제조한 에틸렌/알파-올레핀 공중합체에 대하여, 하기 방법에 따라 물성을 평가하여 표 3에 나타내었다.
(1) 응력완화시간
TA社의 ARES-G2 Rheometer를 이용하여, 190 ℃, 0.1~500 rad/s 각속도 범위에서 5%의 Strain으로 상기 공중합체의 각속도에 따른 복소 점도를 구하였고, 응력완화시간은 하기 Carreau-Yasuda 방정식으로 피팅하여 계산하였다.
Figure PCTKR2020013077-appb-I000002
η(γ): 점도(viscosity)
η : 무한 점도(infinite viscosity)
η 0: 영-전단 점도(zero-shear viscosity)
λ: 응력완화시간(relaxation time)
γ: 전단속도(shear-rate)
α: 물질 상수(material constants)
n: 전단 담화 지수(shear thinning index)
(2) 중량평균 분자량(Mw) 및 분자량 분포(MWD)
겔 투과 크로마토그래피(GPC, Gel Permeation Chromatography)를 이용하여 중량평균 분자량(Mw) 및 수평균 분자량(Mn)을 각각 측정하였고, 중량평균 분자량(Mw)을 수평균 분자량(Mn)으로 나누어 분자량 분포를 계산하였다.
- 컬럼: PL Olexis
- 용매: TCB(Trichlorobenzene)
- 유속: 1.0 mL/min
- 시료농도: 1.0 mg/mL
- 주입량: 200 μL
- 컬럼온도: 160 ℃
- Detector: Agilent High Temperature RI detector
- Standard: 폴리스티렌(3차 함수로 보정)
(3) 밀도(Density, g/cm3)
ASTM D-792에 따라 측정하였다.
(4) 용융 지수(Melt Index, MI2.16, g/10min)
ASTM D-1238(조건 E, 190 ℃, 2.16 Kg 하중)에 따라 측정하였다.
응력완화시간 Mw(g/mol) MWD 밀도(g/cm3) 용융 지수(g/10min)
실시예 1 4.9 73,000 2.08 0.864 4.7
실시예 2 4.8 72,000 2.03 0.873 5.0
실시예 3 4.3 58,000 2.02 0.875 14.3
실시예 4-1 4.1 49,000 2.16 0.880 18.5
실시예 4-2 3.5 50,000 2.00 0.880 17.1
실시예 5-1 8.0 44,000 2.25 0.871 30.0
실시예 5-2 5.3 44,000 2.19 0.871 29.5
실시예 5-3 4.2 46,000 2.10 0.871 27.2
실시예 5-4 3.0 46,000 2.05 0.871 25.4
실시예 6 9.2 83,000 1.92 0.901 2.4
실시예 7 4.4 70,000 2.02 0.902 6.0
실시예 8 3.2 45,000 2.15 0.872 27.8
비교예 1 53.1 69,000 2.31 0.864 5.0
비교예 2 87.1 69,000 2.30 0.873 5.5
비교예 3-1 25.2 56,000 2.27 0.875 15.6
비교예 3-2 24.3 56,000 2.25 0.875 15.2
비교예 4 16.9 48,000 2.36 0.880 20.2
비교예 5 12.1 43,000 2.37 0.871 33.8
비교예 6 190.2 79,000 2.20 0.901 2.8
비교예 7-1 70.0 67,000 2.29 0.902 6.4
비교예 7-2 67.2 67,000 2.27 0.902 6.2
비교예 8 4.8 41,000 2.54 0.872 36.5
상기 표에 정리한 바와 같이, 본 발명에 따라 유기 용매 용해와 알코올 침전 단계를 수행하여 에틸렌/알파-올레핀 공중합체를 제조한 실시예들의 경우, 응력완화시간, Mw, MWD 모두 본 발명에서 특정한 수치범위를 충족하는 것을 확인하였다.
특히, 실시예 4-1과 4-2, 실시예 5-1 내지 5-4를 비교해보면, 유기 용매 용해와 알코올 침전을 반복하는 횟수가 증가할수록 고분자량이면서 MWD가 좁은 에틸렌/알파-올레핀 공중합체가 제조되었으며, 응력완화시간도 점점 짧아졌다.
