WO2004103043A1 - 銅微粒子焼結体型の微細形状導電体の形成方法、該方法を応用した銅微細配線ならびに銅薄膜の形成方法 - Google Patents

銅微粒子焼結体型の微細形状導電体の形成方法、該方法を応用した銅微細配線ならびに銅薄膜の形成方法 Download PDF

Info

Publication number
WO2004103043A1
WO2004103043A1 PCT/JP2004/006442 JP2004006442W WO2004103043A1 WO 2004103043 A1 WO2004103043 A1 WO 2004103043A1 JP 2004006442 W JP2004006442 W JP 2004006442W WO 2004103043 A1 WO2004103043 A1 WO 2004103043A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
fine particles
treatment
nanoparticles
film layer
Prior art date
Application number
PCT/JP2004/006442
Other languages
English (en)
French (fr)
Inventor
Daisuke Itoh
Akihito Izumitani
Noriaki Hata
Yorishige Matsuba
Original Assignee
Harima Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Chemicals, Inc. filed Critical Harima Chemicals, Inc.
Priority to JP2005504486A priority Critical patent/JP3939735B2/ja
Priority to US10/556,871 priority patent/US7820232B2/en
Priority to EP04732751.5A priority patent/EP1626614B1/en
Publication of WO2004103043A1 publication Critical patent/WO2004103043A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/102Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by bonding of conductive powder, i.e. metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0257Nanoparticles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0315Oxidising metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1131Sintering, i.e. fusing of metal particles to achieve or improve electrical conductivity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1157Using means for chemical reduction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/122Organic non-polymeric compounds, e.g. oil, wax, thiol
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/105Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam

