WO2004104077A1 - 脂肪族ポリエステル系樹脂反射フィルム及び反射板 - Google Patents

脂肪族ポリエステル系樹脂反射フィルム及び反射板 Download PDF

Info

Publication number
WO2004104077A1
WO2004104077A1 PCT/JP2004/007280 JP2004007280W WO2004104077A1 WO 2004104077 A1 WO2004104077 A1 WO 2004104077A1 JP 2004007280 W JP2004007280 W JP 2004007280W WO 2004104077 A1 WO2004104077 A1 WO 2004104077A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
aliphatic polyester
mass
titanium oxide
resin
Prior art date
Application number
PCT/JP2004/007280
Other languages
English (en)
French (fr)
Inventor
Takayuki Watanabe
Takashi Hiruma
Kazunari Katsuhara
Miki Nishida
Jun Takagi
Original Assignee
Mitsubishi Plastics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics, Inc. filed Critical Mitsubishi Plastics, Inc.
Priority to EP04734145A priority Critical patent/EP1627894A4/en
Priority to US10/557,205 priority patent/US7754324B2/en
Priority to JP2005506413A priority patent/JP3927585B2/ja
Publication of WO2004104077A1 publication Critical patent/WO2004104077A1/ja
Priority to US12/007,748 priority patent/US8197929B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249986Void-containing component contains also a solid fiber or solid particle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition

Definitions

  • the present invention relates to an aliphatic polyester resin reflective film, and more particularly to a polyester film used for a liquid crystal display, a lighting device, a reflective plate of a lighting signboard, and the like.
  • the present invention relates to a tell-based resin reflection film. book
  • a film made of an aromatic polyester-based resin is disclosed in Japanese Patent Application Laid-Open No. Hei 4 (1995) -39040. Since the aromatic ring contained in the film absorbs ultraviolet light, the reflective film deteriorates and turns yellow when exposed to ultraviolet light, and the reflectance of the reflective film decreases. Also, Japanese Patent Application Laid-Open No. 11-174432 discloses a film made of a polypropylene resin as a reflective film, but when it is subjected to disposal, the polypropylene resin is incinerated. There was a problem that the incinerator would be damaged due to the large amount of heat generated when it was treated.
  • plastics such as polypropylene resin are stable in the natural environment for a long period of time, so if they are landfilled for disposal, they will remain in the soil for a long period of time, which will shorten the life of the landfill for waste disposal. And the natural landscape and the living environment of wild animals and plants were impaired.
  • Buirumu comprising an inorganic filler from 6 0 mass 0/0 or added with polypropylene resin can not ensure a sufficient film strength, the film tends to break during stretching, stability of film production is reduced Fear There was.
  • Reflective films used as reflectors for liquid crystal displays are required to have a shape-retaining property that can retain their shape when subjected to folding or the like. There was a drawback that foldability was low. Disclosure of the invention
  • the present invention has been made to solve the above problems, and an object of the present invention is to prevent yellowing over time and a decrease in reflectance with use, and to provide an excellent deadfold property. In addition, it is an object of the present invention to provide a reflective film which generates a small amount of heat when incinerated, and which can be decomposed by microorganisms or the like when landfilled, and which does not cause disposal problems.
  • the aliphatic polyester resin reflective film of the present invention is characterized by containing a fine powder filler and having voids therein such that the ratio of voids in the film is 50% or less.
  • the fine powder filler preferably contains at least titanium oxide.
  • the titanium oxide preferably has a vanadium content of 5 ppm or less.
  • the fine powdery filler may be contained in the range of 10 parts by mass or more and 60 parts by mass or less based on 100 parts by mass of the aliphatic polyester resin composition.
  • the porosity is preferably 5% or more and 50% or less.
  • the aliphatic polyester resin preferably has a refractive index of less than 1.5. Further, the difference between the refractive index of the aliphatic polyester-based resin and the refractive index of the fine powder filler is preferably 0.15 or more.
  • the aliphatic polyester-based resin may be a lactic acid-based resin.
  • the aliphatic polyester-based resin reflection film of the present invention is prepared by melting a resin composition containing an aliphatic polyester-based resin and a finely divided filler into a film, so that the area magnification becomes 5 times or more. Both films can be uniaxially stretched.
  • the film shrinkage after storage at 80 ° C for 3 hours is greater than 0% and less than 0.7% in the machine direction, and more than 0.1% and 0.5% in the machine direction. The following is preferred.
  • a reflecting plate of the present invention includes any one of the above-mentioned aliphatic polyester resin reflecting films.
  • it can be formed by bonding to a metal plate or a resin plate, and can be used as a reflector for a liquid crystal display, a reflector for a lighting fixture, a reflector for a lighting signboard, and the like.
  • the aliphatic polyester resin reflection film of the present invention has a fine powder filler inside.
  • Examples of the fine powder filler used in the present invention include organic fine powder and inorganic fine powder.
  • the organic fine powder it is preferable to use at least one selected from cellulosic powders such as wood powder and pulp powder, and polymer beads and polymer hollow particles.
  • Inorganic fine powders include calcium carbonate, magnesium carbonate, barium carbonate, magnesium sulfate, barium sulfate, calcium sulfate, zinc oxide, Magnesium oxide, calcium oxide, titanium oxide, alumina, aluminum hydroxide, hydroxyapatite, silica, My power, talc, power ore, clay, glass powder, asbestos powder, zeolite, silicate clay, etc. It is preferable that at least one selected from the above is used. In consideration of the light reflectivity of the obtained film, those having a large difference in refractive index from the base resin constituting the film are preferable, that is, those having a large refractive index are preferable as the inorganic fine powder.
  • titanium oxide it is more preferable to use calcium carbonate, barium sulfate, titanium oxide or zinc oxide having a refractive index of 1.6 or more, and particularly preferable to use titanium oxide.
  • titanium oxide high reflective performance can be imparted to the film with a smaller filling amount, and a film having high reflective performance even with a thin wall can be obtained.
  • high-purity titanium oxide having high purity among titanium oxides.
  • high-purity titanium oxide refers to titanium oxide having a small light-absorbing ability with respect to visible light and having a low content of coloring elements such as vanadium, iron, niobium, copper, and manganese.
  • titanium oxide having a vanadium content of 5 ppm or less in titanium oxide is referred to as high-purity titanium oxide. From the viewpoint of reducing the light absorbing ability of high-purity titanium oxide, it is preferable to reduce the amount of coloring elements such as iron, niobium, copper, and manganese contained in the titanium oxide.
  • titanium oxide used in the present invention examples include crystalline titanium oxide such as anatase-type titanium oxide and rutile-type titanium oxide. From the viewpoint of increasing the refractive index difference from the base resin, it is preferable that the titanium oxide has a refractive index of 2.7 or more. For example, it is preferable to use a crystalline form of rutile type titanium oxide. Examples of titanium oxide having a vanadium content of 5 ppm or less include those manufactured by a chlorine process. In the chlorine process, rutile ore containing titanium oxide as a main component is reacted with chlorine gas in a high-temperature furnace at about 1000 ° C. to first produce titanium tetrachloride.
  • titanium oxide obtained by this method contains a large amount of coloring elements such as vanadium, iron, copper, manganese, and niobium. The light absorption capacity for light increases. Therefore, it is difficult to obtain high-purity titanium oxide by the sulfuric acid process.
  • an inorganic fine powder and an organic fine powder may be used in combination as the fine powder filler.
  • fine powder fillers can be used in combination.
  • titanium oxide and another fine powder filler, or high-purity titanium oxide and another fine powder filler may be used in combination.
  • the surface of the finely divided filler is treated with a silicon compound, a polyhydric alcohol compound, an amine compound, a fatty acid, a fatty acid ester, or the like. May be used.
  • the surface of the titanium oxide may be subjected to a surface treatment in order to improve the dispersibility of the titanium oxide in the aliphatic polyester-based resin and to suppress the photocatalytic activity of the titanium oxide.
  • the surface treatment agent examples include, for example, at least one inorganic compound selected from the group consisting of alumina, silica, zirconia, and the like, a siloxane compound, a silane coupling agent, a polyol selected from the group consisting of polyols, and polyethylene glycol.
  • a siloxane compound e.g., a siloxane compound
  • a silane coupling agent e.g., a silane coupling agent
  • a polyol selected from the group consisting of polyols
  • polyethylene glycol e.g., polyethylene glycol.
  • the fine powder filler used in the present invention has a particle size of 0. The particle size is preferably not more than ⁇ m, more preferably not less than 0.1 l ⁇ m and not more than lO / zm.
  • the particle size of the finely divided filler is 0.05 ⁇ or more, a uniform film can be obtained because the dispersibility in the aliphatic polyester resin does not decrease.
  • the particle size is 15 ⁇ m or less, the formed voids do not become coarse, and a film having a high reflectance can be obtained.
  • the high-purity titanium oxide used in the present invention preferably has a particle size of 0.1 / m or more and 1 ⁇ m or less, more preferably 0.2 im or more and 0.5 m or less.
  • the particle size of the high-purity titanium oxide is 0.1 lm or more, the dispersibility in the aliphatic polyester resin is good, and a uniform film can be obtained.
  • the particle size of the high-purity titanium oxide is 1 ⁇ m or less, the interface between the aliphatic polyester resin and the titanium oxide is densely formed, so that the reflective film can be provided with high light reflectivity. it can.
  • the fine powder filler is preferably dispersed and blended in the aliphatic polyester resin.
  • the content of the finely divided filler contained in the reflective film of the present invention may be determined by considering the light reflectivity, mechanical properties, productivity, etc. of the film in the aliphatic polyester resin composition for forming the reflective film. It is preferably from 10% by mass to 60% by mass, more preferably from 10% by mass to less than 55% by mass, more preferably from 20% by mass to 50% by mass. Is particularly preferred. Content of fine powder filler is 10 mass. When the ratio is / 0 or more, the area of the interface between the resin and the fine powder filler can be sufficiently secured, and high light reflectivity can be imparted to the film. If the content of the fine powder filler is 60% by mass or less, the mechanical properties required for the film can be secured.
  • the aliphatic polyester-based resin reflection film of the present invention has voids therein such that the porosity (the ratio of voids to the film) is 50% or less.
  • the void here means not a through hole but a closed hole.
  • excellent reflectance can be realized by including the finely divided filler in an effectively dispersed state inside the film.
  • the ratio of the voids in the film is within a range of 5% or more and 50% or less. Is preferred. Further, the porosity is more preferably at least 20%, particularly preferably at least 30%. If the porosity exceeds 50%, the mechanical strength of the film is reduced, and the film may be broken during the production of the film, or may have insufficient durability such as heat resistance during use. For example, voids can be formed in the film by adding a fine powder filler and stretching the film.
  • titanium oxide is used as the fine powder filler, high light reflectivity can be achieved even if the porosity present inside the film is small. For example, even if the porosity is 15% or less, the light reflectivity is sufficiently high. Can be achieved. This is presumed to be due to the high refractive index and high hiding power of titanium oxide. Further, if the amount of the filler used can be reduced, the number of voids formed by elongation also decreases, so that the mechanical properties of the film can be improved while maintaining high reflection performance. Furthermore, even if the filler is used in a large amount, the mechanical properties can be similarly improved by reducing the stretching amount and reducing the voids. These are also advantageous in terms of improving the dimensional stability of the film. Further, if high reflection performance is ensured even with a thin wall, it can be used, for example, as a reflection film for a small and thin liquid crystal display of a notebook computer or a mobile phone.
  • the aliphatic polyester resin reflective film of the present invention has voids inside. Even if not, high light reflectivity can be achieved if the film contains high-purity titanium oxide with a vanadium content of 5 ppm or less. In addition, if high-purity titanium oxide is contained and there are voids, particularly high reflectivity can be realized.
  • the base resin constituting the reflective film of the present invention preferably has a refractive index (n) of less than 1.5, and in the present invention, an aliphatic polyester resin having a refractive index (n) of less than 1.5 It is preferable to use a resin.
  • the resin having a refractive index ( n ) of less than 1.5 is preferably an aliphatic resin containing no aromatic ring, and more preferably a polylactic acid polymer. Those containing an aromatic ring, for example, an aromatic resin have a refractive index of about 1.55 or more.
  • a reflective film containing a fine powder filler in the film imparts light reflectivity by utilizing refraction and scattering at an interface in the film. Therefore, when the difference in the refractive index between the resin constituting the film and the fine powder filler is large, high light reflectivity can be easily imparted.
  • the difference between the refractive indices is preferably 0.15 or more, and more preferably 0.20 or more.
  • the refractive index of the resin constituting the film is less than 1.5, it is easy to ensure that the difference from the refractive index of the fine powder filler is 0.15 or more.
  • a polylactic acid-based polymer has a refractive index of about 1.45, so that it can easily achieve a condition of 0.15 or more in difference from a fine powder filler, etc.
  • the types of agents will also be abundant.
  • the resin containing an aromatic ring has a refractive index of about 1.55 or more, the difference in refractive index between the resin and the finely divided filler often becomes small.
  • Aliphatic polyester resins do not contain an aromatic ring in the molecular chain and therefore do not absorb ultraviolet light. Therefore, the film is not deteriorated or yellowed by ultraviolet light emitted from a light source such as a liquid crystal display device, and has low light reflectance. There is no going down.
  • aliphatic polyester-based resin those chemically synthesized, those synthesized by fermentation with microorganisms, and mixtures thereof can be used.
  • chemically synthesized aliphatic polyester resins include poly ⁇ -caprolactam obtained by ring-opening polymerization of ratatone, polyethylene adipate, polyethylene azelate obtained by polymerizing dihydrochloride and diol, and the like.
  • Examples thereof include aliphatic polyesters in which a part of the ester bond, for example, 50% or less is replaced by an amide bond, an ether bond, a urethane bond, or the like.
  • Examples of the aliphatic polyester resin fermented and synthesized by a microorganism include polyhydroxybutyrate, a copolymer of hydroxybutylate and hydroxyvalerate, and the like.
  • the polylactic acid-based polymer refers to a homopolymer of D-lactic acid or L-lactic acid or a copolymer thereof, and specifically, a poly (D-lactic acid whose structural unit is D-lactic acid ), Poly (L-lactic acid) whose structural unit is L-lactic acid, and poly (DL-lactic acid) which is a copolymer of L-lactic acid and D-lactic acid, and a mixture of these. .
  • Aliphatic polyester resins such as polylactic acid polymers do not contain an aromatic ring in the molecular chain and do not absorb ultraviolet rays. Therefore, since the reflective film is not deteriorated or yellowed by exposure to ultraviolet rays, the reflectivity of the film does not decrease.
  • the polylactic acid-based polymer can be produced by a known method such as a condensation polymerization method and a ring-opening polymerization method.
  • a condensation polymerization method D-lactic acid, L-lactic acid, or a mixture thereof is directly dehydration-condensed and polymerized to have a desired composition.
  • a lactic acid-based polymer can be obtained.
  • lactide which is a cyclic dimer of lactic acid, has an arbitrary composition by subjecting it to ring-opening polymerization in the presence of a predetermined catalyst while using a polymerization regulator or the like as necessary.
  • a polylactic acid-based polymer can be obtained.
  • the lactide includes L-lactide which is a dimer of L-lactic acid, D-lactide which is a dimer of D-lactic acid, and DL-lactide which is a dimer of D-lactic acid and L-lactic acid.
  • Polylactic acid-based polymers in which the ratio of D-lactic acid to L-lactic acid is 100: 0 or 0: 1100 have extremely high crystallinity, high melting point, and excellent heat resistance and mechanical properties. Tend.
  • polylactic acid-based polymers having different copolymerization ratios of D-lactic acid and L-lactic acid may be blended.
  • multiple lactic acid-based polymers The value obtained by averaging the copolymerization ratio of D-lactic acid and L-lactic acid in the above should be within the above range.
  • the polylactic acid-based polymer used in the present invention preferably has a high molecular weight.
  • the weight average molecular weight is preferably 10,000 or more, more preferably 60,000 or more and 400,000 or less. It is particularly preferably from 100,000 to 300,000.
  • the weight average molecular weight of the polylactic acid-based polymer is less than 10,000, the obtained film may have poor mechanical properties.
  • liquid crystal displays have been used in car navigation systems for automobiles and small televisions for automobiles, in addition to displays for personal computers, and need to be able to withstand high temperatures and high humidity. Therefore, it is preferable to add a hydrolysis inhibitor to the aliphatic polyester-based resin reflection film for the purpose of imparting durability.
  • Examples of the hydrolysis inhibitor preferably used in the present invention include carbodiimide compounds.
  • the carbodiimide compound for example, a compound having a basic structure represented by the following general formula is preferable.
  • R can be aliphatic, alicyclic, or aromatic.
  • n is usually selected from 1 to 50.
  • the carpoimide compound it is preferable to add 0.1 to 3.0 parts by mass of the carpoimide compound to 100 parts by mass of the aliphatic polyester resin constituting the film.
  • the addition amount of the carpoimide compound is at least 0.1 part by mass, the effect of improving the hydrolysis resistance in the obtained film will be sufficiently exhibited. Further, when the amount of the carbodiimide compound added is 3.0 parts by mass or less, the obtained film is less colored and high light reflectivity can be obtained.
  • the reflection film of the aliphatic polyester resin is preferably 90% or more, more preferably 95% or more, in the wavelength range of light from 420 nm to 700 nm. If the average reflectivity of the film surface is 90% or more, good reflection characteristics are exhibited, and a screen such as a liquid crystal display can realize sufficient brightness.
  • the reflective film obtained in this way has a predetermined reflectance that functions sufficiently as a reflective film.
  • the aliphatic polyester resin reflective film of the present invention preferably has an average reflectance of 95% or more, more preferably 98% or more, on the surface with respect to light having a wavelength of 550 nm. . When the average reflectance is 95% or more, it exhibits good reflection characteristics and can provide sufficient brightness to a screen such as a liquid crystal display. 4 007280
  • the aliphatic polyester resin reflective film of the present invention can maintain excellent average reflectance even after being exposed to ultraviolet rays.
  • a reflective film used for a liquid crystal display such as a car navigation system and a liquid crystal display device is required to have a heat resistance of about 11 ° C. That is, when the reflective film is left at a temperature of 120 ° C. for 5 minutes, the heat shrinkage of the film is preferably 10% or less, more preferably 5% or less.
  • the thermal shrinkage of the film is more than 10%, it may shrink over time when used at high temperatures, and when the reflective film is laminated on steel plate etc., only the film may be deformed. is there. A film that has undergone a large shrinkage will have a lower reflectivity because the surface that promotes reflection will be smaller and the voids inside the film will be smaller.
  • the thermal shrinkage after holding at 80 ° C for 180 minutes is such that the shrinkage in the vertical direction is greater than 0% and less than 0.7%, and the shrinkage in the horizontal direction is 0.1%. It is preferably about 0.5%.
  • the shrinkage in the transverse direction is preferably from 0.001% to 0.3%.
  • the vertical direction is the same direction as the film flow direction (drawing direction), and the horizontal direction is a direction perpendicular to the film flow direction.
  • the aliphatic polyester resin reflective film of the present invention preferably has a heat shrinkage after holding at 80 ° C. for 180 minutes within the above range. If the heat shrinkage of the reflective film can be set within the above range, even if the reflective film is used on the back of a large liquid crystal television or the like, deformation due to aging can be prevented, and the flatness of the film can be maintained. For example, after stretching the film, the film is subsequently subjected to a relaxation treatment at the tenter outlet to impart a predetermined amount of relaxation, whereby the heat shrinkage of the film can be set within the above range.
  • the reflective film of the aliphatic polyester-based resin of the present invention can be decomposed by microorganisms or the like when landfilled, and does not cause disposal problems.
  • the molecular weight is reduced to about 1,000 by hydrolysis of the ester bond, and subsequently biodegraded by microorganisms in the soil.
  • aromatic polyester resins have high intramolecular bond stability and are less likely to hydrolyze the ester bond.
  • hydrolysis of polypropylene resin cannot occur. Therefore, even when the aromatic polyester resin and the polypropylene resin are landfilled, the molecular weight does not decrease and biodegradation by microorganisms does not occur. As a result, it will remain in the soil for a long period of time, causing problems such as shortening the life of waste landfill sites and impairing the natural landscape and the living environment of wild animals and plants.
  • the method for producing the aliphatic polyester-based resin reflection film of the present invention will be described by way of an example, but is not limited to the following production method.
  • an aliphatic polyester resin composition is prepared by mixing a fine powder filler and / or high-purity titanium oxide, a hydrolysis inhibitor, and other additives with an aliphatic polyester resin as required. Specifically, a fine powder filler or high-purity titanium oxide, a hydrolysis inhibitor, etc. are added to the aliphatic polyester resin as required, and mixed with a repomb blender, a tumbler, a Henschel mixer, and the like.
  • the aliphatic polyester-based resin is kneaded at a temperature higher than the melting point of the resin (for example, 170 ° C to 230 ° C in the case of polylactic acid).
  • a resin composition can be obtained.
  • an aliphatic polyester-based resin composition can be obtained by adding a predetermined amount of an aliphatic polyester-based resin, a finely divided filler, a high-purity titanium oxide, a hydrolysis inhibitor, and the like using a separate feeder or the like. be able to.
  • a so-called master patch in which a fine powder filler or high-purity titanium oxide, a hydrolysis inhibitor, etc. is blended at a high concentration in an aliphatic polyester resin is prepared in advance, and the master batch and the aliphatic polyester are prepared.
  • An aliphatic polyester-based resin composition having a desired concentration can be obtained by mixing with a resin.
  • the aliphatic polyester-based resin composition thus obtained is melted and formed into a film.
  • the aliphatic polyester-based resin composition is supplied to an extruder and heated to a temperature equal to or higher than the melting point of the resin to be melted.
  • the aliphatic polyester-based resin composition may be supplied to an extruder without being dried, but when not dried, it is preferable to use a vacuum vent during melt extrusion.
  • Conditions such as extrusion temperature are determined by decomposition. It is necessary to set the temperature in consideration of a decrease in the amount of particles.
  • the extrusion temperature is preferably in the range of 170 ° C. to 230 ° C.
  • the molten aliphatic polyester-based resin composition is extruded from a slit-shaped discharge port of a T-die and solidified and adhered to a cooling roll to form a cast sheet.
  • the aliphatic polyester resin reflection film of the present invention is preferably stretched in at least one axis direction, and more preferably stretched in two axis directions. Depending on the stretching conditions, it may be difficult to impart the function of a reflective film, and sufficient heat resistance may not be imparted. Therefore, the stretching conditions are important.
  • the obtained cast sheet is preferably stretched to 5 times or more in area magnification, and more preferably to 7 times or more.
  • a porosity of 5% or more can be realized, and by stretching to 7 times or more, a porosity of 20% or more can be achieved.
  • a porosity of 30% or more can be realized.
  • a film having a porosity of 5% or more can be obtained by using titanium oxide as a fine powder filler and stretching the film at an area magnification of 5 times or more, and whitening of the film proceeds and sufficient film reflectance is obtained. Is obtained.
  • a filler other than titanium oxide is used as the fine powder filler, it is preferable that the porosity is 20% or more.
  • biaxial stretching When it is difficult to achieve an area magnification of 5 times or more only by uniaxial stretching, an area magnification of 5 times or more can be easily achieved by biaxial stretching. That is, by biaxially stretching, a film having a higher porosity can be stably obtained, and as a result, the reflectance of the film is improved. be able to. Further, since the mechanical strength of the film can be increased by biaxially stretching the film, biaxial stretching is preferable also from the viewpoint of the mechanical properties of the film. Further, when heat resistance is required for the reflective film, biaxial stretching is preferable because the film has no anisotropy in the shrinkage direction.
  • the void When high-purity titanium oxide is used, it is preferably stretched at least 1.1 times or more in a uniaxial direction, and more preferably stretched in a biaxial direction. ⁇ Since the existence of the void is not essential, the void may or may not be formed.
  • the stretching temperature at the time of stretching the cast sheet is preferably, for example, 50 ° C. or more and 90 ° C. or less in the case of polylactic acid.
  • the stretching temperature is 50 ° C. or higher, the film does not break during stretching, and when the stretching temperature is 90 ° C. or lower, the stretch orientation does not decrease and the porosity does not decrease.
  • a force for forming voids inside the film is obtained by stretching the aliphatic polyester-based resin and the fine powder filler during stretching.
  • the stretching behaviors of the two are different.
  • the stretching is performed at a stretching temperature suitable for the aliphatic polyester resin, the aliphatic polyester resin serving as the matrix is elongated, but the finely divided filler tends to stay as it is.
  • the interface between the base resin and the finely divided filler is peeled off, and voids are formed.
  • the voids formed are only in a fibrous form that stretches in one direction, but by biaxial stretching, the voids are stretched in both the vertical and horizontal directions, resulting in a disk-like shape.
  • the biaxial stretching increases the peeling area at the interface between the aliphatic polyester resin and the finely divided powdery filler, advances the whitening of the film, and as a result, has a favorable reflectance as a reflective film Is obtained.
  • the stretching order of the biaxial stretching is not particularly limited. For example, simultaneous biaxial stretching or sequential stretching may be used. After forming a melt film using a stretching device, the film may be stretched in the MD direction by roll stretching and then stretched in the TD direction by tenter stretching, or biaxial stretching may be performed by tubular stretching or the like.
  • the processing temperature for heat setting the film is preferably from 90 to 160 ° C, more preferably from 110 to 140 ° C.
  • the processing time required for heat setting is preferably 1 second to 5 minutes.
  • the stretching equipment is not particularly limited, but it is preferable to perform a tenter-one stretching capable of performing a heat setting treatment after the stretching.
  • the thickness of the aliphatic polyester resin reflective film of the present invention is not particularly limited, but is usually 30 ⁇ ! 5500 ⁇ m, and considering the practical handling, it is preferable that the thickness be in the range of about 5 ⁇ 500 ⁇ m.
  • the thickness of a small and thin reflective film for use as a reflector is 3 ⁇ ! It is preferably ⁇ 10 O / im. If a reflective film having such a thickness is used, it can be used for, for example, small and thin liquid crystal displays of notebook computers and mobile phones.
  • the reflection film of the present invention may have a single-layer configuration, or may have a multilayer configuration in which two or more layers are laminated.
  • a reflective plate used for a liquid crystal display or the like can be formed using the aliphatic polyester resin reflective film of the present invention.
  • a reflecting plate can be formed by coating an aliphatic polyester resin reflecting film on a metal plate or a resin plate. This reflector is used for liquid crystal display, 07280
  • Methods for coating the reflective film on a metal plate or resin plate include a method using an adhesive, a method of heat-sealing without using an adhesive, a method of bonding via an adhesive sheet, and a method of extrusion coating.
  • an adhesive such as a polyester-based, polyurethane-based, or epoxy-based adhesive may be applied to the surface of the metal plate or the resin plate on which the reflective film is to be bonded, and the reflective film may be bonded.
  • a commonly used coating equipment such as a lipperron recorder or a kistrono recorder is used, and the adhesive film thickness after drying is applied to the surface of a metal plate or the like on which the reflective film is bonded.