한편, 비교예들의 경우, 에틸렌 및 알파-올레핀 단량체의 중합 후 유기 용매 용해, 알코올 침전 단계를 수행하지 않은 것들이다. 비교예 1 내지 7-2 등은 실시예 대비 응력완화시간이 현저히 높게 나타나고, 비교예 8은 MWD가 넓게 나타나, 본 발명에서 정의한 요건을 벗어나는 것을 확인하였다.
특히, 유기 용매와 알코올을 모두 사용하지 않은 비교예 뿐만 아니라, 유기 용매에 용해시키지 않고 알코올에 바로 침전시킨 비교예 3-2는 공중합체 사슬이 충분히 풀어지지 않아 알코올에 제대로 침전되지 못하여 저분자량 부분이 제거되지 못하였으며, 따라서 응력완화시간이 여전히 길게 나타난 것을 확인하였다. 또한, 유기 용매에 용해시키기만 하고 알코올에는 침전하지 않은 비교예 7-2의 경우도 분지형 저분자량 부분의 제거가 이루어지지 못하여 응력완화시간이 길게 나타났다.
실험예 2
상기 에틸렌/알파-올레핀 공중합체 6g을 0.5T 정사각형 틀에 넣고, 정면 및 후면을 3T 강판으로 덮은 후, 이를 고온 프레스기에 투입하였다. 190 ℃, 25 N/cm2 (240초), 6회 감압/가압 degassing, 190 ℃ 151 N/cm2에서 240초 동안 연속하여 처리한 후, 분당 15 ℃ 낮추면서 30 ℃로 냉각하고, 이 때 압력은 151 N/cm2로 유지하였다. 30 ℃, 151 N/cm2에서 300초 동안 유지시켜 시편 제조를 완료하였다.
이와 같이 제조한 시편을 대상으로, 하기 방법에 따라 체적저항 및 광 투과율을 측정하여 나타내었다.
(1) 체적저항(Ω·㎝)
23±1 ℃ 온도와 50±3 % 습도 조건에서 Agilent 4339B High-Resistance meter(애질런트·테크놀로지 가부시키가이샤제)를 이용하여, 1000V의 전압을 600초 동안 가하며 측정하였다.
(2) 광 투과율(%)
550 nm 에서의 광 투과율을 Shimadzu UV-3600 분광광도계를 이용하여 측정하였다.
- 측정 모드: transmittance
- 파장 interval:1 nm
- 측정 속도: medium
체적저항(Ω·㎝) 광 투과율(%)
실시예 1 2.60 × 1016 91.1
비교예 1 3.10 × 1014 91.0
체적저항(Ω·㎝) 광 투과율(%)
실시예 2 5.20 × 1016 90.6
비교예 2 2.50 × 1014 90.5
체적저항(Ω·㎝) 광 투과율(%)
실시예 3 7.50 × 1016 90.5
비교예 3-1 1.00 × 1014 90.4
비교예 3-2 2.10 × 1014 90.4
체적저항(Ω·㎝) 광 투과율(%)
실시예 4-1 3.40 × 1016 89.3
실시예 4-2 4.50 × 1016 89.5
비교예 4 1.40 × 1014 89.2
체적저항(Ω·㎝) 광 투과율(%)
실시예 5-1 8.90 × 1015 90.2
실시예 5-2 2.20 × 1016 90.2
실시예 5-3 3.00 × 1016 90.3
실시예 5-4 4.10 × 1016 90.5
비교예 5 3.20 × 1014 90.2
체적저항(Ω·㎝) 광 투과율(%)
실시예 6 9.80 × 1016 89.0
비교예 6 4.20 × 1014 88.8
체적저항(Ω·㎝) 광 투과율(%)
실시예 7 1.60 × 1016 88.6
비교예 7-1 4.60 × 1014 88.5
비교예 7-2 4.42 × 1014 88.5
체적저항(Ω·㎝) 광 투과율(%)
실시예 8 1.50 × 1016 90.4
비교예 8 7.80 × 1014 90.2
상기 표들은 동일한 제조예를 사용한 실시예와 비교예들을 대응시켜 정리한 것이다. 상기와 같이, 본 발명에 따라 제조한 에틸렌/알파-올레핀 공중합체는 모두 우수한 체적저항 및 광 투과율을 구현할 수 있음을 확인하였다.반면, 비교예와 같이, 본 발명의 요건 중 응력완화시간을 벗어나거나 MWD가 넓게 나타나는 등 본 발명 범위를 벗어나는 경우, 모두 체적저항이 저하되는 것으로 나타났다.
이와 같이, 본 발명에서 정의한 응력완화시간, Mw, MWD를 모두 충족하는 에틸렌/알파-올레핀 공중합체는 별도의 첨가제를 사용하지 않고도 우수한 수준의 체적저항과 광 투과율을 구현할 수 있었다.