Definitions

  • the present invention relates to a method for forming a fine copper-based wiring pattern or a copper thin film layer having an extremely thin film thickness, and more specifically, a copper fine particle or a copper oxide fine particle having a surface oxide film layer, in particular, Ultra-fine pattern drawing using a dispersion of copper nanoparticles or copper oxide nanoparticles having a surface oxide film layer, or after forming a thin film coating layer, and then performing wiring pattern or surface oxidation in the thin film coating layer
  • a copper fine particle or a copper oxide fine particle having a film layer, in particular, a copper nanoparticle or a copper oxide nanoparticle having a surface oxide film layer is subjected to a reduction treatment, and the resulting fine copper particles, particularly a copper nanoparticle, are calcined.
  • the present invention relates to a low-impedance and extremely fine sintered copper-based wiring pattern corresponding to digital high-density wiring, and a method for forming an ultra-thin and thin-film copper thin film layer.
  • copper-based wiring is effective.
  • a copper-based material for a wiring pattern on a semiconductor element is used.
  • the use of is widely considered. That is, copper has high conductivity as well as gold and silver, and has good ductility and malleability, but its electrification migration is remarkably less than silver. Therefore, when the current density is increased due to fine wiring, the use of copper-based wiring makes it possible to avoid disconnection due to the elector port migration phenomenon.
  • the unit price of the material itself is considerably lower, and its use is expected from the viewpoint of cost reduction in printed wiring boards having more versatile and fine wiring patterns.
  • Gold and silver which are noble metals, originally have relatively low oxidation resistance. Therefore, when a fine particle dispersion is prepared, the fine particles contained therein are oxidized on the surface. It is easy to maintain without forming a film.
  • copper has characteristics that it is relatively susceptible to oxidation, and when a fine particle dispersion is prepared, the fine particles contained have an oxide film formed on the surface in a short time. State. In particular, when the copper nanoparticle has a finer particle size, the surface area relatively increases, the thickness of the oxide film formed on the surface increases, and most of the nano-size particle size increases on the surface of the copper oxide. Often converted to a film layer
  • This oxide of copper does not passivate and, furthermore, oxidation proceeds inside the nanoparticles, so that when exposed to air for a certain period of time, most of the nanoparticles eventually become copper oxide. In particular, in air containing moisture, the progress of acid from the copper nanoparticle surface to the inside is promoted.
  • the present inventors have tried to prevent copper nanoparticles from oxidizing by using various methods. For example, when the copper nanoparticles are dispersed in an organic solvent serving as a dispersion solvent, aggregation of the copper nanoparticles on the surface of the copper nanoparticles is prevented. It was confirmed that the thickness of the oxide film can be reduced by providing a coating molecular layer having the function of performing the above and preventing direct contact with air. After forming a fine wiring pattern by using a dispersion liquid in which copper nanoparticles provided with a coating molecular layer having a function of preventing aggregation on the surface are dispersed in an organic solvent, the dispersion solvent contained therein is removed.
  • the coating molecular layer on the surface is detached, and an oxide film is formed on the surface of the copper nanoparticles in contact with oxygen molecules in the atmosphere, resulting in complete surface oxidation. There was no way to avoid this.
  • the oxygen molecules dissolved in the organic solvent will cause the copper nanoparticles to disperse in the organic solvent during storage of the dispersion in which the copper nanoparticles are dispersed in the organic solvent.
  • the formation of the oxide film gradually progresses and is converted into copper nanoparticles having a surface oxide film layer.
  • copper nanoparticles are used to print fine wiring patterns between copper nanoparticles.
  • a copper fine particle dispersion liquid capable of producing a sintered body type wiring layer obtained by sintering with good reproducibility has not yet reached a practical stage. If the copper nanoparticles are heated and sintering is performed in a state where the oxide film remains on the surface, the copper nanoparticles are partially sintered to each other to form a sintered body. A thin copper oxide layer is interposed between the grain boundaries. Therefore, the formation of a dense current flow path is not achieved in the entire sintered body, and the desired good conductivity is not obtained. It has been difficult to produce a fine wiring pattern with high reproducibility.
  • a hydrogenating agent such as a borohydride derivative is previously added to a dispersion containing copper nanoparticles having a surface oxide film, and the dispersion is applied to a substrate.
  • the copper oxide on the surface is reduced by the reducing action caused by the added hydrogen sulfide, and copper in a non-oxidized state appears on the nanoparticle surface.
  • the heating and sintering proceeds to form a sintered copper wiring layer.
  • the hydrogenating agent such as a borohydride derivative incorporated in the dispersion performs a sufficient reducing action, but reaction by-products remain and are taken up in the sintered body layer. It is.
  • solder material tin alloy solder which does not contain lead, so-called lead-free solder has been used, and in response to the high melting temperature of vigorous lead-free solder, a temperature of about 300 ° C has been developed.
  • substrate materials having sufficient heat resistance has been widespread by heating, more preferably, even when the temperature of the reduction treatment is suppressed to 300 ° C or less, the use of copper nanoparticles having a surface oxide film, It is desired to develop means that can achieve a sufficient reduction reaction.
  • copper-based wiring is inexpensive in material itself, and even at a high current density, it is possible to avoid disconnection due to electrification or to reduce a change in the thickness of the wiring layer. It has advantages, and its application as a conductor layer for a printed wiring board having a fine wiring pattern is being studied. At that time, a copper fine particle dispersion liquid having a finer particle diameter suitable for drawing a fine wiring pattern is required. However, as the particle diameter becomes finer, the surface oxide film layer covering the surface becomes relatively thin. It is necessary to develop a technique for reducing the surface oxide film layer to produce a sintered copper wiring layer having good conductivity.
  • An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a fine copper-based wiring pattern or an extremely thin film using copper which is inexpensive and has low electrification port migration as a conductive medium.
  • a fine liquid wiring pattern is drawn, or a dispersion of copper fine particles or copper oxide fine particles having a surface oxide film layer is used for forming a coating thin film.
  • the copper oxide or copper oxide particles having a surface oxide film layer contained therein have a copper oxide coating layer power of 350 ° C or less under the heating conditions, preferably 300 ° C or less.
  • a method for forming a copper-particle-sintered-body-type finely-shaped conductor which is capable of being subjected to a reduction treatment and capable of easily and densely firing the obtained copper fine particles with high reproducibility, and Applying the method, A sintered body of copper-based wiring pattern, there! ⁇ is to provide a method of forming a copper thin layer of ultra-thin! ⁇ thickness.
  • nanoparticles having an average particle size of 100 nm or less which is suitable for drawing an extremely fine wiring pattern
  • the copper oxide coating layer on the surface of the Non-oxidized copper as a nucleus in the center with some remaining as a nucleus, but a force that can be considered as a copper oxide nanoparticle as a whole.
  • a condition preferably a heating condition of 300 ° C. or less, a fine sintered copper-based wiring pattern is formed that can be sufficiently reduced and can be subjected to a dense baking treatment between the obtained copper nanoparticles.
  • the copper oxide coating layer on the surface Under the heating condition of 350 ° C or less, desirably, the heating condition of 300 ° C or less, a sufficient reduction treatment is performed, and the dense baking treatment of the obtained copper fine particles is easily performed with high reproducibility.
  • the present inventors first applied a dispersion onto a substrate, and then formed a copper oxide coating layer covering the surface of the copper nanoparticles contained in the applied layer. Intensive research has been conducted on means for effective reduction treatment.
  • the thickness of the surface coating layer often reaches half or more of the fine average particle diameter, and accordingly, the entire nanoparticle
  • the proportion of copper oxide occupying becomes high, and in the method of premixing an inorganic hydrogenating agent such as sodium tetrahydroborate (sodium borohydride) in the dispersion, the amount of hydrogenating agent required for reduction is added to each part. Found that in some cases it could not be supplied.
  • the present inventors use an organic compound having a reducing ability, for example, the vapor of alcohols to reduce the copper oxide coating layer on the nanoparticle surface by a thermal reduction reaction. Further, it has been found that the reduction reaction proceeds at a sufficient reaction rate even at, for example, 300 ° C. or lower.
  • the organic compound having a reducing ability such as alcohols, melts and turns into a liquid state, and further, evaporates to a vapor to form a dense layer of nanoparticles. It was confirmed that it was possible to reach deeper than the narrow gap.
  • the solid copper reaction between the non-oxidized copper atoms generated on the surface by the vigorous reduction reaction and the copper oxide molecules present inside converts the internal copper oxide into non-oxidized copper atoms. Instead, copper oxide was generated on the surface, and as a result, the copper oxide coating layer was gradually reduced, and eventually the entire nanoparticle returned to copper nanoparticles.
  • sintering proceeds rapidly even at a relatively low temperature, and the entire coating layer forms a dense sintered body layer of copper nanoparticles. I also checked.
  • organic compounds having reducing ability that have penetrated into the narrow gaps between the nanoparticles and the reaction products themselves that have been oxidized by-produced from the organic compounds also flow. It has been confirmed that it is extruded quickly onto the surface layer of the sintered body layer as the sintering progresses, so that it does not hinder the formation of a dense sintered structure in the resulting sintered body layer.
  • the present inventors conducted a heat treatment while supplying a vapor of an organic compound having a reducing ability from the gas phase, and found that the surface oxide film layer having an average particle diameter of sub m-number / zm was obtained.
  • the copper oxide film layer on the surface is also reduced with respect to the copper fine particles or copper oxide fine particles having the above, and the reduction reaction proceeds at a sufficient reaction rate even at, for example, 350 ° C. or less, and substantially occurs. It has been found that copper fine particles without a surface oxide film layer can be restored.
  • the obtained copper fine particles with an average particle diameter of about several meters continue heating in a reducing atmosphere at a strong temperature of 350 ° C or less.
  • the present inventors have further studied and found that copper fine particles having an average particle diameter of sub / zm—number / zm obtained by performing a reduction treatment have an average particle diameter of 30/30 in an oxygen-containing atmosphere.
  • at least one combination of the oxidation and re-reduction treatment with the heat treatment for not more than 300 seconds and the treatment for re-reduction by causing a compound having a reducing ability to act on the copper fine particles subjected to the surface oxidation treatment is performed. It has been found that, when repeatedly performed at least 350 times, a uniform and dense sintered body layer can be formed even at a temperature of 350 ° C or lower, and its reproducibility is high.
  • the method of repeatedly performing this combination of oxidation and re-reduction at least once is not only for copper fine particles having an average particle size of several meters, but also for copper nanoparticles having an average particle size of 100 nm or less. It can be applied in the same way, and in addition, compared to a sintered layer of copper nanoparticles obtained by continuing to heat in a reducing atmosphere at a temperature of 350 ° C or less, In addition, it was confirmed that a copper fine particle sintered body type fine conductor having excellent electrical conductivity was provided.
  • the method of forming a fine copper-based wiring pattern comprising a sintered body layer of copper fine particles according to the second embodiment of the present invention has been completed by integrating the above series of findings.
  • the method for forming a fine copper-based wiring pattern according to the first aspect of the present invention is a method for forming a fine copper-based wiring pattern comprising a sintered body layer of copper nanoparticles on a substrate.
  • the coating layer of the fine wiring pattern is formed on a substrate.
  • the copper nanoparticles or copper oxide nanoparticles having the surface oxide film layer contained in the coating layer were subjected to a treatment for reducing the surface oxide film layer or copper oxide, and further subjected to a reduction treatment. Baking the nanoparticles, and forming a sintered body layer,
  • At least the surface oxide film layer comprises cuprous oxide, cupric oxide or a mixture of these copper oxides, and the nanoparticles are made of cuprous oxide, cupric oxide or It is preferable that the particles are a mixture of two or more of these copper oxide mixtures and metallic copper.
  • an organic compound having a reducing ability to be present an organic compound having an alcoholic hydroxy group, or two or more of them are used. Mixtures can be mentioned. Further, as a more preferable example of the organic compound having a reducing ability to be present in the reduction treatment, an organic compound having two or more hydroxy groups, or a compound obtained by mixing two or more kinds thereof is given. it can. For example
  • the organic compound having a reducing ability to be present is glycerin (1,
  • At least one kind of the organic compound having a reducing ability to be present in the reduction treatment may be at least one of: It may be blended in a dispersion containing copper nanoparticles or copper oxide nanoparticles having an oxidation film layer.
  • at least one of the organic compounds having a reducing ability to be present is
  • the vapor of the organic compound having the reducing ability may act on the coating layer of the fine wiring pattern from a gas phase.
  • the average particle diameter of the copper nanoparticles or copper oxide nanoparticles having the surface oxide film layer contained in the dispersion to be 1Z10 or less for the minimum wiring width and the minimum inter-wiring space. It is desirable to do.
  • the method for forming a copper thin film according to the first aspect of the present invention includes:
  • the coating layer of the copper thin film pattern is formed on a substrate.
  • Copper nanoparticles or copper oxide nanoparticles having a surface oxide film layer contained in the coating layer Subjecting the particles to a process of reducing the surface oxide film layer or copper oxide, and further firing the nanoparticles subjected to the reduction process to form a sintered body layer,
  • At least the surface oxide film layer comprises cuprous oxide, cupric oxide or a mixture of these copper oxides, and the nanoparticles are made of cuprous oxide, cupric oxide or It is preferable that the particles are a mixture of two or more of these copper oxide mixtures and metallic copper.
  • a preferable example of the organic compound having a reducing ability to be present is an organic compound having an alcoholic hydroxy group, or a mixture of two or more thereof.
  • an organic compound having two or more hydroxy groups, or a mixture of two or more thereof can be given.
  • the organic compound having a reducing ability to be present in the reduction treatment is more preferably glycerin (1,2,3-propanetriol).
  • At least one kind of the organic compound having a reducing ability to be present is blended in a dispersion containing copper nanoparticles or copper oxide nanoparticles having the surface oxide film layer. Is also good.
  • at least one of the organic compounds having a reducing ability to be present is
  • the copper thin film pattern is converted into vapor of the organic compound having the reducing ability.
  • the application layer of the turn may be acted on from the gas phase.
  • the average particle diameter of the copper nanoparticles or the copper oxide nanoparticles having the surface oxide film layer contained in the dispersion liquid be 1Z10 or less with respect to the minimum layer thickness.
  • a screen printing method, a drawing method of a transfer method, or a spin coating method can be selected.
  • the reduction of the copper oxide film layer using the organic compound having a reducing ability as a reducing agent proceeds at a sufficient reaction rate at a low temperature of 300 ° C or lower, and sintering of the regenerated copper nanoparticles is also performed. Since the reaction is carried out simultaneously in the presence of the organic compound having such a reducing ability, it is possible to avoid the acid on the surface of the active copper nanoparticles again after the reduction treatment. Since this heat treatment can be performed at a low temperature of 300 ° C. or less, the heat resistance required for the substrate material to be used is greatly relaxed, and there is an advantage that the range of use is greatly expanded.
  • the fine copper-based wiring obtained is a conductive material with little electrification migration at the copper itself.Therefore, even with the fine wiring pattern described above, the reduction in the wiring thickness due to the migration at the election opening is reduced. The occurrence of disconnection can be suppressed. Furthermore, the organic compound having the reducing ability used and the reaction product derived from the organic compound produced as a by-product accompanying the reduction treatment are both finally evaporated and vaporized by heating. As a result, the resulting fine sintered copper-based wiring layer or an extremely thin copper thin film layer It has the advantage that it does not remain.
  • the method for forming a copper-particle sintered body-type fine-shaped conductor that works in the second mode of the present invention includes:
  • a method for forming a copper-particle-sintered-body-type fine-shaped conductor which is formed by a copper-particle-sintered body layer formed into a predetermined planar pattern having a fine film thickness,
  • the minimum thickness is selected in the range of 0.1 m-2 O / zm
  • the maximum thickness is selected in the range of 100 m or less
  • the flat pattern is selected.
  • the minimum line width is selected in the range of 0.5 m—200 ⁇ m
  • the surface oxide film has an average particle diameter of at least 10 m or less and is selected to be 1Z4 or less of the minimum film thickness of the sintered body layer to be formed and 1Z10 or less of the minimum line width.
  • the copper fine particles or copper oxide fine particles having a surface oxide film layer contained in the coating layer are subjected to a treatment for reducing the surface oxide film layer or copper oxide, and further, the fine particles having undergone the reduction treatment are fired.
  • a heat treatment is performed for 30 seconds or less to cause oxygen to act on the copper fine particles to perform a surface oxidation, and the surface oxidation treatment is followed by a treatment of the compound having the reducing ability.
  • Combination of oxidation and re-reduction treatment And the second treatment step of applying at least once is performed continuously in the same step.
  • This is a method for forming a finely-shaped conductor of a sintered copper fine particle type.
  • the method for forming a copper fine particle sintered compact type finely-shaped conductor according to the second embodiment of the present invention described above is described by using a fine copper-based wiring pattern comprising a sintered body layer of copper fine particles on a substrate.
  • a form applied when forming a also provides a method for forming a fine copper-based wiring pattern that is strong in the second form of the present invention
  • the method for forming a fine copper-based wiring pattern that is effective in the second embodiment of the present invention is a method for forming a fine copper-based wiring pattern composed of a sintered body layer of copper fine particles on a substrate,
  • the coating layer of the fine wiring pattern is formed on the substrate.
  • the copper fine particles or copper oxide fine particles having a surface oxide film layer contained in the coating layer are subjected to a treatment for reducing the surface oxide film layer or copper oxide, and further, the fine particles having undergone the reduction treatment are fired.
  • a heat treatment is performed for 30 seconds or less to cause oxygen to act on the copper fine particles to perform a surface oxidation, and the surface oxidation treatment is followed by a treatment of the compound having the reducing ability.
  • Combination of oxidation and re-reduction treatment And the second treatment step of applying at least once is performed continuously in the same step.
  • the method for forming a copper fine particle sintered body-type fine shape conductor which is strong in the second embodiment of the present invention, is used for forming a copper thin film layer composed of a sintered body layer of copper fine particles on a substrate.
  • a method for forming a copper thin film which is effective in the second form of the present invention is also provided,
  • the method for forming a copper thin film that is effective in the second embodiment of the present invention is:
  • a method for forming a copper thin film layer comprising a sintered body layer of copper fine particles on a substrate, wherein the copper fine particles having a surface oxide film layer or the oxidized copper fine particles having an average particle diameter selected at least in the following range: Drawing a coating layer of the copper thin film layer on a substrate using a dispersion liquid containing copper fine particles;
  • the copper fine particles or copper oxide fine particles having a surface oxide film layer contained in the coating layer are subjected to a treatment for reducing the surface oxide film layer or copper oxide, and further, the fine particles having undergone the reduction treatment are fired.
  • a heat treatment is performed for 30 seconds or less to cause oxygen to act on the copper fine particles to perform a surface oxidation, and the surface oxidation treatment is followed by a treatment of the compound having the reducing ability.
  • the second treatment step in which the combination of oxidation and re-reduction treatment is performed at least once, in the same step continuously.
  • the surface oxide film layer contains any of cuprous oxide, cupric oxide, or a mixture of these copper oxides, and the fine particles include cuprous oxide, cupric oxide, Alternatively, it may be a mixture of copper oxides, or a mixed particle containing two or more of copper metal.
  • a compound having a reducing ability to be present in the atmosphere as a gas or a vapor in the reduction treatment and the calcination treatment, in the first treatment step and the re-reduction treatment in the second treatment step, a compound having a reducing ability to be present in the atmosphere as a gas or a vapor.
  • the object may be a hydrogen molecule.
  • the reducing ability to be present in the atmosphere as a gas or vapor in the atmosphere Is one of glycerin (1,2,3-propanetriol), ethylene glycol (1,2-ethanediol), propylene glycol (1,2-propanediol), and 1,3-propanediol And it becomes a more preferable form.
  • the method for forming a finely-shaped copper-particle-sintered-type conductor according to the second embodiment of the present invention the method for forming a fine copper-based wiring pattern by applying the method, and the method for forming a copper thin film,
  • the fine particles in the coating layer are heated to a temperature of 350 ° C. or less in an atmosphere containing the vapor or gas of the compound having a reducing ability, and the compound having the reducing ability is used as a reducing agent.
  • the oxide film is reduced by the reduction reaction to copper fine particles, and then oxidized by exposure to an atmosphere containing oxygen for a short time under the same heating conditions, and then the vapor or gas of a compound having a reducing ability Reduction treatment in an atmosphere containing
  • the reduction of the copper oxide film layer using the vapor or gas of a compound having a reducing ability supplied from the gas phase as a reducing agent proceeds at a sufficient reaction rate at a low temperature of 350 ° C or less.
  • the sintering of the generated copper fine particles is also performed by a heat treatment combining the oxidation treatment and the re-reduction treatment as compared with a method in which heating is continued in an atmosphere containing a vapor or gas of a compound having a strong reducing ability.
  • the resulting fine copper-based wiring is a conductive material with little electrification migration at the copper itself.Therefore, even in the fine wiring pattern described above, the wiring thickness is reduced due to electromigration and the wire is broken. Can be suppressed. Furthermore, since the vapor or gas of the compound having a reducing ability to be used is supplied from the gas phase, a fine sintered copper-based wiring layer to be manufactured or a copper thin film layer having an extremely thin film thickness is formed. The shape of a rhino There is also an advantage if a copper-sintered sintered compact-type fine-shaped conductor can be produced without depending on the size or arrangement position.
  • FIG. 1 shows a method for forming a fine sintered copper-based wiring pattern that is effective in the first embodiment of the present invention, and can be used for performing a reduction and sintering process.
  • FIG. 2 is a view schematically showing a configuration of an apparatus for reduction treatment and sintering using various reducing organic compounds.
  • FIG. 2 shows the results of SEM observation of the state of aggregation of copper fine particles in a sintered body layer produced by the method for forming a copper fine particle sintered body layer according to the second embodiment of the present invention. It is a figure.
  • copper nanoparticles are extremely acidic.
  • a nanoparticle having a copper oxide coating layer on its surface or a dispersion of copper oxide nanoparticles is prepared. After drawing a desired wiring pattern on the substrate using the dispersion liquid, the copper oxide coating layer present on the surface of the nanoparticles is reduced, thereby regenerating the copper nanoparticles and performing a baking treatment.
  • the copper oxide coating layer or the copper oxide nanoparticles existing on the surface of the nanoparticles In the step of reducing, select a heating temperature of 300 ° C or less to reduce
  • the organic compound having a reducing ability acts as a reducing agent on the surface of the nanoparticles contained in the coating layer, thereby obtaining a heating temperature of 300 ° C. Even when the temperature is as low as below, the reduction reaction of the copper oxide on the surface can proceed promptly.
  • the copper oxide inside is converted into non-oxidized copper atoms by the solid-state reaction between the copper oxide in the non-oxidized state once generated on the surface and the copper oxide molecules existing inside, and instead the copper oxide is replaced on the surface. Copper oxide is generated, and the copper oxide generated on this surface is reduced to non-oxidized copper atoms by the reducing action of the continuously supplied organic compound having a reducing ability.
  • the copper oxide coating layer which had initially reached the depth of the nanoparticles, gradually decreased, and eventually returned to the nanoparticle of copper as a whole. .
  • the surface is rapidly oxidized.
  • regeneration is performed at room temperature (25 ° C) or higher and at a heating temperature selected to 300 ° C or lower in the presence of an organic compound having a reducing ability that does not come into contact with the atmosphere again.
  • the clean surfaces of the deposited copper nanoparticles are in intimate contact with each other, so that sintering progresses rapidly even at relatively low temperatures, and the entire coating layer is made of dense copper nanoparticles. Formed on the sintered body layer.
  • the clean surfaces of the regenerated copper nanoparticles are brought into close contact with each other.
  • the average particle size of the nanoparticles to be used is within a range where sintering can proceed rapidly even at a heating temperature selected from room temperature (25 ° C) or higher and 300 ° C or lower. From this viewpoint, it is desirable to select the average particle diameter of the nanoparticles having the copper oxide coating layer on the surface to be used, in the range of 110 nm, more preferably, in the range of 120 nm. .
  • the method for forming a fine wiring pattern which is effective in the first aspect of the present invention is, first, when an extremely fine wiring pattern is formed, it is most remarkably found in a portion having a minimum wiring width.
  • sintered copper-based wiring is used, and the minimum wiring width of the wiring pattern is in the range of 0.5 to 200 ⁇ m, practically.
  • the minimum wiring width of the wiring pattern is in the range of 0.5 to 200 ⁇ m, practically.
  • the average particle diameter of the nanoparticles used is determined by the target minimum wiring width and minimum target wiring width. It is desirable to select 1Z10 or less for the space between wirings.
  • the thickness of the sintered copper-based wiring layer is also appropriately determined according to the minimum wiring width. Normally, compared to the minimum wiring width, the wiring layer has a significantly smaller thickness.
  • a technique for drawing a desired wiring pattern on a substrate using the dispersion liquid containing the nanoparticles has conventionally been a fine wiring pattern using a dispersion liquid containing metal nanoparticles.
  • Any of the drawing methods of screen printing, ink jet printing, or transfer printing used in the formation of the same can be similarly used. Specifically, select the more suitable screen printing, inkjet printing, or transfer printing in consideration of the shape of the target fine wiring pattern, minimum wiring width, and wiring layer thickness. It is desirable to do.
  • a dispersion containing the nanoparticles it is desirable to prepare a dispersion containing the nanoparticles to be used so as to have a liquid viscosity suitable for each of the employed drawing techniques.
  • a dispersion containing the nanoparticles has a viscosity of 30 to 300 Pa's (25 ° C).
  • transfer printing it is desirable to select the liquid viscosity in the range of 3 to 300 Pa's (25 ° C).
  • ink-jet printing it is desirable to select the liquid viscosity in the range of 100 mPa-s (25 ° C.).
  • the liquid viscosity of the dispersion liquid containing the nanoparticles is determined depending on the average particle diameter of the nanoparticles used, the dispersion concentration, and the type of the dispersion solvent used. It can be adjusted to the desired liquid viscosity.
  • Nanoparticles having a copper oxide coating layer on the surface have any average particle diameter within the above range, and any production method can be used as long as the average particle diameter is known in advance.
  • copper nanoparticles with a copper oxide coating layer on the surface can be used, or The whole of the nanoparticles may be copper oxide. Therefore, the nanoparticles having a copper oxide film layer on the surface, at least, the copper oxide film layer comprises cuprous oxide, cupric oxide or a mixture of these copper oxides.
  • the nanoparticles can be mixed particles containing two or more of cuprous oxide, cupric oxide or a mixture of these copper oxides, and metallic copper.
  • the copper oxide film layer on the surface is converted back to metallic copper by the reduction treatment in the presence of the organic compound having a reducing ability as described above, but the treatment time is extended depending on the thickness of the copper oxide film layer on the surface. Therefore, it is generally preferable that the thickness of the copper oxide coating layer on the surface is thin.
  • the time required for the reduction treatment may be prohibitively long. Absent.
  • the copper nanoparticles having a copper oxide coating layer on the surface a portion where metal copper is present on the surface where the copper oxide coating layer does not exist is attached to a metal copper atom such as an amino group of alkylamine.
  • the coating molecular layer in which the strong organic compound molecules are coordinately bonded is composed of a copper nanoparticle having a copper oxide coating layer on the surface and a metallic copper on the surface in the absence of the copper oxide coating layer in the dispersion.
  • the nanoparticle dispersion when used for forming a wiring, it functions as an organic binder to uniformly disperse the dispersion, increase the concentration, adjust the viscosity of the liquid, and enhance the adhesion to the substrate.
  • a resin component, a thixotropic agent for adjusting viscosity, or an organic solvent for dilution may be added, followed by mixing and stirring to prepare a nanoparticle dispersion used for coating and drawing.
  • copper nanoparticles having a copper oxide coating layer on the surface or copper oxide nanoparticles themselves, Due to the coating of the oxide film present on the surface, even if they come into contact with each other, fusion between the nanoparticles does not occur, and phenomena that inhibit uniform dispersion characteristics such as formation of aggregates do not occur. You. Therefore, in the drawn coating layer, the nanoparticles can achieve a dense layered state together with the evaporation of the dispersion solvent.
  • the wiring substrate After drawing the wiring pattern using the nanoparticle dispersion liquid, the wiring substrate is subjected to the reduction treatment and the baking treatment in, for example, the heat treatment (reduction and baking treatment) apparatus shown in FIG. Therefore, in the presence of an organic compound having a reducing ability, a heating temperature of 300 ° C or less is selected and heating is performed to reduce the oxide film on the surface using the organic compound having the reducing ability as a reducing agent.
  • a heating temperature of 300 ° C or less is selected and heating is performed to reduce the oxide film on the surface using the organic compound having the reducing ability as a reducing agent.
  • preferred examples of the organic compound having a reducing ability that can be used in the first embodiment of the present invention include methyl alcohol, ethyl alcohol, isopropyl alcohol, 2-butyl alcohol, and 2-hexyl alcohol.
  • Aliphatic alcohols such as alcohol, ethylene glycol (1,2-ethanediol), propylene glycol (1,2-propanediol), 1,3-propanediol, glycerin (1,2,3-propanetriol), 1 Polyhydric alcohols such as 1,2-butanediol, aromatic alcohols such as benzyl alcohol, 1-phenylethanol, diphenylcarbitol (diphenylethanol), and benzoin (2-hydroxy-1,2-diphenyl-ethanone) Aromatic polyhydric alcohols such as monoalcohol and hydrobenzoin (1,2-diphenyl-1,2-ethanediol) Lumpur, furthermore, glucose, maltose, saccharides such as fructose, polyvinyl - include alcohol (PVA), a polymer alcohol such as ethylene Bulle alcohol (EVOH).
  • PVA alcohol
  • EVOH ethylene Bulle alcohol
  • an epoxy compound which can be converted into a 1,2-dioli conjugate or a 1,3-diol by a reaction with water present in the system.
  • Possible oxetane conjugates are also available if water is present or is produced that causes a vigorous reaction.
  • aromatic hydroquinone such as hydroquinone can also be used as the reducing agent.
  • oxo group 0
  • a formyl group -CHO
  • the organic compound having a reducing ability to be present during the heat treatment can be previously blended in a dispersion liquid of the nanoparticles used for forming the coating layer, or in an atmosphere in which the heat treatment is performed.
  • an organic compound having a strong reducing ability may be present as a vapor.
  • the organic compound having a reducing ability is consumed in the above-mentioned reduction treatment, at least the oxide film to be reduced is contained in the nanoparticles having the copper oxide film layer on the surface to be reduced. It is necessary to mix an organic compound having a reducing ability in the dispersion in accordance with the total amount of the compound.
  • the amount of acid in the organic compound having a reducing ability per 63.55 g of copper nanoparticles having an oxidized copper coating layer on the surface thereof is contained. It is preferable to select a compounding ratio in which the hydroxyl group (1 OH) to be subjected to the dangling is in the range of 150 moles.
  • the organic compound having the reducing ability when supplying the organic compound having a reducing ability as vapor, per 63.55 g of the copper nanoparticles having a copper oxide coating layer on the surface contained in the coating layer, the organic compound having the reducing ability has a It is preferable to supply as a vapor an amount of the compound which is in a range of a hydroxyl group (1 OH) power of 1150 moles to be oxidized. Alternatively, it is preferable to select the vapor pressure of the organic compound having a reducing ability to be present in the atmosphere of the heat treatment so as to be in the range of 100 to 2000 hPa. It is preferable to keep the atmosphere of the heat treatment in an atmosphere of an inert gas such as nitrogen to avoid reoxidation of the reduced surface.
  • an inert gas such as nitrogen
  • the heat treatment temperature should be appropriately selected in consideration of the reactivity of the organic compound having a reducing ability to be used, and is at least 300 ° C or less, for example, 180 ° C. It is preferable to select a temperature in the range of not less than C, usually not less than 250 ° C. In order to maintain the temperature within the temperature range that satisfies the heat resistance characteristics according to the material of the printed circuit board itself installed in the processing equipment, 300 ° C or less, for example, 180 ° C-300 ° C, Adjust the temperature setting.
  • the time for the reduction treatment and the calcination treatment is in the range of 1 minute to 1 hour, preferably 5 minutes to 30 minutes. It is possible to select Specifically, the set temperature and the processing time are appropriately selected in consideration of the thickness of the copper oxide coating layer covering the surface of the nanoparticles and the time required for the reduction.
  • the wiring pattern can be drawn using a dispersion liquid containing nanoparticles, its fine drawing characteristics are inferior to the conventional fine wiring pattern formation using gold and silver nanoparticles. There will be none.
  • the fine wiring pattern to be formed has a minimum wiring width of 0.5 to 200 ⁇ m, practically 5 to 50 ⁇ m, and a corresponding minimum wiring space. In the range of 0.5-200 / zm, practically, in the range of 5-50 / zm, good line width uniformity and reproducibility can be achieved.
  • the resulting wiring layer is a sintered layer of copper nanoparticles without an oxide film on the interface, and has a volume resistivity of at least 30 X 10 6 Omega 'cm or less, often, 20 X 10- 6 ⁇ ' be a cm or less, you can achieve good conduction characteristics.
  • the average thickness of the formed copper thin film is selected to be within the range of 0.1, and practically, within the range of 11, so as to obtain good surface flatness. And uniformity of film thickness can be achieved with high reproducibility.
  • the sintered body layer formed is a conductive material with little electrification migration at the copper itself, even in the above-described fine wiring pattern, the wiring caused by the electrification migration is obtained. A reduction in thickness and occurrence of disconnection can be suppressed.
  • Pururu ultrafine particle dispersion of copper (trade name: Independently dispersed ultrafine particle Perfect Copper Vacuum Metallurgical Co., Ltd.), specifically, copper fine particles having a partially oxidized coating on the surface. Copper nano-particles having a surface oxide film layer with an average particle diameter of 5 nm, containing 15 parts by mass of dodecylamine (molecular weight: 185.36, boiling point: 248.C) as an alkylamine and 75 parts by mass of mineral spirits as an organic solvent. A dispersion of particles was utilized.
