WO2004107610A1 - 信号波形劣化補償器 - Google Patents

信号波形劣化補償器 Download PDF

Info

Publication number
WO2004107610A1
WO2004107610A1 PCT/JP2003/016106 JP0316106W WO2004107610A1 WO 2004107610 A1 WO2004107610 A1 WO 2004107610A1 JP 0316106 W JP0316106 W JP 0316106W WO 2004107610 A1 WO2004107610 A1 WO 2004107610A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signal waveform
circuit
waveform
optical
Prior art date
Application number
PCT/JP2003/016106
Other languages
English (en)
French (fr)
Inventor
Nobuhiko Kikuchi
Shigenori Hayase
Original Assignee
Hitachi Communication Technologies, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Communication Technologies, Ltd. filed Critical Hitachi Communication Technologies, Ltd.
Priority to EP03780788A priority Critical patent/EP1630982B1/en
Priority to DE60332056T priority patent/DE60332056D1/de
Priority to US10/557,613 priority patent/US7813655B2/en
Priority to AU2003289361A priority patent/AU2003289361A1/en
Publication of WO2004107610A1 publication Critical patent/WO2004107610A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion

Definitions

  • the present invention relates to optical information transmission using an optical fiber, and more particularly, to a compensator for compensating signal waveform deterioration during transmission.
  • CD Chromatic Dispersion
  • Chromatic dispersion compensation means that an optical device with the opposite chromatic dispersion characteristic to the optical fiber used in the transmission line is placed in an optical transmitter or receiver to cancel the chromatic dispersion characteristic of the optical fiber and receive the signal. This is a technique for preventing distortion of the optical waveform.
  • chromatic dispersion compensation method a method using a dispersion compensating fiber having chromatic dispersion of the opposite sign to the transmission line, an optical interferometer, an optical circuit, an optical fiber grating, an optical transversal filter, and the like are being studied. It is also under consideration to arrange an electric compensation circuit such as an electric transpersal filter in the receiver to compensate for waveform deterioration.
  • variable chromatic dispersion used in this technology
  • compensators that vary the amount of chromatic dispersion by, for example, imparting a temperature gradient or strain to an optical fiber grating, or changing the temperature or phase of an optical interference system.
  • variable compensation is possible by varying the filter characteristics.
  • Such a tunable dispersion compensator is also used to compensate for the lack of chromatic dispersion tolerance of a high-speed optical transmitter / receiver.
  • the dispersion tolerance of a 40 Gbit / s optical transmitter / receiver is extremely small at a maximum of about 80 ps / nm, which is only 4 km for a widely used sinal mode fiber (SMF). Therefore, in transmission using a fixed chromatic dispersion compensating device, it is necessary to reduce the transmission line dispersion to 80 ps / nm or less by replacing the device with a different compensation amount every time the transmission distance changes by 4 km.
  • an tunable chromatic dispersion compensator is placed immediately before the receiver, and the amount of chromatic dispersion is automatically varied so that the optimum received waveform is always detected by detecting the amount of deterioration of the received waveform and transmission characteristics.
  • a dispersion compensation technique is being studied. With this technology, even if a high-speed optical transmitter / receiver is used, it is possible to realize a state in which it operates as long as the user connects the device without considering the chromatic dispersion of the transmission line, that is, ⁇ plug-and-play '' as before. .
  • Polarization Mode Dispersion is a phenomenon in which the transmission speed of an optical signal differs between the two main axes (TE and TM) of an optical fiber.
  • TE and TM main axes
  • polarization dispersion compensation is a technique to prevent distortion of the optical waveform by inserting an element with polarization dispersion opposite to that of the transmission line into the transmission line.
  • an electrical compensation circuit such as a transpersal filter in the receiver to compensate for waveform degradation due to polarization dispersion.
  • an electrical compensation circuit such as a transpersal filter in the receiver to compensate for waveform degradation due to polarization dispersion.
  • the amount of polarization dispersion in an optical fiber transmission line is known to change from time to time due to changes in the surrounding temperature and fluctuations in the state of incident polarization.
  • Automatic polarization dispersion compensation is necessary to control to the minimum optimal compensation state. It has become.
  • bandwidth limit refers to a specific band such as a high-frequency component of an optical signal due to the limit of the bandwidth of a multimode optical fiber used as a transmission line, a semiconductor laser used for generating or receiving an optical signal, a photodiode, or an IC. This is a phenomenon in which components are lost, which leads to waveform deterioration of the received optical waveform in high-speed optical transmission.
  • a compensating circuit such as an optical or electric transpersal filter to compensate for the weakened high-frequency components. State of optical fiberTransmission distance, optical spectrum characteristics and modulation characteristics of each optical transmitter's light source greatly depend on it, so the amount of compensation cannot be determined in advance. Automatic compensation is indispensable to control to the optimal compensation state. This compensation is effective not only for band limitation but also for a part of deterioration due to chromatic dispersion and polarization dispersion, and initial intersymbol interference of waveforms.
  • Fig. 2 shows an example of the configuration of a conventional automatic chromatic dispersion compensator that uses the quark extraction / maximum control method, which is a typical method for detecting waveform deterioration in variable dispersion compensation and polarization dispersion compensation.
  • the optical digital information signal degraded due to chromatic dispersion and polarization dispersion of the optical fiber due to optical fiber transmission is input to the conventional automatic chromatic dispersion compensator 120 via the input optical fiber 101. .
  • the optical signal is compensated for deterioration due to chromatic dispersion by transmitting through the tunable optical chromatic dispersion compensator 102, and then output from the output optical fiber 105.
  • a polarization dispersion compensator is used as the compensator 102, it is possible to configure a variable polarization dispersion compensator with almost the same configuration.
  • a part of the compensated optical signal is branched by the optical splitter 104 and guided to the photodetector 106 to be converted into an electric signal.
  • the electric signal is rectified by a rectifier circuit 121, and the output signal is filtered by a bandpass filter 122 whose transmission center band is equal to the bit rate, thereby extracting a clock component in the received signal.
  • the control signal 103 obtained from the maximum value control circuit 123 is input to the tunable optical chromatic dispersion compensator 102 and the wavelength is adjusted.
  • waveform degradation can always be kept to a minimum. Can be.
  • variable chromatic dispersion compensator by such clock extraction is described in, for example, the literature Extracted Power Level Monitoring scheme for Automatic Dispersion Equalization in High-Speed Optical Transmission Systems (IEICE Trans. Commun., Vol. E84-B, No. 11 Nov. 2001).
  • Figure 6 of this paper shows the relationship between the clock component strength and the amount of waveform dispersion in the transmission line in the 20 Gbit / s NRR (Non Return to Zero) / RZ (Return to Zero) system.
  • the NRZ signal shown by the solid line in Fig.
  • the clock signal intensity (vertical axis) has the maximum intensity at the point of 150ps / nm, which is the amount of wavelength dispersion (horizontal axis).
  • the waveform is almost the best at the position. With this wavelength as the center, the peak intensity is unimodal and convex upward when the wavelength dispersion is in the range of +50 ps / nm to -350 ps / nm and the width is approximately 400 ps / nm.
  • the best waveform can always be obtained by controlling the compensation amount of the tunable dispersion compensator in the direction that maximizes the waveform.
  • the above-described maximum clock control has a problem in that if the waveform deterioration becomes large, the intensity of the peak signal loses the single-peak property and the waveform cannot be drawn to the best waveform.
  • the width of the amount of dispersion that can be withdrawn is in the range of about 400 ps / nm for a 20 Gbit / s NRZ optical signal and about 250 ps / nm for an RZ signal in the experimental results shown in FIG. Since this value is inversely proportional to the square of the bit rate, it is 100 ps / nm (NRZ) and 80 ps / nm (RZ) when converted to a bit rate of 40 Gbit / s.
  • the detection range is such that “the waveform that can be received by the receiver is drawn to the best point”.
  • the detection range of waveform deterioration should be as wide as possible. For example, it is necessary to cover the compensation range of a tunable dispersion compensator or a tunable polarization dispersion compensator.
  • the goal is to achieve the dispersion tolerance (> 800 to 500 Ps / nm) of the 10 Gbit / s receiver, with the same level of usability as a 10 Gbit / s transceiver. It becomes. In other words, at least about ⁇ 250 ps / nm is required, and a waveform deterioration detection method with a wide detection range is required.
  • FIG. 2 is an automatic polarization dispersion compensator.
  • the polarization dispersion tolerance of a normal NRZ transceiver is about 1/3 of the bit width. (For example, for a NRZ signal with a bit rate of 40 Gbit / s, the bit width is 25 ps. About 7.5 ps). In the case of the waveform deterioration detection method using clock extraction, the detection range is a maximum of 1/2 bit. The reason for this is that the waveform due to polarization dispersion is the sum of the two waveforms transmitted along the main axis of the optical fiber transmission line.If the polarization dispersion amount is exactly one bit, the waveform of the degraded optical signal reappears.
  • the waveform returns to a binary waveform, and a clock signal having the same strength as in the case of zero polarization dispersion is generated. That is, the range of the amount of polarization dispersion in which the intensity of the peak signal is unimodal is 0 to 1/2 bit.
  • the amount of polarization dispersion of an optical fiber is usually proportional to the square root of the transmission distance, and its value is about 0.1 lps / km 1/2 .
  • some of the installed optical fiber transmission lines have high polarization dispersion and poor characteristics, and the polarization dispersion of such optical fibers can reach up to 2.0 ps / km 1/2 . It is said that.
  • a dispersion of 20 ps (80% of the bit width at 40 Gbit / s) can be achieved over a transmission line of only 100 km.
  • a method of detecting waveform deterioration with a wide detection range is also required for a polarization dispersion compensator.
  • a similar waveform deterioration detection method is indispensable. This can be controlled by detecting the clock signal strength, but the detection range is insufficient as in the case of the wavelength dispersion and PMD compensation described above.
  • the conventional clock extraction method has a problem that the detection characteristics of the detection circuit strongly depend on the bit rate of the optical signal, and cannot be applied to compensation of optical signals having different bit rates.
  • the types of optical signal bit rates have increased significantly in recent years. Even in the same system called 10 Gbit / s, 9.95 Gbit / s for SONET signals and 9.7 Gbit / s for transmission systems using FEC (Forward Error Correction) And 12.6 Gbit / s, and 12.5 Gbit / s for 10G Ethernet.
  • the clock extraction method uses Since it is necessary to use an extremely narrow bandwidth filter having a Q value of several hundred as the filter 122, it is difficult for one circuit to support such a wide range of bit rates. On the other hand, it is necessary to reduce the cost by reducing the number of product types, and it is also necessary to increase the convenience of customers who have purchased the products. The need is growing.
  • An object of the present invention is to provide a practical waveform deterioration compensator that solves the above-described problems in a waveform deterioration detection method used for variable chromatic dispersion compensation, variable polarization dispersion compensation, variable band compensation, and the like. It is in.
  • the object is to convert an optical digital information signal into an electric digital information signal with a photodetector, and to use a sampling circuit to sample the amplitude of the electric digital information signal asynchronously with the bit timing of the information signal to obtain an amplitude frequency distribution.
  • This can be solved by a method of extracting a signal corresponding to the waveform deterioration amount from the frequency distribution in the control circuit and obtaining a control signal that minimizes the waveform deterioration.
  • the compensation amount of the variable optical signal waveform degradation compensation circuit or the variable electric signal waveform degradation compensation circuit by this control signal, it is possible to automatically compensate for the signal waveform degradation to the minimum.
  • a chromatic dispersion compensation circuit By using a chromatic dispersion compensation circuit, a polarization dispersion compensation circuit, a band degradation compensation circuit, or a compensation circuit including a transversal filter or an identification feedback compensator as the above waveform degradation compensation circuit, degradation factors in optical fiber transmission can be reduced. It is possible to compensate effectively. Also, in order to support multi-bit rates, it is necessary to guarantee the above-described asynchronous sampling even when a plurality of information signals having different bit rates are input. This can be achieved by making the sampling frequency of the sampling circuit relatively prime to all possible values of the bit rate, or by making the sampling timing of the sampling circuit random, or by switching the sampling frequency to a plurality of different values. This can be realized by changing the sampling frequency over time.
  • the frequency band of the path from the photodetector to the sampling circuit is less than or equal to 1/2 of the bit rate of the information signal, it is possible to detect and compensate for a wider range of waveform deterioration.
  • the above control circuit calculates the statistical moment of the second or higher order of the frequency distribution, and controls the signal waveform deterioration compensation circuit so that the calculated statistical moment becomes the maximum, minimum, or a constant value. Can be effectively detected and the waveform deterioration can be automatically compensated.