  • the coated surface is dried and heated by an infrared heater and a hot-air heating furnace, and while the surface of the plate is maintained at a predetermined temperature, the reflective film is directly coated and cooled by using a roll laminator, whereby the reflection is performed. You can get a board. In this case, it is preferable to keep the surface of the metal plate or the like at 210 ° C. or lower, because the light reflectivity of the reflector can be kept high.
  • the sheet is a thin product defined by JIS, and generally has a small thickness and flatness in place of length and width.
  • a film is a thin, flat product whose thickness is extremely small compared to its length and width, and whose maximum thickness is arbitrarily limited, and which is usually supplied in the form of a roll. Standard JISK 6900). Therefore, it can be said that a film having a particularly small thickness among the sheets is a film.
  • the boundary between the sheet and the film is not clear, and it is difficult to clearly distinguish the film.
  • sheet also includes the term “film”.
  • a mark of 200 mm width was inserted into each of the MD and TD of the film, and cut out as samples. After placing the cut sample film in a hot air circulating oven at a temperature of 80 ° C for 3 hours, the film The contracted amount of contraction was measured. The ratio of the amount of shrinkage to the original size (200 mm) of the sample film before it was placed in the oven was expressed as a percentage, and this was defined as the heat shrinkage (%).
  • the density of the film before stretching (expressed as “unstretched film density”) and the density of the film after stretching (expressed as “stretched film density”) were measured.
  • Average reflectance a (wavelength 400 to 700 nm):
  • the average reflectance was measured in the same manner as the above a. Of the measured values obtained, the average value of these numerical values was calculated using the measured values at wavelengths of 420 to 700 nm, and this value was calculated as the wavelength 42 The average reflectance was from 0 to 700 nm.
  • Evaluation criteria The evaluation was performed based on the following evaluation criteria. Evaluation criteria:
  • the refractive index (nl) of the resin was measured based on the A method of JISK-7142.
  • the refractive index (n 2) of the fine powder filler was measured based on the JISK-7142 method B.
  • the poly (ethylene terephthalate) as the resin component and the poly (methyl pentene) as the filler component were obtained in accordance with JISK-7142 method A after forming into a film.
  • Calcium carbonate as a filler component was determined based on the method of JISK-7142.
  • the film can be formed stably and has good film forming properties.
  • the reflectance (%) of the reflector was measured using the same measurement method as in the above (5).
  • a fixed frame of a reflective sheet incorporated in the backlight of a 21-inch LCD TV manufactured by Hitachi, Ltd. was used. After mounting on this fixed frame in the same way as actually mounted on the LCD TV and heating at 80 degrees for 3 hours, the appearance of the sheet was visually observed and evaluated based on the following criteria. .
  • L-lactide (Purak Japan) BL) (100 kg) and tin octylate (15 ppm) were added to a 500-L batch polymerization tank equipped with a stirrer and a heating device. Then, the atmosphere was replaced with nitrogen, and polymerization was carried out at a temperature of 185 ° C. and a stirring speed of 100 rpm for 60 minutes to obtain a melt.
  • the obtained melt is supplied to a Mitsubishi Heavy Industries, Ltd. 4 Omm ⁇ co-rotating twin screw extruder equipped with three stages of vacuum vents, and devolatilized at a vent pressure of 4 Torr while forming a strand at 200 ° C. To obtain a pellet-shaped polylactic acid-based polymer.
  • the weight average molecular weight of the obtained polylactic acid-based polymer was 200,000, the L-form content was 99.5%, and the D-form content was 0.5%.
  • the glass transition temperature (Tg) was 65 ° C.
  • the master patch and the polylactic acid-based polymer I were mixed at a ratio of 40% by mass: 60% by mass to prepare an aliphatic polyester-based resin composition. Thereafter, the aliphatic polyester resin composition was extruded from a T-die at 230 ° C. using a single screw extruder, and cooled and solidified to form a film. The obtained film is biaxially stretched 3 times in the MD direction and 3 times in the TD direction at a temperature of 65 ° C, and then heat-treated at 140 ° C to form a reflecting film having a thickness of 1888 m. Obtained.
  • a pellet of polylactic acid-based polymer with a weight-average molecular weight of 200,000 (D-form content: 0.5%, glass transition temperature: 65 ° C), and sulfuric acid vapor with an average particle size of 0.7 im The 50 mass. / 0 /50% by weight to mix to form a mixture.
  • a hydrolysis inhibitor bis (dipropylphenyl) carbodiimide
  • a twin-screw extruder To 100 parts by mass of this mixture, 3 parts by mass of a hydrolysis inhibitor (bis (dipropylphenyl) carbodiimide) was added and mixed, and then pelletized using a twin-screw extruder to prepare a master patch.
  • This master patch and the polylactic acid-based polymer were mixed at a ratio of 50% by mass and 50% by mass to prepare an aliphatic polyester-based resin composition.
  • the aliphatic polyester resin composition was extruded from a T-die at 230 ° C. using a single screw extruder, and cooled and solidified to form a film. The obtained film is heated at a temperature of 6 5
  • the film was biaxially stretched three times in the MD direction and three times in the TD direction at ° C, and then heat-treated at 140 ° C to obtain a reflecting film having a thickness of 188 m.
  • the same measurement and evaluation as in Example I-11 were performed on the obtained reflection film. Tables 1 and 2 show the results.
  • a pellet of a polylactic acid-based polymer having a weight average molecular weight of 200,000 (D-form content: 0.5%, glass transition temperature: 65 ° C) and calcium carbonate having an average particle size of 5 ⁇ m are 60 masses.
  • a mixture was formed by mixing at a ratio of / 0 /40% by weight.
  • a hydrolysis inhibitor bis (dipropyl After adding and mixing 3 parts by mass of phenyl)
  • the mixture was pelletized using a twin-screw extruder to produce a master patch.
  • the master batch and the polylactic acid-based polymer were mixed at a ratio of 60% by mass to 40% by mass to prepare an aliphatic polyester-based resin composition.
  • the aliphatic polyester resin composition was extruded from a T-die at 230 ° C. using a single screw extruder, and cooled and solidified to form a film.
  • the obtained film was biaxially stretched three times in the MD direction and three times in the TD direction, and then heat-treated at 140 ° C. to obtain a 188 ⁇ m thick reflective film.
  • the same measurement and evaluation as in Example I-1 were performed on the obtained reflection film. The results are shown in Tables 1 and 2.
  • the mixture was mixed at a ratio of 50% by mass / 50% by mass to form a mixture.
  • This mixture was pelletized using a twin-screw extruder to produce a master batch.
  • the masterbatch and the polylactic acid-based polymer were mixed at a ratio of 50% by mass to 50% by mass to prepare an aliphatic polyester-based resin composition. Thereafter, the aliphatic polyester resin composition was extruded from a die at 230 ° C.
  • Example I-1 The same measurement and evaluation as in Example I-1 were performed on the obtained reflection film. The results are shown in Tables 1 and 2.
  • the obtained film was biaxially stretched 3 times in the MD direction and 3 times in the TD direction at a temperature of 100 ° C., and then heat-treated at 235 ° C.
  • a reflective film having a thickness of 18.8 ⁇ was obtained.
  • the obtained reflection film was measured and evaluated in the same manner as in Example I-11. The results are shown in Tables 1 and 2.
  • Polypropylene and parium sulfate having an average particle size of 0.7 ⁇ were mixed at a ratio of 50% by mass and 50% by mass / 0 to form a mixture.
  • This mixture was pelletized using a twin-screw extruder to produce a master patch.
  • One batch of this master and 50% by mass of 50% by mass of polypropylene were mixed to prepare a resin composition. Thereafter, the resin composition was extruded from a die at 210 ° C. using a single screw extruder, and cooled and solidified to form a film.
  • the obtained film was biaxially stretched 3 times in the MD direction and 3 times in the TD direction at a temperature of 135 ° C to obtain a reflective film with a thickness of 188 ⁇ m.
  • the obtained reflective film was subjected to the same measurement and evaluation as in Example I-1. The results are shown in Tables 1 and 2.
  • Table 1
  • Example 1-2 White 94 X 1 2
  • the reflective films of the present invention of Examples I-11 to I-3 have a porosity of 30% or more, and have heat shrinkage, average reflectance, hydrolysis resistance, It was found that excellent results were obtained in all of the yellowing prevention properties, biodegradability, and deadfold properties.
  • Example I-14 in which the hydrolysis inhibitor was not mixed, the hydrolysis resistance was slightly inferior, but at a practical level, and all other evaluations were excellent.
  • Comparative Examples 1 and 2 formed from resins other than the aliphatic polyester resin were found to be inferior in deadfold property and biodegradability. Further, it was confirmed that Comparative Example 1, which was formed from a resin having an aromatic ring, turned yellow when irradiated with ultraviolet light, and the reflectance was significantly reduced from the initial value.
  • Comparative Example 1 which was formed from a resin having an aromatic ring, turned yellow when irradiated with ultraviolet light, and the reflectance was significantly reduced from the initial value.
  • a pellet of a polylactic acid-based polymer having a weight-average molecular weight of 200,000 (D-isomer content: 0.5%, glass transition temperature: 65 ° C) and calcium carbonate having an average particle size of 5 ⁇ m were mixed with 50%.
  • the mixture was mixed at a ratio of 50% by mass / 50% by mass to form a mixture.
  • 3 parts by mass of a hydrolysis inhibitor bis (dipropylphenyl) carbodiimide
  • the masterbatch and the polylactic acid-based polymer ⁇ were mixed at a ratio of 60% by mass and 40% by mass to prepare a luster aliphatic polyester-based resin composition. Thereafter, the aliphatic polyester-based resin composition was extruded from a T-die at 230 ° C. using a single screw extruder, and solidified by cooling to form a film. As shown in Table 3, the obtained film was biaxially stretched three times in the MD direction and three times in the TD direction, and then heat-treated at 140 ° C to obtain a reflective film with a thickness of 188 ⁇ m. Was.
  • a pellet of a polylactic acid-based polymer with a weight average molecular weight of 200,000 (D-form content: 0.5%, glass transition temperature: 65 ° C) and titanium oxide with an average particle size of 0.25 / xm Were mixed at a proportion of 50% by mass Z 50% by mass to form a mixture.
  • 3 parts by mass of a hydrolysis inhibitor bis (dipropylphenyl) carbodiimide
  • the masterbatch and the polylactic acid-based polymer were mixed at a ratio of 40% by mass to 760% by mass to prepare an aliphatic polyester-based resin composition.
  • the aliphatic polyester-based resin composition was extruded from a T-die at 230 ° C. using a single screw extruder, and cooled and solidified to form a film.
  • the obtained film was biaxially stretched three times in the MD direction and three times in the TD direction, and then heat-treated at 140 ° C to obtain a reflective film with a thickness of 188 m.
  • the same measurement and evaluation as in Example E-1 were performed on the obtained reflection film. The results are shown in Tables 3 and 4.
  • Example H-2 as shown in Table 3, a reflective film was produced in the same manner as in Example II_2 except that the film thickness was set to 250 ⁇ m. That is, in the same manner as in Example II-2, extruded from a T-die, The film was cooled and solidified to form a film, and then stretched and heat-treated in the same manner as in Example I-2 to obtain a 250 ⁇ m thick reflective film. The obtained reflective film was subjected to the same measurement and evaluation as in Example II-1. The results are shown in Tables 3 and 4.
  • Example I-2 as shown in Table 3, a reflective film was produced in the same manner as in Example II-2, except that the film thickness was 80 ⁇ m. That is, in the same manner as in Example II-2, the film was extruded from the T-die, cooled and solidified to form a film, and then stretched and heat-treated in the same manner as in Example II-2 to obtain a thickness of 80 ⁇ m. Was obtained. The same measurement and evaluation as in Example II-1 were performed on the obtained reflection film. The results are shown in Tables 3 and 4. (Example ⁇ _ 5)
  • a pellet of a polylactic acid-based polymer with a weight average molecular weight of 200,000 (D-form content: 0.5%, glass transition temperature: 65 ° C) and titanium oxide with an average particle size of 0.25 / m Were mixed at a proportion of 50% by mass Z 50% by mass to form a mixture.
  • 3 parts by mass of a hydrolysis inhibitor bis (dipropylphenyl) carbodiimide
  • the masterbatch and the polylactic acid-based polymer were mixed at a ratio of 60% by mass / 40% by mass to prepare an aliphatic polyester-based resin composition.
  • the aliphatic polyester-based resin composition was extruded from a T-die at 230 ° C. using a single screw extruder, and solidified by cooling to form a film.
  • the obtained film was biaxially stretched 3 times in the MD direction and 3 times in the TD direction, And a reflective film having a thickness of 80 m was obtained.
  • the obtained reflection film was measured and evaluated in the same manner as in Example II-1. Tables 3 and 4 show the results.
  • Example I-14 in which no hydrolysis inhibitor was mixed, showed hydrolysis resistance. Although it was slightly inferior, it was more than a practical level, and excellent results were obtained in all but the hydrolysis resistance.
  • Comparative Examples I-11 and I-12 comprising resins other than the aliphatic polyester-based resin are inferior in deadfold property and biodegradability, and Comparative Example I comprising a resin having an aromatic ring. It was found that the yellow color was changed by UV irradiation.
  • the mixture was pelletized using a twin-screw extruder to produce a so-called master patch.
  • the master batch and the polylactic acid-based polymer I were mixed at a ratio of 60% by mass: 40% by mass to prepare a resin composition. Thereafter, the resin composition was extruded from a die at 220 ° C. using a single screw extruder, and cooled and solidified to form a film.
  • the obtained film was biaxially stretched 3 times in the MD direction and 3 times in the TD direction at a temperature of 65 ° C, and then heat-treated at 140 ° C to obtain a 188 ⁇ m thick reflective film. .
  • the porosity, average reflectance b before UV irradiation and average reflectance b after UV irradiation, yellowing prevention (UV irradiation time of 180 hours), and film forming property of the obtained reflective film were measured and evaluated. went. The results are shown in Tables 5 and 6.
  • 80 mass of this master batch and polylactic acid-based polymer 1. /. No. 20% by mass was mixed to prepare a resin composition. Thereafter, the resin composition was extruded from a T-die at 220 ° C. using a single screw extruder, and cooled and solidified to form a film.
  • the obtained film was biaxially stretched 3 times in the MD and 3 times in the TD at 65 ° C and then heat-treated at 140 ° C to obtain a 188 m thick reflective film.
  • the same measurement and evaluation as in Example II-1 were performed on the obtained reflective film. The results are shown in Tables 5 and 6.
  • the mixture was pelletized using a twin-screw extruder to produce a master patch.
  • the master patch and the polylactic acid-based polymer were mixed at a ratio of 40% by mass / 60% by mass to prepare a resin composition. Thereafter, the resin composition was extruded from a T-die at 220 ° C. using a single screw extruder, and cooled and solidified to form a film.
  • the obtained film was biaxially stretched 3 times in the MD and 3 times in the TD as shown in Table 5 at a temperature of 65 ° C, and then heat-treated at 140 ° C to a thickness of 188 ⁇ m.
  • m reflective film was obtained.
  • the same measurement and evaluation as in Example m-1 were performed on the obtained reflection film. The results are shown in Tables 5 and 6.
  • Pellets of polylactic acid-based polymer with a weight average molecular weight of 200,000 (D content 0.5%, glass transition temperature 65 ° C) and zinc oxide with an average particle size of 0.4 zm After mixing the door at a rate of 5 0 wt ° / 0 5 0 wt% to prepare a masterbatch Peretsuto by using a twin-screw extruder.
  • the master patch and the polylactic acid-based polymer were mixed at a ratio of 40% by mass Z60% by mass to prepare a resin composition. Thereafter, the resin composition was extruded from a T-die at 220 ° C. using a single screw extruder, and cooled and solidified to form a film.
  • the obtained film was biaxially stretched at a temperature of 65 ° C by 3 times in the MD direction and 3 times in the TD direction as shown in Table 5, and then heat-treated at 140 ° C to a thickness of 18 An 8 ⁇ m reflective film was obtained.
  • the same measurement and evaluation as in Example II_1 were performed on the obtained reflection film. The results are shown in Tables 5 and 6.
  • Polypropylene and parium sulfate having an average particle size of 0.7 ⁇ m were mixed at a ratio of 50% by mass / 50% by mass to form a mixture.
  • the mixture was pelletized using a twin screw extruder to produce a master patch.
  • the master batch and the above-mentioned barium sulfate were mixed so that the sulfuric acid concentration became 60% by mass to prepare a resin composition.
  • the resin composition was extruded from a T-die at 210 ° C. using a single screw extruder, and cooled and solidified to form a film.
  • Table 5 the obtained film was uniaxially stretched 7 times in the MD direction at a temperature of 135 ° C.
  • Example II-1 The obtained reflection film was subjected to the same measurement and evaluation as in Example II-1. The results are shown in Tables 5 and 6. The same measurement and evaluation as in Example EI-1 were performed on the reflective film obtained in Comparative Example I-11 described above. The results are shown in Tables 5 and 6.
  • PET Polyethylene terephthalate Barium sulfate PP: Polypropylene c Titanium oxide
  • Example II-1 In the reflective film of the present invention, the refractive index of the resin as the main component was less than 1.5, and it was found that excellent results were obtained in the average reflectance, yellowing prevention properties, and film forming properties. . Also, the embodiment m_1 ⁇ ! The reflective film of IV-4 had biodegradability. Therefore, when landfilled, it could be degraded by microorganisms (biodegradable) and did not cause disposal problems.
  • ⁇ -2, and Comparative Example 1-1 had poor biodegradability.
  • at least one of the evaluation results was poor.
  • Comparative Example m-1 and Comparative Example I-1 were inferior in yellowing prevention property
  • Comparative Example I-2 was a film-forming product. She was inferior in sex.
  • Pellet with a polylactic acid-based polymer with a weight average molecular weight of 200,000 (“Nature Works 4032D” manufactured by Cargill Dow Polymer: D-content 0.5%, glass transition temperature 65 ° C) and average particle size 0.25 m of titanium oxide (“Tiark pF_739” manufactured by Ishihara Sangyo Co., Ltd., rutile-type crystalline titanium oxide) mixed at 50% by mass / 50% by mass To form a mixture.
  • Nature Works 4032D is described as “NW40 32D”.
  • a hydrolysis inhibitor '(bis (dipropylphenyl) carbodiimide) was added and mixed.
  • the mixture was pelletized using a twin-screw extruder to form a so-called master patch.
  • This master batch and a polylactic acid-based polymer (NW4032D) were mixed at a ratio of 40% by mass: 60% by mass to prepare an aliphatic polyester-based resin composition.
  • the aliphatic polyester resin composition was extruded from a T-die at 220 ° C. using a single screw extruder, and cooled and solidified to form a film.
  • the obtained film was biaxially stretched at a temperature of 65 ° C by 2.5 times in the MD direction and 2.8 times in the TD direction, and then heat-treated at 140 ° C to obtain a reflection film having a thickness of 188 m. I got Irum.
  • the time was 1, 000 hours
  • biodegradability, deadfold property, reflector processing property, and reflector reflectance were measured and evaluated.
  • Tables 7 and 8 show the results.
  • Example 10 In V-1, titanium oxide was added to Ishihara Sangyo Co., Ltd. Example except that titanium oxide with an average particle diameter of 0.25 ⁇ was changed from “PF-739” to “Tipeta CR-90-2”, a rutile-type crystalline titanium oxide manufactured by Ishihara Sangyo Co., Ltd. A reflection film with a thickness of 188 ⁇ m was fabricated in the same manner as IV-1. The same measurement and evaluation as in Example IV-1 were performed on the obtained reflection film. Tables 7 and 8 show the results.
  • Example IV-1 the titanium oxide was obtained from “Taipek PF-739” manufactured by Ishihara Sangyo Co., Ltd. using titanium oxide having an average particle size of 0.25 ⁇ (“Taipeta PF” manufactured by Ishihara Sangyo Co., Ltd.).
  • a reflective film having a thickness of 188 was produced in the same manner as in Example IV-1, except that “711” was changed to rutile-type crystalline titanium oxide).
  • Tables 7 and 8 show the results.
  • a reflective film having a thickness of 250 m was produced in the same manner as in Example IV-1, except that the thickness of the film was changed to 250 ⁇ m in Example IV-1. About the obtained reflection film, the same measurement and evaluation as in Example IV-1 were performed. Tables 7 and 8 show the results.
  • Example IV-1 except that the stretching ratio of the film was changed to 3 times in the MD direction and 3.2 times in the TD direction, and the film thickness was changed to 80 ⁇ m.
  • a reflective film having a thickness of 80 m was produced in the same manner as in Example IV-1.
  • the obtained reflective film was subjected to the same measurement and evaluation as in Example IV-1. Tables 7 and 8 show the results. (Example IV-6)
  • NW 40 3 2 D Perez preparative and an average particle diameter of 0. 25 m titanium oxide emissions of (Ishihara Sangyo Co., Ltd. "Taipeta PF- 7 3 9") and a 5 0 mass 0/0/50 mass % To form a mixture. To 100 parts by mass of this mixture, 3 parts by mass of a hydrolysis inhibitor (bis (dipropylfurl) carbodiimide) was added and mixed, and the mixture was pelletized using a twin-screw extruder to prepare a master patch. Produced. This master patch and a polylactic acid-based polymer (NW403 2D) were mixed at a ratio of 60% by mass: 40% by mass to prepare an aliphatic polyester-based resin composition.
  • a hydrolysis inhibitor bis (dipropylfurl) carbodiimide
  • the aliphatic polyester resin composition was extruded from a T-die at 220 ° C. using a single screw extruder, and cooled and solidified to form a film.
  • the obtained film is biaxially stretched at a temperature of 6.5 ° C by 3 times in the MD direction and 3.2 times in the TD direction, and then heat-treated at 140 ° C to form a reflective film having a thickness of 80 ⁇ m. Obtained.
  • the same measurement and evaluation as in Example IV-1 were performed on the obtained reflection film. Tables 7 and 8 show the results.
  • a polyethylene terephthalate pellet and a titanium oxide with an average particle size of 0.25 // m (“Taipeta PF-739” manufactured by Ishihara Sangyo Co., Ltd.) are mixed at a ratio of 50% by mass to 50% by mass. A mixture formed. This mixture was pelletized using a twin-screw extruder to produce a master patch. And this master batch and a polyethylene terephthalate of 40 mass 0/0: 6 0 mass
  • a resin composition was prepared. Thereafter, the resin composition was extruded from a T-die at 280 ° C. using a single screw extruder, and cooled and solidified to form a film. The obtained film is heated at a temperature of 90 ° C in the MD direction. After 2.8 times biaxial stretching in the TD direction, heat treatment was performed at 140 ° C. to obtain a reflecting film having a thickness of 188 ⁇ m. The obtained reflective film was subjected to the same measurement and evaluation as in Example IV-1. Tables 7 and 8 show the results.
  • Example IV-1 the titanium oxide was obtained from “Taipeta PF-739” manufactured by Ishihara Sangyo Co., Ltd. from titanium oxide having an average particle diameter of 0.25; zm ( ⁇ ⁇ - ⁇ JR-805 manufactured by Tika).
  • a reflective film having a thickness of 188 m was produced in the same manner as in Example IV-1, except that the film was changed to rutile-type crystalline titanium oxide. The same measurement and evaluation as in Example IV-1 were performed on the obtained reflection film. Tables 7 and 8 show the results.
  • Example IV_1 titanium oxide was obtained from “Taipeta PF-739" manufactured by Ishihara Sangyo Co., Ltd. using titanium oxide having an average particle size of 0.25 / xm ("KRONO SKR 4" manufactured by Titanium Industry Co., Ltd.).
  • a reflective film having a thickness of 188 m was produced in the same manner as in Example IV_1 except that “70” and rutile-type crystalline titanium oxide) were used.
  • the obtained reflective film was subjected to the same measurement and evaluation as in Example IV-1. Tables 7 and 8 show the results.
  • the reflection film obtained in Example IV-1 was bonded to a zinc plating steel plate (0.45 mm thick) to produce a reflection plate. That is, first, a polyester adhesive (commercially available) was applied to the bonded surface of the steel sheet so that the thickness after drying was 2 to 4 ⁇ . Next, the infrared heater and heat The coated surface is dried and heated using an air heating furnace, and while the surface temperature of the steel sheet is maintained at 180 ° C, a reflective film is directly adhered using a roll laminator and cooled. A reflector was manufactured. For the obtained reflector, the workability of the reflector and the reflectance of the reflector were measured and evaluated. Table 9 shows the results.
  • Example IV-9 a reflecting plate was produced in the same manner as in Example IV-9, except that the surface temperature of the steel sheet was maintained at 220 ° C instead of being maintained at 180 ° C.
  • the obtained reflector was measured and evaluated in the same manner as in Example IV-9. Table 9 shows the results.
  • the reflective films of Examples IV-1 to IV-8 maintain a reflectance of 90% or more even after irradiation with ultraviolet light, and have high light reflectivity and yellowness. It was found to have anti-change properties. In addition, it was found that it had excellent hydrolysis resistance and dead fold properties (shape retention properties), and also had biodegradability.
  • Example IV-1 using titanium oxide with a vanadium content of 5 ppm or less! V-6 has an initial reflectance of as high as 98% or more, and the reflectance after UV irradiation decreases little (2% or less), and the reflectance after UV irradiation is 96% or more. It turned out to be excellent to maintain.
  • V-6 can achieve extremely high reflectance even with a thin film thickness of 80 / im, and is sufficiently compatible as a reflective film for small and thin liquid crystal displays such as notebook computers and mobile phones. It was possible.
  • Example V It was found that the reflection plate of Example IV-9 was superior in maintaining the light reflectivity to the reflection plate of Example IV-10.
  • reflecting plates for liquid crystal displays have been required to provide as much light as possible to the liquid crystal to improve the performance of the backlight unit due to the demand for larger screens and higher display performance. Reflection performance may be required. These reflective films can achieve such high reflective performance.
  • a pellet of a polylactic acid-based polymer having a weight average molecular weight of 200,000 (“NW4302D” manufactured by Cargill Dow) and titanium oxide having an average particle size of 0.25 ⁇ m were mixed with 50%.
  • the mixture was mixed at a ratio of 50% by mass / 50% by mass to form a mixture.
  • 3 parts by mass of a hydrolysis inhibitor bis (dipropylphenyl) carbodiimide
  • This master patch and a polylactic acid-based polymer were mixed at a ratio of 40% by mass: 60% by mass to prepare an aliphatic polyester-based resin composition. Thereafter, the aliphatic polyester-based resin composition was extruded from a T-die at 230 ° C. using a single screw extruder, and cooled and solidified to form an unstretched film. Next, the obtained film was stretched 2.5 times in the longitudinal direction at a temperature of 65 ° C., and then subjected to a relaxation treatment so that the longitudinal relaxation rate at the tenter outlet became 0.990.
  • the film is stretched 3.0 times at 70 ° C in the horizontal direction, and then subjected to a relaxation treatment so that the lateral relaxation rate at one exit of the tenter becomes 0.993, and finally 250 ⁇ m. You got m Huinorem. With respect to the obtained reflective finolem, the heat shrinkage b after storage at 80 ° C. for 3 hours was measured both in the vertical and horizontal directions. In addition, mounting evaluation was performed on the obtained reflection film. Table 10 shows the results.
  • Example V-1 the same procedures as in Example V_1 were performed except that the longitudinal relaxation rate and the lateral relaxation rate were changed as shown in Tables 10 to 14.
  • V-26 reflection films were prepared. The obtained reflection film was subjected to the same measurement and evaluation as in Example V-1. The result 10 to Table 14.
  • the relaxation rate is defined as the longitudinal relaxation rate 0.909 to 0.996, the lateral relaxation rate 1.0000 to: I.O.
  • the film was stretched (without relaxation or slightly stretched), a material having a very small shrinkage after storage at 80 ° C for 3 hours could be obtained.
  • the vertical relaxation rate is defined as the longitudinal relaxation rate 0.909 to 0.996, the lateral relaxation rate 1.0000 to: I.O.
  • the function of the conventional reflective film or sheet is sufficiently exhibited, and the yellowing or the reflectance is not reduced by use, and the dead fold property is reduced. It has a low heat generation when incinerated, and can be decomposed by microorganisms when it is landfilled (biodegradable), and does not cause disposal problems.
  • a reflective film used for a plate or the like can be obtained.
  • the present invention can be used for a reflection film used for a reflection plate of a liquid crystal display, a lighting fixture, a lighting signboard and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