  • a line / space A 25/25 ⁇ m circuit pattern coating was screen printed.
  • the average thickness of the coating layer was 10 / zm.
  • the substrate 1 on which the coating layer was drawn was placed at a predetermined position on a heater 3 installed in a sealed container 2.
  • the vapor of the organic compound is mixed with an inert gas such as nitrogen gas, and then heated at 250 ° C. for 15 minutes while being blown into the container 2 from the gas inlet 4. went.
  • the partial pressure of the vapor of the organic compound supplied together with the inert gas is maintained in the range of 50% to 90% of the internal pressure of the container 2, and is included in the coating layer drawn on the substrate 1!
  • the resulting nanoparticles undergo a heat treatment in the presence of such organic compound vapors.
  • Example 1-1 the organic compound used as the vapor source was glycerin (1, 2, 3- Triol; boiling point: 290.5 ° C (decomposition)), in Example 1-2, 1,2 propanediol (boiling point: 187.85 ° C), and in Example 13, isopropyl alcohol (boiling point: 82 4 ° C),
  • Example 14 shows that 2,3 butanediol (meso body, boiling point: 181.7 ° C (742 mmHg)) has an alcoholic hydroxyl group
  • Comparative Example 11 phenol (boiling point: 182 ° C)
  • Comparative Example 12 dimethoxyethane (ethylene glycol dimethyl ether; boiling point: 82-83 ° C)
  • Comparative Example 13 is ethylenediamine (boiling point: 116-117 ° C).
  • the organic compound used in Comparative Examples 11 to 13 did not contain an alcoholic hydroxyl group, and did not show a reducing ability at such a heating
  • the circuit pattern on the substrate had a sintered body layer of reduced copper nanoparticles formed under the processing conditions of Examples 11 to 14.
  • the wiring width and space of the obtained sintered body layer type copper wiring were 25 ⁇ 25 / ⁇ , and the average layer thickness was 5 m.
  • the resistance value of such a copper wiring layer was measured, and a volume specific resistivity (25 ° C.) was calculated assuming a homogeneous body having the wiring width and the average layer thickness. 1 as shown ⁇ this were all less than 20 X 10- 6 ⁇ 'cm. Incidentally, the resistivity of the copper itself (20 ° C) is 1.
  • the sintered body type wiring layer obtained copper, copper nanoparticles mutual dense It is determined that sintering has been achieved. Also, from the results of SEM observation, no copper oxide was found to be present at the grain boundaries between the copper nanoparticles, and it was determined that a sintered body having good conductivity was formed.
  • an aqueous dispersion containing ultrafine copper particles was prepared by a wet reduction reaction. After dissolving 30 g of copper sulfate in 100 ml of distilled water, add 100 g of diethanolamine as a reducing agent to this aqueous solution while heating to 80 ° C. Next, stirring was continued for 8 hours to advance the wet reduction reaction, and a dark brown aqueous dispersion containing the produced copper fine particles was obtained. Acetone is added to the dispersion to remove residual diethanolamine, and copper fine particles are precipitated. This acetone washing operation was repeated three times to remove remaining raw materials, by-products of the reaction, and impurities. The obtained copper fine particles had a surface oxidized film layer partially oxidized on the surface thereof, and had an average particle diameter of 9 nm.
  • the substrate 1 on which the coating layer is drawn is placed on a heater 3 placed in a closed container 2. Placed in place. Nitrogen was blown in from the gas inlet 5 to perform a heat treatment at 250 ° C. for 15 minutes in the container 2 in a nitrogen atmosphere. During this heat treatment, the nanoparticles drawn on the substrate 1 and contained in the coating layer undergo heat treatment in the presence of the organic compound incorporated in the paste.
  • Example 15 glycerin (1,2,3 propanetriol; boiling point: 290.5 ° C (decomposition)) was used as the organic compound to be mixed into the paste whose viscosity had been adjusted.
  • Example 1-7 erythritol (meso form; melting point: 121 ° C.) was used.
  • Example 1-7 1,2-cyclohexanediol (( ⁇ -form; boiling point: 116 ° ⁇ (1311111113 ⁇ 4))) was used.
  • glucose D-form; melting point of anhydrous ⁇ -form: 146 ° C
  • Example 1-10 polybenzene was used.
  • Alcohol one CH CH (OH); second transition point: 65-85 ° C)
  • Example 15-111 hydroquinone (boiling point: 285 ° C. (730 mmHg)) was used.
  • resorcinol (1,3 benzenediol: boiling point: 281.4 ° C.) was used.
  • the circuit pattern on the substrate was reduced under the processing conditions in the presence of the organic compound of Example 1-5-1-11, under the condition where the reduced copper nanoparticles were sintered. A layer had been formed.
  • the wiring width and space of the obtained sintered layer type copper wiring were 25Z25 m, and the average layer thickness was 5 m.
  • the resistance value of the copper wiring layer was measured, and assuming a homogeneous body having the wiring width and the average layer thickness, the volume resistivity (25 ° C.) was calculated. as shown in both were below least 30 X 10- 6 ⁇ 'cm. Incidentally, the resistivity of the copper itself (20 ° C) is 1.
  • the sintered body type wiring layer obtained copper, copper nanoparticles mutual dense and their values It is determined that sintering has been achieved. Also, from the results of SEM observation, no copper oxide was found to be present at the grain boundaries between the copper nanoparticles, and it was determined that a sintered body having good conductivity was formed.
  • Pure copper ultra-fine particle dispersion (trade name: Independently dispersed ultra-fine particle Perfect Copper Vacuum Metallurgical Co., Ltd.), specifically, copper fine particles having a partially acidic coating on the surface.
  • a line / space 25/25 ⁇ m circuit pattern
  • the coating layer was screen printed.
  • the average thickness of the coating layer was 10 / zm.
  • the substrate 1 on which the coating layer was drawn was placed at a predetermined position on a heater 3 installed in a closed container 2.
  • glycerin was placed in a dish-shaped container for evaporating organic compounds placed on the heater 3, and a heat treatment was performed at 250 ° C. for 15 minutes while blowing nitrogen from the gas inlet 4.
  • the nanoparticles included in the coating layer drawn on the substrate 1 along with the vaporization and evaporation of daliserine contained in the evaporation dish-like container are converted to the glycerin vapor. In the presence, undergo a heat treatment.
  • the circuit pattern on the substrate had a sintered body layer of reduced copper nanoparticles formed thereon.
  • the wiring width and space of the obtained sintered body layer type copper wiring were 25/25 ⁇ m, and the average layer thickness was 5 ⁇ m.
  • the resistance value of the copper wiring layer was measured, and assuming a homogeneous body having the wiring width and the average layer thickness, the volume resistivity (25 ° C.) was calculated. — 6 ⁇ 'cm.
  • the resistivity of the copper itself (20 ° C) is 1. 673 X 10- 6 ⁇ 'cm , when compared to their values, the sintered body type wiring layer obtained copper, copper nanoparticles mutual dense It is determined that sintering has been achieved. Also, from the results of SEM observation, no copper oxide was found to be present at the grain boundaries between the copper nanoparticles, and it was judged that a sintered body having good conductivity was formed.
  • the method for forming a finely-shaped copper-particle-sintered-type conductor according to the second aspect of the present invention is applied to the formation of a fine copper-based wiring pattern composed of a sintered body layer of copper fine-particles on a substrate.
  • copper nanoparticles having an average particle size of lOOnm or less are selected as copper fine particles to be used, unlike metal nanoparticles using gold or silver, which is a noble metal, copper nanoparticles are extremely oxidized.
  • a nanoparticle dispersion having a copper oxide coating layer on the surface or a dispersion of copper oxide nanoparticles is prepared.
  • the copper oxide coating layer present on the surface of the nanoparticles is reduced, regenerated into copper nanoparticles, and baked to be applied.
  • a dense sintered body layer of copper nanoparticles Doing, inexpensive and the elect port migration small! / Form a copper-based wiring pattern.
  • the copper fine particles are present on the surface of the copper fine particles included in the coating layer drawn and coated in a desired fine shape.
  • the heating temperature is selected to be 350 ° C or less, and heating is performed in an atmosphere containing a vapor or gas of a compound having a reducing ability.
  • Treatment whereby a compound having a reducing ability, supplied from the gas phase, acts as a reducing agent on the surface of the fine particles contained in the coating layer, so that the heating temperature becomes 350 ° C.
  • the temperature is as low as C or lower, the reduction reaction of the copper oxide on the surface can proceed quickly.
  • the copper oxide inside is converted to non-oxidized copper atoms by a solid-phase reaction between the non-oxidized copper atoms once generated on the surface and the oxidized copper molecules present inside the copper atoms.
  • Copper oxide is generated on the surface, and the copper oxide generated on this surface is reduced to non-oxidized copper atoms by a reducing action of an organic compound having a reducing ability continuously supplied.
  • the copper oxide coating layer that initially reached the inside of the fine particles gradually decreases, and eventually the whole fine particles return to copper fine particles.
  • a surface oxide film is formed again.
  • an oxidation treatment is performed in which the mixture is again brought into contact with a mixed gas containing oxygen molecules such as air for a short time under heating.
  • a compound having a reducing ability which is supplied from the gas phase and acts as a reducing agent under heating, serves as a reducing agent, thereby re-reducing the monomolecular oxide layer formed on the surface by the oxidation treatment, thereby regenerating the material.
  • the surface of the obtained copper fine particles becomes a surface on which cleaner copper atoms are exposed, and when they are brought into close contact with each other, for example, even if the average particle diameter is copper fine particles of several / zm.
  • the surface on which the cleaner copper atoms are exposed in one treatment is generated only on a part of the surface of the copper fine particles with an average particle diameter of several / zm, so the oxidation treatment and re-reduction By repeating the treatment, progressively expanding the sintered portion between the copper fine particles becomes more effective in forming a dense sintered body layer of the copper fine particles.
  • the portion where the copper atoms that can be surface-migrated to the same extent as the surface of the copper nanoparticle exists is a portion where the local curvature of the surface is about 100 nm, and the average particle diameter is larger than several m.
  • the planar shape of the target finely-shaped conductor is obtained by using a copper fine particle having a surface oxide film layer or a dispersion containing copper oxide fine particles.
  • the coating layer of the dispersion is drawn according to the pattern.
  • the average particle diameter of the copper fine particles or copper oxide fine particles having the surface oxide film layer as the dispersoid is determined by the minimum line width in the planar pattern to be formed and the sintered body layer to be produced. It is appropriately selected according to the film thickness, but the average particle diameter is at least within a range of 10 m or less.
  • the average particle diameter of the copper fine particles used for forming the sintered body layer is determined within a range in which the precision can be achieved in consideration of the line width and film thickness control accuracy required for the sintered body layer to be formed.
  • the minimum thickness of the sintered body layer to be formed is 1Z4 or less, more preferably 1Z20 or less, and the minimum line width is 1Z10 or less, more preferably 1Z20 or less. It is preferable to select.
  • the portion having the minimum wiring width is formed.
  • V In order to avoid disconnection due to the elector port migration phenomenon, which is most noticeable, sintered copper-based wiring is used, and the minimum wiring width of the wiring pattern is 0.5 — Corresponding to the range of 200 ⁇ m, practically 5 to 50 ⁇ m, the minimum space between wirings is 0.5 to 200 m, practically 5 to 50 m This is a more suitable method when selecting in the range.
  • the copper fine particles used for forming the sintered body layer capable of coping with the accuracy have an average particle diameter of at least 100 ⁇ .
  • the thickness of the sintered body layer is selected in the range of sub-m-several / zm corresponding to the minimum wiring width of about several / zm.
  • the average particle diameter of the nanoparticles having the copper oxide coating layer on the surface to be used is selected in the range of 110 nm, more preferably in the range of 120 nm.
  • the method for forming a fine wiring pattern according to the second aspect of the present invention is characterized in that the extremely fine wiring pattern is drawn with a high wiring width uniformity using a dispersion liquid of nanoparticles.
  • the average particle diameter of the nanoparticles used is desirably selected to be 1Z10 or less for the target minimum wiring width and minimum wiring space.
  • the thickness of the sintered copper-based wiring layer is appropriately determined according to the minimum wiring width, but usually the wiring layer thickness is significantly smaller than the minimum wiring width.
  • the average particle diameter of the nanoparticles having a copper oxide coating layer on the surface used is in the range of 110 nm, more preferably 1100 nm.
  • a thickness in the range of 20 nm high uniformity and controllability of the film thickness can be achieved when forming an extremely thin copper thin film having an average film thickness of sub; zm—number; zm.
  • the method for forming a finely-shaped conductor of the sintered copper fine particle type according to the second embodiment of the present invention can be applied, for example, to the formation of a copper thin film having an average film thickness of about several m to several tens / zm.
  • the average particle diameter of the copper fine particles having an oxidized copper coating layer on the surface to be used can be selected in the range of sub / zm—number; zm.
  • the copper fine particles having a surface oxide film layer contained in the dispersion liquid containing the copper fine particles having the surface oxide film layer or the copper oxide fine particles are at least as follows: Copper, cupric oxide, or a mixture of these copper oxides, and the fine particles are made of cuprous oxide, cupric oxide, or a mixture of these copper oxides; In addition, a mixed particle containing two or more of metal copper may be used. Special When the copper nanoparticles having a surface oxide film layer contained therein include copper nanoparticles having a copper oxide coating layer on the surface having an average particle diameter of 100 nm or less, the surface of the copper nanoparticles becomes copper oxide. By forming a uniform coating with the coating layer, it is possible to avoid the phenomenon that the metal surfaces of the nanoparticles come into direct contact with each other in the dispersion and cause the formation of aggregates that fuse with each other. .
  • the method for forming a copper-particle-sintered-body-type fine-shaped conductor electrical contact between copper particles is achieved by forming a sintered body.
  • the liquid has a composition that does not contain a resin component that forms a noinder. Therefore, as the dispersion medium contained in the dispersion, various dispersion solvents can be used as long as the dispersion medium can be used for applying a vigorous dispersion and forming a coating film layer having a desired fine pattern shape. It is. When performing the heat treatment described below, it is necessary that the vapor of the compound having a reducing ability supplied from the gas phase can act on the inside of the coating film layer.
  • the dispersion solvent used must be liquid at room temperature and has a melting point of at least 20 ° C or less, preferably 10 ° C or less, while the heating temperature is selected to be 350 ° C or less.
  • the heating temperature is selected to be 350 ° C or less.
  • the boiling point is at least 350 ° C or less, preferably 300 ° C or less.
  • the evaporation of the dispersing solvent proceeds considerably in the process of drawing the coating film layer, so that the surface oxidized film layer contained in the coating film layer is removed. This may cause a variation in the amount of the copper fine particles. Therefore, it is more preferable to select a dispersion solvent having a boiling point of at least 100 ° C or more and 300 ° C or less.
  • a dispersion solvent used for preparing a dispersion liquid containing copper fine particles or copper oxide fine particles having a surface oxide film layer for example, a hydrocarbon solvent having a high boiling point such as tetradecane can be used.
  • a polyvalent alcohol having a boiling point of 300 ° C. or less for example, ethylene glycol or 2-ethylhexane 1,3-diol, or an organic solvent having a reducing ability when heated is selected as the dispersion solvent itself. You can also. If an organic solvent exhibiting a reducing ability is used as a dispersing solvent when heated, the dispersing solvent itself can also act as a reducing agent during the reduction treatment described below, and its contribution can be partially used.
  • the used dispersion solvent does not remain inside the coating layer, and the coating layer It is indispensable that oxygen molecules can enter the inside of the device from the gas phase.
  • an organic binder is used to uniformly disperse the dispersion, increase the concentration, adjust the liquid viscosity, and enhance the adhesion to the substrate.
  • a resin component, a thixotropic agent for adjusting viscosity or an organic solvent for dilution may be added, and the mixture may be further mixed and stirred to prepare a fine particle dispersion used for coating and drawing.
  • the copper fine particles having a copper oxide film layer on the surface or the copper oxide fine particles themselves are coated with an oxide film existing on the surface, so that even if they come into contact with each other, fusion between the fine particles does not occur, and Phenomena such as agglomerate formation that hinder uniform dispersion characteristics do not occur. Therefore, in the drawn coating layer, the copper fine particles having the copper oxide coating layer are deposited and dried to dryness as the dispersion solvent evaporates, and finally a dense laminated state can be achieved.
  • a dispersion method containing metal fine particles is used as a method of drawing a desired wiring pattern on a substrate using a dispersion liquid containing copper fine particles or copper oxide fine particles having a surface oxide film layer.
  • Any drawing method such as screen printing, inkjet printing, or transfer printing, which is used in forming a fine wiring pattern using a liquid, can be similarly used.
  • the minimum wiring width, and the layer thickness of the wiring layer select a more suitable one among these screen printing, inkjet printing, or transfer printing. It is desirable to do.
  • the dispersion containing the fine particles to be used is prepared so as to have a liquid viscosity suitable for each of the employed drawing techniques.
  • the dispersion containing the fine particles may have a viscosity of 30 to 300 Pa's (25 ° C). desirable.
  • transfer printing it is desirable to select the liquid viscosity in the range of 3 to 300 Pa's (25 ° C).
  • ink-jet printing it is desirable to select a liquid viscosity in the range of 100 mPa-s (25 ° C.).
  • the liquid viscosity of the dispersion liquid containing the fine particles is determined depending on the average particle diameter of the fine particles to be used, the dispersion concentration, and the type of the dispersion solvent used. The liquid viscosity can be adjusted.
  • the wiring substrate is first placed in a heat treatment (reduction, firing treatment) apparatus.
  • the heating temperature is selected to be 350 ° C or less in an atmosphere containing a vapor or a gas of a compound having a reducing ability, and heating is performed.
  • a compound having a reducing ability as a reducing agent, the oxide film on the surface is reduced.
  • the organic compound having a reducing ability that can be used as the reducing agent can reduce cuprous oxide and cupric oxide to copper at the above-mentioned caro-heat temperature, and as the vapor at the above-mentioned caro-heat temperature.
  • Various organic compounds can be utilized as long as they exist.
  • Organic compounds, and two or more organic compounds can be used in combination, if necessary. Among them, a more preferable example is an alcoholic conjugate having two or more hydroxy groups.
  • alcoholic conjugates having a reducing ability include methyl alcohol, ethylene alcohol, ethanol alcohol, isopropanol alcohol, and the like.
  • 2-butynoleanolone, 2-hexyl alcohol and other aliphatic monoalcohols ethylene glycol (1,2-ethanediol), propylene glycol (1,2-propanediol), 1,3-propanediol , Glycerin (1,2,3-propanetriol
  • aliphatic polyhydric alcohol such as 1,2-butanediol, benzyl alcohol, 1-phenylethanol, diphenylcarbitol (diphenylmethanol), benzoin
  • Aromatic monoalcohols such as (2-hydroxy-1,2-diphenylethanone), hydroquinone, and hydrobenzone (1,2-diphthane) - Lou 1, 2 Etanji ol), and the like aromatic polyhydric alcohols such as.
  • an epoxy conjugate or an oxetane compound that can be converted to a 1,3-diol can be converted into a 1,2-diol conjugate by reaction with water present in the system. It can be used if there is or is generated water which causes such a reaction.
  • oxo group 0
  • a formyl group -CHO
  • the boiling point of the strong organic compound itself is at least 300 ° C or less in order to show a sufficiently high reducing ability.
  • Those which can be easily supplied as pre-vaporized vapor are more suitable for use, for example, ethylene glycol (1,2-ethanediol), propylene glycol (1,2-propanediol), 1,1 3-propanediol and glycerin (1,2,3-propanetriol) are examples of those satisfying the above-mentioned favorable requirements.
  • the same conditions as those for performing the reduction treatment in the above-mentioned first treatment step including the vapor or gas of the compound having a reducing ability. Under the atmosphere, select the heating temperature. Therefore, the preferable range is also the same.
  • the organic compound having a reducing ability as a vapor per 63.55 g of copper fine particles having a copper oxide coating layer on the surface contained in the coating layer, the oxidation in the organic compound having the reducing ability was per- formed. It is preferable to supply as a vapor an amount of the compound which is in a range of a molar amount of hydroxy group (1 OH) of 110 to be received. Alternatively, it is preferable to select the vapor pressure of the organic compound having a reducing ability to be present in the atmosphere of the heat treatment so as to be in the range of 100 to 2000 hPa.
  • inert gas such as nitrogen is used as a diluting gas or carrier gas. It is preferable to use gas ⁇ .
  • these organic compounds having a reducing ability are preliminarily heated and vaporized, and the generated vapor is mixed with a carrier gas, if necessary, and then supplied into the system at a constant flow rate. Is preferred.
  • the liquid of the organic compound having a reducing ability is converted into fine droplets, and then the mist-like fine droplets are supplied at a constant flow rate by a carrier gas. Vaporized organic compound vapor can also be used
  • the power of reducing the copper fine particles or copper oxide fine particles having the surface oxide film layer into copper fine particles is reduced by the heating temperature and the reducing agent. It can be appropriately selected in consideration of the type of the compound having a reducing ability to be used, the mixing ratio in the atmosphere, and the like.However, in general, the reduction conditions for completing the sufficient reduction are within a range of 1 minute to 15 minutes. It is preferable to set.
  • the surface of the copper fine particles is slightly oxidized by being exposed to an atmosphere containing oxygen for a short time while heating. You. Further, after the vigorous oxidation treatment process, the process can be promptly shifted to the re-reduction treatment, so that a mixed gas containing oxygen can be sprayed from the surface.
  • some of the organic compounds having a reducing ability used as a reducing agent in the reduction treatment and the re-reduction treatment are adsorbed on the surface of the copper fine particles. At this time, these adsorbed molecules are subjected to an oxidation treatment, so that the resulting reaction products can be quickly desorbed and removed.
  • those that remain partially in the form of Cu-OH on the surface of the copper fine particles are oxidized to copper oxide, and when subjected to re-reduction treatment, the oxide film of the monolayer is reduced. 'Enable removal.
  • the time of the oxidation treatment process is set to a minimum time range.
  • the heating temperature is selected to be 300 ° C
  • the atmosphere containing oxygen is air
  • the time for performing the oxidation treatment step should be 30 seconds or less, preferably 15 seconds or less. Is preferred.
  • the mixed gas containing oxygen to be used may be used by mixing molecular oxygen with an inert gas such as nitrogen at a fixed volume ratio. it can.
  • an inert gas such as nitrogen
  • the diluent gas or carrier gas used to supply the vapor of the organic compound having the original function or the supply of hydrogen molecules is nitrogen gas
  • the moisture content is removed and the oxygen content is about 20% by volume.
  • Dry air can be used, or a mixed gas in which oxygen is mixed with nitrogen gas at a constant volume% can be used.
  • the time of the re-reduction treatment performed immediately after the oxidation treatment step depends on the heating temperature, the type of the compound having a reducing ability used as a reducing agent, and the mixing in the atmosphere.
  • the ratio can be appropriately selected in consideration of the ratio and the like, but it is usually preferable to set a reduction condition in which sufficient re-reduction and sintering proceed in a stepwise manner within a range of 30 seconds to 300 seconds. .
  • the heat treatment temperature in the reduction treatment and the baking treatment step is determined in consideration of the reactivity of an organic compound having reducing ability and hydrogen used as a reducing agent in the reduction treatment and the re-reduction treatment. Therefore, it is preferable to select at least a range of 350 ° C. or lower, for example, a range of 200 ° C. or higher, and usually, a range of 250 ° C. or higher. In order to keep the temperature within the temperature range that satisfies the heat resistance according to the material of the printed circuit board itself installed in the processing equipment, 300 ° C or less, for example, 250 ° C-300 ° C, Adjust the temperature setting.
  • the total time of the reduction treatment and the calcination treatment can be selected in a range of 10 minutes to 11 hours. is there.
  • the set temperature and the processing time are appropriately selected in consideration of the thickness of the copper oxide coating layer covering the surface of the copper fine particles and the time required for the reduction.
  • the copper oxide coating layer covering the surface of the copper fine particles is reduced and removed to return to the copper fine particles.
  • the oxidation processing is performed for a short time.
  • the step of advancing the sintering of the re-reduction treatment and the mutual sintering of the copper fine particles requires at most When the number of repetitions is set to, for example, about 5 times, the set temperature and the concentration of the reducing agent are set so that the total required time of the first processing step and the second processing step is within the above range. It is preferable to select reduction treatment conditions such as pressure, vapor pressure and reactivity.
  • the wiring pattern can be drawn using a dispersion liquid containing fine particles or copper oxide particles having a copper oxide coating layer on the surface. This is inferior to the formation of a fine wiring pattern using fine particles.
  • the fine wiring pattern formed has a minimum wiring width of 0.5-200 / zm, practically a range of 5-50 m, and a corresponding minimum inter-wiring space of 0.5- Good line width uniformity 'reproducibility can be achieved by choosing a range of 200 m, practically 5-50 m.
  • Karoete the resulting interconnection layer, without interposition of the oxide film at the interface becomes a sintered layer of copper nanoparticles, at the minimum wiring width of the, also the volume resistivity of at least 30 X 10- 6 ⁇ 'cm or less, often, 10 X 10- 6 ⁇ ' Ki de be cm or less, can achieve good conduction characteristics.
  • the thickness of the formed copper thin film should be within the range of 0.1-100 ⁇ m, and the average thickness should be within the range of 0.1-20 ⁇ m. Practically, it is possible to achieve good surface flatness and uniformity of film thickness with high reproducibility by selecting the range of 120 / zm.
  • the copper itself is a conductive material with little electrification port migration, even the fine wiring pattern described above can be used as the sintered body layer to be formed. A reduction in thickness and occurrence of disconnection can be suppressed.
  • a slide glass is used as a substrate, and a paste-like dispersion liquid is applied on the surface thereof in a width of lcm, a length of 5 cm, and an average coating layer thickness of 10 m to form a strip-shaped coating layer.
  • the slide glass on which the coating layer formation has been completed is placed on a hot plate previously heated to a temperature of 300 ° C., and a mixed gas of glycerin vapor Z and nitrogen gas is sprayed from the surface of the coating layer.
  • a first treatment is performed in which an atmosphere containing glycerin vapor having a reducing ability is maintained for 5 minutes to promote reduction of the surface oxide film layer.
  • oxidation treatment was performed for 10 seconds while blowing dry air from the surface, and a glycerin vapor Z gas mixture of nitrogen gas was also blown in place of dry air while applying a surface force.
  • the oxidation and re-reduction treatment cycle in which the re-reduction treatment is performed in an atmosphere containing glycerin vapor having a reducing ability for 2 minutes and 50 seconds, and the second treatment is performed a total of five times. After the first treatment and the second treatment are continuously performed, the mixture is left to cool to room temperature while spraying a mixed gas of glycerin vapor and nitrogen gas with a surface force.
  • the ratio of glycerin vapor contained in the mixed gas of glycerin vapor Z and nitrogen gas used in the present example was 20% by volume, and the ratio of daliserin heated to 300 ° C with a nitrogen carrier gas was used.
  • the steam of equilibrium vapor pressure is transported and supplied.
  • the dry air used contains 20% by volume of oxygen molecules and 80% by volume of nitrogen molecules, and is preliminarily dehydrated.
  • the volume resistivity of the obtained sintered body layer was measured as a uniform thin film layer having a width of 1 cm, a length of 5 cm, and an average thickness of 5 m.
  • the measured specific volume resistivity was 9.8 ⁇ 'cm.
  • the obtained sintered body layer is observed for the presence or absence of copper fine particles whose surface force easily peels off, and the state of aggregation between the copper fine particles is evaluated. Specifically, the surface of the obtained sintered body layer is
  • Example 2-1 Using the paste dispersion prepared in Example 2-1, a strip-shaped coating layer was formed, and the heating temperature in the subsequent heat treatment was changed from 250 ° C to 350 ° C. The conditions were selected the same as in Example 2-1 and reduction and sintering were attempted.
  • Table 2-1 also shows the evaluation results of Example 2-1 and Example 2-2-2-5.
  • Example 2-1 Using the paste dispersion prepared in Example 2-1, a strip-shaped coating layer was formed, and in the subsequent heat treatment, the oxidation treatment and the re-reduction treatment were performed in the second treatment step. The number of repetitions was changed from 0 times to 10 times, and the other conditions were selected in the same manner as in Example 2-1. [0125] Table 2-2 also shows the evaluation results of Example 2-1 and Example 2-6-2-9.
  • Example 2-1 Using the paste dispersion prepared in Example 2-1, a strip-shaped coating layer was formed, and in the subsequent heat treatment, the oxidation treatment and the re-reduction treatment were performed in the second treatment step. The number of repetitions was changed to 10 times, and the other conditions were selected in the same manner as in Example 2-2, and reduction sintering was attempted.
  • Table 2-3 also shows the evaluation results of Examples 2-2, 2-9, and 2-10.
  • Example 2-10 Even under the heat treatment conditions of Example 2-10, the main cause for the result of not achieving a dense sintered body layer was the same as the main cause for the result of Example 2-2 described above.
  • the progress of the reduction processing in the first processing step is insufficient. Thereafter, it is determined that even if the second processing step is performed, a satisfactory sintered state between the copper fine particles is not reached.
  • a strip-shaped coating layer was formed using the paste dispersion liquid in Example 2-1 and the compounds having a reducing ability used in the subsequent heat treatment were changed to those shown in Table 2-4 below. Then, the other conditions were selected in the same manner as in Example 2-1 and a reduction sintering treatment was attempted.
  • Table 2-5 also shows the evaluation results of Example 2-1 and Examples 2-1-11-2-13.
  • a strip-shaped coating layer was formed using the paste-like dispersion liquid prepared in Example 2-1.
  • the second treatment step was performed following the first treatment step. Instead of repeating the oxidation and re-reduction treatments, the treatment was changed to heating and holding for 15 minutes in a nitrogen atmosphere, and the other conditions were selected in the same manner as in Example 2-1. Tried.
  • a strip-shaped coating layer was formed using the paste-like dispersion liquid prepared in Example 2-1.
  • the second treatment step was performed following the first treatment step. Oxidation treatment in dry air atmosphere instead of repetition of oxidation treatment and re-reduction treatment For 1 minute, and then in an atmosphere of a mixture of glycerin vapor Z nitrogen gas,
  • Example 2-1 The process was changed to a process in which heating was continued for 14 minutes, and other conditions were selected in the same manner as in Example 2-1.
  • Table 2-6 also shows the evaluation results of Example 2-6, Example 2-7, Comparative Example 2-1 and Comparative Example 2-2.
  • Example 2-14 ethylene glycol (melting point: 12.6 ° C, boiling point: 197.6 °) was used in place of 2-ethylhexane 1,3-diol used as the dispersion solvent in Example 2-1. C) was used in Example 2-15 to prepare a paste dispersion using N14 (tetradecane, melting point 5.86 ° C, boiling point 253.57 ° C, manufactured by Nippon Mining & Oil Co., Ltd.). The viscosity (25 ° C.) of the obtained paste dispersion was 1 Pa's in Examples 2-14, 1 Pa's in Examples 2-15. Met. Further, in the prepared paste dispersion, the volume ratio of the copper fine particles is
  • Example 2-14 it was 45% by volume
  • Example 2-15 it was 45% by volume.
  • Table 2-7 also shows the evaluation results in Example 2-1 and Examples 2-14 and 2-15.
  • the type of the dispersion solvent used for the paste-like dispersion liquid to be produced is essential for the effect of the repetition of the oxidation treatment and the re-reduction treatment performed in the second treatment during the heat treatment. It has been confirmed that a wide variety of dispersion solvents can be used without any significant effect.
  • Examples 2-16 20 g of a dispersion solvent 2-ethylhexane 1,3-diol was added to 80 g of atomized copper powder 1300Y (average particle diameter 3.3 m) made by Mitsui Metals having a larger particle diameter, The mixture was stirred until it became uniform to prepare a paste dispersion.
  • the viscosity (25 ° C.) of the obtained paste dispersion was 1 Pa ′s.
  • the volume ratio of the copper fine particles in the paste dispersion is 45% by volume.
  • a strip-shaped coating layer is formed using the prepared paste-like dispersion liquid, and subsequent coating is performed.
  • the conditions for heat treatment were selected the same as in Example 2-1 and reduction and sintering were attempted.
  • Table 2-8 also shows the evaluation results of Example 2-1 and Example 2-16.
  • Example 2 to 17 25 g of a dispersion solvent of 2-ethylhexane 1,3-diol was added to 75 g of C-formed copper fine particles (average particle size: 30 nm), which are copper nanoparticles produced by a wet method. Then, the mixture was stirred until it became uniform to prepare a paste-like dispersion liquid. The viscosity (25 ° C.) of the paste dispersion obtained with the composition of Example 2-17 was 5 Pa ′s.
  • Example 2-17 By using the paste-like dispersion liquid prepared in Example 2-17, a strip-shaped coating layer was formed, and the heating temperature in the subsequent heat treatment was set to 250 ° C or 275 ° C. The other conditions were the same as in Example 2-17, and reduction 'sintering treatment was attempted.
  • Example 2-20 25 g of tetradecane was used as a dispersion solvent with respect to 75 g of UC copper fine particles (average particle size: 5 nm), which are copper nanoparticles prepared using a gas evaporation method. The mixture was added and stirred until the mixture became uniform to prepare a paste dispersion. The viscosity (25 ° C.) of the paste dispersion obtained with the composition of Example 2-20 was 0.1 Pa ′s. [0155] A strip-shaped coating layer was formed using the prepared paste-like dispersion liquid, and the conditions for the subsequent heat treatment were selected in the same manner as in Example 2-1. Was.
  • Example 2-20 Using a paste-like dispersion prepared in Example 2-20, a strip-shaped coating layer was formed, and the heating temperature in the subsequent heat treatment was set to 250 ° C., 275 ° C. The other conditions were the same as in Example 2-20, and a reduction sintering process was attempted.
  • Table 2-9 also shows the evaluation results of Examples 2-17-2-19 and Examples 2-20-2-22.
  • the volume specific resistivity of the obtained sintered body layer is small due to the nano-size effect even when the heat treatment temperature is in a range lower than 300 ° C. In both cases, good conductivity of about 10 ⁇ cm or less than 10 ⁇ cm is achieved.
  • a strip-shaped coating layer was formed using the paste dispersion prepared in Example 2-20, and the heating temperature in the subsequent heat treatment was set to 250 ° C., the same as in Example 2-22. Then, the compounds having a reducing ability to be used were changed to those shown in Table 2-10 below, and the other conditions were selected as in Example 2-22, and the reduction and sintering treatment was attempted. .
  • Table 2-11 also shows the evaluation results of Examples 2-22 and Examples 2-23-2-25.
  • Example 2-26 Mitsui Kinzoku Atomized Copper Powder 1300Y (average particle size 3.3 / ⁇ ) 9 parts by mass: UC copper fine particles (average particle size 5 nm) with respect to 80 g of a mixture having a mixing ratio of 1 part by mass Then, 20 g of a dispersing solvent, 2-ethylhexane 1,3-diol, was added thereto, and the mixture was stirred until the mixture became uniform to prepare a paste dispersion. The viscosity (25 ° C.) of the obtained paste dispersion was 1 Pa ′s. The volume ratio of the copper fine particles in the paste dispersion is 45% by volume.
  • Table 2-12 also shows the evaluation results of Example 2-16 and Example 2-26.
  • the method for forming a finely-shaped conductor of the sintered copper fine particle type according to the present invention and the method for forming a fine copper-based wiring pattern or the method for forming a copper thin film by applying the method are disclosed in
  • the wiring width of the wiring is 200 ⁇ m or less, especially 50 ⁇ m or less
  • the space between the wirings is 200 m or less, especially 50 m or less.
  • Highly conductive copper fine particle sintered type micro-shaped conductive layer with excellent volume conductivity of about 10 ⁇ 'cm, which can be suitably used for conductive layers for fine circuit patterns, is now available! It can be used as a means that can be manufactured with reproducibility and productivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Powder Metallurgy (AREA)
  • Chemically Coating (AREA)