  • the control circuit may control the signal waveform deterioration compensation circuit. If the information signal is in the RZ format, calculate the second-order even moment as the statistical moment, and calculate either the fourth-order or higher even moment so that its value is the maximum, or minimize it.
  • the control circuit may control the signal waveform deterioration compensation circuit such that
  • control of the signal waveform deterioration compensation circuit is stopped when there is no optical signal, and control of the signal waveform deterioration compensation circuit is performed when there is an optical signal.
  • the control circuit first uses the low-order statistical moment to perform signal waveform deterioration. It is useful to control the compensation circuit and then switch control algorithms to use higher order statistical moments or control signals generated by other methods. This description includes part or all of the contents as disclosed in the description and Z or drawings of Japanese Patent Application No. 2003-149513, which is a priority document of the present application.
  • FIG. 1 is a configuration diagram showing a first embodiment of the present invention.
  • FIG. 2 is a configuration diagram of a conventional automatic chromatic dispersion compensator.
  • FIG. 3 is a diagram showing a relationship between a received waveform and an asynchronous amplitude frequency distribution, which is a principle of the present invention.
  • FIG. 4 is a diagram showing the relationship between the amount of chromatic dispersion and the nth moment in the present invention.
  • FIG. 5 is a diagram showing a configuration of the control circuit 110 in the present invention.
  • FIG. 6 is a diagram illustrating an operation algorithm of the control circuit 110 according to the present invention.
  • FIG. 7 is a configuration diagram showing a second embodiment of the present invention.
  • FIG. 8 is a configuration diagram showing a third embodiment of the present invention.
  • FIG. 9 is a configuration diagram showing a fourth embodiment of the present invention.
  • FIG. 10 is a configuration diagram showing a fifth embodiment of the present invention.
  • FIG. 11 is a diagram illustrating the relationship between the amount of chromatic dispersion and the nth moment for an RZ modulated optical signal.
  • FIG. 12 is a diagram illustrating the effect of band reduction of the waveform deterioration detection unit of the present invention.
  • FIG. 13 is a configuration diagram showing a sixth embodiment of the present invention.
  • FIG. 14 is a configuration diagram showing a seventh embodiment of the present invention.
  • FIG. 15 is a flowchart showing a control operation of the control circuit 110 according to the eighth embodiment of the present invention.
  • FIG. 1 is a configuration diagram showing a first embodiment of the present invention, and shows a configuration example of an automatic chromatic dispersion compensator 100 to which the present invention is applied.
  • the optical digital information signal input from the input optical fiber 101 is compensated for deterioration due to chromatic dispersion by passing through the tunable optical chromatic dispersion compensator 102, and the output optical fiber 100 is compensated for as an optical signal.
  • a part of the compensated optical signal is split by an optical splitter 104, converted into an electrical signal by a photodetector 106, and then sampled.
  • Input to the A / D converter 107 which is a switching circuit.
  • the 870 converter 107 samples the amplitude of the input electric signal in accordance with the timing of the sampling clock 109 asynchronous with the information signal generated by the clock generator 108.
  • the control circuit 110 generates a control signal 103 of the amount of chromatic dispersion corresponding to the waveform deterioration of the received signal from the frequency distribution of the amplitude obtained by accumulating the digitized amplitude information for a certain period of time.
  • an automatic chromatic dispersion compensation function can be realized.
  • a variable polarization dispersion compensator can be configured with almost the same configuration.
  • FIG. 3 shows the received waveform (right) when transmitting a 40 Gbit / s NRZ optical signal, and the amplitude frequency distribution (right) obtained by sampling the received waveform asynchronously.
  • FIG. 3 (a) shows a case in which the amount of chromatic dispersion of the transmission path is set to -40 ps / nm, at which the reception waveform deterioration is minimized. It can be seen that the received waveform on the left has almost no intersymbol interference, and the amplitude frequency distribution on the right has sharp peaks at the normalized mark level (1) and space level (0). On the other hand, FIG.
  • the wavelengths difference amount - as large as 200p S / mn, a condition that caused the large waveform deterioration.
  • the waveform is greatly distorted, and the sharp peak in the frequency distribution on the right is lost, and the distribution is flattened.
  • the amplitude frequency distribution information of the received waveform and the degree of waveform deterioration are closely related.
  • it is essentially important to perform the sampling of the waveform amplitude as described above asynchronously with the bit timing. This is because the change in the waveform can be detected with high sensitivity by taking in the waveform deterioration information not only at the center of the waveform but also at the shoulder at the bit boundary.
  • FIG. 4 is a diagram showing the relationship between the nth-order statistical moment of the frequency distribution sampled asynchronously with the received waveform and the chromatic dispersion in 40 Gbit / s NRZ optical signal transmission, and shows the effect of the present invention.
  • the optical waveform is sampled about 100,000 times at random timing, and the average moment ⁇ as the first moment and the standard deviation ⁇ as the second moment are calculated from the frequency distribution of the amplitude. did.
  • the normalized n-order moment m n in these values was calculated using the following equation (X k is the value of each amplitude sample, K is the number of samples). ⁇ '
  • the curve of ⁇ 8 plots the first to eighth moments of each waveform.
  • the small irregularities in the graph are offset from the distribution generated because the sampling timing is set to random numbers, and are smoothed by increasing the number of acquired samples.
  • the dotted line marked with black diamonds in the figure is the calculated value of the eye opening deterioration of the received waveform in dB. The smaller this value is, the smaller the waveform deterioration is.
  • the waveform degradation is minimal at the point where the amount of chromatic dispersion on the horizontal axis is about -40 ps / nm, and that the waveform degradation increases as the distance from this point increases.
  • the first-order moment has a constant value, but the second- and higher-order moments vary greatly with respect to chromatic dispersion, and thus can be used for minimum waveform deterioration control.
  • an odd moment of the third order or higher shows a minimum value when the chromatic dispersion is zero, and changes sharply as the order N increases. Therefore, it is possible to control to the point of chromatic dispersion by controlling the third-order and higher odd-numbered moments to be the minimum.
  • This control is possible because the odd-order moments correspond to the vertical symmetry of the amplitude distribution of the received waveform.
  • the third-order statistical moment is called skewness, and minimizing this value is equivalent to making the amplitude distribution as vertically symmetric as possible.
  • the most symmetrical of the received waveform is the point of chromatic dispersion or PMD, and the point of chromatic dispersion is the control point.
  • the second moment for control.
  • the value to be a constant value of 1.0
  • Pack control becomes possible.
  • the detectable range of the waveform deterioration is the region where the second moment is falling to the right, and its range is about 180 ps / nm.
  • the even moment of the fourth or higher order has a local minimum near -40 ps / nm, at which the waveform is optimal, and has a downwardly convex carp over a wide range on both sides.
  • the fourth moment is called kurtosis and is a statistic that indicates the degree of sharpness of the statistical distribution. Minimize this value This means that the amplitude distribution is separated into two extremes, 0 and 1, which corresponds to the minimum waveform degradation.
  • the fourth-order curve (m4 in the figure) is convex downward in the range of about 600 ps / nm, and the waveform degradation is minimized in an extremely wide range, approximately six times that of the conventional clock extraction method (100 ps / nm). Can be controlled.
  • Such a statistical moment is a universal normalization parameter that represents the state of the statistical distribution, and changes in gain and loss in the receiver due to changes in signal level and aging, discrepancies in identification timing, and the presence or absence of optical signal noise. It has the advantage that calculations can be easily performed on waveforms that are not affected by such factors, and that have deteriorated to the point where the eye opening point disappears and clock extraction cannot be performed. As a result, the detection range of the waveform deterioration amount is extremely wide as compared with other methods.
  • the control point is the point of minimum waveform deterioration, not zero chromatic dispersion, so that there is an advantage that compensation can be performed for deterioration elements other than chromatic dispersion, polarization dispersion, and band deterioration. is there.
  • the self-phase modulation effect which is a nonlinear effect of an optical fiber
  • the chromatic dispersion amount for obtaining an optimum reception waveform will be different. The deterioration can be prevented because the optimal control is performed including the influence of the above.
  • the effect of signal noise is that the level of signal 0 and 1 is widened, so the effect on the above moment is small, and if the number of samplings is increased, averaging is performed, so the essential effect on the operation of the present invention is Absent.
  • FIG. 5 shows an example of the configuration of the control circuit 110
  • FIG. 6 shows an example of the operation algorithm.
  • the control circuit 110 receives an amplitude sample value Xi output from the sampling circuit (AZD converter) 107 from the sample data input terminal 124. Arithmetic unit 125 stores this data until it reaches a certain number K, and then calculates the nth moment of each sample data Xi. The arithmetic unit 110 further controls the tunable optical chromatic dispersion compensator 102 so that one of the n-order moments becomes a maximum, a minimum, or a constant value, so that the DZA converter 1 266-1, Set the value to 1 2 6—2 and output the control signal from the control signal output terminal 1 2 7. If necessary, send a signal indicating the sampling timing, such as sampling timing, directly to the computing unit, etc.
  • two sets of control signals are output using two DZA converters 1 266-1 and 1 26-2. This is based on the number of control signals of the compensator to be controlled and the number of control signals used. It depends on the number of compensators used.
  • a transpersal optical filter or a polarization dispersion compensator usually has multiple control terminals.
  • polarization dispersion, chromatic dispersion, and band degradation are compensated simultaneously, or two compensations with different compensation ranges.
  • Multiple control signals are also required when devices are cascaded. In the case of controlling a simple variable dispersion compensator, one control signal may be used.
  • the algorithm for maximum / minimum control used in the control circuit 110 is not particularly limited as long as it is a method generally used for maximum / minimum control.
  • it is possible to use one-variable or multi-variable control methods such as the hill-climbing method, the maximum slope method, and dithering of control signals found in control engineering textbooks.
  • the amount of change in the nth moment is measured by changing each of a plurality of control signals by a fixed amount, and the set (vector) of the plurality of control signals is changed in a direction in which the slope becomes maximum positively or negatively. ,
  • the maximum or minimum control of the nth moment can be realized.
  • Examples of the use of the asynchronous frequency distribution of the waveform similar to the present invention include, for example, ⁇ Quality Monitoring of Optical Signals influenced by Chromatic Dispersion in a Transmission Fiber using Averaged Q-Factor Evaluation (IEEE Photonics Technology Letters, Vol. 13, No.
  • Q value signal-to-noise ratio
  • the purpose of Q value detection is to find the ratio of signal intensity to noise intensity in the frequency distribution of the waveform.
  • the 0 and 1 levels of the signal are determined from the two peaks of the frequency distribution, the signal at the intermediate level is thresholded and discarded, and the signal strength and the noise component (0 , One level).
  • the noise itself has almost no effect on the statistical moment calculated by the present invention, and can be applied in the present invention. Since the signals at intermediate levels between 0 and 1 are actively used as a measure of the degree of waveform degradation, the two are significantly different.
  • FIG. 7 shows a second embodiment of the present invention, and shows a configuration of an optical transmission device to which the present invention is applied.
  • the optical signal output from the optical transmitter 130 is transmitted through the optical fiber transmission line 1311 _ 1
  • the optical signal remains as it is in the optical repeater 13 2 constituted by an optical amplifier such as an optical fiber amplifier.
  • the signal is amplified, transmitted again through the optical fiber transmission line 131-2, amplified by the optical preamplifier 133, and input to the automatic chromatic dispersion compensator (or polarization dispersion compensator) 100 of the present invention.
  • the optical signal whose waveform deterioration has been compensated is input to the optical receiver 134 and returned to the electrical information signal.
  • the product can be made independent and separate from 1 3 4.
  • the automatic chromatic dispersion compensator 100 is not limited to the position immediately before the optical receiver 134, but may be arranged at an arbitrary position in the optical fiber transmission line, for example, immediately after the optical repeater 132, so that the transmission may be performed during transmission.
  • the transmission distance can be extended by compensating for the waveform distortion of the signal.
  • an optical fiber amplifier using a rare earth element such as erbium, a Raman optical amplifier, a semiconductor optical amplifier, or the like may be inserted at an arbitrary position as necessary. Is possible. .
  • FIG. 8 shows a third embodiment of the present invention, showing an example in which the present invention is applied to a wavelength division multiplexing transmission device, and an example in which the present invention is incorporated in an optical receiver.
  • the optical signals of different wavelengths ⁇ 1, 22, and ⁇ 3 output from the optical transmitters 13 0—1, 1 3 0—2, and 13 0—3 are combined by the optical wavelength multiplexer 1 3 7.