使用により経時的に黄変したり、反射率が低下することがなく、かつ、デッドフォールド性に優れ、しかも、焼却処理した場合に発熱量が小さく、埋め立て処理した場合には微生物等による分解が可能で、廃棄上の問題が生じない反射フィルムを得るために、反射フィルムは、脂肪族ポリエステル系樹脂をベース樹脂とし、微粉状充填剤を含有し、かつ、内部に、空隙のフィルム中に占める割合が50%以下となるように空隙を有する。ここで、微粉状充填剤は酸化チタンであることが好ましい。

Description

脂肪族ポリエステル系樹脂反射フィルム及び反射板
技術分野
本発明は脂肪族ポリエステル系樹脂反射フィルムに関し、 特に、 液晶 デ'イスプレイ、 照明器具、 照明看板等の反射板等に使用されるポリエス 明
テル系樹脂反射フィルムに関する。 書
背景技術
液晶ディスプレイの反射板等に使用される反射フィルムとして、 特開 平 4一 2 3 9 5 4 0号公報には、 芳香族ポリエステル系樹脂からなるフ イルムが開示されているが、 その分子鎖中に含まれる芳香環が紫外線を 吸収するため、 紫外線に晒されると反射フィルムが劣化し黄変して、 反 射フィルムの反射率が低下するという欠点があった。 また、 特開平 1 1 - 1 7 4 2 1 3号公報には、 反射フィルムとして、 ポリプロピレン系樹 脂からなるフィルムが開示されているが、 廃棄処分に付される場合に、 ポリプロピレン系樹脂は焼却処理されると焼却発熱量が大きいので焼却 炉を傷めるという問題があった。 また、 ポリプロピレン系樹脂等のブラ スチックは自然環境中で長期にわたって安定であるので、 廃棄に際し埋 め立て処理されると、 長期にわたって土壌中に残存し、 廃棄物埋め立て 処理用地の短命化を促進したり、 自然の景観や野生動植物の生活環境を 損なう等の問題があった。
さらに、 無機充填剤を 6 0質量0 /0以上添加したポリプロピレン系樹脂 からなるブイルムは十分なフィルム強度を確保することができないので、 延伸時にフィルムが破断しやすく、 フィルム生産の安定性が低下する恐 れがあった。
液晶ディスプレイの反射板等に使用される反射フィルムは、 折りたた み加工等を施した時にその形状を保持することができる形状保持性が求 められているが、 従来の反射フィルムは 「デッドフォールド性」 が低い という欠点があった。 発明の開示
本発明は上記問題点を解決すべくなされたものであり、 本発明の目的 は、 使用により経時的に黄変したり、 反射率が低下することがなく、 か つ、 デッ ドフォールド性に優れ、 しかも、 焼却処理した場合に発熱量が 小さく、 埋め立て処理した場合には微生物等による分解が可能で、'廃棄 上の問題が生じない反射フィルムを提供することにある。
本発明の脂肪族ポリエステル系樹脂反射フィルムは、 微粉状充填剤を 含有し、 かつ、 内部に、 空隙のフィルム中に占める割合が 5 0 %以下と なるように空隙を有することを特徴とする。
ここで、 前記微粉状充填剤が、 少なく とも酸化チタンを含むことが好 ましい。
また、 前記酸化チタンは、 バナジウムの含有量が 5 p p m以下である ことが好ましい。
本発明においては、 前記微粉状充填剤を脂肪族ポリエステル系樹脂組 成物 1 0 0質量部に対して 1 0質量部以上、 6 0質量部以下の範囲で含 有することができる。
本発明の脂肪族ポリエステル系樹脂反射フィルムが空隙を有する場合 には、 空隙率が 5 %以上、 5 0 %以下であることが好ましい。
本発明において、 前記脂肪族ポリエステル系樹脂の屈折率が 1 · 5 0 未満であることが好ましい。 また、 脂肪族ポリエステル系樹脂の屈折率と、 微粉状充填剤の屈折率 との差が 0 . 1 5以上であることが好ましい。
また、 前記脂肪族ポリエステル系樹脂が乳酸系樹脂であることができ る。
本発明の脂肪族ポリエステル系樹脂反射フィルムは、 脂肪族ポリエス テル系樹脂及ぴ微粉状充填剤を含む樹脂組成物を溶融製膜したフィルム を、 面積倍率が 5倍以上になるよう.に、 少なく とも 1軸方向に延伸した フィルムであることができる。
また、 8 0 °Cで 3時間保存した後のフィルムの収縮率が、 縦方向で 0 %より大きく、 0 . 7 %未満であり、 横方向で、 一 0 . 1 %以上、 0 . 5 %以下であることが好ましい。
本発明の反射板は、 上記いずれかの脂肪族ポリエステル系樹脂反射フ イルムを備えていることを特徴とする。 例えば、 金属板もしくは榭脂板 に貼り合わせることにより形成することができ、 液晶表示用反射板、 照 明器具用反射板、 照明看板用反射板等として利用することができる。 発明を実施するための最良の形態
以下、 本発明を詳しく説明する。
本発明の脂肪族ポリエステル系樹脂反射フィルムは、 内部に微粉状充 填剤を有する。
本発明に用いられる微粉状充填剤としては、 有機質微粉体、 無機質微 粉体等が挙げられる。 有機質微粉体としては、 木粉、 パルプ粉等のセル ロース系粉末や、 ポリマービーズ、 ポリマー中空粒子等から選ばれた少 なくとも 1種が用いられることが好ましい。
無機質微粉体としては、 炭酸カルシウム、 炭酸マグネシウム、 炭酸バ リウム、 硫酸マグネシウム、 硫酸バリウム、 硫酸カルシウム、 酸化亜鉛、 酸化マグネシウム、 酸化カルシウム、 酸化チタン、 アルミナ、 水酸化ァ ルミ -ゥム、 ヒ ドロキシァパタイ ト、 シリカ、 マイ力、 タルク、 力オリ ン、 ク レー、 ガラス粉、 アスベス ト粉、 ゼォライ ト、 珪酸白土等から選 ばれた少なく とも 1種が用いられることが好ましい。 得られるフィルム の光反射性を勘案すれば、 フィルムを構成するベース樹脂との屈折率差 が大きいものが好ましく、 すなわち、 無機質微粉体としては屈折率が大 きいものが好ましい。 具体的には、 屈折率が 1 . 6以上である炭酸カル シゥム、 硫酸バリ ウム、 酸化チタンまたは酸化亜鉛を用いることが更に 好ましく、 これらの中でも酸化チタンを用いることが特に好ましい。 酸 化チタンを用いることにより、 より少ない充填量でフィルムに高い反射 性能を付与することができ、 また、 薄肉でも高い反射性能のフィルムを 得ることができる。
本発明においては、 酸化チタンの中でも純度の高い高純度酸化チタン を用いることが特に好ましい。 本発明において高純度酸化チタンとは、 可視光に対する光吸収能が小さい酸化チタンであり、 バナジウム、 鉄、 ニオブ、 銅、 マンガン等の着色元素の含有量が少ないものをいう。 本発 明においては、 酸化チタンに含まれるバナジウムの含有量が 5 p p m以 下である酸化チタンを高純度酸化チタンと称すことにする。 高純度酸化 チタンは、 光吸収能を小さくするという観点からは、 酸化チタンに含ま れる、 鉄、 ニオブ、 銅、 マンガン等の着色元素も少なくすることが好ま しい。
本発明に用いられる酸化チタンとしては、 例えば、 アナタース型酸化 チタン及びルチル型酸化チタンのような結晶形の酸化チタンが挙げられ る。 ベース樹脂との屈折率差を大きくするという観点からは、 屈折率が 2 . 7以上の酸化チタンであることが好ましく、 例えば、 ルチル型酸化 チタンの結晶形のものを用いることが好ましい。 バナジウムの含有量が 5 p p m以下の酸化チタンとしては、 例えば塩 素法プロセスにより製造されるものが挙げられる。 塩素法プロセスでは、 酸化チタンを主成分とするルチル鉱を 1 , 0 0 0 °C程度の高温炉で塩素 ガスと反応させて、 まず、 四塩化チタンを生成させる。 次いで、 この四 塩化チタンを酸素で燃焼することにより、 高純度酸化チタンを得ること ができる。 なお、 酸化チタンの工業的な製造方法としては硫酸法プロセ スもあるが、 この方法によって得られる酸化チタンには、 バナジウム、 鉄、 銅、 マンガン、 ニオブ等の着色元素が多く含まれるので、 可視光に 対する光吸収能が大きくなる。 したがって、 硫酸法プロセスでは高純度 酸化チタンは得られ難い。
本発明においては、 微粉状充填剤として、 無機質微粉体と有機質微粉 体とを組み合わせて使用してもよい。 また、 微粉状充填剤同士を併用す ることができ、 例えば、 酸化チタンと他の微粉状充填剤、 高純度酸化チ タンと他の微粉状充填剤とを併用してもよい。
また、 微粉状充填剤の樹脂への分散性を向上させるために、 微粉状充 填剤の表面に、 シリコン系化合物、 多価アルコール系化合物、 アミン系 化合物、 脂肪酸、 脂肪酸エステル等で表面処理を施したものを使用して もよい。 例えば、 酸化チタンの脂肪族ポリエステル系樹脂への分散性を 向上させるために、 及び、 酸化チタンの光触媒活性を抑制するために、 酸化チタンの表面に表面処理を施しても良い。
表面処理剤としては、 例えば、 アルミナ、 シリカ、 ジルコユア等から なる群から選ばれた少なく とも 1種の無機化合物、 シロキサン化合物、 シランカツプリング剤、 ポリオール及びポリエチレングリコールからな る群から選ばれた少なく とも 1種の有機化合物等を用いることができる。 また、 これらの無機化合物と有機化合物とを組み合わせて用いてもよい。 本発明に用いられる微粉状充填剤は、 粒径が 0 . 以上、 1 5 μ m以下であることが好ましく、 より好ましくは粒径が 0 . l ^ m以上、 l O /z m以下である。 微粉状充填剤の粒径が 0 . 0 5 μ πι以上であれば、 脂肪族ポリエステル系樹脂への分散性が低下することがないので、 均質 なフィルムが得られる。 また粒径が 1 5 μ m以下であれば、 形成される 空隙が粗くなることはなく、 高い反射率のフィルムが得られる。
本発明に用いられる高純度酸化チタンは、 粒径が 0 . 1 / m以上、 1 μ m以下であることが好ましく、 0 . 2 i m以上、 0 . 5 m以下であ ることが更に好ましい。 高純度酸化チタンの粒径が 0 . l m以上であ れば、 脂肪族ポリエステル系樹脂への分散性が良好であり、 均質なフィ ルムを得ることができる。 また、 高純度酸化チタンの粒径が 1 μ m以下 であれば、 脂肪族ポリエステル系樹脂と酸化チタンとの界面が緻密に形 成されるので、 反射フィルムに高い光反射性を付与することができる。 微粉状充填剤は脂肪族ポリエステル系樹脂に分散配合されることが好 ましい。 本発明の反射フィルムに含まれる微粉状充填剤の含有量は、 フ イルムの光反射性、 機械的物性、 生産性等を考慮すると、 反射フィルム を形成するための脂肪族ポリエステル系樹脂組成物中、 1 0質量%以上、 6 0質量%以下であることが好ましく、 1 0質量%以上、 5 5質量%未 満であることが更に好ましく、 2 0質量%以上、 5 0質量%以下である ことが特に好ましい。 微粉状充填剤の含有量が 1 0質量。 /0以上であれば、 樹脂と微粉状充填剤との界面の面積を充分に確保することができて、 フ イルムに高い光反射性を付与することができる。 また、 微粉状充填剤の 含有量が 6 0質量%以下であれば、 フィルムに必要な機械的性質を確保 することができる。
本発明の脂肪族ポリエステル系樹脂反射フィルムは、 内部に、 空隙率 (空隙がフィルム中に占める割合) が 5 0 %以下となるように空隙を有 する。 ここでいう空隙とは貫通孔ではなく、 閉じた空孔を意味する。 た 7 だし、 空隙の大半が閉じた空孔であればよく、 貫通孔ゃ開放孔の存在を 全く認めないというものでもない。 本発明においてはフィルム内部に効 果的に分散状態で微粉状充填剤を含むことによって、 優れた反射率を実 現することができる。
本発明の脂肪族ポリエステル系樹脂反射フィルムが、 フィルム内に空 隙を有する場合には、 その空隙がフィルム中に占める割合 (空隙率) が 5 %以上、 5 0 %以下の範囲内であることが好ましい。 また、 空隙率は 2 0 %以上であることが更に好ましく、 特に好ましくは 3 0 %以上であ る。 空隙率が 5 0 %を超えると、 フィルムの機械的強度が低下してフィ ルム製造中にフィルムが破断したり、 使用時に耐熱性等の耐久性が不足 することがある。 例えば微粉状充填剤を添加して延伸することにより、 フィルム中に空隙を形成することができる。
微粉状充填剤として酸化チタンを用いれば、 フィルム内部に存在する 空隙率が少なくても高い光反射性を達成することができるので、 例えば、 1 5 %以下の空隙率でも充分に高い光反射性を達成することができる。 これは、 '酸化チタンの屈折率が高く、 隠蔽力が高いことに起因すると推 察される。 また、 充填剤の使用量を少なくすることができるならば、 延 伸により形成される空隙の数も少なくなるので、 高い反射性能を維持し つつフィルムの機械的性質を向上させることができる。 さらに、 充填剤 の使用量が多くても、 延伸量を少なく して空隙を少なくすることにより、 同様に機械的性質を向上させることができる。 これらはフィルムの寸法 安定性の向上の点においても有利な点である。 また、 薄肉でも高い反射 性能が確保されれば、 例えば、 ノート型パソコンや携帯電話等の小型、 薄型の液晶ディスプレイ用の反射フィルム等として使用することができ る。
本発明の脂肪族ポリエステル系樹脂反射フィルムは、 内部に空隙を有 していなくても、 フィルム内にバナジウム含量が 5 p p m以下の高純度 酸化チタンを有していれば、 高い光反射性を実現することができる。 ま た、 高純度酸化チタンを含有させ、 かつ、 空隙を有していれば、 特に高 い反射性が実現できる。
本発明の反射フィルムを構成するベース樹脂は、 屈折率 (n ) が 1 . 5 0未満であることが好ましく、 本発明においては、 屈折率 (n ) が 1 . 5 0未満の脂肪族ポリエステル系樹脂を用いることが好ましい。
屈折率 (n ) が 1 . 5 0未満である樹脂は、 芳香環を含まない脂肪族 系樹脂であることが好ましく、 ポリ乳酸系重合体であることが更に好ま しい。 芳香環を含むもの、 例えば芳香族系樹脂は、 屈折率が約 1 . 5 5 以上である。 フィルム内に微粉状充填剤を含有する反射フィルムは、 フ イルム内での界面における屈折散乱を利用して光反射性を付与している。 そのため、 フィルムを構成する樹脂と微粉状充填剤との屈折率の差が大 きいほうが、 高い光反射性を容易に付与することができる。 本発明にお いては、 この屈折率の差が 0 . 1 5以上であることが好ましく、 0 . 2 0以上であることが更に好ましい。 フィルムを構成する樹脂の屈折率が 1 . 5未満であれば、 微粉状充填剤の屈折率との差が 0 . 1 5以上の条 件を確保することが容易になる。 例えば、 ポリ乳酸系重合体は屈折率が 1 . 4 5程度であるので、 微粉状充填剤等との差が 0 . 1 5以上の条件 を容易に達成することができ、 組み合わせられる微粉状充填剤の種類も 豊富になる。 ところが、 芳香環を含む樹脂は屈折率が約 1 . 5 5以上で あるので、 微粉状充填剤との屈折率の差が小さくなってしまうことが多 い。
脂肪族ポリエステル系樹脂は、 分子鎖中に芳香環を含まないので紫外 線吸収を起こさない。 したがって、 液晶表示装置等の光源から発せられ る紫外線によってフィルムが劣化、 黄変することがなく、 光反射性が低 下することがない。
脂肪族ポリエステル系樹脂としては、 化学合成されたもの、 微生物に より発酵合成されたもの、 及び、 これらの混合物を用いることができる。 化学合成された脂肪族ポリエステル系樹脂としては、 ラタ トンを開環重 合して得られるポリ ε —力プロラクタム等、 二塩酸とジオールとを重合 して得られるポリエチレンアジペート、 ポリエチレンァゼレート、 ポリ テトラメチレンサクシネート、 シク口へキサンジカノレボン酸ノシク口へ キサンジメタノール縮合体等、 ヒ ドロキシカルボン酸を重合して得られ るポリ乳酸、 ポリグリコール等や、 上記した脂肪族ポリエステルのエス テル結合の一部、 例えば 5 0 %以下がアミ ド結合、 エーテル結合、 ウレ タン結合等に置き換えられた脂肪族ポリエステル等が挙げられる。 また、 微生物により発酵合成された脂肪族ポリエステル系樹脂としては、 ポリ ヒ ドロキシブチレート、 ヒ ドロキシプチレートとヒ ドロキシバリ レート との共重合体等が挙げられる。
本発明において、 ポリ乳酸系重合体とは、 D—乳酸または L一乳酸の 単独重合体またはそれらの共重合体をいい、 具体的には、 構造単位が D 一乳酸であるポリ (D—乳酸) 、 構造単位が L一乳酸であるポリ (L一 乳酸) 、 更には L一乳酸と D—乳酸の共重合体であるポリ (D L—乳 酸) があり、 またこれらの混合体も含まれる。
ポリ乳酸系重合体をはじめとする脂肪族ポリエステル系樹脂は、 分子 鎖中に芳香環を含ま.ないので紫外線吸収を起こさない。 したがって、 紫 外線に晒されて反射フィルムが劣化したり、 黄変したりすることがない ので、 フィルムの反射率が低下することがない。
ポリ乳酸系重合体は、 縮合重合法、 開環重合法等の公知の方法で製造 することが出来る。 例えば、 縮合重合法では、 D—乳酸、 L—乳酸、 ま たは、 これらの混合物を直接脱水縮合重合して任意の組成を有するポリ 乳酸系重合体を得ることができる。 また、 開環重合法では、 乳酸の環状 二量体であるラクチドを、 必要に応じて重合調整剤等を用いながら、 所 定の触媒の存在下で開環重合することにより任意の組成を有するポリ乳 酸系重合体を得ることができる。 上記ラクチドには、 L一乳酸の二量体 である Lーラクチド、 D—乳酸の二量体である D—ラクチド、 D—乳酸 と L一乳酸の二量体である D L—ラクチドがあり、 これらを必要に応じ て混合して重合することにより、 任意の組成、 結晶性を有するポリ乳酸 系重合体を得ることができる。
本発明に用いられるポリ乳酸系重合体は、 D—乳酸と L—乳酸との構 成比お、 D—乳酸: L一乳酸 = 1 00 : 0〜 8 5 : 1 5である力 また は D—乳酸: L—乳酸 = 0 : 1 00〜 1 5 : 8 5であることが好ましく、 さらに好ましくは、 D—乳酸: L一乳酸 = 9 9. 5 : 0. 5〜 9 5 : 5、 または、 D—乳酸: L _乳酸- 0. 5 : 99. 5〜5 : 9 5である。 D —乳酸と L一乳酸との構成比が 1 00 : 0もしくは 0 : 1 00であるポ リ乳酸系重合体は非常に高い結晶性を示し、 融点が高く、 耐熱性および 機械的物性に優れる傾向がある。 すなわち、 フィルムを延伸したり熱処 理したりする際に、 樹脂が結晶化して耐熱性及び機械的物性が向上する ので好ましい。 一方、 D—乳酸と L一乳酸とで構成されたポリ乳酸系重 合体は、 柔軟性が付与され、 フィルムの成形安定性及び延伸安定性が向' 上するので好ましい。 したがって、 得られる反射フィルムの耐熱性と、 成形安定性及び延伸安定性とのパランスを勘案すると、 本発明に用いら れるポリ乳酸系重合体は、 D—乳酸と L一乳酸との構成比が、 D—乳 酸: L—乳酸 = 9 9. 5 : 0. 5〜 9 5 : 5、 又は、 D—乳酸: L—乳 酸 = 0. 5 : 9 9. 5〜 5 : 9 5であることが、 より好ましい。
本発明においては、 D—乳酸と L—乳酸との共重合比が異なるポリ乳 酸系重合体をブレンドしてもよい。 この場合には、 複数の乳酸系重合体 の D—乳酸と L—乳酸との共重合比を平均した値が上記範囲内に入るよ うにすればよい。 D—乳酸と L一乳酸のホモポリマーと、 共重合体とを ブレンドすることにより、 ブリードのし難さと耐熱性の発現とのパラン スをとることができる。
本発明に用いられるポリ乳酸系重合体は高分子量であることが好まし く、 例えば、 重量平均分子量が 1万以上であることが好ましく、 6万以 上、 4 0万以下であることが更に好ましく、 1 0万以上、 3 0万以下で あることが特に好ましい。 ポリ乳酸系重合体の重量平均分子量が 1万以 下であると、 得られたフィルムが機械的物性に劣る場合がある。
ところで、 近年、 液晶ディスプレイはパソコン用ディスプレイの他、 自動車用カーナビゲーショ ンシステムや車載用小型テレビ等にも使用さ れるようになり、 高温度、 高湿度に耐えるものが必要となってきている。 そのため、 脂肪族ポリエステル系樹脂反射フィルムには、 耐久性を付与 する目的で、 加水分解防止剤を添加することが好ましい。
本発明に好ましく用いられる加水分解防止剤としては、 カルポジイミ ド化合物等が挙げられる。 カルボジィミ ド化合物としては、 例えば、 下 記一般式の基本構造を有するものが好ましいものとして挙げられる。 一(N = C = N— R—) n— 式中、 nは 1以上の整数を示し、 Rは有機系結合単位を示す。 例えば、 Rは脂肪族、 脂環族、 芳香族のいずれかであることができる。 また、 n は、 通常、 1〜 5 0の間で適当な整数が選択される。
具体的には、 例えば、 ビス (ジプロピルフエニル) カルポジイミ ド、 ポリ (4, 4, ージフエニルメタンカルポジイミ ド) 、 ポリ (p —フエ 二レンカルポジイミ ド) 、 ポリ (m—フエ二レンカルポジイミ ド) 、 ポ 7280
12 リ (ト リルカルポジイ ミ ド) 、 ポリ (ジイソプロピルフエ二レンカルボ ジイ ミ ド) 、 ポリ (メチルージイ ソプロ ピルフエ二レンカルポジイ ミ ド) 、 ポリ (トリイソプロピルフエ-レンカルポジイミ ド) 等、 および、 これらの単量体が、 カルポジイミ ド化合物として挙げられる。 これらの カルポジイミ ド化合物は、 単独で使用しても、 あるいは、 2種以上組み 合わせて使用してもよい。
本発明においては、 フィルムを構成する脂肪族ポリエステル系樹脂 1 0 0質量部に対してカルポジイミ ド化合物を 0 . 1〜 3 . 0質量部添加 することが好ましい。 カルポジイミ ド化合物の添加量が 0 . 1質量部以 上であれば、 得られるフィルムに耐加水分解性の改良効果が十分に発現 される。 また、 カルポジイミ ド化合物の添加量が 3 . 0質量部以下であ れば、 得られるフィルムの着色が少なく、 高い光反射性が得られる。 本発明においては、 本発明の効果を損なわない範囲内で、 酸化防止剤、 光安定剤、 熱安定剤、 滑剤、 分散剤、 紫外線吸収剤、 白色顔料、 蛍光増 白剤、 および、 その他の添加剤を添加することができる。
脂肪族ポリエステル系樹脂反射フィルムは、 4 2 0 n m〜 7 0 0 n m の光の波長域において、 9 0 %以上であることが好ましく、 9 5 %以上 であることが更に好ましい。 フィルム表面の平均反射率が 9 0 %以上で あれば、 良好な反射特性を示し、 液晶ディスプレイ等の画面も十分な明 るさを実現することができる。 このようにして得られた反射フィルムは、 反射フィルムとして十分機能する所定の反射率を有するものとなる。 ま た、 本発明の脂肪族ポリエステル系樹脂反射フィルムは、 波長が 5 5 0 n mの光に対する表面の平均反射率が 9 5 %以上であることが好ましく、 9 8 %以上であることが更に好ましい。 かかる平均反射率が 9 5 %以上 であれば、 良好な反射特性を示し、 液晶ディスプレイ等の画面に充分な 明るさを与えることができる。 4 007280
13 なお、 本発明の脂肪族ポリエステル系樹脂反射フィルムは紫外線に晒 された後でも優れた平均反射率を保持することができる。
ところで、 夏場の炎天下に駐車中の車内では、 自動車用カーナビゲー ションシステム、 車載用小型テレビ等は高温にさらされることになる。 また、 液晶表示装置が長時間使用されると光源ランプ周辺は高温にさら されることになる。 したがって、 カーナビゲーシヨンシステム、 液晶表 示装置等の液晶ディスプレイに使用される反射フィルムには 1 1 o °c程 度の耐熱性が要求される。 すなわち、 反射フィルムが 1 2 0 °Cの温度下 で 5分間放置されたときのフィルムの熱収縮率は 1 0 %以下であること が好ましく、 5 %以下であることが更に好ましい。 フィルムの熱収縮率 が 1 0 %より大きいと、 高温で使用すると経時的に収縮を起こすことが あり、 反射フィルムが鋼板等に積層されている場合には、 フィルムのみ が変形してしまうことがある。 大きな収縮が生じたフィルムは、 反射を 促す表面が小さくなつたり、 フィルム内部の空隙が小さくなるので、 反 射率が低下する。
熱収縮を防ぐためにはフィルムの結晶化を完全に進行させることが望 ましい。 脂肪族ポリエステル系樹脂反射フィルムは、 2軸延伸のみで完 全に結晶化を進行させることは困難なので、 本 明においては、 延伸後、 熱固定処理を行うことが好ましい。 フィルムの結晶化を促進させること によって、 フィルムに耐熱性を付与すると共に、 耐加水分解性も向上さ せることができる。
近年、 液晶ディスプレイ等の大型化の-一ズが高まっており、 反射シ 一トにも大型化が要求されるようになった。 例えば大画面の液晶テレビ 等の反射シートとして組み込まれる場合には、 光源にさらされた状態で 長時間使用されるので、 長時間使用における寸法変化の小さい反射フィ ルムであることが求められる。 また、 中型、 小型のエッジライ トタイプ のディスプレイでも、 端部を規制されて使用する場合には、 寸法変化が 小さいものが求められる。 例えば、 8 0 °Cで 1 8 0分間保持した後の熱 収縮率が、 縦方向の収縮率が 0 %より大きく、 0 . 7 %未満であり、 横 方向の収縮率が一 0 . 1 %〜0 . 5 %であることが好ましい。 横方向の 収縮率は、 0 . 0 0 1 %〜0 . 3 %であるが更に好ましい。 ここで、 縦 方向とはフィルムの流れ方向 (引取り方向) と同一の方向であり、 横方 向とはフィルムの流れ方向に直角な方向を言う。
従って、 本発明の脂肪族ポリエステル系樹脂反射フィルムは、 8 0 °C で 1 8 0分間保持した後の熱収縮率が上記範囲内であることが好ましい。 反射フィルムの熱収縮率をかかる範囲内にすることができれば、 大型の 液晶テレビ等の裏に使用しても経時変化による変形を防止し、 フィルム の平面性を保つことができる。 例えば、 フィルムを延伸した後、 引き続 き、 テンター出口で弛緩処理を行い、 所定量の弛緩を付与することによ り、 フィルムの熱収縮率を上記範囲内に設定することができる。
本発明の脂肪族ポリエステル系樹脂反射フィルムは、 埋め立て処理し た場合に微生物等による分解が可能で、 廃棄上の問題が生じない。 脂肪 族ポリエステル系樹脂を坦め立て処理すると、 エステル結合部が加水分 解することによって分子量が 1, 0 0 0程度に低下し、 引き続き土壌中 の微生物等により生分解される。
一方、 芳香族ポリエステル系樹脂は分子内の結合安定性が高く、 エス テル結合部の加水分解が起こりにくい。 また、 ポリプロピレン系樹脂は 加水分解そのものが起こりえない。 したがって、 芳香族ポリエステル系 樹脂及ぴポリプロピレン系樹脂を埋め立て処理しても、 分子量は低下せ ず、 微生物等による生分解も起こらない。 その結果、 長期にわたって土 壌中に残存して、 廃棄物埋め立て処理用地の短命化を促進したり、 自然 の景観や野生動植物の生活環境を損なう等の問題が生じる。 以下に、 本発明の脂肪族ポリエステル系樹脂反射フィルムの製造方法 について一例を挙げて説明するが、 下記製造法に何等限定されるもので はない。