Abstract

 本発明は、表面酸化膜層を有する銅微粒子の分散液を利用して、微細なパターン描画後、比較的に低い温度下において、パターン中の表面酸化膜層を有する銅微粒子または酸化銅微粒子に還元処理を施し、生成する銅微粒子を焼成して、優れた導電性を示す銅微粒子焼結体型の微細形状導電体を形成する方法を提供しており、 平均粒子径10μm以下の表面酸化膜層を有する銅微粒子または酸化銅微粒子を含む分散液を基板上に塗布した後、該塗布層中の微粒子を、還元能を有する化合物の蒸気、気体を含む雰囲気下、350°C以下の温度に加熱し、該還元能を有する化合物を還元剤として利用する還元反応により、酸化被膜の還元を施し、次いで、短時間の酸化処理と再還元処理を組み合わせた加熱処理を繰り返し、得られる銅微粒子相互の焼結体層を形成する工程を、一連の加熱処理工程で実施する。

Description

明 細 書
銅微粒子焼結体型の微細形状導電体の形成方法、該方法を応用した銅 微細配線ならびに銅薄膜の形成方法
技術分野
[0001] 本発明は、微細な銅系配線パターン、あるいは極薄い膜厚の銅薄膜層を形成する 方法に関し、より具体的には、表面酸化膜層を有する銅微粒子または酸化銅微粒子 、特には、表面酸ィ匕膜層を有する銅ナノ粒子または酸化銅ナノ粒子の分散液を利用 して超ファインなパターン描画、あるいは薄膜塗布層形成後、配線パターン、あるい は薄膜塗布層中の表面酸化膜層を有する銅微粒子または酸化銅微粒子、特には、 表面酸化膜層を有する銅ナノ粒子または酸化銅ナノ粒子に還元処理を施し、生成す る銅微粒子、特には、銅ナノ粒子を焼成して、デジタル高密度配線に対応した低イン ピーダンスでかつ極めて微細な焼結体銅系配線パターン、ある 、は極薄 、膜厚の銅 薄膜層を形成する方法に関する。
背景技術
[0002] 近年の電子機器関連分野において、利用される配線基板上の配線パターンの微 細化が進んでいる。また、種々の電極パターン部の形成に利用される金属薄膜層に 関しても、極薄い膜厚の金属薄膜層の活用が進められている。例えば、スクリーン印 刷法を利用して、微細配線形成や薄膜形成を達成する際、超ファインなパターン描 画、あるいは極薄い膜厚の薄膜塗布層形成に、極めて粒子径の小さな金属微粒子 分散液の応用が図られている。現時点において、前記の用途に応用可能な、金およ び銀の微粒子分散液が既に商品化されている。
[0003] なかでも、金属ナノ粒子を利用して、超ファインな配線パターンを形成する方法に 関して、例えば、金ナノ粒子あるいは銀ナノ粒子を用いる際には、既に方法論が確立 されている。具体的には、金ナノ粒子あるいは銀ナノ粒子を含む、超ファイン印刷用 分散液を利用した極めて微細な配線パターンの描画と、その後、金属ナノ粒子相互 の焼結を施すことにより、得られる焼結体型配線層において、配線幅および配線間ス ペースが 5— 50 m、体積固有抵抗率が 1 X 10"5 Ω ' cm以下の配線形成が可能と なっている。し力しながら、金ナノ粒子を用いる際には、材料の金自体が高価である ため、力かる超ファイン印刷用分散液の作製単価も高くなり、汎用品として幅広く普 及する上での、大きな経済的な障害となっている。一方、銀ナノ粒子を用いることで、 前記分散液の作製単価は相当に低減できるものの、配線幅および配線間スペース が狭くなつていくにつれ、エレクト口マイグレーションに起因する断線が新たな問題と して浮上している。
[0004] このエレクト口マイグレーション現象に起因する断線を回避する上では、銅系配線の 利用が有力であり、例えば、一層の高集積ィヒに伴い、半導体素子上の配線パターン への銅系材料の利用が広く検討されている。すなわち、銅は、金や銀と同様に高い 導電性を示す上に、延性、展性も良好であるものの、そのエレクト口マイグレーション は、銀と比較すると格段に少ない。従って、微細な配線に伴い、電流密度が上昇した 際、銅系配線の利用により、エレクト口マイグレーション現象に起因する断線を回避す ることが可能となる。
[0005] すなわち、プリント配線基板にぉ 、ても、微細な配線パターンを金属微粒子、例え ば、金属ナノ粒子相互の焼結を施すことにより得られる焼結体型金属配線層で作製 する際、エレクト口マイグレーションの少ない銅の利用が望まれている。更には、銅は
、金や銀と比較して、材料自体の単価も相当に安価であり、より汎用性の高い、微細 な配線パターンを有するプリント配線基板におけるコスト抑制の観点でも、その利用 が期待されている。
[0006] 貴金属である金や銀は、元来、比較的に酸化を受け難い特性を有しており、そのた め、微粒子分散液を調製した際、含有される微粒子を、その表面に酸化被膜を形成 しない状態で維持することが容易である。一方、銅は、比較的に酸ィ匕を受け易い特 性を有しており、微粒子分散液を調製した際、含有される微粒子は、短時間でその 表面に形成された酸化被膜を有した状態となる。特に、粒子径がより微細な銅ナノ粒 子となると、相対的に表面積が増し、その表面に形成される酸化被膜の厚さも増し、 ナノサイズの粒子径の大半が酸化銅の表面酸ィ匕膜層へと変換されることも少なくない
発明の開示 [0007] 銅の微細な微粒子、例えば、粒子径が lOOnm以下の銅ナノ粒子を利用すると、表 面酸化層が存在しない場合には、上述する金や銀のナノ粒子と同様に低温加熱によ つてナノ粒子相互の焼結を施すこと可能であり、導電性に優れた焼結体層の作製に 利用することが可能である。しかしながら、貴金属の金や銀とは異なり、銅は酸化を受 けやすぐその表面から酸化が進行する。力 tlえて、銅をナノ粒子のような微粉状とする と、室温でも、空気中の酸素と容易に結合し、その表面に酸化膜を形成する。この銅 の酸化物は不動態化せず、さらに、ナノ粒子内部へと酸化が進行する結果、一定の 時間空気に曝されると、最終的には、ナノ粒子のほとんどが酸化銅となる。特に、湿 気を含む空気中では、銅ナノ粒子表面から内部への酸ィヒの進行が促進される。
[0008] 本発明者らは、種々の方法を用いて、銅ナノ粒子の酸ィ匕防止を試み、例えば、分 散溶媒となる有機溶剤中に分散させる際、銅ナノ粒子表面に凝集を防止する機能を 有する被覆分子層を設けるとともに、直接空気との接触を防止することで、酸化被膜 膜厚の低減が可能であることを確認した。この表面に凝集を防止する機能を有する 被覆分子層を設けて ヽる銅ナノ粒子を有機溶剤中に分散させた分散液を利用して、 微細な配線パターンを描画した後、含まれる分散溶媒の有機溶剤の蒸散'除去を進 めると、前記表面の被覆分子層が離脱し、大気中の酸素分子と接触する銅ナノ粒子 表面においては、酸化被膜の形成が進行する結果、完全に表面酸化を回避する手 段は見出せな力 た。また、銅ナノ粒子の酸ィ匕防止を施していないと、銅ナノ粒子を 有機溶剤中に分散させた分散液を保管する間に、有機溶剤中に溶存する酸素分子 によって、銅ナノ粒子表面における酸ィ匕被膜生成が徐々に進行し、表面酸化膜層を 有する銅ナノ粒子へと変換される。すなわち、貴金属の金や銀のナノ粒子を含む均 一分散液を利用する、超ファインな配線パターン形成手法に代えて、銅ナノ粒子を 利用して、微細な配線パターンを銅ナノ粒子相互の焼結を施すことにより得られる焼 結体型配線層を再現性よく作製することを可能とする銅微粒子分散液は、現状では 、まだ実用段階には達していない。仮に、表面に酸ィ匕被膜が残留した状態で銅ナノ 粒子を加熱し、焼結処理を施すと、部分的には、銅ナノ粒子相互の焼結が生じ、焼 結体を構成するものの、その粒界には、酸化銅薄層が介在した状態となる。従って、 焼結体全体としては、緻密な電流流路の形成が達成されず、所望の良好な導電性を 有する微細な配線パターンを高い再現性で作製することは困難であった。
[0009] 一方、表面酸化膜を有する銅ナノ粒子を含有する分散液中に、水素化ホウ素誘導 体などの水素化剤を予め添加しておき、カゝかる分散液を基板上に塗布して加熱する と、添加されている水素ィ匕剤に因る還元作用によって、表面の酸化銅は還元されて、 ナノ粒子表面に非酸ィ匕状態の銅が表出する。その非酸ィ匕状態となった後、加熱焼成 が進行して、焼結体型の銅配線層の形成がなされる。この手法を利用する場合、分 散液中に配合される水素化ホウ素誘導体などの水素化剤が、十分な還元作用を発 揮するものの、反応副生物が残留し、焼結体層内に取り込まれる。また場合によって は、還元処理の温度を 400°C以上に選択することも必要となる。前記の処理温度に 耐える基板材料としては、セラミックスなど、一部の耐熱性の材料に限定され、特には 、不要な反応副生物が残留することに伴い、この水素化ホウ素誘導体などの水素化 剤を分散液中に配合する方法は、幅広 、応用が見込めな 、。
[0010] 昨今、ハンダ材料として、鉛を含有しな 、錫合金ハンダ、所謂、鉛フリー'ハンダの 使用が進み、力かる鉛フリー'ハンダの高い溶融温度に対応して、 300°C程度の加 熱では十分な耐熱性を有する基板材料の使用が拡がっているものの、より望ましくは 、還元処理の温度を 300°C以下に抑制しても、表面酸化膜を有する銅ナノ粒子に対 する、十分な還元反応を達成できる手段の開発が望まれて ヽる。
[0011] 以上に説明するように、銅系配線は、材料自体安価であり、また、高い電流密度に おいても、エレクト口マイグレーションによる断線の回避、あるいは配線層厚の減少' 変化が緩和できる利点を有しており、微細な配線パターンを有するプリント配線基板 用の導電体層としての応用が検討されている。その際、微細な配線パターンの描画 に適する、より粒子径の細かな銅微粒子分散液が要望されるが、その粒子径が微細 になるとともに、その表面を覆う表面酸ィ匕膜層が相対的に厚くなり、かかる表面酸ィ匕 膜層を還元して、良好な導電性を示す焼結体型銅配線層の作製を行う手法の開発 が必要となっている。また、平均粒子径がより微細な銅微粒子では、表面から進行す る酸ィ匕によって、微粒子の大半が酸化銅へと変換され、酸化銅の微粒子に相当する ものとなることもある。従って、表面酸化膜層を有する銅微粒子に加えて、このような 酸化銅微粒子に対しても、その分散液を用いて、微細な配線パターンを描画した塗 布層に対して、低温で簡便に還元して、銅微粒子に復した後、力かる銅微粒子相互 を緻密に焼結して、良好な導電性を示す焼結体型銅配線層の作製を行う手法の開 発が必要となっている。
本発明は、前記の課題を解決するもので、本発明の目的は、安価で、かつエレクト 口マイグレーションの少ない銅を導電媒体に利用する、微細な銅系配線パターン、あ るいは極薄い膜厚の銅薄膜層を形成する際、力かる微細な配線パターンの描画、あ るいは塗布薄膜形成に表面酸化膜層を有する銅微粒子または酸化銅微粒子の分散 液を使用し、前記分散液塗布層に含まれる表面酸化膜層を有する銅微粒子または 酸化銅微粒子に対して、その表面の酸化銅被覆層力 350°C以下の加熱条件、望 ましくは、 300°C以下の加熱条件において、十分な還元処理がなされ、かつ、得られ る銅微粒子相互の緻密な焼成処理を簡便に、また高 、再現性で行うことが可能な、 銅微粒子焼結体型の微細形状導電体の形成方法、ならびに、該方法を適用して、 微細な焼結体銅系配線パターン、ある!ヽは極薄!ヽ膜厚の銅薄膜層を形成する方法 を提供することにある。例えば、極めて微細な配線パターンの描画に適する、平均粒 子径が lOOnm以下、例えば、平均粒子径 1一 20nm程度のナノ粒子においては、そ の表面の酸化銅被覆層は、前記平均粒子径の半ば以上に達し、中心部に非酸化状 態の銅が核として、若干残余するものの、全体としては、酸化銅のナノ粒子と見なせ る状態に達する力 その場合でも、 350°C以下の加熱条件、望ましくは、 300°C以下 の加熱条件において、十分な還元処理がなされ、かつ、得られる銅ナノ粒子相互の 緻密な焼成処理が可能な、微細な焼結体銅系配線パターンを形成する方法を提供 すること〖こある。カロえて、平均粒子径が lOOnm以下のナノ粒子だけでなぐ平均粒子 径が数 μ m程度の表面酸化膜層を有する銅微粒子または酸化銅微粒子を利用する 場合にも、その表面の酸化銅被覆層は、 350°C以下の加熱条件、望ましくは、 300 °C以下の加熱条件において、十分な還元処理がなされ、かつ、得られる銅微粒子相 互の緻密な焼成処理を簡便に、また高い再現性で行うことが可能な、銅微粒子焼結 体型の微細形状導電体の形成方法、ならびに、該方法を適用して、微細な焼結体銅 系配線パターン、あるいは薄い膜厚の銅薄膜層を形成する方法を提供することにあ る。 [0013] 本発明者らは、上記の課題を解決すベぐ先ず、分散液を基板上に塗布した後、そ の塗布層中に含有される銅ナノ粒子の表面を覆う酸化銅被膜層を、効果的に還元 処理する手段について、鋭意研究を進めた。その際、例えば、平均粒子径 1一 20η m程度のナノ粒子においては、その表面被膜層の層厚は、しばしば、その微細な平 均粒子径の半ば以上に達し、従って、全体のナノ粒子に占める酸化銅の比率は高く なる結果、分散液中にテトラヒドロホウ酸ナトリウム (水素化ホウ素ナトリウム)などの無 機水素化剤を予め配合する手法では、還元に必要な量の水素化剤を各部位に供給 することができない場合もあることを見出した。かかる知見に基づき、更なる検討を進 めた結果、ナノ粒子の平均粒子径に依存せず、所望の還元反応を完了する上では、 塗布層を形成後、還元反応に関わる反応種を蒸気状で供給,作用させる手法がより 適することを着想した。この手法では、前記還元反応によって、副生する酸素含有ィ匕 合物自体は、気化'蒸散され、塗布層内に残留することがなぐ力!]えて、還元反応に 関わる反応種自体も、蒸気状の形態であって、緻密に積層されているナノ粒子間の 狭い隙間より深部へも到達できることが好ましいことを見出した。
[0014] カ卩えて、本発明者らは、還元能を有する有機化合物である、例えば、アルコール類 の蒸気を利用すると、熱的還元反応によって、ナノ粒子表面の酸化銅被膜層の還元 がなされ、また、その還元反応は、例えば、 300°C以下においても十分な反応速度 で進行することを見出した。カロえて、アルコール類などの、還元能を有する有機化合 物は、前記熱的還元反応における処理温度において、融解して液体状態、さらには 蒸発して蒸気となり、緻密に積層されているナノ粒子間の狭い隙間より深部へも到達 できることを確認した。一方、力かる還元反応によって表面に生成する非酸ィ匕状態の 銅原子と、内部に存在する酸化銅分子との固相反応により、内部の酸化銅は非酸ィ匕 状態の銅原子に変換され、代わって表面に酸化銅が生成され、結果的に、酸化銅被 膜層は徐々に減少して、最終的には、ナノ粒子全体力 銅のナノ粒子に復することを 見出した。この表面に酸ィ匕被膜のない銅ナノ粒子相互が接触すると、比較的に低温 でも、速やかに焼結が進行し、塗布層全体が、銅ナノ粒子の緻密な焼結体層を形成 することも確認した。一方、ナノ粒子間の狭い隙間に浸入している還元能を有する有 機化合物、また、該有機化合物から副生する酸化を受けた反応生成物自体も流動 性を有するため、焼結の進行とともに、焼結体層の表層上に速やかに押し出されるた め、得られる焼結体層における緻密な焼結構造の形成を阻害する要因ともならない ことが確認された。
[0015] 以上の知見に加えて、前記還元能を有する有機化合物の存在下で、生成する銅 ナノ粒子の焼結を進行させるので、得られる焼結体層全体が、均一で緻密な焼結構 造に高い再現性で、また、簡便に形成可能であることをも、本発明者らは検証して、 本発明の第一の形態にかかる、銅ナノ粒子相互の焼結体層からなる微細な銅系配 線パターンを形成する方法を完成するに至った。
[0016] さらに、本発明者らは、還元能を有する有機化合物の蒸気などを気相から供給しつ つ、加熱処理を行うと、平均粒子径がサブ m—数/ z mの表面酸化膜層を有する銅 微粒子または酸化銅微粒子に対しても、表面の酸化銅被膜層の還元がなされ、また 、その還元反応は、例えば、 350°C以下においても十分な反応速度で進行し、実質 的に表面酸ィ匕膜層の無い銅微粒子に復することができることを見出した。一方、得ら れる平均粒子径が数 m程度の銅微粒子では、平均粒子径 lOOnm以下の銅ナノ 粒子とは異なり、力かる 350°C以下の温度において、還元性の雰囲気下で加熱を継 続しても、容易には、均一で緻密な焼結体層を形成するには至らないことも判明した 。本発明者らは、更に検討を進めたところ、還元処理を施して得られる、平均粒子径 がサブ/ z m—数/ z mの銅微粒子に対しては、酸素を含有する雰囲気下において、 3 0秒間以下の加熱処理を施し、銅微粒子に酸素を作用させ、表面酸化を行う処理と、 該表面酸化処理に引きつづき、還元能を有する化合物の気体または蒸気の存在す る雰囲気下において、 30秒間以上、 300秒間以下の加熱処理を施し、表面酸化の 処理を受けた銅微粒子に還元能を有する化合物を作用させて、再還元を行う処理と の、酸化'再還元処理の組み合わせを、少なくとも 1回以上繰り返し施すと、 350°C以 下の温度でも、均一で緻密な焼結体層を形成することができ、また、その再現性も高 いことを見出した。この酸化'再還元処理の組み合わせを、少なくとも 1回以上繰り返 し施す手法は、平均粒子径が数 mの銅微粒子に対してだけでなぐ平均粒子径 1 OOnm以下の銅ナノ粒子においても、全く同様に適用でき、加えて、 350°C以下の温 度で、還元性の雰囲気下で加熱を継続して得られる銅ナノ粒子の焼結体層よりも、 更に電気伝導性に優れた銅微粒子焼結体型の微細形状導電体を与えることを確認 した。本発明の第二の形態にかかる、銅微粒子相互の焼結体層からなる微細な銅系 配線パターンを形成する方法は、以上の一連の知見を総合することで、完成されたも のである。
[0017] すなわち、本発明の第一の形態に力かる微細な銅系配線パターンの形成方法は、 基板上に銅ナノ粒子相互の焼結体層からなる微細な銅系配線パターンを形成する 方法であって、
平均粒子径を 1一 lOOnmの範囲に選択される、表面酸ィ匕膜層を有する銅ナノ粒子 または酸化銅ナノ粒子を含有する分散液を用いて、前記微細な配線パターンの塗布 層を基板上に描画する工程と、
前記塗布層中に含まれる、表面酸ィ匕膜層を有する銅ナノ粒子または酸化銅ナノ粒 子に対して、表面酸化膜層または酸化銅を還元する処理を施し、さらに、還元処理を 受けたナノ粒子の焼成を行って、焼結体層を形成する工程とを有し、
同一工程内で実施される、前記還元処理と焼成処理は、
加熱温度を、 300°C以下に選択して、
還元能を有する有機化合物の存在下、塗布層中に含まれる、表面酸化膜層を有す る銅ナノ粒子または酸化銅ナノ粒子を加熱し、前記還元能を有する有機化合物を作 用させることにより行うことを特徴とする微細な銅系配線パターンの形成方法である。
[0018] その際、分散液中に含有される、表面酸ィ匕膜層を有する銅ナノ粒子は、
少なくとも、前記表面酸化膜層は、酸化第一銅、酸化第二銅またはこれら銅の酸ィ匕 物の混合物を含んでなり、また、該ナノ粒子は、酸化第一銅、酸化第二銅またはこれ ら銅の酸化物の混合物、ならびに金属銅のうち、 2つ以上を含んでなる混合体状粒 子であることが好ましい。
[0019] 一方、前記還元処理にお!、て、存在させる還元能を有する有機化合物は、酸化に よって、ォキソ基( = O)またはホルミル基 (—CHO)へと変換可能なヒドロキシ基を有 する有機化合物、あるいは、それらの二種以上を混合したものであることが好ましい。
[0020] 前記還元処理において、存在させる還元能を有する有機化合物の好適な一例とし て、アルコール性ヒドロキシ基を有する有機化合物、あるいは、それらの二種以上を 混合したものを挙げることができる。更には、前記還元処理において、存在させる還 元能を有する有機化合物のより好適な一例として、二以上のヒドロキシ基を有する有 機化合物、あるいは、それらの二種以上を混合したものを挙げることができる。例えば
、前記還元処理において、存在させる還元能を有する有機化合物は、グリセリン(1,
2, 3-プロパントリオール)であることがより好まし 、。
[0021] また、本発明の第一の形態に力かる微細な銅系配線パターンの形成方法では、 前記還元処理にお!、て、存在させる還元能を有する有機化合物の少なくとも一種 は、前記表面酸ィ匕膜層を有する銅ナノ粒子または酸化銅ナノ粒子を含有する分散 液中に配合されていてもよい。あるいは、前記還元処理において、存在させる還元能 を有する有機化合物の少なくとも一種は、
該還元処理に際して、前記還元能を有する有機化合物の蒸気として、前記微細な配 線パターンの塗布層に対して、気相から作用させてもよ!、。
[0022] カロえて、基板上に描画する、前記微細な配線パターンの塗布層において、
その配線パターンの最小の配線幅を、 0. 5— 200 /z mの範囲に、対応させて、最 小の配線間スペースを、 0. 5— 200 mの範囲〖こ選択し、
分散液中に含有される前記表面酸化膜層を有する銅ナノ粒子または酸化銅ナノ粒 子の平均粒子径を、前記最小の配線幅ならびに最小の配線間スペースに対して、そ の 1Z10以下に選択することが望ましい。
[0023] また、微細な配線パターンの塗布層を基板上に描画する手法として、
スクリーン印刷法、インクジェット法、または転写法の描画手法を選択することもできる
[0024] また、本発明の第一の形態に力かる銅薄膜の形成方法は、
基板上に銅ナノ粒子相互の焼結体層カゝらなる銅薄膜パターンを形成する方法であ つて、
平均粒子径を 1一 lOOnmの範囲に選択される、表面酸ィ匕膜層を有する銅ナノ粒子 または酸化銅ナノ粒子を含有する分散液を用いて、前記銅薄膜パターンの塗布層を 基板上に描画する工程と、
前記塗布層中に含まれる、表面酸ィ匕膜層を有する銅ナノ粒子または酸化銅ナノ粒 子に対して、表面酸化膜層または酸化銅を還元する処理を施し、さらに、還元処理を 受けたナノ粒子の焼成を行って、焼結体層を形成する工程とを有し、
同一工程内で実施される、前記還元処理と焼成処理は、
加熱温度を、 300°C以下に選択して、
還元能を有する有機化合物の存在下、塗布層中に含まれる、表面酸化膜層を有す る銅ナノ粒子または酸化銅ナノ粒子を加熱し、前記還元能を有する有機化合物を作 用させることにより行うことを特徴とする銅薄膜の形成方法である。
[0025] その際、分散液中に含有される、表面酸ィ匕膜層を有する銅ナノ粒子は、
少なくとも、前記表面酸化膜層は、酸化第一銅、酸化第二銅またはこれら銅の酸ィ匕 物の混合物を含んでなり、また、該ナノ粒子は、酸化第一銅、酸化第二銅またはこれ ら銅の酸化物の混合物、ならびに金属銅のうち、 2つ以上を含んでなる混合体状粒 子であることが好ましい。
[0026] 一方、前記還元処理にお!、て、存在させる還元能を有する有機化合物は、酸化に よって、ォキソ基( = O)またはホルミル基 (—CHO)へと変換可能なヒドロキシ基を有 する有機化合物、あるいは、それらの二種以上を混合したものであることが好ましい。
[0027] 前記還元処理において、存在させる還元能を有する有機化合物の好適な一例とし て、アルコール性ヒドロキシ基を有する有機化合物、あるいは、それらの二種以上を 混合したものを挙げることができる。更に、前記還元処理において、存在させる還元 能を有する有機化合物のより好適な一例として、二以上のヒドロキシ基を有する有機 化合物、あるいは、それらの二種以上を混合したものを挙げることができる。例えば、 前記還元処理において、存在させる還元能を有する有機化合物は、グリセリン(1, 2 , 3-プロパントリオール)であることがより好まし 、。
[0028] また、本発明の第一の形態に力かる銅薄膜の形成方法では、
前記還元処理にお!、て、存在させる還元能を有する有機化合物の少なくとも一種 は、前記表面酸ィ匕膜層を有する銅ナノ粒子または酸化銅ナノ粒子を含有する分散 液中に配合されていてもよい。あるいは、前記還元処理において、存在させる還元能 を有する有機化合物の少なくとも一種は、
該還元処理に際して、前記還元能を有する有機化合物の蒸気として、前記銅薄膜パ ターンの塗布層に対して、気相から作用させてもよい。
[0029] カロえて、基板上に描画する、前記銅薄膜層パターンにおいて、
その銅薄膜の最小層厚を 0. 1— 20 mの範囲に選択し、
分散液中に含有される前記表面酸化膜層を有する銅ナノ粒子または酸化銅ナノ粒 子の平均粒子径を、前記最小層厚に対して、その 1Z10以下に選択することが好ま しい。
[0030] また、銅薄膜層パターンの塗布層を基板上に描画する手法として、
スクリーン印刷法、または転写法の描画手法、あるいはスピンコート法を選択すること ができる。
[0031] 上記本発明の第一の形態に力かる微細な銅系配線パターンの形成方法、ならびに 銅薄膜の形成方法では、表面に酸化膜層を有する銅ナノ粒子、あるいは、粒子全体 にわたつて酸化が進んだ酸化銅ナノ粒子を含む分散液を利用して描画される微細な 配線パターン、あるいは塗布膜パターンを、該塗布層中のナノ粒子を、還元能を有 する有機化合物の存在下 300°C以下の温度に加熱し、該還元能を有する有機化合 物を還元剤として利用する還元反応により、酸化被膜を還元して、銅ナノ粒子に再生 するので、同一加熱工程内で、得られる銅ナノ粒子相互の焼結体層形成を達成でき る。この還元能を有する有機化合物を還元剤として利用する、酸化銅被膜層の還元 は、 300°C以下の低温において十分な反応速度で進行し、また、再生する銅ナノ粒 子相互の焼結も、かかる還元能を有する有機化合物の存在下で同時併行的になさ れるので、還元処理後、再び、活性な銅ナノ粒子表面の酸ィヒを回避することができる 。この加熱処理は、 300°C以下の低温において実施できるので、利用される基板材 料に要求される耐熱性が大幅に緩和され、利用範囲が大きく広がる利点を有する。 カロえて、得られる微細な銅系配線は、銅自体、エレクト口マイグレーションの少ない導 電性材料であるので、上記の微細な配線パターンにおいても、エレクト口マイグレー シヨンに起因する配線厚さの減少、断線の発生を抑制できる。さら〖こは、利用される 還元能を有する有機化合物、ならびに、還元処理に付随して副生される有機化合物 由来の反応生成物は、ともに、最終的には、加熱によって、蒸発、気化される結果、 得られる微細な焼結体型の銅系配線層、あるいは、極薄い膜厚さの銅薄膜層中には 残留することもな 、と 、う利点も有する。
また、本発明の第二の形態に力かる銅微粒子焼結体型の微細形状導電体の形成 方法は、
微細な膜厚を有する所定の平面パターンに成形されてなる、銅微粒子の焼結体層 により構成される、銅微粒子焼結体型の微細形状導電体を形成する方法であって、 形成される前記銅微粒子の焼結体層においては、その最小膜厚は、 0. 1 m— 2 O /z mの範囲、その最大膜厚は、 100 m以下の範囲に選択され、かつ、該平面パ ターンの最小の線幅は、 0. 5 m— 200 μ mの範囲に選択され、
平均粒子径は、少なくとも 10 m以下の範囲であって、形成すべき焼結体層の前 記最小膜厚の 1Z4以下、かつ前記最小の線幅の 1Z10以下に選択される、表面酸 化膜層を有する銅微粒子または酸化銅微粒子を含有する分散液を用いて、前記導 電性部材の所定の平面パターンに該分散液を塗布してなる塗布層を描画する工程 と、
前記塗布層中に含まれる、表面酸化膜層を有する銅微粒子または酸化銅微粒子 に対して、表面酸化膜層または酸化銅を還元する処理を施し、さらに、還元処理を受 けた微粒子の焼成を行って、銅微粒子の焼結体層を形成する工程とを有し、 前記還元処理と焼成処理は、加熱温度を、 350°C以下に選択して、
還元能を有する化合物の気体または蒸気の存在する雰囲気下にお!/、て、該塗布層 中に含まれる、表面酸化膜層を有する銅微粒子または酸化銅微粒子を 1分間一 15 分間加熱し、前記還元能を有する化合物を作用させつつ、前記表面酸化膜層を有 する銅微粒子または酸化銅微粒子を構成する酸化銅を還元して、銅微粒子とする第 一の処理工程と、
前記第一の処理工程を施した後、得られる銅微粒子に対して、
酸素を含有する雰囲気下において、 30秒間以下の加熱処理を施し、銅微粒子に酸 素を作用させ、表面酸化を行う処理と、該表面酸ィ匕処理に引きつづき、前記還元能 を有する化合物の気体または蒸気の存在する雰囲気下において、 30秒間以上、 30 0秒間以下の加熱処理を施し、表面酸化の処理を受けた銅微粒子に前記還元能を 有する化合物を作用させて、再還元を行う処理との、酸化'再還元処理の組み合わ せを、少なくとも 1回施す第二の処理工程とを、同一工程内で連続して実施すること により行う
ことを特徴とする銅微粒子焼結体型の微細形状導電体の形成方法である。
また、上述する本発明の第二の形態に力かる銅微粒子焼結体型の微細形状導電 体の形成方法を、基板上に銅微粒子相互の焼結体層からなる微細な銅系配線バタ ーンを形成する際に適用した形態として、本発明の第二の形態に力かる微細な銅系 配線パターンの形成方法をも提供し、
すなわち、本発明の第二の形態に力かる微細な銅系配線パターンの形成方法は、 基板上に銅微粒子相互の焼結体層からなる微細な銅系配線パターンを形成する 方法であって、
平均粒子径を、少なくとも 以下の範囲に選択される、表面酸化膜層を有す る銅微粒子または酸化銅微粒子を含有する分散液を用いて、前記微細な配線バタ ーンの塗布層を基板上に描画する工程と、
前記塗布層中に含まれる、表面酸化膜層を有する銅微粒子または酸化銅微粒子 に対して、表面酸化膜層または酸化銅を還元する処理を施し、さらに、還元処理を受 けた微粒子の焼成を行って、銅微粒子の焼結体層を形成する工程とを有し、 前記還元処理と焼成処理は、加熱温度を、 350°C以下に選択して、
還元能を有する化合物の気体または蒸気の存在する雰囲気下にお!/、て、該塗布層 中に含まれる、表面酸化膜層を有する銅微粒子または酸化銅微粒子を 1分間一 15 分間加熱し、前記還元能を有する化合物を作用させつつ、前記表面酸化膜層を有 する銅微粒子または酸化銅微粒子を構成する酸化銅を還元して、銅微粒子とする第 一の処理工程と、
前記第一の処理工程を施した後、得られる銅微粒子に対して、
酸素を含有する雰囲気下において、 30秒間以下の加熱処理を施し、銅微粒子に酸 素を作用させ、表面酸化を行う処理と、該表面酸ィ匕処理に引きつづき、前記還元能 を有する化合物の気体または蒸気の存在する雰囲気下において、 30秒間以上、 30 0秒間以下の加熱処理を施し、表面酸化の処理を受けた銅微粒子に前記還元能を 有する化合物を作用させて、再還元を行う処理との、酸化'再還元処理の組み合わ せを、少なくとも 1回施す第二の処理工程とを、同一工程内で連続して実施すること により行う
ことを特徴とする微細な銅系配線パターンの形成方法である。
さらには、上述する本発明の第二の形態に力かる銅微粒子焼結体型の微細形状 導電体の形成方法を、基板上に銅微粒子相互の焼結体層からなる銅薄膜層を形成 する際に適用した形態として、本発明の第二の形態に力かる銅薄膜の形成方法をも 提供し、
すなわち、本発明の第二の形態に力かる銅薄膜の形成方法は、
基板上に銅微粒子相互の焼結体層からなる銅薄膜層を形成する方法であって、 平均粒子径を、少なくとも 以下の範囲に選択される、表面酸化膜層を有す る銅微粒子または酸化銅微粒子を含有する分散液を用いて、前記銅薄膜層の塗布 層を基板上に描画する工程と、
前記塗布層中に含まれる、表面酸化膜層を有する銅微粒子または酸化銅微粒子 に対して、表面酸化膜層または酸化銅を還元する処理を施し、さらに、還元処理を受 けた微粒子の焼成を行って、銅微粒子の焼結体層を形成する工程とを有し、 前記還元処理と焼成処理は、加熱温度を、 350°C以下に選択して、
還元能を有する化合物の気体または蒸気の存在する雰囲気下にお!/、て、該塗布層 中に含まれる、表面酸化膜層を有する銅微粒子または酸化銅微粒子を 1分間一 15 分間加熱し、前記還元能を有する化合物を作用させつつ、前記表面酸化膜層を有 する銅微粒子または酸化銅微粒子を構成する酸化銅を還元して、銅微粒子とする第 一の処理工程と、
前記第一の処理工程を施した後、得られる銅微粒子に対して、
酸素を含有する雰囲気下において、 30秒間以下の加熱処理を施し、銅微粒子に酸 素を作用させ、表面酸化を行う処理と、該表面酸ィ匕処理に引きつづき、前記還元能 を有する化合物の気体または蒸気の存在する雰囲気下において、 30秒間以上、 30 0秒間以下の加熱処理を施し、表面酸化の処理を受けた銅微粒子に前記還元能を 有する化合物を作用させて、再還元を行う処理との、酸化'再還元処理の組み合わ せを、少なくとも 1回施す第二の処理工程とを、同一工程内で連続して実施すること により行う
ことを特徴とする銅薄膜の形成方法である。
[0035] 上述する本発明の第二の形態にかかる銅微粒子焼結体型の微細形状導電体の形 成方法においては、
分散液中に含有される、表面酸化膜層を有する銅微粒子は、
少なくとも、前記表面酸化膜層は、酸化第一銅、酸化第二銅、またはこれら銅酸化物 の混合物のいずれかを含んでなり、また、該微粒子は、酸化第一銅、酸化第二銅、ま たはこれら銅の酸化物の混合物、ならびに金属銅のうち、 2つ以上を含んでなる混合 体状粒子であってもよい。
[0036] また、本発明の第二の形態にかかる銅微粒子焼結体型の微細形状導電体の形成 方法では、
前記還元処理と焼成処理における、前記第一の処理工程、ならびに前記第二の処 理工程中の再還元を行う処理において、気体または蒸気として、雰囲気中に存在さ せる還元能を有する化合物は、酸ィ匕によって、ォキソ基( = 0)またはホルミル基 (一 C HO)へと変換可能なヒドロキシ基を有するアルコールィ匕合物、あるいは、それらの二 種以上を混合したものであることが好ましい。あるいは、前記還元処理と焼成処理に おける、前記第一の処理工程、ならびに前記第二の処理工程中の再還元を行う処 理において、気体または蒸気として、雰囲気中に存在させる還元能を有する化合物 は、分子内にヒドロキシ基を 2以上有する多価のアルコールィ匕合物、あるいは、それ らの二種以上を混合したものであることが好ましい。カロえて、前記還元処理と焼成処 理における、前記第一の処理工程、ならびに前記第二の処理工程中の再還元を行う 処理において、気体または蒸気として、雰囲気中に存在させる還元能を有する化合 物は、水素分子であってもよい。
[0037] なかでも、前記還元処理と焼成処理における、前記第一の処理工程、ならびに前 記第二の処理工程中の再還元を行う処理において、気体または蒸気として、雰囲気 中に存在させる還元能を有する化合物は、グリセリン(1, 2, 3—プロパントリオール)、 エチレングリコール(1, 2—エタンジオール)、プロピレングリコール(1, 2—プロパンジ オール)、 1, 3—プロパンジオールのいずれかであると、より好ましい形態となる。 [0038] 一方、前記表面酸化膜層を有する銅微粒子または酸化銅微粒子を含有する分散 液に含有される分散溶媒は、融点が 10°C以下であり、酸ィ匕によって、ォキソ基(=o )またはホルミル基 (一 CHO)へと変換可能なヒドロキシ基を有するアルコールィ匕合物 であってもよい。
[0039] 本発明の第二の形態にかかる銅微粒子焼結体型の微細形状導電体の形成方法、 ならびに、該方法を応用した微細な銅系配線パターンの形成方法、ならびに銅薄膜 の形成方法では、表面に酸化膜層を有する銅微粒子、あるいは、粒子全体にわたつ て酸化が進んだ酸化銅微粒子を含む分散液を利用して描画される微細な配線バタ ーン、あるいは薄い塗布膜に対して、該塗布層中の微粒子を、還元能を有する化合 物の蒸気や気体を含む雰囲気下で、 350°C以下の温度に加熱し、該還元能を有す る化合物を還元剤として利用する還元反応により、酸化被膜を還元して、銅微粒子と し、その後、同一加熱条件において、短時間、酸素を含む雰囲気下に曝して酸化処 理し、次いで、還元能を有する化合物の蒸気や気体を含む雰囲気下で再還元処理 を施す、酸化処理と再還元処理を組み合わせた加熱処理を繰り返して実施すること で、同一加熱工程内で得られる、銅微粒子相互の焼結体層形成を高い再現性で達 成できる。この気相より供給される、還元能を有する化合物の蒸気や気体を還元剤と して利用する、酸化銅被膜層の還元は、 350°C以下の低温において十分な反応速 度で進行し、また、生成する銅微粒子相互の焼結も、力かる還元能を有する化合物 の蒸気や気体を含む雰囲気下で加熱を継続する手法と比較して、前記酸化処理と 再還元処理を組み合わせた加熱処理を繰り返して実施する手法では、格段に高 、 効効率と再現性で、銅微粒子相互が緻密に焼結されている焼結体層を形成することが できる。この加熱処理は、 350°C以下の低温において実施できるので、利用される基 板材料に要求される耐熱性が大幅に緩和され、利用範囲が大きく広がる利点を有す る。カロえて、得られる微細な銅系配線は、銅自体、エレクト口マイグレーションの少な い導電性材料であるので、上記の微細な配線パターンにおいても、エレクトロマイダ レーシヨンに起因する配線厚さの減少、断線の発生を抑制できる。さらには、利用さ れる還元能を有する化合物の蒸気や気体は気相より供給されるので、作製する対象 の微細な焼結体型の銅系配線層、あるいは、極薄い膜厚さの銅薄膜層の形状、サイ ズ、あるいは、配置位置に依存することなぐ目的とする銅微粒子焼結体型の微細形 状導電体を作製できると ヽぅ利点も有する。