Claims (10)

  1. 하기 (a) 내지 (c) 조건을 충족하는 에틸렌/알파-올레핀 공중합체:
    (a) 190 ℃, 0.1 내지 500 rad/s 전단 속도 조건에서의 응력완화시간(Characteristic Relaxation Time, λ)은 10.0 ms(millisecond) 미만이고;
    (b) 중량평균 분자량은 40,000 내지 150,000 g/mol이고; 및
    (c) 분자량 분포는 1.5 내지 2.5이다.
  2. 청구항 1에 있어서,
    상기 응력완화시간은 1.0 내지 9.5 ms인 에틸렌/알파-올레핀 공중합체.
  3. 청구항 1에 있어서,
    상기 중량평균 분자량은 41,000 내지 130,000 g/mol인 에틸렌/알파-올레핀 공중합체.
  4. 청구항 1에 있어서,
    상기 분자량 분포는 1.5 내지 2.4인 에틸렌/알파-올레핀 공중합체.
  5. 청구항 1에 있어서,
    밀도는 0.850 내지 0.910 g/cc인 에틸렌/알파-올레핀 공중합체.
  6. 청구항 1에 있어서,
    용융 지수(190 ℃, 2.16 kg 하중 조건)는 0.1 내지 50 g/10min인 에틸렌/알파-올레핀 공중합체.
  7. 청구항 1에 있어서,
    상기 알파-올레핀은 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센 및 1-에이코센으로 이루어진 군에서 선택된 1종 이상을 포함하는 것인 에틸렌/알파-올레핀 공중합체.
  8. 하기 (a) 내지 (c) 조건을 충족하는 에틸렌/알파-올레핀 공중합체를 포함하는 봉지재 필름:
    (a) 190 ℃, 0.1 내지 500 rad/s 전단 속도 조건에서의 응력완화시간(Characteristic Relaxation Time, λ)은 10.0 ms(millisecond) 미만이고;
    (b) 중량평균 분자량은 40,000 내지 150,000 g/mol이고; 및
    (c) 분자량 분포는 1.5 내지 2.5이다.
  9. 청구항 8에 있어서,
    가교제, 가교 조제, 실란 커플링제, 불포화 실란 화합물, 아미노 실란 화합물, 광안정제, UV 흡수제 및 열안정제로 이루어진 군으로부터 선택되는 1종 이상을 더 포함하는 것인 봉지재 필름.
  10. 청구항 8의 봉지재 필름을 포함하는 태양전지 모듈.
PCT/KR2020/013077 2019-09-27 2020-09-25 에틸렌/알파-올레핀 공중합체 및 이의 제조방법 WO2021060917A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080029788.2A CN113767118B (zh) 2019-09-27 2020-09-25 乙烯/α-烯烃共聚物及其制备方法
EP20869254.1A EP3909990A4 (en) 2019-09-27 2020-09-25 ETHYLENE/ALPHA-OLEFIN COPOLYMER AND METHOD FOR PREPARING IT
US17/430,909 US20220081501A1 (en) 2019-09-27 2020-09-25 Ethylene/Alpha-Olefin Copolymer and Method for Preparing the Same
SG11202108865YA SG11202108865YA (en) 2019-09-27 2020-09-25 Ethylene/alpha-olefin copolymer and method for preparing the same
JP2021544835A JP2022519109A (ja) 2019-09-27 2020-09-25 エチレン/α-オレフィン共重合体およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0120125 2019-09-27
KR20190120125 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021060917A1 true WO2021060917A1 (ko) 2021-04-01