まず、 脂肪族ポリエステル系樹脂に、 微粉状充填剤及び/又は高純度 酸化チタン、 加水分解防止剤、 その他の添加剤等を必要に応じて配合し た脂肪族ポリエステル系樹脂組成物を作製する。 具体的には、 脂肪族ポ リエステル系樹脂に微粉状充填剤又は高純度酸化チタン、 加水分解防止 剤等を必要に応じて加えて、 リポンブレンダー、 タンブラ一、 ヘンシェ ルミキサー等で混合した後、 バンバリ一ミキサー、 1軸または 2軸押出 機等を用いて、 樹脂の融点以上の温度 (例えばポリ乳酸の場合には 1 7 0 °C〜 2 3 0 °C) で混練することにより脂肪族ポリエステル系樹脂組成 物を得ることができる。 または、 脂肪族ポリエステル系樹脂、 微粉状充 填剤又は高純度酸化チタン、 加水分解防止剤等を別々のフィーダ一等に より所定量を添加することにより脂肪族ポリエステル系榭脂組成物を得 ることができる。 あるいは、 予め、 微粉状充填剤又は高純度酸化チタン、 加水分解防止剤等を脂肪族ポリエステル系樹脂に高濃度に配合した、 い わゆるマスターパッチを作っておき、 このマスターバッチと脂肪族ポリ エステル系榭脂とを混合して所望の濃度の脂肪族ポリエステル系樹脂組 成物とすることもできる。
次に、 このようにして得られた脂肪族ポリエステル系樹脂組成物を溶 融し、 フィルム状に形成する。 例えば、 脂肪族ポリエステル系樹脂組成 物を乾燥した後、 押出機に供給し、 樹脂の融点以上の温度に加熱して溶 融する。 あるいは、 脂肪族ポリエステル系樹脂組成物を乾燥させずに押 出機に供給しても良いが、 乾燥させない場合には溶融押出する際に真空 ベントを用いることが好ましい。 押出温度等の条件は、 分解によって分 子量が低下すること等を考慮して設定されることが必要であるが、 例え ば、 押出し温度はポリ乳酸の場合であれば 1 7 0 °C〜 2 3 0 °Cの範囲が 好ましい。 その後、 溶融した脂肪族ポリエステル系樹脂組成物を Tダイ のスリツ ト状の吐出口から押し出し、 冷却ロールに密着固化させてキヤ ス トシートを形成する。
本発明の脂肪族ポリエステル系樹脂反射フィルムは少なく とも 1軸方 向に延伸されていることが好ましく、 2軸方向に延伸されていることが 更に好ましい。 延伸条件によっては反射フィルムの機能を付与すること が困難となる場合があり、 また十分な耐熱性を付与できなくなることが あるので、 延伸条件は重要である。
本発明の脂肪族ポリエステル系樹脂反射フィルムが空隙を有する場合 には、 得られたキャストシートを面積倍率において 5倍以上に延伸する ことが好ましく、 7倍以上に延伸することが更に好ましい。 面積倍率に おいて 5倍以上に延伸することにより 5 %以上の空隙率を実現すること ができ、 7倍以上に延伸することにより 2 0 %以上の空隙率を実現する ことができ、 7 . 5倍以上に延伸することにより、 3 0 %以上の空隙率 も実現することができる。 例えば微粉状充填剤として酸化チタンを使用 し、 面積倍率において 5倍以上に延伸することにより 5 %以上の空隙率 を有するフィルムを得ることができ、 フィルムの白化が進行して十分な フィルム反射率が得られる。 なお、 微粉状充填剤として酸化チタン以外 の充填剤を使用する場合には、 空隙率が 2 0 %以上となるようにするこ とが好ましい。
1軸延伸のみで 5倍以上の面積倍率を実現することが困難な場合には、 2軸延伸することにより、 容易に 5倍以上の面積倍率を達成することが できる。 すなわち、 2軸延伸することにより、 より高い空隙率を有する フィルムが安定して得られ、 その結果、 フィルムの反射率を向上させる ことができる。 また、 フィルムを 2軸延伸させることによりフィルムの 機械的強度を増加させることができるので、 フィルムの機械物性の面か らも、 2軸延伸することが好ましい。 また、 反射フィルムに耐熱性が要 求される場合には、 2軸延伸するとフィルムの収縮方向に異方性がなく なるので好ましい。
ところで、 高純度酸化チタンを使用する場合には、 少なく とも一軸方 向に 1 . 1倍以上延伸することが好ましく、 二軸方向に延伸することが 更に好ましい。 伹し空隙の存在は必須ではないので、 空隙を形成しても、 形成しなくても良い。
キャストシートを延伸する際の延伸温度は、 例えばポリ乳酸の場合に は 5 0 °C以上、 9 0 °C以下であることが好ましい。 延伸温度が 5 0 °C以 上であれば、 延伸時にフィルムが破断することがなく、 9 0 °C以下であ れば延伸配向が低くなって空隙率が小さくなることもない。
例えば、 延伸倍率等を適宜選択し、 本発明の脂肪族ポリエステ系樹脂 フィルムを延伸することによって、 フィルム内部に空隙が形成される力 、 これは、 延伸時に脂肪族ポリエステル系樹脂と微粉状充填剤の延伸挙動 が異なるからである。 つまり脂肪族ポリエステル系樹脂に適した延伸温 度で延伸を行えば、 マトリックスとなる脂肪族ポリエステル系樹脂は延 伸されるが、 微粉状充填剤はそのままの状態でとどまろうとするため、 脂肪族ポリエステル系樹脂と微粉状充填剤との界面が剥離して、 空隙が 形成される。 フィルムを 1軸延伸したのみでは、 形成される空隙は一方 向に伸びた繊維状形態にしかならないが、 2軸延伸することによって、 その空隙は縦横両方向に伸ばされたものとなり円盤状形態になる。 換言 すれば、 2軸延伸することによって、 脂肪族ポリエステル系樹脂と微粉 末状充填剤との界面の剥離面積が増大し、 フィルムの白化が進行し、 そ の結果、 反射フィルムとして良好な反射率が得られるのである。 2軸延伸の延伸順序は特に制限されることはなく、 例えば、 同時 2軸 延伸でも逐次延伸でも構わない。 延伸設備を用いて、 溶融製膜した後、 ロール延伸によって M D方向に延伸した後、 テンター延伸によって T D 方向に延伸しても良いし、 チューブラー延伸等によって 2軸延伸を行つ てもよい。
本発明においては、 脂肪族ポリエステル系樹脂反射フィルムに耐熱性 および寸法安定性を付与するために、 延伸後に熱固定を行うことが好ま しい。
フィルムを熱固定するための処理温度は 9 0〜 1 6 0 °Cであることが 好ましく、 1 1 0〜 1 4 0 °Cであることが更に好ましい。 熱固定に要す る処理時間は、 好ましくは 1秒〜 5分である。 また、 延伸設備等につい ては特に限定はないが、 延伸後に熱固定処理を行うことができるテンタ 一延伸を行うことが好ましい。
本発明の脂肪族ポリエステル系榭脂反射フィルムの厚みは、 特に限定 されないが、 通常は 3 0 μ π!〜 5 0 0 μ mであり、 実用面における取り 扱い性を考慮すると 5 θ ί Πΐ〜 5 0 0 μ m程度の範囲内であることが好 ましい。 特に、 小型、 薄型の反射板用途の反射フィルムとしては、 厚み が 3 Ο μ π!〜 1 0 O /i mであることが好ましい。 かかる厚みの反射フィ ルムを用いれば、 例えばノート型パソコンや携帯電話等の小型、 薄型 液晶ディスプレイ等にも使用することができる。
また、 本発明の反射フィルムは、 単層構成でもよいが、 2層以上積層 した多層構成としてもよい。
また、 本発明の脂肪族ポリエステル系樹脂反射フィルムを用いて液晶 ディスプレイ等に用いられる反射板を形成することができる。 例えば、 脂肪族ポリエステル系樹脂反射フィルムを金属板もしくは樹脂板に被覆 して反射板を形成することができる。 この反射板は、 液晶表示装置、 照 07280
19 明器具、 照明看板等に用いられる反射板として有用である。 以下に、 こ のような反射板の製造方法について一例を挙げて説明する。
反射フィルムを金属板もしくは樹脂板に被覆する方法としては、 接着 剤を使用する方法、 接着剤を使用せずに熱融着する方法、 接着性シート を介して接着する方法、 押出しコーティングする方法等があり、 特に限 定されるものではない。 例えば、 金属板もしくは榭脂板の反射フィルム を貼り合わせる側の面に、 ポリエステル系、 ポリウレタン系、 エポキシ 系等の接着剤を塗布し、 反射フィルムを貼り合わせることができる。 こ の方法においては、 リパースローノレコーター、 キスローノレコーター等の 一般的に使用されるコーティング設備を使用し、 反射フィルムを貼り合 わせる金属板等の表面に乾燥後の接着剤膜厚が 2〜 4 μ m程度となるよ うに接着剤を塗布する。 次いで、 赤外線ヒーター及び熱風加熱炉により 塗布面の乾燥及び加熱を行い、 板の表面を所定の温度に保持しつつ、 直 にロールラミネーターを用いて、 反射フィルムを被覆、 冷却することに より、 反射板を得ることできる。 この場合、 金属板等の表面を 2 1 0 °C 以下に保持すると、 反射板の光反射性を高く維持できて好ましい。
なお、 本発明においてシートとは、 J I Sにおける定義上、 薄く、 一 般にその厚さが長さと幅のわりには小さく平らな製品をいう。 ところで、 フィルムとは長さ及び幅に比べて厚さが極めて小さく、 最大厚さが任意 に限定されている薄い平らな製品で、 通常、 ロールの形で供給されるも のをいう (日本工業規格 J I S K 6 9 0 0 ) 。 したがって、 シート の中でも厚さの特に薄いものがフィルムであるといえるが、 シートとフ イルムの境界は定かでなく、 明確には区別しにくいので、 本願において は、 「フィルム」 と称する場合でも 「シート」 を含むものとし、 「シー ト」 と称する場合でも 「フィルム」 を含むものとする。 実施例
以下に実施例を示し、 本発明を更に具体的に説明するが、 本発明はこ れらに限定されるものではなく、 本発明の技術的思想を逸脱しない範囲 内で種々の応用が可能である。 なお、 実施例に示す測定値おょぴ評価は 以下に示すようにして行った。 ここで、 フィルムの引取り (流れ) 方向 を MD、 その直交方向を TDと表示する。
(測定および評価方法)
(1) 平均粒径
(株) 島津製作所製の型式 「S S— 1 00」 の粉体比表面測定器 (透 過法) を用い、 断面積 2 c m2、 高さ 1 c mの試料筒に試料 3 gを充填 して、 500 mm水柱で 20 c cの空気透過の時間より算出した。
(2) 熱収縮率
熱収縮率 a
フイノレムの MDおよび TDのそれぞれに 100 mm幅の標線を入れ、 サンプルとして切り出した。 この切り出したサンプルフィルムを、 温度 1 20°Cの熱風循環オーブンの中に入れて 5分間保持した後、 フィルム が収縮した収縮量を測定した。 オーブンに入れる前のサンプルフィルム の原寸 (1 00mm) に対する収縮量の比率を%値で表示し、 これを熱 収縮率 (%) とした。 熱収縮率 b :
フィルムの MDおよび TDのそれぞれに 200 mm幅の標線を入れ、 サンプルとして切り出した。 この切り出したサンプルフィルムを、 温度 80°Cの熱風循環オーブンの中に入れて 3時間保持した後、 フィルムが 収縮した収縮量を測定した。 オーブンに入れる前のサンプルフィルムの 原寸 (2 0 0 mm) に対する収縮量の比率を%値で表示し、 これを熱収 縮率 (%) とした。
(3) 空隙率 (%)
延伸前のフィルムの密度 ( 「未延伸フィルム密度」 と表記する) と 延伸後のフィルムの密度 ( 「延伸フィルム密度」 と表記する) を測定 下記式に代入してフィルムの空隙率を求めた。 空隙率 (%) =
{ (未延伸フィルム密度一延伸フィルム密度) /未延伸フィルム密度 }
(4) 平均反射率 (%)
平均反射率 a (波長 4 0 0〜 7 0 0 n m) :
分光光度計 ( 「U—4 0 0 0」 、 日立計測器サービス (株) 製) に積 分球を取付け、 硫酸バリウム白板を 1 0 0%とした時の反射率を、 波長 4 0 0 nm〜 70 O nmにわたつて 2 O nm間隔で測定する。 得られた 測定値の平均値を計算し、 この値を波長 40 0〜 7 0 0 nmの平均反射 率とした。 平均反射率 b (波長 4 2 0〜 7 0 0 nm) :
上記平均反射率 aと同様にして測定し、 得られた測定値のうち、 波長 4 2 0〜 7 0 0 n mの測定値を用い、 この数値の平均値を計算し、 この 値を波長 4 2 0〜 70 0 n mの平均反射率とした。
(5) 反射率 (%) 分光光度計 ( 「U—4 0 0 0」 、 日立計測器サービス (株) 製) に積 分球を取付け、 波長 5 5 0 n mの光に対する反射率を測定した。 ただし、 硫酸パリゥム白板を 1 0 0 %とした。 ( 6 ) 耐加水分解性
温度 6 0 °C、 相対湿度 9 5 % R Hに保持した恒'温恒湿槽内で、 フィル ムを 3 0 0時間又は 1, 0 0 0時間放置した後、 フィルムを構成する脂 肪族ポリエステル系樹脂の重量平均分子量を測定した。 測定値を下記式 に代入し、 分子量保持率 (%) を求め、 下記評価基準に基づいて耐加水 分解性の評価を行った。 ただし、 記号 「〇」 および 「△」 は実用レベル 以上である。 分子量保持率 (%) =
(放置後重量平均分子量/放置前重量平均分子量) X 1 0 0 評価基準:
〇 分子量保持率が 9 0 %以上の場合
△ 分子量保持率が 6 0 %以上、 9 0 %未満の場合
X 分子量保持率が 6 0 %未満の場合
( 7 ) 黄変防止性
サンシャインウエザーメーター試験器内でフィルムに紫外線を 1, 0 0 0時間、 又は、 キセノンウエザーメーター試験機内でフィルムに紫外 線を 1 8 0時間照射する。 その後、 フィルムの表面を肉眼で観察し、 視 覚判断によりフィルム表面の色目が白色であるものを 「白」 、 黄眛がか かっているものを 「黄」 と表示した。 また、 紫外線照射後のフィルムについても、 上記 (4) の測定方法に したがって平均反射率 (%) を求め、 上記 (5) の測定方法にしたがつ て反射率 (%) を求めた。
(8) 生分解性
下記の評価基準に基づいて行った。 評価基準:
X 埋め立て処理で生分解が可能なフィルムの場合
〇 埋め立て処理では生分解が不可能なフィルムの場合
( 9 ) デッ ドフォールド性
フィルムの長手方向を幅方向、 その直交方向を長さ方向として、 幅 2 0 mm, 長さ 1 5 0 mmのサンプルフィルムを切出す。 このサンプルフ イルムの一方の短辺側を保持し、 保持していないもう一方の短辺 (他 端) 側を、 他端から 3 Ommの位置で、 この位置の直線が折り山 (又は 折り谷) となるように 1 8 0度折り曲げて、 0. 1 5MP aの荷重をか ける。 0. 1 5MP aの荷重を 0. 5秒間かけた後、 即座に荷重を取り 除き、 折った部分を開き他端を手でもとの位置まで戻した後、 手を離し、 折り曲げにより保持している角度を測定する。 すなわち、 手を離したと きに他端がもとの位置から離れた角度を分度器で測定する。 この数値は 最大で 1 8 0度、 最小で 0度であり、 この数値が大きいほど、 デッドフ オールド性に優れている。 (1 0) 樹脂の屈折率と微粉状充填剤の屈折率との差
樹脂の屈折率 (n l ) を、 J I S K— 7 1 4 2の A法に基づいて測 定し、 微粉状充填剤の屈折率 (n 2) を、 J I S K— 7 142の B法 に基づいて測定した。 ただし、 比較例 1における樹脂成分としてのポリ エチレンテレフタレート、 及ぴ、 充填剤成分としてのポリメチルペンテ ンは、 フィルム形状に製膜してから J I S K— 7 1 42の A法に基づ いて求め、 また、 充填剤成分としての炭酸カルシウムは、 J I S K— 7 14 2の Β法に基づいて求めた。
(1 1) 製膜性
フィルム状に製膜する際に、 フィルムが破断する等のトラブルが発生 するか等について評価を行った。 ただし、 評価基準は以下のとおりであ る。
評価基準: '
〇 安定して製膜を行うことができ、 良好な製膜性を有する。
X 時々フィルムの破断が生じるか、 フィルムの破断が多発し、 製膜 性に劣っている。
(1 2) 酸化チタン中のバナジウム濃度 (p p m)
酸化チタン 0. 6 gに硝酸 1 OmLを加えて、 マイクロウエーブ式灰 化装置内で 80分間分解させて、 得られた溶液について、 I C P発光分 光分析装置を用いて測定を行った。
(1 3) 反射板加工性
直角曲げ (R= Omm) 、 スクリュー密着曲げ、 及び、 井型エリクセ ン (5 mm) の 3項目について、 下記評価基準に基づいて評価を行った 評価基準:
〇 フィルム剥がれが生じない X フィルム剥がれが生じる
( 1 4 ) 反射板反射性
反射板について、 上記 (5 ) 反射率と同様の測定方法を用いて、 反射 率 (%) を測定した。
( 1 5 ) 実用評価試験
(株) 日立製作所製の 2 1インチ液晶テレビのバックライ トに組み込 まれている反射シートの固定枠を用いた。 この固定枠に、 液晶テレビに 実際に取り付けられているのと同様にして取り付け、 8 0度で 3時間加 熱した後、 シートの外観を肉眼で観察し、 下記基準に基づき評価を行つ た。
評価基準:
A 加熱後のフィルムの外観に全く変化が見られない
B 加熱後のフィルムに、 目視では変化が認められるが、 0 . 5 m m未満の高さの計測本能な凹 ώが見られる
C 加熱後のフィルムに、 1 m m未満の高さの凹凸が見られる D 加熱後のフィルムに、 1 m m以上の高さの凹凸が見られる。 なお、 弛緩率の定義は以下の通りとした
横弛緩率 = (弛緩後のフィルム幅) / (弛緩前のフィルム幅) 縦弛緩率 = (弛緩前のフィルム速度) / (弛緩後のフィルム速度) 実施例で用いられるポリ乳酸系重合体は以下のようにして製造された。
[ポリ乳酸系重合体 (P L A ) ①の製造: L体含量 9 9 . 5 %]
ピューラックジャパン社製の L—ラクチド (商品名 : P U R A S O R B L) 1 00 k gに、 ォクチル酸スズを 1 5 p p m添加したものを、 攪拌機と加熱装置とを備えた 500 Lのバッチ式重合槽に入れた。 次い で、 窒素置換を行い、 温度 1 8 5 °C、 攪拌速度 1 00 r p mの条件下で 6 0分間重合を行い、 溶融物を得た。 得られた溶融物を、 真空ベントを 3段備えた三菱重工 (株) 製の 4 Omm^同方向 2軸押出機に供し、 ベ ント圧 4 T o r rで脱揮しながら 200°Cでストランド状に押し出して、 ペレツト形状のポリ乳酸系重合体を得た。
得られたポリ乳酸系重合体の重量平均分子量は 20万であり、 L体含 有量は 9 9. 5%、 D体含有量は 0. 5%であった。 また、 ガラス転移 温度 (T g) は 65 °Cであった。 実施例 I
(実施例 I一 1 )
重量平均分子量 20万のポリ乳酸系重合体① (D体含有量 0. 5 %、 ガラス転移温度 65 °C) のペレットと、 平均粒径 0. 1 5 111の炭酸力 ルシゥムとを 50質量% 50質量%の割合で混合して混合物を形成し た。 この混合物 1 00質量部に対して、 加水分解防止剤 (ビス (ジプロ ピルフ ニル) カルポジイミ ド) を 3質量部加えて混合した後、 二軸押 出機を用いてペレット化して、 いわゆるマスターパッチを作製した。 こ のマスターパッチとポリ乳酸系重合体①とを 40質量% : 60質量%の 割合で混合し、 脂肪族ポリエステル系樹脂組成物を作製した。 その後、 脂肪族ポリエステル系樹脂組成物を一軸押出機を用いて、 230°Cで T ダイより押し出し、 冷却固化してフィルムを形成した。 得られたフィル ムを、 温度 6 5°Cで、 MD方向に 3倍、 TD方向に 3倍の二軸延伸した 後、 1 40°Cで熱処理し、 厚さ 1 8 8 mの反射フィルムを得た。 得ら れた反射フィルムについて、 熱収縮率 a、 空隙率、 紫外線照射前の平均 反射率 a と紫外線照射後の平均反射率 a (波長 400〜700 nm) 、 耐加水分解性、 黄変防止性 (サンシャインウエザーメーターによる紫外 線照射時間が 1, 0ひ 0時間) 、 生分解性、 デッドフォールド性の測定 および評価を行った。 その結果を表 1およぴ表 2に示す。
(実施例 I一 2)
重量平均分子量 20万のポリ乳酸系重合体① (D体含有量 0. 5%、 ガラス転移温度 6 5 °C) のペレッ トと、 平均粒径 0. 7 i mの硫酸バ.リ ゥムとを 50質量。 /0/50重量%の割合で混合して混合物を形成した。
この混合物 1 00質量部に対して、 加水分解防止剤 (ビス (ジプロピル フエニル) カルポジイミ ド) を 3質量部加えて混合した後、 二軸押出機 を用いてペレツ ト化してマスターパッチを作製した。 このマスターパッ チとポリ乳酸系重合体①とを 50質量%Z5 0質量%の割合で混合し、 脂肪族ポリエステル系樹脂組成物を作製した。 その後、 脂肪族ポリエス テル系樹脂組成物を一軸押出機を用いて、 230°Cで Tダイより押し出 し、 冷却固化してフィルムを形成した。 得られたフィルムを、 温度 6 5
°Cで、 MD方向に 3倍、 TD方向に 3倍の二軸延伸した後、 1 40°Cで , 熱処理し、 厚さ 1 8 8 mの反射フィルムを得た。 得られた反射フィル ムについて、 実施例 I一 1 と同様の測定および評価を行った。 その結果 を表 1および表 2に示す。
(実施例 I一 3)
重量平均分子量 20万のポリ乳酸系重合体① (D体含有量 0. 5%、 ガラス転移温度 6 5 °C) のペレッ トと、 平均粒径 5 ^ mの炭酸カルシゥ ムとを 60質量。 /0/40質量%の割合で混合して混合物を形成した。 こ の混合物 1 00質量部に対して、 加水分解防止剤 (ビス (ジプロピルフ ェニル) カルポジイミ ド) を 3質量部加えて混合した後、 二軸押出機を 用いてペレツト化してマスターパッチを作製した。 このマスターバッチ とポリ乳酸系重合体①とを 60質量%ノ40質量%の割合で混合し、 脂 肪族ポリエステル系樹脂組成物を作製した。 その後、 脂肪族ポリエステ ル系樹脂組成物を、 一軸押出機を用いて、 230°Cで Tダイより押し出 し、 冷却固化してフィルムを形成した。 得られたフィルムを表 3に示す ように MD方向に 3倍、 TD方向に 3倍の二軸延伸した後、 1 40°Cで 熱処理し、 厚さ 1 88 μ mの反射フィルムを得た。 得られた反射フィル ムについて実施例 I— 1と同様の測定および評価を行った。 その結果を 表 1および表 2に示す。
(実施例 I一 4)
重量平均分子量 20万のポリ乳酸系重合体① (D体含有量 0. 5 %、 ガラス転移温度 6 5 °C) のペレッ ト と、 平均粒径 0. 7 μ πιの硫酸バリ ゥムとを 50質量%/50質量%の割合で混合して混合物を形成した。 この混合物を二軸押出機を用いてペレツト化してマスターバッチを作製 した。 このマスターバッチとポリ乳酸系重合体①とを 5 0質量%Ζ5 0 質量%の割合で混合し、 脂肪族ポリエステル系樹脂組成物を作製した。 その後、 脂肪族ポリエステル系樹脂組成物を一軸押出機を用いて、 23 0°Cで Τダイより押し出し、 冷却固化してフィルムを形成した。 得られ たフィルムを、 温度 6 5°Cで、 表 1に示すように、 MD方向に 3倍、 T D方向に 3倍の二軸延伸した後、 1 40°Cで熱処理し、 厚さ 1 8 8 μ m の反射フィルムを得た。 得られた反射フィルムについて、 実施例 I— 1 と同様の測定および評価を行った。 その結果を表 1および表 2に示す。
(比較例 I— 1 ) ポリエチレンテレフタレートと平均粒径が 0. Ί μ mの硫酸パリ ウム とを 5 0質量%Z5 0質量%の割合で混合して混合物を形成した。 この 混合物を二軸押出機を用いてペレツ ト化してマスターパッチを作製した。 このマスターパッチとポリエチレンテレフタレートとを 5 0質量0 /0 5 0質量%の割合で混合し、 樹脂組成物を作製した。 その後、 樹脂組成物 を一軸押出機を用いて、 2 8 0°Cで Tダイより押し出し、 冷却固化して フィルムを形成した。 得られたフィルムを、 温度 1 0 0 °Cで、 表 1に示 すように、 MD方向に 3倍、 TD方向に 3倍の二軸延伸した後、 2 3 5 °Cで熱処理し、 厚さ 1 8 8 πιの反射フィルムを得た。 得られた反射フ イルムについて、 実施例 I 一 1と同様の測定および評価を行った。 その 結果を表 1およぴ表 2に示す。
(比較例 I 一 2)
ポリプロピレンと平均粒径が 0. 7 μ πιの硫酸パリ ゥムとを 5 0質量 % 5 0質量 °/0の割合で混合して混合物を形成した。 この混合物を二軸 押出機を用いてペレツ ト化してマスターパッチを作製した。 このマスタ 一バッチとポリプロピレンとを 5 0質量% 5 0質量%の割合で混合し、 樹脂組成物を作製した。 その後、 樹脂組成物を一軸押出機を用いて、 2 1 0°Cで Τダイより押し出し、 冷却固化してフィルムを形成した。 得ら れたフィルムを、 温度 1 3 5°Cで、 表 1に示すように、 MD方向に 3倍、 TD方向に 3倍の二軸延伸して、 厚さ 1 8 8 μ mの反射フィルムを得た。 得られた反射フィルムについて、 実施例 I — 1と同様の測定おょぴ評価 を行った。 その結果を表 1およぴ表 2に示す。 表 1
Figure imgf000031_0001
充填剤の種類:
a 炭酸カルシウム
b 硫酸バリウム
表 2 醜水分解性 黄変防止性 生分解性 デッド
色目 平均反射率(%) フォールド性
1-1 〇 白 94 〇 9 5 実 1-2 〇 白 93 〇 9 5 施 1-3 〇 白 92 〇 9 5 例 1-4 Δ 白 94 〇 95 比 1-1 〇 黄 83 X 36 較
例 1-2 〇 白 94 X 1 2 表 1および表 2から明らかなように、 実施例 I 一 1〜 I— 3の本発明 の反射フィルムは空隙率が 3 0 %以上であり、 熱収縮性、 平均反射率、 耐加水分解性、 黄変防止性、 生分解性、 デッドフォールド性のすべてに おいて、 優れた結果が得られることが分かった。 加水分解防止剤を混合 しなかった実施例 I 一 4は、 耐加水分解性においてやや劣っているが、 実用可能レベルであり、 これ以外の他の評価においては、 全て優れてい るものである。
一方、 脂肪族ポリエステル系樹脂以外の樹脂から形成された比較例 1 および 2は、 デッドフォールド性及ぴ生分解性に劣っていることが分か つた。 また、 芳香環を有する樹脂から形成された比較例 1は、 紫外線照 射により黄変し、 初期値より反射率が大きく低下するこ.とが確認された。 実施例 Π
(実施例 Π— 1 )
重量平均分子量 2 0万のポリ乳酸系重合体① (D体含有量 0 . 5 %、 ガラス転移温度 6 5 °C) のペレツ トと、 平均粒径 5 μ mの炭酸カルシゥ ムとを 5 0質量%/ 5 0質量%の割合で混合して混合物を形成した。 こ の混合物 1 0 0質量部に対して、 加水分解防止剤 (ビス (ジプロピルフ ェニル) カルポジイミ ド) を 3質量部加えて混合した後、 二軸押出機を 用いてペレッ ト化してマスターバッチを作製した。 このマスターバッチ とポリ乳酸系重合体①とを 6 0質量% 4 0質量%の割合で混合し、 月旨 肪族ポリエステル系樹脂組成物を作製した。 その後、 脂肪族ポリエステ ル系樹脂組成物を、 一軸押出機を用いて、 2 3 0 °Cで Tダイより押し出 し、 冷却固化してフィルムを形成した。 得られたフィルムを表 3に示す ように M D方向に 3倍、 T D方向に 3倍の二軸延伸した後、 1 4 0 °Cで 熱処理し、 厚さ 1 8 8 μ mの反射フィルムを得た。 得られた反射フィル ムについて、 熱収縮率 a、 空隙率、 紫外線照射前の平均反射率 bと紫外 線照射後の平均反射率 b (波長 4 2 0〜 7 0 0 n m) 、 耐加水分解性、 黄変防止性 (サンシャインウエザーメーターによる紫外線照射時間が 1, 0 0 0時間) 、 生分解性、 デッドフォールド性の測定おょぴ評価を行つ た。 その結果を表 3および表 4に示す。