  • Waves are transmitted through one optical fiber transmission line 13 1, amplified by the optical preamplifier 13 3, and then separated again by the optical wavelength demultiplexer 1 38 into wavelengths ⁇ 1, ⁇ 2, ⁇ 3 Is done.
  • the optical signals of the respective wavelengths are respectively transmitted to the automatic chromatic dispersion compensating optical receivers 135-1—1, 135-2, and 1335 incorporating the automatic chromatic dispersion compensator (or polarization dispersion compensator) of the present invention.
  • the number of high-frequency components is reduced and the cost is reduced by sharing the photodetector 106 with the photodetector of the optical receiver for receiving digital information. That is, from the photodetector 106
  • the output electrical signal is split into two, one of which is input to the clock / data recovery circuit 136, where the digital information signal is recovered.
  • the other is input to the A / D converter 107 as in the above-described embodiment, and used for sampling the amplitude value.
  • FIG. 9 shows a fourth embodiment of the present invention, in which the A / D converter 107 of the above embodiment is replaced with a variable identification circuit 140 to improve the feasibility of a sampling circuit.
  • the electric signal waveform output from the photodetector 106 is input to the variable identification circuit 140, and the amplitude of the electric signal is output at the timing indicated by the asynchronous sampling clock 109 generated by the clock generator 108. After being converted to 0 or 1 digital signal, it is input to the control circuit 110 through the integrating circuit 142.
  • the control circuit 110 outputs the discrimination level reference signal 141, and slowly changes the discrimination level of the variable discrimination circuit 140 as compared with the bit rate of the information signal and the asynchronous clock 108.
  • the discrimination level reference signal 141 takes the amplitude value Vr
  • the probability that the amplitude 1 appears in the digital data output from the discrimination circuit 140 is the probability that the amplitude value of the input signal exceeds Vr. Is equal to Therefore, by sweeping Vr slowly from the lower limit to the upper limit of the waveform amplitude range and examining the probability that the output signal of the discriminating circuit 140 becomes 1, the cumulative frequency distribution of the input signal amplitude can be obtained. it can.
  • the integration time constant of the integration circuit 142 is set to be sufficiently lower than the sampling speed and higher than the sweep speed, the signal voltage output from the integration circuit 142 becomes the identification circuit 144. Corresponds to the probability that the output signal of becomes 1. Since the amplitude frequency distribution can be calculated by differentiating this cumulative frequency distribution, this configuration has the same effect as the above-described configuration in which the A / D converter is used as a sampling circuit.
  • the mounting form of the integration circuit 144 may be different as long as it is a circuit that outputs an output corresponding to the probability of amplitude 0 or 1 among the data output by the variable identification circuits 14 and 0. For example, it can be realized by a form in which the number of times of amplitude 1 is counted and output by a high-speed counter. Also, if necessary, the integration action can be performed inside the control circuit. You may do it.
  • FIG. 10 shows a fifth embodiment of the present invention, in which a variable electric signal waveform deterioration compensating circuit compensates for deterioration of a received waveform.
  • a transpersal filter and a discriminative feedback type equalizer are used as the variable electric signal waveform deterioration compensation circuit.
  • the three-tap type transpersal filter section consists of three 1-bit delay circuits 144 connected in cascade behind the output section of the photodetector 106. 1 1 4 4 1 -3, a part of the output signal of each bit delay circuit is branched and multiplied by weight counts a0 to a2.Three weighting circuits 1 4 5, two adding the output signals of these three weighting circuits It consists of an adder circuit 146.
  • the 1-tap type feedback equalizer has a 1-bit delay circuit 144-4-4 that delays and reproduces the data that has been identified and recovered by the clock / data recovery circuit 1336, and weights the weight b0. It consists of a circuit 144 and one adder circuit 144.
  • An electric signal obtained from the photodetector 106 is subjected to waveform equalization by the first transversal filter section acting as a linear filter. At the same time, a part of the identified digital signal is fed back and added after the clock data recovery circuit, and is subjected to nonlinear equalization.
  • These waveform equalization characteristics and frequency characteristics are based on the asynchronous waveform deterioration of the present invention, which is composed of the variable identification circuit 140, the peak generator 108, the integration circuit 144, and the control circuit 110.
  • the control circuit 110 controls the weighting of the weighting circuit 144 so as to minimize the amount of waveform deterioration detected by the detection unit. This control algorithm is almost the same as the maximum value minimum value control described above.
  • the present invention is also effective when controlling a compensation circuit in the electric domain.
  • the chromatic dispersion, the polarization dispersion, the band degradation, and the intersymbol interference inherent in the transmission waveform, etc. It is possible to compensate for the waveform deterioration factor.
  • FIG. 11 is a diagram showing the relationship between the amount of chromatic dispersion and the nth moment when an optical signal is RZ-modulated in the present invention.
  • the detection characteristics of waveform deterioration are significantly different from those of NRZ, and the curve of the nth moment periodically undulates. For this reason, the detection range is narrower than in the case of NRZ, but for example, by controlling so that the second moment (thick line) is maximized, it is about 130 ps / nm, which is 1.6 times that of the mouthpiece extraction method. Double the control range.
  • FIGS. 12 (a) and 12 (b) show examples in which the above band is reduced to a signal bit rate of 1 Z4 when receiving NRZ and RZ optical signals, respectively.
  • the detection range of waveform degradation during minimum control of the fourth moment is 900 ps / nm or more, which is about nine times that of the conventional method, and is a very effective method.
  • the detection band is limited, the waveform becomes NRZ-like, so the detection characteristics change significantly and the effectiveness is higher.
  • the width is about 550ps / nm, which is 7 times larger than before.
  • the minimum control of the even moment of the fourth order or more and the odd moment is also applicable.
  • FIG. 13 shows a sixth embodiment of the present invention, which is an example of compensation for a wavelength multiplexed signal.
  • the chromatic dispersion compensator 102 is inserted immediately before the optical wavelength demultiplexer 1338, and collectively compensates for deterioration of a plurality of optical signals before separation.
  • Such compensation can be achieved by using a chromatic dispersion compensator such as an optical etalon or an optical transpersal filter having a periodicity with respect to the wavelength, or a compensator having a sufficiently wide wavelength range.
  • the signal waveform deterioration compensator 150 of the present invention is arranged immediately before the optical receiver 134-1—1 corresponding to the optical signal of the wavelength ⁇ 1, and the control signal 1 obtained from the control circuit 110 is provided.
  • the chromatic dispersion compensator 102 is controlled by 03.
  • the chromatic dispersion compensator 102 operates so that the reception waveform of the wavelength ⁇ 1 is optimal, but the chromatic dispersion is simultaneously compensated for the wavelengths of 12 and ⁇ 3, and a good reception waveform is obtained.
  • a single-pass filter 151 having a bandwidth of about 1/4 of the bit rate is arranged between the photodetector 106 and the AZD converter 107 to detect waveform deterioration. By reducing the bandwidth of the section, the detection characteristics are improved as shown in Fig. 12 above.
  • Components such as a low-pass filter are not necessarily required for such band reduction, and cost is reduced by intentionally using inexpensive components with a narrow bandwidth for the photodetector 106 and A / D converter 107. It is also possible to reduce it. Also, since the purpose of reducing the bandwidth of these components is to make the received waveform sufficiently large, it is not necessary to control with high precision. Therefore, it operates without any problem even if the bit rate of the received signal changes to some extent, and it can be compatible with multi-bit rate.
  • FIG. 14 shows a seventh embodiment of the present invention, in which a polarization dispersion compensator for a multi-bit rate is configured.
  • a polarization dispersion compensator is configured by disposing a polarization dispersion element 153 such as a polarization maintaining fiber immediately after the polarization controller 152.
  • the polarization controller usually has 2 to 4 control input terminals.
  • the control circuit 110 generates four control signals 103 and controls them simultaneously.
  • a compensation function may be added to the polarization dispersion compensation circuit to compensate for higher-order polarization dispersion and the like, if necessary, or may be expanded, or a chromatic dispersion compensation circuit may be provided for simultaneous control. Absent.
  • the sampling timing for signals of a plurality of bit rates is always asynchronous with the bit timing of the information signal.
  • the sampling clock 1109 output from the clock generator 1108 is an integer multiple or a fraction of the bit rate
  • the amplitude of the bit is always sampled only at the same time, so that the correct amplitude frequency distribution is obtained.
  • a low-frequency signal having a frequency ⁇ f is generated by the low-frequency oscillator 154, and the cut-off frequency is periodically shifted by df at this frequency. Try not to synchronize.
  • the above variable asynchronous sampling is not necessarily limited to polarization dispersion compensation, The present invention can be applied to other compensation such as dispersion compensation without any problem.
  • the method of de-synchronization there is a method in which the sampling timing is randomized, or which is disjoint from the bit rate range that the sampling input optical digital signal can take. For example, in the latter case, assuming that the signal bit rate ranges from 9.95328 Gbit to 12.5 Gbit / s, the sampling frequency is in a range that is not an integer multiple of these values or a fraction of an integer (for example, 6.25 GHz). ⁇ 9. 9GHz) and set it to 7GHz. In particular, when these cannot be satisfied, asynchronism can also be guaranteed by detecting the reception bit rate and frequency range and switching the sampling frequency to multiple values.
  • FIG. 15 is an eighth embodiment of the present invention, and shows a control algorithm of the control circuit 110 in a flowchart.
  • the control circuit 110 goes through a pull-in process, and after the pull-in is completed, an accurate control state (Accurate control state). ).
  • an accurate control state (Accurate control state).
  • the control circuit 110 first has a wide pull-in detection range, It is desirable to perform the pull-in control using the moment (in the case of an NRZ waveform, for example, the fourth-order moment m 4 ).
  • the pull-in operation is started again even when the external reset signal (reset) is turned on in the execution state of the accurate control algorithm (accurate control). This is because the pull-in operation is intentionally performed when an incorrect control point is erroneously obtained, or when a signal to be received is intentionally switched.
  • a reset signal is generated when the number of code errors exceeds a certain value, It can be generated in conjunction with the error signal of the device.
  • the control circuit 110 detects the presence or absence of an optical signal from the strength of the output signal of the AZD converter 107 or the variable identification circuit 140. It is possible. Alternatively, the presence / absence of an optical signal may be notified from a monitoring signal transmitted by wavelength multiplexing with an optical signal, an optical receiver, or an external input signal.
  • the control circuit 110 stops the control operation (Idol). Thereafter, when the optical signal is input again (signal 0N), the operation is resumed from the pull-in operation.
  • a waveform deterioration compensator that can support a multi-bit rate by asynchronously sampling a waveform and that can greatly expand the detection range of waveform deterioration compared to the conventional method is obtained.
  • the waveform deterioration compensation circuit can be used commonly for many types of compensation such as polarization dispersion compensation, chromatic dispersion compensation, and band degradation compensation by replacing the degradation compensator as necessary. Can be reduced.
  • the configuration can be simplified and the cost can be reduced.
  • control is performed using the statistical moment, which is a universal normalization parameter that indicates the state of the statistical distribution, changes in gain and loss in the receiver due to changes in signal level and aging, discrepancies in identification timing, A control signal can be easily calculated even for a waveform that is not affected by the presence or absence of signal noise and that has deteriorated to the point where the eye opening point of the waveform has disappeared and the mouthpiece cannot be extracted. As a result, a detection range that is approximately six times that of the conventional method can be realized.
  • the control point is at the point where the waveform deterioration is minimum, and compensation can be made for deterioration factors other than chromatic dispersion, polarization dispersion, and band deterioration, such as the self-phase modulation effect, which is a nonlinear effect of an optical fiber.
  • the detection range of the NRZ signal can be further expanded to 1.5 times or more.
  • the detection characteristics can be made equal to NRZ
  • the detection range can be expanded to the same level as NRZ
  • the same deterioration detection circuit can be shared with the NRZ signal.
  • the sampling frequency should be relatively prime to all possible values of the bit rate, the sampling timing should be random, the sampling frequency should be switched to several different frequencies, and the sampling frequency should be changed over time. Therefore, it is preferable not to synchronize with a signal of any bit rate.
  • both the detection sensitivity and the detection range of the waveform degradation can be achieved, and the accuracy of the automatic compensation can be improved while keeping the automatic pull-in range of the automatic waveform degradation compensator wide.
  • a signal waveform deterioration compensator having a wide detection range and capable of coping with a wide range of bit rates with one circuit is obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