Family

ID=75165912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013077 WO2021060917A1 (ko) 2019-09-27 2020-09-25 에틸렌/알파-올레핀 공중합체 및 이의 제조방법

Country Status (7)

Country Link
US (1) US20220081501A1 (ko)
EP (1) EP3909990A4 (ko)
JP (1) JP2022519109A (ko)
KR (1) KR102282283B1 (ko)
CN (1) CN113767118B (ko)
SG (1) SG11202108865YA (ko)
WO (1) WO2021060917A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230060685A (ko) * 2021-10-28 2023-05-08 주식회사 엘지화학 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름
WO2024014712A1 (ko) * 2022-07-11 2024-01-18 주식회사 엘지화학 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026000A1 (en) * 1996-12-12 1998-06-18 The Dow Chemical Company Interpolymer compositions and cast stretch film therefrom
KR20130110180A (ko) * 2010-10-08 2013-10-08 미쓰이 가가쿠 가부시키가이샤 태양 전지 봉지재 및 태양 전지 모듈
JP2014189623A (ja) * 2013-03-27 2014-10-06 Japan Polyethylene Corp 押出シートの製造方法、太陽電池封止シート及び太陽電池モジュール
JP2015211189A (ja) 2014-04-30 2015-11-24 日本ポリエチレン株式会社 太陽電池封止材用樹脂組成物、並びにそれを用いた太陽電池封止材及び太陽電池モジュール
JP2017098409A (ja) * 2015-11-24 2017-06-01 日本ポリエチレン株式会社 カレンダー成形法に用いられる太陽電池封止材用樹脂組成物
JP2018125317A (ja) * 2015-06-04 2018-08-09 株式会社ブリヂストン 太陽電池用封止膜及び太陽電池モジュール

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226024A (ja) 2004-02-16 2005-08-25 Sumitomo Chemical Co Ltd ゴム組成物
JP4828172B2 (ja) * 2005-07-15 2011-11-30 三井化学株式会社 オレフィン系重合体粒子およびオレフィン系重合体粒子の製造方法
JP5055805B2 (ja) * 2005-09-30 2012-10-24 住友化学株式会社 エチレン−α−オレフィン共重合体、樹脂組成物およびフィルム
JP5407300B2 (ja) 2007-11-30 2014-02-05 住友化学株式会社 エチレン−α−オレフィン共重合体および成形体
US9018329B2 (en) * 2011-09-02 2015-04-28 Chevron Phillips Chemical Company Lp Polymer compositions having improved barrier properties
WO2014209256A1 (en) * 2013-06-24 2014-12-31 Dow Global Technologies Llc Reinforced polypropylene composition
US20150322184A1 (en) 2014-05-07 2015-11-12 Chevron Phillips Chemical Company Lp High Performance Moisture Barrier Films at Lower Densities
MX2017014225A (es) * 2015-05-07 2018-04-20 Fina Technology Polietileno para un rendimiento superior de termoformacon de extrusion de lamina.
US11028258B2 (en) * 2019-08-19 2021-06-08 Chevron Phillips Chemical Company Lp Metallocene catalyst system for producing LLDPE copolymers with tear resistance and low haze