図面の簡単な説明
[0040] [図 1]図 1は、 本発明の第一の形態に力かる微細な焼結体銅系配線パターンの形 成方法にぉ 、て、還元 ·焼結処理工程の実施に利用可能な還元性有機化合物によ る還元処理 ·焼結用装置の構成を模式的に示す図である。
[図 2]図 2は、 本発明の第二の形態にかかる銅微粒子焼結体層の形成方法で作製 される焼結体層中の、銅微粒子相互の凝集状態を SEM観察した結果を示す図であ る。
[0041] なお、図 1中に付す各符号は、下記のものを意味する。
[0042] 1
2 還元'焼結処置装置の密閉容器
3 還元'焼結処理時の加熱用ヒーター
4 ガス導入口
5 ガス排出口
発明を実施するための最良の形態
[0043] 本 明の第一の形餱
本発明の第一の形態に力かる微細な焼結体銅系配線パターンを形成する方法で は、貴金属である金や銀を用いた金属ナノ粒子とは異なり、銅ナノ粒子は、非常に酸 化を受け易ぐまた、その酸ィ匕を完全に防止する手段も無いことをも考慮し、表面に 酸化銅被覆層を有するナノ粒子または酸化銅ナノ粒子の分散液を作製し、このナノ 粒子分散液を利用して、所望の配線パターンを基板上に描画した後、ナノ粒子の表 面に存在する酸化銅被覆層を還元することで、銅ナノ粒子に再生して、焼成処理を 実施することで、塗布層中において、銅ナノ粒子相互の緻密な焼結体層とすることで 、安価かつエレクト口マイグレーションの少な!/、銅系配線パターンを形成する。
[0044] 特に、本発明の第一の形態に力かる微細な銅系配線パターンの形成方法、ならび に銅薄膜の形成方法では、ナノ粒子の表面に存在する酸化銅被膜層または酸化銅 ナノ粒子を還元する工程では、加熱温度を、 300°C以下に選択して、還元能を有す る有機化合物の存在下、加熱処理を行うことで、塗布層中に含まれる該ナノ粒子表 面に対して、還元能を有する有機化合物を還元剤として作用させることで、加熱温度 力 300°C以下と低温であっても、表面の酸化銅の還元反応が速やかに進行できる 。一旦、表面に生成した、非酸化状態の銅原子と、その内部に存在する酸化銅分子 との固相反応により、内部の酸化銅は非酸化状態の銅原子に変換され、代わって表 面に酸化銅が生成されるが、この表面に生成された酸化銅は、継続して供給される 還元能を有する有機化合物の還元作用によって、非酸化状態の銅原子まで還元さ れる。前記に一連の反応サイクルが繰り返される結果、当初は、ナノ粒子の深部まで 達していた酸化銅被膜層は徐々に減少して、最終的には、ナノ粒子全体力 銅のナ ノ粒子に復する。
[0045] 仮に、この銅ナノ粒子に復した状態を、再び大気中の酸素分子などに接触させると 、急速に表面酸ィ匕が生じるが、本発明の第一の形態に力かる微細な銅系配線パター ンの形成方法では、再び大気に接触させることなぐ還元能を有する有機化合物の 存在下、室温(25°C)以上で、 300°C以下に選択される加熱温度によっても、再生さ れた銅ナノ粒子の清浄な表面を相互に、密に接触させる状態となっている結果、比 較的に低温でも、速やかに焼結が進行し、塗布層全体が、銅ナノ粒子の緻密な焼結 体層に形成される。
[0046] すなわち、本発明の第一の形態に力かる微細な銅系配線パターンの形成方法で は、最終的には、再生された銅ナノ粒子の清浄な表面を相互に、密に接触させる状 態において、室温(25°C)以上で、 300°C以下に選択される加熱温度によっても、速 やかに焼結が進行することが可能な範囲に、利用するナノ粒子の平均粒子径を選択 することが望ましぐこの観点から、使用する表面に酸化銅被膜層を有するナノ粒子 の平均粒子径は、 1一 lOOnmの範囲に、より好ましくは、 1一 20nmの範囲に選択す る。さらには、本発明の第一の形態に力かる微細配線パターンの形成方法は、第一 に、極めて微細な配線パターンを形成した際に、その最小な配線幅の部分において 、最も顕著に見出されるエレクト口マイグレーション現象に起因する断線を回避する 目的で、焼結体銅系配線を利用するものであり、その配線パターンの最小の配線幅 を、 0. 5— 200 μ mの範囲、実用的には、 5— 50 μ mの範囲に、対応させて、最 /J、の 配線間スペースを、 0. 5— 200 mの範囲、実用的には、 5— 50 mの範囲に選択 する際に、より好適な方法となる。前記の極めて微細な配線パターンを、ナノ粒子の 分散液を用いて、高い配線幅の均一性で描画する上では、使用するナノ粒子の平 均粒子径は、目標とする最小の配線幅ならびに最小の配線間スペースに対して、そ の 1Z10以下に選択することが望ましい。同時に、最小の配線幅に応じて、焼結体 銅系配線層の層厚も適宜決定される力 通常、最小の配線幅と比較し、配線層の層 厚は有意に小さな形態であり、ナノ粒子の平均粒子径を、 1一 lOOnmの範囲に、より 好ましくは、 1一 20nmの範囲に選択することで、配線層の層厚のバラツキ、局所的な 高さの不均一を抑制することが可能となる。
[0047] 一方、該ナノ粒子を含有する分散液を用いて、所望の配線パターンを基板上に描 画する手法としては、従来から、金属ナノ粒子を含有する分散液を利用する微細配 線パターンの形成において利用される、スクリーン印刷、インクジェット印刷、または 転写印刷のいずれの描画手法をも、同様に利用することができる。具体的には、目 的とする微細配線パターンの形状、最小の配線幅、配線層の層厚を考慮した上で、 これらスクリーン印刷、インクジェット印刷、または転写印刷のうち、より適するものを選 択することが望ましい。
[0048] 一方、利用する該ナノ粒子を含有する分散液は、採用する描画手法に応じて、そ れぞれ適合する液粘度を有するものに、調製することが望ましい。例えば、微細配線 パターンの描画にスクリーン印刷を利用する際には、該ナノ粒子を含有する分散液 は、その液粘度を、 30— 300Pa' s (25°C)の範囲に選択することが望ましい。また、 転写印刷を利用する際には、液粘度を、 3— 300Pa' s (25°C)の範囲に選択すること が望ましい。インクジェット印刷を利用する際には、液粘度を、 1一 100 mPa- s (25 °C)の範囲に選択することが望ましい。該ナノ粒子を含有する分散液の液粘度は、用 いるナノ粒子の平均粒子径、分散濃度、用いている分散溶媒の種類に依存して決ま り、前記の三種の因子を適宜選択して、目的とする液粘度に調節することができる。
[0049] 表面に酸化銅被膜層を有するナノ粒子は、その平均粒子径が上記の範囲で、また 、予めその平均粒子径が判明しているならば、その作製方法は問わない。例えば、 銅ナノ粒子において、その表面に酸化銅被膜層が生成したものでもよぐあるいは、 ナノ粒子全体が酸化銅となっているものであってもよい。従って、表面に酸化銅被膜 層を有するナノ粒子は、少なくとも、前記酸化銅被膜層は、酸化第一銅、酸化第二銅 またはこれら銅の酸ィ匕物の混合物を含んでなり、また、該ナノ粒子は、酸化第一銅、 酸化第二銅またはこれら銅の酸化物の混合物、ならびに金属銅のうち、 2つ以上を 含んでなる混合体状粒子とすることができる。表面の酸化銅被膜層は、上記の還元 能を有する有機化合物存在下における還元処理で、再び金属銅に復するものの、 表面の酸化銅被膜層の厚さに依存して、その処理時間の延長がなされるので、表面 の酸化銅被膜層の厚さは薄い方が一般に好ましい。但し、ナノ粒子の平均粒子径を 1一 20nmの範囲に選択する際には、ナノ粒子全体が酸化銅となっているものであつ ても、還元処理に要する時間は問題となるほど長くなることもない。
[0050] なお、表面に酸化銅被膜層を有する銅ナノ粒子において、酸化銅被膜層が存在し ていなぐ表面に金属銅が存在する部分に対しては、アルキルァミンのアミノ基など、 金属銅原子に対して、窒素、ィォゥ、酸素の孤立電子対を利用して配位的な結合可 能な基を有する有機化合物分子を配位的結合させた被覆分子層を設けることが好ま しい。力かる有機化合物分子を配位的結合させた被覆分子層は、分散液中におい て、表面に酸化銅被膜層を有する銅ナノ粒子が、酸化銅被膜層が存在していなぐ 表面に金属銅が存在する部分を接触させて、凝集体を形成する現象を抑制する機 能を示す。一方、加熱処理に際しては、力かる有機化合物分子を配位的結合させた 被覆分子層は、加熱とともに、離脱するため、還元処理が終了する時点では、生成 する銅ナノ粒子表面に残留しな 、ものである。
[0051] 力!]えて、表面に酸化銅被膜層を有する銅ナノ粒子ではなぐ酸化銅ナノ粒子を含 む分散液を利用する際にも、前記被覆分子層の形成に利用される有機化合物を表 面に被覆する形態とすると、より分散特性の優れた酸化銅ナノ粒子となる。
[0052] さらに、このナノ粒子分散液を配線形成に用いる場合、分散液を均一分散化、高濃 度化、液粘度の調整、および基板への密着性を高めるために、有機バインダーとし て機能する榭脂成分、粘度調整用のチキソ剤あるいは希釈用の有機溶剤を添加し、 さらに混合'攪拌して、塗布、描画に用いるナノ粒子分散液を調製することもできる。 一方、表面に酸化銅被膜層を有する銅ナノ粒子、あるいは酸化銅ナノ粒子自体は、 その表面に存在する酸ィ匕膜被覆のため、互いに接触しても、ナノ粒子間の融着は起 こらず、凝集体形成など、均一な分散特性を阻害する現象は生じないものとなってい る。従って、描画した塗布層中では、分散溶媒の蒸散とともにナノ粒子は緻密な積層 状態を達成できる。
このナノ粒子分散液を用いた配線パターンの描画を終えた後、配線基板は、例え ば、図 1に示した加熱処理 (還元、焼成処理)装置内において、前記還元処理と焼成 処理を実施するため、還元能を有する有機化合物の存在下、加熱温度を 300°C以 下に選択して、加熱することで、還元能を有する有機化合物を還元剤とする、表面の 酸化膜の還元がなされる。この還元剤として利用可能な還元能を有する有機化合物 としては、前記加熱温度において、酸化第一銅、酸ィ匕第二銅を銅まで還元可能なも のであり、液体または蒸気として存在するものである限り、種々な有機化合物を利用 することができる。本発明の第一の形態において利用可能な還元能を有する有機化 合物の好適な例として、酸ィ匕によって、ォキソ基( = 0)またはホルミル基 (-CHO)へ と変換可能なヒドロキシ基を有する有機化合物を挙げることができ、必要に応じて、二 種以上を併用することもできる。なかでも、より好適な一例として、二以上のヒドロキシ 基を有する有機化合物を挙げることができる。具体的には、本発明の第一の形態に ぉ ヽて利用可能な還元能を有する有機化合物の好適な例には、メチルアルコール、 エチルアルコール、イソプロピルアルコール、 2—ブチルアルコール、 2—へキシルァ ルコールなどの脂肪族モノアルコール、エチレングリコール(1, 2—エタンジオール)、 プロピレングリコール(1, 2—プロパンジオール)、 1, 3—プロパンジオール、グリセリン (1, 2, 3—プロパントリオール)、 1, 2—ブタンジオールなどの脂肪族多価アルコール 、ベンジルアルコール、 1—フエ-ルエタノール、ジフエ-ルカルビトール(ジフエ-ルメ タノール)、ベンゾイン(2—ヒドロキシー 1, 2—ジフエ-ルエタノン)などの芳香族モノア ルコール、ヒドロべンゾイン(1, 2—ジフエ-ルー 1, 2—エタンジオール)などの芳香族 多価アルコール、さらには、グルコース、マルトース、フルクトースなどの糖類、ポリビ -ルアルコール(PVA)、エチレンビュルアルコール(EVOH)などの高分子アルコ ールが含まれる。また、加熱処理中、系内に存在する水分との反応によって、 1, 2— ジオールィ匕合物へと変換可能なエポキシ化合物、あるいは、 1, 3—ジオールに変換 可能なォキセタンィ匕合物も、力かる反応を引き起こす水分が存在する、あるいは、生 成される場合には、利用可能である。さらには、ヒドロキノンなどの芳香族ヒドロキノン も、前記の還元剤として利用可能である。これらのヒドロキシ基を有する有機化合物 は、そのヒドロキシ基 (-OH)から、加熱下に酸化を受け、ォキソ基( = 0)またはホル ミル基 (一 CHO)へと変換される反応を利用して、酸化第一銅、酸化第二銅に対する 還元作用を発揮する。
[0054] 一方、これらヒドロキシ基を有する有機化合物に由来する、ヒドロキシ基 (一 OH)から 、加熱下に酸化を受け、ォキソ基( = 0)またはホルミル基 (-CHO)へと変換される結 果、副生する反応生成物は、加熱によって、蒸発、気化することで、除去可能である ことがより好ましい。
[0055] 加熱処理中、存在させる還元能を有する有機化合物は、予め塗布層の形成に利 用するナノ粒子の分散液中に配合しておくこともでき、あるいは、加熱処理を行う雰 囲気中に、力かる還元能を有する有機化合物を蒸気として存在させることもできる。 なお、上記の還元処理に伴い、還元能を有する有機化合物は消費されるため、少な くとも、還元処理すべき、表面に酸化銅被膜層を有するナノ粒子に含有される、酸ィ匕 銅被膜の総量に応じて、還元能を有する有機化合物を分散液中に配合しておくこと が必要となる。あるいは、かかる還元能を有する有機化合物を蒸気として供給する際 には、酸化銅被膜の総量に応じて、供給される蒸気量を選択することが必要となる。
[0056] 還元能を有する有機化合物を分散液中に配合する際には、含まれる表面に酸ィ匕 銅被膜層を有する銅ナノ粒子 63. 55g当たり、還元能を有する有機化合物中の酸ィ匕 を受けるヒドロキシ基 (一 OH)が、 1一 50モル量の範囲となる配合比率を選択すること が好ましい。
[0057] また、還元能を有する有機化合物を蒸気として供給する際、塗布層中に含有される 表面に酸化銅被膜層を有する銅ナノ粒子 63. 55g当たり、還元能を有する有機化合 物中の酸化を受けるヒドロキシ基 (一 OH)力 1一 50モル量の範囲となる化合物量を 蒸気として供給することが好ましい。あるいは、加熱処理の雰囲気中に存在させる、 還元能を有する有機化合物の蒸気圧を、 100— 2000hPaの範囲となるように選択 することが好ましい。 [0058] カロえて、加熱処理の雰囲気中には、ー且還元された表面の再酸ィ匕を回避するため 、例えば、窒素などの不活性ガス雰囲気中に保つことが好ましい。
[0059] なお、力かる加熱処理温度は、利用する還元能を有する有機化合物の反応性を考 慮して、適宜選択すべきものであり、少なくとも、 300°C以下の範囲で、例えば、 180 °C以上、通常、 250°C以上の範囲に選択することが好ましい。カロえて、処理装置内に 設置されるプリント基板自体の材質に応じた耐熱特性を満足する温度範囲内、 300 °C以下、例えば、 180°C— 300°Cの範囲に維持されるように、温度の設定'調節を行 う。前記の設定温度、還元剤の濃度、蒸気圧、反応性などの条件にも依存するもの の、還元処理と焼成処理の時間は、 1分間一 1時間、好ましくは、 5分間一 30分間の 範囲に選択することが可能である。具体的には、ナノ粒子表面を覆う酸化銅被膜層 の厚さ、ならびに、その還元に要する時間を考慮した上で、設定温度、処理時間を適 宜選択する。
[0060] 配線パターンの描画は、ナノ粒子を含む分散液を用いて実施できるため、その微 細な描画特性は、従来の、金、銀のナノ粒子を利用する微細な配線パターン形成と 遜色の無いものとなる。具体的には、形成される微細な配線パターンは、最小配線幅 を、 0. 5— 200 μ mの範囲、実用的には、 5— 50 μ mの範囲、対応する最小の配線 間スペースを、 0. 5— 200 /z mの範囲、実用的には、 5— 50 /z mの範囲に選択して 、良好な線幅均一性 ·再現性を達成することができる。カロえて、得られる配線層は、界 面に酸化物皮膜の介在の無い、銅ナノ粒子の焼結体層となり、前記の最小配線幅に おける、その体積固有抵抗率も、少なくとも 30 X 10— 6 Ω 'cm以下、多くの場合、 20 X 10— 6 Ω 'cm以下とすることができ、良好な導通特性を達成できる。また、銅薄膜の 形成に応用する際には、形成される銅薄膜の平均膜厚は、 0. 1一 の範囲、 実用的には、 1一 の範囲に選択して、良好な表面平坦性と膜厚の均一性を 高 、再現性で達成することができる。
[0061] カロえて、形成される焼結体層は、銅自体は、エレクト口マイグレーションの少ない導 電性材料であるので、上記の微細な配線パターンにおいても、エレクト口マイグレー シヨンに起因する配線厚さの減少、断線の発生を抑制できる。
[0062] 本発明の第一の形餱における実施餱様 以下に、実施例を示し、本発明の第一の形態をより具体的に説明する。これらの実 施例は、本発明の第一の形態に力かる最良の実施形態の一例ではあるものの、本 発明の第一の形態はこれら実施例により限定を受けるものではない。
[0063] (実施例 1—1一 1 4、ならびに比較例 1—1一 1—3)
(有機化合物の蒸気中での還元 ·焼成処理)
市販されて!ヽる銅の超微粒子分散液 (商品名:独立分散超微粒子パーフェクトカツ パー 真空冶金 (株))、具体的には、その表面に一部酸ィ匕被膜を有する銅微粒子 1 00質量部、アルキルァミンとして、ドデシルァミン(分子量 185. 36、沸点 248。C) 15 質量部、有機溶剤として、ミネラルスピリッツ 75質量部を含む、平均粒子径 5nmの表 面酸ィ匕膜層を有する銅ナノ粒子の分散液を利用した。
[0064] この銅超微粒子分散液 100質量部に、トルエン 5質量部を加えた後、メタノール 10 0質量部を加えて、含有される銅微粒子を沈澱させる。上澄みを除去し、減圧下、残 存する溶媒を除去することにより得られる銅微粒子 80質量部当たり、ァミン化合物と して、ビス(2—ェチルへキシル)アミンを 16質量部、榭脂成分として、流動パラフィン を 4質量部添加した。これらを混合した後、攪拌して調製されたペーストに対して、そ の液粘度を調整するため、チキソ剤もしくは希釈溶剤(トルエン)を加えて、その粘度 をおよそ 80Pa' sに調整した。スクリーン印刷によりプリント配線用基板上に、この粘 度調整済みのペースト (表面酸ィ匕膜層を有する銅ナノ粒子の分散液)を用いて、ステ ンレス # 500メッシュのスクリーン版でライン/スペース = 25/25 μ mの回路パター ン塗布層をスクリーン印刷した。なお、塗布層の平均層厚は、 10 /z mであった。
[0065] この塗布層を描画した基板 1を、密閉された容器 2内に設置するヒーター 3上の所 定の位置に置いた。また、予め有機化合物を気化させ、有機化合物の蒸気を窒素ガ ス等の不活性ガスに混合した上で、容器 2内にガス導入口 4から吹き込みつつ、 250 °Cにて 15分間加熱処理を行った。この不活性ガスとともに供給される有機化合物の 蒸気の分圧は、容器 2内圧の 50%— 90%の範囲に維持されており、基板 1上に描 画されて!/ヽる塗布層に含まれるナノ粒子は、かかる有機化合物蒸気の存在下で加熱 処理を受ける。
[0066] 蒸気源として用いた有機化合物は、実施例 1-1では、グリセリン(1, 2, 3- トリオール;沸点: 290. 5°C (分解))、実施例 1—2では、 1, 2 プロパンジォール (沸 点: 187. 85°C)、実施例 1 3では、イソプロピルアルコール(沸点: 82. 4°C)、実施 例 1 4では、 2, 3 ブタンジオール(meso体、沸点: 181. 7°C (742mmHg) )の、何 れも、アルコール性ヒドロキシ基を有し、力かるヒドロキシ基に由来する還元能を示す アルコール類であり、一方、比較例 1 1では、フエノール (沸点:182°C)、比較例 1 2では、ジメトキシェタン(エチレングリコールジメチルエーテル;沸点: 82— 83°C)、 比較例 1 3では、エチレンジァミン (沸点: 116— 117°C)である。比較例 1 1一 1 3 において利用する有機化合物は、アルコール性ヒドロキシ基を含まず、また、かかる 加熱温度にぉ 、ては、還元能を示さな 、ものであった。
[0067] 上記の加熱処理を施した後、基板上の回路パターンは、実施例 1 1一 1 4の処理 条件では、還元された銅ナノ粒子の焼結体層が形成されていた。得られた焼結体層 型銅配線の配線幅およびスペースは、 25Ζ25 /ζ πιであり、また、その平均層厚は、 5 mであった。かかる銅配線層の抵抗値を測定し、前記配線幅と平均層厚とを有す る均質体を仮定し、体積固有抵抗率 (25°C)を算出したところ、その値は、表 1—1〖こ 示すように、いずれも 20 X 10— 6 Ω 'cm以下であった。なお、銅自体の抵抗率(20°C) は 1. 673 X 10— 6 Ω 'cmであり、その値と比較すると、得られる銅の焼結体型配線層 は、銅ナノ粒子相互の緻密な焼結が達成されていると判断される。また、 SEM観察 の結果においても、銅ナノ粒子相互の粒界部には酸化銅の介在は認められず、良 好な導電性を示す焼結体が構成されていると判断される。
[0068] 一方、比較例 1—1一 1—3の処理条件では、焼結体層の形成はなされているものの 、カゝかる焼結体層の抵抗値の測定を試みたが、測定可能な抵抗値範囲を超えており 、体積固有抵抗率(25°C)は、少なくとも、 100 X 10— 6 Ω 'cmを大幅に超えていると 推定される。
[0069] [表 1-1] 1
(有機化合物の蒸気中において、 加熱処理を実施した場合)
Figure imgf000028_0001
[0070] (実施例 1 5— 1 11、ならびに比較例 1 4)
(塗布層中に含有される有機化合物の存在下での還元 ·焼成)
先ず、湿式還元反応によって、銅の超微粒子を含む水性分散液を調製した。硫酸 銅 30gを蒸留水 100mlに溶解した後、 80°Cに加熱しつつ、この水溶液に、還元剤で あるジエタノールァミン lOOgを添加する。次いで、 8時間攪拌を継続して、湿式還元 反応を進め、生成する銅微粒子を含む、暗褐色の水性分散液を得た。この分散液に 、アセトンをカ卩え、残余するジエタノールアミンを除去し、銅微粒子を沈澱させる。この アセトン洗浄操作を 3回繰り返し、残余する原料、反応の副生生成物、不純物の除去 を行った。得られた銅微粒子は、その表面には一部酸ィ匕を受けた表面酸ィ匕膜層を有 しており、平均粒子径は 9nmであった。
[0071] 得られた銅微粒子 90質量部当たり、アミンィ匕合物としてビス(2—ェチルへキシル) アミンを 10質量部添加した。これらを混合した後、下記する有機化合物 200質量部 を加え、攪拌した。攪拌して調製されたペーストに対して、その液粘度を調整するた め、チキソ剤もしくは希釈溶剤(トルエン)を加えて、その粘度をおよそ 80Pa' sに調整 した。スクリーン印刷によりプリント配線用基板上に、この粘度調整済みのペースト(表 面酸ィ匕膜層を有する銅ナノ粒子の分散液)を用いて、ステンレス # 500メッシュのスク リーン版でライン Zスペース = 25/25 μ mの回路パターン塗布層をスクリーン印刷 した。なお、塗布層の平均層厚は、 10 mであった。
[0072] この塗布層を描画した基板 1を、密閉された容器 2内に設置するヒーター 3上の所 定の位置に置いた。ガス導入口 5から窒素を吹き込み、窒素雰囲気とした容器 2内で 、 250°Cにて 15分間加熱処理を行った。この加熱処理の間、基板 1上に描画されて V、る塗布層に含まれるナノ粒子は、ペースト中に配合される有機化合物の存在下で 、加熱処理を受ける。
[0073] 粘度調整済みのペースト中に配合する有機化合物には、実施例 1 5では、グリセリ ン(1, 2, 3 プロパントリオール;沸点: 290. 5°C (分解))、実施例 1 6では、エリト リトール(meso形;融点: 121°C)、実施例 1—7では、 1, 2—シクロへキサンジオール( (^ー体;沸点:116°〇(131111111¾) )、実施例1 8では、ヒドロべンゾイン(meso体;融 点: 138°C)、実施例 1—9では、グルコース(D—体;無水 α体の融点: 146°C)、実施 例 1—10では、ポリビュルアルコール (一 CH CH (OH) ;二次転移点: 65— 85°C)、
2
実施例 1—11では、ヒドロキノン(沸点: 285°C (730mmHg) )をそれぞれ用いた。一 方、比較例 1 4では、レゾルシノール(1, 3 ベンゼンジオール:沸点: 281. 4°C)を 用いた。なお、実施例 1 5— 1 11で利用される有機化合物は、ヒドロキシ基を有し ており、力かるヒドロキシ基 (一 OH)力 ォキソ基( = 0)あるいはホルミル基 (一 CHO) へと酸化される際、還元能を発揮する化合物である。
[0074] 上記の加熱処理を施した後、基板上の回路パターンは、実施例 1—5— 1—11の有 機化合物存在下での処理条件では、還元された銅ナノ粒子の焼結体層が形成され ていた。得られた焼結体層型銅配線の配線幅およびスペースは、 25Z25 mであり 、また、その平均層厚は、 5 mであった。かかる銅配線層の抵抗値を測定し、前記 配線幅と平均層厚とを有する均質体を仮定し、体積固有抵抗率 (25°C)を算出したと ころ、その値は、表 1—2に示すように、いずれも、少なくとも 30 X 10— 6 Ω 'cm以下で あった。なお、銅自体の抵抗率(20°C)は 1. 673 X 10— 6 Ω 'cmであり、その値と比較 すると、得られる銅の焼結体型配線層は、銅ナノ粒子相互の緻密な焼結が達成され ていると判断される。また、 SEM観察の結果においても、銅ナノ粒子相互の粒界部 には酸化銅の介在は認められず、良好な導電性を示す焼結体が構成されていると 判断される。
[0075] 一方、比較例 1 4の有機化合物存在下での処理条件では、焼結体層の形成はな されているものの、力かる焼結体層の抵抗値の測定を試みた力 測定可能な抵抗値 範囲を超えており、体積固有抵抗率(25°C)は、少なくとも、 100 X 10— 6 Ω 'cmを大 幅に超えて 、ると推定される。
[0076] [表 1-2]
表 1 2
(分散液中に添加混合した有機化合物の存在下、 加熱処理を実施した場合)
Figure imgf000030_0001
[0077] (実施例 1 12)
(有機化合物の蒸気中での還元 ·焼成処理)
市販されて!ヽる銅の超微粒子分散液 (商品名:独立分散超微粒子パーフェクトカツ パー 真空冶金 (株))、具体的には、その表面に一部酸ィヒ被膜を有する銅微粒子 1 00質量部、アルキルァミンとして、ドデシルァミン(分子量 185. 36、沸点 248°C) 15 質量部、有機溶剤として、ミネラルスピリッツ 75質量部を含む、平均粒子径 5nmの表 面酸ィ匕膜層を有する銅ナノ粒子の分散液を利用した。
[0078] この銅超微粒子分散液 100質量部に、トルエン 5質量部を加えた後、メタノール 10 0質量部を加えて、含有される銅微粒子を沈澱させる。上澄みを除去し、減圧下、残 存する溶媒を除去することにより得られる銅微粒子 80質量部当たり、アミンィ匕合物と して、ビス(2—ェチルへキシル)アミンを 16質量部、榭脂成分として、流動パラフィン を 4質量部添加した。これらを混合した後、攪拌して調製されたペーストに対して、そ の液粘度を調整するため、チキソ剤もしくは希釈溶剤(トルエン)を加えて、その粘度 をおよそ 80Pa' sに調整した。スクリーン印刷によりプリント配線用基板上に、この粘 度調整済みのペースト (表面酸ィ匕膜層を有する銅ナノ粒子の分散液)を用いて、ステ ンレス # 500メッシュのスクリーン版でライン/スペース = 25/25 μ mの回路パター ン塗布層をスクリーン印刷した。なお、塗布層の平均層厚は、 10 /z mであった。
[0079] この塗布層を描画した基板 1を、密閉された容器 2内に設置するヒーター 3上の所 定の位置に置いた。また、ヒーター 3上に配置する、有機化合物の蒸散用皿状容器 の中にグリセリンを入れ、ガス導入口 4から窒素を吹き込みつつ、 250°Cにて 15分間 加熱処理を行った。この加熱処理の間、蒸散用皿状容器の中に入れられているダリ セリンの気化'蒸発に伴 ヽ、基板 1上に描画されて 、る塗布層に含まれるナノ粒子は 、かかるグリセリン蒸気の存在下で、加熱処理を受ける。
[0080] 上記の加熱処理を施した後、基板上の回路パターンは、還元された銅ナノ粒子の 焼結体層が形成されて 、た。得られた焼結体層型銅配線の配線幅およびスペース は、 25/25 μ mであり、また、その平均層厚は、 5 μ mであった。かかる銅配線層の 抵抗値を測定し、前記配線幅と平均層厚とを有する均質体を仮定し、体積固有抵抗 率(25°C)を算出したところ、その値は、 6. 2 X 10— 6 Ω 'cmであった。なお、銅自体の 抵抗率(20°C)は 1. 673 X 10— 6 Ω 'cmであり、その値と比較すると、得られる銅の焼 結体型配線層は、銅ナノ粒子相互の緻密な焼結が達成されていると判断される。ま た、 SEM観察の結果においても、銅ナノ粒子相互の粒界部には酸化銅の介在は認 められず、良好な導電性を示す焼結体が構成されていると判断される。
[0081] 本発明の第二の形態
本発明の第二の形態に力かる銅微粒子焼結体型の微細形状導電体の形成方法 では、基板上に銅微粒子相互の焼結体層からなる微細な銅系配線パターンの形成 に適用する際、例えば、利用する銅微粒子として、平均粒子径 lOOnm以下の銅ナノ 粒子を選択する場合、貴金属である金や銀を用いた金属ナノ粒子とは異なり、銅ナノ 粒子は、非常に酸ィ匕を受け易ぐまた、その酸ィ匕を完全に防止する手段も無いことを も考慮し、表面に酸化銅被覆層を有するナノ粒子または酸化銅ナノ粒子の分散液を 作製し、このナノ粒子分散液を利用して、所望の配線パターンを基板上に描画した 後、ナノ粒子の表面に存在する酸化銅被覆層を還元し、銅ナノ粒子に再生して、焼 成処理を実施することで、塗布層中において、銅ナノ粒子相互の緻密な焼結体層と することで、安価かつエレクト口マイグレーションの少な!/、銅系配線パターンを形成す る。 [0082] 特に、本発明の第二の形態にかかる銅微粒子焼結体型の微細形状導電体の形成 方法では、所望の微細形状に描画塗布された塗布層に含まれる銅微粒子の表面に 存在する酸化銅被膜層または酸化銅微粒子を還元する、第一の処理工程では、加 熱温度を、 350°C以下に選択して、還元能を有する化合物の蒸気、気体を含む雰囲 気下、加熱処理を行うこと、それによつて、塗布層中に含まれる該微粒子表面に対し て、気相から供給される、還元能を有する化合物を還元剤として作用させることで、加 熱温度が、 350°C以下と低温であっても、表面の酸化銅の還元反応が速やかに進行 できる。一旦、表面に生成した、非酸化状態の銅原子と、その内部に存在する酸ィ匕 銅分子との固相反応により、内部の酸化銅は非酸化状態の銅原子に変換され、代わ つて表面に酸化銅が生成されるが、この表面に生成された酸化銅は、継続して供給 される還元能を有する有機化合物などの還元作用によって、非酸化状態の銅原子ま で還元される。前記の一連の反応サイクルが繰り返される結果、当初は、微粒子の内 部まで達していた酸化銅被膜層は徐々に減少して、最終的には、微粒子全体が、銅 微粒子に復する。
[0083] 仮に、この銅微粒子に復した状態を、加熱下、再び大気中の酸素分子などに一定 時間以上接触させると、再び表面酸ィ匕膜が生じるが、本発明の第二の形態にかかる 方法では、加熱下、再び空気など酸素分子を含む混合気体に短時間接触させる酸 化処理を施す。引き続き、加熱下で、気相から供給される、還元能を有する化合物を 還元剤として作用させることで、酸化処理によって表面に形成された単分子層状の 酸化物層を再還元することで、再生された銅微粒子の表面は、より清浄な銅原子が 表出した表面となり、それを相互に、密に接触させる状態とすると、例えば、平均粒子 径が数/ z mの銅微粒子であっても、銅ナノ粒子の表面と同程度に表面マイグレーシ ヨン可能な銅原子が存在する環境となり、結果として、比較的に低温でも、速やかに 焼結が進行し、塗布層全体が、銅微粒子の緻密な焼結体層に形成される。その際、 一回の処理に伴って生成する、より清浄な銅原子が表出した表面は、平均粒子径が 数/ z mの銅微粒子表面の一部にしか生成されないので、酸化処理と再還元処理を 繰り返すことで、累進的に銅微粒子相互の焼結部の拡大を図ることが、銅微粒子の 緻密な焼結体層に形成にお!、ては、より効果的となって 、る。 [0084] なお、銅ナノ粒子の表面と同程度に表面マイグレーション可能な銅原子が存在する 部分は、その表面の局所的な曲率が lOOnm程度である部分であり、平均粒子径が 数 mを大きく超える銅微粒子では、隣接する粒子と接触する部位に、かかる局所 的な構造が存在する頻度は極端に小さくなるため、全体として、緻密な焼結体層を 形成するには至らない。一方、平均粒子径が lOOnm以下の銅ナノ粒子では、平均 粒子径が数/ z mの銅微粒子よりも、一層前記の過程は顕著に進行するので、より一 層緻密な焼結体層を形成することが可能となる。また、加熱温度がより低くとも、平均 粒子径が lOOnm以下の銅ナノ粒子では、酸化処理と再還元処理を繰り返すことで、 累進的に銅微粒子相互の焼結部の拡大を図ることが可能となる。
[0085] まず、本発明の第二の形態にかかる方法では、表面酸化膜層を有する銅微粒子ま たは酸化銅微粒子を含有する分散液を用いて、目的とする微細形状導電体の平面 形状パターンに合わせて、該分散液の塗布層を描画する。その際、分散質とする表 面酸ィ匕膜層を有する銅微粒子または酸化銅微粒子の平均粒子径は、形成される平 面形状パターンにおける最小線幅、ならびに、作製される焼結体層の膜厚に応じて 、適宜選択するが、その平均粒子径は、少なくとも 10 m以下の範囲とする。具体的 には、焼結体層の形成に用いる銅微粒子の平均粒子径は、形成すべき焼結体層に 要求される線幅、膜厚の制御精度を考慮し、その精度を達成できる範囲に選択する ことが必要であり、少なくとも、形成すべき焼結体層の前記最小膜厚の 1Z4以下、よ り好ましくは 1Z20以下、かつ前記最小の線幅の 1Z10以下、より好ましくは 1Z20 以下に選択することが好ましい。
[0086] 例えば、本発明の第二の形態に力かる微細な銅系配線パターンの形成方法では、 第一に、極めて微細な配線パターンを形成した際に、その最小な配線幅の部分にお V、て、最も顕著に見出されるエレクト口マイグレーション現象に起因する断線を回避 する目的で、焼結体銅系配線を利用するものであり、その配線パターンの最小の配 線幅を、 0. 5— 200 μ mの範囲、実用的には、 5— 50 μ mの範囲に、対応させて、 最小の配線間スペースを、 0. 5— 200 mの範囲、実用的には、 5— 50 mの範囲 に選択する際に、より好適な方法となる。前記最小の配線幅を考慮して、その精度に 対応可能な、焼結体層の形成に用いる銅微粒子は、少なくとも、平均粒子径が 100η m以下のナノ粒子を利用することが好ましい。一方、前記数/ z m程度の最小の配線 幅に対応して、焼結体層の膜厚もサブ m—数/ z mの範囲に選択されるため、力か る膜厚における平坦性を十分に満足させる観点からも、使用する表面に酸化銅被膜 層を有するナノ粒子の平均粒子径は、 1一 lOOnmの範囲に、より好ましくは、 1一 20 nmの範囲に選択する。少なくとも、本発明の第二の形態にカゝかる微細配線パターン の形成方法は、前記の極めて微細な配線パターンを、ナノ粒子の分散液を用いて、 高い配線幅の均一性で描画する上では、使用するナノ粒子の平均粒子径は、目標と する最小の配線幅ならびに最小の配線間スペースに対して、その 1Z10以下に選択 することが望ましい。同時に、最小の配線幅に応じて、焼結体銅系配線層の層厚も 適宜決定されるが、通常、最小の配線幅と比較し、配線層の層厚は有意に小さな形 態であり、ナノ粒子の平均粒子径を、 1一 lOOnmの範囲に、より好ましくは、 1一 20η mの範囲に選択することで、配線層の層厚のバラツキ、局所的な高さの不均一を抑 制することが可能となる。