波形劣化の検出範囲を拡大、またマルチビットレート対応可能とする。入力ファイバ(101)から入力された波形劣化したNRZ光信号を波長分散補償器(もしくは偏波分散補償器)(102)に入力して補償する。一方、光検出器(106)は出力光の一部を受信し、サンプリング回路(A/Dコンバータ)(107)で受信波形強度を非同期サンプリングする。制御回路(103)は得られた波形振幅の度数分布から、N次の偶数モーメント(Nは4以上)を算出し、この値が最小となるように制御する。

Description

明細書 信号波形劣化補償器
技術分野
本発明は、 光ファイバを用いた光情報伝送に関し、 特に伝送中の信号波形劣化 を補償する補償器に関するものである。 背景技術
超高速光通信分野では、 伝送路光ファイバや使用する部品の持つ波長分散や偏 波分散、 帯域制限という現象が、 伝送速度や伝送距離の大きな制限要因となって いる。 「波長分散 (CD : Chromatic Dispersion)」 とは、 波長の異なる光が光ファ ィパ中で異なる速度で伝送される現象である (以下、 単に分散と言った場合は波 長分散を指す)。高速で変調された光信号の光スぺク トルは異なる波長成分を含み、 これらの成分は波長分散の影響によりそれぞれ異なる時刻に受信端に到着し、 そ の結果、 伝送後の光波形は大きな波形歪を引き起こすことが知られている。 この ような波長分散の影響を避けるため、 波長分散補償という技術が検討されている (以下、単に分散補償と記述した場合、波長分散補償を指す)。波長分散補償とは、 伝送路に用いられる光ファイバと逆の波長分散特性を持った光デバイスを光送信 機や受信機内に配置することにより、 光ファイバの波長分散特性を打ち消し、 受 信される光波形の歪みを防ぐ手法である。 波長分散補償方式としては、 伝送路と 逆符号の波長分散を持つ分散補償ファイバや、 光干渉計、 光回路、 光ファイバグ レーティング、 光トランスバーサルフィルタなどを用いる手法等が検討されてい る。 また、 受信機内に電気トランスパーサルフィルタなどの電気的補償回路を配 置して波形劣化を補償することも検討されている。
特に 10Gbit/s以上の光信号を数 100km以上伝送する場合、光ファイバの温度の変 化による波長分散量の変動が問題となることが知られており、 変動に応じて補償 量を可変する可変分散補償技術が検討されている。 本技術で用いる可変波長分散 捕償器には、 例えば光ファイバグレーティングに温度勾配や歪を与えたり、 光干 渉系に温度や位相の変化を与えたりして波長分散量を可変とするものが知られ ている。 また、 上記電気トランスパーサルフィルタの場合、 フィルタ特性を可変 することで可変の補償が可能となる。 このような可変分散補償器は、 高速の光送 受信器の波長分散耐力の不足を補うためにも用いられる。 例えば、 40Gbit/s光送 受信器の分散耐カ幅は最大でも 80ps/nm程度と極めて小さく、広く用いられるシン ダルモードファイバ (S M F ) わずか 4 k m分である。 したがって、 固定の波長 分散補償デバイスを用いた伝送では、 伝送距離が 4 k m変わるごとに補償量の違 うデバイスを取りかえて伝送路分散を 8 0 p s / n m以下にする必要があるため、 分散補償器の種類が多くなり、 その管理やコスト、 補償器の製造 ·配置のためィ ンストールに要する時間が長くなるなど大きな問題となる。 また一方で伝送路の 波長分散量や長さを高精度に測定する必要が出たり、 ユーザが簡単に伝送経路の 変更ができなくなるなど多くの支障が生じる。
そこで、 可変波長分散補償器を受信器の直前に配置し、 受信波形や伝送特性の 劣化量を検出して常に最適の受信波形となるように波長分散量を自動的に可変す る、 自動波長分散補償技術が検討されている。 この技術によって、 高速の光送受 信器であっても従来同様に、 伝送路波長分散を考慮せずともユーザが装置を接続 すれば動作する状態、 すなわち 「プラグ &プレイ」 を実現することができる。 一方、 「偏波分散 (PMD : Polarization Mode Dispersion)」 とは、 光ファイバの 2つの主軸 (T Eおよび TM) 間で光信号の伝送速度が異なる現象である。 その 結果、 T E . T Mの 2つの主軸に分配された光信号は互いに異なった時刻に受信 端に到着し、 大きな波形歪を引き起こすことが知られている。 このような偏波分 散の影響を避けるため、 偏波分散補償という技術が検討されている。 偏波分散補 償とは、 伝送路に伝送路と逆の偏波分散を持った素子などを挿入して光波形の歪 みを防ぐ手法である。 また、 受信機内にトランスパーサルフィルタなどの電気的 補償回路を配置して、偏波分散による波形劣化を補償することも検討されている。 波長分散と異なり、 光ファイバ伝送路の偏波分散量は周囲の温度変化や入射偏波 状態の変動などによって時々刻々変化することが知られており、 このため劣化量 を検出して常に劣化が最小の最適な補償状態に制御する、 自動偏波分散補償が必 須となっている。
また、 「帯域制限」 とは、伝送路として使用するマルチモード光ファイバ、 光 信号の生成や受信に使用する半導体レーザゃフォトダイオード、 I C等の帯域の 限界によって光信号の高周波成分など特定の帯域成分が失われる現象であり、 高 速の光伝送において受信光波形の波形劣化につながる。 帯域制限に対しても、 光 もしくは電気トランスパーサルフィルタなどの補償回路を配置して弱くなった高 周波成分を補償することが検討されているが、 本現象も光ファイバへの入射モー ドゃ光ファイバの状態 ·伝送距離、 個々の光送信器の光源の光スぺクトル特性や 変調特性に大きく依存するため、 あらかじめ補償量を決めることができず、 劣化 量を検出して常に劣化が最小の最適な補償状態に制御する、 自動補償が必須とな る。 なお、 この補償は、 帯域制限に限らず、 同時に波長分散や偏波分散による劣 化の一部、 波形の初期符号間干渉などにも補償効果がある。
このように光ファイバ伝送で用いられる多くの可変光 ·電気の補償器の自動制 御には、 なんらかの波形や伝送特性の劣化量を検出する技術が必要となる。 図 2 に、 可変分散補償や偏波分散補償における波形劣化検出の代表的手法であるク口 ック抽出 ·最大制御法を用いた、 従来の自動波長分散補償器の構成例を示す。 光ファイバ伝送によって光ファイバの波長分散 ·偏波分散などを受けて劣化し た光デジタル情報信号は、 入力光ファイバ 1 0 1を介して従来の自動波長分散補 償器 1 2 0に入力される。 光信号は、 可変光波長分散補償器 1 0 2を透過するこ とで波長分散による劣化の補償を受け、 その後、 出力光ファイバ 1 0 5より出力 される。 なお、 補償器 1 0 2に偏波分散補償器を用いた場合、 ほとんど同一の構 成で可変偏波分散補償器を構成することも可能である。 補償後の光信号は、 光分 岐器 1 0 4でその一部が分岐され、 光検出器 1 0 6に導かれて電気信号に変換さ れる。 その電気信号を整流回路 1 2 1で整流し、 その出力信号を透過中心帯域が ビットレートに等しいパンドパスフィルタ 1 2 2でフィルタリングすることによ つて、 受信信号中のクロック成分を抽出する。 このクロック信号の強度は受信波 形のアイ開口度にほぼ比例するので、 最大値制御回路 1 2 3から得られる制御信 号 1 0 3を可変光波長分散補償器 1 0 2に入力して波長分散量を変更し、 クロッ ク信号が最大となるよう最大値制御を行うことで、 常に波形劣化を最小に保つこ とができる。
このようなクロック抽出による可変波長分散補償器の制御は、 例えば文献 Extracted一し丄 ock Power Level Monitoring scheme for Automatic Dispersion Equalization in High-Speed Optical Transmission Systems ( IEICE Trans. Commun. , Vol. E84-B, No. 11 Nov. 2001)に報告されている。 本論文の図 6には、 20Gbit/sの N R Z (Non Return to Zero) / R Z (Return to Zero) 方式におけ るクロック成分強度と伝送路の波形分散量の関係が示されている。 例えば、 図 6 ( b ) 中に実線で示される N R Z信号の場合、 クロック信号の強度 (縦軸) は波 長分散量(横軸) カ 150ps/nmの点で最大強度となっており、 この位置でほぼ波形 が最良となる。 この点を中心とし、波長分散量が +50ps/nm〜- 350ps/nmの幅およそ 400ps/nmの範囲ではク口ック強度が単峰性で上に凸となっており、 ク口ック最大 となる方向に可変分散補償器の補償量を制御すれば、 常に最良の波形を得ること ができる。 非特許文献 1
Extracted- Clock Power evel Monitoring Scheme ior Automatic Dispersion Equal izat ion in High-Speed Optica丄 Transmission Systems ( IEICE Trans. Commun. , Vol. E84- B, No. 11 Nov. 2001) 発明の開示
しかしながら、 前記のようなクロック最大制御では、 波形劣化が大きくなると ク口ック信号の強度が単峰性を失ってしまい最良波形への引きこみができなくな るという問題がある。 例えば引きこみ可能な分散量の幅は、 上記文献の図 6の実 験結果では 20Gbit/s N R Z光信号でおよそ 400ps/nmの範囲、 R Z信号でおよそ 250ps/nmとなる。 この値はビットレートの二乗に反比例するため、 ビットレート 40Gbit/sに換算すると、 それぞれ 100ps/nm (N R Z ) , 80ps/nm ( R Z ) となる。 これはほぼ 40Gbit/s受信器の分散耐カ幅に相当する。 すなわち 「受信器が受信可 能な波形は最良点に引きこめる」 程度の検出範囲であることがわかる。 実用的な プラグ &プレイを実現するには、 波形劣化の検出範囲はできる限り広いことが望 ましく、 例えば可変分散補償器や可変偏波分散補償器の補償範囲をカバーする必 要がある。 例えば 40Gbit/sの可変分散補償においては、 10Gbit/sの送受信器と 同程度の使い勝手を目安として、 10Gbit/s逢受信器の分散耐カ( > 800〜500Ps/nm) の実現が目安となる。 すなわち最低でも ±250ps/nm程度が必要とされており、 検 出範囲の広い波形劣化検出法が必要となっている。
また上記の問題は、図 2が自動偏波分散補償器である場合にも同様に存在する。 通常の N R Z送受信器の偏波分散耐カ幅はビット幅の約 1 / 3程度 (例えばビッ トレートが 40Gbit/sの N R Z信号の場合ビット幅 25psであり、 送受信器の偏波分 散耐カはおよそ 7. 5ps) である。 クロック抽出を用いた波形劣化検出法の場合、検 出範囲は最大 1 / 2ビットとなる。 この理由は、 偏波分散による波形は光フアイ パ伝送路の 2つの,主軸を伝送された波形の和となるため、 偏波分散量がちょうど 1ビットの場合、 劣化した光信号の波形が再び 2値の波形に戻ってしまい、 偏波 分散量ゼロの場合と同じ強度のクロック信号が生じるためである。 すなわち、 ク 口ック信号の強度が単峰である偏波分散量の範囲は 0〜 1 / 2ビットである。 光 ファイバの偏波分散量は通常伝送距離の平方根に比例し、 その値は 0. lps/km1/2程 度である。 しかしながら、 敷設された光ファイバ伝送路には偏波分散量の多い特 性の悪いものも混在しており、 そのような光ファイバの偏波分散量は最大 2. 0ps/km1/2に達するといわれている。 このような光ファイバでは、 わずか 100km の伝送路で 20psの分散量(40Gbit/sの場合、ビット幅の 80%)に達する。このため、 偏波分散補償器においても検出範囲の広い波形劣化検出法が必要とされている。 先に述べた帯域劣化の補償に際しても、同様の波形劣化検出方式が必須となる。 これもクロック信号強度の検出によって制御は可能ではあるが、 上記の波長分 散 · P MD補償同様に検出範囲が不足するためである。
さらに、 従来のクロック抽出方式においては、 検出回路の検出特性が光信号の ビットレートに強く依存し、 ビットレートの異なる光信号の補償には適用できな いという問題点があった。光信号のビットレートの種類は近年大きく増しており、 同じ 10Gbit/sと言われるシステムでも SONET信号の 9. 95Gbit/s、 FEC (Forward Error Correct ion)を用いた伝送システムの 10. 7Gbit/sや 12. 6Gbit/s、 10Gイーサ の 12. 5Gbit/sなど多岐にわたっている。 クロック抽出方式では、 パンドパスフィ ルタ 1 2 2として Q値が数 1 0 0と帯域幅の極めて狭いフィルタを使用する必要 があるため、 一つの回路でこのような広範囲のビットレートに対応することは 困難である。 一方では製品種類を減らして低コスト化を図ることが必要となって おり、 また製品を購入した顧客側の便を増す必要もあるため、 自動補償器の波形 劣化検出回路のマルチビットレート化の必要性が高まっている。
上記では、 特に波長分散補償におけるクロック最大制御の例をあげたが、 同様 の従来技術として広く用いられる技術としては、伝送特性の指標のひとつである、 受信データの符号誤り率が最小となるように制御する誤り率最小制御がある。 こ の制御も上記のク口ック抽出方式と同様に、 波形劣化の検出範囲が不足する問題 がある。 すなわち受信器内で適正なクロック抽出を行い、 受信器がある程度正常 にデジタルデータを認識している場合にしか制御信号を得ることができないため である。 この検出範囲はクロック抽出最大制御の場合同様大きく不足し、 また同 様にマルチビッ トレート対応も困難である。 さらに、 受信器から得られる符号誤 り情報を受け取ってはじめて補償器の制御が可能となるため、 補償器と受信器を 別個の製品として分離することが困難という問題点がある。
本発明の目的は、 可変波長分散補償や、 可変偏波分散補償、 可変帯域補償など に用いる波形劣化検出法において、 上記のような問題点を解決し実用的な波形劣 化補償器を提供することにある。
上記目的は、光検出器で光デジタル情報信号を電気デジタル情報信号に変換し、 サンプリング回路を用いて情報信号のビットタイミングに非同期で電気デジタル 情報信号の振幅をサンプリングして振幅度数分布を取得し、 制御回路内で該度数 分布から波形劣化量に対応する信号を抽出し、 波形劣化を最小とするような制御 信号を得る方式によって解決することができる。 特に、 この制御信号によって可 変光信号波形劣化補償回路もしくは可変電気信号波形劣化補償回路の補償量を制 御することによって、信号波形劣化を自動的に最小に補償することが可能となる。 上記の波形劣化補償回路として、 波長分散補償回路、 偏波分散劣化補償回路、 帯域劣化補償回路、 またはトランスバーサルフィルタもしくは識別帰還補償器を 含む補償回路を用いることで、 光ファイバ伝送における劣化要因を効果的に補償 することが可能となる。 また、 マルチビットレート対応とするためには、 複数の異なるビットレートの 情報信号が入力された場合でも上記の非同期のサンプリングを保証する必要が ある。 これは、 サンプリング回路のサンプリング周波数を前記ビットレートの取 りうるすべての値と互いに素とすることによって、 もしくはサンプリング回路の サンプリングタイミングをランダムとすることによって、 もしくはサンプリング 周波数を複数の異なる値に切り替えることによって、 もしくは該サンプリング周 波数を時間的に変化させることによって実現できる。
また、 光検出器からサンプリング回路に至る経路の周波数帯域を、 情報信号の ビットレートの 1 / 2以下とすることによって、 さらに広範囲の波形劣化の検出 と補償が可能となる。