(実施例 I [一 2 )
重量平均分子量 2 0万のポリ乳酸系重合体① (D体含有量 0 . 5 %、 ガラス転移温度 6 5 °C) のペレッ トと、 平均粒径 0 . 2 5 /x mの酸化チ タンとを 5 0質量%Z 5 0質量%の割合で混合して混合物を形成した。 この混合物 1 0 0質量部に対して、 加水分解防止剤 (ビス (ジプロピル フエニル) カルポジイミ ド) を 3質量部加えて混合した後、 二軸押出機 を用いてペレツ ト化してマスターパッチを作製した。 このマスターバッ チとポリ乳酸系重合体①とを 4 0質量%7 6 0質量%の割合で混合し、 脂肪族ポリエステル系樹脂組成物を作製した。 その後、 脂肪族ポリエス テル系樹脂組成物を、 一軸押出機を用いて、 2 3 0 °Cで Tダイより押し 出し、 冷却固化してフィルムを形成した。 得られたフィルムを表 3に示 すように M D方向に 3倍、 T D方向に 3倍の二軸延伸した後、 1 4 0 °C で熱処理し、 厚さ 1 8 8 mの反射フィルムを得た。 得られた反射フィ ルムについて、 実施例 E— 1 と同様の測定及び評価を行った。 その結果 を表 3およぴ表 4に示す。
(実施例 Π— 3 )
実施例 H— 2において、 表 3に示すように、 フィルムの厚さが 2 5 0 μ mとなるようにした以外は実施例 Π _ 2と同様にして、 反射フィルム を作製した。 すなわち、 実施例 Π— 2と同様にして、 Tダイより押出し、 冷却固化してフィルムを形成し、 その後、 実施例 Π— 2と同様にして延 伸、 熱処理を行い、 厚さ 2 5 0 μ mの反射フィルムを得た。 得られた反 射フィルムについて、 実施例 Π— 1 と同様の測定及ぴ評価を行った。 そ の結果を表 3及ぴ表 4に示す。
(実施例 Π— 4 )
実施例 Π— 2において、 表 3に示すように、 フィルムの厚さが 8 0 μ mとなるようにした以外は実施例 Π— 2と同様にして、 反射フィルムを 作製した。 すなわち、 実施例 Π— 2と同様にして、 Tダイより押出し、 冷却固化してフィルムを形成し、 その後、 実施例 Π— 2と同様にして延 伸、 熱処理を行い、 厚さ 8 0 μ mの反射フィルムを得た。 得られた反射 フィルムについて、 実施例 Π— 1 と同様の測定及び評価を行った。 その 結果を表 3及び表 4に示す。 (実施例 Π _ 5 )
重量平均分子量 2 0万のポリ乳酸系重合体① (D体含有量 0 . 5 %、 ガラス転移温度 6 5 °C) のペレッ ト と、 平均粒径 0 . 2 5 / mの酸化チ タンとを 5 0質量%Z 5 0質量%の割合で混合して混合物を形成した。 この混合物 1 0 0質量部に対して、 加水分解防止剤 (ビス (ジプロピル フエニル) カルポジイミ ド) を 3質量部加えて混合した後、 二軸押出機 を用いてペレツ ト化してマスターバッチを作製した。 このマスターバッ チとポリ乳酸系重合体①とを 6 0質量%/ 4 0質量%の割合で混合し、 脂肪族ポリエステル系樹脂組成物を作製した。 その後、 脂肪族ポリエス テル系樹脂組成物を、 一軸押出機を用いて、 2 3 0 °Cで Tダイより押し 出し、 冷却固化してフィ^/ムを形成した。 得られたフィルムを表 3に示 すように MD方向に 3倍、 T D方向に 3倍の二軸延伸した後、 1 4 0 °C で熱処理し、 厚さ 8 0 mの反射フィルムを得た。 得られた反射フィル ムについて、 実施例 Π— 1 と同様の測定及び評価を行った。. その結果を 表 3および表 4に示す。
表 3
Figure imgf000035_0001
* x 充填剤の種類:
炭酸カルシウム
硫酸バリゥム
酸化チタン 表 4
Figure imgf000036_0001
表 3及ぴ表 4から明らかなように、 実施例 I _ 1 , I一 2及ぴ実施例 Π— 1〜!! _ 5の反射フィルムは、 平均反射率、 耐加水分解性、 黄変防 止性、 生分解性、 及ぴ、 デッドフォールド性の全てにおいて優れた結果 が得られることが分かった。 特に、 微粉状充填剤として酸化チタンを使 用した実施例 Π— 2〜! I ,一 5は、 空隙率が少なくても優れた平均反射率、 黄変防止性等を示すことが分かった。
耐加水分解防止剤を混合しなかつた実施例 I一 4は、 耐加水分解性に おいてはやや劣っているが実用可能レベル以上であり、 また、 耐加水分 解性以外の全てについて優れた結果を示した。
一方、 脂肪族ポリエステル系樹脂以外の樹脂からなる比較例 I一 1及 び I一 2は、 デッ ドフォールド性、 生分解性に劣っており、 また、 芳香 族環を有する樹脂からなる比較例 I一 1は紫外線照射により黄変するこ とが分かった。 実施例 ΠΙ
(実施例 m_ 1)
重量平均分子量 20万のポリ乳酸系重合体① (D体含有量 0. 5%、 ガラス転移温度 6 5 °C) のペレッ ト と、 平均粒径 0. 1 5 μ πιの炭酸力 ルシゥムとを 50質量%ノ50質量%の割合で混合した後、 二軸押'出機 を用いてペレッ ト化して、 いわゆるマスターパッチを作製した。 このマ スターバッチとポリ乳酸系重合体①とを 60質量% : 40質量%の割合 で混合し、 樹脂組成物を作製した。 その後、 樹脂組成物を一軸押出機を 用いて、 220°Cで Τダイより押し出し、 冷却固化してフィルムを形成 した。 得られたフィルムを、 温度 6 5°Cで、 MD方向に 3倍、 TD方向 に 3倍の二軸延伸した後、 140 °Cで熱処理し、 厚さ 1 88 μ mの反射 フィルムを得た。 得られた反射フィルムについて、 空隙率、 紫外線照射 前の平均反射率 bと紫外線照射後の平均反射率 b、 黄変防止性 (紫外線 照射時間 1 80時間) 、 製膜性、 の測定及び評価を行った。 その結果を 表 5および表 6に示す。
(実施例 ΙΠ— 2)
重量平均分子量 20万のポリ乳酸系重合体① (D体含有量 0. 5°/0、 ガラス転移温度 6 5 °C) のペレッ ト と、 平均粒径 0. 7 mの硫酸パリ ゥムとを 50質量% 5 0重量%の割合で混合した後、 二軸押出機を用 いてペレツ トイ匕してマスターパッチを作製した。 このマスターバッチと ポリ乳酸系重合体①とを 8 0質量。/。ノ20質量%の割合で混合し、 樹脂 組成物を作製した。 その後、 樹脂組成物を一軸押出機を用いて、 2 20 °Cで Tダイより押し出し、 冷却固化してフィルムを形成した。 得られた フィルムを、 温度 6 5°Cで、 MD方向に 3倍、 TD方向に 3倍のニ軸延 伸した後、 1 40°Cで熱処理し、 厚さ 1 88 mの反射フィルムを得た。 得られた反射フィルムについて、 実施例 ΙΠ— 1と同様の測定及び評価を 行った。 その結果を表 5及ぴ表 6に示す。
(実施例 IE— 3)
重量平均分子量 20万のポリ乳酸系重合体① (D体含有量 0. 5 %、 ガラス転移温度 6 5 °C) のペレッ トと、 平均粒径 0. 2 5 mの酸化チ タンとを 50質量%Z5 0質量%の割合で混合した後、 二軸押出機を用 いてペレッ ト化してマスターパッチを作製した。 このマスターパッチと ポリ乳酸系重合体①とを 40質量%/6 0質量%の割合で混合し、 樹脂 組成物を作製した。 その後、 樹脂組成物を、 一軸押出機を用いて、 2 2 0°Cで Tダイより押し出し、 冷却固化してフィルムを形成した。 得られ たフィルムを温度 6 5 °Cで、 表 5に示すように MD方向に 3倍、 TD方 向に 3倍の二軸延伸した後、 1 40 °Cで熱処理し、 厚さ 1 88 μ mの反 射フィルムを得た。 得られた反射フィルムについて実施例 m— 1 と同様 の測定及び評価を行った。 その結果を表 5及び表 6に示す。
(実施例 m— 4)
重量平均分子量 20万のポリ乳酸系重合体① (D体含有量 0. 5 %、 ガラス転移温度 6 5 °C) のペレッ トと、 平均粒径 0. 4 z mの酸化亜鉛 とを 5 0質量 °/0 5 0質量%の割合で混合した後、 二軸押出機を用いて ペレツト化してマスターバッチを作製した。 このマスターパッチとポリ 乳酸系重合体①とを 4 0質量%Z 6 0質量%の割合で混合し、 樹脂組成 物を作製した。 その後、 樹脂組成物を、 一軸押出機を用いて、 2 2 0 °C で Tダイより押し出し、 冷却固化してフィルムを形成した。 得られたフ イルムを温度 6 5 °Cで、 表 5に示すように M D方向に 3倍、 T D方向に 3倍の二軸延伸した後、 1 4 0 °Cで熱処理し、 厚さ 1 8 8 μ mの反射フ イルムを得た。 得られた反射フィルムについて実施例 ΙΠ _ 1 と同様の測 定及び評価を行った。 その結果を表 5及び表 6に示す。
(比較例 HI— 1 )
参考のため、 市販製品について評価を行った。 すなわち、 東レ (株) 製の厚さ 1 8 8 μ mの反射シート 「ルミラー E 6 0 L」 を用意した。 こ の反射シートについて、 実施例 1と同様の測定及び評価を行った。 その 結果を表 5及び表 6に示す。
(比較例 ΙΠ— 2 )
ポリプロピレンと平均粒径が 0 . 7 μ mの硫酸パリゥムとを 5 0質量 % / 5 0質量%の割合で混合して混合物を形成した。 この混合物を二軸 押出機を用いてペレツト化してマスターパッチを作製した。 .このマスタ ーバツチと上記硫酸バリウムとを硫酸濃度が 6 0質量%となるように混 合し、 樹脂組成物を作製した。 その後、 樹脂組成物を一軸押出機を用い て、 2 1 0 °Cで Tダイより押し出し、 冷却固化してフィルムを形成した。 得られたフィルムを、 温度 1 3 5 °Cで、 表 5に示すように、 M D方向に 7倍の一軸延伸して、 厚さ 1 8 8 mの反射フィルムを得た。 得られた 反射フィルムについて、 実施例 ΙΠ— 1 と同様の測定及ぴ評価を行った。 その結果を表 5及び表 6に示す。 なお、 上述の比較例 I 一 1において得られた反射フィルムについても 実施例 EI— 1 と同様の測定及び評価を行った。 その結果を表 5及び表 6 に示す。
(以下、 余白)
表 5
Figure imgf000041_0001
* 2
彻 充填剤の種類: PL A…ポリ乳酸 a 炭酸カルシウム
PET…ポリエチレンテレフタレート 硫酸バリウム PP…ポリプロピレン c 酸化チタン
d 酸化亜鉛
e ポリメチノレペンテン
表 6
Figure imgf000042_0001
表 5及び表 6から明らかなように、 実施例 ΙΠ— 1〜! Π— 4の本発明の 反射フィルムは主成分となる樹脂の屈折率が 1 . 5 0未満であり、 平均 反射率、 黄変防止性、 製膜性の優れた結果が得られることが分かった。 また、 実施例 m _ 1〜! Π— 4の反射フィルムは生分解性を有しているも のであった。 したがって、 埋め立て処理した場合にば微生物等による分 解が可能 (生分解性) で、 廃棄上の問題が生じないものであった。
一方、 屈折率が 1 . 5 0以上の樹脂である P E T又は P Pを主成分と する樹脂組成物からなる比較例 ΙΠ— 1〜! Π— 2、 及ぴ、 比較例 1 — 1は、 生分解性において劣っているものであった。 また、 これらは、 少なく と もいずれかの評価結果が不良であり、 例えば比較例 m— 1及ぴ比較例 I ー 1は、 黄変防止性において劣っており、 比較例 ΙΠ— 2は製膜性に劣つ ていた。 実施例 IV
(実施例 I — 1 ) .
重量平均分子量 20万のポリ乳酸系重合体 (カーギル · ダウポリマー 社製の 「Nature Works 4032D」 : D体含有量 0. 5 %、 ガラス転移 温度 6 5 °C) のペレツ トと、 平均粒径 0. 2 5 mの酸化チタン (石原 産業 (株)製の 「タイぺーク p F _ 7 3 9」 、 ルチル型結晶形酸化チタ ン) とを 50質量%/5 0質量%の割合で混合して混合物を形成した。 なお、 以下、 Nature Works 4032Dを 「NW40 3 2 D」 と表記する。 この混合物 1 00質量部に対して、 加水分解防止剤 '(ビス (ジプロピル フエニル) カルポジイミ ド) を 3質量部加えて混合した後、 二軸押出機 を用いてペレツ ト化して、 いわゆるマスターパッチを作製した。 このマ スターバツチとポリ乳酸系重合体 (NW40 3 2 D) とを 40質量% : 6 0質量%の割合で混合し、 脂肪族ポリエステル系樹脂組成物を作製し た。 その後、 脂肪族ポリエステル系樹脂組成物を一軸押出機を用いて、 2 20°Cで Tダイより押し出し、 冷却固化してフィルムを形成した。 得 られたフィルムを、 温度 6 5°Cで、 MD方向に 2. 5倍、 TD方向に 2. 8倍の二軸延伸した後、 140°Cで熱処理し、 厚さ 1 88 mの反射フ イルムを得た。 得られた反射フィルムについて、 空隙率、 紫外線照射前 の波長 5 50 n mの光の反射率と紫外線照射後の波長 5 50 nmの光の 反射率、 耐加水分解性、 黄変防止性 (紫外線照射時間が 1 , 0 0 0時 間) 、 生分解性、 デッドフォールド性、 反射板加工性、 反射板反射率の 測定および評価を行った。 その結果を表 7および表 8に示す。 (実施例 IV— 2)
実施例] V— 1において、 酸化チタンを石原産業 (株)製の 「タイペータ P F— 73 9」 から平均粒径 0. 2 5 μ πιの酸化チタン (石原産業 (株) 製の 「タイペータ CR— 90— 2」 、 ルチル型結晶形酸化チタン) に変 更した以外は実施例 IV— 1 と同様にして、 厚さ 1 88 μ mの反射フィル ムを作製した。 得られた反射フィルムについて、 実施例 IV— 1と同様の 測定及び評価を行った。 その結果を表 7及び表 8に示す。
(実施例 IV— 3)
実施例 IV— 1において、 酸化チタンを石原産業 (株)製の 「タイぺーク P F— 73 9」 から平均粒径 0. 2 5 μ ΐηの酸化チタン (石原産業 (株) 製の 「タイペータ P F 7 1 1」 、 ルチル型結晶形酸化チタン) に変更し ' た以外は実施例 IV— 1 と同様にして、 厚さ 1 8 8 の反射フィルムを 作製した。 得られた反射フィルムについて、 実施例 IV— 1 と同様の測定 及び評価を行った。 その結果を表 7及び表 8に示す。 (実施例 IV— 4)
実施例 IV— 1において、 フィルムの厚さを 2 50 μ mに変更した以外 は実施例 IV— 1 と同様にして、 厚さ 250 mの反射フィルムを作製し た。 得られた反射フィルムについて、 実施例 IV— 1と同様の測定及び評 価を行った。 その結果を表 7及び表 8に示す。
(実施例 IV— 5 )
実施例 IV— 1において、 フィルムの延伸倍率を、 MD方向に 3倍、 T D方向に 3. 2倍延伸するように変更し、 フィルムの厚さが 80 μ mと なるように変更した以外は実施例 IV— 1 と同様にして、 厚さ 80 mの 反射フィルムを作製した。 得られた反射フィルムについて、 実施例 IV— 1 と同様の測定及ぴ評価を行った。 その結果を表 7及び表 8に示す。 (実施例 IV— 6 )
「NW40 3 2 D」 のペレツ トと、 平均粒径 0. 25 mの酸化チタ ン (石原産業 (株)製の 「タイペータ P F— 7 3 9」 ) とを 5 0質量0 /0/ 50質量%の割合で混合して混合物を形成した。 この混合物 1 00質量 部に対して、 加水分解防止剤 (ビス (ジプロピルフエュル) カルボジィ ミ ド) を 3質量部加えて混合した後、 二軸押出機を用いてペレット化し てマスターパッチを作製した。 このマスターパッチとポリ乳酸系重合体 (NW403 2 D) とを 6 0質量% : 40質量%の割合で混合し、 脂肪 族ポリエステル系樹脂組成物を作製した。 その後、 脂肪族ポリエステル 系樹脂組成物を一軸押出機を用いて、 220°Cで Tダイより押し出し、 冷却固化してフィルムを形成した。 得られたフィルムを、 温度 6.5°Cで、 MD方向に 3倍、 TD方向に 3. 2倍の二軸延伸した後、 1 40°Cで熱 処理し、 厚さ 80 μ mの反射フィルムを得た。 得られた反射フィルムに ついて、 実施例 IV— 1と同様の測定および評価を行った。 その結果を表 7および表 8に示す。
(比較例 IV— 1 )
ポリエチレンテレフタレートのペレッ トと、 平均粒径 0. 25 // mの 酸化チタン (石原産業 (株)製の 「タイペータ P F— 73 9」 ) とを 50 質量%ノ50質量%の割合で混合して混合物を形成した。 この混合物を 二軸押出機を用いてペレツ ト化してマスターパッチを作製した。 このマ スターバッチとポリエチレンテレフタレートとを 40質量0 /0 : 6 0質量
%の割合で混合し、 樹脂組成物を作製した。 その後、 樹脂組成物を一軸 押出機を用いて、 280°Cで Tダイより押し出し、 冷却固化してフィル ムを形成した。 得られたフィルムを、 温度 90°Cで、 MD方向に 2. 5 倍、 TD方向に 2. 8倍の二軸延伸した後、 1 40°Cで熱処理し、 厚さ 1 8 8 μ mの反射フィルムを得た。 得られた反射フィルムについて、 実 施例 IV— 1 と同様の測定おょぴ評価を行った。 その結果を表 7および表 8に示す。
(実施例 IV— 7)
実施例 IV— 1において、 酸化チタンを石原産業 (株)製の 「タイペータ P F— 73 9」 から平均粒径 0. 25 ;z mの酸化チタン (ティカ社製の ΓΤ Ι ΤΑΝ Ι Χ J R— 805」 、 ルチル型結晶形酸化チタン) に変 更した以外は実施例 IV— 1と同様にして、 厚さ 1 88 mの反射フィル ムを作製した。 得られた反射フィルムについて、 実施例 IV— 1 と同様の 測定及び評価を行った。 その結果を表 7及び表 8に示す。
(実施例 IV— 8)
実施例 IV_ 1において、 酸化チタンを石原産業 (株)製の 「タイペータ P F— 7 3 9」 から平均粒径 0. 2 5 /x mの酸化チタン (チタン工業 (株)製の 「KRONO S KR 4 70」 、 ルチル型結晶形酸化チタン) に変更した以外は実施例 IV_ 1と同様にして、 厚さ 1 88 mの反射フ イルムを作製した。 得られた反射フィルムについて、 実施例 IV— 1 と同 様の測定及ぴ評価を行った。 その結果を表 7及び表 8に示す。
(実施例 IV— 9)
実施例 IV— 1において得られた反射フィルムを、 亜鉛メツキ鋼板 (厚 み 0. 45mm) に貼り合わせて反射板を作製した。 すなわち、 まず、 鋼板の貼り合わせ面に、 ポリエステル系接着剤 (市販品) を乾燥後の厚 みが 2〜4 μπιとなるように塗布した。 次いで、 赤外線ヒーター及ぴ熱 風加熱炉を用いて塗布面の乾燥及ぴ加熱を行い、 鋼板の表面温度を 1 8 0 °Cに保持しつつ、 直にロールラミネータを用いて、 反射フィルムを貼 り合わせ、 冷却することにより、 反射板を作製した。 得られた反射板に ついて、 反射板の加工性、 反射板の反射率を測定し、 評価を行った。 そ の結果を表 9に示す。
(実施例 IV— 1 0 )
実施例 IV— 9において、 鋼板の表面温度を 1 8 0に保持する替わりに、 2 2 0 °Cに保持した以外は実施例 IV— 9と同様にして、 反射板を作製し た。 得られた反射板について、 実施例 IV— 9と同様の測定及び評価を行 つた。 その結果を表 9に示す。
(以下、 余白)
表 7
Figure imgf000048_0001
* x 充填剤の種類:
a タイペータ PF739 (石原産業㈱製のルチル型結晶形酸ィ匕チタン) b タイペータ CR90-2 (石原産業㈱製のルチル型結晶形酸ィ匕チタン) c タイペータ PF711 (石原産業㈱製のルチル型結晶形酸化チタン) d TITANIX JR-805 (ティカ㈱製のルチル型結晶形酸化チタン) e KRONOS KR470 (チタン工業㈱製のルチル型結晶形酸化チタン)
表 8
Figure imgf000049_0001
表 9 反射板加工性 反射板反射率 直角曲げ スクリュ曲げ エリクセン (%) 実施例 IV— 9 .〇 〇 〇 98. 5 実施例 IV— 10 〇 〇 〇 95. 0 表 7及び表 8から明らかなように、 実施例 IV— 1〜実施例 IV— 8の反 射フィルムは、 紫外線照射後も反射率が 9 0 %以上を維持し、 高い光反 射性と黄変防止性を有することが分かった。 また、 耐加水分解防止性、 デッドフォールド性 (形状保持性) に優れ、 かつ、 生分解性を有するも のであることが分かった。 特に、 バナジウム含量が 5 p p m以下の酸化 チタンを用いた実施例 IV— 1〜! V— 6は、 初期の反射率が 9 8 %以上と 高いものであって、 紫外線照射後め反射率の低下が少なく (2 %以下) 、 紫外線照射後の反射率においても 9 6 %以上を維持する優れたものであ ることが分かった。
また、 IV— 5〜! V— 6は 8 0 /i mと薄いフィルム厚であっても非常に 高い反射率を稼ぐことができ、 ノート型パソコンや携帯電話等の小型、 薄型の液晶ディスプレイ用の反射フィルムとして十分に対応が可能なも のであった。
一方、 P E Tに酸化チタンを混合してなる比較例 IV— 1の反射フィル ムは、 黄変防止性及びデッドフォールド性 (形状保持性) に劣っている ものであることが分かった。
また、 表 9から明らかなように、 実施例 IV— 9、 IV - 1 0の反射板は、 加工に必要な密着力と他界光反射性が維持されていることが分かった。
なお、 実施例 IV— 1 0の反射板よりも実施例 IV— 9の反射板の方が、 光反射性の維持は優れたものであることが分かった。 近年においては、 液晶ディスプレイの反射板は装置の大画面化及び表示性能の高度化の要 求から、 少しでも多くの光を液晶に供給して、 バックライ トユニッ トの 性能を向上させるために、 高い反射性能が要求されることがある。 これ らの反射フィルムは、 このような高い反射性能を達成することができる ものである。 実施例 V
(実施例 V— 1 )
重量平均分子量 2 0万のポリ乳酸系重合体 (カーギル · ダウ社製の 「N W 4 0 3 2 D」 ) のペレッ トと、 平均粒径 0 . 2 5 μ mの酸化チタ ンとを 5 0質量%/ 5 0質量%の割合で混合して混合物を形成した。 こ の混合物 1 0 0質量部に対して、 加水分解防止剤 (ビス (ジプロピルフ ェニル) カルポジイミ ド) を 3質量部加えて混合した後、 二軸押出機を 用いてペレット化して、 いわゆるマスターバッチを作製した。 このマス ターパツチとポリ乳酸系重合体 (N W 4 0 3 2 D ) とを 4 0質量% : 6 0質量%の割合で混合し、 脂肪族ポリエステル系樹脂組成物を作製した。 その後、 脂肪族ポリエステル系樹脂組成物を一軸押出機を用いて、 2 3 0 °Cで Tダイより押し出し、 冷却固化して未延伸フィルムを形成した。 次いで、 得られたフィルムを、 縦方向に温度 6 5 °Cで 2 . 5倍に延伸し、 その後、 テンター出口の縦弛緩率 0 . 9 9 0となるように弛緩処理を行 つた。 さらに、 横方向には、 7 0 °Cで 3 . 0倍に延伸し、 その後テンタ 一出口の横弛緩率が 0 . 9 9 3となるように弛緩処理を行い、 最終的に 2 5 0 μ mのフイノレムを得た。 得られた反射フイノレムについて、 8 0 °C で 3時間保存した後の熱収縮率 bを、 縦及び横の両方について測定した。 また、 得られた反射フィルムについて、 実装評価を行った。 その結果を 表 1 0に示す。
(実施例 V— 2〜 V— 2 6 )
実施例 V— 1において、 縦弛緩率及び横弛緩率を表 1 0〜表 1 4に示 すように変更した以外は実施例 V _ 1 と同様にして、 実施例 V— 2〜実 施例 V— 2 6の反射フィルムをそれぞれ作製した。 得られた反射フィル ムについて、 実施例 V— 1と同様の測定及ぴ評価を行った。 その結果を 1 0〜表 14に示す。
表 10
Figure imgf000052_0001
表 11 実施例 実施例 実施例 実施例 実施例 実施例 V-7 V-8 V- 9 V— 10 V— 11 V— 12 縦弛緩率 0.990 0.985 0.986 0.986 0.988 0.989 横弛緩率 1.000 0.978 0.964 0.986 0.971 0.986
80°C3hr
縦収縮率 0.65 0.25 0.40 0.18 0.25 0.48 (%)
80°C3hr
横収縮率 0.03 -0.25 - 0.38 - 0.23 - 0.33 -0.40 (%)
実用評価 A C D C D D 表 1 2
Figure imgf000053_0001
表 1 3 実施例 実施例 実施例 実施例
V -19 V— 20 V— 21 V— 22 縦弛緩率 0. 990 0. 990 0. 990 0. 996 横弛緩率 0. 989 0. 990 0. 988 0. 993
80°C3hr
縦収縮率 0. 43 0. 35 0. 40 0. 80
(%)
80°C3hr
横収縮率 - 0. 25 - 0. 30 - 0. 25 - 0. 53
(%)
実用評価 C D C D
Figure imgf000054_0001
Figure imgf000054_0002
表 1 0〜表 1 4から明らかなように、 弛緩率を、 縦弛緩率 0. 9 9 0 〜0. 9 9 6、 横弛緩率 1. 0 0 0〜: I . 0 1 4 (すなわち横弛緩を行 わないか僅かに延伸) とした場合に、 8 0°Cで 3時間保存した後の収縮 率が非常に小さいものを得ることができた。 縦の弛緩率を上げていくと
(値としては 1から小さく してゆく と) 縦の収縮率は小さくなるが、 あ るところから横方向の膨張が拡大した。 横方向の膨張が発生すると、 実 用試験での評価が低下した。 また、 横方向に弛緩を行った場合には、 横 方向に膨張が拡大する傾向があった。 そこで、 横方向は弛緩を取らない か又は僅かに延伸傾向にすることが良いことが分かった。
以上から、 上記の範囲で縦弛緩、 横弛緩を行うと、 8 0°Cで 3時間保 持した後の縦収縮率が 0 %より大きく、 0. 7 %より小さくなり、 横収 縮率が 0. 0 0 1 %以上、 0. 3 %以下となって、 実用評価試験におけ る評価の中で最も良い結果が得られた。 すなわち、 適度な縦弛緩及び Z 又は横弛緩を施すことにより、 収縮率の極めて小さいフィルムを実現す ることができ、 例えば大画面の液晶テレビ等の反射フィルムとして長時 間使用されて、 使用中に温度上昇が生じても、 寸法変化がほとんどない フィルムを提供することができる。 (発明の効果)
以上詳しく説明したように、 本発明によれば、 従来の反射フィルムま たはシートの機能を十分に発揮し、 かつ、 使用により黄変したり、 反射 率が低下することがなく、 デッドフォールド性に優れ、 しかも、 焼却処 理した場合に発熱量が小さく、 埋め立て処理した場合には微生物等によ る分解が可能 (生分解性) で、 廃棄上の問題が生じない、 液晶ディスプ レイの反射板等に使用される反射フィルムを得ることができる。 産業上の利用可能性
本発明は、 液晶ディスプレイ、 照明器具、 照明看板等の反射板等に使 用される反射フィルムに利用することが可能である。