[0087] 本発明の第二の形態に力かる銅薄膜の形成方法は、使用する表面に酸化銅被膜 層を有するナノ粒子の平均粒子径は、 1一 lOOnmの範囲に、より好ましくは、 1一 20 nmの範囲に選択することで、平均膜厚がサブ; z m—数; z mの極薄い銅薄膜を形成 する際、高い膜厚の均一性、制御性を達成できる。一方、本発明の第二の形態にか かる銅微粒子焼結体型の微細形状導電体の形成方法は、例えば、平均膜厚が数 m— 10数/ z m程度の銅薄膜の形成にも適用でき、その際には、使用する表面に酸 ィ匕銅被膜層を有する銅微粒子の平均粒子径は、サブ/ z m—数; z mの範囲に選択す ることができる。カロえて、平均粒子径がサブ m—数/ z mの範囲の表面に酸化銅被 膜層を有する銅微粒子と、平均粒子径が lOOnm以下の表面に酸化銅被膜層を有 する銅ナノ粒子とを併用する形態とすることもできる。
[0088] なお、表面酸化膜層を有する銅微粒子または酸化銅微粒子を含有する分散液中 に含有される、表面酸化膜層を有する銅微粒子は、少なくとも、前記表面酸化膜層 は、酸化第一銅、酸化第二銅、またはこれら銅酸ィ匕物の混合物のいずれかを含んで なり、また、該微粒子は、酸化第一銅、酸化第二銅、またはこれら銅の酸化物の混合 物、ならびに金属銅のうち、 2つ以上を含んでなる混合体状粒子であってもよい。特 に、含有される表面酸化膜層を有する銅微粒子として、平均粒子径が lOOnm以下 の表面に酸化銅被膜層を有する銅ナノ粒子が含まれる際には、かかる銅ナノ粒子の 表面は、酸化銅被膜層で均一に被覆される形態とすることで、分散液中において、 ナノ粒子の金属表面が直接接触して、相互に融合した凝集体の形成を引き起こす現 象を回避することが可能となる。
[0089] 本発明の第二の形態にかかる銅微粒子焼結体型の微細形状導電体の形成方法 では、銅微粒子相互の電気的な接触を、焼結体形成で達成するので、利用する分 散液中には、ノインダ一となる榭脂成分を配合しない組成とされる。従って、分散液 中に含まれる分散媒体は、力かる分散液を塗布して、目的の微細なパターン形状の 塗布膜層の形成に利用可能な分散溶媒であれば、種々の分散溶媒が利用可能で ある。なお、下記する加熱処理を実施する際、塗布膜層内部に対して、気相から供 給される還元能を有する化合物の蒸気が作用可能である必要があり、力かる加熱処 理温度において、蒸散がなされる分散溶媒であることが必要となる。従って、利用さ れる分散溶媒は、室温では、液状である必要があり、融点は、少なくとも、 20°C以下、 好ましくは、 10°C以下であり、一方、 350°C以下に選択される加熱処理温度では、高 い蒸散性を示す必要もあり、その沸点は、少なくとも、 350°C以下、好ましくは、 300 °C以下であることが好ましい。但し、その沸点が、 100°Cを下回ると、塗布膜層の描 画を行う過程で、分散溶媒の蒸散が相当に進行するため、塗布膜層に含有される表 面酸ィ匕膜層を有する銅微粒子の量にバラツキを引き起こす要因ともなる。従って、沸 点が、少なくとも、 100°C以上、 300°C以下の範囲である分散溶媒を選択することが より好まし 、。
[0090] 表面酸化膜層を有する銅微粒子または酸化銅微粒子を含有する分散液の調製に 利用される分散溶媒には、例えば、テトラデカンなどの高い沸点を有する炭化水素 溶媒を利用することができる。また、分散溶媒自体に、沸点が 300°C以下の多価のァ ルコール類、例えば、エチレングリコールや 2—ェチルへキサン 1, 3—ジオールなど 、加熱した際、還元能を示す有機溶剤を選択することもできる。この加熱した際、還 元能を示す有機溶剤を分散溶媒として利用すると、後述する還元処理を行う際、分 散溶媒自体も、還元剤として作用させ、その寄与を部分的に利用することも可能であ る。その際、少なくとも、第一の処理工程を終えて、第二の処理工程における、酸ィ匕 処理工程を開始する時点では、塗布層の内部には、利用した分散溶媒が残留せず 、塗布層の内部へも気相から、酸素分子が侵入可能な状態となることが必須である。
[0091] 場合によっては、この微粒子分散液を配線形成に用いる場合、分散液を均一分散 ィ匕、高濃度化、液粘度の調整、および基板への密着性を高めるために、有機バイン ダ一として機能する榭脂成分、粘度調整用のチキソ剤あるいは希釈用の有機溶剤を 添加し、さらに混合'攪拌して、塗布、描画に用いる微粒子分散液を調製することもで きる。一方、表面に酸化銅被膜層を有する銅微粒子、あるいは酸化銅微粒子自体は 、その表面に存在する酸ィ匕膜被覆のため、互いに接触しても、微粒子間の融着は起 こらず、凝集体形成など、均一な分散特性を阻害する現象は生じないものとなってい る。従って、描画した塗布層中では、分散溶媒の蒸散とともに酸化銅被膜層を有する 銅微粒子は、沈積'乾固して、最終的に緻密な積層状態を達成できる。
[0092] また、表面酸化膜層を有する銅微粒子または酸化銅微粒子を含有する分散液を用 いて、所望の配線パターンを基板上に描画する手法としては、従来から、金属微粒 子を含有する分散液を利用する微細配線パターンの形成において利用される、スク リーン印刷、インクジェット印刷、または転写印刷のいずれの描画手法をも、同様に 利用することができる。具体的には、目的とする微細配線パターンの形状、最小の配 線幅、配線層の層厚を考慮した上で、これらスクリーン印刷、インクジェット印刷、また は転写印刷のうち、より適するものを選択することが望ましい。
[0093] 一方、利用する該微粒子を含有する分散液は、採用する描画手法に応じて、それ ぞれ適合する液粘度を有するものに、調製することが望ましい。例えば、微細配線パ ターンの描画にスクリーン印刷を利用する際には、該微粒子を含有する分散液は、 その液粘度を、 30— 300 Pa ' s (25°C)の範囲に選択することが望ましい。また、転 写印刷を利用する際には、液粘度を、 3— 300 Pa ' s (25°C)の範囲に選択すること が望ましい。インクジェット印刷を利用する際には、液粘度を、 1一 100 mPa - s (25 °C)の範囲に選択することが望ましい。該微粒子を含有する分散液の液粘度は、用 いる微粒子の平均粒子径、分散濃度、用いている分散溶媒の種類に依存して決まり 、前記の三種の因子を適宜選択して、目的とする液粘度に調節することができる。 この表面酸化膜層を有する銅微粒子または酸化銅微粒子分散液を用いた配線パ ターンの描画を終えた後、配線基板は、加熱処理 (還元、焼成処理)装置内におい て、先ず、第一の処理工程として、還元処理を実施するため、還元能を有する化合 物の蒸気や気体を含む雰囲気下、加熱温度を 350°C以下に選択して、加熱すること で、気相から供給される、還元能を有する化合物を還元剤として、表面の酸化膜の還 元がなされる。この還元剤として利用可能な還元能を有する有機化合物は、前記カロ 熱温度において、酸化第一銅、酸ィ匕第二銅を銅まで還元可能なものであり、前記カロ 熱温度において、蒸気として存在するものである限り、種々な有機化合物を利用する ことができる。本発明の第二の形態において利用可能な還元能を有する有機化合物 の好適な例として、酸ィ匕によって、ォキソ基( = 0)またはホルミル基 (-CHO)へと変 換可能なヒドロキシ基を有する有機化合物を挙げることができ、必要に応じて、二種 以上を併用することもできる。なかでも、より好適な一例として、二以上のヒドロキシ基 を有するアルコールィ匕合物を挙げることができる。具体的には、本発明の第二の形 態にお 、て利用可能な還元能を有するアルコールィ匕合物の好適な例には、メチルァ ノレコーノレ、ェチノレアノレコーノレ、イソプロピノレアノレコーノレ、 2—ブチノレアノレコーノレ、 2—へ キシルアルコールなどの脂肪族モノアルコール、エチレングリコール(1, 2—エタンジ オール)、プロピレングリコール(1, 2—プロパンジオール)、 1, 3—プロパンジオール、 グリセリン(1, 2, 3—プロパントリオール)、 1, 2—ブタンジオールなどの脂肪族多価ァ ノレコーノレ、ベンジルアルコール、 1—フエ-ルエタノール、ジフエ-ルカルビトール(ジ フエ-ルメタノール)、ベンゾイン(2—ヒドロキシー 1, 2—ジフエ-ルエタノン)などの芳 香族モノアルコール、ヒドロキノン、ヒドロべンゾイン(1, 2—ジフエ-ルー 1, 2—エタンジ オール)などの芳香族多価アルコールなどが含まれる。また、加熱処理中、系内に存 在する水分との反応によって、 1, 2—ジオールィ匕合物へと変換可能なエポキシィ匕合 物、あるいは、 1, 3—ジオールに変換可能なォキセタン化合物も、かかる反応を引き 起こす水分が存在する、あるいは、生成される場合には、利用可能である。これらのヒ ドロキシ基を有する有機化合物は、そのヒドロキシ基 (-OH)から、加熱下に酸化を受 け、ォキソ基( = 0)またはホルミル基 (-CHO)へと変換される反応を利用して、酸ィ匕 第一銅、酸化第二銅に対する還元作用を発揮する。 [0095] 一方、これらヒドロキシ基を有する有機化合物に由来する、ヒドロキシ基 (一 OH)から 、加熱下に酸化を受け、ォキソ基( = 0)またはホルミル基 (-CHO)へと変換される結 果、副生する反応生成物は、加熱によって、蒸発、気化することで、除去可能である ことがより好ましい。
[0096] 加熱温度 350°C以下、例えば、 300°Cを選択する際、十分に高い還元能を示すた めには、力かる有機化合物自体の沸点は、少なくとも、 300°C以下であり、予め気化 された蒸気として供給することが容易なものが、より利用に適しており、例えば、ェチ レングリコール(1, 2—エタンジオール)、プロピレングリコール(1, 2—プロパンジォー ル)、 1, 3—プロパンジオール、グリセリン(1, 2, 3—プロパントリオール)は、前記の好 適な要件を満足するものの一例である。
[0097] さらには、還元能を有する有機化合物以外に、加熱下において、酸化第一銅、酸 化第二銅に対する還元作用を発揮する種々の無機の気体分子、例えば、水素分子 を禾 IJ用することちできる。
[0098] また、第二の処理工程における、再還元処理工程でも、上記の第一の処理工程に おける還元処理を実施するための条件と同じ条件:還元能を有する化合物の蒸気や 気体を含む雰囲気下、加熱温度を選択する。従って、その好適な範囲も、同じものと なる。
[0099] なお、還元能を有する有機化合物を蒸気として供給する際、塗布層中に含有され る表面に酸化銅被膜層を有する銅微粒子 63. 55g当たり、還元能を有する有機化合 物中の酸化を受けるヒドロキシ基 (一 OH)力 1一 50モル量の範囲となる化合物量を 蒸気として供給することが好ましい。あるいは、加熱処理の雰囲気中に存在させる、 還元能を有する有機化合物の蒸気圧を、 100— 2000 hPaの範囲となるように選択 することが好ましい。
[0100] 力!]えて、還元能を有する有機化合物の蒸気や水素分子は、加熱処理の雰囲気中 に一定の分圧で供給する際、希釈用ガスまたはキャリアガスとして、窒素などの不活 性ガスを利用することが好ま ヽ。
[0101] 通常、これら還元能を有する有機化合物は予め加熱気化して、発生した蒸気を必 要に応じて、キャリアガスに混合した上で系内に一定の流量で供給する形態とするこ とが好ましい。また、還元能を有する有機化合物の液体を、微細な液滴とした上で、 キャリアガスによって、この霧状の微細液滴を一定の流量で供給する形態とし、加熱 領域において、微細液滴より気化させた、有機化合物の蒸気を利用することもできる
[0102] 第一の処理工程では、表面酸化膜層を有する銅微粒子または酸化銅微粒子を還 元して、銅微粒子とする力 その加熱下での還元に要する時間は、加熱温度、還元 剤として利用する還元能を有する化合物の種類、雰囲気中における混合比率などを 考慮して、適宜選択することができるが、通常、 1分間一 15分間の範囲において、十 分な還元を完了させる還元条件を設定することが好ましい。
[0103] 次に、第二の処理工程における、酸化処理工程では、加熱を行ないつつ、酸素を 含む雰囲気中に、短時間曝すことで、銅微粒子表面に対して、僅かな酸化処理が施 される。また、力かる酸ィ匕処理工程後、再還元処理へと速やかに移行するため、酸素 を含む混合ガスを表面から吹き付ける形態で実施することもできる。酸素を含有する 雰囲気中に短時間曝すことで、還元処理、ならびに再還元処理において還元剤とし て利用される、還元能を有する有機化合物の一部が、銅微粒子表面に吸着 '残留し ている際には、これら吸着分子に対して、酸化処理して、生成する反応生成物として 、速やかに脱離 ·除去を可能とする。また、銅微粒子表面に部分的に、 Cu-OHの形 態に留まっているものは、酸化銅へと酸化することで、その後、再還元処理を施す際 、この単分子層の酸化皮膜の還元'除去を可能とする。
[0104] 但し、銅微粒子表面に、単分子層の酸ィ匕被膜を超えて、過度に酸化が引き起こさ れることは、好ましくなぐこの酸化処理工程の時間は、最小限の時間範囲とすること が好ましい。具体的には、加熱温度に応じて、酸素を含有する雰囲気中における、 酸素の含有比率を選択して、力かる短時間の時間範囲内における酸ィ匕の進行速度 を制御することが好ましい。例えば、加熱温度を 300°Cに選択する際、酸素を含有す る雰囲気が、空気である場合には、酸化処理工程を実施する時間は、 30秒間以下、 好ましくは 15秒間以下に選択することが好ましい。通常、酸素を含む混合ガスを表面 カゝら吹き付ける形態で実施する場合、用いる酸素を含む混合ガスは、分子状酸素を 一定の体積比で、窒素などの不活性ガスと混合して用いることができる。例えば、還 元能を有する有機化合物の蒸気や水素分子の供給に利用される希釈用ガスまたは キャリアガスが窒素ガスである際には、含まれる水分を除去した、酸素の含有比率が 約 20体積%である乾燥空気を利用することもでき、あるいは、窒素ガスに酸素を一定 の体積%で混合した混合ガスを利用することもできる。
[0105] 一方、第二の処理工程にぉ 、て、酸化処理工程の直後に実施する再還元処理の 時間は、加熱温度、還元剤として利用する還元能を有する化合物の種類、雰囲気中 における混合比率などを考慮して、適宜選択することができるが、通常、 30秒間一 3 00秒間の範囲において、十分な再還元と焼結の段階的な進行がなされる還元条件 を設定することが好ましい。
[0106] なお、還元処理、焼成処理工程における加熱処理温度は、還元処理、再還元処理 にお!/ヽて還元剤として利用する、還元能を有する有機化合物や水素の反応性を考 慮して、適宜選択すべきものであり、少なくとも、 350°C以下の範囲で、例えば、 200 °C以上、通常、 250°C以上の範囲に選択することが好ましい。カロえて、処理装置内に 設置されるプリント基板自体の材質に応じた耐熱特性を満足する温度範囲内、 300 °C以下、例えば、 250°C— 300°Cの範囲に維持されるように、温度の設定'調節を行 う。前記の設定温度、還元剤の濃度、蒸気圧、反応性などの条件にも依存するもの の、還元処理と焼成処理の時間合計は、 10分間一 1時間の範囲に選択することが可 能である。具体的には、銅微粒子表面を覆う酸化銅被膜層の厚さ、ならびに、その還 元に要する時間を考慮した上で、設定温度、処理時間を適宜選択する。
[0107] すなわち、第一の処理工程では、銅微粒子表面を覆う酸化銅被膜層を還元除去し て、銅微粒子に復するが、その後、第二の処理工程では、短時間、酸化処理を施し、 次いで、再還元処理を行う操作を繰り返して実施して、銅微粒子相互の焼結を段階 的に進行させるため、この再還元処理と銅微粒子相互の焼結を進めるステップは、 長くとも、数分間として、この繰り返し回数を例えば、 5回程度とした際、第一の処理 工程と第二の処理工程との合計の所要時間が、前記の範囲となるように、設定温度、 還元剤の濃度、蒸気圧、反応性などの還元処理条件を選択することが好ましい。
[0108] 配線パターンの描画は、表面に酸化銅被膜層を有する微粒子または酸化銅微粒 子を含む分散液を用いて実施できるため、その微細な描画特性は、従来の、金、銀 の微粒子を利用する微細な配線パターン形成と遜色の無 ヽものとなる。具体的には
、形成される微細な配線パターンは、最小配線幅を、 0. 5— 200 /z mの範囲、実用 的には、 5— 50 mの範囲、対応する最小の配線間スペースを、 0. 5— 200 mの 範囲、実用的には、 5— 50 mの範囲に選択して、良好な線幅均一性'再現性を達 成することができる。カロえて、得られる配線層は、界面に酸化物皮膜の介在の無い、 銅ナノ粒子の焼結体層となり、前記の最小配線幅における、その体積固有抵抗率も 、少なくとも 30 X 10— 6 Ω 'cm以下、多くの場合、 10 X 10— 6 Ω 'cm以下とすることがで き、良好な導通特性を達成できる。また、銅薄膜の形成に応用する際には、形成され る銅薄膜の膜厚は、 0. 1— 100 μ mの範囲内とし、その平均膜厚は、 0. 1— 20 μ m の範囲、実用的には、 1一 20 /z mの範囲に選択して、良好な表面平坦性と膜厚の均 一性を高 、再現性で達成することができる。
[0109] カロえて、形成される焼結体層は、銅自体は、エレクト口マイグレーションの少ない導 電性材料であるので、上記の微細な配線パターンにおいても、エレクト口マイグレー シヨンに起因する配線厚さの減少、断線の発生を抑制できる。
[0110] 本発明の第二の形能における ¾施能様
以下に、実施例を示し、本発明の第二の形態をより具体的に説明する。これらの実 施例は、本発明の第二の形態に力かる最良の実施形態の一例ではあるものの、本 発明の第二の形態はこれら実施例により限定を受けるものではない。
[0111] (実施例 2— 1)
三井金属製アトマイズ銅粉 1100Y (平均粒径 0. 9 m) 80gに対し、分散溶媒とし て、 2—ェチルへキサン 1, 3—ジオール(融点: 40°C、沸点: 245°C)を 20g添カロし 、均一になるまで攪拌して、ペースト状の分散液を調製した。なお、該銅微粒子は、 その表面は、表面酸化膜で被覆された形態となっており、得られたペースト状分散液 の粘度(25°C)は、 1 Pa' sであった。また、該ペースト状の分散液における、該銅微 粒子の体積比率は、 45体積%である。
[0112] 調製されたペースト状の分散液を用いて、下記する条件で銅微粒子の焼結体層を 作製し、得られ銅微粒子焼結体層の体積固有抵抗率の測定、ならびに、銅微粒子 焼結体層における銅微粒子相互の凝集状態を評価した。 [0113] [銅微粒子焼結体層の作製条件]
基板として、スライドガラスを用い、その表面上にペースト状の分散液を幅 lcm、長 さ 5cm、平均塗布層厚さ 10 mで塗布し、短冊状の塗布層を形成する。窒素雰囲気 下において、予め、温度 300°Cに加熱されているホットプレート上に、前記塗布層形 成を終えたスライドガラスを設置し、グリセリン蒸気 Z窒素ガスの混合気体を塗布層 表面から吹き付けつつ、この還元能を有するグリセリン蒸気を含む雰囲気下で、 5分 間保持し、表面酸化膜層の還元を進める、第一の処理を行う。
[0114] 次いで、温度 300°Cに加熱したまま、 10秒間、乾燥空気を表面から吹き付けつつ、 酸化処理し、また、乾燥空気に代えて、グリセリン蒸気 Z窒素ガスの混合気体を表面 力も吹き付けつつ、この還元能を有するグリセリン蒸気を含む雰囲気下で、 2分 50秒 間保持して、再還元処理を施す、酸化,再還元処理サイクルを、計 5回繰り返し、第 二の処理を行う。この第一の処理と第二の処理とを連続して実施した後、グリセリン蒸 気 Z窒素ガスの混合気体を表面力 吹き付けつつ、室温まで放置冷却する。
[0115] なお、本実施例で用いたグリセリン蒸気 Z窒素ガスの混合気体中に含まれるグリセ リン蒸気の比率は、 20体積%であり、窒素キャリアガスにより、 300°Cに加熱したダリ セリンの平衡蒸気圧の蒸気を輸送して、供給している。また、乾燥空気には、酸素分 子を 20体積%、窒素分子を 80体積%含み、予め水分を除去したものを使用してい る。
[0116] 以上の加熱処理を施すことで、スライドガラス上の塗布層から、平均膜厚 5 μ mの焼 結体層が形成されていた。
[0117] [焼結体層の体積固有抵抗率測定]
得られた焼結体層について、幅 lcm、長さ 5cmの平面形状、平均膜厚 5 mを有 する均一な薄膜層として、その体積固有抵抗率を測定した。測定された体積固有抵 抗率は、 9. 8 Ω 'cmであった。
[0118] [焼結体層における銅微粒子相互の凝集状態評価]
得られた焼結体層につ 、て、その表面力も容易に剥落する銅微粒子の有無を観察 し、銅微粒子相互の凝集状態を評価する。具体的には、得られた焼結体層の表面を
、ラテックス手袋をした指で擦る程度の摩擦を加えた際、剥落する銅微粒子の有無を 観察する。
[0119] 本実施例で得られた焼結体層においては、該摩擦処理によって、表面から剥落す る銅微粒子は見出されていない。実際に、得られた焼結体層の表面を SEM観察し たところ、銅微粒子相互が密に焼結されて 、ることが確認された。
[0120] (実施例 2— 2— 2— 5)
実施例 2— 1で調製されるペースト状の分散液を用いて、短冊状の塗布層を形成し 、その後の加熱処理における、加熱温度を、 250°C— 350°Cに変更し、それ以外の 条件は実施例 2— 1と同じに選択して、還元 ·焼結処理を試みた。
[0121] 表 2— 1に、実施例 2— 1、ならびに実施例 2— 2— 2— 5における評価結果を併せて示 す。
[0122] [表 2-1]
表 2— 1
Figure imgf000043_0001
〇:摩擦を加えた際、 剥落する銅微粒子 無し ;
X :摩擦を加えた際、 剥落する銅微粒子 有り
[0123] 表 2 - 1に示す結果を対比すると、加熱温度が 300°C以上では、 10 ^ Ω 'cm以下 と良好な導電性が達成されている。さらに加熱温度を高くしても、体積固有抵抗率の 大きな低下は見られて ヽな 、。
[0124] (実施例 2— 6— 2— 9)
実施例 2— 1で調製されるペースト状の分散液を用いて、短冊状の塗布層を形成し 、その後の加熱処理において、第二の処理工程で実施する、酸化処理と再還元処 理の繰り返し回数を 0回一 10回に変更して、それ以外の条件は実施例 2-1と同様に 選択して、還元'焼結処理を試みた。 [0125] 表 2— 2に、実施例 2— 1、ならびに実施例 2— 6— 2— 9における評価結果を併せて示 す。
[0126] [表 2- 2]
表 2—— 2
Figure imgf000044_0001
〇:摩擦を加えた際、 剥落する銅微粒子 無し ;
X :摩擦を加えた際、 剥落する銅微粒子 有り
[0127] 表 2 - 2に示す結果を対比すると、第二の処理工程で実施する、酸化処理と再還元 処理の繰り返し回数を増すとともに、段階的に焼結が進行し、体積固有抵抗率も低 下している。なお、繰り返し回数が 5回以上となると、その後は、更なる顕著な向上は 見られない。
[0128] (実施例 2— 10)
実施例 2— 1で調製されるペースト状の分散液を用いて、短冊状の塗布層を形成し 、その後の加熱処理において、第二の処理工程で実施する、酸化処理と再還元処 理の繰り返し回数を 10回に変更して、それ以外の条件は実施例 2— 2と同様に選択し て、還元'焼結処理を試みた。
[0129] 表 2— 3に、実施例 2— 2、実施例 2— 9、ならびに実施例 2— 10における評価結果を 併せて示す。
[0130] [表 2- 3] 表 2 — 3
Figure imgf000045_0001
〇:摩擦を加えた際, 剥落する銅微粒子 無し ;
X :摩擦を加えた際、 剥落する銅微粒子 有り
[0131] 実施例 2— 10の加熱処理条件でも、緻密な焼結体層には至っていない結果に対す る主な原因は、上述する実施例 2— 2の結果に対する主な原因と同じぐ第一の処理 工程において、表面酸ィ匕膜に対する還元処理の大半が行われる力 加熱温度が 30 0°Cより低い条件では、この第一の処理工程における還元処理の進行が不十分であ り、その後、第二の処理工程を施しても、銅微粒子相互における良好な焼結状態に 達するに至らないためと、判断される。
[0132] (実施例 2— 11— 2— 13)
実施例 2— 1でペースト状の分散液を用いて、短冊状の塗布層を形成し、その後の 加熱処理において利用する、還元能を有する化合物を、下記表 2— 4に示すものに変 更して、それ以外の条件は実施例 2— 1と同じに選択して、還元'焼結処理を試みた。
[0133] [表 2-4]
表 2— 4
(還元処理において, 利用した還元能を有する化合物)
Figure imgf000046_0001
(還元処理において、 利用した還元能を有する化合物と、 窒素との混合比率)
Figure imgf000046_0002
表 2— 5に、実施例 2— 1、ならびに実施例 2— 11一 2— 13における評価結果を併せて 示す。
[表 2- 5]
表 2 _ 5
Figure imgf000047_0001
〇:摩擦を加えた際、 剥落する銅微粒子 無し ;
X :摩擦を加えた際、 剥落する銅微粒子 有り
[0135] 表 2— 5に示す結果を対比すると、グリセリンと同様に、エチレングリコール、エリトリト ール、水素分子を、還元能を有する化合物として用いる際にも、体積固有抵抗率も、 ほぼ 10 Ω · cm前後と良好な導電性が達成されている。利用される還元能を有す る化合物の種類の広範な範囲において、酸化処理と再還元処理を繰り返し実施する ことによる効果が同程度に達成できることが確認される。
[0136] (比較例 2— 1)
実施例 2— 1で調製されるペースト状の分散液を用いて、短冊状の塗布層を形成し 、その後の加熱処理において、第一の処理工程に引き続き、実施する第二の処理工 程の、酸化処理と再還元処理の繰り返しに代えて、窒素雰囲気中で 15分間加熱保 持する処理に変更し、それ以外の条件は実施例 2— 1と同じに選択して、還元'焼結 処理を試みた。
[0137] 前記実施例 2— 1に記載する評価手順に従って、体積固有抵抗率測定と銅微粒子 相互の凝集状態評価を試みた。
[0138] (比較例 2— 2)
実施例 2— 1で調製されるペースト状の分散液を用いて、短冊状の塗布層を形成し 、その後の加熱処理において、第一の処理工程に引き続き、実施する第二の処理工 程の、酸化処理と再還元処理の繰り返しに代えて、乾燥空気の雰囲気での酸化処理 を l分間継続し、次いで、グリセリン蒸気 Z窒素ガスの混合気体の雰囲気において、
14分間加熱を継続する処理に変更し、それ以外の条件は実施例 2— 1と同じに選択 して、還元'焼結処理を試みた。
[0139] 表 2— 6に、実施例 2— 6、実施例 2— 7、と比較例 2— 1、比較例 2— 2における評価結 果を併せて示す。
[0140] [表 2- 6]
表 2 _ 6
Figure imgf000048_0001
〇:摩擦を加えた際、 剥落する銅微粒子 無し ;
X :摩擦を加えた際、 剥落する銅微粒子 有り
[0141] 表 2 - 6に示す結果を対比すると、還元 ·焼結処理工程においては、第一の処理工 程における還元処理に加えて、短時間、乾燥空気の雰囲気下において酸化処理し、 次 、で、還元能を有する化合物の蒸気 Z窒素ガスの混合気体の雰囲気における再 還元処理を施す手法を選択することで、還元された銅微粒子相互の焼結が効果的 に進行することが確認される。
[0142] (実施例 2 - 14、 2-15)
実施例 2— 1において分散溶媒に利用した、 2—ェチルへキサン 1, 3—ジオールに 代えて、実施例 2— 14では、エチレングリコール (融点: 12. 6°C、沸点: 197. 6°C) を、実施例 2-15では、 N14 (テトラデカン、融点 5. 86°C、沸点 253. 57°C、日鉱石 油化学製)を用いて、ペースト状の分散液を調製した。なお、得られたペースト状分 散液の粘度(25°C)は、実施例 2— 14では、 1 Pa's、実施例 2— 15では、 1 Pa's、 であった。また、作製されたペースト状の分散液における、該銅微粒子の体積比率は
、実施例 2-14では、 45体積%、実施例 2-15では、 45体積%である。
[0143] 調製されたペースト状の分散液を用いて、短冊状の塗布層を形成し、その後の加 熱処理する条件は実施例 1と同じに選択して、還元'焼結処理を試みた。
[0144] 表 2— 7に、実施例 2— 1、ならびに実施例 2— 14、 2— 15における評価結果を併せて 示す。
[0145] [表 2-7]
表 2——7
Figure imgf000049_0001
〇:摩擦を加えた際、 剥落する銅微粒子 無し ;
X :摩擦を加えた際、 剥落する銅微粒子 有り
[0146] この対比から、作製されるペースト状の分散液に用いる分散溶媒の種類は、加熱処 理中、第二の処理で実施される、酸化処理と再還元処理の繰り返しの効果に本質的 な影響を与えず、広範な種類の分散溶媒が利用できることが確認される。
[0147] (実施例 2— 16)
実施例 2— 16では、より大きな粒子径を有する三井金属製アトマイズ銅粉 1300Y ( 平均粒径 3. 3 m) 80gに対し、分散溶媒 2—ェチルへキサン 1, 3—ジオール 20g を添加し、均一になるまで攪拌して、ペースト状の分散液を調製した。なお、得られた ペースト状分散液の粘度(25°C)は、 1 Pa ' sであった。また、該ペースト状の分散液 における、該銅微粒子の体積比率は、 45体積%である。
[0148] 調製されたペースト状の分散液を用いて、短冊状の塗布層を形成し、その後の加 熱処理する条件は実施例 2— 1と同じに選択して、還元 ·焼結処理を試みた
[0149] 表 2-8に、実施例 2-1と実施例 2— 16における評価結果を併せて示す。
[0150] [表 2- 8] 表 2— 8
Figure imgf000050_0001
〇:摩擦を加えた際、 剥落する銅微粒子 無し ;
X :摩擦を加えた際、 剥落する銅微粒子 有り
[0151] (実施例 2—17— 2—19、実施例 2—20— 2—22)
実施例 2 - 17においては、湿式法で作製された銅ナノ粒子である、シーアィ化成 銅微粒子(平均粒径 30nm) 75gに対し、分散溶媒 2 -ェチルへキサン 1, 3 -ジォー ル 25gを添加し、均一になるまで攪拌して、ペースト状の分散液を調製した。なお、 実施例 2— 17の組成で得られたペースト状分散液の粘度(25°C)は、 5 Pa ' sであつ た。
[0152] 調製されたペースト状の分散液を用いて、短冊状の塗布層を形成し、その後の加 熱処理する条件は実施例 2— 1と同じに選択して、還元 ·焼結処理を試みた。
[0153] カロえて、実施例 2— 17で調製されるペースト状の分散液を用いて、短冊状の塗布層 を形成し、その後の加熱処理における、加熱温度を、 250°C、 275°Cに変更し、それ 以外の条件は実施例 2— 17と同じに選択して、還元'焼結処理を試みた。
[0154] 一方、実施例 2— 20においては、ガス中蒸発法を用いて調製される銅ナノ粒子であ る、 UC銅微粒子(平均粒径 5nm) 75gに対し、分散溶媒として、テトラデカン 25gを 添加し、均一になるまで攪拌して、ペースト状の分散液を調製した。なお、実施例 2— 20の組成で得られたペースト状分散液の粘度(25°C)は、 0. 1 Pa ' sであった。 [0155] 調製されたペースト状の分散液を用いて、短冊状の塗布層を形成し、その後の加 熱処理する条件は実施例 2— 1と同じに選択して、還元 ·焼結処理を試みた。
[0156] カロえて、実施例 2— 20で調製されるペースト状の分散液を用いて、短冊状の塗布層 を形成し、その後の加熱処理における、加熱温度を、 250°C、 275°Cに変更し、それ 以外の条件は実施例 2— 20と同じに選択して、還元'焼結処理を試みた。
[0157] 表 2-9に、実施例 2-17— 2-19と実施例 2-20— 2-22における評価結果を併せ て示す。
[0158] [表 2- 9]
表 2— 9
Figure imgf000051_0001
〇:摩擦を加えた際、 剥落する銅微粒子 無し ;
X :摩擦を加えた際、 剥落する銅微粒子 有り
[0159] 利用している粒子径がナノサイズの範囲となると、ナノサイズ効果によって、加熱処 理温度が、 300°Cより低い範囲でも、得られる焼結体層の体積固有抵抗率は、少なく とも 10 μ Ω 'cm程度、または、 10 Ω 'cm以下の良好な導電性が達成されてい る。
[0160] (実施例 2—23— 2—25)
実施例 2— 20で調製されるペースト状の分散液を用いて、短冊状の塗布層を形成 し、その後の加熱処理における、加熱温度を前記実施例 2— 22と同じ、 250°Cに選択 し、利用する還元能を有する化合物を下記表 2— 10に示すものに変更して、それ以 外の条件は、実施例 2— 22と同じに選択して、還元 ·焼結処理を試みた。
[0161] [表 2- 10]
表 2 _ 1 0
(還元処理において、 利用した還元能を有する化合物)
Figure imgf000052_0001
(還元処理において、 利用した還元能を有する化合物と、 窒素との混合比率)
Figure imgf000052_0002
[0162] 表 2— 11に、実施例 2— 22、ならびに実施例 2— 23— 2— 25における評価結果を併 せて示す。
[0163] [表 2- 11] 表 2— 1 1
Figure imgf000053_0001
〇:摩擦を加えた際、 剥落する銅微粒子 無し;
X :摩擦を加えた際、 剥落する銅微粒子 有り
[0164] 表 2— 11に示す結果を対比すると、粒子径がナノサイズの範囲では、加熱処理温度 力 250°Cであっても、酸化処理と再還元処理を繰り返し実施する際、グリセリンと同様 に、エチレングリコール、プロピレングリコール、 1, 3 プロパンジオールを、還元能を 有する化合物として用いる際にも、 5 ^ Ω ' cm以下と良好な導電性が達成されてい る。
[0165] (実施例 2— 26)
実施例 2-26では、三井金属製アトマイズ銅粉 1300Y (平均粒径 3. 3 /ζ πι) 9質量 部: UC銅微粒子 (平均粒径 5nm) 1質量部の混合比を有する混合物 80gに対し、分 散溶媒 2—ェチルへキサン 1, 3—ジオール 20gを添加し、均一になるまで攪拌して 、ペースト状の分散液を調製した。なお、得られたペースト状分散液の粘度 (25°C) は、 1 Pa ' sであった。また、該ペースト状の分散液における、該銅微粒子の体積比 率は、 45体積%である。
[0166] 調製されたペースト状の分散液を用いて、短冊状の塗布層を形成し、その後の加 熱処理する条件は実施例 2— 16と同じに選択して、還元 ·焼結処理を試みた。
[0167] 表 2-12に、実施例 2-16と実施例 2-26における評価結果を併せて示す。
[0168] [表 2- 12] 表 2 - 1 2
Figure imgf000054_0001
〇:摩擦を加えた際、 剥落する銅微粒子 無し ;
X :摩擦を加えた際、 剥落する銅微粒子 有り
[0169] 比較的に大きなミクロンサイズの粒子径のものと、極めて微細なナノサイズの粒子径 のものとを併用することで、得られる焼結体層の体積固有抵抗率においては、有意な 低減効果が達成されて ヽる。
産業上の利用可能性
[0170] 本発明にかかる銅微粒子焼結体型の微細形状導電体の形成方法、ならびに、該 方法を応用した微細な銅系配線パターンの形成方法、あるいは銅薄膜の形成方法 は、電子機器における電子部品の実装に利用されるプリント配線基板を作製する際 、例えば、配線の配線幅が 200 μ m以下、特には 50 μ m以下、かつ配線間スペース は 200 m以下、特には 50 m以下である微細な回路パターン用の導電体層に好 適に利用できる、体積固有抵抗率が 10 Ω ' cm程度である優れた電導性を有する 銅微粒子焼結体型の微細形状導電体層を、高! ヽ再現性と生産性で作製可能な手 段として利用できる。