上記の制御回路では、 度数分布の 2次以上の統計モーメントを算出し、 算出し た統計モーメントが最大、 最小、 もしくは一定値となるように信号波形劣化補償 回路を制御することで、 波形の劣化を効果的に検出し、 波形劣化を自動補償する ことが可能となる。 例えば、 情報信号が N R Z形式の場合には、 統計モーメント として 4次以上の偶数モーメントのいずれかを算出し、それが最小となるように、 もしくは 2次のモーメントを算出し、 それが一定値となるように、 制御回路が信 号波形劣化補償回路を制御すればよい。 また、 情報信号が R Z形式の場合には、 統計モーメントとして 2次の偶数モーメントを算出し、 その値が最大となるよう に、 もしくは 4次以上の偶数モーメントのいずれかを算出し、 それが最小となる ように制御回路が信号波形劣化補償回路を制御すればよい。
また、 誤動作を防ぎ、 波形劣化の検出範囲や感度を拡大するためには、 光信号 無の状態では信号波形劣化補償回路の制御を停止し、 光信号有の状態で信号波形 劣化補償回路の制御を実施するようにする。 さらには、 信号波形劣化補償回路の 電源投入もしくは外部からの指示信号入力後もしくは光信号が無から有に変化し た場合に、 制御回路は、 最初、 低次の統計モーメントを用いて信号波形劣化補償 回路を制御し、 その後、 より高次の統計モーメントもしくは他の方式によって生 成した制御信号を用いるように制御アルゴリズムの切替を行うことが有効である。 本明細書は本願の優先権の基礎である日本国特許出願 2003-149513号の明細書 および Zまたは図面に記載された内容を包含する。 図面の簡単な説明
図 1は、 本発明の第 1の実施形態を示す構成図である。
図 2は、 従来の自動波長分散補償器の構成図である。
図 3は、 本発明の原理となる受信波形と非同期振幅度数分布の関係を示す図で ある。
図 4は、 本発明における波長分散量と n次モーメントの関係を示す図である。 図 5は、 本発明における制御回路 1 1 0の構成を示す図である。
図 6は、 本発明における制御回路 1 1 0の動作アルゴリズムを示す図である。 図 7は、 本発明の第 2の実施形態を示す構成図である。
図 8は、 本発明の第 3の実施形態を示す構成図である。
図 9は、 本発明の第 4の実施形態を示す構成図である。
図 1 0は、 本発明の第 5の実施形態を示す構成図である。
図 1 1は、 R Z変調光信号に対する波長分散量と n次モーメントの関係を示す 図である。
図 1 2は、 本発明の波形劣化検出部の帯域削減の効果を示す図である。
図 1 3は、 本発明の第 6の実施形態を示す構成図である。
図 1 4は、 本発明の第 7の実施形態を示す構成図である。
図 1 5は、 本発明の第 8の実施形態で、 制御回路 1 1 0の制御動作を示すフロ —チャートである。 発明を実施するための最良の形態
以下、 図面を参照して本発明の実施の形態を説明する。
図 1は本発明の第 1の実施例を示す構成図であり、 本発明を適用した自動波長 分散補償器 1 0 0の構成例を示している。
入力光ファイバ 1 0 1から入力された光デジタル情報信号は、 可変光波長分散 補償器 1 0 2を透過することで波長分散による劣化の補償を受け、 補償後の光信 号として出力光ファイバ 1 0 5より出力される。 補償後の光信号の一部は光分岐 器 1 0 4で分岐され、 光検出器 1 0 6で電気信号に変換されたのち、 サンプリン グ回路である A/D変換器 1 0 7に入力される。 八70変換器1 0 7は、 クロッ ク発生器 1 0 8の発生する情報信号と非同期のサンプリングクロック 1 0 9の タイミングに従い、入力電気信号の振幅をサンプリングする。制御回路 1 1 0は、 デジタル化された振幅情報を一定時間蓄積して得た振幅の度数分布から、 受信信 号の波形劣化に対応した波長分散量の制御信号 1 0 3を生成し、 これを可変光波 長分散補償器 1 0 2に入力し、 可変光波長分散補償器 1 0 2の波長分散量を波形 劣化が最小となるように制御する。 これによつて自動波長分散補償機能を実現す ることができる。 なお、 補償器 1 0 2として偏波分散補償器を用いた場合、 ほと んど同一の構成で可変偏波分散補償器を構成することができる。
図 3は、 40Gbit/sの N R Z光信号伝送時の受信波形 (左) と、 受信波形を非同 期にサンプリングして得た振幅度数分布 (右) を示している。 図 3 ( a ) は、 伝 送路の波長分散量を受信波形劣化が最小となる- 40ps/nmに設定した場合である。 左側の受信波形にはほとんど符号間干渉がなく、 右側の振幅度数分布は正規化し たマークレベル(1 ) とスペースレベル(0 )に鋭いピークを持つことがわかる。 一方、 図 3 ( b ) は、 波長分差量を- 200pS/mnと大きくし、 大きな波形劣化を発生 させた状態である。 左図のように波形は大きく歪み、 これに伴って右側の度数分 布の鋭いピークは失われ、 分布が平坦になっていることがわかる。 このように、 受信波形の振幅度数分布情報と波形劣化の度合が密接に関係していることが分か る。 本発明では、 上記のような波形振幅のサンプリングをビットタイミングと非 同期で行うことが本質的に重要である。 これは、 波形の中心だけではなく、 ビッ トの境目にあたる肩の部分での波形劣化情報を取り込むことによって、 波形の変 化を高感度に検出できるからである。
制御回路 1 0 2では、 度数分布から波形劣化量を示す指標を取出すことが必要 となる。 本発明ではこのような指標として、 振幅度数分布の N次の統計モーメン トを利用する。 図 4は、 40Gbit/sN R Z光信号伝送において、 受信波形と非同期 にサンプリングした度数分布の n次統計モーメントと波長分散の関係を示した図 であり、 本発明の効果を示している。 本例では光波形をランダムなタイミングで 1 0 0 0 0回程度サンプリングし、 その振幅の度数分布からまず 1次のモーメン トである振幅平均値 μ、 2次のモーメントである標準偏差 σを算出した。ついで、 これらの値で正規化した n次のモーメント mnを、 次式を用いて算出した (Xkは 各振幅サンプルの値、 Kはサンプル数)。 ヽ'
m 丄 Y X μ
び 図中の ml〜! η8の曲線は、 それぞれ波形の 1次〜 8次のモーメントをプロットし たものである。 なおグラフの微小な凹凸はサンプリングタイミングを乱数とした ために発生した分布の片寄りであり、 取得サンプル数を多くすることで平滑化さ れる。 また、 図に黒ひし形でマークした点線は受信波形のアイ開口劣化を dBで算 出したものであり、 この値が小であるほど波形劣化が小さいことになる。 すなわ ち、 横軸の波長分散量が- 40ps/nm程度の点で波形劣化が最小であり、 この点から 離れるに従って波形劣化が大きくなる様子がわかる。 一方、 図から、 1次のモー メントは一定値であるが、 2次以上のモーメントは波長分散に対し大きく値が変 化するため、 波形劣化最小制御に利用できることが分かる。
例えば 3次以上の奇数のモーメントは、 波長分散がゼロで最小値を示し、 次数 Nが大となるほど急激に変化する曲線となる。 したがって、 3次以上の奇数のモ 一メントが最小となるように制御することで、 波長分散ゼ口の点への制御が可能 となる。 この制御が可能な理由は、 奇数次のモーメントが受信波形の振幅値分布 の上下対称性に対応しているためである。 例えば 3次の統計モーメントは歪度と 呼ばれており、 この値を最小にすることは振幅分布をできる限り上下対称とする ことに相当する。 一般に受信波形が最も上下対称となるのは、 波長分散や P MD がゼ口の点であり、 波長分散ゼ口の点が制御点となる。
一方、 2次のモーメントを制御に用いることも可能であり、 図 4の場合にはそ の値が 1. 0と一定値になるように制御することによって、波形がほぼ最適な点への フィードパック制御が可能となる。 波形劣化の検出可能範囲は 2次のモーメント が右下がりの領域であり、 その範囲はおよそ 180ps/nmである。
また、 4次以上の偶数モーメントは波形が最適となる- 40ps/nm付近で極小値を 取り、 その両側の広い範囲で下に凸のカープとなっている。 4次のモーメントは 尖度と呼ばれ、 統計分布の尖りの度合いを表す統計量である。 この値を最小にす ることは、 振幅分布が 0と 1の両極端に分離することを意味しており、 すなわち 波形劣化が最小と言うことに対応する。 例えば、 4次のカーブ (図中の m4) は およそ 600ps/nmの範囲で下に凸であり、 従来のクロック抽出法 (lOOps/nm) のお よそ 6倍と極めて広い範囲で波形劣化を最小に制御することができる。
このような統計モーメントは統計分布の状態を表す普遍的な正規化パラメータ であり、 信号レベルの変化や経年劣化による受信器内の利得や損失の変化、 識別 タイミングのずれ、 光信号の雑音の有無などに影響を受けず、 さらに波形のアイ 開口点が無くなりクロック抽出もできないほど劣化した波形に対しても、 容易に 計算が可能であるという利点を持つ。 この結果、 波形劣化量の検出範囲も他の方 式と比べ極めて広いという特徴を持つ。 特に偶数次のモーメントを用いる場合、 波長分散ゼロではなく、 波形劣化最小の点が制御点となるため、 波長分散や偏波 分散、 帯域劣化以外の劣化要素に対しても補償が行えるという利点がある。 例え ば、 光ファイバの非線型効果である自己位相変調効果が生じると最適な受信波形 を得るための波長分散量が異なる値となるが、 本発明の偶数次モーメントを用い た制御では非線型効果の影響も含めて最適制御を行うため劣化を防止できる。 ま た信号雑音の影響は信号の 0、 1レベルが広がるものであるため、 上記モーメン トへの影響は小さく、 サンプリング回数を増やせば平均化されるため本発明の動 作に本質的な影響はない。
これらの統計モーメントは、制御回路 1 1 0の内部に配置した演算ュニット(C P U) の演算処理で簡単に算出することができる。 図 5は制御回路 1 1 0の構成 例を、 また図 6はその動作アルゴリズムの一例を示している。
制御回路 1 1 0には、 サンプルデータの入力端子 1 2 4から、 サンプリング回 路(AZD変換器) 1 0 7の出力である振幅サンプル値 X iが入力される。演算ュ ニット 1 2 5はこのデータが一定個数 Kになるまで蓄え、 その後、 各サンプルデ —タ X iの n次モーメントを算出する。演算ュニット 1 1 0はさらに、 n次モーメ ントのいずれかを最大もしくは最小もしくは一定値となるように可変光波長分散 補償器 1 0 2を制御すべく、 DZ A変換器 1 2 6— 1 , 1 2 6— 2に値を設定し、 制御信号の出力端子 1 2 7から制御信号を出力する。 必要に応じてサンプリング ク口ックなどのサンプリングタイミングを示す信号を、 演算ュ-ットなどに直接 入力し、 サンプル数の計数や演算のタイミング信号として利用しても構わない。 本例では 2つの DZA変換器 1 2 6— 1, 1 2 6 - 2を用いて 2組の制御信 号を出力しているが、 これは制御対象となる補償器の制御信号数や、 使用する補 償器の数に依存する。 例えばトランスパーサル光フィルタや偏波分散補償器では 複数の制御端子を持つのが普通であり、 また偏波分散 ·波長分散 ·帯域劣化を同 時に補償する場合や、 補償範囲の異なる 2つの補償器を縦続接続する場合などに も複数の制御信号が必要となる。 単純な可変分散補償器の制御の場合などは、 制 御信号はひとつでも構わない。
制御回路 1 1 0で用いられる最大 ·最小制御のアルゴリズムは、 一般に最大 · 最小制御に用いる手法であれば特に制限はない。 例えば、 制御工学の教科書に見 られる山登り法、 最大傾斜法、 制御信号のディザリングなどの一変数もしくは多 変数制御手法を用いることが可能である。 例えば、 複数の制御信号をそれぞれ一 定量ずつ変化させて n次モーメントの変化量を測定し、 その傾斜が正もしくは負 に最大となる方向に複数の制御信号の組 (ベクトル) を変化させることで、 n次 モーメントの最大もしくは最小制御が実現できる。
なお本発明に類似した波形の非同期度数分布の利用例としては、 例えば "Quality Monitoring of Optical Signals influenced by Chromatic Dispersion in a Transmission Fiber using Averaged Q - Factor Evaluation ( IEEE Photonics Technology Letters , Vol. 13 , No. , Apr. 2001)などがある。 この文献は、 波長 分散の影響下でも信号品質を示す Q値 (S N比) が検出が可能であることを示し たものであり、 本発明の目的とする波長波形劣化補償器の制御とは関連がない。 とくに Q値検出は、 波形の度数分布のうち信号強度と雑音強度の比を求めること が目的であり、本発明が目的とする波形歪の検出とは本質的に異なるものである。 例えば上記文献では、度数分布の 2つのピークから信号の 0、 1 レベルを判定し、 中間のレベルの信号を閾値処理して捨て、 信号強度と雑音成分 (0、 1 レベルの 広がり) の比を算出している。 これに対し本発明では、 統計モーメントを機械的 に計算するため、 0、 1 レベルの判定や閾値処理は不要であり、 またこれらのピ ークが判定できないほど波形が歪んだ状態でも適用が可能である。 また、 雑音自 体は本発明で算出する統計モーメントにはほとんど影響を与えず、 本発明ではむ しろ 0と 1の中間レベルの信号を波形劣化の度合を示す尺度として積極的に利用 しているため、 両者は大きく異なっている。
図 7は本発明の第 2の実施形態であり、 本発明を適用した光伝送装置の構成を 示している。 光送信器 1 3 0から出力された光信号は、 光ファイバ伝送路 1 3 1 _ 1を伝送されたのち、 光ファイバアンプなどの光増幅器によって構成された光 中継器 1 3 2で光のまま増幅され、再び光ファイバ伝送路 1 3 1— 2を伝送され、 光プリアンプ 1 3 3で増幅されて本発明の自動波長分散補償器 (もしくは偏波分 散補償器) 1 0 0に入力される。 波形劣化を補償された光信号は、 光受信器 1 3 4に入力されて電気情報信号に戻される。 本配置では、 本発明の自動波長分散補 償器 1 0 0と光受信器 1 3 4の間に電気信号のやりとりがないため、 両者を完全 に独立の装置として構成できる。 このため自動波長分散補償器 1 0 0をマルチビ ットレート対応の汎用品とすることで、 保守,保有製品数を削減したり、 受信器
1 3 4と別個に独立な製品とすることが可能という利点がある。 また、 自動波長 分散補償器 1 0 0を、 光受信器 1 3 4の直前に限らず、 光ファイバ伝送路の任意 位置、 例えば光中継器 1 3 2の直後などに配置することで伝送途中での波形歪を 補償し、 伝送距離を拡大することが可能という利点もある。
なお、 本実施例の光中継器や光プリアンプなどの光アンプは、 エルビウムなど の希土類を用いた光ファイバアンプや、 ラマン光増幅器、 半導体光増幅器などを 必要に応じて任意の個所に挿入することが可能である。 .
図 8は本発明の第 3の実施形態であり、 本発明を波長多重伝送装置に適用した 例、 および本発明を光受信器内に組み込んだ例を示している。 光送信器 1 3 0— 1、 1 3 0— 2、 1 3 0— 3から出力された互いに異なる波長 λ 1、 え 2、 λ 3 の光信号は、 光波長合波器 1 3 7で合波されて一本の光ファイバ伝送路 1 3 1を 伝送され、 光プリアンプ 1 3 3で増幅された後、 光波長分波器 1 3 8で再び波長 λ 1 , λ 2、 λ 3ごとに分離される。 各波長の光信号はそれぞれ、 本発明の自動 波長分散補償器 (もしくは偏波分散補償器) を組み込んだ自動波長分散補償光受 信器 1 3 5— 1 , 1 3 5 - 2 , 1 3 5— 3に入力される。 本構成では、 光検出器 1 0 6をデジタル情報受信用の光受信器の光検出部と共用することによって、 高 周波部品点数を削減し、 低コスト化を図っている。 すなわち光検出器 1 0 6から 出力される電気信号は 2つに分岐され、 その一方はクロック ·データ再生回路 1 3 6に入力され、 デジタル情報信号が再生される。 もう一方は、 前記の実施形 態と同様に A/D変換器 1 0 7に入力されて振幅値のサンプリングに用いられる。 図 9は本発明の第 4の実施形態であり、 前記実施例の A/D変換器 1 0 7を可 変識別回路 1 4 0で置き換え、 サンプリング回路の実現性を向上した例である。 現在の技術では、サンプリング速度が数 GHzを越える AZD変換器はコスト面など から実現がやや困難であり、一方、識別回路は動作ク口ック速度が 50GHzを越える ものが比較的容易に実現されている。 本構成では、 光検出器 1 0 6から出力され た電気信号波形は、 可変識別回路 1 4 0に入力され、 クロック発生器 1 0 8の発 生する非同期サンプリングクロック 1 0 9の示すタイミングで振幅 0もしくは 1 のデジタル信号に変換されたのちに、 積分回路 1 4 2を通して制御回路 1 1 0に 入力される。