Claims

請 求 の 範 囲
1 . 微粉状充填剤を含有し、 かつ、 内部に空隙率が 5 0 %以下となるよ うに空隙を有することを特徴とする脂肪族ポリエステル系樹脂反射フィ ノレム。
2 . 前記微粉状充填剤が、 少なく とも酸化チタンを含むことを特徴とす る請求項 1記載の脂肪族ポリエステル系樹脂反射ブイルム。
3 . 前記酸化チタンが、 バナジウム含有量が 5 p p m以下の酸化チタン であることを特徴とする請求項 1又は 2記載の脂肪族ポリエステル系樹 脂反射フィルム。
4 . 前記微粉状充填剤の含有量が、 微粉状充填剤及び脂肪族ポリエステ ル系樹脂を含む脂肪族ポリエステル系樹脂組成物 1 0 0質量部に対して 1 0質量部以上、 6 0質量部以下であることを特徴とする請求項 1から 3のいずれか 1項記載の脂肪族ポリエステル系樹脂反射フィルム。
5 . 前記空隙率が 5 %以上、 5 0 %以下であることを特徴とする請求項 1から 4のいずれか 1項記載の脂肪族ポリエステル系樹脂反射フィルム。
6 . 前記脂肪族ポリエステル系樹脂の屈折率が 1 . 5 0未満であること を特徴とする請求項 1から 5のいずれか 1項記載の脂肪族ポリエステル 系樹脂反射フィルム。
7 . 脂肪族ポリエステル系樹脂の屈折率と、 微粉状充填剤の屈折率との 差が 0 . 1 5以上であることを特徴とする請求項 1から 6のいずれか 1 項記載の脂肪族ポリエステル系樹脂反射ブイルム。
8 . 前記脂肪族ポリエステル系樹脂が乳酸系樹脂であることを特徴とす る請求項 1から 7のいずれか 1項記載の脂肪族ポリエステル系樹脂反射 フイノレム。
9 . 脂肪族ポリエステル系樹脂及び微粉状充填剤を含む脂肪族ポリエス テル系樹脂組成物を溶融製膜したフィルムを、 面積倍率が 5倍以上にな るように、 少なく とも 1軸方向に延伸したフィルムであることを特徴と する請求項 1から 8のいずれか 1項記載の脂肪族ポリエステル系樹脂反 射フイノレム。 ,
1 0. 8 0°Cで 3時間保存した後のフィルムの収縮率が、 縦方向で 0% より大きく、 0. 7%未満であり、 横方向で、 一 0. 1 %以上、 0. 5 %以下であることを特徴とする請求項 1から 9のいずれか 1項記載の脂 肪族ポリエステル系樹脂反射フィルム。
1 1. 請求項 1から 1 0のいずれか 1項に記載の脂肪族ポリエステル系 樹脂反射フィルムを備えていることを特徴とする反射板。
PCT/JP2004/007280 2003-05-20 2004-05-20 脂肪族ポリエステル系樹脂反射フィルム及び反射板 WO2004104077A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04734145A EP1627894A4 (en) 2003-05-20 2004-05-20 REFLECTIVE RESIN FILM BASED ON ALIPHATIC POLYESTER AND REFLECTIVE PLATE
US10/557,205 US7754324B2 (en) 2003-05-20 2004-05-20 Aliphatic polyester based resin reflection film and reflection plate
JP2005506413A JP3927585B2 (ja) 2003-05-20 2004-05-20 脂肪族ポリエステル系樹脂反射フィルム及び反射板
US12/007,748 US8197929B2 (en) 2003-05-20 2008-01-15 Aliphatic polyester based resin reflection film and reflection plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-141435 2003-05-20
JP2003141435 2003-05-20
JP2003-163386 2003-06-09
JP2003163386 2003-06-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/557,205 A-371-Of-International US7754324B2 (en) 2003-05-20 2004-05-20 Aliphatic polyester based resin reflection film and reflection plate
US12/007,748 Division US8197929B2 (en) 2003-05-20 2008-01-15 Aliphatic polyester based resin reflection film and reflection plate

Publications (1)

Publication Number Publication Date
WO2004104077A1 true WO2004104077A1 (ja) 2004-12-02

Family

ID=33478948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007280 WO2004104077A1 (ja) 2003-05-20 2004-05-20 脂肪族ポリエステル系樹脂反射フィルム及び反射板

Country Status (6)

Country Link
US (2) US7754324B2 (ja)
EP (1) EP1627894A4 (ja)
JP (1) JP3927585B2 (ja)
KR (1) KR100681107B1 (ja)
TW (1) TW200427727A (ja)
WO (1) WO2004104077A1 (ja)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054626A1 (ja) 2004-11-19 2006-05-26 Mitsubishi Plastics, Inc. 光反射体及び光反射体の製造方法
WO2007001567A1 (en) * 2005-06-17 2007-01-04 Eastman Chemical Company Outdoor signs comprising polyester compositions formed from 2,2,4,4,-tetramethyl-1, 3-cyclobutanediol and 1,4- cyclohexanedimethanol
JP2007003975A (ja) * 2005-06-27 2007-01-11 Toray Ind Inc 光反射板用ポリプロピレンフィルム
JP2007033738A (ja) * 2005-07-26 2007-02-08 Mitsubishi Plastics Ind Ltd 脂肪族ポリエステル系樹脂反射フィルム
WO2007072737A1 (ja) * 2005-12-22 2007-06-28 Mitsubishi Plastics, Inc. 反射フィルム
WO2007072801A1 (ja) * 2005-12-22 2007-06-28 Mitsubishi Plastics, Inc. 光反射体
JP2007199650A (ja) * 2005-12-28 2007-08-09 Mitsubishi Plastics Ind Ltd 反射フィルムおよびそれを用いた反射板
WO2007088930A1 (ja) * 2006-02-02 2007-08-09 Mitsubishi Plastics, Inc. 遮熱シート
JP2007217561A (ja) * 2006-02-16 2007-08-30 Nisshin Steel Co Ltd 熱重合型アクリル塗料
JP2007260914A (ja) * 2006-03-27 2007-10-11 Jfe Steel Kk 樹脂被覆金属板およびその製造方法
JP2007307823A (ja) * 2006-05-19 2007-11-29 Mitsubishi Plastics Ind Ltd 反射フィルム積層金属体
JP2007308539A (ja) * 2006-05-16 2007-11-29 Mitsubishi Plastics Ind Ltd 反射フィルムおよびそれを用いた反射板
JP2007308538A (ja) * 2006-05-16 2007-11-29 Mitsubishi Plastics Ind Ltd 反射フィルムおよびそれを用いた反射板
JP2007335187A (ja) * 2006-06-14 2007-12-27 Mitsubishi Plastics Ind Ltd 光反射体
US7413799B2 (en) * 2004-11-16 2008-08-19 Mitsubishi Plastics, Inc. Reflective film and reflective plate
JP2008233290A (ja) * 2007-03-19 2008-10-02 Mitsubishi Plastics Ind Ltd 反射フィルム及び反射板
JP2008233291A (ja) * 2007-03-19 2008-10-02 Mitsubishi Plastics Ind Ltd 反射フィルム及び反射板
WO2008123045A1 (ja) 2007-03-27 2008-10-16 Nisshinbo Industries, Inc. 反射フィルム及びそれからなるバックライト用反射シート
JP2008246848A (ja) * 2007-03-30 2008-10-16 Toray Ind Inc 光反射板用積層フィルムおよびその製造方法
JPWO2007069541A1 (ja) * 2005-12-12 2009-05-21 三菱樹脂株式会社 反射フィルム
US7704605B2 (en) 2006-03-28 2010-04-27 Eastman Chemical Company Thermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
US20100104883A1 (en) * 2007-03-29 2010-04-29 Mitsubishi Plastics, Inc. Aliphatic polyester series resin composition, aliphatic polyester series film, reflective film and reflective plate
US7737246B2 (en) 2005-12-15 2010-06-15 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol, cyclohexanedimethanol, and ethylene glycol and manufacturing processes therefor
US20100267867A1 (en) * 2007-10-01 2010-10-21 Zuzanna Cygan Blends of biodegradable polymers and acrylic copolymers
US7964273B2 (en) * 2004-07-30 2011-06-21 Idemitsu Kosan Co., Ltd. Light reflecting sheet and molded product using the same
CN102211424A (zh) * 2011-05-11 2011-10-12 武汉金牛经济发展有限公司 一种高反射高挺度光反射膜
US8193302B2 (en) 2005-10-28 2012-06-05 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain phosphate thermal stabilizers, and/or reaction products thereof
US8287970B2 (en) 2007-11-21 2012-10-16 Eastman Chemical Company Plastic baby bottles, other blow molded articles, and processes for their manufacture
US8299204B2 (en) 2005-10-28 2012-10-30 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain thermal stabilizers, and/or reaction products thereof
US8501287B2 (en) 2007-11-21 2013-08-06 Eastman Chemical Company Plastic baby bottles, other blow molded articles, and processes for their manufacture
JP2014199285A (ja) * 2013-03-29 2014-10-23 積水化成品工業株式会社 光反射板
US8895654B2 (en) 2008-12-18 2014-11-25 Eastman Chemical Company Polyester compositions which comprise spiro-glycol, cyclohexanedimethanol, and terephthalic acid
US9169388B2 (en) 2006-03-28 2015-10-27 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain thermal stabilizers, and/or reaction products thereof
US9598533B2 (en) 2005-11-22 2017-03-21 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
US9982125B2 (en) 2012-02-16 2018-05-29 Eastman Chemical Company Clear semi-crystalline articles with improved heat resistance
WO2021200454A1 (ja) * 2020-03-30 2021-10-07 東レ株式会社 樹脂フィルム、ミニled基板、バックライトおよびディスプレイ