Claims

請求の範囲
[1] 基板上に銅ナノ粒子相互の焼結体層からなる微細な銅系配線パターンを形成する 方法であって、
平均粒子径を 1一 lOOnmの範囲に選択される、表面酸ィ匕膜層を有する銅ナノ粒子 または酸化銅ナノ粒子を含有する分散液を用いて、前記微細な配線パターンの塗布 層を基板上に描画する工程と、
前記塗布層中に含まれる、表面酸ィ匕膜層を有する銅ナノ粒子または酸化銅ナノ粒 子に対して、表面酸化膜層または酸化銅を還元する処理を施し、さらに、還元処理を 受けたナノ粒子の焼成を行って、焼結体層を形成する工程とを有し、
同一工程内で実施される、前記還元処理と焼成処理は、
加熱温度を、 300°C以下に選択して、
還元能を有する有機化合物の存在下、塗布層中に含まれる、表面酸化膜層を有す る銅ナノ粒子または酸化銅ナノ粒子を加熱し、前記還元能を有する有機化合物を作 用させることにより行うことを特徴とする微細な銅系配線パターンの形成方法。
[2] 分散液中に含有される、表面酸ィヒ膜層を有する銅ナノ粒子は、
少なくとも、前記表面酸化膜層は、酸化第一銅、酸化第二銅、またはこれら銅酸化物 の混合物のいずれかを含んでなり、また、該ナノ粒子は、酸化第一銅、酸化第二銅、 またはこれら銅の酸化物の混合物、ならびに金属銅のうち、 2つ以上を含んでなる混 合体状粒子である
ことを特徴とする請求の範囲 第 1項に記載の方法。
[3] 前記還元処理において、存在させる還元能を有する有機化合物は、
酸ィ匕によって、ォキソ基( = O)またはホルミル基 (一 CHO)へと変換可能なヒドロキシ 基を有する有機化合物、あるいは、それらの二種以上を混合したものである ことを特徴とする請求の範囲 第 1項に記載の方法。
[4] 前記還元処理において、存在させる還元能を有する有機化合物は、
アルコール性ヒドロキシ基を有する有機化合物、あるいは、それらの二種以上を混合 したものである
ことを特徴とする請求の範囲 第 1項に記載の方法。
[5] 前記還元処理において、存在させる還元能を有する有機化合物は、 二以上のヒドロキシ基を有する有機化合物、あるいは、それらの二種以上を混合した ものである
ことを特徴とする請求の範囲 第 1項に記載の方法。
[6] 前記還元処理において、存在させる還元能を有する有機化合物は、
グリセリン(1, 2, 3—プロパントリオール)である
ことを特徴とする請求の範囲 第 1項に記載の方法。
[7] 前記還元処理にお!、て、存在させる還元能を有する有機化合物の少なくとも一種 は、前記表面酸ィ匕膜層を有する銅ナノ粒子または酸化銅ナノ粒子を含有する分散 液中に配合されている
ことを特徴とする請求の範囲 第 1項に記載の方法。
[8] 前記還元処理にお!、て、存在させる還元能を有する有機化合物の少なくとも一種 は、
該還元処理に際して、前記還元能を有する有機化合物の蒸気として、前記微細な配 線パターンの塗布層に対して、気相から作用させる
ことを特徴とする請求の範囲 第 1項に記載の方法。
[9] 基板上に描画する、前記微細な配線パターンの塗布層にお ヽて、
その配線パターンの最小の配線幅を、 0. 5— 200 /z mの範囲に、対応させて、最 小の配線間スペースを、 0. 5— 200 mの範囲〖こ選択し、
分散液中に含有される前記表面酸化膜層を有する銅ナノ粒子または酸化銅ナノ粒 子の平均粒子径を、前記最小の配線幅ならびに最小の配線間スペースに対して、そ の 1Z10以下に選択することを特徴とする請求の範囲 第 1項に記載の方法。
[10] 微細な配線パターンの塗布層を基板上に描画する手法として、
スクリーン印刷法、インクジヱット法、または転写法の描画手法を選択することを特徴 とする請求の範囲 第 1項に記載の方法。
[11] 基板上に銅ナノ粒子相互の焼結体層からなる銅薄膜層を形成する方法であって、 平均粒子径を 1一 lOOnmの範囲に選択される、表面酸ィ匕膜層を有する銅ナノ粒子 または酸化銅ナノ粒子を含有する分散液を用いて、前記銅薄膜層パターンの塗布 層を基板上に描画する工程と、
前記塗布層中に含まれる、表面酸ィ匕膜層を有する銅ナノ粒子または酸化銅ナノ粒 子に対して、表面酸化膜層または酸化銅を還元する処理を施し、さらに、還元処理を 受けたナノ粒子の焼成を行って、焼結体層を形成する工程とを有し、
同一工程内で実施される、前記還元処理と焼成処理は、
加熱温度を、 300°C以下に選択して、
還元能を有する有機化合物の存在下、塗布層中に含まれる、表面酸化膜層を有す る銅ナノ粒子または酸化銅ナノ粒子を加熱し、前記還元能を有する有機化合物を作 用させることにより行うことを特徴とする銅薄膜の形成方法。
[12] 分散液中に含有される、表面酸化膜層を有する銅ナノ粒子は、
少なくとも、前記表面酸化膜層は、酸化第一銅、酸化第二銅、またはこれら銅酸化物 の混合物のいずれかを含んでなり、また、該ナノ粒子は、酸化第一銅、酸化第二銅、 またはこれら銅の酸化物の混合物、ならびに金属銅のうち、 2つ以上を含んでなる混 合体状粒子であることを特徴とする請求の範囲 第 11項に記載の方法。
[13] 前記還元処理において、存在させる還元能を有する有機化合物は、酸化によって 、ォキソ基( = O)またはホルミル基 (一 CHO)へと変換可能なヒドロキシ基を有する有 機化合物、あるいは、それらの二種以上を混合したものであることを特徴とする請求 の範囲 第 11項に記載の方法。
[14] 前記還元処理において、存在させる還元能を有する有機化合物は、アルコール性 ヒドロキシ基を有する有機化合物、あるいは、それらの二種以上を混合したものであ ることを特徴とする請求の範囲 第 11項に記載の方法。
[15] 前記還元処理において、存在させる還元能を有する有機化合物は、二以上のヒド 口キシ基を有する有機化合物、あるいは、それらの二種以上を混合したものであるこ とを特徴とする請求の範囲 第 11項に記載の方法。
[16] 前記還元処理において、存在させる還元能を有する有機化合物は、グリセリン(1, 2, 3—プロパントリオール)であることを特徴とする請求の範囲 第 11項に記載の方法
[17] 前記還元処理にお!、て、存在させる還元能を有する有機化合物の少なくとも一種 は、前記表面酸ィ匕膜層を有する銅ナノ粒子または酸化銅ナノ粒子を含有する分散 液中に配合されて 、ることを特徴とする請求の範囲 第 11項に記載の方法。
[18] 前記還元処理にお!、て、存在させる還元能を有する有機化合物の少なくとも一種 は、
該還元処理に際して、前記還元能を有する有機化合物の蒸気として、前記銅薄膜層 パターンの塗布層に対して、気相から作用させることを特徴とする請求の範囲 第 11 項に記載の方法。
[19] 基板上に描画する、前記銅薄膜層パターンにおいて、
その銅薄膜の最小層厚を 0. 1— 20 mの範囲に選択し、
分散液中に含有される前記表面酸化膜層を有する銅ナノ粒子または酸化銅ナノ粒 子の平均粒子径を、前記最小層厚に対して、その 1Z10以下に選択することを特徴 とする請求の範囲 第 11項に記載の方法。
[20] 前記銅薄膜層ノターンの塗布層を基板上に描画する手法として、
スクリーン印刷法、または転写法の描画手法、あるいは、スピンコート法を選択するこ とを特徴とする請求の範囲 第 11項に記載の方法。
[21] 微細な膜厚を有する所定の平面パターンに成形されてなる、銅微粒子の焼結体層 により構成される、銅微粒子焼結体型の微細形状導電体を形成する方法であって、 形成される前記銅微粒子の焼結体層においては、その最小膜厚は、 0. 1 m— 2 O /z mの範囲、その最大膜厚は、 100 m以下の範囲に選択され、かつ、該平面パ ターンの最小の線幅は、 0. 5 m— 200 μ mの範囲に選択され、
平均粒子径は、少なくとも 10 m以下の範囲であって、形成すべき焼結体層の前 記最小膜厚の 1Z4以下、かつ前記最小の線幅の 1Z10以下に選択される、表面酸 化膜層を有する銅微粒子または酸化銅微粒子を含有する分散液を用いて、前記導 電性部材の所定の平面パターンに該分散液を塗布してなる塗布層を描画する工程 と、
前記塗布層中に含まれる、表面酸化膜層を有する銅微粒子または酸化銅微粒子 に対して、表面酸化膜層または酸化銅を還元する処理を施し、さらに、還元処理を受 けた微粒子の焼成を行って、銅微粒子の焼結体層を形成する工程とを有し、 前記還元処理と焼成処理は、加熱温度を、 350°C以下に選択して、 還元能を有する化合物の気体または蒸気の存在する雰囲気下にお!/、て、該塗布層 中に含まれる、表面酸化膜層を有する銅微粒子または酸化銅微粒子を 1分間一 15 分間加熱し、前記還元能を有する化合物を作用させつつ、前記表面酸化膜層を有 する銅微粒子または酸化銅微粒子を構成する酸化銅を還元して、銅微粒子とする第 一の処理工程と、
前記第一の処理工程を施した後、得られる銅微粒子に対して、
酸素を含有する雰囲気下において、 30秒間以下の加熱処理を施し、銅微粒子に酸 素を作用させ、表面酸化を行う処理と、該表面酸ィ匕処理に引きつづき、前記還元能 を有する化合物の気体または蒸気の存在する雰囲気下において、 30秒間以上、 30 0秒間以下の加熱処理を施し、表面酸化の処理を受けた銅微粒子に前記還元能を 有する化合物を作用させて、再還元を行う処理との、酸化'再還元処理の組み合わ せを、少なくとも 1回施す第二の処理工程とを、同一工程内で連続して実施すること により行う
ことを特徴とする銅微粒子焼結体型の微細形状導電体の形成方法。
[22] 基板上に銅微粒子相互の焼結体層からなる微細な銅系配線パターンを形成する 方法であって、
平均粒子径を、少なくとも 以下の範囲に選択される、表面酸化膜層を有す る銅微粒子または酸化銅微粒子を含有する分散液を用いて、前記微細な配線バタ ーンの塗布層を基板上に描画する工程と、
前記塗布層中に含まれる、表面酸化膜層を有する銅微粒子または酸化銅微粒子 に対して、表面酸化膜層または酸化銅を還元する処理を施し、さらに、還元処理を受 けた微粒子の焼成を行って、銅微粒子の焼結体層を形成する工程とを有し、 前記還元処理と焼成処理は、加熱温度を、 350°C以下に選択して、
還元能を有する化合物の気体または蒸気の存在する雰囲気下にお!/、て、該塗布層 中に含まれる、表面酸化膜層を有する銅微粒子または酸化銅微粒子を 1分間一 15 分間加熱し、前記還元能を有する化合物を作用させつつ、前記表面酸化膜層を有 する銅微粒子または酸化銅微粒子を構成する酸化銅を還元して、銅微粒子とする第 一の処理工程と、
前記第一の処理工程を施した後、得られる銅微粒子に対して、
酸素を含有する雰囲気下において、 30秒間以下の加熱処理を施し、銅微粒子に酸 素を作用させ、表面酸化を行う処理と、該表面酸ィ匕処理に引きつづき、前記還元能 を有する化合物の気体または蒸気の存在する雰囲気下において、 30秒間以上、 30 0秒間以下の加熱処理を施し、表面酸化の処理を受けた銅微粒子に前記還元能を 有する化合物を作用させて、再還元を行う処理との、酸化'再還元処理の組み合わ せを、少なくとも 1回施す第二の処理工程とを、同一工程内で連続して実施すること により行う
ことを特徴とする微細な銅系配線パターンの形成方法。
[23] 基板上に銅微粒子相互の焼結体層からなる銅薄膜層を形成する方法であって、 平均粒子径を、少なくとも 以下の範囲に選択される、表面酸化膜層を有す る銅微粒子または酸化銅微粒子を含有する分散液を用いて、前記銅薄膜層の塗布 層を基板上に描画する工程と、
前記塗布層中に含まれる、表面酸化膜層を有する銅微粒子または酸化銅微粒子 に対して、表面酸化膜層または酸化銅を還元する処理を施し、さらに、還元処理を受 けた微粒子の焼成を行って、銅微粒子の焼結体層を形成する工程とを有し、 前記還元処理と焼成処理は、加熱温度を、 350°C以下に選択して、
還元能を有する化合物の気体または蒸気の存在する雰囲気下にお!/、て、該塗布層 中に含まれる、表面酸化膜層を有する銅微粒子または酸化銅微粒子を 1分間一 15 分間加熱し、前記還元能を有する化合物を作用させつつ、前記表面酸化膜層を有 する銅微粒子または酸化銅微粒子を構成する酸化銅を還元して、銅微粒子とする第 一の処理工程と、
前記第一の処理工程を施した後、得られる銅微粒子に対して、
酸素を含有する雰囲気下において、 30秒間以下の加熱処理を施し、銅微粒子に酸 素を作用させ、表面酸化を行う処理と、該表面酸ィ匕処理に引きつづき、前記還元能 を有する化合物の気体または蒸気の存在する雰囲気下において、 30秒間以上、 30 0秒間以下の加熱処理を施し、表面酸化の処理を受けた銅微粒子に前記還元能を 有する化合物を作用させて、再還元を行う処理との、酸化'再還元処理の組み合わ せを、少なくとも 1回施す第二の処理工程とを、同一工程内で連続して実施すること により行う
ことを特徴とする銅薄膜の形成方法。
[24] 分散液中に含有される、表面酸化膜層を有する銅微粒子は、
少なくとも、前記表面酸化膜層は、酸化第一銅、酸化第二銅、またはこれら銅酸化物 の混合物のいずれかを含んでなり、また、該微粒子は、酸化第一銅、酸化第二銅、ま たはこれら銅の酸化物の混合物、ならびに金属銅のうち、 2つ以上を含んでなる混合 体状粒子である
ことを特徴とする請求の範囲 第 21項に記載の方法。
[25] 前記還元処理と焼成処理における、前記第一の処理工程、ならびに前記第二の処 理工程中の再還元を行う処理において、気体または蒸気として、雰囲気中に存在さ せる還元能を有する化合物は、酸ィ匕によって、ォキソ基( = 0)またはホルミル基 (一 C HO)へと変換可能なヒドロキシ基を有するアルコールィ匕合物、あるいは、それらの二 種以上を混合したものである
ことを特徴とする請求の範囲 第 21項に記載の方法。
[26] 前記還元処理と焼成処理における、前記第一の処理工程、ならびに前記第二の処 理工程中の再還元を行う処理において、気体または蒸気として、雰囲気中に存在さ せる還元能を有する化合物は、分子内にヒドロキシ基を 2以上有する多価のアルコ一 ル化合物、あるいは、それらの二種以上を混合したものである
ことを特徴とする請求の範囲 第 21項に記載の方法。
[27] 前記還元処理と焼成処理における、前記第一の処理工程、ならびに前記第二の処 理工程中の再還元を行う処理において、気体または蒸気として、雰囲気中に存在さ せる還元能を有する化合物は、水素分子である
ことを特徴とする請求の範囲 第 21項に記載の方法。
[28] 前記還元処理と焼成処理における、前記第一の処理工程、ならびに前記第二の処 理工程中の再還元を行う処理において、気体または蒸気として、雰囲気中に存在さ せる還元能を有する化合物は、グリセリン(1, 2, 3—プロパントリオール)、エチレング リコール(1, 2—エタンジオール)、プロピレングリコール(1, 2—プロパンジオール)、 1 , 3—プロパンジオールのいずれかである
ことを特徴とする請求の範囲 第 21項に記載の方法。
[29] 前記表面酸化膜層を有する銅微粒子または酸化銅微粒子を含有する分散液に含 有される分散溶媒は、融点が 10°C以下であり、酸ィ匕によって、ォキソ基( = o)または ホルミル基 (一 CHO)へと変換可能なヒドロキシ基を有するアルコールィ匕合物である ことを特徴とする請求の範囲 第 21項に記載の方法。
PCT/JP2004/006442 2003-05-16 2004-05-13 銅微粒子焼結体型の微細形状導電体の形成方法、該方法を応用した銅微細配線ならびに銅薄膜の形成方法 WO2004103043A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005504486A JP3939735B2 (ja) 2003-05-16 2004-05-13 銅微粒子焼結体型の微細形状導電体の形成方法、該方法を応用した銅微細配線ならびに銅薄膜の形成方法
US10/556,871 US7820232B2 (en) 2003-05-16 2004-05-13 Method for forming fine copper particle sintered product type of electric conductor having fine shape, and process for forming copper fine wiring and thin copper film by applying said method
EP04732751.5A EP1626614B1 (en) 2003-05-16 2004-05-13 Method for forming fine copper particle sintered product type of electric conductor having fine shape, method for forming fine copper wiring and thin copper film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-139398 2003-05-16
JP2003139398 2003-05-16
JP2003292283 2003-08-12
JP2003-292283 2003-08-12