制御回路 1 1 0は識別レベル参照信号 1 4 1を出力し、 可変識別回路 1 4 0の 識別レベルを情報信号のビットレート及び非同期クロック 1 0 8に比べてゆつく りと変化させる。 例えば識別レベル参照信号 1 4 1が振幅値 V rを取る場合、 識 別回路 1 4 0から出力されるデジタルデータ中で振幅 1が現れる確率は、 入力信 号の振幅値が V rを越える確率に等しくなる。 したがって V rを波形の振幅範囲 の下限から上限までゆつく りとスイープしながら、 識別回路 1 4 0の出力信号が 1となる確率を調べれば、入力信号振幅の累積度数分布を取得することができる。 積分回路 1 4 2の積分時定数を、 前記サンプリング速度より十分遅くまた前記ス ィープ速度より速くなるように設定すれば、 積分回路 1 4 2から出力される信号 電圧が前記の識別回路 1 4 0の出力信号が 1となる確率に対応することになる。 振幅度数分布はこの累積度数分布を微分することによって算出することができる ので、 本構成は前記の A/D変換器をサンプリング回路とした構成と同じ効果を 持つ。
なお、 積分回路 1 4 2は、 可変識別回路 1 4 ,0の出力するデータのうち振幅 0 もしくは 1の確率に対応する出力を出す回路であれば実装形態が異なっても構わ ない。 例えば、 高速のカウンタによって振幅 1の回数を計数して出力するなどの 形態でも実現可能である。 また、 必要に応じてその積分作用を制御回路の内部で 実施しても構わない。
図 1 0は本発明の第 5の実施形態であり、 可変電気信号波形劣化補償回路に よって受信波形の劣化補償を行った例である。 可変電気信号波形劣化補償回路と して、 本例ではトランスパーサルフィルタと識別帰還型等化器を用いている。 3 タップ型のトランスパーサルフィルタ部は、 光検出器 1 0 6の出力部の後ろに縦 続接続された 3つの 1ビット遅延回路 1 4 4一:!〜 1 4 4一 3、 各ビット遅延回 路の出力信号の一部を分岐し重み計数 a0〜a2を乗算する 3つの重み付け回路 1 4 5、 これら 3つの重み付け回路の出力信号を加算する 2つの加算回路 1 4 6で構 成されている。 また、 1タップ型の識別帰還等化部は、 クロック ·データ再生回 路 1 3 6で識別再生されたデータを遅延させてフィードパックする 1ビット遅延 回路 1 4 4— 4と、 重み b0の重み付け回路 1 4 5と、 一個の加算回路 1 4 6から 構成されている。
光検出器 1 0 6から得られた電気信号は、 最初のトランスバーサルフィルタ部 が線形フィルタとして働き、 波形等化を受ける。 また同時に、 クロック 'データ 再生回路の後から識別後のデジタル信号の一部が帰還されて加算されることで非 線型等化を受ける。これらの波形等化特性や周波数特性は、可変識別回路 1 4 0、 ク口ック発生器 1 0 8、 積分回路 1 4 2、 および制御回路 1 1 0で構成された本 発明の非同期波形劣化検出部によって検出された波形劣化量が最小となるように、 制御回路 1 1 0が重み付け回路 1 4 5の重みを変化することによって制御される。 この制御アルゴリズムは、 前述の最大値 '最小値制御とほぼ同一である。 このよ うに、 本発明は電気領域の補償回路を制御する場合にも有効であり、 この場合、 波長分散 ·偏波分散 ·帯域劣化、 さらには送信波形が元から持つ符号間干渉など の多くの波形劣化要因を補償することが可能である。
図 1 1は、 本発明において光信号が R Z変調されている場合の波長分散量と n 次モーメントの関係を示す図である。 波形劣化の検出特性は N R Zの場合と大き く異なり、 n次モーメントのカーブが周期的に大きく うねっている。 このため、 検出範囲は N R Zの場合に比べて狭いものの、 例えば 2次のモーメント (太線) が最大になるように制御を行うことでおよそ 130ps/nmと、 ク口ック抽出方式の 1. 6倍の制御範囲となる。 図 4や図 1 1に示す波形劣化の検出範囲は、 前記の実施例で光検出器 1 0 6か らサンプリング回路 ( /0変換器1 0 7、 もしくは可変識別器 1 4 0 ) に至 る経路の周波数帯域幅を十分小さくすることで大きく改善できる。 例えば図 1 2 ( a ) ( b ) は、 それぞれ N R Z、 R Z光信号を受信する場合に、 上記帯域を信号 ビットレートの 1 Z 4に削減した例を示す。
デジタル信号を歪無く受信するためにはナイキスト定理から、 少なくともビッ トレートの 1ノ 2の帯域が必要と言われるが、 本発明ではあえて波形劣化検出部 の帯域をこの値より低く設定することにより、 信号の高周波成分を落し、 波形を なまらせている。 この結果、 両図に見られるように波長分散の変化に対するモー メントの変化は極めてなだらかとなり、 単峰性となる検出範囲が大幅に拡大し、 また従来は使用できなかったモーメント成分も制御に使用可能となっている。 こ の理由は、 帯域削減によって、 波長分散に対して波形の急激な変化を引き起こす 高周波成分が失われるためである。 また同時に雑音成分も減少するという効果が ある。 例えば N R Z信号の場合、 4次のモーメントの最小制御時の波形劣化の検 出範囲は、 900ps/nm以上と従来方式に比べおよそ 9倍に拡大されおり、 非常に有 効な手法である。 R Z信号の場合、 検出帯域を制限すると波形が N R Z様となる ため、 検出特性が大きく変わり、 さらに有効性が高い。 例えば 2次のモーメント 最大制御の場合、 およそ幅 550ps/nmと従来の 7倍に拡大されている。 また、 4次以 上の偶数モーメントゃ奇数モーメントの最小制御も適用可能となる。
図 1 3は本発明の第 6の実施形態であり、 波長多重信号の補償例である。 本例 では、 波長分散補償器 1 0 2は光波長分波器 1 3 8の直前に挿入され、 分離前の 複数の光信号の劣化を一括して補償している。 このような補償は、 光エタロンや 光トランスパーサルフィルタなどの波長に対して周期性のある波長分散補償器や、 波長範囲の十分に広い補償器を用いることで可能である。 また、 本発明の信号波 形劣化補償器 1 5 0を波長 λ 1の光信号に対応した光受信器 1 3 4— 1の直前に 配置し、 制御回路 1 1 0から得られた制御信号 1 0 3によって波長分散補償器 1 0 2を制御している。 この場合、 波長分散補償器 1 0 2は波長 λ 1の受信波形が 最適となるように動作するが、 波長; 1 2、 λ 3についても同時に波長分散が補償 され良好な受信波形が得られる。 また、 本実施形態においては、 光検出器 1 0 6と AZD変換器 1 0 7の間に帯 域幅がビットレートの 1 / 4程度の口一パスフィルタ 1 5 1が配置され、 波形 劣化検出部の帯域を削減することで前述の図 1 2のように検出特性の改善を図つ ている。 このような帯域削減には必ずしもローパスフィルタなどの部品は必要で はなく、 光検出器 1 0 6や A/Dコンバータ 1 0 7に意図的に帯域幅の狭い安価 な部品を使用してコストを低減することも可能である。 また、 これらの部品の帯 域幅削減も受信波形を十分なまらせることが目的なので、 高精度に制御する必要 はない。 したがって、 受信信号のビットレートがある程度変化しても問題なく動 作し、 マルチビットレート対応と両立が可能である。
図 1 4は本発明の第 7の実施形態であり、 マルチビットレート対応の偏波分散 補償器を構成した例である。 本例では、 偏波コントローラ 1 5 2の直後に、 偏波 保持ファイバなどの偏波分散素子 1 5 3を配置することで偏波分散補償器を構成 している。 偏波コントローラは通常 2〜4の制御入力端子を持ち、 本例では制御 回路 1 1 0から 4本の制御信号 1 0 3を生成して同時に制御を行っている。 偏波 分散補償回路には必要に応じて高次の偏波分散などを補償するように補償機能を 追加 ·拡大しても構わず、 また波長分散補償回路を設けて同時に制御を行なって も構わない。 また偏波分散素子 1 5 3の偏波分散量を可変にしたり、 本補償回路 をさらに多段に接続する構成も可能であり、 この場合にはすべての可変要素は制 御回路 1 1 0からの制御信号 1 0 3で制御すればよい。
また、 本発明をマルチビットレート対応とするには、 複数のビットレートの信 号に対してサンプリングタイミングが常に情報信号のビットタイミングと非同期 となるようにする必要がある。 例えばクロック発生器 1 0 8の出力するサンプリ ングクロック 1 0 9がちようどビットレートの整数倍や整数分の一となると、 常 にビットの同じ時刻のみの振幅をサンプリングするため、 正しい振幅度数分布が 得られなくなるという問題がある。 そこで本実施形態では、 低周波発信器 1 5 4 によって周波数 Δ f の低周波信号を生成し、 この周波数で周期的にク口ック周波 数を d f だけずらし、 どのようなビットレートの信号とも同期しないようにして いる。
なお上記の可変非同期サンプリングは必ずしも偏波分散補償に限らず、 波長分 散補償など他の補償にも問題なく適用可能である。 また非同期化の手法について も、 サンプリングタイミングをランダムにする、 もしくはサンプリング入力光 デジタル信号の取りうるビットレート範囲と互いに素とする手法がある。 例えば 後者の場合、信号ビッ トレートの範囲が 9. 95328Gbit 〜 12· 5Gbit/sであったとす ると、サンプリング周波数はこれらの値の整数倍や整数分の一とならない範囲(例 えば 6. 25GHz~9. 9GHz) から選択し、 7GHzなどに設定すればよい。 また特にこれら が満たせない場合、 受信ビットレートや周波数範囲を検出しサンプリ ング周波数 を複数の値に切りかえることでも非同期性を保証できる。
図 1 5は本発明の第 8の実施形態であり、 制御回路 1 1 0の制御アルゴリズム をフローチャートで示したものである。 本例では、 制御回路 1 1 0は電源投入な' どによって制御動作が開始(Start)されると、 引き込み制御の実施状態 (Pull-in Process )を経て、引き込み終了後に精密制御状態(accurate control)に遷移する。 特に電源投入後などに光信号が無から有に変化した場合には波形が大きく劣化し ている可能性があるため、 制御回路 1 1 0はまず引きこみ検出範囲の広い、 でき る限り低次のモーメント (N R Z波形の場合、 例えば 4次のモーメント m4) を用 いて引きこみ制御を行うのが望ましい。 その後、 ちしくは最小値に到達したと判 断した場合(図 1 5の minimized) , もしくは波形劣化が一定量以下になった場合、 もしくは制御回路 1 1 0の出力する制御信号が定常状態になった場合、 もしくは 一定時間経過後などに引き込み状態終了と判断し、 制御回路 1 1 0はより波形劣 化検出感度の高いモーメント (例えば 8次モーメント m8) を用いた精密制御アル ゴリズム(accurate control )に切りかえることで、 制御の引きこみ範囲と感度を 両立する。 切りかえるアルゴリズムの種類は 2つ以上であっても構わず、 またこ のうち一方の制御アルゴリズム、 特に引きこみ範囲が狭くて済む精密制御アルゴ リズムには、 従来のク口ック最大制御などを用いても構わない。
また本例では精密制御アルゴリズム(accurate control )の実施状態で、 外部か らのリセット信号(reset)が ONになった場合にも再び引き込み動作を開始するも のとしている。 これは誤った制御点に誤引き込みを行なった場合や、 受信すべき 信号を意図的にスィツチングする場合などに、 意図的に引き込み動作を行なわせ るためである。このようなリセット信号は、符号誤り数が一定値を超えた場合や、 機器のエラー信号に連動して発生することができる。
また、 図 1に代表されるいずれの実施形態においても、 制御回路 1 1 0は、 AZD変換器 1 0 7や可変識別回路 1 4 0の出力信号の強度などから光信号の有 無を検出することが可能である。 もしくは光信号と波長多重して送られる監視信 号や、 光受信器、 または外部入力信号などから光信号の有無を通知される場合が ある。 図 1 5では光信号が消失した場合(signal 10 SS)、 制御回路 1 1 0は制御動 作を停止する(Idol)。 その後、 光信号が再入力された場合(signal 0N)、 再び引き 込み動作(pull- in)から動作を再開する。 このようにすることで、光信号断時の無 駄な動作を停止して消費電力を低減し、 また装置故障中や瞬断中の波形劣化を最 小にし、 光信号の再入力時の引きこみ時間を最小にとどめることが可能となる。 なお、 光信号断の時間が短い場合や光信号断中の状態変化が少ないと考えられる 場合 (例えば装置の修理や部品交換をせずに信号が再開した場合など) には、 精 密制御状態から制御動作を再開しても構わない。
以上説明したように、 本発明では、 波形を非同期でサンプリングすることで、 マルチビットレート対応にでき、 また波形劣化の検出範囲を従来の手法より大き く拡大できる波形劣化補償器が得られる。 マルチビットレート対応とできること により、 波形劣化補償器を光受信器とは別の汎用品して独立に製品化することが 可能となり、 また製品数を削減することが可能になる。 また、 波形劣化補償回路 も、 劣化補償器部分を必要に応じて取りかえることで偏波分散補償や波長分散補 償、 帯域劣化補償などの多くの補償に共通に利用でき、 製品数や製品コス トを低 減できる。 また、 偏波分散補償や波長分散補償、 帯域劣化補償などの多くの制御 を一個の波形劣化検出回路で制御することによって、 構成を簡素化し、 コス トを 低減できる。
また、 統計分布の状態を表す普遍的な正規化パラメータである統計モーメント を用いて制御を行なうため、 信号レベルの変化や経年劣化による受信器内の利得 や損失の変化、識別タイミングのずれ、光信号の雑音の有無などの影響を受けず、 さらに波形のアイ開口点が無くなりク口ック抽出もできないほど劣化した波形に 対しても、 容易に制御信号が算出可能である。 このため、 従来の手法のおよそ 6 倍という広い検出範囲が実現できる。また特に偶数次のモーメントを用いる場合、 波形劣化最小の点が制御点となり、 波長分散や偏波分散、 帯域劣化以外の劣化要 素、 例えば光ファイバの非線型効果である自己位相変調効果に対しても補償が 行える。
また、 検出部の帯域をビットレートの 1ノ2以下に削減した場合、 N R Z信号 の検出範囲をさらに上記の 1 . 5倍以上に拡大できる。 特に R Z方式に適用した 場合には、検出特性を N R Zと同等にし、検出範囲も N R Z並に拡大できるほか、 同じ劣化検出回路を N R Z信号と共用できる。
サンプリング周波数は、 ビットレートの取りうるすべての値と互いに素である ようにしたり、 サンプリングタイミングをランダムにしたり、 サンプリング周波 数を複数の異なる周波数に切り替えたり、 サンプリング周波数を時間的に変化さ せることによって、 どのようなビットレートの信号とも同期しないようにするの が好ましい。
また、 制御アルゴリズムの切替えを行なうことによって、 波形劣化の検出感度 と検出範囲を両立し、 自動波形劣化補償器の自動引き込み範囲を広くしたまま自 動補償の精度を向上することが可能となる。
本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考として 本明細書にとり入れるものとする。 産業上の利用可能性
本発明によると、 検出範囲が広く、 一つの回路で広範囲のビットレートに対応 することの可能な信号波形劣化補償器が得られる。