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026000A1 (en) * 1996-12-12 1998-06-18 The Dow Chemical Company Interpolymer compositions and cast stretch film therefrom
KR20130110180A (ko) * 2010-10-08 2013-10-08 미쓰이 가가쿠 가부시키가이샤 태양 전지 봉지재 및 태양 전지 모듈
JP2014189623A (ja) * 2013-03-27 2014-10-06 Japan Polyethylene Corp 押出シートの製造方法、太陽電池封止シート及び太陽電池モジュール
JP2015211189A (ja) 2014-04-30 2015-11-24 日本ポリエチレン株式会社 太陽電池封止材用樹脂組成物、並びにそれを用いた太陽電池封止材及び太陽電池モジュール
JP2018125317A (ja) * 2015-06-04 2018-08-09 株式会社ブリヂストン 太陽電池用封止膜及び太陽電池モジュール
JP2017098409A (ja) * 2015-11-24 2017-06-01 日本ポリエチレン株式会社 カレンダー成形法に用いられる太陽電池封止材用樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3909990A4

Also Published As

Publication number Publication date
CN113767118B (zh) 2023-01-03
JP2022519109A (ja) 2022-03-18
KR102282283B1 (ko) 2021-07-27
SG11202108865YA (en) 2021-09-29
EP3909990A4 (en) 2022-04-20
US20220081501A1 (en) 2022-03-17
CN113767118A (zh) 2021-12-07
EP3909990A1 (en) 2021-11-17
KR20210037582A (ko) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2012070915A2 (ko) 봉지재 조성물 및 광전지 모듈
WO2014104718A1 (ko) 올레핀 수지 조성물
WO2021060917A1 (ko) 에틸렌/알파-올레핀 공중합체 및 이의 제조방법
WO2015130103A1 (ko) 광 모듈용 봉지재, 이의 제조방법 및 광 모듈
WO2019212307A1 (ko) 에틸렌/알파-올레핀 공중합체, 이의 제조방법
KR102387101B1 (ko) 에틸렌/알파-올레핀 공중합체를 포함하는 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름
US20230174827A1 (en) Adhesive film, composition for forming same and electronic device
WO2020171625A1 (ko) 우수한 물성의 가교 폴리에틸렌 파이프
KR102424016B1 (ko) 비스(알케닐아미드) 화합물을 포함하는 봉지 필름을 위한 공-가교제 시스템
WO2023096395A1 (ko) 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름
WO2023085805A1 (ko) 광소자용 봉지재 조성물 및 이를 이용한 광소자용 봉지재 필름
WO2024014712A1 (ko) 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름
WO2024043462A1 (ko) 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름
WO2015093763A1 (ko) 태양전지용 불소계 코팅 조성물, 불소계 다층필름 및 이를 포함하는 태양전지
WO2024014812A1 (ko) 올레핀계 공중합체용 가교제 조성물, 이를 포함하는 광소자용 봉지재 조성물 및 광소자용 봉지재 필름
WO2023085807A1 (ko) 올레핀계 공중합체용 가교조제 조성물, 가교제 조성물 및 광소자용 봉지재 조성물용 첨가제
WO2024014810A1 (ko) 올레핀계 공중합체용 가교제 조성물, 이를 포함하는 광소자용 봉지재 조성물 및 광소자용 봉지재 필름
WO2024014811A1 (ko) 올레핀계 공중합체용 가교제 조성물, 이를 포함하는 광소자용 봉지재 조성물 및 광소자용 봉지재 필름
KR102347984B1 (ko) 에틸렌/알파-올레핀 공중합체를 포함하는 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름
WO2015065069A1 (ko) 올레핀 수지
WO2023224363A1 (ko) 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름
WO2024071561A1 (ko) 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름
WO2023075364A1 (ko) 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름
WO2021210749A1 (ko) 에틸렌/알파-올레핀 공중합체를 포함하는 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름
WO2024043449A1 (ko) 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869254

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544835

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020869254

Country of ref document: EP

Effective date: 20210810

NENP Non-entry into the national phase

Ref country code: DE