Publications (1)

Publication Number Publication Date
WO2004103043A1 true WO2004103043A1 (ja) 2004-11-25

Family

ID=33455495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006442 WO2004103043A1 (ja) 2003-05-16 2004-05-13 銅微粒子焼結体型の微細形状導電体の形成方法、該方法を応用した銅微細配線ならびに銅薄膜の形成方法

Country Status (5)

Country Link
US (1) US7820232B2 (ja)
EP (1) EP1626614B1 (ja)
JP (1) JP3939735B2 (ja)
KR (1) KR100841665B1 (ja)
WO (1) WO2004103043A1 (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183904A (ja) * 2003-12-22 2005-07-07 Rohm & Haas Electronic Materials Llc 電子部品にはんだ領域を形成する方法及びはんだ領域を有する電子部品
JP2006228879A (ja) * 2005-02-16 2006-08-31 Asahi Kasei Corp 回路板の製造方法
JP2006228878A (ja) * 2005-02-16 2006-08-31 Asahi Kasei Corp 積層体の製造方法
JP2007053212A (ja) * 2005-08-17 2007-03-01 Denso Corp 回路基板の製造方法
JP2007087735A (ja) * 2005-09-21 2007-04-05 Asahi Kasei Corp 金属酸化物分散体
JP2007262446A (ja) * 2006-03-27 2007-10-11 Furukawa Electric Co Ltd:The 金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法及び導電部品の形成方法
JP2009070724A (ja) * 2007-09-14 2009-04-02 Sumitomo Bakelite Co Ltd 導電性ペースト
JP2009088340A (ja) * 2007-10-01 2009-04-23 Harima Chem Inc 金属ナノ粒子焼結体の製造方法
WO2009054343A1 (ja) * 2007-10-22 2009-04-30 Hitachi Chemical Company, Ltd. 銅配線パターン形成方法及びそれに用いる酸化銅粒子分散液
JP2009218167A (ja) * 2008-03-12 2009-09-24 Hitachi Chem Co Ltd 導電性基板及びその製造方法、並びに銅配線基板及びその製造方法
JP2009267300A (ja) * 2008-04-30 2009-11-12 Harima Chem Inc 多層配線基板の製造方法
JP2010183053A (ja) * 2009-02-03 2010-08-19 Samsung Electro-Mechanics Co Ltd 金属配線の形成方法及びこれを利用して形成された金属配線
JP2010251739A (ja) * 2009-03-27 2010-11-04 Furukawa Electric Co Ltd:The 導電膜又は導電回路の形成方法、及び導電膜又は導電回路形成用加熱炉
JP2012028243A (ja) * 2010-07-27 2012-02-09 Harima Chem Inc 導電性銅ペースト
JP2012134297A (ja) * 2010-12-21 2012-07-12 Mitsui Mining & Smelting Co Ltd 亜酸化銅粒子分散体
JP2012140669A (ja) * 2010-12-28 2012-07-26 Harima Chemicals Inc 金属ナノ粒子焼結体層の形成方法
WO2012128140A1 (ja) * 2011-03-24 2012-09-27 富士フイルム株式会社 銅配線の形成方法、配線基板の製造方法及び配線基板
WO2012128139A1 (ja) * 2011-03-24 2012-09-27 富士フイルム株式会社 銅配線の形成方法、配線基板の製造方法及び配線基板
WO2013172362A1 (ja) * 2012-05-18 2013-11-21 国立大学法人東北大学 導電性ペースト、配線形成方法および電子部品、シリコン太陽電池
WO2014156594A1 (ja) * 2013-03-29 2014-10-02 富士フイルム株式会社 導電膜形成用組成物およびこれを用いる導電膜の製造方法
JP2014196384A (ja) * 2013-03-29 2014-10-16 富士フイルム株式会社 導電膜形成用組成物およびこれを用いる導電膜の製造方法
US9011762B2 (en) 2006-07-21 2015-04-21 Valtion Teknillinen Tutkimuskeskus Method for manufacturing conductors and semiconductors
WO2016152725A1 (ja) * 2015-03-25 2016-09-29 スタンレー電気株式会社 電子デバイス、その製造方法、および、回路基板
WO2016152728A1 (ja) * 2015-03-25 2016-09-29 スタンレー電気株式会社 電子デバイスの製造方法、および、電子デバイス
WO2016170902A1 (ja) * 2015-04-24 2016-10-27 スタンレー電気株式会社 電子デバイスの製造方法、電子デバイス、回路基板の製造方法、および、回路基板
US10431358B2 (en) 2015-04-24 2019-10-01 Stanley Electric Co., Ltd. Resistor production method, resistor, and electronic device
JP2020039002A (ja) * 2019-12-03 2020-03-12 スタンレー電気株式会社 電子デバイス

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101147087B1 (ko) * 2005-06-28 2012-05-17 엘지디스플레이 주식회사 평판표시소자의 제조방법
TWI267946B (en) * 2005-08-22 2006-12-01 Univ Nat Chiao Tung Interconnection of group III-V semiconductor device and fabrication method for making the same
KR100730408B1 (ko) * 2006-03-21 2007-06-19 (주)도솔 삼중절연전선용 동선 연화장치 및 그 방법
AT9473U1 (de) * 2006-05-04 2007-10-15 Austria Tech & System Tech Verfahren zur herstellung wenigstens eines leitfähigen elements einer leiterplatte sowie leiterplatte und verwendung eines derartigen verfahrens
EP2048205A4 (en) * 2006-07-28 2010-07-21 Asahi Glass Co Ltd DISPERSION CONTAINING FINE METALLIC PARTICLES, METHOD FOR PRODUCING THE DISPERSION AND ARTICLES HAVING METALLIC FILMS
EP2234119A4 (en) * 2007-12-18 2015-04-15 Hitachi Chemical Co Ltd COPPER CONDUCTIVE FILM AND MANUFACTURING METHOD THEREFOR, CONDUCTIVE SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME, COPPER CONDUCTIVE THREAD AND METHOD FOR MANUFACTURING THE SAME, AND PROCESSING SOLUTION THEREOF
CN101547567B (zh) * 2008-03-28 2011-03-02 富葵精密组件(深圳)有限公司 导电线路的制作方法
EP2319643B1 (en) * 2008-08-29 2019-03-27 Ishihara Sangyo Kaisha, Ltd. Metallic copper dispersion, process for producing the metallic copper dispersion, electrode, wiring pattern, and coating film formed using the metallic copper dispersion, decorative article and antimicrobial article with the coating film formed thereon, and processes for producing the decorative article and the antimicrobial article
JP5129077B2 (ja) * 2008-09-30 2013-01-23 富士フイルム株式会社 配線形成方法
JP5778382B2 (ja) * 2008-10-22 2015-09-16 東ソー株式会社 金属膜製造用組成物、金属膜の製造方法及び金属粉末の製造方法
US8834957B2 (en) * 2008-11-05 2014-09-16 Lg Chem, Ltd. Preparation method for an electroconductive patterned copper layer
CN102218387A (zh) * 2010-04-19 2011-10-19 鸿富锦精密工业(深圳)有限公司 镀膜机
US8643165B2 (en) 2011-02-23 2014-02-04 Texas Instruments Incorporated Semiconductor device having agglomerate terminals
JP5834499B2 (ja) * 2011-06-01 2015-12-24 Jsr株式会社 金属膜形成用組成物、金属膜、金属膜の形成方法および電子部品
US20130251892A1 (en) * 2012-03-22 2013-09-26 Chien-Han Ho Method of forming a wiring pattern
JP2015523680A (ja) * 2012-05-18 2015-08-13 ユニピクセル ディスプレイズ,インコーポレーテッド 金属のナノ粒子とナノワイヤを含むインクを用いた導電パターンの形成
EP2871260B1 (en) * 2012-07-09 2019-03-06 Shikoku Chemicals Corporation Copper film-forming agent and method for forming copper film
WO2014069866A1 (ko) * 2012-10-31 2014-05-08 주식회사 동진쎄미켐 인쇄전자용 구리 페이스트 조성물
WO2015152625A1 (ko) 2014-04-01 2015-10-08 전자부품연구원 광 소결용 잉크 조성물, 그를 이용한 배선기판 및 그의 제조 방법
JP5766336B1 (ja) 2014-06-16 2015-08-19 株式会社マテリアル・コンセプト 銅ペーストの焼成方法
DE102014114095B4 (de) 2014-09-29 2017-03-23 Danfoss Silicon Power Gmbh Sintervorrichtung
DE102014114093B4 (de) * 2014-09-29 2017-03-23 Danfoss Silicon Power Gmbh Verfahren zum Niedertemperatur-Drucksintern
DE102014114097B4 (de) 2014-09-29 2017-06-01 Danfoss Silicon Power Gmbh Sinterwerkzeug und Verfahren zum Sintern einer elektronischen Baugruppe
DE102014114096A1 (de) 2014-09-29 2016-03-31 Danfoss Silicon Power Gmbh Sinterwerkzeug für den Unterstempel einer Sintervorrichtung
CN117696898A (zh) * 2018-08-08 2024-03-15 三井金属矿业株式会社 接合用组合物以及导电体的接合结构及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035837A (en) 1989-10-27 1991-07-30 Dia-Ichi Kogyo Seiyaku Co., Ltd. Copper paste composition
JPH0457389A (ja) * 1990-06-27 1992-02-25 Sumitomo Metal Ind Ltd 銅回路基板の製造方法
JPH06224538A (ja) * 1993-01-22 1994-08-12 Sumitomo Metal Ind Ltd セラミックス回路基板の製造方法
JPH10294018A (ja) * 1997-04-16 1998-11-04 Ulvac Japan Ltd 金属ペーストの焼成方法
US6366333B1 (en) 1999-02-25 2002-04-02 Sharp Kabushiki Kaisha Method of forming a conductive and reflective thin metal film suitable for a reflective LCD device and a device produced by the method
WO2003051562A1 (fr) 2001-12-18 2003-06-26 Asahi Kasei Kabushiki Kaisha Dispersion d'oxyde metallique

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248097A (ja) * 1985-08-28 1987-03-02 日本特殊陶業株式会社 多層回路基板の製造法
JPS6415961A (en) * 1987-07-10 1989-01-19 Nec Corp Lead frame of resin seal type semiconductor device
JP3633211B2 (ja) 1997-06-18 2005-03-30 株式会社デンソー 導電性接着剤を用いた実装方法
JP3273757B2 (ja) 1998-03-19 2002-04-15 株式会社東芝 ソルダーペースト及びハンダ接合形成用フラックス
JP2002271005A (ja) 2001-03-08 2002-09-20 Matsushita Electric Ind Co Ltd 実装構造体及びその製造方法
JP3774638B2 (ja) * 2001-04-24 2006-05-17 ハリマ化成株式会社 インクジェット印刷法を利用する回路パターンの形成方法
JP3764349B2 (ja) * 2001-05-07 2006-04-05 ハリマ化成株式会社 金属微粒子分散液を用いたメッキ代替導電性金属皮膜の形成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035837A (en) 1989-10-27 1991-07-30 Dia-Ichi Kogyo Seiyaku Co., Ltd. Copper paste composition
JPH0457389A (ja) * 1990-06-27 1992-02-25 Sumitomo Metal Ind Ltd 銅回路基板の製造方法
JPH06224538A (ja) * 1993-01-22 1994-08-12 Sumitomo Metal Ind Ltd セラミックス回路基板の製造方法
JPH10294018A (ja) * 1997-04-16 1998-11-04 Ulvac Japan Ltd 金属ペーストの焼成方法
US6366333B1 (en) 1999-02-25 2002-04-02 Sharp Kabushiki Kaisha Method of forming a conductive and reflective thin metal film suitable for a reflective LCD device and a device produced by the method
WO2003051562A1 (fr) 2001-12-18 2003-06-26 Asahi Kasei Kabushiki Kaisha Dispersion d'oxyde metallique

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183904A (ja) * 2003-12-22 2005-07-07 Rohm & Haas Electronic Materials Llc 電子部品にはんだ領域を形成する方法及びはんだ領域を有する電子部品
JP4606191B2 (ja) * 2005-02-16 2011-01-05 旭化成イーマテリアルズ株式会社 積層体の製造方法
JP2006228879A (ja) * 2005-02-16 2006-08-31 Asahi Kasei Corp 回路板の製造方法
JP2006228878A (ja) * 2005-02-16 2006-08-31 Asahi Kasei Corp 積層体の製造方法
JP4606192B2 (ja) * 2005-02-16 2011-01-05 旭化成イーマテリアルズ株式会社 回路板の製造方法
JP2007053212A (ja) * 2005-08-17 2007-03-01 Denso Corp 回路基板の製造方法
JP2007087735A (ja) * 2005-09-21 2007-04-05 Asahi Kasei Corp 金属酸化物分散体
JP2007262446A (ja) * 2006-03-27 2007-10-11 Furukawa Electric Co Ltd:The 金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法及び導電部品の形成方法
JP4593502B2 (ja) * 2006-03-27 2010-12-08 古河電気工業株式会社 金属酸化物粒子もしくは金属粒子の表面酸化被膜の還元焼成方法及び導電部品の形成方法
US9011762B2 (en) 2006-07-21 2015-04-21 Valtion Teknillinen Tutkimuskeskus Method for manufacturing conductors and semiconductors
JP2009070724A (ja) * 2007-09-14 2009-04-02 Sumitomo Bakelite Co Ltd 導電性ペースト
JP2009088340A (ja) * 2007-10-01 2009-04-23 Harima Chem Inc 金属ナノ粒子焼結体の製造方法
JP5067426B2 (ja) * 2007-10-22 2012-11-07 日立化成工業株式会社 銅配線パターン形成方法及びそれに用いる酸化銅粒子分散液
WO2009054343A1 (ja) * 2007-10-22 2009-04-30 Hitachi Chemical Company, Ltd. 銅配線パターン形成方法及びそれに用いる酸化銅粒子分散液
TWI425893B (zh) * 2007-10-22 2014-02-01 Hitachi Chemical Co Ltd 銅配線圖案形成方法以及該方法所使用的氧化銅粒子分散液
JPWO2009054343A1 (ja) * 2007-10-22 2011-03-03 日立化成工業株式会社 銅配線パターン形成方法及びそれに用いる酸化銅粒子分散液
JP2009218167A (ja) * 2008-03-12 2009-09-24 Hitachi Chem Co Ltd 導電性基板及びその製造方法、並びに銅配線基板及びその製造方法
JP2009267300A (ja) * 2008-04-30 2009-11-12 Harima Chem Inc 多層配線基板の製造方法
JP2010183053A (ja) * 2009-02-03 2010-08-19 Samsung Electro-Mechanics Co Ltd 金属配線の形成方法及びこれを利用して形成された金属配線
US8216635B2 (en) 2009-02-03 2012-07-10 Samsung Electro-Mechanics Co., Ltd. Method of forming metal wiring and metal wiring formed using the same
JP2010251739A (ja) * 2009-03-27 2010-11-04 Furukawa Electric Co Ltd:The 導電膜又は導電回路の形成方法、及び導電膜又は導電回路形成用加熱炉
JP2012028243A (ja) * 2010-07-27 2012-02-09 Harima Chem Inc 導電性銅ペースト
JP2012134297A (ja) * 2010-12-21 2012-07-12 Mitsui Mining & Smelting Co Ltd 亜酸化銅粒子分散体
JP2012140669A (ja) * 2010-12-28 2012-07-26 Harima Chemicals Inc 金属ナノ粒子焼結体層の形成方法
WO2012128139A1 (ja) * 2011-03-24 2012-09-27 富士フイルム株式会社 銅配線の形成方法、配線基板の製造方法及び配線基板
WO2012128140A1 (ja) * 2011-03-24 2012-09-27 富士フイルム株式会社 銅配線の形成方法、配線基板の製造方法及び配線基板
WO2013172362A1 (ja) * 2012-05-18 2013-11-21 国立大学法人東北大学 導電性ペースト、配線形成方法および電子部品、シリコン太陽電池
US9941420B2 (en) 2012-05-18 2018-04-10 Material Concept, Inc. Conductive paste, method for forming wiring, electronic component, and silicon solar cell
WO2014156594A1 (ja) * 2013-03-29 2014-10-02 富士フイルム株式会社 導電膜形成用組成物およびこれを用いる導電膜の製造方法
JP2014196384A (ja) * 2013-03-29 2014-10-16 富士フイルム株式会社 導電膜形成用組成物およびこれを用いる導電膜の製造方法
JP2014199720A (ja) * 2013-03-29 2014-10-23 富士フイルム株式会社 導電膜形成用組成物およびこれを用いる導電膜の製造方法
JP2016184618A (ja) * 2015-03-25 2016-10-20 スタンレー電気株式会社 電子デバイス、その製造方法、および、回路基板
WO2016152728A1 (ja) * 2015-03-25 2016-09-29 スタンレー電気株式会社 電子デバイスの製造方法、および、電子デバイス
JP2016184621A (ja) * 2015-03-25 2016-10-20 スタンレー電気株式会社 電子デバイスの製造方法、および、電子デバイス
WO2016152725A1 (ja) * 2015-03-25 2016-09-29 スタンレー電気株式会社 電子デバイス、その製造方法、および、回路基板
US10085349B2 (en) 2015-03-25 2018-09-25 Stanley Electric Co., Ltd. Method for producing electronic device, and electronic device
US10383214B2 (en) 2015-03-25 2019-08-13 Stanley Electric Co., Ltd. Electronic device, method for producing same, and circuit substrate
WO2016170902A1 (ja) * 2015-04-24 2016-10-27 スタンレー電気株式会社 電子デバイスの製造方法、電子デバイス、回路基板の製造方法、および、回路基板
US10431358B2 (en) 2015-04-24 2019-10-01 Stanley Electric Co., Ltd. Resistor production method, resistor, and electronic device
JP2020039002A (ja) * 2019-12-03 2020-03-12 スタンレー電気株式会社 電子デバイス

Also Published As

Publication number Publication date
EP1626614B1 (en) 2013-08-28
JP3939735B2 (ja) 2007-07-04
JPWO2004103043A1 (ja) 2006-07-20
KR100841665B1 (ko) 2008-06-26
EP1626614A4 (en) 2009-08-26
KR20060021310A (ko) 2006-03-07
US20060210705A1 (en) 2006-09-21
EP1626614A1 (en) 2006-02-15
US7820232B2 (en) 2010-10-26

Similar Documents

Publication Publication Date Title
WO2004103043A1 (ja) 銅微粒子焼結体型の微細形状導電体の形成方法、該方法を応用した銅微細配線ならびに銅薄膜の形成方法
US9457406B2 (en) Copper metal film, method for producing same, copper metal pattern, conductive wiring line using the copper metal pattern, copper metal bump, heat conduction path, bonding material, and liquid composition
JP5163655B2 (ja) 銅導体膜及びその製造方法、導電性基板及びその製造方法、銅導体配線及びその製造方法、並びに処理液
WO2007034922A1 (ja) 金属ナノ粒子、金属ナノ粒子コロイド、金属ナノ粒子コロイドの保存方法、及び金属被膜
TW201117231A (en) Ink for printing, metal nanoparticle utilized in ink, wiring, circuit substrate and semiconductor package
JP6037893B2 (ja) 金属微粒子組成物、接合材、電子部品、接合層の形成方法、導体層の形成方法及びインク組成物
JP7139590B2 (ja) 導体形成用組成物、並びに接合体及びその製造方法
JP6422289B2 (ja) ニッケル粒子組成物、接合材及び接合方法
JP2017123253A (ja) 導体形成組成物、導体の製造方法、導体及び装置
TW201805391A (zh) 接合用組成物及其製造方法、接合體以及被覆銀奈米粒子
CN102119064B (zh) 复合纳米粒子及其制造方法
KR20190031418A (ko) 광개시제를 이용하는 전도성 금속 인쇄를 위한 분자 유기 반응성 잉크
JP6605848B2 (ja) 表面被覆金属微粒子の分散溶液、ならびにこの分散溶液の塗布および焼結する工程を含む、焼結導電体および導電接続部材の製造方法
CN100488339C (zh) 形成微细铜颗粒烧结产物类的微细形状导电体的方法
JP5809918B2 (ja) 金属微粒子分散溶液
JP2017101307A (ja) 銅含有粒子、導体形成組成物、導体の製造方法、導体及び電子部品
WO2016080544A1 (ja) 金属表面の処理方法並びに当該方法により処理された銀被着銅及び複合金属体
TW201343823A (zh) 導電墨水、附導體之基材及附導體之基材之製造方法
JP2004155638A (ja) 金属酸化物分散体
JP2006278936A (ja) 金属層を備えた基板の製造方法。
JP6603989B2 (ja) 複合粒子及びその製造方法、導電性ペースト、焼結体、並びに半導体装置
JP5834499B2 (ja) 金属膜形成用組成物、金属膜、金属膜の形成方法および電子部品
JP2018058209A (ja) 接合体およびその製造方法、並びに半導体モジュール
JP2012140669A (ja) 金属ナノ粒子焼結体層の形成方法
JP2008016360A (ja) 導電性金属被膜の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005504486

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057021515

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004732751

Country of ref document: EP

Ref document number: 10556871

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048133811

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004732751

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057021515

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10556871

Country of ref document: US