Claims

請求の範囲
1 . 光デジタル情報信号を電気デジタル情報信号に変換して出力する光検出 器と、
情報信号のビットタイミングに非同期で前記電気デジタル情報信号の振幅をサ ンプリングし振幅度数分布を敢得するサンプリング回路と、
前記度数分布から制御信号を生成する制御回路とを含むことを特徴とする信号 波形劣化補償器。
2 . 光デジタル情報信号を電気デジタル情報信号に変換して出力する光検出 器と、
情報信号のビットタイミングに非同期で前記電気デジタル情報信号の振幅をサ ンプリングし振幅度数分布を取得するサンプリング回路と、
前記光デジタル情報信号又は前記電気デジタル情報信号を入力とする可変信号 波形劣化補償回路と、
前記度数分布から制御信号を生成する制御回路とを備え、
前記制御回路によつて生成された制御信号によつて前記可変信号波形劣化補償 回路の補償量を制御することを特徴とする信号波形劣化補償器。
3 . 請求項 2記載の信号波形劣化補償器において、 前記可変信号波形劣化補 償回路は前記光デジタル情報信号を入力とする可変光信号波形劣化補償回路であ ることを特徴とする信号波形劣化補償器。
4 . 請求項 2記載の信号波形劣化補償器において、 前記可変信号波形劣化補 償回路は前記電気デジタル情報信号を入力とする可変電気信号波形劣化補償回路 であることを特徴とする信号波形劣化補償器。
5 . 請求項 2記載の信号波形劣化補償器において、 前記可変信号波形劣化補 償回路は波長分散補償回路、 偏波分散劣化補償回路もしくは帯域劣化補償回路で あることを特徴とする信号波形劣化補償器。
6 . 請求項 2記載の信号波形劣化補償器において、 該可変信号波形劣化補償 回路はトランスパーサルフィルタもしくは識別帰還補償器を含むことを特徴とす る信号波形劣化補償器。
7 . 請求項 1又は 2記載の信号波形劣化補償器において、 前記情報信号のビ ットレートが複数の異なる値を取り、 前記サンプリング回路のサンプリング周 波数が前記ビットレートの取りうるすべての値と互いに素であること、 前記サン プリング回路のサンプリングタイミングがランダムであること、 前記サンプリン グ周波数が複数の異なる周波数に切り替え可能であること、 もしくは前記サンプ リング周波数が時間的に変化することを特徴とする信号波形劣化補償器。
8 . 請求項 1又は 2記載の信号波形劣化補償器において、 前記光検出器から 前記サンプリング回路に至る経路の周波数帯域が前記情報信号のビットレートの 1 / 2以下であることを特徴とする信号波形劣化補償器。
9 . 請求項 1又は 2記載の信号波形劣化補償器において、 前記制御回路は前 記度数分布の 2次以上の統計モーメントを算出し、 算出した統計モーメントが最 大、 最小、 もしくは一定値となるように信号波形劣化補償回路を制御することを 特徴とする信号波形劣化補償器。
1 0 . 請求項 9記載の信号波形劣化補償器において、 前記情報信号が N R Z (Non Return to Zero) 形式であり、 前記制御回路は、 2次のモーメントを算出 しその値が一定値となるように、 もしくは 4次以上の偶数モーメントのいずれか を算出しその ί直が最小となるように前記信号波形劣化補償回路を制御することを 特徴とする信号波形劣化補償器。
1 1 . 請求項 9記載の信号波形劣化補償器において、 前記情報信号が R Z (Return to Zero) 形式であり、 前記制御回路は、 2次のモーメントを算出しそ の値が最大となるように、 もしくは 4次以上の偶数モーメントのいずれかを算出 しその値が最小となるように前記信号波形劣化補償回路を制御することを特徴と する信号波形劣化補償器。
1 2 . 請求項 9記載の信号波形劣化補償器において、 前記制御回路は、 電源投 入もしくは外部からの指示信号入力後もしくは光信号が無から有に変化した場合 に相対的に低次の統計モーメントに基づいて前記信号波形劣化補償回路を制御し、 その後、 相対的に高次の統計モーメントもしくは他の方式によって生成した制御 信号を用いて前記信号波形劣化補償回路を制御するように制御アルゴリズムの切 替を行うことを特徴とする信号波形劣化補償器。
PCT/JP2003/016106 2003-05-27 2003-12-16 信号波形劣化補償器 WO2004107610A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03780788A EP1630982B1 (en) 2003-05-27 2003-12-16 Signal waveform deterioration compensator
DE60332056T DE60332056D1 (de) 2003-05-27 2003-12-16 Signalformverschlechterungskompensator
US10/557,613 US7813655B2 (en) 2003-05-27 2003-12-16 Signal waveform deterioration compensator
AU2003289361A AU2003289361A1 (en) 2003-05-27 2003-12-16 Signal waveform deterioration compensator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-149513 2003-05-27
JP2003149513A JP4468656B2 (ja) 2003-05-27 2003-05-27 信号波形劣化補償器

Publications (1)

Publication Number Publication Date
WO2004107610A1 true WO2004107610A1 (ja) 2004-12-09

Family

ID=33487150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016106 WO2004107610A1 (ja) 2003-05-27 2003-12-16 信号波形劣化補償器

Country Status (7)

Country Link
US (1) US7813655B2 (ja)
EP (1) EP1630982B1 (ja)
JP (1) JP4468656B2 (ja)
CN (1) CN100539472C (ja)
AU (1) AU2003289361A1 (ja)
DE (1) DE60332056D1 (ja)
WO (1) WO2004107610A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2446528A (en) * 2005-09-27 2008-08-13 Fujitsu Ltd Optical signal multiplexing device and optical signal multiplexing method
US7570889B2 (en) * 2005-04-28 2009-08-04 Lightwire, Inc. Common electronic dispersion compensation arrangement for use with multiple optical communication channels
US20090317079A1 (en) * 2006-11-30 2009-12-24 Nobuhide Yoshida Dispersion determining apparatus and automatic dispersion compensating system using the same