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5148089B2 (ja) * 2003-05-20 2013-02-20 三菱樹脂株式会社 脂肪族ポリエステル系樹脂反射フィルム及び反射板
US20070092710A1 (en) * 2003-10-17 2007-04-26 Mitsubishi Plastics, Inc. Reflective film
CN1871122B (zh) * 2003-10-27 2011-03-30 三菱树脂株式会社 反射膜
KR100851517B1 (ko) * 2004-07-21 2008-08-11 미쓰비시 쥬시 가부시끼가이샤 지방족 폴리에스테르계 수지 반사 필름 및 반사판
EP1840600A1 (en) * 2006-03-29 2007-10-03 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO A light reflector
TWI432515B (zh) * 2008-04-02 2014-04-01 Teijin Dupont Films Japan Ltd Thin film for protective film on the back of solar cell
TWI455967B (zh) 2008-04-24 2014-10-11 Saudi Basic Ind Corp 不透明聚酯薄膜的製造方法
TWI531511B (zh) 2008-04-24 2016-05-01 沙地基本工業公司 可撓性中型散裝容器
TWI382206B (zh) * 2008-09-09 2013-01-11 Coretronic Corp 反射片
KR101277778B1 (ko) * 2008-12-03 2013-06-24 신닛테츠스미킨 카부시키카이샤 도장 금속재 및 그 제조 방법
US8512852B2 (en) * 2009-05-22 2013-08-20 Toyo Boseki Kabushiki Kaisha Polylactic acid resin composition and film
ITVI20100216A1 (it) * 2010-07-30 2012-01-31 Sacme S P A Compound biodegradabile su carrier di poliesteri applicato ad un biopolimero
EP2418250A1 (de) 2010-08-11 2012-02-15 Rhein Chemie Rheinau GmbH Langlebige biobasierte Kunststoffe auf Basis von Polyhydroxyalkanoat, ein Verfahren zu deren Herstellung und deren Verwendung
EP2418247A1 (de) 2010-08-11 2012-02-15 Rhein Chemie Rheinau GmbH Langlebige biobasierte Kunststoffe, ein Verfahren zu deren Herstellung und deren Verwendung
EP2520612A1 (de) 2011-05-06 2012-11-07 Rhein Chemie Rheinau GmbH Neuartige langlebige, hydrolysestabile biobasierte Kunststoffe auf Basis von Polyhydroxyalkanoat (PHA), ein Verfahren zu deren Herstellung und deren Verwendung
JP2014514418A (ja) 2011-05-06 2014-06-19 ライン・ケミー・ライノー・ゲーエムベーハー ポリヒドロキシアルカノエート(pha)をベースとする、革新的な、長寿命であり加水分解に対して安定な、バイオプラスチック、その製造方法、及びその使用
CA2863100C (en) 2012-02-17 2020-07-07 Andersen Corporation Polylactic acid containing building component
CN103969721A (zh) * 2014-04-30 2014-08-06 宁波东旭成新材料科技有限公司 一种防翘曲反射膜
PL2975083T3 (pl) 2014-07-14 2017-07-31 Rhein Chemie Rheinau Gmbh Sposób stabilizowania tworzywa sztucznego o podstawie biologicznej na bazie żywicy poliestrowej
EP3581608A1 (en) * 2018-06-14 2019-12-18 Stichting Wageningen Research Polymeric products

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345699A (en) * 1976-10-05 1978-04-24 American Cyanamid Co Process for preparing chlorination process raw materias of high tio2 content
JPH05209073A (ja) * 1992-01-30 1993-08-20 Tokuyama Soda Co Ltd 多孔性フィルム
JP2002138150A (ja) * 2000-11-02 2002-05-14 Teijin Ltd 白色ポリエステルフィルム
JP2002258015A (ja) * 2000-12-28 2002-09-11 Yupo Corp 光半透過反射体
JP2003207609A (ja) * 2001-09-28 2003-07-25 Yupo Corp 光半透過反射体
JP2003342404A (ja) * 2002-05-29 2003-12-03 Toray Ind Inc 白色脂肪族ポリエステルフィルムおよびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3355204B2 (ja) * 1992-08-18 2002-12-09 株式会社きもと ランプリフレクタ
JP2001049004A (ja) * 1999-08-10 2001-02-20 Toyobo Co Ltd 白色脂肪族ポリエステル系フィルム
CN1181360C (zh) * 2000-12-28 2004-12-22 王子油化合成纸株式会社 光半透过反射体
JP3892745B2 (ja) * 2002-03-11 2007-03-14 積水化成品工業株式会社 ポリ乳酸系樹脂発泡体の製造方法
US20050112351A1 (en) 2003-11-21 2005-05-26 Eastman Kodak Company Highly reflective optical element
US6846606B1 (en) * 2003-11-21 2005-01-25 Eastman Kodak Company Phosphor screen and imaging assembly with poly(lactic acid) support
CN101401217B (zh) * 2006-03-14 2010-10-13 东丽株式会社 太阳能电池用聚酯树脂片、叠层品、背面保护片以及组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345699A (en) * 1976-10-05 1978-04-24 American Cyanamid Co Process for preparing chlorination process raw materias of high tio2 content
JPH05209073A (ja) * 1992-01-30 1993-08-20 Tokuyama Soda Co Ltd 多孔性フィルム
JP2002138150A (ja) * 2000-11-02 2002-05-14 Teijin Ltd 白色ポリエステルフィルム
JP2002258015A (ja) * 2000-12-28 2002-09-11 Yupo Corp 光半透過反射体
JP2003207609A (ja) * 2001-09-28 2003-07-25 Yupo Corp 光半透過反射体
JP2003342404A (ja) * 2002-05-29 2003-12-03 Toray Ind Inc 白色脂肪族ポリエステルフィルムおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1627894A4 *

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964273B2 (en) * 2004-07-30 2011-06-21 Idemitsu Kosan Co., Ltd. Light reflecting sheet and molded product using the same
US7413799B2 (en) * 2004-11-16 2008-08-19 Mitsubishi Plastics, Inc. Reflective film and reflective plate
JP2012077311A (ja) * 2004-11-16 2012-04-19 Mitsubishi Plastics Inc 反射フィルム及び反射板
WO2006054626A1 (ja) 2004-11-19 2006-05-26 Mitsubishi Plastics, Inc. 光反射体及び光反射体の製造方法
KR100926003B1 (ko) 2004-11-19 2009-11-09 미쓰비시 쥬시 가부시끼가이샤 광반사체 및 광반사체의 제조방법
EP1813970A4 (en) * 2004-11-19 2009-06-24 Mitsubishi Plastics Inc LIGHT REFLECTOR AND PROCESS FOR ITS MANUFACTURE
EP1813970A1 (en) * 2004-11-19 2007-08-01 Mitsubishi Plastics Inc. Light reflector and process for producing the same
US8067525B2 (en) 2005-06-17 2011-11-29 Eastman Chemical Company Film(s) and/or sheet(s) comprising polyester compositions which comprise cyclobutanediol and have a certain combination of inherent viscosity and high glass transition temperature
US7807775B2 (en) 2005-06-17 2010-10-05 Eastman Chemical Company Point of purchase displays comprising polyester compositions formed from 2,2,4,4-tetramethyl-1, 3,-cyclobutanediol and 1,4-cyclohexanedimethanol
US9175134B2 (en) 2005-06-17 2015-11-03 Eastman Chemical Company Containers comprising polyester compositions which comprise cyclobutanediol
US9169348B2 (en) 2005-06-17 2015-10-27 Eastman Chemical Company Baby bottles comprising polyester compositions which comprise cyclobutanediol
US8507638B2 (en) 2005-06-17 2013-08-13 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
US8354491B2 (en) 2005-06-17 2013-01-15 Eastman Chemical Company Containers comprising polyester compositions which comprise cyclobutanediol
US9181388B2 (en) 2005-06-17 2015-11-10 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and high glass transition temperature and articles made therefrom
US9534079B2 (en) 2005-06-17 2017-01-03 Eastman Chemical Company Containers comprising polyester compositions which comprise cyclobutanediol
US9765181B2 (en) 2005-06-17 2017-09-19 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and high glass transition temperature and articles made therefrom
US8133967B2 (en) 2005-06-17 2012-03-13 Eastman Chemical Company Restaurant smallware comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US8119761B2 (en) 2005-06-17 2012-02-21 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and high glass transition temperature and articles made therefrom
US8119762B2 (en) 2005-06-17 2012-02-21 Eastman Chemical Company Film(s) and/or sheet(s) comprising polyester compositions which comprise cyclobutanediol and have a certain combination of inherent viscosity and moderate glass transition temperature
US8101705B2 (en) 2005-06-17 2012-01-24 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
US7906212B2 (en) 2005-06-17 2011-03-15 Eastman Chemical Company Thermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
US8063172B2 (en) 2005-06-17 2011-11-22 Eastman Chemical Company Film(s) and/or sheet(s) made using polyester compositions containing low amounts of cyclobutanediol
US8063173B2 (en) 2005-06-17 2011-11-22 Eastman Chemical Company Polyester compositions containing low amounts of cyclobutanediol and articles made therefrom
US7902320B2 (en) 2005-06-17 2011-03-08 Eastman Chemical Company Graphic art films comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7893188B2 (en) 2005-06-17 2011-02-22 Eastman Chemical Company Baby bottles comprising polyester compositions which comprise cyclobutanediol
US7985827B2 (en) 2005-06-17 2011-07-26 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol having certain cis/trans ratios
WO2007001567A1 (en) * 2005-06-17 2007-01-04 Eastman Chemical Company Outdoor signs comprising polyester compositions formed from 2,2,4,4,-tetramethyl-1, 3-cyclobutanediol and 1,4- cyclohexanedimethanol
US7915376B2 (en) 2005-06-17 2011-03-29 Eastman Chemical Company Containers comprising polyester compositions which comprise cyclobutanediol
US7781562B2 (en) 2005-06-17 2010-08-24 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
US7906610B2 (en) 2005-06-17 2011-03-15 Eastman Chemical Company Food service products comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7803440B2 (en) 2005-06-17 2010-09-28 Eastman Chemical Company Bottles comprising polyester compositions which comprise cyclobutanediol
US7807774B2 (en) 2005-06-17 2010-10-05 Eastman Chemical Company Vending machines comprising polyester compositions formed from 2,2,4,4,-tetramethyl-1,3,-cyclobutanediol and 1,4-cyclohexanedimethanol
US9181387B2 (en) 2005-06-17 2015-11-10 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol having certain cis/trans ratios
US7812112B2 (en) 2005-06-17 2010-10-12 Eastman Chemical Company Outdoor signs comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7906211B2 (en) 2005-06-17 2011-03-15 Eastman Chemical Company Thermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
US7838620B2 (en) 2005-06-17 2010-11-23 Eastman Chemical Company Thermoformed sheet(s) comprising polyester compositions which comprise cyclobutanediol
US7855267B2 (en) 2005-06-17 2010-12-21 Eastman Chemical Company Film(s) and/or sheet(s) comprising polyester compositions which comprise cyclobutanediol and have a certain combination of inherent viscosity and moderate glass transition temperature
US7868128B2 (en) 2005-06-17 2011-01-11 Eastman Chemical Company Skylights and windows comprising polyester compositions formed from 2,2,4,4,-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US7893187B2 (en) 2005-06-17 2011-02-22 Eastman Chemical Company Glass laminates comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
JP2007003975A (ja) * 2005-06-27 2007-01-11 Toray Ind Inc 光反射板用ポリプロピレンフィルム
JP2007033738A (ja) * 2005-07-26 2007-02-08 Mitsubishi Plastics Ind Ltd 脂肪族ポリエステル系樹脂反射フィルム
US8299204B2 (en) 2005-10-28 2012-10-30 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain thermal stabilizers, and/or reaction products thereof
US8193302B2 (en) 2005-10-28 2012-06-05 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain phosphate thermal stabilizers, and/or reaction products thereof
US10017606B2 (en) 2005-11-22 2018-07-10 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
US9598533B2 (en) 2005-11-22 2017-03-21 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
JPWO2007069541A1 (ja) * 2005-12-12 2009-05-21 三菱樹脂株式会社 反射フィルム
US7737246B2 (en) 2005-12-15 2010-06-15 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol, cyclohexanedimethanol, and ethylene glycol and manufacturing processes therefor
WO2007072737A1 (ja) * 2005-12-22 2007-06-28 Mitsubishi Plastics, Inc. 反射フィルム
JP4769812B2 (ja) * 2005-12-22 2011-09-07 三菱樹脂株式会社 光反射体
WO2007072801A1 (ja) * 2005-12-22 2007-06-28 Mitsubishi Plastics, Inc. 光反射体
JPWO2007072801A1 (ja) * 2005-12-22 2009-05-28 三菱樹脂株式会社 光反射体
JP2007199650A (ja) * 2005-12-28 2007-08-09 Mitsubishi Plastics Ind Ltd 反射フィルムおよびそれを用いた反射板
JP4791490B2 (ja) * 2006-02-02 2011-10-12 三菱樹脂株式会社 太陽電池用バックシート
EP1980391A4 (en) * 2006-02-02 2010-09-08 Mitsubishi Plastics Inc HEAT PROTECTION SHEET
WO2007088930A1 (ja) * 2006-02-02 2007-08-09 Mitsubishi Plastics, Inc. 遮熱シート
EP1980391A1 (en) * 2006-02-02 2008-10-15 Mitsubishi Plastics, Inc. Heat shield sheet
JP2007217561A (ja) * 2006-02-16 2007-08-30 Nisshin Steel Co Ltd 熱重合型アクリル塗料
JP2007260914A (ja) * 2006-03-27 2007-10-11 Jfe Steel Kk 樹脂被覆金属板およびその製造方法
US9169388B2 (en) 2006-03-28 2015-10-27 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain thermal stabilizers, and/or reaction products thereof
US9765203B2 (en) 2006-03-28 2017-09-19 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain thermal stabilizers, and/or reaction products thereof
US7704605B2 (en) 2006-03-28 2010-04-27 Eastman Chemical Company Thermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
JP2007308538A (ja) * 2006-05-16 2007-11-29 Mitsubishi Plastics Ind Ltd 反射フィルムおよびそれを用いた反射板
JP2007308539A (ja) * 2006-05-16 2007-11-29 Mitsubishi Plastics Ind Ltd 反射フィルムおよびそれを用いた反射板
JP2007307823A (ja) * 2006-05-19 2007-11-29 Mitsubishi Plastics Ind Ltd 反射フィルム積層金属体
JP2007335187A (ja) * 2006-06-14 2007-12-27 Mitsubishi Plastics Ind Ltd 光反射体
JP4695024B2 (ja) * 2006-06-14 2011-06-08 三菱樹脂株式会社 光反射体
JP2008233290A (ja) * 2007-03-19 2008-10-02 Mitsubishi Plastics Ind Ltd 反射フィルム及び反射板
JP2008233291A (ja) * 2007-03-19 2008-10-02 Mitsubishi Plastics Ind Ltd 反射フィルム及び反射板
WO2008123045A1 (ja) 2007-03-27 2008-10-16 Nisshinbo Industries, Inc. 反射フィルム及びそれからなるバックライト用反射シート
US20100104883A1 (en) * 2007-03-29 2010-04-29 Mitsubishi Plastics, Inc. Aliphatic polyester series resin composition, aliphatic polyester series film, reflective film and reflective plate
JP2008246848A (ja) * 2007-03-30 2008-10-16 Toray Ind Inc 光反射板用積層フィルムおよびその製造方法
US9267033B2 (en) * 2007-10-01 2016-02-23 Arkema Inc. Blends of biodegradable polymers and acrylic copolymers
US20100267867A1 (en) * 2007-10-01 2010-10-21 Zuzanna Cygan Blends of biodegradable polymers and acrylic copolymers
US8501287B2 (en) 2007-11-21 2013-08-06 Eastman Chemical Company Plastic baby bottles, other blow molded articles, and processes for their manufacture
US8501292B2 (en) 2007-11-21 2013-08-06 Eastman Chemical Company Plastic baby bottles, other blow molded articles, and processes for their manufacture
US8287970B2 (en) 2007-11-21 2012-10-16 Eastman Chemical Company Plastic baby bottles, other blow molded articles, and processes for their manufacture
US8895654B2 (en) 2008-12-18 2014-11-25 Eastman Chemical Company Polyester compositions which comprise spiro-glycol, cyclohexanedimethanol, and terephthalic acid
CN102211424A (zh) * 2011-05-11 2011-10-12 武汉金牛经济发展有限公司 一种高反射高挺度光反射膜
US9982125B2 (en) 2012-02-16 2018-05-29 Eastman Chemical Company Clear semi-crystalline articles with improved heat resistance
JP2014199285A (ja) * 2013-03-29 2014-10-23 積水化成品工業株式会社 光反射板
WO2021200454A1 (ja) * 2020-03-30 2021-10-07 東レ株式会社 樹脂フィルム、ミニled基板、バックライトおよびディスプレイ

Also Published As

Publication number Publication date
EP1627894A1 (en) 2006-02-22
US7754324B2 (en) 2010-07-13
TWI304416B (ja) 2008-12-21
JPWO2004104077A1 (ja) 2006-07-20
JP3927585B2 (ja) 2007-06-13
TW200427727A (en) 2004-12-16
US8197929B2 (en) 2012-06-12
US20080138601A1 (en) 2008-06-12
KR20060008324A (ko) 2006-01-26
EP1627894A4 (en) 2006-05-24
US20070054089A1 (en) 2007-03-08
KR100681107B1 (ko) 2007-02-08

Similar Documents

Publication Publication Date Title
WO2004104077A1 (ja) 脂肪族ポリエステル系樹脂反射フィルム及び反射板
KR100885389B1 (ko) 지방족 폴리에스테르계 수지 반사 필름 및 반사판
KR100851517B1 (ko) 지방족 폴리에스테르계 수지 반사 필름 및 반사판
JP4443515B2 (ja) 反射フィルム
CN1871122B (zh) 反射膜
JP2007030284A (ja) 脂肪族ポリエステル系樹脂反射フィルム
JP4750405B2 (ja) 脂肪族ポリエステル系樹脂反射フィルム及び反射板
JP2007033738A (ja) 脂肪族ポリエステル系樹脂反射フィルム
JP2007021952A (ja) 脂肪族ポリエステル系樹脂反射フィルム及び反射板
JP4777638B2 (ja) 反射フィルム
JP4550787B2 (ja) 脂肪族ポリエステル系樹脂反射フィルム及び反射板
JP5054888B2 (ja) 脂肪族ポリエステル系樹脂反射フィルム及び反射板
JP5148089B2 (ja) 脂肪族ポリエステル系樹脂反射フィルム及び反射板
JP2006145915A (ja) 反射フィルム
JP4694822B2 (ja) 反射フィルム
JP2007023185A (ja) 脂肪族ポリエステル系樹脂反射フィルム及び反射板
JP2007031529A (ja) 脂肪族ポリエステル系樹脂反射フィルム
JP2006145916A (ja) 反射フィルム
JP2006142644A (ja) 脂肪族ポリエステル系樹脂反射フィルム及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005506413

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004734145

Country of ref document: EP

Ref document number: 2007054089

Country of ref document: US

Ref document number: 10557205

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048136010

Country of ref document: CN

Ref document number: 1020057022103

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057022103

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004734145

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10557205

Country of ref document: US