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4468656B2 (ja) * 2003-05-27 2010-05-26 株式会社日立製作所 信号波形劣化補償器
US20050191059A1 (en) * 2004-01-12 2005-09-01 Clariphy Use of low-speed components in high-speed optical fiber transceivers
JP4570616B2 (ja) * 2004-06-03 2010-10-27 日本電信電話株式会社 光信号品質監視回路および光信号品質監視方法
JP4328724B2 (ja) * 2005-01-17 2009-09-09 富士通株式会社 光波形測定装置および光波形測定方法
ES2258924B1 (es) * 2005-02-21 2007-11-16 Universitat Politecnica De Catalunya Receptor para comunicaciones opticas con ecualizador no lineal.
JP4924428B2 (ja) * 2005-09-02 2012-04-25 日本電気株式会社 偏波モード分散補償回路
JP4620642B2 (ja) * 2006-07-31 2011-01-26 富士通株式会社 多値変調受信装置
JP2008098975A (ja) * 2006-10-12 2008-04-24 Fujitsu Ltd 受信装置、送信装置、受信方法および送信方法
CN101207445A (zh) * 2006-12-21 2008-06-25 华为技术有限公司 一种色散补偿方法和光纤传输系统
JP4648363B2 (ja) * 2007-06-13 2011-03-09 株式会社日立製作所 光伝送装置および光伝送装置制御方法
JP4900481B2 (ja) * 2007-07-02 2012-03-21 富士通株式会社 波長分割多重装置及び光信号の入力断の検出方法
WO2009054045A1 (ja) * 2007-10-23 2009-04-30 Fujitsu Limited 光分散補償装置および光受信装置
JP2009152857A (ja) * 2007-12-20 2009-07-09 Fujitsu Ltd 可変分散補償制御方法及び可変分散補償制御装置
JP5239594B2 (ja) 2008-07-30 2013-07-17 富士通株式会社 クリップ検出装置及び方法
JP5278001B2 (ja) * 2009-01-29 2013-09-04 富士通株式会社 光通信システムおよび光受信器
JP5298894B2 (ja) 2009-01-30 2013-09-25 富士通株式会社 歪み補償装置,光受信装置及び光送受信システム
JP4698746B2 (ja) * 2009-04-23 2011-06-08 富士通株式会社 波長分散補償器
CN102763349B (zh) * 2010-02-22 2016-04-13 三菱电机株式会社 光发送机
US8326153B2 (en) * 2010-04-09 2012-12-04 Oclaro (North America), Inc. Tunable dispersion compensator configured for continuous setpoint control
US8401403B2 (en) * 2010-05-03 2013-03-19 Ciena Corporation Timing recovery in presence of optical impairments and optimization of equalization based on timing recovery moment strengths
JP5678527B2 (ja) * 2010-09-07 2015-03-04 日本電気株式会社 信号光モニタリング装置および信号光モニタリング方法
JP5644375B2 (ja) 2010-10-28 2014-12-24 富士通株式会社 光伝送装置および光伝送システム
CN103339881B (zh) * 2011-01-31 2016-11-09 富士通株式会社 光发送器以及光信号发送方法
JP5658610B2 (ja) * 2011-04-20 2015-01-28 日本電信電話株式会社 光ファイバ伝送システム及び光受信装置
US8750726B2 (en) * 2011-08-16 2014-06-10 Cisco Technology, Inc. Histogram-based chromatic dispersion estimation
JP5445603B2 (ja) * 2012-03-09 2014-03-19 富士通株式会社 可変分散補償制御方法及び可変分散補償制御装置
KR101559521B1 (ko) 2013-04-10 2015-10-14 한국과학기술원 소프트웨어 기반의 동기화된 진폭 히스토그램을 이용한 광신호의 품질 감시 방법 및 장치
JP6481557B2 (ja) * 2015-08-03 2019-03-13 富士通株式会社 光受信装置及び信号処理方法
US10404397B2 (en) 2015-12-23 2019-09-03 Adva Optical Networking Se Wavelength division multiplexed telecommunication system with automatic compensation of chromatic dispersion
CN106921439A (zh) * 2015-12-25 2017-07-04 青岛海信宽带多媒体技术有限公司 一种光模块
US10122460B2 (en) 2017-01-13 2018-11-06 Adva Optical Networking Se Method and apparatus for automatic compensation of chromatic dispersion
US11601254B2 (en) * 2020-09-18 2023-03-07 Sony Semiconductor Solutions Corporation Communication apparatus, communications system, and communication method
JP7489886B2 (ja) 2020-10-05 2024-05-24 富士通オプティカルコンポーネンツ株式会社 受信装置及び受信方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1188260A (ja) * 1997-09-09 1999-03-30 Fujitsu Ltd 光伝送路の分散補償装置
JP2002261692A (ja) * 2001-03-02 2002-09-13 Fujitsu Ltd 受信装置及び受信信号の波形劣化補償方法並びに波形劣化検出装置及び方法並びに波形測定装置及び方法
JP2003090766A (ja) * 2001-07-13 2003-03-28 Nippon Telegr & Teleph Corp <Ntt> 光信号品質劣化要因監視方法および装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3649556B2 (ja) * 1997-08-20 2005-05-18 富士通株式会社 波長分散制御のための方法と装置及び分散量検出方法
US6081360A (en) * 1997-08-20 2000-06-27 Fujitsu Limited Method and apparatus for optimizing dispersion in an optical fiber transmission line in accordance with an optical signal power level
JPH11122173A (ja) * 1997-10-20 1999-04-30 Fujitsu Ltd 波長分散による波形変化の検出及びその補償のための方法と装置
JP3288023B2 (ja) 1998-10-27 2002-06-04 日本電信電話株式会社 光伝送システム
DE19905814A1 (de) * 1999-02-12 2000-08-17 Deutsche Telekom Ag Verfahren zur Überwachung der Übertragungsqualität eines optischen Übertragungssystems, insbesondere eines optischen Wellenlängenmultiplexnetzes
US6307988B1 (en) * 1999-02-18 2001-10-23 Lucent Technologies Inc. Optical fiber communication system incorporating automatic dispersion compensation modules to compensate for temperature induced variations
DE60022567T2 (de) * 1999-04-01 2006-05-04 Cisco Photonics Italy S.R.L. Verfahren zur Rauschverminderung in in einem optischen Ferntelekommunikationssystem
CN100417049C (zh) * 1999-06-28 2008-09-03 诺基亚西门子通信有限责任两合公司 检测偏振模式色散的装置
US6859268B2 (en) * 2000-02-16 2005-02-22 Massachusetts Institute Of Technology Compensating polarization mode dispersion in fiber optic transmission systems
AU2001245488A1 (en) * 2000-03-06 2001-09-17 University Of Southern California Compensation for polarization-mode dispersion in multiple wavelength-division multiplexed channels
JP3910003B2 (ja) * 2000-05-29 2007-04-25 富士通株式会社 光受信局、光通信システム及び分散制御方法
EP1239623B1 (en) * 2001-03-07 2011-05-11 Nippon Telegraph And Telephone Corporation Optical wavelength division multiplex signal monitoring apparatus
US7307569B2 (en) * 2001-03-29 2007-12-11 Quellan, Inc. Increasing data throughput in optical fiber transmission systems
ATE492076T1 (de) * 2001-04-04 2011-01-15 Quellan Inc Verfahren und system zum decodieren von mehrpegelsignalen
DE10132584B4 (de) * 2001-07-05 2004-02-05 Siemens Ag Verfahren und Anordnung zur Ermittlung und Trennung von Einzelkanaleffekten bei der optischen Übertragung eines Wellenlängen-Multiplex(-WDM)-Signals
US7200328B2 (en) * 2001-07-13 2007-04-03 Nippon Telegraph And Telephone Corporation Method and system for determining origin of optical signal quality degradation
US6907199B2 (en) * 2001-12-31 2005-06-14 3M Innovative Properties Company Method for polarization mode dispersion compensation
JP3880906B2 (ja) * 2002-08-22 2007-02-14 富士通株式会社 波形劣化補償機能を有する受信装置
JP2004222252A (ja) * 2002-12-24 2004-08-05 Nec Corp 光信号モニタ装置、及びその方法
JP2004222240A (ja) * 2002-12-25 2004-08-05 Nec Corp 光信号監視方法、及び光信号監視装置
US6956917B2 (en) * 2003-04-17 2005-10-18 Finisar Corporation Method and apparatus for reducing interference in an optical data stream using data-independent equalization
JP4468656B2 (ja) * 2003-05-27 2010-05-26 株式会社日立製作所 信号波形劣化補償器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1188260A (ja) * 1997-09-09 1999-03-30 Fujitsu Ltd 光伝送路の分散補償装置
JP2002261692A (ja) * 2001-03-02 2002-09-13 Fujitsu Ltd 受信装置及び受信信号の波形劣化補償方法並びに波形劣化検出装置及び方法並びに波形測定装置及び方法
JP2003090766A (ja) * 2001-07-13 2003-03-28 Nippon Telegr & Teleph Corp <Ntt> 光信号品質劣化要因監視方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
N. HANIK ET AL: "Application of amplitude histograms to monitor performance of optical channels", ELECTRONICS LETTERS, vol. 35, no. 5, 4 March 1999 (1999-03-04), pages 403 - 404, XP000907930 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7570889B2 (en) * 2005-04-28 2009-08-04 Lightwire, Inc. Common electronic dispersion compensation arrangement for use with multiple optical communication channels
GB2446528A (en) * 2005-09-27 2008-08-13 Fujitsu Ltd Optical signal multiplexing device and optical signal multiplexing method
GB2446528B (en) * 2005-09-27 2010-11-24 Fujitsu Ltd Optical signal multiplexing device and optical signal multiplexing method
US20090317079A1 (en) * 2006-11-30 2009-12-24 Nobuhide Yoshida Dispersion determining apparatus and automatic dispersion compensating system using the same
US8488961B2 (en) * 2006-11-30 2013-07-16 Nec Corporation Dispersion determining apparatus and automatic dispersion compensating system using the same

Also Published As

Publication number Publication date
AU2003289361A8 (en) 2005-01-21
US7813655B2 (en) 2010-10-12
JP4468656B2 (ja) 2010-05-26
US20070065162A1 (en) 2007-03-22
EP1630982B1 (en) 2010-04-07
JP2004356742A (ja) 2004-12-16
CN1771678A (zh) 2006-05-10
DE60332056D1 (de) 2010-05-20
CN100539472C (zh) 2009-09-09
EP1630982A4 (en) 2007-05-02
AU2003289361A1 (en) 2005-01-21
EP1630982A1 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
WO2004107610A1 (ja) 信号波形劣化補償器
US7224911B2 (en) Adaptive distortion compensation in optical fiber communication networks
JP3910003B2 (ja) 光受信局、光通信システム及び分散制御方法
US7389049B2 (en) Chromatic dispersion compensation controlling system
US7769299B2 (en) Chromatic dispersion monitoring method and chromatic dispersion monitoring apparatus, and optical transmission system
Sasai et al. Digital backpropagation for optical path monitoring: Loss profile and passband narrowing estimation
EP0812075B1 (en) Optical fibre transmission systems including dispersion measurement and compensation
JP3960299B2 (ja) 分散補償方法、wdm光伝送システム、光伝送システム及び光伝送装置
WO2010050124A1 (ja) 光受信機
JP4331949B2 (ja) 波長多重光伝送装置
JP4056846B2 (ja) 分散モニタ装置、分散モニタ方法および自動分散補償システム
Hirano et al. A novel dispersion compensation scheme based on phase comparison between two SSB signals generated from a spectrally filtered CS-RZ signal
EP4011005B1 (en) Optical transmission systems, receivers, and devices, and methods of receiving optical signals
JP2004297592A (ja) 光受信器
CN110875772B (zh) 光纤色散监控装置
Gnauck et al. Ultra-high-spectral-efficiency transmission
JP2006080770A (ja) 波長多重伝送システム
Bhandare et al. 1.6-Tb/s (40/spl times/40 Gb/s) transmission over 44,..., 94 km of SSMF with adaptive chromatic dispersion compensation
Wang et al. Non-data-aided chromatic dispersion estimation for Nyquist spectrally shaped fiber transmission systems
Zhang et al. Adaptive chromatic dispersion compensation in 1.6 Tbit/s DPSK and ASK transmission experiments over 44... 94 km of SSMF
Benlachtar et al. Chromatic dispersion monitoring using synchronous sampling
WO2000027055A1 (fr) Systeme permettant de surveiller une commande dans une transmission optique
Ho Impairment to Optical Signal
Guo et al. 10 Gb/s RSOA-based WDM-PON using partial-response maximum likelihood equalizer
Hidayat et al. Adaptive 700... 1350 ps/nm chromatic dispersion compensation in 1.6 Tbit/s (40× 40 Gbit/s) DPSK and ASK transmission experiments over 44... 81 km of SSMF

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003780788

Country of ref document: EP

Ref document number: 2007065162

Country of ref document: US

Ref document number: 10557613

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003826532X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003780788

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10557613

Country of ref document: US